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Chapter O

Introduction

0.1 Additive categories and additive functors

An additive category A is a category with zero object, in which any pair of objects has a direct
sum. This yields an associative and commutative addition on the set of morphisms 4 (X, X’)
between fixed objects X and X’. We require for each identity an additive inverse to exist, in

that we require (idx D ) to be an isomorphism for X € Ob(A).

idx idx

Consequently, in an additive category A, the set of morphisms 4(X, X’) is an abelian group.
Composition is distributive with respect to addition.

Given additive categories A and B, a functor F' : A — B is called additive if it maps zero
objects to zero objects and if it is compatible with direct sums of each pair of objects in A.

Equivalently, F' is additive if it is compatible with addition of morphisms.

0.2 Pure short exact sequences

Suppose given additive categories A’, A and A”.

Suppose given additive functors A’ 545 4
The full image of F is the full additive subcategory Im(F) C A with

Ob(Im(F)) = {X € Ob(A) : X ~ X'F for some X' € Ob(A) } .

The kernel of G is the full additive subcategory Kern(G) C A with

Ob(Kern(G)) = {X € Ob(A) : XG is a zero object in A" } .
The sequence A’ 5 A % A" is called pure short exact if (P 1-4) hold.

(P 1) The functor F is full and faithful.

(P2) The functor G is full and dense.



(P3) We have Im(F) = Kern(G).
(P4) Suppose given a morphism X % X in A such that uG = 0. Then there exists Z’ € Ob(A')

and morphisms X — Z'F 9% X such that a - @ = u.

A functor A 5 A is called a pure monofunctor if there exists a pure short exact sequence

AL A5 A7 To indicate that F is a pure monofunctor, we often write A’ A

A functor A & A" is called a pure epifunctor if there exists a pure short exact sequence
AL A5 A" To indicate that G is a pure epifunctor, we often write A=A

For instance, suppose given an additive category A and a full additive subcategory N' C A
closed under retracts. Then we have the pure short exact sequence

NS AL N,
in which I denotes the inclusion functor and R denotes the residue class functor to the factor

category A/N.

0.3 Properties of pure short exact sequences

We collect some properties of pure short exact sequences.

0.3.1 Universal properties
Suppose given a pure short exact sequence A’ Ry

(1) The functor F' has the universal property of a kernel of G, up to isomorphy of functors.

(2) The functor G has the universal property of a cokernel of F', up to isomorphy of functors.

0.3.2 Composition properties
Suppose given additive categories A, B and C. Suppose given additive functors

A= B =3 C.

(1) Suppose G to be a pure monofunctor.

Then F' is a pure monofunctor if and only if F'G is a pure monofunctor.

(2) Suppose F' to be a pure epifunctor.

Then G is a pure epifunctor if and only if F'G is a pure epifunctor.



0.3.3 Noetherian properties

(1) Suppose given the following diagram of additive categories and additive functors.
U
s
B
. ?
A e C :
PN

4%

Suppose that A B and ALEC Y and B-S-C W are pure short
exact.

: Q . : .
Then we obtain a pure short exact sequence U Ly w making the following dia-
gram commutative up to isomorphy.

B}/u r
A}/A\ic §
FG \}\W/{

V

(2) Suppose given the following diagram of additive categories and additive functors.

Suppose that W B0 and V= AL C and U~ AL B are pure short
exact.



Then we obtain a pure short exact sequence U Ly w making the following dia-
gram commutative up to isomorphy.

w
K
T B
o
)% { A = C
FG
\s\/
U

0.3.4 3Xx3-property

Suppose given the following diagram of additive categories and additive functors, commutative
up to isomorphy.

\
/
\

/\/\

/

C/
U v , S oy
Suppose that A —e=B —+=C and B’ —= B —+=B" are pure short exact.

Then there exist pure short exact sequences A’ LB Y and A —e= A-F- A" and

¢ e tocr and A BB Y making the following diagram commutative up to iso-

s
e
R

R



Conventions

(1) Given sets X, Y and a map X ER Y, we write x f for the image of x under f.

(2) Given sets X, Y, Z and maps X Ly andy & 7, we write their composite as X Ny
So for x € X, we have z(f - g) = (zf)g.

We often write fg:= f-g.

(3) Categories are understood to be small with respect to a given universe. lLe. for a cate-
gory C, both Ob(C) and Mor(C) are sets in this universe.

(4) The identity morphism on an object X of a category C is written id; .
We often abbreviate 1 := idx := id .

(5) Given a category C and objects X, Y € Ob(C), we denote by ¢(X,Y) the set of mor-
phisms in C with source X and target Y.

(6) Given a category C and an isomorphism f in C, we denote by f~ its inverse.
(7) Suppose given a category C. Suppose given X, X' Y, Y’ € Ob(C).

The object X is called a retract of the object Y if there exist morphisms X = Y NS
such that a-b =1idx .

Note that if Y ~ Y”, then X is a retract of Y if and only if X is a retract of Y.
Note that if X ~ X’ then X is a retract of Y if and only if X’ is a retract of Y.

(8) Suppose given a category C. Suppose given a full subcategory D C C.
We say that D is closed under retracts in C if the following property (CR) holds.

(CR) Suppose given X € Ob(C) and Y € Ob(D). Suppose that X is a retract of Y. Then
X € Ob(D).

(9) Suppose given a category C. Suppose given a full subcategory D C C. Then the inclusion
functor is denoted by Ipc : D — C. Often, we abbreviate I := Ipe.
(10) Suppose given categories C and D.

A functor F': C — D is called dense if for each Y € Ob(D) there exists X € Ob(C) such
that XF ~ Y.

A functor F': C — D is called an equivalence if F' is full, faithful and dense.

A functor F' : C — D is an equivalence if and only if there exists a functor G : D — C
such that F'G ~id¢ and GF ~ idp.

(11) Suppose given a functor F': C — D. Suppose given X, X’ € Ob(C). We write

Fxx : X, X") = p(XF,X'F)
c — cF.
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(12) Suppose given categories C and D. Suppose given functors F,G : C — D.

A transformation from F to G is a tuple a = (Xa : XF — XG)xcobe) of morphisms
in D such that
XF 2% XG

ol

YF XYY va

commutes for every morphism X - Y in C.

This commutativity for every morphism X 2 Y in C is also referred to as the naturality
of the tuple a.

A transformation a = (Xa) xeob(c) is called an isotransformation if Xa is an isomorphism
for X € Ob(C). In this case, a™ = (X(a™))xcone) = ((Xa)™)xecone) = (Xa™)xeob(e) is
an isotransformation, too.

See also §1.3.



Chapter 1

2-categories

1.1 Definition of a 2-category

Definition 1. A 2-category K consists of the following data.

o A set of 0-morphisms Morg(R), also called objects. We also write Ob(R) := Morg(R).
o A set of 1-morphisms Mor; (R) .

o A set of 2-morphisms Mora(R) .

e Maps
S'ﬁ
Mor;(8) — Ob(8), mapping a l-morphism to its source,
i}i
Mor;(8) <~ Ob(£), mapping an object to its identity,
g
Mor; (R) T, Ob(R), mapping a 1-morphism to its target.
e Maps
S'Q
Mory(8) — Mor;(&), mapping a 2-morphism to its source,
Mory(R) & Mor; () , mapping an 1-morphism to its identity,
Mors(R) 2 Mor, (R), mapping a 2-morphism to its target.
e A map

R
F,G) € Mor; (R) x Mor;(R) : Ft2 = Gs? Q Morq (R
0 0
(F,G) +— F%@,
called composition of 1-morphisms.

e A map

a,a’) € Mory(8£) x Mory(R) : atf = a/sf L> Mors (8
1 1

a,a — a-ad
( ? ) a ’
called wvertical compositz’on of 2—HlOI‘phiSHlS.

11
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e A map

()

{ (a,b) € Mory(R) x Mory(R) : asith = bsfsi} —= Mory(R)
(a,b) +— a;b :

called horizontal composition of 2-morphisms.

Given F' € Mor;(R) and C, D € Ob(R), to express that F'sf = C and that Ftf = D, we write

c L p.

Given a € Mory(R) and F, F' € Mor; (), to express that asf = F and that at? = F’, we write
F = F.

Given C € Ob(R), we write ide := id§ := Cif} .
Given F' € Mor(R), we write idp := id} := Fif.

The following properties (1-13) are required to hold in R.

(1) We have i - s5 = idop(sy and i - t§ = idow(s) . Le. for C € Ob(K), we have C e, ¢
(2) We have if - s = idnior, () and iy - t§ = idygor, () - Le. for F' € Mor, (&), we have F dr, .
(3) We have sf - s& =t - s§ and s7 - tff = t§ - 5.
So given a € Mory(R), writing asf =t F, atf = F', Fsj = F's§ =: C and Ft§ = F't§ = D, we
have

F
¢~ o >D.
\\F’/
(4) Given 1-morphisms
chpYe,
we have
R’
C Fx@ £
(5) Given 2-morphisms

we have



(10

(11

(12
(13

(6) Given 2-morphisms
/F\D/G\

ay

C

€,
we have ~
F%G
/a* b\L \
\F/*G’
(7) Given a 1-morphism C L D, we have ide $F=Fand F* idp =F.

(8) Given 1-morphisms

we have (FiG)ﬁH:Fﬁ(GﬁH) = FxGx*H.

(9) Given a 2-morphism
//; lj\ D
\\F'/ ’

we have idp - @ = a and a - idp = a and idiq, *a = a and a *idiq,, = a.
R R R R

) Given 2-morphisms

C a D s
\\Fu_,//r
/
\ /

we have (a-a') - a”
& '8

=a-(d-d)=1a-d- d.
R R &R
) Given 2-morphisms

/”'F’“\ /"G’\ /H\

C D & B
\\F\L/,.,/ \NC\JL// \\}\%/,/ ’
we have (axb)xc=ax*(bxc) =1 axbxc.
RR RR R R

) Given 1-morphisms C Lp S ¢ , we have idp x idg = idF «

) Given 2-morphisms

Y B — oY
Wehave(aﬁa)j;(bﬁb) (a;b) (a' ).

13
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1.2 1-morphism category

Suppose given a 2-category K. Suppose given C, C', C", D, D', D" € Ob(R).

Definition 2. Let
R(C7 D)

be the category having
Ob(&(C,D)) = {FeMory(8) : C 5D}

F
S /
Mor(2(C,D)) = {a € Mory(8) : c(}i,/p for some F, F' € Ob(a(C,D))},
with, abbreviating (C, D) := &(C, D),
D F
Mor((C, D)) 22 ( /¢\D> — (% p)
e P
Mor((C, D)) <2 0 ( Q;[)D) o 5
Mor((C,D)) ‘&2 ( c \D> —~ (€ p)
/
and with
a-a = a-d
R
for

c\i//p

By Definition 1.(2,3,5,9,10), this in fact defines the category &(C, D).
We often abbreviate (C,D) := &(C, D).

Definition 3. Suppose given a 1-morphism D A pr

We obtain the functor

sc,p) 0 e, p)
FYH
I
\“\F’/ \ /
by Definition 1.(4,6,9,12,13).
Definition 4. Suppose given a 1-morphism C’ S c.
s(c,p) 222 (e, D)
GYF
(C/T\D) - C,(G*ai T
a R
\F’/ \GQF//

by Definition 1.(4,6,9,12,13).



Remark 5.

(1) Suppose given 1-morphisms D A p 2 D' Then

W(C.H)- 4(C.H) = 3(C,H*H) .
This follows by Definition 1.(8,11,12).
(2) Suppose given 1-morphisms C” ¢ S ¢. Then
&(G.D)- (G, D) = «(G'EG, D).
This follows by Definition 1.(8,11,12).
(3) Suppose given 1-morphisms C’ % Cand DL D' Then
a(G.D)- a(C,H) = x(C.H)- x(G,D) = (G, H).
This follows by Definition 1.(8,11).
(4) We have ¢(C,idp) = id ;(¢,py. This follows by Definition 1.(1,7,9).

(5) We have g(ide, D) = id ¢,p)y - This follows by Definition 1.(1,7,9).

Definition 6. Suppose given a 1-morphism C 5.

15

Then F'is called a 1-isomorphism if there exists a 1-morphism C & D such that F ﬁG ~ ide

in &(C,C) and such that GHF ~ idp in &(D, D).

1.3 The 2-category of categories, called Cat

We recall the notions of functors and transformations in order to fix notation.

Reminder 7. Let C, D, £ and B be categories.

(1) We have maps

Mor(C) =+ Ob(C)
xLy) » X

Mor(C) <= Ob(C)
(X 9% X) « X

Mor(C) S Ob(C)
xLy) » v
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(2)

We have the composition map

{ (u,v) € Mor(C) x Mor(C) : ut® = vs® } (—C—)—> Mor(C)

(u,v) =  wu-v.
1
We often write uv ;= u - v := uév.

So given X =Y 5 Z in C, composition gives the composite morphism X =% Z.
Given X =Y = Z = W in C, we require idy u = u = uidy and (vv)w = u(vw) =: uvw.
A functor F from C to D, often written C LN D, consists of maps
Ob(F) : Ob(C) — Ob(D)
Mor(F) : Mor(C) — Mor(D)
such that the following conditions (i,ii) hold.
(i) We have Mor(F) - s? = s¢ - Ob(F).
We have Mor(F) - t? = t¢ - Ob(F).
We have Ob(F) - iP = i¢ - Mor(F).

ii) Given u, v € Mor(C) such that ut® = vs®, we have
(ii) : ,

(uév)Mor(F) = uMor(F) I-)vMor(F) :

Often, we write X F' := XOb(F) for X € Ob(C) and uF := uMor(F) for u € Mor(C).
So (i,ii) can be expressed as follows.
First, we have idyr = idx F' for X € Ob(C).

Second, given X =Y 5 Z in C, we have XF “oyE S ZF in D and the composite
wv is sent to (uv)F = (uF')(vF).

For instance, we have the functor C Mey ¢ with Ob(id¢) = idop(ey and Mor(ide) = idmor(c) -
Given functors ¢ = D & ¢ 4 B, the composite functor C Gy € is defined by

Ob(F * G) := Ob(F) - Ob(G) and by Mor(F x G) := Mor(F) - Mor(G). We often write
FG:=F*G. We have (FG)H = F(GH) = FGH.

Let F' and F’ be functors from C to D. A transformation a from F to F’ is a tuple of
morphisms

Xa
a = (XF — XF')xeon(c)
such that for every morphism X = Y in C, the diagram
XF 2% XF

uF \L’U,F/
YF Y% vV

is commutative, i.e. (uF)(Ya) = (Xa)(uF").
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Graphically, the transformation a can be displayed as F' % F” or as

//;IJ\

C
\F’/

D.

For instance, we have the transformation idp := (X F ldxr, XF)xeobc), S0 F drop

We have Xidr = idxr for X € Ob(C).

Let F', F" and F” be functors from C to D. Let a be a transformation from F to F’. Let
a’ be a transformation from F’ to F”.

TN

C 11’
\F///
Soa = (XF X% XF')xcone) and o’ = (XF' 2% X, XF")xeob(c) -

Then the vertical composite of a and d’ is given by a -’ = (XF XaXd x pr ") xeob(c) -

So X(a-d') = Xa-Xd for X € Ob(C).
We often write aa’ :=a - d'.

Then aa’ is a transformation from F' to F”, since
(uF)(Y(ad") = (uF)(Ya)(Yd) = (Xa)(uF")(Yd) = (Xa)(Xd)(uF") = (X(aa))(ul")

for X =Y in Mor(C).
X Xo xpr X xpr

uFi luF’ qu”

YF Yo vy Yoy

/ .
~ "~

So

Let F' and F’ be functors from C to D. Let G and G’ be functors from D to £. Let a be
a transformation from F' to F’. Let b a transformation from G to G'.

D

\F , / \G , /

Let aG := (XFG —— XOG x G) xeon(c) -

So we have X (aG) = (Xa)G =: XaG for X € Ob(C).



Note that the following diagram commutes.

XF X xpr

| |

YF Yo% Y F
Then aG is a transformation from FG to F'G, since
(WFG)(YaG) = ((uF)(Ya)G = (Xa)(uF")G = (XaG)(uF'G)

for X % Y in Mor(C).
XFG 24 XFG
uFG uF'G
YFG XL YFG

Let Fb:= (XFG 2% XFG) ycone) -
So we have X (Fb) = (XF)b=: XFb for X € Ob(C).

Then Fb is a transformation from FG to FG', since
(uFG)(YFb) = (uF)G)(YF)) = (XF)b)((uF)G") = (XFb)(uFG")

for X =Y in Mor(C).
XFG XL XF@
uFG uFG’
YFG XL YRG!

Finally, the horizontal composite of a and b is given by

XFb)(XaG")
R i

axb = (XFG( (Xa@XF),

XF'Gxeoney = (XFG XF'G') xeon(e) -

Equality holds since the following diagram commutes.

XFG X xpor
XaGl lXaG’
XFGX xpay

Soaxb=Fb-aG = aG - F'b is a transformation from FG = F «G to F'G' = F' x G as
a vertical composite of two transformations. I.e.

C /C:;T\ <.
S~ —

In particular, a * idg = aG and idp * b = Fb.
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Remark 8. A transformation a = (XF X x G) xeob(c) as in Reminder 7.(5) is classically
often written as (F(X) =5 G(X))xeob(c) -

The condition in loc. cit. then classically reads ay o F(u) = G(u) oax .
Proposition 9. Suppose given a universe . Suppose given a universe U such that 4 € 3.

We have the following 2-category Cat in U, called the 2-category of categories.

e [t has Mory(Cat) = Ob(Cat) := {C : C is a category in il }.
e [t has Mor;(Cat) := { F' : F is a functor between categories in i }.

e [t has Mory(Cat) := {a : a is a transformation between functors between categories in 1 }.

e We have maps
Cat

Morl( at) —— Ob(Cat)
c5HD) = ¢
iCat
Mor;(Cat) <— Ob(Cat)
Cc0) «— ¢
Cat
Morl( at) LR Ob(Cat)
(C D) — D.
e Maps
gCat
Mory(Cat) — Mor;(Cat)
(F%F) — F
iCat
Mory(Cat) <— Mor;(Cat)
(FYF) « F
Cat
Mor,(Cat) o Mor; (Cat)
(FSF) w— F.

o Composition of 1-morphisms is given by

Cat
{(F,G) € Mor,(Cat) x Mor;(Cat) : Ft§* = Gs5*' } u> Mor, (Cat)
Cat

(F,G) +— FxG:=FxG =
o Vertical composition of 2-morphisms is given by
{(a,a’) € Mory(Cat) x Mory(Cat) : at®a = a's{? } AN Mory(Cat)
(a,d) +— a-d =a-d = ad.

Cat

e Horizontal composition of 2-morphisms is given by
{(a,b) € Mory(Cat) x Mory(Cat) : asPat5at = psfatsfat } L Mor,(Cat)
(a,b) Ctb = axb.

FG .
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Proof. We verify properties (1-13) from Definition 1.

Ad (1). Given C € Ob(Cat), we have C Hey .
Ad (2). Given F € Mor;(Cat), we have F 25
Ad (3). Given a € Mory(Cat), we have

— j‘\\
Ad (4). Given 1-morphisms
we have

Ad (5). Given 2-morphisms

we have

Ad (6). Given 2-morphisms

¢ \F,/ b \\G,/ &
we have s
0w T2e
\F’*G’
Ad (7). Suppose given a 1-morphism C 5.
We have
Ob(id¢ x F)) = Ob(ide) - Ob(F) = idop) - Ob(F) = Ob(F)
Mor(ide * F') = Mor(ide) - Mor(F) = idmor() - Mor(F) = Mor(F) .
Soide x ' = F.
We have

Ob(F xidp) = Ob(F)-Ob(idp) = Ob(F) -idopp) = Ob(F)
Mor(F *idp) = Mor(F) - Mor(idp) = Mor(F) - idyer(py = Mor(F)

So F'xidp = F.



Ad (8). Given l-morphisms
C—>D>S&—B,
we have
Ob((F*xG)* H) = Ob(FxG)-Ob(H) = Ob(F) - Ob(G) - Ob(H)
= Ob(F)-Ob(G*H)=0Ob(F (G« H))

Mor((F « G) x H) = Mor(F * G) - Mor(H) = Mor(F') - Mor(G) - Mor(H)

21

= Mor(F) - Mor(G « H) = Mor(F x (G H)) .

Hence (FxG)*x H=F x (G * H).

Ad (9). Given a 2-morphism
/’; j\\

C D
\F// ’
we have ”
idp = (XF =5 XF)xecone)
idp = (XF Dy XF')xeon(e)
hence e x
idp - a=(XF 2% XF)xeoney = (XF =% XF')xeone) = a.
and
. Xa'idXF’ / Xa /
a-idp = (XF XF')xeone) = (XF — XF')xeobe) = a

Moreover, we have idiq, * @ = id¢ a = a and a * idi4, = aidp = a.

F*
ﬂ \
’ \\

[

C a’ D.

AN //
\au /

F///

Ad (10). Suppose given 2-morphisms

We have :
(Xa-Xa')-Xa"
—> XF") xeob(c)

M XFW)XeOb(C)

(a"-a").

= (X
= (XF
a-
Ad (11). Suppose given 2-morphisms

—— j:\ D — j\\ € — Ij\
B A L A

For X € Ob(C), we have

C B.

X((axb)xc) = (X(FQ))c- (X(axb))H'
= (X(FG))c- (XF)b- (Xa)G')H'
= (XFG)c- ((XF)b)H' - (Xa)G'H’
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and
X(ax(bxc)) = (XF)(bxc)-(Xa)(G'H')
= (XE)G)e- (XF)b)H' - (Xa)(G'H')
= (XFG)c- ((XF)b)H' - (Xa)G'H' .

Hence (axb) x ¢ =ax (bxc).

Ad (12). Given l-morphisms C LDp5% and X € Ob(C), we have

ldF * idG

(x pG Xidreido),

XFidg - XidpG
T

L XFG) = (XFG XFG)
— (XFQ Xrelerc, xpe)
= (xFG M99 ypg) .
Hence idp *idg = idpg .

Ad (13). Suppose given 2-morphisms

NEPANPZ

For X € Ob(C), we have

X((a-a)*(b-b))

XFEb-V) X(a-ad)G"

= XFb- XFb - XaG" - Xd'G"
= XFb-(XFV - XaG") Xd'G"
= XFb-X(ax?V)  XdG"

and

X((axb)-(a'xb)) = X(axb) - X(a' *xb)

= XFb-XaG - XF'V-XdG"
= XFb-(XaG - XF'V) - Xd'G"
= XFb-X(ax?V) - XdG".

Hence (a-a’)x (b-b') = (axb)-(a' xV).

1.4 2-subcategories

Suppose given a 2-category K; cf. Definition 1.1.
Definition 10. A 2-subcategory & of 8 consists of subsets

Ob(&) C Ob(R)

Mor, (R) Mor; (R)
Mor,(R)

C
Mory(R) C

such that the following properties (1-5) hold.
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The map s& restricts to a map s from Mor; (&) to Ob(R).
The map iff restricts to a map it from Ob(8) to Mor;(R).
The map t& restricts to a map t from Mor; (&) to Ob(R).
Le. given a 1-morphism in Mor, (R), its source and its target are in Ob(R).

Conversely, given an object in Ob(8), its identity is in Mor; ().

The map sf restricts to a map s? from Mor, (&) to Mory ().
The map iff restricts to a map it from Mor;(8) to Mory ().
The map t restricts to a map t% from Mory (&) to Mory ().
Le. given a 2-morphism in Mory(R), its source and its target are in Mor, (£).

Conversely, given a 1-morphism in Mor; (), its identity is in Mory(R).

The map ( % ) restricts to a map ( : ) from { (F, G) € Mor;(R) x Mor;(R) : Ftf = Gs%)
to Mor, (8).

Le. given C L D G £in & with F,G € Mor,(R), their composite C 56, gisin Mory (R)
and is written F%G 1= F % G.

The map ( e ) restricts to a map ( - ﬁ ) from { (a,a’) € Mors(&) x Mory(8) : ath = d/st
to Mory(R).

Le. given

N

F' D,

oS

in & with a, ' € Mory(R), their vertical composite

is in Mory(R) and is written a - @' :=a - d'.
R R

The map ( X ) restricts to amap ( * ) from { (a,b) € Mors(R)xMor(R) : asttf = bsfish
to Mory(R).

L.e. given

*x
R

\\‘F’/ \G’/
in & with a, b € Mory(R), their horizontal composite

o e f;ijG\
\F, Y

is in Mory(R) and is written a b := a;l;b
R

C €,
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Then Ob(K), Mor;(R), Mory(R), together with s, i, t8, ¢ it 8 ( ¥ ) () (

2-category K.

Proof. We verify (1-13) from Definition 1.

