Basic Representation Theory

of Crossed Modules

Master’s Thesis

Monika Truong
Universitat Stuttgart

Oktober 2018






Contents

Introduction

0 Conventions
0.1 Sets . . . . e
0.2 Categories and functors . . . . . . . ... oL
0.3 Functors and transformations . . . . . . . . . ...

0.4 Crossed modules . . . . . . .. .
1 Crossed modules and crossed categories

2 Crossed modules and invertible monoidal categories
2.1 Monoidal categories . . . . . . . ...
2.2 Monoidal functors . . . . . . ..o
2.3 Monoidal transformations . . . . ... ..o
2.4 The functors Cat and CM . . . . . . . .. ...

2.5 An example for a monoidal transformation: a homotopy . . ... ... ...

3 The symmetric crossed module on a category
3.1 Definition of the symmetric crossed module on a category . . . . . . . . . ..

3.2 Inner automorphisms of a category . . . . . .. ..o L

[ BN S S W



11

3.3 An example for a symmetric crossed module . . . . .. ... ..
3.4 Action of a crossed module on a category . . . . . . ... .. ..
3.5 The Cayley embedding . . . . . . ... ... ... ... ...

3.5.1 Mapping into a symmetric crossed module . . . . . . ..

3.5.2  Comparison with Cayley for G/Mf . ... .. ... ..

R-linear categories

4.1 Definition of an R-linear category . . . . . . .. . .. ... ...
4.2  R-linear functors . . . . . . .. ... .

4.3 Monoidal R-linear categories . . . . . . . .. .. ... ... ...

Endg(M) and Aut$™ (M) of an R-linear category M

5.1 The monoidal R-linear category Endg(M) . . . . . ... .. ..
5.2 The crossed module AutS™(M) . . . ..o

The operations L = (—)R and U

6.1 Theoperation L= (—)R . . . ... ... ... ... .. .....
6.2 The construction U . . . . . . . . ...

6.3 The relation between L and U
The isomorphism between Autp(M) and (Aut$"(M))Cat

Modules over a monoidal R-linear category

8.1 A-modules, A-linear functors and A-linear transformations

81.1 A-modules. . . . ... ... ...
8.1.2  A-inear functors . . . . . ... ... L.
8.1.3 A-linear transformations . . . . . . ... ... ... ...
8.2 The monoidal R-linear category End4(A) . . .. ... ... ..

8.3 Representations of a crossed module V- . . . . . .. ... ...

CONTENTS



CONTENTS

8.3.1 The monoidal R-linear category (VCat)R . . ... ... ... .....
8.3.2 Representations of V' and modules over (VCat)R . . ... ... ...

8.3.3 Permutation modules . . . .

9 Maschke: a first step

9.1 Prefunctors . . .. ... ... ...

9.2 A first step towards Maschke . . . .

A Calculation of a Cayley embedding

A.1 An example of a crossed module V'

A.2 Preparations for the symmetric crossed module Sycae - . - . . . . . .. L.

A.3 Monoidal autofunctors of VCat . .

A.4 Monoidal isotransformations of VCat . . . . . . . . . ... ... ... ..

A5 The group Gyeag - - -+« o o o ..
A.6 The group Mycat . - . . . . . ...

A.7 The group morphism fycai: Mycat = Gvoat -« -« v« v v v v v o e

A.8 The group action Yycat: Gycas = AutMycat) « « - - - v o o o o oo

A.9 The crossed module Sy, , isomorphically replaced . . . . . . ... ... ..

A.10 The Cayley embedding . . . . . . .

A.10.1 The group morphism pC1ey
A.10.2 The group morphism A%y

161
161
164

173
173
174
176
177
178
180
181
184
190
191
191
192

11



v

CONTENTS



Introduction

Crossed modules

A crossed module V' = (M, G, f) consists of groups M and G, an action v: G — Aut (M),
g — (m — mY) and a group morphism f: M — G that satisfies

(m9)f = (mf)? and m"=m"

form,n € M and g € G.
We write V' :=ker f and Vmy := G/M f.

Appearance of crossed modules in general

Groups appear as follows. Each object in each category has an automorphism group.

Similarly, crossed modules appear as follows. Each object in each 2-category has an auto-
morphism crossed module.

As starting point, we take the automorphism crossed module of an object of the 2-category
of categories, i.e. the automorphism crossed module of a category X', called the symmetric
crossed module Sy on X '; cf. Lemma 48. ()

'Here, ‘symmetric’ is not used in the sense of ‘braided’.
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Crossed modules and topology

The category of groups is equivalent to the homotopy category of CW-spaces for which
only the first homotopy group is allowed to be nontrivial. Similarly, the category of crossed
modules has a homotopy category which is equivalent to the category of CW-spaces for
which only the first and the second homotopy group are allowed to be nontrivial.

To achieve this, J.H.C. Whitehead attached to a CW-complex with 1-skeleton A and
2-skeleton X a crossed module (M , G, f), where M is the second relative homotopy
group of the pair (X, A) and where G is the first homotopy group of A; cf. [4, §2.2, p. 41],
[16, Thm. 2.4.8].

Crossed modules and invertible monoidal categories

A monoidal category is a category C together with a unit object I and an associative tensor
product (®) on the objects Ob(C) and on the morphisms Mor(C). This is to be understood in
a strict sense; cf. Definition 12. Note that a monoidal category can be viewed as a 2-category
with a single object.

An invertible monoidal category C is a monoidal category in which the objects and the
morphisms are invertible with respect to the tensor product (®).

To a crossed module we may attach an invertible monoidal category via the construction
Cat; cf. Definition 21, Lemma 39. Conversely, to an invertible monoidal category we may
attach a crossed module via the construction CM; cf. Lemma 42.

Therefore, a crossed module is essentially the same as an invertible monoidal category; cf.
Proposition 43.

This correspondence is due to Brown and Spencer [5, Thm. 1], who state that it has been
independently discovered beforehand, but not published by Verdier and Duskin.

vi



Cayley for crossed modules

For each category X, we have a symmetric crossed module Sy = (MX, Gy, Yx,fx ), where
G consists of the autofunctors of X and where My consists of the isotransformations from
the identity idy to some autofunctor of X ; cf. Lemma 48.

In particular, for a crossed module V', we obtain a symmetric crossed module Syc,. An
analogue to Cayley’s Theorem holds, namely that there is a canonical injective crossed mo-
dule morphism p{™'% from V to Syca: , for which both pS®' ¥, and pu®' ', are injective;
cf. §0.4 items 2, 4 and 6, Theorem 62.

For example, if V' is the crossed module with M = C, = (b), G = Cy = (a), bf = a and
b* = b, then we have

|M| :47 |G| :4, |V7T1| :27 |V7T0| =2.
For the symmetric crossed module Sy ¢, , we have
|Mycar | =64, |Gyca | =32, |Svcar | =4, | Svca ol = 2.