Ad (1). For C € Ob(R), we have C Mey ¢ in Mor; (R) by property (1).
Ad (2). For F € Mor,(R), we have F M5y Fin Mor,(R) by property (2).
Ad (3). Given a € Mory(R), we have

asjfsoﬁ = asfs? = atlso = at}fsoﬁ

and
R R RR . LRR . LRR
asyty = asyty = atyty = aty'ty .

Ad (4). Given l-morphisms
cHpSe

in Mor, (8), we have (C L£xG, E)=(C B—% &) in Mor;(R); cf. property (3).

TN

Ad (5). Given 2-morphisms

in Mory(R), we have

in Mory(R); cf. property (4).
Ad (6). Given

C

T pT ., e

D
S A

R

*
R

) form a

in & with a, b € Mory(R), we have FiG = FfQG, F'EG = F'EG and a*b:aﬁb and thus

R

\/

in Mory(R); cf. properties (3, 5).

\F’ plel

FEa

Ad (7). Given a 1-morphism C 5HDin Mor; (R), we have

% F = idedF = F
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and )
Fiidp = Fiidp = F:

cf. property (3).
Ad (8). Given l-morphisms

in Mor, (R), we have

(FEG)*H = (FXG)¥H = FX(GSH) = FE(G*H);
cf. property (3).
Ad (9). Given a 2-morphism in Mory(R)
F
e =P
F/
we have idp - a = idpj;{a = a and a-idp = aj-iidp/ = a and idjq, xa = ididC;a = ¢ and
R A R
axidq, = aj;ididp = a; cf. properties (4,5).
R
Ad (10). Given 2-morphisms in Mory(8)
/ “ \
s N\
\\F”—/7
\\F////
we have
!/ " / . " — . !/ " — / "
(aﬁa)ﬁa = (aﬁa)ﬁa aﬁ(a ﬁa) aﬁ(a JS‘a),

cf. property (4).
Ad (11). Given 2-morphisms in Mors(R)

C £ B,
\"‘*-‘F’w/ \—G’// \‘\H’/
we have
(a};b);c = (azb);c = a;(b;c) = j>s;(bv>t‘;c)

cf. property (5).
Ad (12). Given l-morphisms C LD 5 € in Mor, (R), we have

dp*ide = dp*idg = 1d &« = id ; ;
FR G F_ﬁ G FJ;G FﬁG,

cf. properties (3,5).
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Ad (13). Given 2-morphisms

in Mory(R), we have

/ A L
(aﬁa);(bﬁb)_(aﬁa); e xb) - (a'x xb) - (a'x

cf. properties (4,5). ]

1.5 Zero objects in 2-categories

Suppose given a 2-category K.

Definition 11. An object Z € Ob(R) is called a zero object if g(C, Z) contains one isoclass
and g(Z,D) contains one isoclass for each C, D € Ob(RK). Cf. Definition 2.

Definition 12. Suppose given C, D € Ob(R).

A 1-morphism C L D is called a zero 1-morphism, if there exists a zero object Z and
1-morphisms C 2 Z % D such that in &(C, D). Cf. Definitions 11 and 2.

Remark 13. Suppose given zero objects Z and Z in K.

Suppose given a 1-morphism C 5D in &

Then the following assertions (1,2) are equivalent.
(1) There exist 1-morphisms C Y 2 L D such that F ~ U
(2) There exist 1-morphisms C % 2 5D such that F ~ U

Proof. It suffices to show that (1) implies (2).
So suppose that (1) holds and that we have F' ~ UV as stated there.

Choose 1-morphisms G : Z — Z and H : £ — Z, which is possible since Z and Z are zero
objects in K. Note that GﬁH ~ idz since Z is a zero object in K.

Let U := UﬁG C—o Zand V= HﬁV . Z — D. We obtain, using (9, 13) of Definition 1,

V = USGSHAV ~ USidz2V = ULV ~ F .



Chapter 2

The 2-category of additive categories

2.1 Pointed categories

Definition 14. Suppose given a category C.

(1) An object Z € Ob(C) is called a zero object if |¢(X, Z)| =1 and |¢(Z,Y)| =1
for X, Y € Ob(C). L.e. Z is a zero object if it is initial and terminal.

(2) The category C is called pointed if there exists a zero object in C.

Remark 15. Suppose given a category C and zero objects Z, Z' € Ob(C).
Then the unique morphism from Z to Z' is an isomorphism.

In particular, we have Z ~ 7',

Proof. There exists a unique morphism f : Z — Z’ and a unique morphism ¢ : 7' — Z.

We have f-g =1idy, since f-g € ¢(Z,7) = {idz}.

We have g - f =idy , since g- f € (2, 2') = {idz }. ]
Remark 16. Suppose given a category C and a zero object Z € Ob(C).

Suppose given X € Ob(C). Suppose that X is a retract of Z. Then X is a zero object in C.
In particular, if X ~ Z, then X is a zero object in C.

Proof. We may choose morphisms X — Z 2 X such that a - b = idy .
Suppose given T € Ob(T).
We have to show that there exists a unique morphism from 7" to X.

Ezistence. There exists a morphism from T to Z, since Z is a zero object. Composing this

morphism with Z END'S , we obtain a morphism 7" — X.

Uniqueness. Suppose given morphisms u, v : T'— X. Then u-a,v-a : T — Z. Since Z is a
zero object, we have u-a = v - a. Thus



28

We have to show that there exists a unique morphism from X to 7'

Existence. There exists a morphism from Z to 7', since Z is a zero object. Composing this
morphism with X = Z. we obtain a morphism X — T

Uniqueness. Suppose given morphisms u, v : X —T. Then b-u, b-v : Z — T. Since Z is a

zero object, we have b-u = b-v. Thus

u=a-b-u=a-b-v=uvw.

Definition 17. Suppose given a category C. Suppose given X,Y € Ob(C).

A morphism X Iy ¥ is called a zero morphism, if there exists a zero object Z and morphisms
X5 Z35Y such that f =u-v.

Lemma 18. Suppose given a pointed category C and X,Y € Ob(C). The assertions (1,2) hold.

(1) There exists an unique zero morphism with source X and target Y. That zero morphism

0
is written as X ——Y or stmply as 0 :=0xy .

(2) Given morphisms u: X' — X andv:Y —Y', we have u-Oxy -v = 0x/y .

Proof. Ad (1).

Ezistence. There exists a zero object Z € Ob(C) since C is pointed. So we have morphisms
u€ (X, Z)and v € ¢(Z,Y). Therefore u - v is a zero morphism with source X and target Y.
Uniqueness. Suppose given zero morphisms f = u - v and f/ = o - ¢ in ¢(X,Y) with

X% Z5%Yand X % 222 Y, where Z and Z’ are zero objects in C. We have a unique
morphism Z < Z' since Z and Z' are zero objects. Note that u - w is a morphism with source
X and target Z’. Since Z’ is terminal, we have u - w = «’. Analogously, w - v' = v since Z is
initial. Thus we have

ff=vv=vwv=uwv=7Ff.

So there exists at most one zero morphism from X to Y.

7
N

Y

A Z'

Ad (2). Since Ox y factors over a zero object, so does u - Oy y - v. O

Remark 19. Suppose given a pointed category C.
Suppose given X € Ob(C).

(1) We have idx = Ox,x if and only if X is a zero object in C.
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(2) We have | (X, X)| =1 if and only if X is a zero object in C.

Proof. Ad (1). If X is a zero object in C, the morphism idx factors over X, hence idy = Ox x .

Conversely, if idx = Ox x , then idx factors over a zero object Z of C. Thus X is a retract of
Z, which is a zero object. Therefore X is a zero object; cf. Remark 16.

Ad (2). If X is a zero object, then |¢(X, X)| = 1.
Conversely, if | ¢(X, X)| = 1, then idx = Ox x . So X is a zero object by (1). O

2.2 Additive categories

2.2.1 Direct sums

Suppose given a pointed category A.
Definition 20. Suppose given m > 0 and X1, Xo, ..., X,, € Ob(A).

A direct sum of the tuple (Xi,...,X,,) is an object S € Ob(A) together with inclusion mor-
phisms

V3
X, & s

and projection morphisms S
s 5 x

for j € [1,m], if the following axioms (Sum 1-3) hold.

(Sum 1) For U € Ob(A) and each tuple of morphisms (U ~% X;)ic(1,m in A, there exists a unique
morphism U % S such that a - 7 = u; for i € [1,m).

i =

We write a =: (w1 ---um)s

(Sum2) For V € Ob(A) and each tuple of morphisms (X; = V);c(1m in A, there exists a unique
morphism S 2 V such that 17 b=v; for i € [1,m].

S/ v
We write b =: ()

(Sum 3) We have (7 - 77 = idy, for i € [1,m)].
We have ¢f - 7§ = Ox,  x, for i,j € [1,m] with i # j.

By abuse of notation, we often write 7; := 7r]5 and ¢; 1= Lf .
Example 21. Suppose m = 1. Suppose given X; € Ob(A).

Then S := X is a direct sum of the single-entry-tuple of objects (X), with inclusion morphism
11 :=1dx, : X1 — Xj and projection morphism m :=idy, : X1 — X;.

We verify (Sum 1-3).
In the situation of (Sum 1), we have to take a = u; .
In the situation of (Sum2), we have to take b = v; .

For (Sum 3), we obtain ¢; - m = idy, -idy, =idy, .
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Example 22. Suppose m = 0.

Let S be a zero object in A. Then S is a direct sum of the empty tuple of objects ( ), with
zero inclusion morphisms and zero projection morphisms.

We verify (Sum 1-3).

Ad (Sum 1). Suppose given U € Ob(A), together with an empty tuple of morphisms. Since S
is terminal, there exists a unique morphism a : U — S satisfying the empty condition.

Ad (Sum2). Suppose given V € Ob(A), together with an empty tuple of morphisms. Since S
is initial, there exists a unique morphism b : S — V satisfying the empty condition.

Ad (Sum 3). The condition is empty.

Conversely, suppose S to be a direct sum of the empty tuple of objects (). Then (Sum1)
shows that given U € Ob(A), there exists a unique morphism U - S. Moreover, (Sum 2)

shows that given V' € Ob(A), there exists a unique morphism S 2 V. Thus S is a zero object
in A; cf. Definition 14.(1).

Example 23. Suppose m = 2.
Let Z, Z’ and Z" be zero objects in A.

We claim that Z", together with inclusion morphisms ¢y := 0z z» and t5 := 04/ z» and projection
morphisms 7 := 0z z and 7y := 0z z , is a direct sum of the pair (Z, Z").

Ad (Sum1). Suppose given an object U in A and morphisms U % Z and U % Z'. Then
u; = Opz and uy = Oy z . Therefore there exists a unique morphism U 2 7" such that
v-m =u and v - Ty = ug, namely a := Oy z» .

Ad (Sum?2). Suppose given an object V in A and morphisms Z 2 V and Z’ % V. Then

vy = Ozy and vy = 0z y. Therefore there exists a unique morphism Z” 2.V such that
t1-b=v; and 19 - b = vy, namely b :=0z» .

Ad (Sum3). We have ¢y -m =idz, t1-m =0zz, ta-m =0z.7 and 1o - m = idy .
Remark 24. Suppose given m > 0 and X1, Xa, ..., X, € Ob(A).
Suppose given a direct sum S of the tuple (Xi,...,X,,) as in Definition 20.

Suppose given an isomorphism X; % X! in A for each i € [1,m)].
Suppose given an isomorphism S = S" in A.
Then S" is a direct sum of (X1,..., X ), with inclusion morphisms f; -1;-g : X — S and

projection morphisms g~ - ;- f; : S — X! fori € [1,m)].

Proof.

Ad (Sum 1). Suppose given U € Ob(A) and a tuple of morphisms (U —» X)ier,m) - We have
to show that there exists a unique morphism U 2, $" such that a'- g~ -mi- fi = u for i € [1,m].

Eristence. By (Sum1) for the given direct sum, there exists a morphism U % S with
a-m=u,-f7 U — X, forie[l,m]. Letd . =a-¢g:U — 5. Thend - -g=-m- fi =
a-m- fi=u,:U— X/ forie[l,m]
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Uniqueness. Suppose given a’, @' : U — S with a'- g~ -m; - fi=wu, and @' - g~ - m; - f; = u} for
€ [1,m]. We have to show that a’ =

We obtain @' - g~ - m; =) - f; and @’ - g~ - m =} - f; for ¢ € [1,m]. By (Sum 1) for the given

direct sum, we conclude that ¢’ - g~ =&’ - g~. Hence o’ = ad'.

Ad (Sum2). Suppose given V' € Ob(A) and a tuple of morphisms (X N V)iepm in A. We
have to show that there exists an unique morphism S’ Y V such that fiti-g- b =) for
i€[1,m].

Ezistence. By (Sum?2) for the given direct sum, there exists a morphism S 2V with

ti-b=fi-v:X;,—> Viorie[lym]l. Let b/ .= g~ -b:5 — V. Then f; -1;-g-b =

(2

fiui-b=v:X —Vioriel[l,m].
Uniqueness. Suppose given V', b’ : ' — V such that fi gV =v and f7 -1;-9- V= v; for
€ [1,m]. We have to show that b’ = 7.

We obtain ¢; - g - b' = f;-vjand ¢; - g V=f- v; for i € [1,m]. By (Sum2) for the given direct
sum, we conclude that g -0 = ¢g-b'. Hence b’ =V'.

Ad (Sum 3).

We have (f; <ti-g) (97 -mi-fi) =fi ~wi-m-fi=f; -idx, - fi = idx, for i € [1,m], using
(Sum 3) for the given direct sum.

We have (f; - ti-g)- (97 mj-fi) =fi v -m-fi=[f 0x, x, - fi = Ox/,x; fori,5 € [1,m]

with ¢ # j, using (Sum 3) for the given direct sum; cf. Lemma 18.(2). O
Remark 25. Suppose given m > 0 and X1, X, ..., X,, € Ob(A).
Suppose given a direct sum S € Ob(A) of (Xi,...,Xm) as in Definition 20.
Suppose that S is a zero object. Then X; is a zero object for i € [1,m].
Proof. Suppose given i € [1,m]. Since ¢; - m; = idyx, , we conclude from S being a zero object
that X; is a zero object; cf. Remark 16. [
Remark 26. Suppose that we are in the situation of Definition 20.
Suppose given j € [1,m].
Suppose given Y ER X; 4 Z in A.
By (Sum3), we have f-v;-m; = f-1= fand f-1;-m = f-0=0for i € [1,m]\{j}. Therefore,
f'bj = (0...0f0...0)5 .
pgsition j
By (Sum3), we have ¢; - mj-g=1-g=gand ¢;-m;-g=0-¢g =0 fori € [1,m]\ {j}. Therefore,

S/0

0
7Tj g = g <— position j ,
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Lemma 27 (and Definition).

Suppose given m > 0 and Xy, Xo,...,X,, € Ob(A). Suppose given a direct sum S of
(X1,...,Xm), with inclusion morphisms X; < S and projection morphisms S =% X; for
i€[l,m].

Suppose given n = 0 and Y1,Ys,...,Y, € Ob(A). Suppose given a direct sum T of
(Y1,...,Y,), with inclusion morphisms Y S T and projection morphisms T 5, Y; for
Jj € [l,n].

Suppose given morphisms X; —2 Y in A fori e [1,m] and j € [1,n].
Then there exists a unique morphism S = T with 1; - w - 7; = u;; fori € [L,m] and j € [1,n)].
We write w as a matriz, i.e.

S u1,1 ... Ul T
( ) :S(Ui,j)T =w :5 = T.

Z7]
Um,1 -+ Um,n

T

In particular, given a morphism S = T, we have v = 1; - v - )i -

Proof. Eristence. For each j € [1,n], (Sum2) yields a morphism S =% Y; such that ¢; - v; = u;
for i € [1,m]. Then, (Sum1) yields a morphism S — T such that w - 7; = v; for j € [1,n].
Altogether,

Li"UJ"]Tj = LZ"UJ' = U@j

for i € [1,m] and j € [1,n].

Uniqueness. Suppose given morphisms S — T and S % T with Li~W-T; = U =t~ W -7 for
i € [1,m] and j € [1,n]. We have to show that w = .
By (Sum?2), we get w-m; = w - 7, for j € [1,n]. By (Sum1), we get w =w for j € [1,n]. O

Remark 28. Suppose that we are in the situation of Definition 20.
Suppose given U, V€ Ob(A).

Recall that U is a direct sum of U, with inclusion morphism idy and projection morphism idy ;
cf. Example 21.

Recall that 'V is a direct sum of V', with inclusion morphism idy and projection morphism idy ;

cf. Example 21.

(1) For m >0 and each tuple of morphisms (U = Xi)ic[,m) » we have

(2) Form >0 and each tuple of morphisms (X; = V)iep,m) » we have

[BENE)

(3) Given a morphism f:U — V, we have Y(f)V = f.
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Proof.

Ad (1). Write a for the left hand side and b for the right hand side of the equation. Then a
is characterized by a - m; = u; for i € [1,m]; cf. Definition 20. Moreover, b is characterized by
ty-b-m =u; for i € [1,m]; cf. Lemma 27. Since ¢; = idy , we conclude that a = b.

Ad (2). Write a for the left hand side and b for the right hand side of the equation. Then a
is characterized by ¢; - a = v; for i € [1,m]; cf. Definition 20. Moreover, b is characterized by
ti+b-m =wv; for i € [1,m]; cf. Lemma 27. Since m = idy , we conclude that a = b.

Ad (3). We have f =, - Y f)V -m =idy - Y(f)V -idy = Y(f)V. O
Remark 29. Suppose given m > 0 and X1, Xs,...,X,, € Ob(A). Suppose given a direct
sum S of (X1,...,X,), with inclusion morphisms X; < S and projection morphisms S = X
fori e [1,m)].

For i, j € [1,m], we write

s i i
" OX»L,X]' Zfz#] .

Then

ids = %(6:7)5; -
Proof. We have to show that ¢; - idg - 7; - 9;; for i, j € [1,m]; cf. Lemma 27.
In fact, if i # j, then ¢; -idg -7 = 1, - 1; = Ox, x;, = &; by (Sum3). If i = j, then
L idg - mj = ;- m; = idx, = 9;; by (Sum 3). O
Remark 30.
Suppose given m > 0 and X1, Xs,...,X,, € Ob(A).
Suppose given direct sums S and S of (X1, ..., Xn).
Suppose givenn >0 and Y1,Ys,...,Y, € Ob(A).
Suppose given direct sums T and T" of (Y1,...,Y,).

Suppose given morphisms X; BEEN Y; in A fori e [1,m] and j € [1,n].

Write
5o [ =i
e Ox,,x, ifi#7
for i, i € [1,m] and
. idy, ifj=4"
050 = ey
Oy, v, ifj#]
forj,j" € [Ln].
The following assertions (1,2) hold.

(1) We have

005+ S )l TG )b = i)l
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(2) We have S((Si’i/)f;, : S/(5i',i)§7¢ =idg and S/(éilvi)f,"i . S((Si,i/)f;, = idg .
s .

In particular, 5(6;)%, : S — S’ is an isomorphism.

) Uy,e
(3) Suppose given ¢ € [1,n]. We have S(u”)ZT ST = ( : ) .

7 .
Um0

(4) Suppose given k € [1,m]. We have i, - S(u”)ZT = (ura Ukn)T

j
S (u1,1 o ULm )T
(5) We have (u;;)!; = : .

(Um,1 - Um,n )T

S Uu1,1 5 Ul,n T
(6) We have (u;;)!; = (( : ) ( : >> ,

Proof.
Ad (1). We have to show that

/ ~ !

Uk - (5(51',2‘/)%9,;' ’ S/(Ui',j’);{,j/ : Tl@jﬁj)?f,j) "My = Uk ¢

for k € [1,m] and ¢ € [1,n]; cf. Lemma 27.

We claim that ¢, - S(éiyi/)f;, L k- By (Sum 1), it suffices to show that ¢ - S(éi,i/)fg, - . Lk - T

/

for p € [1,m]. In fact, v, - %(050)75 - T = Okp = ti - ™, by (Sum3).

We claim that 7'(6,:;)% - = 7. By (Sum2), it suffices to show that ¢, - T/(ijvj)gj’j Mg = L Ty

3 e = T
for ¢ € [1,n]. In fact, ¢, - T/(éj@j)?j - = g4 = Lg - Ty by (Sum3).

So we get
Lg - (S<5i7i,)§;/ . Sl(“i’,j’)z;:j’ . T/(Sj',j)gj,j) ST = U - Sl(ui’,j’)g::j’ ST = Uy -
Ad (2). Using Remark 29 and (1), we obtain

N6i)5 - T 0ui)ss = 0T TS (0pa)s

Z77‘/ ,L?/L p7q
_ 5 S
- (6i7i/)i,i’
= idg .

Likewise, we obtain S’((SM)S . S((Si,i/)sl =idg .

Ad (3). For k e [1,m], we have v, - J(u;;)7; - 7 = up,. This proves the required equality
by (Sum2).
Ad (4). For £ € [1,n], we have 1y - S(u;;)7; - 7 = up,. This proves the required equality
by (Sum1).

S (urgeurn)”
Ad (5). For k € [1,m] and ¢ € [1,n], we have ¢, - ( : ) g = (ke wen )T = U
cf. Lemma 27. (

Su1,1 Sul,n T S Uy,e
Ad (6). For k € [1,m] andﬁG[l,n],wehave%-(( : )( : ))"ﬂ'g:bk~( : ):uk,g;

cf. Lemma 27. Um,1
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2.2.2 Definition of additive categories

Suppose given a pointed category A.

Definition 31. The pointed category A is called additive if the following axioms (Add 1-2)
hold.

(Add 1) For each (X,Y) € Ob(A)x Ob(A), there exists a direct sum of (X,Y); cf. Definition 20.

S/, s
(Add2) For each X € Ob(A) and each direct sum S of (X, X), the morphism <1dX OX’X> : S — S

idy idx
is an isomorphism; cf. Lemma 27.

We reformulate (Add2) of Definition 31.
Remark 32. Suppose that the pointed category A satisfies (Add 1).
Consider the following condition.

S/ s
(Add2") For each X € Ob(A) and some direct sum S of (X, X), the morphism (ldx OX’X) : S — S

idy idx
is an isomorphism.

Then (Add 2) holds if and only if (Add2’) holds.

Proof.

Suppose that (Add 2) holds. By (Add 1), there exists a direct sum S of (X, X). By (Add?2),
Sy s

<ldX OX’X> is an isomorphism. So (Add2’) holds.

idyx idx

S s
Suppose that (Add 2') holds. So we may choose a direct sum S of (X, X) such that <ldx OX’X>

idx idx
is an isomorphism.

We want to show (Add2). Suppose given a direct sum S of (X, X). By Remark 30.(1), we

obtain i N i )
Stidx 0x x\°  Sfidx 0xx\® Sfidx 0xx )7 S/ idx 0xx\°
idx idx - Ox,x idx " \idy idx " \oxx idx )

S
of which all three factors are isomorphisms; cf. Remark 30.(2). So (iji Oig;f

phism. This shows that (Add 2) holds.

s
) 1S an isomor-

2.2.3 Elementary properties of additive categories

Suppose given an additive category A; cf. Definition 31.

Definition 33 (and Remark). Suppose given X, Y € Ob(A).
We choose a direct sum S of (X, X) and a direct sum 7 of (Y,Y).

Suppose given morphisms a, b : X — Y in A.
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Let . o
o= sy G, 30

OX,Y b idy

This is independent of the choice of the direct sum S of (X, X') and of the direct sum 7" of (Y,Y").

Proof. We shall prove the claimed independence of choice. So suppose given a direct sum S’ of
(X, X) and a direct sum 7" of (Y, Y).

. S X/eq . S T idy T idy \
Note that (idxidx)” = *(idx idx)” and < >: < ) ; cf. Remark 28.(1, 2).

idy idy
Note that X(idx)* = idx and Y(idy)¥ =idy ; cf. Remark 28.(3).
The following diagram commutes by Remarks 30.(1) and 29.

S/a Ox.y\7 Tridy \V
Oxy b idy

X(idx idx )®

X S T Y
X(i X S/ idx Ox,x s T/ idy Oy,y T’ Y Y
(idx) (OX,X idx ) (0Y,Y idy) (idy)
X X, s’ 5’ s T’ r T \4 Y
(idx idx ) a  Oxy idy
(0x,Y b ) (idY>
Hence the choice of S and T yields the same result as the choice of S” and T". O

Notation 34. Given X L Yy & Z and X EEN Yy £ Z in A, we write

firgi+farg2 = (fi-91)+(f2-92) .

Remark 35. Suppose that we are in the situation of Definition 33. Recall that a, b : X =Y,
that S is a direct sum of (X, X) and that T is a direct sum of (Y,Y).