Cf. §A.9, §A.7.

R-linear extension and units

To each category C, we may attach its R-linear extension CR, which is an R-linear category.

For a monoidal category C, its R-linear extension CR is a monoidal R-linear category; cf. Lem-
ma 85.

For each monoidal category D we have the unit invertible monoidal category DU, whose
objects are the tensor invertible objects of D and whose morphisms are the tensor invertible
morphisms of D.

Let C be an invertible monoidal category. Let D be an R-linear monoidal category. We
have a bijective correspondence between monoidal R-linear functors from CR to D on the on
hand, and monoidal functors from C to DU on the other hand; cf. Lemma 95.

Vil
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Summary: Constructions for a crossed module V

VCat

v 4 &» invertible
crozsel <+——]| monoidal
modue CM category
1Cay1ey TR—linear extension (—)R
SVCat (VC&t)R
symmetric monoidal
crossed R-linear
module category

The functor Real

For an R-linear category M, we have the monoidal R-linear category Endz(M) whose
objects are the R-linear functors from M to M, and whose morphisms are the transfor-
mations between such functors. The tensor product on the objects is given by composition
of functors, and the tensor product on the morphisms is given by horizontal composition of
transformations; cf. Lemma 80.

Using the construction U, we obtain an invertible monoidal category

Autp(M) := (Endg(M))U C Endg(M).
On the other hand, we have the crossed submodule
At (M) = (M, Gl viu £ ) < S

where G, < G, is the subgroup consisting of the R-linear autofunctors of M and where
Mf/l < My, is the subgroup consisting of the isotransformations from the identity id s to
some R-linear autofunctor of A" ; cf. Lemma 81.

Using the construction Cat, we obtain an invertible monoidal category

(Autg*(M))Cat .

viil



It turns out that we have a monoidal isofunctor
Realy: (Auth"(M)) Cat — Autp(M);
cf. Theorem 99.

The entire situation concerning an R-linear category M can be depicted as follows.

Sm
symmetric
crossed module

M
. . Cat (Autz"(M)) Cat
Aut; " (M) } > | invertible monoidal
category
Lemma 98
ZlReal M, Theorem 99
(Autg(M)) CM ) | Autp(M) := (Endg(M)) U
crossed module CM | invertible monoidal category

End R (M )
monoidal R-linear
category

1X
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Modules and representations of crossed modules

Modules

(Classically, given an R-algebra A, an A-module can be given as an R-module M together
with an R-algebra morphism A — Endg(M). This action is usually written as an exterior
multiplication action, defining m - x for m € M and x € A.

Now suppose given a monoidal R-linear category A. An A-module is an R-linear category M
together with a monoidal R-linear functor A — Endg(M); cf. Definition 100. This action
is usually written as an exterior tensor product action, defining M ® X for M € Ob(M) and
X € Ob(A), and likewise for morphisms.

Given A-modules M and N, an R-linear functor F: M — N is called A-linear
if (M@ X)F=MF ®X for M € Ob(M) and X € Ob(A), and likewise for morphisms.

Representations

(Classically, given a group G and an R-module M, a representation of G on M is given by a
group morphism G — Autg(M).

It gives rise to an R-algebra morphism RG — Endg(M), and thus M becomes an
RG-module. Conversely, from an RG-algebra morphism RG — Endg(M) we can obtain
a representation G — Autgr(M) of G on M.

So a representation of G is essentially the same as an RG-module.

Now, let V' be a crossed module and let M be an R-linear category. A crossed module
morphism p: V' — AutS™ (M) is called a representation of V on M.

For a representation p: V — Aut$¥ (M), we can construct a monoidal R-linear functor
®,: (VCat)R — Endr(M). So M becomes a (V Cat) R-module; cf. Lemma 121. Conversely,
from a monoidal R-linear functor ®: (VCat)R — Endg(M), we can obtain a representation
po: V — AutSM(M) of V on M ; cf. Lemma 122.

So a representation of V' is essentially the same as a (V' Cat)R-module.



A first step towards Maschke

Let V = (M G, f) be a crossed module. We have the crossed module
V= (Mf, G,c,idG]Mf) ,

with ¢: G — Aut(Mf), g — (v — 29). We have a surjective crossed module morphism
V — V given as follows.

7™
M-——— Mf
fl lidG|Mf
G ™ G

This induces a monoidal R-linear functor F: (VCat)R — (V Cat)R.

From that, we obtain an R-linear functor ©p: (VCat)R — Endg ((V Cat)R) . So (V Cat)R
becomes a (VCat)R-module. Moreover, (VCat)R carries the structure as a regular
(V Cat) R-module.

Then F': (VCat)R — (VCat)R is a (V Cat)R-linear functor.

We want to investigate under which conditions on R the (VCat)R-linear functor F' is a
retraction. This question can be answered in a reasonable way if we extend the scope by
admitting prefunctors:

A prefunctor P from a category C to a category D is defined to be a pair of maps
(Ob(P),Mor(P)) with Ob(P) : Ob(C) — Ob(D) and Mor(P) : Mor(C') — Mor(D), where
Mor(P) is compatible with composition but not necessarily with identities; cf. Definition 127.
If C and D are (V' Cat) R-modules, then the notion of a (V Cat)R-linear prefunctor from C to

D is defined analogously to that of a (V Cat)R-linear functor, again omitting compatibility
with identities; cf. Definition 129.

Then the (V Cat)R-linear functor F' has a (V Cat)R-linear prefunctor P as a coretraction if
the order | ker f| is finite and invertible in R; cf. Proposition 135.

x1
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A dictionary

Classical case Case treated here Reference

X: set X: category §0.2, item 1
V' crossed module §0.4, item 1

G: group = e e e e e b
VCat: invertible monoidal category D21, R29
crossed module morphism §0.4, item 2
p: V=W

group morphism |

p:G—H
monoidal functor D31, L39.(1)
pCat: VCat — WCat

M: R-module M: R-linear category D65

A: R-algebra A: monoidal R-linear category D73

U(A): unit group AU unit invertible monoidal category Lol

of the R-algebra A of the monoidal R-linear category A
Sx: symmetric group Sx: symmetric crossed module on X L48
on X

a group morphism a crossed module morphism L55

Q: G—S X p: V —S X

defines a G-set X defines a strong V-crossed category X,

also called V-category X

xil



Classical case

Case treated here

Reference

the injective group morphism | the injective crossed module morphism | T62
gOZG—)SG in-)SVCat
given by Cayley’s Theorem which is also injective on 71y and 7
for groups
R-algebra morphism monoidal R-linear functor D74
oc: A— B F:A—-B
Endg(M): endomorphism Endg(M): endomorphism L80
R-algebra monoidal R-linear category
Aut$M(M): automorphism L81
crossed module
Autg(M): automorphism |
group
(AutFM(M)) Cat ~ (Endg(M)) U: T99
invertible monoidal category
an R-algebra morphism a monoidal R-linear functor D100
o: A— Endg(M) ¢: A — Endg(M)
defines an A-module defines an A-module
RG: R-algebra, (VCat)R: monoidal L85, R115

called group algebra
of G over R

R-linear category

xiil
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Classical case Case treated here Reference
a group morphism a crossed module morphism