Then g T T T 5
at+b = ()6 (1) = @) (1) = 007 6)

Proof. To show the equality of the second and the third term, we want to show

u = (11)5.3(82)T i (ab)T )

We have to show that u - m; L 4 and that - o < b; cf. (Sum1).
Writing v := S(SS)T, we obtain v - m = S(S), since ¢1 -v-m =a and - v-m = 0; cf. (Sum 2).
Moreover, S(S) = m - a; cf. Remark 26. So we get

um o= (1) vom = 01)1ma=10a=a.

Analogously, we obtain u - mo = b.
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To show the equality of the second and the fourth term, we want to show

We have to show that ¢; - w = a and that 1 - w = b; cf. (Sum 2).
Writing v = S(SQ)T, we obtain ¢ - v = (aO)T, since ¢1-v-m =aand 1 -v-my = 0; cf. (Sum1).

Moreover, (a0)" = - ; cf. Remark 26. So we get
1w = Ll-v-T(%) = a-Ll-TG) =a-1 =a.
Analogously, we obtain ¢, - w = b. O

Lemma 36. Suppose given m > 3 and a tuple of objects (X1, ..., X,,) in A.

Suppose given a direct sum S’ of (X1,...,Xm_1). Write its inclusion morphisms t; and its
projection morphisms w, for i € [1,m — 1].

Suppose given a direct sum S of (S, X,,). Write its inclusion morphisms ¢ and its projection
morphisms 7! for i € [1,2].

Then S is a direct sum of (X1, ..., Xpm_1, Xon) with inclusion morphisms

L { v ifie[l,m—1]

Ly ifi=m
and projection morphisms

m-moifie[1,m—1]
T, =
o ifi=m

fori € [1,m)].

Proof.

Ad (Sum1). Suppose given U € Ob(A) and a tuple of morphisms (U <% X;)se(1,m - We have to
show the existence and the uniqueness of a morphism U - S such that v-7; = u; for i € [1,m).

Ezistence. Let v := ((u1 o um_1)5 un)®-

Forie [l,m—1], wehave v-m =v -7} 7 = (w1 cum—1)” -7, = u;.

For i = m, we have v - m,,, = v - ) = u,, .

Uniqueness. Suppose given U — S such that §-m; = u; for i € [1,m]. So we have -7} 7, = u;
forie[l,m—1] and v - 7§ = u,, .

!

We have to show that © — ((u1 oo ttm—1)s um)s. So we have to show that & - 7/ = (ut e um—1)

and v - 7l = U, . The second equality holds.

To show the first equality, we have to show that o - 7/ - 7! = u; forie [1,m — 1]. This equality
holds.
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Ad (Sum 2). Suppose given U € Ob(A) and a tuple of morphisms (X; —» U)iei,m) - We have to
show the existence and the uniqueness of a morphism S - U such that ¢; - v = u; for i € [1,m).

S s ul
FErxistence. Let v := (u : )

m—1

Um
Sy w
For i € [1,m — 1], we have ¢; - v =1} - ¢ - v =1} - ( : ):ui.
U 1

For i = m, we have ., - v = 1 - v = Uy, .

Uniqueness. Suppose given U ~» S such that ¢; - & = u; for i € [1,m]. So we have -/ -0 =,
forie[1,m—1] and i - 0 = uy, .

m—1

s/ w S
We have to show that & = (u : ) . So we have to show that [ - o = ( : ) and
Um—1

Ly -0 = u,, . The second equality holds.

To show the first equality, we have to show that ¢} - ¢} - ¥ = u; for i € [1,m — 1]. This equality
holds.

Ad (Sum 3).

Suppose given i € [1,m]. We have to show that ¢; - 7; - idy, .

Ifie[l,m—1], then ¢; - m =)o) -7} - wl = 1) - idg - 7, = idy;, .

If i =m, then ¢, - T, = 15 - 7 = idx,, .

Suppose given ¢, j € [1,m] such that ¢ # j. We have to show that ¢; - 7; - Ox,,x; -
Ifie[l,m—1]and j € [1,m —1], then ¢; - mj = ¢} - 1f - 7} - 7 = 1j - idg - 77 = Oy, x; -
Ifie[l,m—1]and j =m, then ¢; - m,, = ¢, -} - 7] =1} - 0g x,, = O0x, . x,, -

Ifi=mand j € [l,m—1], then ¢, - m; = 15 - 7} - 7; = Ox,, & - 7; = Ox,, x; - O

Lemma 37. Suppose given m > 0 and a tuple of objects (X1, ..., X,,) in A.
Then (X, ..., X,,) has a direct sum; cf. Definition 20.

Proof. We proceed by induction on m > 0.

In the case m = 0, the assertion holds by Example 22.

In the case m = 1, the assertion holds by Example 21.

In the case m = 2, the assertion holds by (Add1).

Suppose given m > 3.

Choose a direct sum S’ of (Xi, ..., X,,_1), which is possible by induction.

Choose a direct sum S of (S’, X,,,), which is possible by (Add1).

Then S is a direct sum of (X, ..., X,,) by Lemma 36. O
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Lemma 38. Suppose given a,b: X — Y in A.
(1) We have a +b="b+ a.
(2) We have a+ 0 = a.
(3) Suppose givenu: X' — X andv:Y =Y in A. Thenu-(a+b)-v=u-a-v+u-b-v.

Proof. We choose a direct sum S of (X, X).

Ad (1). We have (11)° - 5(33)° = (11)% since (11)° - 5(23)° - m = (1)° - (@) = (1)° -7y = 1
and(ll)s-s(%)s-m (11)%. S(O) — (11)% .y = 1; of. Remark 30.(3), Remark 26, (Sum1).

We have (98)7 - ( ) S(g) since o1 - (38)7 - (&) = (01 - A§) = - (§) = b and
Ly - S(%)S . S(‘g) = (‘g) (a) = a; cf. Remarks 30.(4) and 26, (Sum 2).
So

a+b = (1)) = ()T 0)7-T6) = (0% = bas
cf. Remark 35.
Ad (2). We have
a+0 = (11)S-S(8) = (11)5-7r1-a = l-a=ua;
cf. Remarks 35 and 26, (Sum 1).

Ad (3). We have S(‘g) RS S(‘ij) since ¢1 - S(‘g) cv=ua-v and ¢y - S(Z) v ="b-v;cf (Sum2).
Thus

(@+b) v = ()%} v = ()% %) =avtbo,
cf. Remark 35.
We choose a direct sum 7" of (Y, Y”).
We have u-(av bv )" = (wav wbv )’ since u-(av bo )’ -1 = u-a-vand u-(av bv ) 1y =
u-b-v;cf (Sum1). Thus

! !/

w(atb) v = w(@vtbo) = uw (e e0) () = (wor o)) = wavtubo,
cf. Remark 35. O

Lemma 39.

Suppose given m > 0 and X1, X, ..., X,, € Ob(A).

Suppose given a direct sum S of (Xi,...,Xm).

Suppose given n > 0 and Y1,Ys, ..., Y, € Ob(A).

Suppose given a direct sum T of (Y1,...,Yy).

Suppose given morphisms X; —2 Y; and X; 2y Y; in A forie [1,m] and j € [1,n].
Then

Huig)t; + Nvig)t; = Nwig +vig)i; -
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Proof. For k € [1,m] and ¢ € [1,n], we have

e (wig)ls + Svig)ly) -me 7= e Nuig)l o me+ e Nvig)l; - me
L.27
= Uk + Vkp
L.27
= e N + i)l
Thus S(Ui,j)zj + S(Ui7j)g:j = S(Uiyj + Ui])zg ) cf. Lemma 27. ]

Lemma 40. Suppose given X, Y € Ob(A). Suppose given a, b, c : X =Y.
Then a+ (b+c) = (a+0b) +c.
We shall write a +b+c:=a+ (b+c¢) = (a+0b) + ¢, etc.

Proof. Let S be a direct sum of (X, X). Let T be a direct sum of (Y,Y,Y).

We have
a+(b+e) 2 (175,45,

We claim that (b+c) = S(SQQ)T . T(jil)

It suffices to show equality after composition with ¢; and ¢5 from the left; cf. (Sum 2).

We have ¢; - S(bic) = a.

1 T/1 T/1
We have ¢ - 22T <%>R30(4) (%) R—26a-L1. (;}):a.l:a.
We have g - S( bic) =
We have

Sia00\T T71\ R.30.(4) T/1\ 1. T/1
o000 (1) TR ore)™ (1) B2 ((000) + (00e)) - (1)
T T T T
L.3§(3) (ObO)T- (%)—F(OOC)T- (i) Ri26b'L2' (%)‘FC'L?)- <%>:b1+61:b+0

This proves the claim.

So we can continue to calculate
s S s S T Tr1
()% = a0 @Y (1)

We claim that (11)°- S(SSS)T = (abe)". Tt suffices to show equality after composition with 7,
7o and 73 from the right; cf. (Sum1).

We have (abe)” -1 = a.
We have (11)° S(SZS)T.WIRB:(S)(M)S *(3) R35 1028y
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We have (11) . S(ggg)T - T3 R.320.6) (11)%. 5(0) B350 28
This proves the claim.

So we can continue to calculate
(11>S.S(aOO)T.T<%> _ (abC)T~T<%>
O0bec 1 1 .

So far, we have .
at(b+e) = ()" (1) .
We have
(a+b)+c = (11)%.5(efh)
. Sra+by L SraboT T
We claim that ( . )— (000) : (%)

It suffices to show equality after composition with ¢; and ¢o from the left; cf. (Sum 2).

We have ¢ - S(“ib) =c.

Tr1 T/1 T/1
We have LZ-S(SSS)T- <%) R2M (00e) . <%> R26 . (%) —c.1=c

We have ¢; - S(“ib) =a+b.
We have

SiapornT  L71\ R.30.(4) Tr1\ 1,39 T/1

w60 (1) TR w0 (1) (w00) + (000)") (1)

T T T T

L'Si(g)(aoo)T. (i>+(0bo)T. (i) R20 00 G)—l—b~L2~ (

This proves the claim.

=
N——
I
=
-
_l’_
S
—_
I
S
_l’_
S

So we can continue to calculate
s S s S T Tr1
(11)7. (aib) = (11)7. (388) . G) )

We claim that (11)°. S(SSS)T = (abe)”. Tt suffices to show equality after composition with 7 ,
7y and 73 from the right; cf. (Sum1).

T
We have (abe)” -7 = a.

1) S(abO)T‘ﬂ_Q R.30.(3) (11)5. S(b) R.35,  gL38y

We have (11)% . (g50)" . g W 2@ (11)S S(O) BB g 138
This proves the claim.

So we can continue to calculate

(11)S~S(882)T~TG) _ (abc)T.T(

=

)
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So now, we also have

=

T
(a+b)+c = (ave)"- (1) .
Altogether, we have a + (b+¢) = (a+b) + c. O
Remark 41. Suppose given m > 0 and X1, Xs,..., X,, € Ob(A).

Suppose given a direct sum S of (Xi,...,X,n), with inclusion morphisms ; and projection
morphisms m; , where i € [1,m)].
Then

idS = E T L.

i€[1,m]

Proof. Suppose given j € [1,m]. It suffices to show that

Lj'ids ; Lj'( Z Wi'bi).

i€[1,m]
In fact,
Lj'(Zﬂ'i'Lz‘): ZL]"T('Z"Li:Lj
1€[1,n] 1€[1,n]
by (Sum 3) and Lemma 38.(2). O

Lemma 42.
Suppose given m > 0 and X1, Xs, ..., X,, € Ob(A).

Suppose given a direct sum S of (Xi,...,X.n), with inclusion morphisms t; and projection
morphisms m; , where i € [1,m)].

Suppose given n =0 and Y1,Ys, ..., Y, € Ob(A).

Suppose given a direct sum T of (Y1,...,Y,), with inclusion morphisms L;-
morphisms 7, where j € [1,n].

Suppose given p >0 and Zy,Zs, ..., Z, € Ob(A).

and projection

Suppose given a direct sum W of (Zy,...,%Z,), with inclusion morphisms 1} and projection
morphisms . , where k € [1,p).

Suppose given morphisms X; SEEN Y; in A forie[1l,m] and j € [1,n].
Suppose given morphisms Y; Sk Zein A forje[l,n] and k € [1,p].
Then

Proof. Write u := (u;;)!; and v := M) -
Suppose given a € [1,m] and ¢ € [1,p]. We have to show that

La-u-v-ﬁgi < g Ui j - vjk> -

J€[1,n]



43

In fact
3 W "

la (Zjeu,n] Uij - Uj,k:) p e T Zje[l,n] Ua,j " Vje
P— . . ,. . / . . //
= Zje[m] Lo UG- Uy -0
f— . . / . / . . //
= lal (Zjé[l,n] T LJ) U e
= ty-u-idp-v-al

= lgru-v-ml.

Lemma 43. Suppose given X, Y € Ob(A).
Suppose given a € 4(X,Y).
Then there ezists a unique b € 4(X,Y’) such that a + b= 0.

We write —a = b.

Proof.

Ezistence. Suppose we find a morphism m € 4(X, X) such that idx +m = 0. Then a+m-a =
idy-a+m-a=(idy +m)-a=0-a=0 by Lemma 38.(3).

So it suffices to find m as described.

We choose a direct sum S of (X, X).

Sy, s S, S\~
By (Add?2), <1dX 0 > is an isomorphism. Write S(j;i)s = ( (‘dx 0 ) ) . cf. Lemma 27.

idy idx idy idx
Then

Stidy 0% Sfidx 0 )% S/siyS LA2L38.(2) S, 5 4 \S
0 idx - idy idx ) (uv) - (5+ut+v) .
So s =idyx . Hence 0 = s + u = idx + u. Choose m := u.

Uniqueness. Suppose given b, b e A(X,Y) such that a +b =0 and a + b= 0. Then

L.38. (1,2) ~

b ED g WD G
0
Corollary 44. Suppose given X, Y € Ob(A).
The set 4(X,Y), together with the addition
AXY) x A(X,Y) = A(X)Y) : (a,b) —a+b
introduced in Definition 33, is an abelian group.
Proof. This follows from Lemmas 38.(1,2), 40 and 43. O

Corollary 45. Suppose given X Ly % 7 in A

We have
—(f9) = (f-g9=Ff(-9).
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Proof. We have to show that (—f)-g+ (f - 9g) = 0. But (=f)-9g+f-9=0(=f)+f)-g=
Oxy -¢g =0xz; cf. Lemmas 38 and 18.(2).

We have to show that f-(—=g)+(fg) = 0. But f-(=g)+f-g = f-(=g)+9) = f-Oy.z = Ox.z
cf. Lemmas 38 and 18.(2). O

2.3 Additive functors

Suppose given additive categories A, B and C.

Definition 46. A functor F' : A — B is called additive if it satisfies the properties (AddFun 1, 2)
below.

(AddFun1) Suppose given a zero object Z € Ob(A).
Then ZF is a zero object in B.

(AddFun2) Suppose given X, X’ € Ob(A).

Suppose given a direct sum S of (X, X') with inclusion morphisms ¢; and ¢5 and projection
morphisms m; and 75 .

Then SF is a direct sum of (X F, X'F') with inclusion morphisms ¢; F' and o F' and pro-
jection morphisms 7 F' and 7o F.

Remark 47. Suppose given an additive functor F : A — B.
Suppose given a functor F : A — B such that F ~ F.

Then F is an additive functor.

Proof. We choose an isotransformation F —» F.

Ad (AddFun1). Suppose given a zero object Z € Ob(A). We have to show that ZF is a zero
object in B.

Since F' is additive, ZF is a zero object in B. We have the isomorphism ZF % ZF in B.
Hence ZF is a zero object in B; cf. Remark 16.
Ad (AddFun2). Suppose given X, X’ € Ob(A).

Suppose given a direct sum S of (X, X’) with inclusion morphisms ¢; and ¢ and projection
morphisms m; and 75 .

Since F' is additive, SF is a direct sum of (X F, X'F) with inclusion morphisms ¢, F' and ¢ F’
and projection morphisms 7 F' and mo F'.

We have to show that SF is a direct sum of (X F, X'F) with inclusion morphisms 1 F and 1, F
and projection morphisms 7 F' and mo F.

By Remark 24, SF is a direct sum of (X F, X'F) with inclusion morphisms Xa~ - 11 F - Sa and
X'a™ - 19F - Sa and projection morphisms Sa~ - m F - Xa and Sa™ - mF - X'a.



Now Xa~ -1, F - Sa =, F and X'a™ - 1oF -

Sa = 1, F by naturality of a.

XF X XF X'F X x'F
ukl J/blﬁ L2Fi ibgﬁ‘
SF-54. SF SF -5, gF

Moreover, Sa™ - mF - Xa = mF and Sa= - moF - X'a = mo by naturality of a.

XF X xF X'F X x'F
m F T’n’lﬁ‘ WQFT TﬂQﬁ'
SF -5 SF SF -S54, SF
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Hence SF is a direct sum of (X F,X'F ) with inclusion morphisms 1 F and 1o F and projection
morphisms 7 F' and mo F', as was to be shown. O

Remark 48. Suppose given an additive functor F: A — B.
Suppose given X, X' € Ob(A). Then Ox x/F = Oxpx'F .

Proof. Choose a zero object Z. We have morphisms u : X — Z and v : Z — X'. Then
Ox,x’ = u - v; cf. Definition 17. Hence Ox x/F" = uwF' - vF factors over the zero object ZF. So
Ox x I =0xpxF. O

Remark 49.

(1) The identity functor id 4 is additive.

(2) Suppose given additive functors F: A — B and G : B — C.
Then their composite FG : A — C is additive.

Proof. Ad (2).

Ad (AddFun1). Suppose given a zero object Z € Ob(A). Since F is additive, ZF is a zero
object in B. Since G is additive, ZF'G is a zero object in C.

Ad (AddFun2). Suppose given X, X’ € Ob(A).

Suppose given a direct sum S of (X, X’) with inclusion morphisms ¢; and ¢ and projection
morphisms m; and 75 .

Since F' is additive, SF is a direct sum of (X F, X'F') with inclusion morphisms ¢1F" and o F
and projection morphisms m F' and mo F'.

Since G is additive, SF'G is a direct sum of (X F'G, X' FG) with inclusion morphisms ¢; F'G and
1o F'G and projection morphisms 7 F'G and m F'G. n



46

Lemma 50. Suppose given a functor F': A — B.

The following assertions (1,2,3) are equivalent.

(1) The functor F is additive.
(2) Given X, Y € Ob(A) and morphisms a, a’ : X =Y, we have (a + a')F = aF + d'F.

(3) Suppose given m >0 and X1, Xs, ..., X,, € Ob(A).

Suppose given a direct sum S € Ob(A) of (X1,...,Xm), with inclusion morphisms
X; % S and projection morphisms S = X; fori € [1,m].

Then SF € Ob(B) is a direct sum of (XiF,..., X, F), with inclusion morphisms
X, F “P SF and projection morphisms SF il X, F fori e [1,m)].

Moreover, if F is additive and we are given m > 0 and X, Xs, ..., X,, € Ob(A) and a direct
sum S € Ob(A) of (Xi,...,Xn), andn = 0 and Y1,Ys,...,Y, € Ob(A) and a direct sum

T € Ob(A) of (Y1,...,Y,), and morphisms X; — Y; in A fori € [1,m] and j € [1,n], then
(*) (Uwig)i;) F = MuisF)T

Proof.

Claim 1. If (3) holds, then (x) holds. Since ¢, F' are the inclusion morphisms for SF' for
k € [1,m] and m,F are the projection morphisms for T'F for ¢ € [1,n], it suffices to show that

L F - (S(u”);fj)F -m F L ug o F for k € [1,m] and ¢ € [1,n]. In fact,

k- (S(“%J‘)Zj)F'WF = (Lk' S(Uz‘,j)T W)F =4 (T

ij
This proves Claim 1.

Claim 2. Suppose that (1) holds, i.e. that F' is additive. Suppose given X, Y € Ob(A) and
morphisms a, ' : X — Y in A. Suppose given a direct sum S of (X, X).

Then ((11)°)F £ (1) and () F = % (55).

In fact, we have ((11)S>F -mF = <(11)S-7r1>F = 1F =1 and ((II)S)F-WQF =
()% m)F=1F=1.

Moreover, we get 11 F - (S(CCL‘/))F = (1 - S(g/))F = aF and pF - (S(a“/))F = (- S(C‘}))F =dF.
This proves the Claim 2.

Ad (3) = (1). We have to show that F satisfies (AddFun1). Suppose given a zero object
Z € Ob(A). Then Z is a direct sum of the empty tuple of objects in A; cf. Example 22.
Using (3) in the case m = 0, we obtain that ZF' is a direct sum of the empty tuple of objects
in B. Thus ZF is a zero object in B; cf. Example 22.

Ad (1) = (2). By Remark 35 and Claim 2, we have

(a+d)F = ((11)5.5(3,)>F = ((11)S>F. (S(s,))F - (11)SF. SF((‘;,I;) = aF +dF.
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Ad (2) = (3). Suppose given m > 0 and X3, Xo,..., X, € Ob(A).

Suppose given a direct sum S € Ob(A) of (Xi,...,X,,), with inclusion morphisms
X; % S and projection morphisms S =% X; for i € [1,m].

We have to show that SF' € Ob(B) is a direct sum of (X F, ..., X, F'), with inclusion morphisms
X;F 45 SF and projection morphisms SF L X F fori € [1,m].

We choose a direct sum T of (X1 F, ..., X,,F') in B, together with inclusion morphisms ¢, and
projection morphisms =, for i € [1,m]; cf. Lemma 37.

Recall that SF' is a direct sum of (SF); cf. Example 21, Remark 28.
T uF SF
Let ¢ := ( : ) : T — SF.
tm F

Let ¢ := SF(mF ..xmF)" : SF — T

Write
idx, ifi=7
5z‘,j = e .
OXi ,Xj lf ? # .]
and
5 idx, r ifi=y
w Ox,p,x,p ifi#7.
for i, 7 € [1,m].
We have
T 1 F SF
tm
L;lZ T(L@F'WjF)Zj
(Sum 3)
=" Mo ;P
R. 48
- “ ;J)Zj
ST
We have
T/ F SF
bop = HmEmr)’ ( ; )
tm F
L.42 SF
= SF(Zie[l,m] mF - L F)
R.28.(3)

Dicm Tl GF
= Zie[l,m}(ﬂi ) F

2
= (Zie[l,m] i+ 1) F
= idgF

idgr .

So ¢ and 9 are mutually inverse isomorphisms.

By Remark 24, SF is a direct sum of (X F,..., X, F'), with inclusion morphisms ¢; - ¢ = ;F’
and projection morphisms 1 - 7, = m; F for i € [1,m]. O
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Remark 51. Suppose given an additive functor F : A — B.
Suppose given X, Y € Ob(A).
Then the map

AXY) B (XEYFR)

s a group morphism; cf. Corollary 44.

Proof. This follows from Lemma 50, implication (1) = (2). O

Remark 52. Suppose given an equivalence F : A — B.
Then F' is additive.

Proof. We have to show the properties (AddFun 1, 2) for F' from Definition 46.
Ad (AddFun 1). Suppose given a zero object Z in A.
We have to show that ZF' is a zero object in B.

We show that Z F is terminal. Suppose given Y € Ob(B). We have to show that | 5(Y, ZF)| =1

The functor F' being dense, we may choose X € Ob(.A) and an isomorphism b : XF' — Y. The
object Z being terminal, we have | 4(X, Z)| = 1. The functor F' being full and faithful, we have
1=|AX,2)| = |p(XF,ZF)|. The map (b, ZF) : g(Y,ZF) — g(XF,ZF) being bijective,
we conclude that | (Y, ZF)| = 1.

We show that ZF is initial. Suppose given Y € Ob(B). We have to show that | z5(ZF,Y)] = 1.

The functor F' being dense, we may choose X € Ob(.A) and an isomorphism b : XF' — Y. The
object Z being initial, we have | 4(Z, X )| = 1. The functor F being full and faithful, we have
1=|4Z,X)| =|5(ZF,XF)|. The map g(ZF,b) : g(ZF,XF) — p(ZF,Y) being bijective,
we conclude that | s(ZF,Y)| = 1.

In particular, given X, X’ € Ob(A), we have Ox x/F = Oxr x/p. In fact, we have a commutative
triangle

OX,X/

X X'

A

with Z being a zero object, and thus a commutative triangle

Ox.x/F

XF X'F
ZF

with ZF being a zero object.

Ad (AddFun 2).
Suppose given X, X’ € Ob(A).
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Suppose given a direct sum S of (X, X’) with inclusion morphisms ¢; and ¢ and projection
morphisms m; and 75 .

We have to show that SF is a direct sum of (X F, X'F') with inclusion morphisms ¢ F' and 1o F
and projection morphisms m F' and mo F'.