@: G — Autg(M) p: V — Aut§M(M) D120, L121
defines a representation | defines a representation

of G on M, of V.on M,

which yields an which yields a (V Cat)R-module M

RG-module M

a G-set X yields a V-category X yields a P125

a permutation module | permutation module XR over (V Cat)R

RX over RG

Related approaches

Miemietz and Mazorchuk consider 2-representations, defined as 2-functors from a 2-category
to the 2-category of module categories over finite dimensional algebras over fields [12, §2.2].
The definition of a representation of a crossed modules used here in §8.3 essentially fits into
their framework, since a crossed module V' corresponds to a invertible monoidal category
VCat, which in turn can be seen as a 2-category with a single object. From this point of
view, a representation of V' is a 2-functor from V Cat to the 2-category of R-linear categories.

In contrast, Forrester-Barker defines a representation of a crossed module V' as a 2-functor
from from VCat to the 2-category of complexes of R-modules concentrated in positions 1
and 0 [7, Def. 2.4.1].

Similarly, Barrett and Mackaay define a representation of a crossed module to be a variant
of a 2-functor from VCat to a bicategory called 2-Vect, defined directly using matrices [2,
Def. 3.14, Def. 4.1.(a)].

Still another approach has been taken by Bantay, who defines a representation of a crossed
module (M, G, , f) to be a group representation of G on a complex vector space V', together
with an extra map from M to End¢(V') compatible with that action [1, §3]. This has been
pursued further by Maier and Schweigert [11] and by Dehghani and Davvaz [6, §6], who
develop a character theory in this context. Lebed and Wagemann interpret a representation

X1iv



in the sense of Bantay as a certain Yetter-Drinfel’d-module with respect to the group algebras
of M and G [9, Ex. 2.13]. An interpretation of a representation in this sense as a 2-functor
from V Cat to a suitable 2-category seems to be nonobvious.
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Chapter 0

Conventions

0.1 Sets

Let X,Y be sets.

1. In general, we write maps on the right, i.e. the map X Ly mapsr € X toxf €Y.

We make some exceptions for standard constructions, such as Ob, Mor, Aut, etc.

2. Suppose given a subset Z C Y. Let X v bea map.
We write f~(Z) :={x € X: xf € Z} for the preimage of Z under f.

0.2 Categories and functors
Let C, D and & be categories.

1. By a category C, we understand a small category (with respect to a given universe).
L.e. we stipulate that Ob(C) and Mor(C) are sets.
So a category is given by C = (Mor(C),Ob(C),(s,%,t), s ), where Mor(C) is the
set of morphisms, Ob(C) is the set of objects, s: Mor(C) — Ob(C) is the source
map, i: Ob(C) — Mor(C) is the map sending an object to its identity morphism,
t: Mor(C) — Ob(C) is the target map, and (a ) is the composition of morphisms.
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To use the symbol (a) for composition is somewhat unusual, but it serves to distinguish
composition and multiplication. Cf. e.g. Definition 2. The symbol (4 ) should remind of
a commutative diagram.

. By writing X Y — Z in C, we implicitly suppose given objects X, Y, Z € Ob(C)
and morphisms u, v € Mor(C) with us = X, ut =Y and vs =Y, vt = 7.

. A morphism (X —=Y) € Mor(C) is called isomorphism if there exists a morphism
v € Mor(C) such that uav =idx and vau = idy hold. Then we write v := v~ and we
call u~ the inverse of u.

. Let X, Y € Ob(C). We write ¢(X,Y) := {a € Mor(C) : as = X, at = Y} for the set
of morphisms from X to Y.
. A functor from C to D is given by F' := (Mor(F),Ob(F)) where
Ob(F): Ob(C) — Ob(D) and Mor(F): Mor(C) — Mor(D).

A functor is required to satisfy

us Ob(F) = uMor(F) s

ut Ob(F) = uMor(F) t

XiMor(F) =X Ob(F)1i
for u € Mor(C), X € Ob(C), and
(uav)Mor(F) =uMor(F) avMor(F) ,

for X Y 5 Zin C.
For X € Ob(C), we write XF := X Ob(F) € Ob(D). For u € Mor(C), we write
uF :=uMor(F) € Mor(D).

. Let F: C — D and G: D — & be a functors. We write (F' « G): C — & for the
composite of F' and G. If unambiguous, we sometimes write for short F'G := F x G .

. A functor F': C — D is called isofunctor from C to D if there exist a functor G: D — C
such that F'G = id¢; and GF = idp hold. Then we write F'~ := G.

If C = D then an isofunctor F': C — C is called an autofunctor.

. By Aut (C) :={C Lyc: Fisan autofunctor} we denote the set of autofunctors from
C to C. For F € Aut(C), we also write (C%C) = (CLC). The set Aut (C) is
actually a group; cf. Lemma 45.(1) below.



0.3. FUNCTORS AND TRANSFORMATIONS

9.

10.

11.

For F,G € Aut (C), we write F¢ := G~ FG.

Let F': C — D be a functor. Suppose given subcategories C' C C and D' C D . Suppose
given a functor F’: C’ — D’ such that the following diagram commutes.

F
C —D

|

C/ F/ > D/
Le., for X € Ob(C’) and u € Mor(C’), we have XF’ = X F and uF’ = uF'. Then we

WriteF?, =F.C =7D.

If C is a subcategory of D then we write Jep: C — D for the embedding functor from
C to D. We often abbreviate J := Jep: C = D.

0.3 Functors and transformations

Let C, D, &£, K be categories.

1.

We write [C, D] for the category of functors from C to D. The set of objects Ob([C, D))

of this category consists of the functors from C to D. The set of morphisms Mor([C, D])
consists of the transformations between such functors.

Let F,G € Ob([C,D]) be functors from C to D.

A transformation (F—»G) € Mor([C,D]) from F to G is a tuple of morphisms
Xa
(XF = XG) ycone

for (X —Y) € Mor(C).

with the property that the following diagram is commutative

XF 2% xa

o e

YF——Y@d
Ya
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Sometimes we write

X
X xr =% xq¢
Xa
a:(XF—>XG)X€Ob(C) =: lu — uF‘ ‘uG
Y YF — Y@
Ya

for the transformation a from F to G .

Recall that in fact such a transformation may be viewed as a functor from C to [Ay, D]
yielding F' on 0, and G on 1, respectively, where A; is the poset {0, 1}, regarded as a
category.