Ad (Sum 1). We remark that property (Sum 1) for the direct sum S means that for U € Ob(.A),
we have the bijection

A(U7S) % A(UvX) X A(UvX/)

w —  (w-m , w-mg).
So given V' € Ob(B), we have to show that the map

s(V,SF) 4 s(V,XF) x g(V,X'F)
—>

w (2I)'7T1F s 121'7T2F)

is a bijection.
The functor F being dense, we may choose U € Ob(.A) and an isomorphism U F %) V.

It suffices to show that the following diagram commutes.

s(V, SF) —— s(V,XF) x 5(V,X'F)
B(b—,SF)Tz zT (07, XF)x g(b=,X'F)
s(UF,SF) s(UF,XF) x g(UF,X'F)
Fu,st ZTFU,XXFU,X/
AU, S) — AU, X)) x (U, X")

In fact, a morphism w € 4(U,S) is mapped in both ways to (b~ - wF - m F, b~ - wF - myF) in
B(vaF) X B(V7X/F)'

Ad (Sum?2).

We remark that property (Sum2) for the direct sum S means that for U € Ob(A), we have
the bijection

ASU) L (X, U) x a(X,U)
w o = (Li-w , 19 w).

So given V' € Ob(B), we have to show that the map

/

s(SEV) 5 s(XEV) x s(X'EV)
;_>

w (LlF - W s LQF . UNJ)

is a bijection.

The functor F being dense, we may choose U € Ob(.A) and an isomorphism U F %) V.
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It suffices to show that the following diagram commutes.

s(SF,V) —Y = s(XF,V) x g(X'F,V)
B(SF,b)Tz zT s(XFp)x 5(X'Fb)
s(SF,UF)  s(XF,UF)x s(X'F,UF)

FS7UT2 ZTFX,UXFX’,U

A8 U) ———— a(X,U) x 4(X",U)

In fact, a morphism w € 4(S,U) is mapped in both ways to (14 F - wF - b, toF - wF - b) in
B(XF7 V) X B(X/Fu V)

Ad (Sum3). We have it F' - mF = (11 - m)F = idxF = idxp and oF - mF = (19 - m3)
idX/F = idxlF . We have LlF'ﬂ'gF = (L1'7T2)F = OX’)(/F = OXF,X’F and LQF"]TlF = (L2'7T1>
Ox' xF =0x'pxF.

F
F

oo

2.4 Full additive subcategories

Let A be an additive category.
Definition 53. A full subcategory B of A is called a full additive subcategory of A if the
following properties (1-3) hold.

(1) Given X € Ob(A) and Y € Ob(B) such that X ~ Y in A, then X € Ob(B).

(2) There exists a zero object Z in A such that Z € Ob(B).

(3) Given Y, Y’" € Ob(B), there exists a direct sum S of (Y,Y”) in A such that S € Ob(B);
cf. Definition 20.

A full additive subcategory B of A is called closed under summands if given X, Y, S € Ob(A)
such that S is a direct sum of (X,Y) in A and such that S € Ob(B), we have X, Y € Ob(B).

If B is full additive subcategory of A closed under retracts, it is in particular closed under
summands. In fact, in the situation above, X and Y are retract of S.

Remark 54. Suppose given a full additive subcategory B of A.

(1) Let Z be a zero object of A. Then Z € Ob(B).

Given Y, Y' € Ob(B), the zero morphism Oy,y+ formed in A is also the zero morphism
formed in B.

(2) Given Y, Y’ € Ob(B) and a direct sum S of (Y,Y") in A, then S € Ob(B).
Proof. Ad (1). By Definition 53.(2), there exists a zero object Z’ in A such that Z" € Ob(B).
By Remark 15, we have Z ~ Z'. So Z € Ob(B) by Definition 53.(1).

Now the zero morphism Oy y, formed in A, factors over Z, which is a zero object in A and in
B. So Oyy is a zero morphism in B as well.
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Ad (2). By Definition 53.(2), there exists a direct sum S’ of (Y,Y”) in A such that S’ € Ob(B).
By Remark 30.(2), we have S ~ S". So S € Ob(B) by Definition 53.(1). O
Remark 55. Suppose given a full additive subcategory B of A.

Suppose given m >0 and Y1,Ys, ..., Y, € Ob(B).

Suppose given a direct sum S of (Y1,...,Yn) in A, with inclusion morphisms v; and projection
morphisms ; for i € [1,m].

Suppose given n >0 and Y/, Yy, ... Y € Ob(B).
Suppose given a direct sum T of (Y{,...,Y) in A, with inclusion morphisms v and projection

morphisms 7', for i € [1,n].

Suppose given morphisms Y; —2 Y/ in B fori € [1,m] and j € [1,n].

(1) We have S € Ob(B).

Moreover, S, with inclusion morphisms t; and projection morphisms m; for i € [1,m], is
a direct sum of (Y1,...,Y,) also in B.

T
i?j
T

1]

(2) We may form the morphism (u; ;)T with respect to A.

We may form the morphism S(u; ;)F. with respect to B.
These morphisms coincide.

(3) Suppose given morphisms g, ¢ - Y — Y’ in B.
We may form the morphism g+ ¢ : Y — Y’ with respect to A.
We may form the morphism g+ ¢' : Y — Y’ with respect to B.

These morphisms coincide.

Proof. Ad (1).

We show that S é Ob(B). We proceed by induction on m > 0.

In the case m = 0, the assertion holds by Example 22, Remark 30.(2), Remark 54.(1).
In the case m = 1, the assertion holds by Example 21, Remark 30.(2), Definition 53.(1).
In the case m = 2, the assertion holds by Remark 54.(2).

Suppose given m > 3.

Choose a direct sum S’ of (Y1,...,Y;—1) in A. Then S” € Ob(B) by induction.

Choose a direct sum S” of (5,Y;,) in A. Then S” € Ob(B) by Remark 54.(2).

Then S” is a direct sum of (Y,...,Y,,) by Lemma 36. So S ~ S” by Remark 30.(2). Hence
S € Ob(B) by Definition 53.(1).

We show that S, with inclusion morphisms ¢; and projection morphisms 7; for i € [1,m], is a
direct sum of (Y3,...,Y,,) also in B.

Consider Definition 20, in the notation used there.

In (Sum 1), the morphism a is contained in B since B is a full subcategory of A.
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In (Sum 2), the morphism b is contained in B since B is a full subcategory of A.

In (Sum 3), the identity morphisms and the zero morphisms are valid in B; cf. Remark 54.(1).
Ad (2).

We have the direct sum S of (Y3,...,Y},) in B, with inclusion morphisms ¢; for i € [1,m];
cf. (1).

We have the direct sum 7" of (Y{,...,Y}) in B with projection morphisms 7} for j € [1,n];
cf. (1).

Moreover, t; - H(u;;)!; - m) = ugy for k € [L,m] and £ € [1,n]; cf. Lemma 27.
Ad (3). Let S’ be a direct sum of (Y',Y”') in A.
In A, we may write
g+ = (s)" 1) ;
cf. Remark 35.

Now S’ is also a direct sum of (Y, Y”) in B, and the factors on the right hand side are the same
when formed in B as when formed in A; cf. (1,2).

So by Remark 35, the left hand side equals g + ¢/, formed in B. O

Lemma 56. Suppose given a full additive subcategory B of A.
Then B is an additive category.

Proof.

Ad (Add1). For each (Y,Y’) € Ob(B) x Ob(B), there exists a direct sum of (Y,Y”); cf.
Definition 53.(3), Remark 55.(1).

Ad (Add 2). Suppose given Y € Ob(B) and a direct sum S of (Y,Y). We have to show that

Sy 5
( %jy qg’y) , formed in B, is an isomorphism.
1dy 1lay
S7idy 0y.y \° . . . . . . .
But <i dy ide > , formed in A, is an isomorphism, since A is an additive category. So the result
follows from Remark 55.(2). O

Remark 57. Suppose given a full additive subcategory B of A.

The inclusion functor
I = Ip B

Y Ly

_>
= (Y 3Y)

18 additive.

Proof. By Lemma 50.(2), given g, ¢ : Y — Y’ in B, it suffices to show that (g+¢’)I - gl+4'l.
But this follows from Remark 55.(3). O

Remark 58. Suppose given a full additive subcategory B of A.

(1) Suppose given an additive category T . Suppose given an additive functor F:T — A such
that UF € Ob(B) for U € Ob(T). Then there exists a unique functor F' : T — B such
that F1=F.
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Then F is additive.
We often write F|P .= F.

(2) Suppose given an additive category T. Suppose given additive functors F, F' : T — A
such that UF, UF" € Ob(B) for U € Ob(T). Suppose given a transformationa : F — F'.

Then there exists a unique transformation a : F — ' such that al = a.

We often write a|® := a.

Proof. Ad (1).

Uniqueness. Suppose given a functor G : 7 — B such that GI = F. For h: U — U’ in T, we
obtain hG = hGI = hF.

Existence. For h: U — U’ in T, we let (U % U')F := (UF % U'F). This is a well-defined
functor by assumption on F'. We have FI = F' by construction.

We show that F is additive. We use Lemma 50. Suppose given h, h: U — U'in T. Note
that the sum of two morphisms from B does not depend on whether we form it in B or in A;

cf. Remark 55.(3). We obtain
(h+h)F = (h+h)F = hF +hF = hE +hF .

Ad (2).

Uniqueness. Suppose given a transformation b : ' — F’ such that bI = a. For U in Ob(T), we
obtain Ub = Ubl = Ua.

Ezistence. For U in Ob(T), we let Ua := Ua, going from UF = UF to UF' = UF'. This
defines a transformation from F to F”’, since given h : U — U’ in T, we obtain

hF-Ud = hF-Ua = Ua-hF' = Ud-hF' .
We have al = a since Ual = Ua = Ua for U € Ob(T). O

2.5 The zero category and zero functors

Definition 59. A category Z is called a zero category if Ob(Z) is nonempty and if each object
of Z is a zero object.

Remark 60. Suppose given a zero category Z.

Then Z is additive.

Proof. Since there exists a zero object in Z, the category Z is pointed.

Ad (Add1). Suppose given Z, Z' € Ob(Z). Choose Z” € Ob(Z). By Example 23, the object
Z", together with inclusion morphisms ¢y := 0z z» and ¢y := 0z z» and projection morphisms
m = 0zn z and my 1= 0zv z, is a direct sum of (Z,2’).

Ad (Add2). Suppose given Z € Ob(Z). Suppose given a direct sum Z” of (Z, 7).
Z// . le
We have to show that <le 02,2

o : Z" — Z" is an isomorphism.
s P idz idyz
id 0 . o : .
But (i dj i§f> = idz» , which is an isomorphism. O
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Definition 61. Suppose given additive categories A and B.

A functor F': A — B is called a zero functor if XF is a zero object for X € Ob(A).
Remark 62. Suppose given additive categories A and B.

Suppose given a zero functor F: A — B.

Then F' is additive.

Proof. We make use of Lemma 50.
Suppose given X, X’ € Ob(A). Suppose given a, a : X — X’ in A. We have to show that
(a+a@)F = aF + aF.
Since X F and X'F are zero objects, we have | g(XF, X'F)| = 1.
Since (a + a)F, aF +aF € g(XF,X'F), we conclude that (a + a)F = aF + aF. O
Remark 63. Suppose given an additive category A.
Let Z4 C A be the full subcategory with
Ob(Z4) := {Z € Ob(A) : Z is a zero object in A}
Then Z4 is a zero category.
Moreover, Z4 is a full additive subcategory of A.
Proof. The category Z 4 is a zero category, since each object of Z4 is a zero object in A, hence
a zero object in Z 4.
We show that Z 4 is a full additive subcategory of A; cf. Definition 53.

Ad (1). Suppose given an object X in A that is isomorphic to an object Z € Ob(Z4). Then
X is a zero object in A, hence X € Ob(Z4); cf. Remark 16.

Ad (2). There exists a zero object Z in A, so Z € Ob(Z,).

Ad (3). Suppose given Z, Z' € Ob(Z,4). We have to show that there exists a direct sum of Z
and Z' in A that is contained in Ob(Z4).

Choose Z" € Ob(Z4). By Example 23, Z”, together with inclusion morphisms ¢; = 0z 2~
and ¢y := 0z z» and projection morphisms 7 := 0zr 7 and my = Oz» »/, is a direct sum of

(Z,2"). O
Remark 64. Suppose given additive categories A and B.

Suppose given a zero functor F : A — B.

Then F factors over Zg; cf. Remark 63.

Remark 65. Suppose given additive categories A', A, B and B'.

Suppose given additive functors A Latphp.

If F' is a zero functor, then UF'V is a zero functor.

Proof. We have to show that X'UFV is a zero object for each X’ € Ob(A").

But since F' is a zero functor, the object X'UF is a zero object. Since V is additive, it follows
that X’UFV is a zero object by (AddFun1). O
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Remark 66. Suppose given additive categories B and C.
Suppose given an additive functor B¢, Suppose that F' is full and faithful.

(1) Suppose given Y € Ob(B) such that Y'F' is a zero object. Then'Y is a zero object.

(2) Suppose given an additive category A and an additive functor A" B such that UF is
a zero functor. Then U is a zero functor.

Proof.

Ad (1). Choose a zero object Z € Ob(B). Then ZF is a zero object in C; cf. Definition 46.
Hence ZF ~ Y F'; cf. Remark 15. Since F' is full and faithful, we conclude that Z ~ Y. Hence
Y is a zero object in B; cf. Remark 16.

Ad (2). Suppose given X € Ob(.A). We have to show that XU is a zero object in 5.

Since UF' is a zero functor, XUF is a zero object in C. Since F' is full and faithful, we may
apply (1) to conclude that XU is a zero object in B. O

2.6 Standard notation by choice of direct sums

Let A be an additive category.

2.6.1 Standard direct sums

By Lemma 37, for each m > 0 and each tuple (X7, ..., X,,) of objects of A, we may choose a
direct sum

P xi=x0. 06X,

1€[1,m]
called standard direct sum.

In particular, we choose an object
0 =04 € Ob(A)

as direct sum of the empty tuple of objects.

Given X; € Ob(A), we stipulate that we choose X; as standard direct sum of (X;), with
11 = idy, and m = idy, ; cf. Example 21.

For short, in A we may choose finite standard direct sums.

2.6.2 Standard matrices

Suppose that we have chosen standard direct sums in A.
Suppose given m > 0 and X1, Xs, ..., X, € Ob(A).
Suppose given n > 0 and Y7, Ys,...,Y, € Ob(A).
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Suppose given morphisms X; —2 Y;in A fori € [1,m] and j € [1,n].

We write the standard matriz

UL, e Ulim
P = (i)
Um,1 --- Um,n

— Dicttm Xi( ull ul” )GBJE[L"] Y; Dicn,m Vs

R (7
3J /1,7

Um,1 -+ Um,n

as morphism between the standard direct sums. So

(ui,j)i,j : @ Xz — @ Y} .

Since we stipulated X; to be the standard direct sum of (X;) for X; € Ob(A), with idy,
as inclusion and projection morphism, this is in accordance with the notation introduced in
Definition 20; cf. Remark 28.

2.6.3 Characterisation of additive functors using
standard direct sums

Suppose given additive categories A and B. We choose finite standard direct sums in .4 and B.
Lemma 67. Suppose given a functor F': A — B.

The following assertions (1,2) are equivalent.

(1) The functor F is additive.
(2) We have 04F ~ 0.
Given X1, Xo € Ob(A), we have mutually inverse isomorphisms
(15) + XiF & XoF — (X1 ® Xo)F
and
(7T1F 7T2F) : (Xl @XQ)F — XHiF & X,F .
Proof. Ad (1) = (2).

Since F' is additive, the object 0 4F is a zero object in B ; cf. (AddFun 1) in Definition 46. Hence
04F ~ 0p; cf. Remark 15.

Suppose given U, V' € Ob(A). We have

OuvEF = Oupvr;
cf. Remark 48.

So we obtain

(L1F) . <7T1F 7r2F> — <L1F-7T1F L1F-7T2F> — ((Ll-ﬂl)F (L1-7T2)F>

wF wFmF wFasF (e2-m)F (t2-m2)F

(Sum3) (idX )F (OX LX )F idx,r Ox F, XoF R.29 .
= 1 1, X2 — 1 1F, Xo = idx, Fex,F -

(0x,, x9)F (idx,)F Ox,r, x;F 1dx,F -
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Moreover, we obtain

(71'1F 7T2F) . (gg) = 7T1F'L1F+7T2F'L2F = (7T1'L1)F+(7T2'L2)F

20 (4 1) F Ay ex, F = dx,exs)F -
Ad (2) = (1).
Suppose given a, @’ : X — Y in A. We have to show that aF +d'F = (a+d')F; cf. Lemma 50.
We obtain
(1) F - (mFmF) = (A)FmF (1)FmF) = ((11)m)F (11)m)F) = (1F 1F) = (11)
and

B @rr = () < (1) - e

(a+d)F =

So we obtain

2.7 The 2-category of additive categories, called AddCat

Definition 68. We consider the 2-category of categories Cat ; cf. Proposition 9.
We define the 2-subcategory AddCat in Cat by letting

Ob(AddCat) := {C € Ob(Cat) : C is an additive category }

C  Ob(Cat)
Mor; (AddCat) := {F € Mor;(Cat) : F is an additive functor between additive categories }
C  Mor (Cat)
Mory(AddCat) = {a € Mor(Cat) - ais a transfo.r.mation bet.ween additive functors }
between additive categories
C  Mory(Cat) .

The 2-category AddCat is called the 2-category of additive categories. Cf. Definition 10.

Proof. We verify the properties (1-5) from Definition 10.
Ad (1). Given a 1-morphism F' € Mor;(AddCat), its source and target are in Ob(AddCat) by

construction.

Given an object A € Ob(AddCat), its identity id4 is an additive functor by Remark 49.(1),
i.e. it is in Mor;(AddCat).
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Ad (2). Given a 2-morphism in Mory(AddCat), its source and target are additive functors, i.e.
they are in Mor; (AddCat).

Conversely, given a l-morphism in Mor;(AddCat), its identity is a transformation between
additive functors, i.e. it is in Mory(AddCat).

Ad (3). Given C L p & £ in Cat with F,G € Mor;(AddCat), the categories C, D and £ are
additive by construction. The composite F'G of F' and G is additive; cf. Remark 49.(2). So we

Cat
have (C Z29=1% £) € Mor;(AddCat).

Ad (4). The vertical composite of two transformations between additive functors is still a
transformation between additive functors, so it is in Mors(AddCat).

Ad (5). Given

/: IJ\ D /’; j\\
~ ) T~
in Cat with a, b € Mory(AddCat), the functors F', F', G and G’ are additive by construction.
So C, D and & are additive by construction.

C £,

Hence the horizontal composite

Cat

F x G
e e e
\F’ @ G’/
is a transformation between additive functors FG = F CftG and F'G" = F' G G'; cf. Re-
mark 49.(2). Soaxb = ax b € Mory(AddCat). O
at

Definition 69. Let O be the category defined as follows.

Let Ob(O) contain a single object, called 0. So Ob(Q) = {0}.

Let Mor(Q) := {idy}. Composition is defined by idy - idy := idg .

Then O is a category.

Now 0 is a zero object in O. So by Remark 60, O is an additive category.

Remark 70. The category O is a zero object in AddCat ; cf. Definitions 69 and 11.

Proof. Suppose given A € Ob(AddCat). We have to show that the category aqacas(A, O)
contains one isoclass.

There exists a unique functor ' : A — O, mapping each morphism (X ENS'e )in A to (0 1o, 0)
in O. By Remark 62, the functor F' is additive.

Suppose given B € Ob(AddCat). We have to show that the category aqdacas(O,B) contains one
isoclass.

For each object Y € Ob(B), we have the functor Gy mapping (0 1o, 0)in O to (Y v, Y) in
B. Conversely, each functor from O to B is of that form.

For Y € Ob(B), the functor Gy is additive if and only if Y is a zero object in B; cf. Remark 62,
(AddFun1).

Since B has a zero object Z, there exists the corresponding object Gz in aqacat(O, B).
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Suppose given zero objects Z and Z in B. We have to show that Gy and G are isomorphic.

We have an isomorphism Z é Z; cf. Remark 15. Letting 0p := f : 0G; — 0G5 , we obtain

an isotransformation ¢ : Gz — G5 . In fact, for the unique morphism 0 o, 0, we obtain the
following commutative quadrangle.

0Gz 2+ 0G,
idoGz\L \LidOGZ

0Gz 2+ 0G,

Remark 71. Suppose given additive categories A and B and an additive functor A 5B

The following statements (1,2,3) are equivalent.

(1) The functor F is a zero functor, i.e. the object X F is zero for X € Ob(A).
(2) There exist additive functors A Y 0% B such that F ~UV.

(3) The functor F is a zero 1-morphism in AddCat.

Cf. Definitions 61 and 12.

Proof.
Ad (1) = (3). This follows by Remarks 64, 63.
Ad (3) = (2). This follows by Remark 13.

Ad (2) = (1). Suppose given X € Ob(A). We have XF ~ XUV. So it suffices to show that
XUV is a zero object in B; cf. Remark 16.

Now XU = 0 in O, which is a zero object in O. Since V is additive, we conclude that XUV is
a zero object in B; cf. (AddFun1). O

Remark 72. Suppose given additive categories A and B.
(1) The category adacat(A, B) is additive.
The zero objects therein are the zero functors from A to B.

(2) Suppose given additive functors F, F : A — B.
Suppose given transformations a, a’ : F — F.

We have a + ' = (Xa+ Xa')xcob(a) -

Proof.
Ad (1). We choose finite standard direct sums in B; cf. §2.6.1.
We verify that aqgqcat(A, B) is pointed and satisfies (Add 1,2’); cf. Definition 31, Remark 32.

Ad (pointed). We define the functor 0: A — B: (X = X') ~ (0 RN 0).
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This is in fact a functor. On the one hand, for X € Ob(A), we have idx0 = 0 = idy = idxy.
On the other hand, for X % X’ 2 X" in A, we have (aa’)0 =0=0-0=a0-d0.

The functor 0 : A — B is a zero functor, whence it is additive by Remark 62.

Suppose given an additive functor U : A — B.

We show that there exists a unique morphism from 0 to U. Since such a morphism is necessarily
equal to (X0 — XU)xeona) = (0 RN XU)xeob(a) , uniqueness follows. For the existence, it
suffices to show naturality of this tuple. In fact, for X 2 X’ in A, the quadrangle

X0 XU

J

X0 x'U

commutes because of X0 = 0.

We show that there exists a unique morphism from U to 0. Since such a morphism is necessarily
equal to (XU — XO0)xcopw) = (XU 2 0) xeob(4) , uniqueness follows. For the existence, it
suffices to show naturality of this tuple. In fact, for X < X’ in A, the quadrangle

XU -2+ X0

o |

X'U -2~ X0

commutes because of X'0 = 0.

Moreover, any zero functor from A to B is isomorphic to the functor 0 : A — B, the isotrans-
formation consisting of the unique morphisms between the respective zero objects in B.

Conversely, an additive functor from A to B isomorphic to the functor 0 : A — B is a zero
functor.

Ad (Add1). Suppose given additive functors Fy, F; : A — B.

Note that O, g, = O0p,0- 00, = (Oxr, x0) xcob(a) - (0x0, xm) xecoba) = (Oxr, xR ) XeOb(A) -

We have to show that there exists a direct sum of F} and Fy in agdcas(A, B) in the sense of
Definition 20.

Let
(5 o)
FoF : A= B: (X3X)» XS X)NReR) = (XReXFh —5X'FeX'F).

We show that F} @ F» is a functor. On the one hand, for X € Ob(A), we have
idy(F1 @ F3) = (id%Fl id;((]Fg) = (id)éFl id;(()FQ) 2 idxpexn = idxren) -

On the other hand, for X & X' LN X", we have

aFyp 0 a’ . aFy -a’ a-a’
a(MOF)-d(FieF) = (olan)( 51(1’3«“2) = <F10 FlaFQ-Oa'F2> B <( 0" (a-ag)F2) = (a-d)(F1®&F).
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We show that the functor F & F is additive. In fact, by Lemma 50.(2=-1), it suffices to show
that for X === X’ in A, we have (a+a)(Fy & Fy) L a(Fy & Fy) + a(F; @ Fy). We obtain

~ aFy aFy L.39 aFy+aF; L.50 a+a)Fy ~
a(F1®oFR)+a(Fi0F,) = ( ga%2)+( 55%2) = ( ng d aFQS-aFg) = <( +0)F (a+%)F2) = (a+a)(F10F,) .

We define the transformation

(10)

b o= (XF1—>XF1@XF2 R FoR.

)XeOb(A)

We have to show naturality of the tuple ¢ . Suppose given X — X’ in A. The quadrangle

(10)
XEF XEF e XE

aﬂl l(agl )
(10)

X/Fl 4>X,F1 @X’FQ

commutes because of (10) - (‘“0”1 G%Q) = (aFy 0) = aF} - (10).

We define the transformation

(01)

by = (XFQLXFl@XFQ L F, o FLaF.

>XeOb(A)

We have to show naturality of the tuple ¢, . Suppose given X — X’ in A. The quadrangle

(01)

XF, XF, @ XFy
o) (8)
X'FR - X'R @ X',
commutes because of (01) (“51 G%Q) = (0ar) =aFy-(01),

We define the transformation

(o)

T = <XF1@XF2—>XF1) e Fy, — Fy.
XeOb(A)

We have to show naturality of the tuple 7 . Suppose given X = X’ in A. The quadrangle

(o)

XF @& XF, XF
<ag1 a%b)l <1> laFl
X/Fl GB X’FQ *0>X/F1

(") = (o) - aFy.

commutes because of (“51 a?:Q) : ((1]) =

We define the transformation

()

g = (XFl@XFQ—>XFQ) : Fl@Fg — FQ.
XeOb(A)
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We have to show naturality of the tuple 7, . Suppose given X = X’ in A. The quadrangle

(%)
XF & XF, XF,

)| 0 o

X'F, & X'Fy—+ X'F,

commutes because of (“51 a%Q) . ((1)) = (a%b) = ((1)) cakFy.

We show that Fy @& F5, together with the inclusion morphisms ¢; and ¢y and the projection
morphisms 7; and 7y, is a direct sum of (£}, F3). We have to verify the properties (Sum 1-3)
from Definition 20.

Ad (Sum 1). Suppose given an additive functor U : A — B and transformations u; : U — F}
and us : U — F5. We have to show that there exists a unique transformation v : U — F} @ F,
such that v -7 = u; and u - 7T = usy .

FExistence. We define the transformation

Xui Xuz)

u = (XU( XFl@XFg) U > FLok.

XeOb(A)
We have to show naturality of the tuple «. Suppose given X - X’ in A. The quadrangle

(Xuy Xug)
_ >

XU XF, & XFy
av (“6" oft,)
XU g @ XUR,
commutes because of
(Xw Xug) - (%01 o) = (Xwi-aFt Xug-aly) = (aU-X'wy aU-X'ws) = aU - (X'ui X'us) |

We show that u-m = u; . Suppose given X € Ob(A). We have to show that X (u-m) = Xu .
In fact,
X(U'ﬂ'l) = X'LL'X7T1 = (XUIXUQ) . ((1)) = Xu1 .

We show that - s = us. Suppose given X € Ob(A). We have to show that X (u - ) = Xu,.
In fact,
X(U'WQ) = XU'X7T2 = (XUIXUQ) . ((1)) = XU2 .

Uniqueness. Suppose given a transformation w : U — F; @& Fy such that @ - m = wu; and
U - Ty = uy. We have to show that = . Suppose given X € Ob(A). We have to show
that Xi = Xu : XU — XFy @ XF,. Writing X@ =: (s1:2) with s; : XU — XF, and
so : XU — XF, and recalling that Xu = (Xwi Xuz), we have to show that s; L Xuy and

S9 . Xusy . In fact,

and
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Ad (Sum2). Suppose given an additive functor V' : A — B and transformations vy : F} — V
and vy : F5 — V. We have to show that there exists a unique transformation v : F} ® Fy — V
such that ¢; -v =v; and t3 - v = vs.

FExistence. We define the transformation

Xv1
v o= (XFl@XFQMXV> CFReF - V.
XeOb(A)

We have to show naturality of the tuple v. Suppose given X < X’ in A. The quadrangle

Xv
Xwvo

XFI@XF2—>XV

(aéﬁ a%2> o aV
X'F o X'F: M>X'/V
1 2

commutes because Of
(aF1 0 ) B X'vq _ alFy - X'v1 . Xvy-aV o Xvp . v
0 aF> X'vg - aFy - X' vy - Xuvy-aV - Xvo av .

We show that 11 - v = v; . Suppose given X € Ob(.A). We have to show that X (¢; - v) = Xy .
In fact,
X(y-v) = Xup-Xv = (10)- (32) = Xy .

We show that 15 - v = v, . Suppose given X € Ob(A). We have to show that X (¢o - v) = Xuy.
In fact,
X(p-v) = Xtg-Xv = (01)- (x01) = Xuy.

Uniqueness. Suppose given a transformation v : Fy & F, — V such that ; - © = v; and
Ly - U = vy. We have to show that o 0. Suppose given X € Ob(A). We have to show that

Xo= Xv: XFy & XFy, — XV. Writing Xv =: (g) witht;: XF; — XV and ty : XI5 - XV

and recalling that Xv = <§z;), we have to show that t; L Xwv; and t, L Xwvy . In fact,

tr=(10)- () = Xt - X0 = X(11-0) = Xy

and
t2 = (01)(%) = XLQ'X’& = X([sz}) — XUZ-

Ad (Sum 3). We have to show that

1. ! ! 1.
L1‘7Tl:1dF17 LI'WZIOFl,an b2'771:0F2,F1, L2'7TQ:1C1F2-

Suppose given X € Ob(A). We have to show that

. ! ! ([
X - Xm :1dXF1 , X Xmy = OXFl,XFz , Xig- Xm :OXFQ,XFl ;o Xig - Xmy = ldXF2 .
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We obtain
Xy - Xm = (1o0)- ((1)) = 1 = idxp
Xu-Xm = (10)-(}) = 0 = Oxpm, xm
Xig-Xmp = (01)- ((1)) = 0 = Oxp,xm
Xig-Xmy = (01)- ((1)) = 1 = idxp .

Ad (Add 2"). Suppose given an additive functor ' : A — B. We use the construction of F' @ F
from the proof of (Add 1). We have to show that the transformation

idp O, F

F&F,
(idF idp

)F@F

FoF FoF

is an isotransformation.

We write ¢ 1= F@FGg? Oiﬁ’FF )F@F.
Suppose given X € Ob(A). We have to show that X¢ is an isomorphism in B.

By definition, ¢ is the unique morphism from F' & F' to F' & F satisfying

L-p-m = idp t-p-m = 0pp
lpg - @ -T1 = ldF lp - Q- Ty = ldF
Hence
XL1~X(,0'X7T1 == idXF XL1~X(,0'X7T2 == OXF,XF
XLQ'XQO'XTH = idXF XLQ'XQO'XT('Q = idXF.

Writing X = (;‘jf,) XF@ XF — XF® XF, this amounts to

u = (01)- (Zf)) . (6) = 1 vo= (Ol). (;f}) . (?) = 1.
Hence X = (Zf;) = (% (1)), which is an isomorphism in B.
Ad (2). We shall use the inclusion morphisms and projection morphisms as calculated for (1).
Let ¢ := (idr idF)F®F. Then ¢ is the unique morphism having 1 - 7y = idp and ¢ - T = idp.

So for X € Ob(A), we obtain X¢ - X7 = Xidp = idxr and X9 - X7y = Xidp = idxp. Thus
X = (idXF idXF). Hence

(idpidr)™F = ¢ = ((idxridxr))xecob(a) -

Let o := F@F((f/). Then « is the unique morphism having ¢; - @ = a and 15 - @ = a’. So for

X € Ob(A), we obtain X¢; - Xao = Xa and Xty - Xao = Xa'. Thus Xa = (;((5/) Hence

T

= o = (())(((f’))XeOb(A)-
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We obtain
atd = (ipiap)®F. TEa)

(i
= ((idxridxr))xeona) - ((X%))xeob
((idxridxr) - (X%))xeon(a)

(

Xa+ Xa')xeon(a) -

Remark 73. Suppose given additive categories A, A', B, B'.

Suppose given additive functors A’ S AadBEL B,
(1) The functor agqacat(A, H) : addcat(A, B) = addacat(A, B') is additive; cf. Definition 3.
(2) The functor aqacat(G,B) : addcas(A, B) = addacat (A, B) is additive; cf. Definition 4.

Proof.

Ad (1). Suppose given additive functors F), F : A — B. Suppose given transformations
a, a : F— F. We have to show that

(a+ @) addcat(A, H) = (@) addcat(A, H) + (@) addacat(A, H) ;
cf. Lemma 50.

L.e. we have to show that (a + a)H = aH +aH.

Suppose given X € Ob(A). We have to show that X (a + a)H = X(aH 4 aH). In fact, we
obtain

R.72.(2)

Xa+a)H " 2% (xa+ xayg "2

R.72.(2)

XaH + XaH X(aH +aH) .

Ad (2). Suppose given additive functors F), F : A — B. Suppose given transformations
a, a : F'— F. We have to show that

(a4 @) adacat(G, B) = (@) agacat (G, B) + (@) aaacet (G, B) ;

cf. Lemma 50.

L.e. we have to show that G(a + a) = Ga + Ga.

Suppose given X’ € Ob(A"). We have to show that X'G(a + a) = X'(Ga + Ga). In fact, we

obtain

R.72.(2) R.72.(2)

X'G(a+ a) X'Ga+ X'Ga X'(Ga+ Ga) .

2.8 Factor categories

2.8.1 Construction

Let A be an additive category. We choose finite standard direct sums in A.
Suppose given a full additive subcategory N of A such that A is closed under retracts in A.
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Definition 74. For X,Y € Ob(A), we define

There exists a factorization f = f’'- f”
NUHA”/\/’<X, Y) = f EA (X, Y) : f! f
such that X — N = Y for some N € Ob(N)

Remark 75. The set Null 4 »r(X,Y) is a subgroup of 4(X,Y); cf. Corollary 44.

Proof. The zero object 0 of A is contained in N ; cf. Remark 54.(1). We have

OX,Y = OX,O : Oojy € NU.HA#\/(X, Y) .
Suppose given fi, fo € Nullyar(X,Y). There exist factorizations

fi = fi-f{ such that X By Ny Iy with N € Ob(N)

and
fo = fi- f2 such that X 22 Ny 25V with N, € Ob(\) .

We get a factorization
_fl = (_f{) ' {, )
where X —_I1—> Ny f—1> Y, so that
—f1 € NHHAJ\/(X, Y) )
cf. Corollary 45.
The direct sum N; & Ns is contained in Ob(N) ; cf. Remark 54.(2). We get a factorization

firfo= ) (1)

IR
(f1 f2) (fé’)
X —> N &N, —=Y s

so that f1 + fo € Null4ar(X,Y). ]

where

Definition 76 (and Remark). We may define the factor category A/N as follows.

(1) Let Ob(A/N) := Ob(A).

(2) For X,Y € Ob(A/N), the set of morphisms between X and Y is defined as the factor

group
AN(XY) = 4(X)Y)/ Nullya (X, Y) 5

cf. Remark 75. Given f € 4(X,Y), we write
[f] == f+Nullay(X,Y) € an(X,Y).

for its residue class.
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(3) For X, Y, Z € Ob(A/N), composition is defined by

wn(X)Y) x o an(Y,Z) O, 4N(X, 2)
(1 ld) = fl-lg] = 1f-4l.

This is independent of the choice of the representative f of [f] and of the representative
g of [g].

We have idy" = [id4] for X € Ob(A) = Ob(A/N).

Then A/N is in fact a category.
Moreover, we have the full and dense residue class functor

R = RA,/\/ A = .A/N
(]

xLy) » x Ly
Proof. We show independence in the construction of (3).

Suppose given f, f" € 4(X,Y) and g, ¢ € 4(Y,Z) such that f — f' € Nullyo(X,Y) and
g—9g €Nullyn(Y,2). Then f-g—f"-g'=f-(9—9g)+(f=[f)-d
Since g — ¢’ € Null4 (Y, Z), the morphism g — ¢’ factors over an object N in N. Therefore

f (g —¢') is a morphism between X and Z that factors over N, so we have f- (g — ¢') €
NulLy (X, Z).

Since f — f" € Null4 (X, Y), the morphism f — f’ factors over an object N’ in . Therefore
(f — f') - ¢ is a morphism between X and Z that factors over N’, so we have (f — f') - ¢ €
Nully (X, Z).

Since Null g n(X, Z) is a subgroup of 4(X,Z) by Remark 75, we have
fra=f9 =F(g=9)+(f—f) ¢ €Nullun(X,2) .

That means [f - g] = [’ - ¢'], as we had to show.

We show that A/N is in fact a category. The composition of morphisms in Mor(A/N) is
defined by the composites of representatives in Mor(.A). So it is associative. Moreover, given

X 5 Y in A, we have [id§]-[f] = [id% - f] = [f] and [f]-id¥] = [f-id§}] = [£). Soidg" = [id}]
for X € Ob(A) = Ob(A/N).

We show that R is in fact a functor.
We have (idf)R = [id2] = idd”" for X € Ob(A).
Suppose given morphisms X fy % z¢ Mor(.A). We obtain

(f-g9R=[f-gl=1[f]-lgl= (/)R- (9)R

So R is indeed a functor. O]
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Lemma 77. The following assertions (1,2) hold.

(1) The category A/N is additive.
More precisely, we have the following.

First, for X € Ob(.A), we have that X is a zero object in AJN if and only if X € Ob(N).
In particular, for f: X =Y in A, the morphism [f] is a zero morphism in AJ/N if and
only if f € Null g i (X,Y).

Second, suppose given m = 0 and X; € Ob(A/N) = Ob(A) fori € [1,m)].

Suppose given a direct sum S of (X1,..., X)) in A with inclusion morphisms t1, ..., tm
and projection morphisms 7y, ..., Ty, .

Then S is also a direct sum of (Xi,...,Xpm) in AJN, with inclusion morphisms
[t1], - .., [tm] and projection morphisms [m], ..., [mn).

Third, given f, f' : X — Y in A, the sum of [f] and [f'] in the additive category
A/N equals the sum of [f] and [f'] formed in the abelian factor group an(X,Y) =
A(X, Y)/NUHAM\/(X, Y), i.e.

1+ =1+ 11

(2) The residue class functor

R:RAJ\/’Z A — .A/N
xLy) = x %y

1s additive.

Proof.

Ad (1).

First, suppose given X € Ob(A).

If X € Ob(N), then given U € Ob(A/N) = Ob(A), we have Nully o (X,U) = 4(X,U) and

thus | aa(X,U)| = | 4(X,U)/Nullya(X,U)| = 1, and, likewise, Nully o (U, X) = (U, X)
and thus | 4/ (U, X)| = | a(U, X)/Nully »(U, X)| = 1. Hence X is a zero object in A/N.

Conversely, if X is a zero object in A/N, then 1 = | 4/a(X, X)| = | a(X, X)/ Null 4 p (X, X)|,
Le. 4(X,X) = Nullg (X, X). Soidy € Nullgn(X,X). Hence there exist an object N €
Ob(N) and morphisms X % N and N 2 X such that idy = a - b. Therefore, X is a retract
of N € Ob(N). Thus X € Ob(N).

Second, suppose given m > 0 and X; € Ob(A/N) = Ob(A) for i € [1,m].

Suppose given a direct sum S of (Xi,...,X,,) in A with inclusion morphisms ¢y, ..., ¢, and
projection morphisms 7y, ..., Ty, .

Such a direct sum exists; cf. Lemma 37. Note that S € Ob(A) = Ob(A/N).

We claim that S is also a direct sum in A/N, with inclusion morphisms [t1], ..., [t,,] and
projection morphisms [m], ..., [my].

Ad (Sum1). Suppose given U € Ob(A/N) and a tuple of morphisms (U —5 X;)icf1,m in
Mor(A/N). For each i € [1,m], we choose a representative u, € Mor(A) of u;, i.e. u; = [u]

il
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We consider the object U with the tuple of morphisms (U N Xi)icp,m) in A. Since S is a direct
sum in A, there is a unique morphism U = S such that v - m; = u/ for i € [1,m).

!/

We have [v] - [m] = [v-m] = [u}] = w; for i € [1,m]. So there is a morphism U s in

Mor(A/N') such that [v] - [m;] = u; for i € [1,m].
Now we need to show the uniqueness. Suppose given a morphism U = S in Mor(.A/N) such
that w - [m;] = u; for i € [1,m]. So
ooml = b n] = w = w [x]
for i € [1,m].
We have to show that w = [v].
We choose a representative w’ € Mor(A) of w, i.e. w = [w'].

For i € [1,m], we get
vom] =w-m] = W]-[m] = W],

hence
(v—w)m =v-m—w-m € Nullgyp(U, X;)

and therefore
(v—w') -m-u € Nullyp(U,S) .

Hence

v—uw = (v—u')-( Z T l) = Z (v—w') w1 € Nullya(U,S) .

i€[l,m] i€[l,m]
Cf. Remark 41. Hence w = [w'] = [v] in Mor(A/N).

Ad (Sum2). Suppose given U € Ob(A/N) and a tuple of morphisms (X; ~% U)icpi,m in
Mor(A/N'). For each i € [1,m], we choose a representative u; € Mor(A) of u;, i.e. u; = [ul].

We consider the object U with the tuple of morphisms (X; — U Jielt,m) in A. Since S is a direct
sum in A, there is a unique morphism S - U such that ¢; - v = u, for i € [1,m].

!/

We have [i;] - [v] = [t -v] = [u}] = w; for i € [1,m]. So there is a morphism S YU in

Mor(A/N) such that [i;] - [v] = u; for i € [1,m)].
Now we need to show the uniqueness. Suppose given a morphism S = U in Mor(.A/N) such
that [¢;] - w = u; for i € [1,m]. So
[bi-v] = [u] -] = wi = [u]-w
for i € [1,m].
We have to show that w = [v].
We choose a representative w’ € Mor(A) of w, i.e. w = [w'].
For i € [1,m], we get
i 0] = [u]-w = [u] - [w] = [u-w],
hence
i-(w=w) = ;-v—1-w € Nullyn(X;,U)
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and therefore
mi- i (v—w') € Nullya(S,U).

Hence

v—w = ( Z Tieu) - (v—w) = Z Tt (v—w') € Nullyn(S,U) .
i€[1,m] i€[1,m]
Cf. Remark 41. Hence w = [w'] = [v] in Mor(A/N).
Ad (Sum 3). We have [y] - [m;] = [t; - mi] = [idx,] = idx, for i € [1,m)].
We have [i] - [m;] = [t - 1] = [0x;, x;] = Ox,, x; for 4,7 € [1,m] with i # j.
This proves the claim.
Now we aim to show that AJN is additive.

Note that A/AN is a pointed category, since there exists a zero object of A that is contained
in Ob(N), which is thus a zero object in A/N. Alternatively, we can choose m = 0 in the
argument above.

Ad (Add1). This follows by letting m = 2 in the argument above.
Ad (Add2). Suppose given X € Ob(A) = Ob(A/N). Let S be a direct sum of (X, X) in A,

with inclusion morphisms ¢; , t and projection morphisms 7y, mo. Then § is a direct sum of
(X, X) in A/N, with inclusion morphisms [¢1], [¢2] and projection morphisms [m], [m].

idx idx

Sy s
We claim that the morphism <ldx OX’X> : S — S formed in A/N equals the residue class of

: Sfidx 0x,x \° :
the morphism ¢ := ( : ) formed in A.

idyx idx

In fact, we have

] (¢l [m] = [u-¢-m] = [idx] = idx
(L] - [ - [ma] = [u-¢-m] = [0xx] = Oxx
(o] - [o] - [m] = [o-o-m] = [idx] = idy
o] - [@] - [ma] = [2-@-m] = [dx] = idx.

The morphism ¢ is an isomorphism, since A is additive.

S/, s
Hence the morphism (Ei Oﬁ;) : S — S formed in A/N, which equals [¢] = (¢)R, is an

isomorphism as well since R is a functor.

Third. Suppose given f, f' : X — Y in A. We want to calculate the sum of [f] and [f’] in the
additive category A/N using Remark 35.

Suppose given X € Ob(A) = Ob(A/N). Let S be a direct sum of (X, X) in A, with inclusion
morphisms ¢, 5 and projection morphisms 7y, 5. Then S is a direct sum of (X, X) in A/N,
with inclusion morphisms [i1], [¢2] and projection morphisms [m], [m2].

(]
s
morphism ¢ := (;) In fact, we have [11] - [p] = [t1 - ] = [f] and [e2] - [¢] = [t2 - ©] = [f'].
This proves the claim.

S
We claim that the morphism <[f ]> : S — Y formed in A/N equals the residue class of the
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We claim that the morphism (idx idx )S, formed in A/N, equals the residue class of the morphism
¢ = (idxidx )%, formed in A. In fact, we have [¢] - [my] = [¢ - 1] = [idx] = idx and [¢)] - [mo] =
[¢ - m9] = [idx] = idx . This proves the claim.

Now the sum of [f] and [f’], formed in the additive category A/N, is given by

S s S
i () = o1 [(D)] = [ ()] - o
But this is the sum of [f] and [f’], formed in the abelian factor group 4 (X,Y) =
A<X7 Y)/NHHA,N<X7 Y)
Ad (2). We want to use Lemma 50.
Suppose given f, f' : X =Y in A. We obtain

F+R =+ 2 A+ = (HR+ (R,

2.8.2 Universal property of the factor category

Let A be an additive category.

Let N C A be a full additive subcategory; cf. Definition 53.

Write I = Iy 4 : N — A for the inclusion functor.

Write R = Ryn : A — A/N for the residue class functor; cf. Definition 76.
Note that IR is a zero functor; cf. Lemma 77.(1).

Lemma 78. The following assertions (1,2) hold.

(1) Suppose given an additive category T and an additive functor A LT such that 1T is a
zero functor.

Then there exists a unique functor AJN T T such that RT = T.

Moreover, T is additive.

A

T——T
4

AIN

(2) Suppose given an additive category T and an additive functors A :Z T such that 1T and
IT" are zero functors.

Suppose given a transformation a : T — T'.
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Then there erists a unique transformation a : T — T' such that Ra = a; cf. (1).

A= . =T
\\“’__T/

AJN

Proof. Ad (1). Uniqueness of T follows from the surjectivity of R on morphisms.

FExistence. On objects, we have Ob(A/N) = Ob(A). Therefore, we may define

XT = XT
for X € Ob(A/N).

On morphisms, given X Ly in A, we let

x Lwvyr = xS yr).

We have to show independence of the choice of the representative f. Suppose given X Ly
and X L5 Y such that [f] = [f']. We have to show that fT° = f'T.

We choose morphisms X - N LN Y, where N € Ob(N), such that f — f' = a-b. Note that
NT is a zero object in 7. So

R.51

fT—fT "2 (f =T = (a-b)T = aT-bT = 0.

We show that T is a functor.
Suppose given X € Ob(A/N). Then (id_’;}/N)T = [id]T = id3T = id%, = id%; .

Suppose given X ﬂ) Y ﬂ Z in A/JN. Then X 1oy % 7 in A. We obtain

(f1-o)T = [f-9IT = (f-9)T = fT-gT = [fIT-[g]T .

By construction, RT = T.
We show that T is additive using Lemma 50.
Suppose given [f],[f'] : X = Y in A/N. We obtain

1+ DT = [f+ 1T = (f+ )T = [T+ T = [AIT+[f]T.

Ad (2). To show uniqueness, we show that a transformation b : T — T" satisfying Rb = a is
uniquely determined by a. Given X € Ob(A/N) = Ob(A), we have Xb = XRb = Xa. So b is

uniquely determined by a.
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We show ezistence of the transformation a such that Ra = a. For X € Ob(A/N) = Ob(A),
we let Xa := Xa, which is a morphism from X7 = XT to XT" = XT'. We show that a is a

transformation from T to T". Suppose given X Yy in A/N. Then
XT 2% XT
[f}Ti i[f]T’
YT X%y

commutes, since we obtain, using that a : T — T" is a transformation,

[fIT-Ya = fT-Ya = Xa-fT' = Xa-[f]T".

By construction, Ra = a. O]

2.9 The kernel of an additive functor

Suppose given additive categories A and B. Suppose given an additive functor F': A — B.
Definition 79. Let Kern(F') be the full subcategory of A defined by

Ob(Kern(F)) := {X € Ob(A) : XF is a zero object in B } ,
called the kernel of F'.

Remark 80. The kernel Kern(F) is a full additive subcategory of A that is closed under
retracts.

Proof. We show (1-3) from Definition 53.

Ad (1). Suppose given X € Ob(A) and Y € Ob(Kern(F')) such that X ~ Y. We have to show
!

that X € Ob(Kern(F)).

In fact, XF ~ YF. Since YF' is a zero object, so is XF'; cf. Remark 16. Hence X &
Ob(Kern(F)).

Ad (2). We have to show that there exists a zero object of A that lies in Kern(F).

Choose a zero object Z in A. Then ZF is a zero object; cf. Definition 46. So Z € Ob(Kern(F)).
Ad (3). Given Y, Y’ € Ob(Kern(F)), we have to show that there exists a direct sum S of
(Y,Y") in A such that S € Ob(Kern(F)).

Choose a direct sum S of (Y,Y”) in A. Then SF is a direct sum of (Y F,Y'F) ; cf. Definition 46.
Since Y F and Y'F are zero objects, so is SF'; cf. Remarks 63 and 54. Hence S € Ob(Kern(F)).