. For transformations (F— F') € Mor([C,D]) and (G—b>G’) € Mor([D, €]), their
horizontal composite is given by

X (axb) /
axb=(XFG—= XF G/)XeOb(C) = (aG) 4 (F'b) = (Fb) a (aG").

Note that for X € Ob(C), we have the following commutative diagram.

XFG XFD
N

X(ax*b)
™~
XF/ /

XF'D ¢

XFG

XaG XaG’

XF'G

Horizontal composition (x) is associative:

For (F - F') € Mor([C, D)), (G—=G') € Mox([D,&)), (H - H') € Mor([€,K)),
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we have
(a*xb)*xc=(a*xb)Ha(F'G)c
= (aGaF'b)H 4 (F'G')c
= (aGH) . (F'bH) (F'G'c)

— (aGH) .+ F'(bH 1 G'c)
=a(GH)+ F'(cx)
=ax(bxc)

F G H
SN TN /F
C a D b E c K
F’ G’ H’

4. We say that (F —G) € Mor([C,D]) is an isotransformation if Xa € Mor(C) is an
isomorphism for X € Ob(C).

5. For transformations (F —— F’), (F" N F") € Mor([C, D)), their vertical composite is
given by

(Xa)(Xb)

—%

asb:=(XF XF")

Xe0b(C)

Vertical composition (a) is associative:
Suppose given (E —— F), (FLG), (G- H) € Mor([C,D)).
For X € Ob(C), we have
X((aab)ac) = (X(aab))a(Xe) = ((Xa)a(Xb))a(Xc)=(Xa)a ((Xb)a(Xc))

= (XCL)A (X(bAC)) = X(CLA(bAC)) .
0.4 Crossed modules

1. Let G and M be groups. Let v: G — Aut(M) and f: M — G be group morphisms.
For m € M and g € G, we write m9 := m(g7).



CHAPTER 0. CONVENTIONS

Then V := (M,G,~, f) is a crossed module if the conditions (CM1) and (CM2) are
satisfied.
(CM1) For m € M and g € G, we have
(m?)f = (mf)?.

(CM2) For m, n € M, we have

m™ =m".

Cf. [15, Def. 5].
For an example of a crossed module, cf. §A.1.
2. Let V= (M, G, f) and W = (N, H, z, k) be crossed modules. Suppose given group
morphisms A: M — N and u: G — H.
Suppose that the following conditions (1) and (2) hold.

(1) We have
fAILL:)\Ak,

i.e. the following diagram is commutative.
A

M——N

f‘ k

GT’H

(2) For m € M and g € G, we have
(mI)A = (mA)9*.

Then p:= (A, u): V — W is a crossed module morphism; cf. [15, Def. 13].

3. The category having as objects crossed modules and as morphisms crossed module
morphisms is called the category of crossed modules, and is denoted by CR Mod .

A
(Asm)

For (V W AR x ) in CR Mod , their composite is given by

(/\7/1’)‘(5‘7:&) = ()“)‘7/~L‘/:L)'
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4. Let V = (.M,G,y7 f) and W = (N, H,B,k) be crossed modules. Let (A, p): V — W

be a crossed module morphism.

We say that (A, ) is injective if the group morphisms A\: M — N and p: G — H are
injective.

We say that (A, p) is surjective if the group morphisms A\: M — N and p: G — H are

surjective.

5. Let V = (M, G,”, f) be a crossed module. We have M f < G; cf. [15, Lemma 7.(2)].

We write V' :=ker f and Vg := G/Mf. We have the following exact sequence
of groups, where the morphism on the right hand side maps ¢ to g(MF).

f
Vi ¢ M G —— Vmy,

6. Let V = (M, G,*y,f) and W = (N, H, k,ﬁ) be crossed modules.

Suppose given a crossed module morphism p := (A, u): V. — W . We have the group
morphisms
priy: Vg — Wy, m— mA.

and
pry: Vg — Wy, g(M f) — gu(NE) .

So we have the following commutative diagram.

S
V7T1 ¢ M G VT[O
P A | [ H PTh
WT[l ¢ N 2 H WT[O
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Chapter 1

Crossed modules
and crossed categories

In [15, Def. 71], we have introduced the notion of a V-crossed category C, satisfying certain
properties (CC1) and (CC2), formalising the situation in which a crossed module V' acts on a
category C.

In Lemma 48 below, we will construct the symmetric crossed module S¢ on the category C.
Then we want to use a crossed module morphism V' — S¢ to formalise this situation.

But to obtain equivalent formalisations, it turned out that in [15, Def. 71], we missed a
property.

To remedy this, we introduce the notion of a strong V-crossed category C in Definition 2 below,
adding a property (CC3). Then we shall right away abbreviate the notion of a strong V-crossed
category to just a V-category.

The result will be that to have a V-category C is the same as to have a crossed module morphism
V — S¢ ; cf. Proposition 57 below.

Let V = (M, G, f) be a crossed module.

Recall that a V-crossed category defined as in [15, Def. 71] satisfy the properties (CC1) and
(CC2) for the composition of the morphisms ().
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Reminder 1 (V-crossed sets)
Using v: G — Aut(M), we have the semidirect product G x M ; cf. [15, Def. 56].

We have group morphisms

s: (GxM)—=G, (gym) — g,

i: (GXM)+~G, (g,1) <« g,

t: (GxM)—G, (gym) — g-mf.
Cf. [15, Lem. 58].

Recall that an V-crossed set [U, Wset = (U, W, (o, ¢, T)) consists of a G x M-set U, a G-set
W and maps

o U—=W
LU+~ W
- U—->W

that satisfy the properties (CS1) and (CS2).
(CS1) (i) to =idw
(ii) 7 =idw

)
)
(CS2) (i)
(ii)
)

(u-(g,m))o =uo-(g9,m)s YueU, (g,m)eGxM
ii (u )T:uT-(g,m)t Yue U, (g,m) € Gx M
(iii) (w - g)L =we- gi YweW, geG.

Cf. [15, Def. 59].

Definition 2 (Strong V-crossed category)

Let C = (Mor(C),0b(C),(s,i,t),(a)) be a category together with the structure of an
V-crossed set on

[Mor(C) , Ob(C)]set = (Mor(C),0b(C), (s,1,t)) .
We call C a strong V-crossed category or V-category if (CC1), (CC2) and (CC3) hold.

(CC1) For X-%Y -2 7ZinCand g € G, we have
(CLAb)(Q,l) - (a’(gu]-))‘(b (971))

10



(CC2) For X -V -2 Z in C and m € M, we have
(aab)-(1,m)=aa(b-(1,m)).

(CC3) For X - Y -2 Z in C and m € M, we have
(aab)- (m~f,m) = (a-(m”f,m))ab.

So (CC2) treats multiplication with elements of G x M in the kernel of s, whereas (CC3)
treats multiplication with elements of G x M in the kernel of ¢.
Remark 3 Let C be a Vecrossed category. Suppose given X — Y s ZinCandme M.
Then, (CC3) and (CC3’) are equivalent.

(CC3) (aab)-(m~f,m)=(a-(m f,m))ab

(CC3) (aab)-(1,m) = (a-(1,m))s (b- (mf,1))

Proof. Suppose given X Y s ZinCandme M.

We have
(@ab)-(m~f,m) = (a-(m~f,m))ab
& (aab)-(L,m™) = (a-(m”f,m)ad)-(mf,1)
(X (aab)-(1,m) = (a-(m~f,m)ad) - (mf,1)
(XY (aab)-(1,m) = (a-(1,m™))a(b-(mf,1))
CEY (aab)-(,m) = (a-(1,m))a (b (mf1)).

]

Remark 4 Consider the V-crossed category CV = (G X M,G,(s,i,t), a ) defined as in
[15, Rem. 73.(0)].

From now on we shall write
VCat:=CV = (G x M, G, (s,i,t),(.)) :
cf. Lemma 39 below.
The composition in the category V Cat is given by
(g,m)a(g-mf,m') = (g,mm’),

for gu> fMg (mm/)f in VCat.

11
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We shall revise the results of [15, §4.3] and verify that they remain valid in the context of
strong V-crossed categories.

Remark 5 Let W = (N, H. p, k) <V be a crossed submodule; cf. [15, Def. 17].

(1) Consider the V-crossed category

12

WAV = ((H x N)\(G x M), H\G, (5,4,%), » ) ;

cf. [15, Lem. 76].
Recall that the composition is given by

(Hx N)(g,m)a(H X N)(g-mf,m)=(Hx N)(g,mm), forge G,m,me M.

Recall that the action of G x M on (H x N)\(G x M) is given by
((H % N)(g,m)) - (g,m) := (H x N)(gg,m*m), for g,j € G,im,méeM,

and that the action of G on H\G is given by
(Hg)-g:=H(gg), forg,g€G.
The V-crossed category Wc\\V 18 a strong V-crossed category.
Consider the V-crossed category
VCat = (G x M,G,(s,i,t), a )

where the action of G x M on G x M 1is given by the right multiplication in G x M
and where the action of G on G is giwen by the right multiplication in G ;
cf. [15, Rem. 73.(1)].

The V-crossed category V Cat is a strong V-crossed category.

Consider the V-crossed category
VCat = (G X M,G,(s,i,t), a )

where the action of G x M on G X M 1is given by the conjugation of G x M on
G X M and where the action of G on G is given by the conjugation of G on G ;
cf. [15, Rem. 73.(2)].

The V-crossed category V Cat is a strong V-crossed category.



(4) Let C = (Mor(C),0b(C),(s,i,t), s ) be a strong V-crossed category, i.e. the cate-
gory C carries the structure of a strong V-crossed set on (Mor(C),Ob(C), (s, 1, t)); cf.
Definition 2. Suppose given x € Ob(C).

Consider the V-crossed category
xV = ((Il)(G X M), zG,(S,1,t), a ) <C,

also called the orbit of v under V'; cf. [15, Lem. 81].
The action of G x M on (xi)(G x M) is given by
((xl) . (g,m)) (g,m) == (xi) - (gg,mm), forg,g € G,m,m e M.
The action of G on xG is given by
(x-9)-g:=x-(39), forg.g€G.

The V-crossed category xV s a strong V-crossed category.

Proof. Ad (1). We have only to verify the property (CC3); cf. [15, Lem. 76].
Suppose given (H x N)(g,m), (H x N)(§,7) € Mor(Wc\\V> = (H % N) \(G x M) with

((H x M)(g,m))t = ((H x N)(g,m))s.
Then it follows that
Hg = ((Hx N)(g,m))s = ((Hx M)(g,m))t =H(g-mf).

So there exists some h € H such that

g=h-g-mf.
Therefore

(HxN)(g,m) (HxN)(g-mf,m)

So we have Hyg H(g-mf) H(g- (mmf)) in H \G.

Suppose given y € M.

Note that

((Hx N)(g,m)) - (yf,9) = (Hx N)(g-y~f.m* ) B (Hx N)(g -y~ f,ym),

13
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and that
((Hx N)(g-y foym))t=H(g-y f-(ym)f) = H(g-mf) = ((H x N)(g-mf,m))s.

So we have

This shows (CC3).

Ad (2). This follows from (1) with W = 1.

Ad (3). We only have to verify the property (CC3); cf. [15, Rem. 73.(2)].

Recall that conjugation in G x M is denoted by (%), i.e. for (g, m), (g, m) € G x M we write

Suppose given g M) g-mf m g-(mm)f in VCat and suppose given y € M .

Note that

(gm)*x (@ fy) = (why)-(gm)- (v f.y)
= (yf-g-y*f, ((y=)o-m)* f-y)
= (yf gy foy- ) om),

14



and that

(wf-g-y foy-(y )7 -m)t yf-g- (W )o)f-mf
zf-g-g= (" f)-g-mf
g-mf
(g : mfa Th)S .

a
i =l
=

So we have

((gm)* (= foy)alg-mfm) = (yf-g-y foy-(y ) -m)a(g-mf,m)
= (yf-g-y foy (y )2 -mm)

(wf-g-y foy- () -mm-y -y)
uf -9y f ((y)? - mim)” ! y)
(yf ’) (g,mm) - (y~ f,y)
((g;m)a(g-mf,m)) * (" f,x).

This shows (CC3).

Ad (4). We only have to verify the property (CC3); cf. [15, Lem. 81].

Suppose given (z1) - (g,m), (zi) - (g,m) € Mor(zV) = (zi)(G x M) with
((zi) - (g,m)) t = ((x) - (g.17))s .

Then it follows that

x-g (S s (g,m)s
S (@) (3.)) s
= ((zd) - (g.m))t
E pit (gm)t
= a(gom).

Sox=x-(g-mf-g).

Therefore, we have

15
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(z1)-(g,m)

So we have a:-g—>x.(g.mf)ﬁl)'(g—'mﬁm_)_>

z- (g (mm)f) inazV.
Suppose given y € M .
Note that

(i) (g,m)) - (v fry) = (i) - (g -y fom? o) =0 (i) - gy fry-m),

and that
(i) (g-y fry-m)t 2 wit-(g-yfry -m)t
EV gy foyfomf)
= x-(g-mf)
(Cil) ris - (g-mf,rh)s
(Cs2) ((zi) - (g-mf,m))s.
So we have
(@D (g.m) - (- £.9)) « (D) - (g 1)
= (zi)-(g-y foy-m-m)
(CM2) (zi) - (g-y~ f, (mm)y’f )
= ((zi)- (g, mm)) - (y~ f,y)
— (((@h)- (gem)) s (@) (g~ mf))) - (5 £.9).
This shows (CC3). =

Remark 6 In the proof of Remark 5.(4), there was no need to assume (CC3) for C. But in
[15, Lem. 81], (CS2) is used.