We show that Kern(F) is closed under retracts in A. Suppose given Y € Ob(Kern(F)), i.e.
Y € Ob(A) such that Y F' is a zero object. Suppose given X € Ob(.A) such that X is a retract

!
of Y. We have to show that X € Ob(Kern(F')), i.e. that X F' is a zero object.
Since X is a retract of Y, there exist morphisms X = Y L X such that a-b = id x . Thus

aF -bF = idxr. Hence X F is a retract of YF. Since Y F' is a zero object, we conclude that
XF' is a zero object; cf. Remark 16. [
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Remark 81. Write 1: Kern(F') — A for the inclusion functor. Note that 1F is a zero functor.

(1) Suppose given an additive category T . Suppose given an additive functor T : T — A such
that TF is a zero functor. Then there exists a unique additive functor T : T — Kern(F')
such that TT =T

(2) Suppose given an additive category T . Suppose given additive functors T, T" : T — A
such that TEF and T'F are zero functors. Suppose given a transformation a : T — T".

Then there exists a unique transformation a : T — T such that al = a.

Proof. Note that for an additive functor T : 7 — A, the composite T'F is a zero functor if and
only if 7" maps each object of 7 to Ob(Kern(F)).

Thus the assertion follow from Remark 58. O]

2.10 The full image of an additive functor

Suppose given additive categories A and B. Suppose given an additive functor F' : A — B.
Definition 82. Let Im(F’) be the full subcategory of B given by
Ob(Im(F)) := {Y € Ob(B) : there exists X € Ob(A) with Y ~ XF'}
The category Im(F) is called the full image of A under F'.
We often write AF := Im(F).
Remark 83. We have that AF is a full additive subcategory of B.

Proof. We have to show the properties (1-3) of Definition 53.
Ad (1). An object of B isomorphic to an object of AF is in AF by construction.

Ad (2). The functor F' maps a zero object of A to a zero object of B; cf. Definition 46. Thus
AF contains a zero object of B.

Ad (3). Suppose given Y, Y € Ob(AF). Then there exist X, X € Ob(A) such that Y ~ X F
and }7~ ~ XF. Let S € Ob(A) be a direct sum of (X, X). Then SF is a direct sum of
(XF, XF); cf. Definition 46. Thus SF is also a direct sum of (Y,Y); cf. Remark 24. O

2.11 Pure short exact sequences in AddCat
In each additive category appearing in §2.11, we choose finite standard direct sums.

2.11.1 Definition and first properties

Definition 84. Suppose given additive categories A’, A and A”.

Suppose given additive functors A’ 548 a
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The sequence A’ 5 A5 A" s called a pure short exact sequence in AddCat if the following
conditions (P 1-4) hold.

(P 1) The functor F is full and faithful.
(P2) The functor G is full and dense.
(P 3) We have Im(F') = Kern(G) as full additive subcategories of A.

(P4) Suppose given a morphism X % X in A such that uG' = 0. Then there exists Z’ € Ob(A')
and morphisms X = Z'F % X in A such that a - a = u.

An additive functor A’ 2> A in AddCat for which there exists a pure short exact sequence
A5 A5 A7 in AddCat s called a pure monofunctor.

To indicate that A’ 5 A is a pure monofunctor, we write A —e> A .

An additive functor A < A” in AddCat for which there exists a pure short exact sequence
AL A5 A7 in AddCat s called a pure epifunctor.

. . . . G
To indicate that A < A” is a pure epifunctor, we write A —= A" .

Remark 85. Suppose given a pure short exact sequence A’ Sy
(1) The full additive subcategory A'F C A is closed under retracts.

(2) The functor FG : A" — A" is a zero functor.

Proof. Ad (1). The full additive subcategory A'F = Kern(G) C A is closed under retracts;
cf. (P 3), Remark 80.

Ad (2). Suppose given X’ € Ob(A’). Then XF € Ob(A'F) = Kern(G). Hence X FG is a zero
object in A”. Thus F'G is a zero functor; cf. Definition 61. O

Remark 86. Suppose given a sequence A’ 5 A5 A" in AddCat.
It is a pure short exact sequence if and only if (P 1), (P2), (P3a), (P3b) and (P4) hold.

(P1) The functor F is full and faithful.
(P2) The functor G is full and dense.
(P3a) The composite FG : A" — A" is a zero functor.
(P 3b) The full additive subcategory Im(F) C A is closed under retracts.

(P4) Suppose given a morphism X - X in A such that uG = 0. Then there exists Z' € Ob(A')
and morphisms X % Z'F % X in A such that a - a = u.
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Proof. 1f (F,G) satisfies (P 1-4), it satisfies (P1,2, 3a, 3b,4) by Remark 85.

Conversely, if (F,G) satisfies (P1,2,3a,3b,4), we have to show (P 3). By (P 3a), it suffices to
!

show that A'F O Kern(G).

Suppose given X € Ob(Kern(G)) € Ob(A). Then XG is a zero object, whence idxG = 0.
By (P 4), we conclude that there exists Z’ € Ob(A") and a commutative triangle in A as follows.

X dx X
Z'F

Since A'F is closed under retracts in .4 by (P 3b), we conclude that X € Ob(A'F). O

Remark 87. Suppose given an additive category A.
Suppose given a full additive subcategory N C A that is closed under retracts.

Denote by N' L A the inclusion functor and by A LN A/N the residue class functor.

Then NHLAHR»A/N is a pure short exact sequence.

Proof. Ad (P1,2,4). This follows by construction; cf. Definition 76.
Ad (P 3). This follows from Lemma 77.(1). O

2.11.2 Stability under equivalences

Lemma 88. Suppose given a diagram in AddCat as follows.

A L4

e

B-%-B

Suppose that U' and U are equivalences.
Suppose that U'G ~ FU.
Then the following statements (1,2,3) hold.

1) If F is full, then G s full.

(1)

(2) If F is faithful, then G is faithful.
(3) If F is dense, then G is dense.
(4)

4) If AF C A is closed under retracts, then B'G C B is closed under retracts.

Proof. We choose an isotransformation m : FU = U'G.

Ad (1,2). Suppose given Y’ Y’ € Ob(B').
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~

We choose X’ € Ob(A’) and an isomorphism [’ : X'U" = Y".
We choose X’ € Ob(A’) and an isomorphism f': X'U" 5 Y.
We have the bijective map

A}

Ts Zl

5(Y,Y)

g f
h

B/(X/U/,X/U/)
g
f/ B J?/—

Ts.

XU’ g X/U/

f’lz lif’

Yy "y

We have the bijective map
3(X'U'G,X'UG)

/

<

s(Y'G,Y'Q)

f~G-g-fG
h

{)

/

< 2

g
f'G-h-f~G

I= ]

X'UG—2-XU'G

f/GlZ zlf'c

Y'G—" oyq

We have the bijective map
s(X'FU,X'FU)

*

3(X'U'G,X'UG)
X'm X
h

g g X'm

X'm-h-X'm~

Te = o

X'FU 2~ X'FU

X’ml? Zlf(’m

X'UG - XxXua

We have the following commutative diagram of sets and maps.

~ Fyr %

w(X' X" A(X'F, X'F)
UUxipxrp
Usr |2 s(X'FU,X'FU)
U
(XU, XU~ @, XUG)
' Ly

GY’,Y//

g (YY) s3(Y'G,Y'G)
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In fact, for o’ € (X', )N(’), we obtain, by naturality of m,

(@) Fy 3 Ugpgp-¥) = (@FUW = X'm™-dFU-X'm = a'UG = (a') (Ul 3 Gy ) -

X' X!
Moreover, for b’ € z(X'U’, X'U’), we obtain

W)@ - Gyrg) = (f7 -0 - )G =[G VG- J'G = (WG = ) Cypr g - V)

If Fix/ i is surjective, then Gy, y, is surjective. Hence, if F' is full, then G is full.

If Fix, % is injective, then Gy, is injective. Hence, if F' is faithful, then G is faithful.
Ad (3). Suppose that F' is dense. We have to show that G is dense.

Suppose given Y € Ob(B). We have to find an object Y’ € Ob(B’) such that Y'G ~ Y.
Since U is dense, we may choose X € Ob(A) such that XU ~ Y.

Since F' is dense, we may choose X’ € Ob(A’) such that X'F ~ X.

Letting Y’ := X'U’, we obtain

Y'G = X'UG ~ X'FU ~ XU ~ Y.

Ad (4). Suppose that A'F C A is closed under retracts.
We have to show that B'G C B is closed under retracts.

Suppose given Y’ € Ob(B’), Y € Ob(B) and a commutative triangle in B as follows.

Y idy Y
SN A
Y'G

!
We have to show that Y € Ob(B'G).
We choose X € Ob(A) and an isomorphism ¢ : XU =Y.
We choose X’ € Ob(A’) and an isomorphism ' : X'U’" = Y.

We have
X Ly b5 ve 28 xve 2 X'FU .

Since U is full and faithful, there exists a unique morphism a : X — X'F such that
alU = t-b-t"G-X'm™.

We have )
xX'ru Xm o xve Sovig Ly L XU

Since U is full and faithful, there exists a unique morphism a : X'F" — X such that

al = X'm-'G-b-t .
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We have the following commutative triangle in A.
X o X
X'F

To see this, it suffices to show that (a - a)U = idyU. In fact,

(a-a)U = aU-aU = t-b-t"G-X'm™-X'm-t'G-b-t~ = t-b-b-t~ = t-t~ = idyy = idxU .

Since A'F C A is closed under retracts, there exists X’ € Ob(A’) with X'F ~ X. Hence
(X'UNG ~ X'FU ~ XU ~ Y.

So Y € Ob(BG). O

Lemma 89. Suppose given a diagram in AddCat as follows.

’ 11
A= AT A

o el e

4 1"
B —-B-- B

Suppose that U', U and U" are equivalences.
Suppose that U'G' ~ F'U and UG" ~ F"U".

Then the sequence iy iy pure short exact if and only if the sequence
el G .
B — B —=B" s pure short exact.

In particular, this applies if U’ =idy and U =idy and U" = id 4 .

Proof.
We choose an isotransformation m’ : F'U = U'G’.

~

We choose an isotransformation m” : F"U" = UG".

Suppose that A’ JeoA e A s pure short exact. We have to show that B’ CoBE B s
pure short exact. We may verify conditions (P 1, 2, 3a, 3b, 4) from Remark 86.

Ad (P1). Since F’ is full and faithful, we conclude by Lemma 88.(1,2) that G’ is full and
faithful.

Ad (P 2). Since F" is full and dense, we conclude by Lemma 88.(1,3) that G” is full and dense.
Ad (P 3a). Suppose given Y’ € Ob(B’). We have to show that Y'G'G" is zero.
Since U’ is dense, we may choose X’ € Ob(A’) such that X'U’ ~ Y’. Then

Y'G'G" ~ X'U'G'G" ~ X'FUG" ~ X'F'F'U" ,

which is zero, since X'F'F" is zero and U” is additive.
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Ad (P 3b). Since A'F" C Ais closed under retracts, we conclude by Lemma 88.(4) that B'G' C B
is closed under retracts.

Ad (P 4). Suppose given a morphism Y 2 YV in B such that bG” = 0. We have to show that
there exists Y’ € Ob(B’) and morphisms Y M yrar 2 ¥ such that by - by = 0.

Using that U is dense, we choose X, X € Ob(A) and isomorphisms XU = Y and XU % Y.

Then s-b-5 : XU — XU. Since U is full and faithful, there exists a unique X - X with
alU =s5-b-5.

We have
aUG" = (s-b- §*)G” = sG" - bG"-5G" = 0.

We have a commutative quadrangle by naturality of m” as follows.

XF/IUI/ XTm”>XUG//

CLF// U// i laUG//

XF”U” % XUG//
We conclude that aF"U" = 0.

Since U” is full and faithful, Remarks 52 and 51 give the following isomorphism of abelian
groups.

"

~ U " gl ~
A//(XF”,XF”) XF'".XF - (XF”U",XF”U”)

~

Hence aF" = 0.

By (P4) for A oAt , we may choose X’ € Ob(A’) and a commutative triangle in A
as follows.

X'F'
Application of U yields the following diagram in B.

i !

XU au XU

a1U a2U
X'F'U

ZJ/X/m'

X/U/G/

Hence
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So letting Y’ := X'U’" € Ob(B'), by := s - a1U - X'm/ and by := X'm/'™ - axU - 5, we get the
factorisation b = by - by over Y'G'.

G G .
Hence B’ —e= B —— B" is pure short exact.

Conversely, suppose that B’ LB B s pure short exact. We have to show that
A A 4 s pure short exact.

We choose V' : B — A’ such that U'V’' ~idy4 and V'U’ ~ idg .

We choose V' : B — A such that UV ~idy and VU ~idg.

We choose V" : B” — A" such that U"V" ~id4» and V"U" ~ idg» .

Then V'F'U ~V'U'G' ~ G' ~ G'VU, whence V'F' ~ G'V since U is full and faithful.

And VF'"U" ~VUG" ~ G" ~ G"V"U", whence VF" ~ G"V" since U” is full and faithful.

Now the argument above applies, so that we may conclude that A’ Ay Ny pure short
exact.
A A g

vl e

! 1
B-Y.B 5. pgr

2.11.3 Universal properties

We give variants of the universal properties from Lemma 78 and Remark 81 for pure short exact
sequences in AddCat.

Lemma 90. Suppose given a pure short exact sequence

A/LA%AN
in AddCat.

Suppose given an additive category T .

We have induced functors
(AT) 2 (AT) <S5 (AT)

We have a full additive subcategory Kern(F,T) C (A, T).

We obtain a functor
I (G’,T)|Kem(F’T)
(A", T) — Kern(F,T) .

This functor is an equivalence.

Proof. Preliminary remark. By (P 2), the functor G : A — A” is dense. So given X” € Ob(.A"),
we may choose an object Ux» € Ob(A) and an isomorphism v, : Ux»G = X" in A”.
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Now, we have to show that (G, 7T) maps each object T" of (A”,T) to an object of Kern(F,T).
In fact, 7" is mapped to GT”, and since (GT")(F,T) = FGT" is a zero functor by Re-
marks 85.(2) and 65, the functor GT" is an object of Kern(F,T).

So the additive functor G* := (G, T)[Ken(ET) - (A" T) — Kern(F, T) exists; cf. Remark 58.(1).
We have to show that it is faithful, full and dense.

Ad G* faithful. Since G* is additive, it suffices to show that a morphism that is sent to zero by
G* is zero.

So suppose given T, T" € Ob(A”,T), i.e. suppose given additive functors 7", 7" : A" — T.

Suppose given a transformation o’ : T” — T” such that 0 = ¢"G* = a"(G,T) = Ga". So
XGa" =0 for X € Ob(A).

We have to show that a” = 0. Le. we have to show that X"a” = 0 for X" € Ob(A").

Since a” is a transformation, we have the following commutative quadrangle.

UxnGa"

UxnGT" UxnGT"

’LL NT//\L \L X”T//

X X"a" X//T//

Now Ux»Ga" = 0. So X"a" = (W4, T")~ - Ux»nGa" - u'%,T" = 0; cf. Lemma 18.(2).
Ad G* full. Suppose given T”, T" € Ob(A”,T). We have to show that the map

(A7) (T”, T//) — Kern(FT) (T"G*, jv//G*) — (.A,T)(GT”a GT”)
a” '_> CL”G* = Ga//

is surjective. So suppose given a transformation a : GT" — GT". We have to show that there
exists a transformation a” : T” — T" such that Ga” = a.

Let X"a" := (u%,T")~ - Uxna - u',T". Then we get the following commutative quadrangle.

Uxna

UxnGT" X5 UxnGT"

XNTH\L iu ”Tl/

X X"a" X//T//

We claim that a” := (X"a") x»cop(ar) is a transformation from 7" to T" satisfying Ga” = a.
We show that a” is a transformation.

Suppose given a morphism X" Y ¥ in A”. We have to show that the following quadrangle
comimutes.

X X"a” X
UNT”\L ivu/f//

Yy Y"a"” Y//T//
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To this end, we form the following diagram.

Uxna

UxnGT" UxnGT"
W, T y
X// " ~
X" a X"
(u/)/(,,-v”-(u’{/,,)_)T" "7 o' T (UX// e (u/{///)i)’f”
Yy Y"a" Y//T://
u T T u/}’///'f'”
I Uyra ~
UY// GT UY/I GT

The left and the right quadrangle commute by construction.
The upper and the lower quadrangle commute by definition of a”.
Since G is full by (P 2), we may choose v : Ux» — Uy» in A with vG = 'y, - 0" - (uy,) .

Since a : GT" — GT" is a transformation, we conclude that the outer quadrangle
(UX//GT”, UX//GT”, Uy// GT”, Uy// GT”) commutes.
Hence the inner quadrangle (X"T", X"T" . Y"T",Y"T") commutes :

X"q" - U//Tw _ ( )— ~Uxna - u/}/{//jw . U”T”
( )" Uxna - (W - 0" - (ull)) )T -, T
(US/(//T//)_ . (Ug(// . 'U,/ . (Ug////)_)T” . UY//(Z . Ug////j:w
( )_ . (ug{// . U” . (u,{///)_)Tﬂ UY//T// Y,/a”
(ug(”T//) uXNT// . //T// . Y//a//
//T// Y// "

We show that Ga” = a. Suppose given X € Ob(.A). We have to show XGa” = Xa.

By construction of a”, we have the following commutative quadrangle.

UxaGT" 2% Uy GT”
u’)’(GT”iz llu’)’(GT”
XGT" X4 XGT”
Since G is full by (P 2), we may choose a morphism Uxg — X in A with
(UxaG S XG) = (UxeG 2% x@) .
Since a : GT" — GT" is a transformation, the following quadrangle commutes.
UxaGT" 2% Uy o GT”
uGT" = T”l Z\LUI;{GTH = uGT"

XGT" XGT"
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This proves the required equation :

XGad" = (u%cT")” -Uxga- u’)’mT”
= (uGT")~ -Uxga - uGT"
= Xa.

This proves the claim.

Ad G* dense. Suppose given T € Ob(Kern(F,T)). Le. T is an additive functor A L T such
that F'T" is a zero functor.

First, suppose given a morphism X Iy ¥ in A such that fG =0. By (P4), we may choose a

commutative triangle

Z'F

in A, for some Z' € Ob(A’). Application of T yields the commutative triangle

XT T YT

Z'FT

in 7. Since F'T maps every object to a zero object, this shows that f1" = 0.
|
We have to show that there exists 7" € Ob(A”, T) such that 7"G* ~ T'. L.e. we have to show
" !
that there exists an additive functor A” —— T such that GT"” ~ T.

Suppose given X" T v in A", We set out to construct the image of this morphism under 7"
in 7.

We have the following commutative quadrangle.

72 "

Uxen f”'(uy//)_

UxnG Uy G
u/)/(// i? E\Lul{///
X// f// Y//

Since G is full by (P 2), we may choose Uxn o Uy~ in A such that
’Uf//G = Ul),(n : f// . (u'{/,,)_ .

We let

” ven'T
(X" YT = (UxnT == UyaT) .
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We have to show the following assertions.

(i) 7" is a functor from A" to T.
(ii) We have GT" ~T.
(iii) 7 is additive.

Ad (i). Suppose given X” € Ob(A"). We have to show that id x»7T" - idxnpn .

We have idx»T" = viq,, T by construction. Moreover, we have viq ., G = v’y - idx» - (ux,)” =
idy,,¢ = idy,,G . So (vid,, —idy,, )G = 0. Hence, by what was remarked above, we obtain
(UidX// — idUX,,)T =0. So

idX”TH = UidXHT = idUX//IT = idUXNT = id)(”T” .

Suppose given X" Iyn & 77 in A", We have to show that g = (f"-g"T".
We have the following diagram.

Uf”g”G
UX//G a UleG UZ//G
vy vnG
u,),(// \L? Ziu/{/// Ziu,Z///
X f” Y g" A
g

Since its lower triangle and its quadrangles commute, we conclude that its upper triangle
commutes. So we obtain

’Uf//_g//G = ’Uf//G . ’Ug//G = (’Uf// . Ug//)G s
i.e. (Vprgr — v - vy )G = 0. Hence, by what was remarked above, (vgr.gr — v - vy )T = 0. So

f//T//_g//T// — Uf//T‘Ug//T — (Uf// ‘Ug//)T — Uf”-g'/T — (f"~g")T”.

Ad (ii). Suppose given X € Ob(A).

Consider the isomorphism v% : UxgG — XG in A”. Since G is full by (P 2), we may choose
a morphism wy : Uxg — X such that wxG = v’y . Again since G is full, we may choose a
morphism Wy : X — Uxg such that wxG = v/~

Recall that XGT" = UxqT.

Let
Xy = wxT : UxgT = XGT" — XT .

Let
X¢ = wxT : XT — UxgT = XGT".
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Then
~ : " " - :
(wx -0y —idyy, )G = uxe-tye —idugee = 0
~, 1 " - " 1
(’LUX'U)X —ldx)G = Uxqg 'UXG_ldXG = 0.

Hence, as remarked above, we also have

0 (WX : 'ZI)X — ideg)T = X(,D . Xga — idXGT”
0 = (QIJX'U)X—idx)T = X@XQD—IdXT
So X is an isomorphism.

It remains to show that ¢ := (X¢)xcob(a) is a transformation from GT” to T. Suppose given

a morphism X Iy v in A. We have to show that Xo- [T = fGT" - Y. Le. we have to show
that

(wX-f—vfG-wy)T =0.
As remarked above, it suffices to show that

!

(wx - f—ve-wy)G = 0.
In fact, we obtain

and

(via-wy)G = vieG-wyG = uxg - fG- (uyq) -uyq = txg- fG,

which is the same.

Ad (iii). We want to show that 7" is additive. Suppose given f”, ¢" : X” — Y"” in A”. By
Lemma 50, it suffices to show that

( f// + g//)T// ; f//T// 4 g"T”.

I.e. we have to show that '
Uf”-i—g”T = Uf//T + Ug//T .

Since T' is additive, this amounts to showing that

(Uf//+g// — (/Uf// + ’Ug//))T = O .

As remarked above, it suffices to show that

!

(0gragr — (0g0 +0))C £ 0.
Since G is additive, this amounts to showing that
Vg G = vpr G+ vy G
In fact,
VG = - (4 6") - (W)™ = s 7 ()™ + g (W)™ = 0G0 G

]
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Lemma 91. Suppose given a pure short exact sequence
A R A G A"

in AddCat.
Suppose given an additive category T .

We have induced functors

(T @)

(T, A’) Tr — (T, A) —= (T, A"
We have a full additive subcategory Kern(T,G) C (T, A).

We obtain a functor
(T,F) ‘Kern(T,G)

(T, A" Kern(T,G) .

This functor is an equivalence.

Proof. First, we have to show that (7, F) maps each object 7" of (7,.A’) to an object of
Kern(7,G). In fact, T" is mapped to T'F, and since (T"F)(T,G) = T'FG is a zero functor by
Remarks 85.(2) and 65, the functor 7"F' is an object of Kern(7, G).

So the additive functor F, := (T, F)|¥en(T:) . (T, A) — Kern(T, G) exists; cf. Remark 58.(1).
We have to show that it is faithful, full and dense.

Ad F, faithful. Suppose given T, T € Ob(T, A’) and a morphism 7" f—l> T'. So T" and T" are
additive functors from 7T to A’, and a’ is a transformation from 7" to 7".

Suppose that a'F, = 0. We have to show that d’ 20 Te. given U € Ob(T), we have to show
that Ua’ = 0.

We have 0 = a'F, = ¢’F. Hence Ud'F = 0 : UT'F — UT'F. By (P1), F is faithful. Hence
Ud = 0.

Ad F, full. Suppose given T", T" € Ob(T, A’) and a morphism T'F, % T:F* So T" and T"
are additive functors from 7 to A’, and a is a transformation from T'F to T'F.

We need to find a transformation 7" a—/> T' with o' F,=dF L a.

Suppose given U € Ob(7T). We have Ua : UT'F — INJT’F. By (P1), F is full and faithful.
Hence there exists a unique morphism Ua’ : UT" — UT" such that Ud'F = Ua.

It suffices to show that (Ua')yeon(r) is a transformation from 7" to 7",

Suppose given a morphism U <% V in 7. Since a is a transformation, we have the following
commutative quadrangle.

UrT'F Ye=Udr_ g

gT’Fl l gT'F

v F Ye=VdF vy
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Since F'is faithful by (P 1), we obtain the following commutative quadrangle.

ur Y T

gT ’l igT"

VT VT

Ad F, dense. Suppose given T' € Ob(Kern(7,G)). Le. T is an additive functor from 7 to A
such that T'G is a zero functor.

We have to construct an additive functor 77 : T — A’ such that T'F, = T'F ~ T.
Given U € Ob(T), the object (UT)G is zero. So by (P 3) we may choose UT" € Ob(.A’) and
an isomorphism UT'F 2% UT:; cf. Definition 82.