The assumptions on C made in Remark 5.(4) thus is not the most general possible. So the
assertion remains valid if C is assumed to be a only V-crossed category.

Remark 7 Let C be a strong V-crossed category.
Suppose given an V-crossed subcategory D < C.

Then, D s a strong V-crossed category.

Proof. We only have to verify the property (CC3); cf. [15, Rem. 75].

16



We have (Mor(D),0b(D), (s, i, t), 2 ) < (Mor(C),0b(C), (s,1,t), ).
So, for u,v € Mor(D) C Mor(C), and m € M, we have
(wav)(m™ fym) = (u-(m™f,m))av.
This shows (CC3). O

Reminder 8 (V-crossed category morphism)
Suppose given V-crossed categories

C = (Mor(C),0b(C), (5,1, t),a)

D = (Mor(D),0b(D), (s,1,£),(a)).
Suppose given maps (: Mor(C) — Mor(D) and n: Ob(C) — Ob(D).

We say that ((,n): C — D is a V-crossed category morphism if the properties (1-6) are
satisfied; cf. [15, Def. 64, 77].

1) We have sam=C_as : Mor(C) — Ob(D).

2) We have ia( =mnai: Ob(C) — Mor(D).

3) We have tan=(_at : Ob(C) — Mor(D).

4) For u € Mor(D), (g9,m) € G x M, we have (u-(g,m))¢=u(-(g9,m).
)
)

(
(
(
(
(5) For X € Ob(C), g € G, we have (X -g)n=Xn-g.
(

6) For X =Y 7 inC, we have (uav)¢ =ulav(.

In particular, (¢,n): C — D is a functor.

Given V-crossed categories C, D, £ and V-crossed category morphisms ((,7): C — D and
(', 7): D — &, welet

(Ca 77) A (Cla 77/> = (C A C,J 7a 7],) .
Definition 9 (The category of V-categories)

The category of strong V-crossed categories is the full subcategory of the category of V-crossed
categories having as objects the strong V-crossed categories.

The category of strong V-crossed categories is also called the category of V-categories.

17
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Proposition 10 (Orbit Lemma for strong V-crossed categories)
Let C be a strong V-crossed category. Suppose given w € Ob(C).

Let

Ne(w)={m e M: (wi)-(1,m) =wi} and Hc(w)={g€ G: w-g=w}.
Consider the centralizer Cy(w) = [Nc(w), Ho(w)] of w in V. Recall that Cy(w) <V is a
crossed submodule of V'; cf. [15, Lem. 69.(2)].

Consider the strong V-crossed category Cy (w) C\\V,' cf. Remark 5.(1). Consider the strong
V-crossed category wV ; cf. Remark 5.(4).

Then we have an isomorphism in the category of strong V-crossed categories given by

G o) \V  — wV

where
¢ (CG[XM(wi))\(GxM) — (wi)(G x M)

(CGKM(wi))(g,m) —  (wi) - (g, m)

and
n : Cgw)\G — wG

(Colw))g — w-g.
Proof. By [15, Prop. 82], ((,n) is a V-crossed category isomorphism. By Remark 5.(1,4),
Cy(w) \V and wV are strong V-crossed categories. O

Remark 11 Let W be a crossed module. Let (A, pu): V- — W be a crossed module morphism.
Then, (A, ) is injective if and only if ker(A, pu) = 1.

Proof. We may conclude as follows.
(A, ) is injective < A, u are injective group morphisms
& kerA\=1and kerp=1
< ker (A p)=1.

18



Chapter 2

Crossed modules
and invertible monoidal categories

Let C = (MOI‘(C) , Ob(C) s (Sc, ic, tc), A ) and D = (MOI(D) ,Ob(D) X (.SD, iD, iD), A ) be

categories.

If unambiguous, we write
(MOI‘(C) s Ob(C) , (5, i, t), A ) = (MOF(C) , Ob(C) s (Sc, ic, tc), A )
(Mor(D),0b(D), (5,1, t), s ) := (Mor(D),0b(D), (sp, ip, ip), s ) -

2.1 Monoidal categories

Definition 12 (Monoidal category) Suppose we have a functor

(®): C x C — C
(X , Y ) — XQY for X, Y € Ob(C)

b Y X@vy
( Ja o]0 > b ( l‘Z@b) for a,b € Mor(C)

X Y X'QY"

and an object I € Ob(C) such that the following conditions (1) and (2) hold.

(1) For X € Ob(C), u € Mor(C), we have
XRT=X=I®X and vu®id;j=u=1d;Q u.
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(2) We have
(XeY)2Z=X& (Y ®Z) forX,Y,ZecOb(C),

and
(a®@b)®@c=a® (b®c) fora,b,ce Mor(C) .

Then we call (C,1,®) a monoidal category. (*)
The functor (®) is called its tensor product.
Further, for a € Mor(C) and X € Ob(C), we shall often write

a®RX =a®@ Xi=a®idy
and

X®a=Xi®Qa=1dy ®a.
Remark 13 Suppose given X ——Y b Zand X' Sy Y 77 in C.
Functoriality of ® in Definition 12 means that we have

(aad) @ (dal)=(a®d)a (b®V), and idy ®idy =idxgy .

We also have
(a®b)s=as®@bs, (a@b)t=at®@bt and (X®Y)i=Xi®Yi.
Remark 14 Suppose given a category C together with a functor @: C x C — C such that
(1, 2) hold.
(1) We have an object I € Ob(C) such that
u®id; =u=1id; ®u  for u € Mor(C) .

(2) We have
(a®@b)@c=a® (b®c) fora,b,ce Mor(C) .

Then, (C,1,®) is a monoidal category.

So to show that a category C is a monoidal category, it suffices to show that the morphisms
possess the required properties.

2In the literature, monoidal categories are often defined as involving compatibility isomorphisms. We
demand these compatibility isomorphism to be identities. So our notion of monoidal categories is the strict
version.
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Proof. Suppose given X,Y,Z € Ob(C).
We have

X®@I=(dyxs)®(id;s) = (idy ®id;)s = (idx)s = X
I®X =(d;s)® (idy s) = (id; ®idx)s = (idx)s = X .

Further, we have
(X®Y)®Z=((idys) ® (idy $)) ® (idz s) = ((idx ®idy) ®idz)s
= (idy ® (idy ®idz))s = (idx s) @ ((idy 5) @ (idz 5))
- X (Y ®Z).

Remark 15 (Unit object) Suppose given a monoidal category (C, I, ®).
Suppose we have an object I € Ob(C) such that X ® I = X = [ ® X holds for X € Ob(C).
Then, I = 1.