Suppose given U 2 V in 7. We have the composite Ub - ¢T - Vb~ : UT'F — VT'F. Since
F is full and faithful by (P 1), there exists a unique morphism ¢7" : UT" — VT’ such that
gT'"F =Ub- gT - Vb~ . So we have the following commutative quadrangle.

gT'F

ur'F Iy
Ubil ZJ/Vb
ur — .y

We have to show the following assertions.

(i) T" is a functor.
(ii)) We have T'F ~ T
(iii) 77 is additive.
Ad (i). Suppose given U € Ob(T). We have the following commutative quadrangle.

Ur'F YT g

Ubil ZlUb

Uur Uur

idyT=idyr
—_—

Hence idyT'F = Ub - idyr - Ub~ = idypp = idy F. Since, by (P 1), F is faithful, we obtain
idUT/ = idUT’ .
Suppose given U % V "W in T. We have the following commutative diagram.

ur'F Ly p ME g

Ubll Z\LVb I\LWb
T

uor 4= .yr "M _wr

Hence (¢T" - hT')F = ¢T'F - RT'F = Ub- T - Vb~ - Vb-hT - Wb~ = Ub- gT - hT - Wb~ =
Ub-(g-h)T-Wb~ = (g-h)T'F. Since, by (P 1), F is faithful, we obtain ¢7" - hT" = (g - h)T".
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Ad (ii). By the commutative quadrangle above, b := (Ub)ycon(r) is an isotransformation from
T'F toT. Hence T'"F ~ T.

Ad (iii). We want to show that 7" is additive. Suppose given g, g : U — V in T. By Lemma 50,
it suffices to show that '
(g+9T" = gT"+g1".
Since F' is faithful by (P 1), it suffices to show that
. ! .
(9+9T'F = (gT"+ gI")F .

In fact,
(g+gT'F = Ub-(g+g)T-Vb~
= Ub-(¢gT+gT)- Vb~
Ub-gT'- Vb= +Ub-gT - Vb~
gT"F + gT'F
(9gT" + gT")F .

2.11.4 Pure monofunctors

2.11.4.1 Characterisation of pure monofunctors

Suppose given A’ Ly Ain AddCat.

Remark 92. The functor F is a pure monofunctor if and only if the following proper-
ties (PM 1,2) hold.

(PM 1) The functor F is full and faithful.
(PM2) The full additive subcategory A'F of A is closed under retracts.

Proof. Suppose that F' satisfies properties (PM 1,2). By (PM2), we may form the sequence
A DA AJAF

cf. Definition 76, Lemma 77. We have to show that it is pure short exact.

Now (P 1) follows by (PM1). Moreover, (P2) follows by Definition 76; cf. Lemma 77.(2).
Finally, (P 3,4) follow by Lemma 77.(1); cf. Definition 82.

Conversely, suppose that F'is a pure monofunctor. So we have a pure short exact sequence
ey Ay
We have to show properties (PM 1,2) for F.

Property (PM 1) follows by (P 1).
Property (PM 2) holds by Remark 85.(1); cf. Definition 82. O
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Lemma 93. Suppose given a diagram in AddCat as follows.

A A

o

B-¢.B
Suppose that U' and U are equivalences.
Suppose that U'G' ~ F'U.
Then A 25 Ais a pure monofunctor if and only if B’ Y Bisa pure monofunctor.
In particular, this applies if U' =id g and U =idy4 .

Proof.

Suppose that A’ L A . We have to show that B <5 Bis a pure monofunctor. We may verify
conditions (PM 1, 2) from Remark 92.

Ad (PM1). Since F’ is full and faithful, we conclude by Lemma 88.(1,2) that G’ is full and
faithful.

Ad (PM2). Since A'F" C A is closed under retracts, we conclude by Lemma 88.(4) that
B'G' C B is closed under retracts.

This shows that B’ . B.

Conversely, suppose that B’ < B. We have to show that A’ 2 A is a pure monofunctor.
We choose V' : B — A’ such that U'V' ~idy and V'U’ ~ idg .

We choose V' : B — A such that UV ~id4 and VU ~idg.

Then V'F'U ~V'U'G' ~ G' ~ G'VU, whence V'F' ~ G'V since U is full and faithful.

Now the argument above applies, so that we may conclude that A’ By

A E g

4

B_-%.B

2.11.4.2 Properties of pure monofunctors

Lemma 94. Suppose given composable pure monofunctors A e~ B and B-5~C in AddCat.

Then we have the pure monofunctor Alic.

Proof. We have to show (PM 1,2) for F'G; cf. Remark 92
Ad (PM1). Since F' and G are full and faithful, so is F'G.



91

Ad (PM 2). We have to show that the full image A(F'G) C C is closed under retracts.

Suppose given Z € Ob(A(FG)). Suppose given a retract W € Ob(C) of Z. We have to show
!

that W € Ob(A(FG)).

Since Z € Ob(A(FG)), we may choose an object X € ODb(A) and an isomorphism
w: XFG = Z in C.

We may choose morphisms W = Z S W in C such that ¢- ¢ = idyy .
Since Z € Ob(BG), we may conclude that W € Ob(BG) since G satisfies (PM 2).
So we may choose an object Y € Ob(B) and an isomorphism v : YG = W in C.

Altogether, we have the following commutative diagram.

XFG
o)
veu / Z\
YG—==W .
ldW
idya
In fact, we have (veu™) - (udv™) = vedv™ = vv~ =idyg.

Since G is full and faithful by (PM1), there exist unique morphisms b : ¥ — XF and
b : XF — Y in B such that bG = vcu™ and 0'G = uc'v™.

Then (b-bV')G = bG - b'G = idyg = idyG . Since G is faithful by (PM 1), we obtain b- b = idy .

XF

Hence Y is a retract of X F. We may conclude that Y € Ob(AF) since F satisfies (PM2). So
we may choose an object X € Ob(A) and an isomorphism r : XF = Y in B.

Altogether, we have the isomorphism 7G - v : XFG 5 W. Therefore, W € Ob(A(FG)). O

Lemma 95. Suppose given a diagram A 5 B S ¢ in AddCat.
Suppose that FG and G are pure monofunctors.

Then F' is a pure monofunctor.

Proof. Ad (PM1). Suppose given X, X’ € Ob(A). We have the following commutative
triangle of maps.
B(XFa X,F)

A(X, X T (XFG,X'FG)
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Since G' and F'G are pure monofunctors, they are full and faithful. Hence the maps Gxrx'r
and (FG)x x are bijective. Hence, the map Fx x is bijective.

Therefore, F' is full and faithful.
Ad (PM 2). Suppose given a commutative triangle in B as follows, where X € Ob(A).

We have to show that Y é Ob(AF).

Application of G yields the following commutative triangle in C.

YG idve YG

k VG

XFG

Since F'G is a pure monofunctor, AFG is closed under retracts in C. We conclude that

YG € Ob(AFG). So we may choose X € Ob(A) such that YG ~ X FG.

Since G is a pure monofunctor, it is full and faithful. We conclude that Y ~ XF. Therefore,
Y € Ob(AF). m

2.11.5 Pure epifunctors

2.11.5.1 Characterisation of pure epifunctors

Remark 96. Suppose given A S A" in AddCat.
Then G is a pure epifunctor if and only if the following properties (PE 1,2) hold.

(PE1) The functor G is full and dense.

(PE2) Suppose given a morphism X = X in A such that uG = 0. Then there exist
7 € Ob(Kern(Q)) and morphisms X = Z % X in A such that a - & = u.

Proof. Suppose that G is a pure epifunctor. Then (PE 1) holds by Definition 84, property (P 2).
Moreover, (PE 2) holds by Definition 84, properties (P4, 3).

Now suppose that G satisfies (PE1,2). We have to show that G is a pure epifunctor. Consider
the sequence

Kern(G) & A4 S A"
cf. Definition 79.

It suffices to show that this sequence is a pure short exact sequence in AddCat. We have to
show properties (P 1-4) from Definition 84.

Ad (P 1). The inclusion functor I of the full subcategory Kern(G) is full and faithful.
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Ad (P2). The functor G is full and dense by (PE1).

Ad (P 3). We have Kern(G)I = Kern(G), using that Kern(G) is closed under retracts and thus
under isomorphy; cf. Definition 82, Remark 80.

Ad (P4). Suppose given a morphism X - Y in A such that uG = 0. Then there exists

7 € Ob(Kern(@)) and morphisms X % Z 2 Y such that a-b = u by (PE2). Moreover,
Z = Z1. So (P4) holds. O

Lemma 97. Suppose given a diagram in AddCat as follows.

AL
17T
B
Suppose that U and U" are equivalences.
Suppose that UG" ~ F"U".
Then A X5 A" is a pure epifunctor if and only if B B s a pure epifunctor.
In particular, this applies if U =id4 and U” = id 4~ .

~

Proof. We choose an isotransformation m” : F"U" — UG".

Suppose that A T A" . We have to show that B %5 B is a pure epifunctor. We may verify
conditions (PE 1, 2) from Remark 96.

Ad (PE1). Since F” is full and dense, we conclude by Lemma 88.(1,3) that G” is full and
dense.

Ad (PE2). Suppose given a morphism Y 2 ¥ in B such that bG” = 0. We have to show that
there exists Y’ € Ob(Kern(G”)) and morphisms Y 2y ¥ 2, ¥ such that by - by = b.

Using that U is dense, we choose X, X € Ob(A) and isomorphisms XU = Y and XU % Y.

Then s-b-5 : XU — XU. Since U is full and faithful, there exists a unique X — X with
alU =s5-b-5.

We have
aUG" = (s- b-§*)G” = sG" G- 5G =0

We have a commutative quadrangle by naturality of m” as follows.

XF'U" 22 XUG"

aFH U/l i laUG/l

XF//U// Xm” XUG//

We conclude that a F"U"” = 0.

Since U” is full and faithful, Remarks 52 and 51 give the following isomorphism of abelian
groups.

Ull ~
XF!" XF!

e (XF”, XF”) 5 (XF”U”, XF//U//)
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Hence aF" = 0.

By (PE?2) for AL , we may choose X’ € Ob(Kern(F")) and a commutative triangle in

A as follows. i
a4 X
X/

Application of U yields the following diagram in B.

X

Y b Y
STZ 12
XU au XU

MX\\ a2U
X'U

Hence
b = s -(s-b-§7)-§

= s -aU-3

= (s -aU) - (axU-35).

So letting Y’ := X'U € Ob(B), by := s~ - ;U and by := axU - 5, we get the factorisation
b= by - by over Y'. Moreover, Y'G" = X'UG" ~ X'F"U", which is zero since X'F" is.

G//
Hence B —+=B".

Conversely, suppose that B L B . We have to show that A 25 A" is a pure epifunctor.
We choose V' : B — A such that UV ~idy4 and VU ~idg.

We choose V" : B” — A" such that U"V" ~id4» and V"U" ~ idg» .

Then VF'U" ~VUG" ~ G" ~ G"V"U", whence VF" ~ G"V" since U" is full and faithful.

Now the argument above applies, so that we may conclude that A Ly Uy

AL g

o e

B @ B

2.11.5.2 Properties of pure epifunctors

Lemma 98. Suppose given composable pure epifunctors AX~B and B-$~C in AddCat.

Then we have the pure epifunctor A ¢
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Proof. We use Remark 96.
Ad (PE1). Since F' and G are full and dense, so is F'G.
Ad (PE?2). Suppose given X = X’ in A such that uFG = 0.

We have to show that there exists a commutative triangle

in A such that X”FG is a zero object in C.

Since G satisfies (PE2) and since (uF)G = 0, we may choose a commutative triangle

XF ull X'F

N

YI/

in B such that Y”G is a zero object in C.

Since F is dense, we may choose X/ € Ob(A) and an isomorphism b : X/F = Y”. So we
obtain the following commutative triangle.

XF ul X'F |

XI'F

Since F is full, we may choose X 2 X7 %% X’ in A such that ayF =b-b~ and a/F =b - V.

So we have
X v X',
X7

where X/ FG is isomorphic to Y”G, hence a zero object, and where uF = (b-b7) - (b- V) =
a1 F-a)F = (a,-a})F.

Since F satisfies (PE2) and (v — ay - a})F RSy F — (ay - a})F = 0, we may choose an object

XY € Ob(A) such that XJF is a zero object in B and a commutative triangle

u—ay-a)

N

"
X 2

So u = ay - a} + ay - aj,. Hence we have a commutative triangle

X “ X'

/
a.
X{@xy \
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in A; cf. Lemma 42.
Now X/ F' is a zero object. Thus X} FG is a zero object; cf. Definition 46.

So (X7 & X)) FG e~ X{FG @& XJFG is a zero object; cf. Example 23, Lemma 30.(2).

Letting a := (a1a2), X" := X{ ® X and a’' := (Z}), we get a commutative triangle
2

u X/
\X// /

in A such that X”F'G is a zero object in C, as required. H

X

Lemma 99. Suppose given a diagram A 5 B S ¢ in AddCat.
Suppose that F' and FG are pure epifunctors.

Then G is a pure epifunctor.

Proof. Ad (PE1). We have to show that G is dense. Suppose given Z € Ob(C). Since F'G is
dense, we may choose X € Ob(A) with XFG ~ Z. Hence Z € Ob(BG). So G is dense.

We have to show that G is full. Suppose given Y, Y’ € Ob(B). We have to show that the map

Y,y/

s,V 2 vay'a)

is surjective.

Since F'is a pure epifunctor, it is dense. So we may choose X, X’ € Ob(.A) and isomorphisms
w: XF 5 Y and v : X'F = Y'. We have the following commutative triangle of maps.

B(XF7 X,F)
A(X, X)) T o(XFG, X'FG)

Since F'G is a pure epifunctor, it is full. Hence the map (FG)x x is surjective. Thus the map
Gxrx'F s surjective.

We have the following bijection.

S(XEXF) 5 u(v,v)
f = u -f-u
u-g-u" g
In fact,
f=u -f-u = u-u ueuT o= f
and
g—= u-g-u = u cu-g-u U =g
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xXF-1oxF
ull Ilu’
Y 7 Y’
We have the following bijection.
o XFG.X'FG) & (vG,Y'G)
f o w G fdG
uG-g-u"G g
In fact,
fr=uG f-dGw— uG - uG-f UG WG =f
and

g— uG-g-uv G~ uGuG-g-uG UG = g.

XFG -1 Xx'Fa
uGl? Ziu’G
YG Y'G

g

We have the following commutative quadrangle of maps.

s(XF,X'F)—= s(Y,Y")

GXF,X’F\L lGY,Y’

((XFG,X'FG) 2~ o(YG,Y'G)

In fact, given f € g(XF,X'F), we obtain ((f)a)Gyy = (u - f-u)G =u G- fG-4/G and
(/) Gxrxr)B=(fG)f=u"G- fG-u'G, which is the same.

Since G'xr x'r is surjective and since a and 3 are bijective, we conclude that Gy y- is surjective.

Therefore, G is full.

Ad (PE2). Suppose given Y 2 Y" in B such that bG = 0.

We have to show that there exists ¥ € Ob(B) such that Y'G is a zero object and such that
there exists a commutative triangle in B as follows.

b Y/
N
Y

Since F' is a pure epifunctor, it is dense. So we may choose X, X’ € Ob(A) and isomorphisms
w: XFSYandu : X'FSY'.

Y

Since F' is full, we may choose a : X — X’ such that aF = w-b-u'~. This yields the following
commutative quadrangle.

XF aF =ubu'" X'F

J )

Y Y’
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Then aFG = (u-b-u'")G =uG -bG -uv'~G = 0. Since FG is a pure epifunctor, we may choose
X € Ob(A) such that X FG is a zero object and a commutative triangle in A as follows.

X = X'

Applying F', we obtain a commutative diagram in B as follows.

Y b Y’

uTZ ?Tu’
XF al” X'F
N
XF

Letting Y := X F, the object YG = XFG is zero. Moreover, letting

by = u - F : Y > XF=Y

and
by == aF-u Y =XF =Y,

we obtain by - by = u~ - a1 F - asF - u' = u” -aF -u' = b. lLe. we have obtained the required

commutative triangle as follows.
b v/
N
Y

Y

2.11.6 Stability under isomorphisms

Corollary 100.

(1) Suppose given a pure short exact sequence A’ T AT A7 in AddCat.
Suppose given A’ oA A7 i AddCat.
Suppose that F' ~ F' and F" ~ F".

Fv Fv/
Then we also have the pure short exact sequence A’ —e= A —= A" .

(2) Suppose given a pure monofunctor A’ LA in AddCat.
Suppose given A’ i,>A in AddCat.
Suppose that F' ~ F.

Then we also have the pure monofunctor A’ A
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(3) Suppose given a pure epifunctor AL A" in AddCat.
Suppose given A o A" in AddCat.
Suppose that F" ~ F".

Then we also have the pure epifunctor AL A

Proof.

Ad (1). This follows from Lemma 89, letting U’ = idy, U =id4 and U” = id 4~ .

Ad (2). This follows from Lemma 93, letting U’ = idy and U =id 4.

Ad (3). This follows from Lemma 97, letting U = id4 and U” = id 4~ . ]

2.11.7 Two composable pure monofunctors

Lemma 101. Suppose given additive categories A, B, C, U, V, W.

Suppose given pure short exact sequences A BEu and ALECEV and
B-S-c W,
We may choose an additive functor U LV such that RP ~ GS. This condition determines P
up to isomorphy.

We may choose an additive functor V W such that SQ ~T. This condition determines ()
up to isomorphy.

Q
Then we have the pure short exact sequence U Ly W
u—,
v
B S

So we have a pure monofunctor F' and a pure monofunctor G, which compose to a pure mono-
functor F'G ; cf. Lemma 94.

. FG , S . :
Proof. Since A—=C —=YV is a pure short exact sequence, F'GS is a zero functor. Hence we

may choose an additive functor U L5V such that RP ~ GS. This condition determines P up
to isomorphy. Cf. Lemma 90.

We choose an isotransformation RP — GS.

. G . .
Since B—e>C —~W is a pure short exact sequence, GT is a zero functor. Hence also F'GT
maps each object to a zero object, i.e. FFGT is a zero functor. Thus we may choose an additive
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functor V % W such that S ~ T. This condition determines ) up to isomorphy. Cf.
Lemma 90.

We choose an isotransformation SQ — 7.

We have to show that U 5V S Wis a pure short exact sequence; cf. Definition 84. We may
verify conditions (P 1, 2, 3a, 3b, 4) from Remark 86.

Ad (P 1). We show that P is full. Suppose given X, X’ € Ob(U). Suppose given a morphism
v: XP — X'P. We have to show that v is in the image of Px x.

Since R is a pure epifunctor, we may choose objects X X' € Ob(B) and isomorphisms
XRL Xand X'RL X' So fP-v-(f'P)~ : XRP — X'RP. So
(Xm)™ - fP-v-(f'P)”-X'm : XGS — X'GS .

Since S is a pure epifunctor, S is full. Since G is a pure monofunctor, G is full. So G'S' is full.
Hence we may choose b: X — X' such that

bGS = (Xm)™ - fP-v-(f'P)"-X'm.

We have the following commutative quadrangle.

XRP—2" > XGS
bRPJ/ ibGS
X'RP 27> X'GS

So we get A A
(fP)~-Xm-bGS - (X'm)~ - f'P
(fP)” -bRP - X'm - (X'm)~ - f'P

= (fP)"-bRP-f'P
(f7-bR- )P

We show that P is faithful. Suppose given X, X’ € Ob(U). We have the group morphism

WX, X)X L(XP,X'P)
u = uP;

cf. Remark 51. We have to show that it is injective. So we have to show that its kernel is zero.
Suppose given u : X — X’ in U such that uP = 0. We have to show that u 0.

Since R is a pure epifunctor, we may choose objects X, X' € Ob(B) and isomorphisms
)A(RA%) X and X'R %)X’. So f-u-f~ : XR — X'R. Since R is full, we may choose
@: X — X' such that uR= f-u- f'~.

We have the following commutative quadrangle.

XRP—2" > XGS

ﬁRP\L iﬁGS

X'RP "> X'GS
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We obtain . .
(uG)S = (Xm)~ -aRP-X'm

(Xm)= - fP-uP-(f'P)”-X'm
= 0.

Since AA—FOG»CA TV isa pure short exact sequence, by (P4) there exists a factorisation of
uG : XG — X'G over an object ZFG for some Z € Ob(A). Le. we may choose morphisms

XG5 ZFG S X'G in C such that ¢ - ¢ = aG.
Since G is a pure monofunctor, it is full and faithful. Since G is full, we may choose morphisms

X 2 zF % X in B such that bG = ¢ and G = ¢. So (b-V)G =bG-VG =c-d =uG. Since
G is faithful, we obtain b - b = 4.

Hence bR - V'R = (b- V)R = uR. Moreover, bR - b'R factors over ZF R, which is a zero object

since A —e=BX>U is a pure short exact sequence. So R = bR - V'R = 0. We conclude that
u= f"-auR-f =0.
Ad (P2). We show that @ is full. Suppose given Y, Y’ € Ob(V) and w: Y@Q — Y’'Q. We have

to show that w is in the image of Qyy .

Since S is a pure epifunctor, we may choose objects Y, V' € Ob(C) and isomorphisms YsS % Y
and Y'S f7/> Y’

We obtain the following commutative diagram.

YQ = Y'Q
fQTz le/Q
YSQ Y'SQ
s Jin

YT Y'T

(Yn)~ - fQ-w-(f'Q)~-Y'n

Since T is full, we may choose ¢ : ¥ — Y’ such that ¢T" = (f/n)* fQ-w- (f'Q)” -Y'n. So we
obtain the following commutative diagram.

YQ w Y'Q
fQTZ ?Tf’Q
VSO €5 V'S0
f’nlz ?l?’n

YT - VT

Hence w = (fQ)” - ¢SQ - f'Q = (f~ - ¢S - )Q.

We show that ) is dense. Suppose given Z € Ob(W)A. Since T is dense, we may choose an
object Z € Ob(C) such that ZT ~ Z. Then (ZS5)Q ~ ZT ~ Z.
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Ad (P 3a). We show that PQ is a zero functor. Suppose given X € Ob(U). We have to show
that X P(@ is a zero object.

Since R is a pure epifunctor, there we may choose an object X € Ob(B) such that XR~X.
Now XPQ ~ XRPQ ~ XGSQ ~ XGT ~ 0 since B-S-C W is a pure short exact

sequence.
Ad (P 3b). We show that U P is closed under retracts in V. Suppose given X € Ob(U). Suppose
given Y € Ob(V) and morphisms Y = X P Y'Y in V such that v/ = idy . We have to show
that Y is in Ob(UP), i.e. that there exists an object X’ € Ob(U) such that X'P ~ Y.

Since S is a pure epifunctor, we may choose an object Y e Ob(C) and an isomorphism VS Ly.

Since R is a pure epifunctor, we may choose an object X e Ob(B) and an isomorphism
XrL x.

So
v ST gpp PV v
So A A
yg LuURTXms vng GmTIPveT oo

Since S is a pure epifunctor, S is full. So we may choose morphisms V% XG5V in € such
that 0S =g-v- (fP)” - Xmand v/'S = (Xm)~ - fP-v" -g.

We obtain

(idy —0-0)S = idyS—(0-0)S
= idgg—05-70'S
= idypg—(g-v-(fP)~ - Xm)- (Xm)~ - fP-2' -g7)
= idyg—(g-v-v-g7)
= idyg—(g-idy - ¢g7)
= ddyg —idyy
= ();

cf. Remark 51.

Since A—F-Cicqlv is a pure short exact sequence, by (P4) we obtain a factorisation
of idy — 0 - 0" over Z'FG for some object Z' € Ob(A). lLe. we may choose morphisms
Y & Z/FG 5 Y such that z - 2/ = idy —0-7. Soidy = z-2'4+0-7. Le. we have the
following commutative triangle.

- idy
Y LS Y

o~ 0

2FGo XG

Since Z'FG @ X@ is isomorphic to (Z'F & X)G by Lemma 67.(2), Y is a retract of an object
in BG.

Since B S.c HT—>WA is a pure short exact sequence, we conclude that Y ~ XG for some
X eOb(B). SoY ~YS ~XGS ~ (XR)P. Le. we have used X' := XR € Ob(U).
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Ad (P 4). Suppose given Y = Y’ in V such that vQ = 0. We have to show that v factors over
an object in UP.

Since S is a pure epifunctor, we may choose objects Y,V € Ob(C) and isomorphisms YsS é Y
and Y'S f7> Y’

So VS L 78, Since S is a pure epifunctor, S is full. Therefore, we may choose v Sy
in C such that oS = f-v- f'~.