So the object I is uniquely determined by its property (1) in Definition 12. We call I the
unit object of C.

Proof. Wehave I=1®I=1. m

Definition 16 (Monoidal subcategory)
Suppose given monoidal categories (C,I,®) and (D, I, ®).
We say that (D, I, ®) is a monoidal subcategory of (C,I,®) if the conditions (1,2,3,4) hold.

(1) The category D is a subcategory of C.
(2) We have I = 1.
(3) For X, Y € Ob(D) C Ob(C) we have
XY =XQY.
(4) For u,v € Mor(D) C Mor(C) we have
URV=uRUV.
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Then we often write (D, I, ®) := (D,1,®).

We then often just say that D is a monoidal subcategory of C = (C, I, ®), using the fact that
there I and ® are uniquely determined by D.

Lemma 17 Let C = (C,1,®) be a monoidal category. Suppose given a subcategory D C C.
Suppose that the conditions (1,2) hold.

(1) We have I € Ob(D).
(2) For u,v € Mor(D) we have u® v € Mor(D).

Then D is a monoidal subcategory of C.

Proof. Suppose given X, Y € Ob(D).
We have
idygy = idx ® idy (é) Mor (D) .
This shows X ® Y € Ob(D).
Let ® := ®}ng.
We show that (D, I,®) is a monoidal category.

For u € Mor(D), we have
R =uid;=u=id;@u=id;®u.
For a, b, c € Mor(D), we have
(a@b)Rc=(a@b)Rc=ax (b®c)=a® (bXc).

So, by Remark 14, (D, I, ®) is a monoidal category.
Properties (3) and (4) in Definition 16 hold by construction of ®.
So D is a monoidal subcategory of C. ]

Corollary 18 Let (C,I,®) be a monoidal category. Let D C C be a full subcategory.
Then D is a monoidal subcategory of C if and only if (1,2) hold.

(1) We have I € Ob(D).
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(2) For X, Y € Ob(D), we have X ® Y € Ob(D).

Proof. Ad =-. Suppose that D is a monoidal subcategory of C.
Then, in particular, we have I € Ob(D) and we have X ® Y € Ob(D), for X, Y € Ob(D).
Ad <. Suppose that conditions (1,2) hold.

So in particular, we have I € Ob(D). Moreover, for (X L>X’), (Y L>Y’) € Mor(D), we
have X ® Y € Ob(D) and X’ ® Y' € Ob(D). Since D is a full subcategory we also have

(XY “5 X' '®Y') € Mor(D).
Therefore, by Lemma 17, D is a monoidal subcategory of C . n

Definition 19 (Tensor invertibility) Let (C,I,®) be a monoidal category.

(1) We say that an object X € Ob(C) is tensor invertible if there exists an object
Y € Ob(C) such that
XY=I1=Y®X

holds.

(2) We say that a morphism u € Mor(C) is tensor invertible if there exists a morphism
v € Mor(C) such that
uv=1d;y =vQ®u

holds.

Remark 20 (Tensor inverses) Let (C,I,®) be a monoidal category.

(1) Suppose given X € Ob(C). Suppose we have objects Y, Y € Ob(C) such that
XY =I=Y®X and XQY=I=Y®X

holds. Then Y =Y.
We write X®~ :=Y and call X®~ the tensor inverse of X in Ob(C).

(2) Suppose given u € Mor(C) . Suppose we have morphisms v, o € Mor(C) such that
u@uv=id;j=v®u and uRUV=Iid;=7Ru
holds. Then v = 2.

We write u®~ := v and call u®~ the tensor inverse of u in Mor(C).

23



CHAPTER 2. CROSSED MODULES AND INVERTIBLE MONOIDAL CATEGORIES

(3) The unit object I is tensor invertible. We have [~ =1,

(4) Suppose given X,Y € Ob(C). Suppose that X and Y are tensor invertible.

Then, X ® Y is tensor invertible, and we have

(X@Y) =Y® @ X9 .

(5) Suppose given u,v € Mor(C). Suppose that u and v are tensor invertible.

Then u ® v is tensor invertible, and we have

uRv)® =08 Qu®.
( )

(6) Suppose given X € Ob(C). Suppose that X is tensor invertible.

Then X®~ is tensor invertible, and we have

(XO)®~ = X .

(7) Suppose given u € Mor(C). Suppose that u is tensor invertible.

Then u®~ is tensor invertible, and we have

(u®7)®" =u.

(8) Suppose given (X ELEN Y) € Mor(C). Suppose that u is tensor invertible.

Then X and Y are tensor invertible, and we have (X~ e, Ve, Le.

(u®7)s = (us)® and (u®)t = (ut)®" .

(9) Suppose given X € Ob(C).
Then X is tensor invertible if and only if idx is tensor invertible.

In this case, we have idxe- = (idx)®™ .

(10) Suppose given (X —Y — Z) in C such that u and v are tensor invertible.

Then wa v is tensor invertible and we have
(uav)® =u® a0¥ " X9 — 797,
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Proof. Ad (1). We have
Y=Y =YXY=YQI=Y.

Ad (2). We have
V=1d; U =0 QuRu=0Q1id; = 7.

Ad (3). We have
I®lI=1I.

Ad (4). We have

(X))@ (Y® X9 ) ==Y X ) (X®Y).

Ad (5). We have
(u®@v)® (WY @u® ) =id; = (1 @u® )@ (U V).

Ad (6). We have
X" X=I=X®X% .
By (1), we have (X®7)® = X.
Ad (7). We have
W @u=id;=u®@u®" .
By (2), we have (u®7)®" =u.
Ad (8). Consider (X’ u Y').
We have
X@X =us®@ u? )s=(u@u®)s=(d;)s=1.
Similarly, we have X' @ X = 1.
This shows X' = X®~ .
We have
YRV =ut® u® )t =(u@u® )t =(id)t=1.

Similarly, we have Y/ ® Y = 1.
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This shows Y/ = Y%~ .
Ad (9). Ad =. Suppose that X is tensor invertible.
We have
idy ® idye- = idxgxe- = id;.

Similarly, we have idys- ® idx = id;.
This shows (idx)®~ = idye- .
Ad <. Suppose that idx is tensor invertible. Then, by (8), X is tensor invertible.
Ad (10). We have

(wav) @ (U av®) = (W@ u® )a(v®0v¥7) =idraid; = idy.
Similarly, we have (u®~ 2 v®7) ® (uav) =id;.
This shows (uav)®” = u®" 2 0®. O
Definition 21 (Invertible monoidal category)

Let (C,I,®) be a monoidal category. Suppose that the following conditions (1,2) hold.

(1) Each X € Ob(C) is tensor invertible; cf. Definition 19.(1).

(2) Each a € Mor(C) is tensor invertible; cf. Definition 19.(2).