We have the following commutative quadrangle.

vsQ "% vis0
f/nil Zifﬂn
9 7/
YT pon Y'T
We obtain
oT 'n)~ - 05Q - Y'n

) (fro fQ Y
JQ Q- (f'Q)™-Y'n

3

Il
o /S /S /S
S
~—
|

. G . N 5 5
Since B-$>=C —=W is a pure short exact sequence, v factors over XG for some X € Ob(B).

Le. we may choose morphisms Y 2 XG 2 V' such that o= 3 - 7.

So
v = f7-08-f
— f(EAS-f
= f.35.7S.¢f
= f7-25-(Xm)”-Xm-ZS.f,
which factors over (X R)P. O

2.11.8 Two composable pure epifunctors

Lemma 102. Suppose given additive categories A, B, C, U, V, W.

Suppose given pure short exact sequences U ALY B and VA C and
wW-e-BS-c.
We may choose an additive functor U 5.V such that SJ ~ I. This condition determines S up

to isomorphy.

We may choose an additive functor V L W such that TK ~ JF. This condition determines
T up to isomorphy.
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Then we have the pure short exact sequence U v iw.,

W

T B
N
A i C
FG

So we have a pure epifunctor I’ and a pure epifunctor G, which compose to a pure epifunctor F'G;
cf. Lemma 98.

Proof. Since U S AL-Bisa pure short exact sequence, I'F' is a zero functor, i.e. it maps
each object to a zero object. Since G is additive, also I(F'G) is a zero functor; cf. Definition 46.

. G : o
Since V —4> A Y ¢ isa pure short exact sequence, we may choose an additive functor ENY
such that SJ ~ I'. This condition determines S up to isomorphy. Cf. Lemma 91.

We choose an isotransformation S.J — 1.

Since V- A0 is a pure short exact sequence, (JF)G is a zero functor. Since

G . .
WsBS-C isa pure short exact sequence, we may choose an additive functor V Low
such that T'K = JF'. This condition determines 7" up to isomorphy. Cf. Lemma 91.

We choose an isotransformation TK — JF.

We have to show that i >V 5 Wis a pure short exact sequence; cf. Definition 84. We may
verify conditions (P 1, 2, 3a, 3b, 4) from Remark 86.

Ad (P1). We have to show that S is full and faithful.
Suppose given X, X’ € Ob(U). We have to show that the group morphism

Sy x/
Z/{(XaX/) & V(XS>X,S)
o= f5
is an isomorphism of abelian groups; cf. Remark 51.
Since [ is full and faithful, we have the following group isomorphism.
1 ’
u(X, X') 25 A(XI,X'T)
o= I

Since J is full and faithful, we have the following group isomorphism.

W(XS, X'S) ZEXS (XS, X'S.T)

~

g = gJ
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We have the group isomorphism

AXTX'T) = 4(XSJ,X'SJ)
h — Xn-h-(X'n)",
with inverse B
AXIX'T) < A(XSJ,X'SJ)
(Xn)”-k-X'n <~ k.
Cf. Lemma 38.(3).

It remains to show that the following quadrangle of abelian groups commutes.

S ’
u(X, X") —5 (XS, X'S)
IX,X’\LI ZJ/JXS,X’S

AXT X'T) —= 4(XSJ, X'SJ)
In fact, for f € (X, X’), we obtain

flxxec = (fl)c
= Xn-fI-(X'n)”
= fSJ-X'n-(X'n)"
= fSJ

= fSxxJIxsx's

because of the following commutative quadrangle.

XSJ 2o XT

o s

xX'sJ X xr

We conclude that Sx x is a group isomorphism, as was to be shown.

Ad (P2). We have to show that T is full. Suppose given Y, Y’ € Ob(V). Suppose given
a morphism YT % Y'T in W. We have to find a morphism from Y to Y’ that maps to w
under T'.

(Ym)™ -wK-Y'm

We have YTK “& Y'TK in B. So we have YJF s Y'JF in B.

Since J and F are full, so is JF. Hence we may choose a morphism Y — Y such that
vJF = (Ym)” -wK - -Y'm.
We have the following commutative quadrangle.

YTK X"y JF

vTKl iUJF

YVTK Y™ vy JF
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Hence
VIK = Ym-vJF-(Y'm)” = Ym-(Ym)” -wK-Y'm)- (Y'm)” = wK .
Since K is faithful, we obtain vT' = w : YT — Y'T.

We have to show that 7" is dense. Suppose given Z € Ob(W). We have to show that there
exists an object Y € Ob(V) such that YT ~ Z. Since K is full and faithful, it suffices to show
that YTK ~ ZK.

Since F'is dense, we may choose X € Ob(A) such that XF ~ ZK. Then XFG ~ ZKG, which

is a zero object since W oBSec s pure short exact. So X € Ob(Kern(FG)). By (P 3),
we conclude that X € Ob(V.J). Hence there exists Y € Ob(V) such that Y'J ~ X. Altogether,
we obtain YT'K ~YJF ~ XF ~ ZK.

Ad (P 3a). We have to show that ST is a zero functor. Since K is full and faithful, it suffices
to show that STK is a zero functor; cf. Remark 66.(2).

In fact, STK ~ SJF ~ IF, which is a zero functor since U e AX-B isa pure short exact
sequence.

Ad (P 3b). We have to show that ¢S is closed under retracts in V.
Suppose given X € Ob(U), Y € Ob(V) and a commutative triangle

!
in V. We have to show that Y € Ob(US).

We have the commutative triangle

YJ v YJ

k v'J

XSJ
in A. Since XSJ ~ X1, the object Y'J is a retract of X 1.

Since U —o> .AHF—> B is a pure short exact sequence, U1 is closed under retracts in A. Hence
YJ € Ob(UI). We choose X € Ob(U) with XI ~ Y J.

Now YJ ~ XI ~ XSJ. Since J is full and faithful, we obtain that ¥ ~ XS, whence
Y € Ob(US).

Ad (P 4). Suppose given Y = Y’ in V such that vT = 0. We have to show that v factors over
an object in US.

We have the following commutative quadrangle.

YTK X"y JF

vTKl iUJF

YVTK Y™ vy JF
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We obtain
(w)F = (Ym)” - vTK-Y'm = 0;

cf. Remark 51.

. I F . : .
Since U —= A —+= B is a pure short exact sequence, we may choose a commutative triangle

YJ vt Y'J
a(}% 4&/
XSJ

in A. Since J is full, we find morphisms Y % XS such that .J = - (Xn)~ and XS 2y
such that ¢'J = Xn -d'.
Now (v -0 )J =0J -9'J =a-(Xn)”-Xn-d =a-a = vJ. Since J is faithful, we obtain

0 -0 =w, i.e. the commutative triangle

Y - Y’

N

2.11.9 Completion to a 3x3-diagram

Lemma 103. Suppose given the following diagram in AddCat.

A//
5N
A B//
X /S/
B
B’ C
\< y
C/
Suppose that US ~ RU". Suppose that V'K ~ JV.

Suppose that B’ BB isa pure short exact sequence.
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U 1% :
Suppose that A—e=B—+=C is a pure short exact sequence.

(1) Suppose given a pure short exact sequence A’ e AZ A" with R as in the diagram.

There exists an additive functor A Yo B such that U'J ~ TU. This condition deter-
mines U’ up to isomorphy.

Then we have the pure short exact sequence A’ Ll

(2) Suppose given a pure short exact sequence A” LB Ye e with U as in the diagram.

There exists an additive functor C—5C" such that VT ~ SV". This condition deter-
maines T up to isomorphy.

Then we have the pure short exact sequence C' A R

(3) There exists a diagram in AddCat as follows, in which IU ~U'J and VT ~ SV".

A//
RN
A B
Al B C//
B C
\< 5/
C/

Moreover, A’ A A , A o= A , e e , A" oY are
pure short exact sequences.
Proof.
Ad (1). To show that we may choose an additive functor U’ such that
UJ ~ 1U,
we have to show that (IU)S is a zero functor; cf. Lemma 91. However, since IUS ~ IRU",
this follows from (I, R) being a pure short exact sequence; cf. (P 3) in Definition 84.
Again by Lemma 91, the condition that U’'J ~ IU determines U’ up to isomorphy.

Since [ and U are pure monofunctors, so is IU ; cf. Lemma 94. Since IU ~ U'J, sois U'J ; cf.
Corollary 100.(2). Since U'J and J are pure monofunctors, we conclude by Lemma 95 that U’
is a pure monofunctor.

To show that A/ & B Y5 B is a pure short exact sequence, we may verify conditions
(P1, 2, 3a, 3b, 4) from Remark 86.
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1). The functor U’ is full and faithful by (PM1).
2). The functor V' is full and dense by (PE1).
P 3b). The full additive subcategory A'U’ of B’ is closed under retracts by (PM 1) for U’.

Ad (P3a). We have UV'K ~ U'JV ~ [UV. Since UV is a zero functor, so is IUV and
thus U'V'K. Since K is full and faithful by (PM1), it follows that U’V is a zero functor; cf.
Remark 66.(2).

Ad (P
Ad (P
Ad (

Ad (P4). Suppose given Y’ Y V7 in B’ such that 'V’ = 0. We have to show the existence of
a commutative triangle as follows, for some X’ € Ob(A").

Y’ Y Y’

X'U'

By (PE2) for V’, we may choose Y € Ob(Kern(V")) and a commutative triangle as follows.

Y’ Y %

N

Y5

It suffices to show that Y e Ob(A'U").

Since Yy V"’ is zero, so is YyV'K ~ (Y J)V.

Since (U, V') is pure short exact, we may choose X € Ob(A) such that XU ~ Y J; cf. (P 3).
So XRU" ~ XUS ~ Y;JS, which is zero since (.J, S) is pure short exact; cf. (P 3).

Since U” is full and faithful by (PM 1), we conclude that X R is zero; cf. Remark 66.(1).

Since (I, R) is pure short exact, we conclude by (P 3) that we may choose X’ € Ob(A") such
that X'I ~ X.

So YyJ ~ XU ~ X'IU ~ X'U'J. Since J is full and faithful by (PM1), we conclude that
Yy ~ X'U’. Hence Yj € Ob(A'T").

Ad (2). To show that we may choose an additive functor 7" such that
VT ~ SV,
we have to show that U(SV") is a zero functor; cf. Lemma 90. However, since USV" ~ RU"V",
this follows from (U”, V") being a pure short exact sequence; cf. (P 3) in Definition 84.
Again by Lemma 90, the condition that V'T" ~ SV” determines T up to isomorphy.

Since S and V" are pure epifunctors, so is SV”; c¢f. Lemma 98. Since VT ~ SV” sois VT,
cf. Corollary 100.(3). Since VT and V are pure epifunctors, we conclude by Lemma 99 that T
is a pure epifunctor.

We choose an isotransformation m : VT = SV”.

We choose an isotransformation n : RU” = US.
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We choose an isotransformation p : JV = V'K.

To show that ¢’ &5 ¢ 5 ¢ is a pure short exact sequence, we may verify conditions
(P1, 2, 3a, 3b, 4) from Remark 86.

Ad (P1). The functor K is full and faithful by (PM1).
Ad (P2). The functor T is full and dense by (PE1).

Ad (P 3a). We have to show that KT is a zero functor. Suppose given Z' € Ob(C’). We have
to show that Z'K'T is a zero object.

Since V' is dense by (PE1), we may choose Y € Ob(B’) with Y'V’ ~ Z'. Then
Z'KT ~ Y'V'KT ~ Y'JVT ~ Y'JSV",
which is a zero object since JS is a zero functor.
Ad (P 3b). The full additive subcategory C'K C C is closed under retracts by (PM2) for K.
Ad (P 4). Suppose given Z < Z in C such that ¢I’' = 0. We have to find a commutative triangle

z\\\<ﬁ///z
7K
with Z/ € Ob(C').

Since V is dense by (P2), we may choose Y, Y € Ob(B) and isomorphisms YV Jy 7 and
YV % ZinC.
Since V is full, we may choose Y 2 Y with bV = f-c-f~. So the following quadrangle

commutes.

vV Yo vy

%z RV

7 ——=7
We apply T to obtain the following commutative quadrangle.

Yyvr YL yyr
lez llfT
77— . 717

Since ¢I' = 0, we conclude that bV'T'= 0. We have a commutative quadrangle as follows.

YyvTr YL yvyr
Ym| Zl?m
y Sy ¥V vy

Hence (bS)V"” = 0. Since (U”, V") is pure short exact, (P 4) gives a commutative triangle in 5"

as follows, where X” € Ob(A").
YS = YS

X// U//
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By (PE1), R is dense. Hence we may choose X € Ob(A) and an isomorphism XR = X"
11’1 A//

Since S is full, we may choose Y Yy XU and XU % Y such that the following diagram
commutes.

YS bs VS
\ }
\ by by
X//U//
Z \La//— U//
bls sz
XRU"
Zan

XUS

Hence (b — by - by)S = bS — b1S - bS = 0. Since (J,.5) is pure short exact, (P4) gives a
commutative triangle in B as follows, where Y’ € Ob(B’).

b—b1~b2 g

So b =0by by + b3 - by. Hence bV = b1V - byV 4+ b3V - b,V ; cf. Lemma 50.(2).

Now YV Y% xUv 2Y% YV, Since XUV is a zero object, we conclude that b,V - bV = 0.

Hence bV = b3V - b,V. We obtain the following commutative diagram.

Z ¢ Z
sz ZT f
YV v YV

b3V byV
Y'JV
EJ/YIP
Y'V'K

So we may let Z’ := Y'V’ and obtain the factorisation ¢ = (f~ - b3V - Y'p) - (Y'p~ - b,V - f)
over Z'K.

Ad (3). Since A A s a pure epifunctor, we may choose a pure short exact sequence

A o= AT A : cf. Definition 84.

. U// .
S1nce .A” 4»8” is a pure monofunctor, we may choose a pure short exact sequence

A" B” C" ; cf. Definition 84.
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The assertion now follows from (1) and (2).



Chapter 3

Provisional notion of an
exact 2-category

We subsume the properties of AddCat found in §2.11 under a notion of a provisional exact
2-category, in the style of the notion of an exact category; cf. [3, §2, first def.]; cf. also [1,
Ex. 3.11].

Definition 104. Suppose given a 2-category K.

Suppose given a set B of diagrams of the form A’ iy Ry R, consisting of objects
and 1-morphisms.

Its elements are called pure short eract sequences.

A 1-morphism Ao A in & s called a pure 1-monomorphism if there exists a pure short

G
exact sequence of the form A’ =iy Ny
To state that A’ —= A is a pure l-monomorphism, we write A’ A

A 1-morphism A — A" in R is called a pure 1-epimorphism if there exists a pure short exact

sequence of the form A’ oAl ar,

G . . : . G
To state that A — A" is a pure l-epimorphism, we write A —+= A" .

The 2-category R, together with the set of diagrams ‘B, is called a provisional exact 2-category,
provided the following properties (PEx 1-7) hold.

(PEx1) (1) Given A, B € Ob(R), the category (A, B) is additive.

(2) Given l-morphisms A’ 5 Aand BS B’, the functor (A, B) EISIEN s(A B is
additive.

(3) There exists a zero object in &; cf. Definition 11.

113
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(PEx2) Suppose given a diagram in K as follows.

A A g

o) ol e

B L}Bi”)lg//
Suppose that U’, U and U” are 1-isomorphisms; cf. Definition 6.
Suppose that UG ~ F'3U and USG" ~ F"$U".

Then the sequence A’ iy iy A pure short exact if and only if the sequence

G/ G// .
B —= B — B" is pure short exact.

(PEx3) Suppose given a pure short exact sequence in £ as follows.
A/ LA%A//
(1) Then F $G is a zero 1-morphism; cf. Definition 12.
(2) Suppose given T € Ob(R).
We have induced functors

&(T,F) A(T.6),
s

&(T, A (T, A) == (T, A"

We have a full additive subcategory Kern(g(7,G)) C (7, .A).
We obtain a functor

R(T F)‘Kern( R«(T,G))

AT, A) — » Kern(s(7,G)) .

This functor is an equivalence.
(3) Suppose given T € Ob(RK).
We have induced functors

&(E\T) :(G T)

a(ALT) f(AT) «—— &(A"T)

We have a full additive subcategory Kern(g(F,T)) C (A, T).

We obtain a functor

« (G’T”Kern( /(FT))

ﬁ(A//, 7-)

> Kern(g(F, 7)) .
This functor is an equivalence.

(PEx4) (1) Suppose given C—+=D and D-~& in &

Then C iﬁi E.



(PEx5)

(2)

(1)
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Suppose given C oD and D E-€ in &

R
Then € %€ .

. F R FG , S
Suppose given pure short exact sequences A —e=B —+=U and A—=C —+=)V and
B-S-C—H~W in &
By (PEx3.3), we may choose a 1-morphism U Ly V such that RP ~ GS. This
condition determines P up to isomorphy.

By (PEx3.3), we may choose a 1-morphism V “ W such that SQ ~ T. This
condition determines () up to isomorphy.

Q
Then we have the pure short exact sequence U v iw.

U
}/
B
>N
S
A e C % %
>\/é
W

Suppose given pure short exact sequences U A B and V= AT ¢ and
W-e=B-5-C.

By (PEx 3.2), we may choose a 1-morphism U 5 V such that S.J ~ I. This condition
determines S up to isomorphy.

By (PEx3.2), we may choose a 1-morphism V L W such that TK ~ JF. This
condition determines 7" up to isomorphy.

P

s
Then we have the pure short exact sequence U —e=V Tow.

%Y
\<
r B
o

\<
Y oA A C
FG
RN
U

(PEx6) (1) Suppose given 1-morphisms C Lp5e.

]
Suppose that G and F'*x G are pure 1-monomorphisms.

Then F is a pure 1-monomorphism.
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(2) Suppose given 1-morphisms C LD % ¢

Suppose that F and F ﬁG are pure l-epimorphisms.
Then G is a pure 1-epimorphism.

(PEx7) Suppose given the following diagram in AddCat.

Suppose that US ~ RU”. Suppose that V'K ~ JV.
Suppose that B’ BB isa pure short exact sequence.

Suppose that A < B X» C is a pure short exact sequence.

Then there exists a diagram in K as follows, in which we require IU ~ U'J and VT ~ SV".

A//
A B’

Al B C//
B C
\< V

Cl

/ U’ / 4 / !/ I R " / K T " " u” /! v "
Moreover, A'—=B —+=(C', A - A—+=A", C'—=C—+(C", A" —=B"—+=C" are
required to be pure short exact sequences.

Remark 105.

(1) Asto (PEx1) in Defintion 104, one might additionally require direct sums of pairs of objects
in R in a suitable sense.

(2) Also of interest would be a notion of exact 2-functors and of exact 2-transformations. What
about modifications?
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(3) Do abelian categories, with localisation sequences being pure short exact, form an exact
2-category? Same question for triangulated categories with localisation sequences and with
recollement sequences.

(4) Putting C’ to be zero in (PEx 7), we obtain a diagram as in (PEx5). There might be further
connections.

Remark 106. The 2-category
AddCat

together with pure short exact sequences, is a provisional exact 2-category.

Cf. Definitions 68, 84, 104.

Proof.

Ad (PEx1).

Ad (PEx1.1). See Remark 72.(1).
Ad (PEx1.2). See Remark 73.
Ad (PEx1.3). See Remark 70.

Ad (PEx2). See Lemma 89.

Ad (PEx3).

Ad (PEx3.1). See Remark 71 and Remark 86, (P 3a).
Ad (PEx3.2). See Lemma 91.

Ad (PEx3.3). See Lemma 90.

Ad (PEx4).
Ad (PEx4.1). See Lemma 94.
Ad (PEx4.2). See Lemma 98.

Ad (PEx5).
Ad (PEx5.1). See Lemma 101.
Ad (PEx5.2). See Lemma 102.

Ad (PEx6).
Ad (PEx6.1). See Lemma 95.
Ad (PEx6.2). See Lemma 99.

Ad (PEx 7). See Lemma 103.(3). O
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Zusammenfassung

Additive Kategorien und additive Funktoren

Eine additive Kategorie A ist eine Kategorie mit Nullobjekt, in welcher jedes Paar von Objekten
eine direkte Summe besitzt. Damit erhalt man eine assoziative und kommutative Addition auf
der Menge der Morphismen (X, X’) zwischen festen Objekten X und X’. Wir verlangen fir

jede Identitat die Existenz eines additiv Inversen, indem wir den Isomorphismus (ﬁ; idOX)
fordern fiir X € Ob(A).

Infolgedessen ist in einer additiven Kategorie A die Menge der Morphismen 4(X, X’) eine
abelsche Gruppe. Komposition ist distributiv beziiglich der Addition.

Fiir additive Kategorien A4 und B heifit ein Funktor F' : A — B additiv, falls er Nullobjekte
auf Nullobjekte abbildet und kompatibel ist mit direkten Summen von Paaren von Objekten
von A.

Aquivalent hierzu ist ein Funktor additiv, falls er Addition von Morphismen respektiert.

Rein kurz exakte Sequenzen

Seien A’, A und A” additive Kategorien.

Seien A’ & A & A” additive Funktoren.

Das volle Bild von F' ist die volle additive Teilkategorie Im(F') C A mit

Ob(Im(F)) = {X € Ob(A) : X ~ X'F fiir ein X' € Ob(A") } .

Der Kern von G ist die volle additive Teilkategorie Kern(G) C A mit

Ob(Kern(G)) = {X € Ob(A) : XG ist ein Nullobjekt in A" } .
Die Sequenz A’ ©5 A S A" heiBt rein kurz exakt, falls (P 1-4) gelten.

(P1) Der Funktor F ist voll und treu.

(P2) Der Funktor G ist voll und dicht.

(P3) Esist Im(F) = Kern(G).

(P4) Sei X % X ein Morphismus in A mit uG = 0. Dann gibt es ein Z’ € Ob(A’) und

Morphismen X % Z'F %4 X mita-a=u.

Ein Funktor A <> A heiBt reiner Monofunktor, falls es eine rein kurz exakte Sequenz

AL A8 A gibt. Um F als reinen Monofunktor zu kennzeichnen, schreiben wir oft A’ Al

Ein Funktor A < A" heiBt reiner Epifunktor, falls es eine rein kurz exakte Sequenz

AL A8 A gibt. Um G als reinen Epifunktor zu kennzeichnen, schreiben wir oft A Goar
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Zum Beispiel haben wir fiir eine additive Kategorie A und eine volle additive Teilkategorie
N C A, die unter Retrakten abgeschlossen ist, die rein kurz exakte Sequenz

N LAl N,
in welcher I den Inklusionsfunktor und R den Restklassenfunktor bezeichnet.

Eigenschaften rein kurz exakter Sequenzen

Wir stellen Eigenschaften kurz exakter Sequenzen zusammen.

Universelle Figenschaften.

. g F G . :
Sei A’ — A = A” eine rein kurz exakte Sequenz.

(1) Der Funktor F' hat die universelle Eigenschaft des Kerns von G, bis auf Isomorphie von
Funktoren.

(2) Der Funktor G hat die universelle Eigenschaft des Cokerns von F', bis auf Isomorphie von
Funktoren.

Kompositionseigenschaften.

Seien A, B und C additive Kategorien. Seien
AL BS ¢
additive Funktoren.

(1) Sei G ein reiner Monofunktor.

Dann ist F' genau dann ein reiner Monofunktor, wenn F'G ein reiner Monofunktor ist.

(2) Sei F ein reiner Epifunktor.

Dann ist G genau dann ein reiner Epifunktor, wenn F'G ein reiner Epifunktor ist.

Noethersche Figenschaften.

(1) Sei folgendes Diagramm additiver Kategorien und additiver Funktoren gegeben.

u
R
v
N
A e C
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Seien darin A e B HR; U und A & C HS—> VY und B <. C . W rein kurz exakt.

. . Q . .
Dann erhalten wir eine rein kurz exakte Sequenz U VLW , die folgendes Diagram
bis auf Isomorphie kommutativ macht.

U
R
v
F G
A
e C—F+——=YV

M

4%

A

(2) Sei folgendes Diagramm additiver Kategorien und additiver Funktoren gegeben.

Seien darin W e B £ C und V - A ii C und U . A j—> B rein kurz exakt.

Dann erhalten wir eine rein kurz exakte Sequenz U Ly w , die folgendes Diagram
bis auf Isomorphie kommutativ macht.

WK
Y
F G
Y : A/FG\C
N
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3 x 3-Eigenschaft.

Sei folgendes Diagramm additiver Kategorien und additiver Funktoren gegeben, welches bis auf

Isomorphie kommutativ sei.
A//
R U
A / \ B
N
B
N
B’ C
Vi K
\\ o /
: : U v . J S
Seien darin A —e=B —+=C und B’ —«= B —+=B" rein kurz exakt.

Dann gibt es rein kurz exakte Sequenzen AL Y0 und A = AE- A und

C’ 49C 4o und A" BB Y C" , die folgendes Diagramm bis auf Isomorphie kommu-

s
K
S

R
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