Then, we call (C,I,®) an invertible monoidal category. (*)

Remark 22 Suppose given a monoidal category (C,1,®). Suppose that property (2) from
Definition 21 holds for C.

Then (C,1,®) is an invertible monoidal category.

So condition (1) in Definition 21 may be dropped without changing the definition.

Proof. Suppose given X € Ob(C).

For idy € Mor(C) there exists a morphism (Y’ Ny ) € Mor(C) such that we have
idy ®b=1id; = b®idx .

3In the literature, an invertible monoidal category is also called a categorical group or a category in groups.
Cf. Remark 23 below.
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So we have
X®Y = (idxs) ®bs = (idy ®b)s = (id;)s = 1
YRX =bs® (1dx5) = (b® idx)s = (1d1)5 =1.
This shows Y = X®~. So X is tensor invertible. O

Remark 23 Let (C,I,®) be a monoidal category.
Then, (C, I, ®) is an invertible monoidal category if and only if (1,2) hold.

(1) The set of objects Ob(C) together with the operation (®) is a group with neutral
element I.

(2) The set of morphism Mor(C) together with the operation (®) is a group with neutral
element id; .

Remark 24 Let (C,I,®) be an invertible monoidal category.

The source map s: Mor(C) — Ob(C), the target map t: Mor(C) — Ob(C) and the identity
map i: Ob(C) — Mor(C) are group morphisms.

In particular, we have normal subgroups
kers = {u € Mor(C) : us = I}
ker t = {u € Mor(C) : ut =1}

Lemma 25 Let (C,1,®) be an invertible monoidal category. Suppose given u € ker s and
v € ker t.

Then uwR@uv=vQu.

Proof. We have
URQ UV = (id]AU)@(UAid]) = (id]@ﬂ)A(U@id]) =ValU = (U@id])A(id]@U)
= (UAid[)@(id[Au) :U®U.

Lemma 26 Let (C,1,®) be a monoidal category.

(1) Suppose given an isomorphism (X —Y) in C such that X andY are tensor invertible.

Then u s tensor invertible and its tensor inverse is given by

W =Y u @ X . X® Y9,
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(2) Suppose given a tensor invertible morphism (X L>Y) inC.

Then u s an isomorphism and its inverse is given by

=Yu X: VY > X.

Proof. Ad (1). We have

u® (Y @u” ®X®) = (uaidy) @ ((idxe-)a (Y @ u” @ X?7))
=u@X® ). (YoY? @u @ X9)
= WX )a(u” @X%) = (uau") @ X®
= idy ® idye- = id;,

Yo @u X )eou=(Y* @u @ X% )iidye-) @ (idy au)
=Y @u @X® @X)i(Y® ®u)
=Y @u ). (Y® ®u)
=YY% ® (u au) =idys- ®idy =id;.

Ad (2). We have
ura(Y@u*” @X)=wel)s(Y@u® ©X) = (uaidy) @ (idra (v¥” @ X))
—uu® @X =id;® X =idx,
Yeu* @X)au=Y@u* @X)s(I®u) = (Y ®u®)iid;) @ (idx auw)
=Y ®u® @u=Y ®id; =idy .

Corollary 27 Let (C,I,®) be an invertible monoidal category.

Then every morphism in C is an isomorphism.

Proof. Suppose given u € Mor(C). Since u is tensor invertible we have that u is an isomor-
phism by Lemma 26.(2). O

Remark 28 Let (C,I,®) be an invertible monoidal category.
Then, for (X —=Y —Z) in C, we have

U =u®Y® Q.
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Proof. For (X =Y — Z) in C, we have
URYE @u=w®Y® @v).ids Z (u®Y® ®@0v)a(id; @ v )av

(u
<( (u®Y® )aid) ®(vu;_)>.v: (WY® ®@Y)av

= UAD.
[
Remark 29 (The invertible monoidal category V Cat)
Let V = (M, G,v, f) be a crossed module.
Consider the category VCat = (G X M,G,(s,i,t), a ); cf. Remark 4.
(1) We have the functor
(-): VCat x VCat — VCat
( g , h ) — g-h forg,h € G
g h g-h
< lem | l(h’")) — ( | (gvm)'(hv")) for(g,m), (h,n) € Gx M.
g-mf h-nf gmf-hnf

Here, g - h is the product in the group G and (g,m) - (h,n) is the product in the group
Gx M.

(2) We have the monoidal category (V Cat, 1g, -).

(3) The monoidal category (VCat, g, - ) is an invertible monoidal category.

Proof. Ad (1). For (g,m), (h,n) € G x M, we have
((g.m) - (h,n))s = (g-h,m"-n)s=g-h=(g,m)s (n,h)s
(g-h)i=(g-h1)=(g,1)-(h,1) = gi-hi

((g;m) - (h,m))t = (g-h,m" -n)t =g-h-(m"-n)f "="g-h-(mf)" nf
=g-mf-h-nf=(g,m)t-(h,n)t.

Suppose given g Lom), g-mf lomfm), g (mm')f and h ),

h-nf Bendin), . (nn')f in
V Cat.
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We have
((g:m)a(g-mf,m)) - ((h,n)a(h-nf,n))
(

g,m ) (h,nn')

(g h, (mm)" - nn)

(g-h,m" - (m')" - nn')

(9-h,m" - n-n=-(m)-n-n)
(CM2) (g h,m"-n- (m)h'”f . n)
= (g hom ) g b G ' )
(L) (g-h,mh-n)a((g- mf (h-nf), (m)rml . q)
= ((g.m) - (h,n))a ((g-mf,m') - (h-nf.n)).

So (-) is a functor.
Ad (2). Suppose given (g,m), (¢’,m') and (¢”,m") € Mor(VCat) = G x M.
We have

(g,m) -idi; = (g,m) - (1,1) = (9,m) = (1,1) - (g,m) = iy - (9,m)
Moreover, we have

((g.m) - (g'.m)) - (¢",m") = (g.m) - (g, ) - (¢",m"))

since the group multiplication (-) in G x M is associative.
So, by Remark 14, V' Cat is a monoidal category.

Ad (3). Suppose given (g,m) € G x M = Mor(V Cat). The latter being a group, we recall
that

(gam) ’ (g_a (m—)gf) - (L 1) - (9_7 (m—)gf) ’ (g7m) .
So (g, m) is invertible with respect to (- ).
Thus, by Remark 22, V' Cat is an invertible monoidal category. O]

Example 30 Let H be an abelian group.

We have a category HC with Ob(HC) := {H} and Mor(HC) := {h: h € H} = H. Compo-
sition in HC is given by
hah':=h-h,

for h, h' € Mor(HC). We have idy = 1.
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We have a functor
H

(-): HC x HC — HC, (lh, ih> — (ihh)

H

Note that
(h-h)-(h-B)=(h-h)-(h -}

for h, B, h, W' € H since H is abelian.
We have an invertible monoidal category (HC, H, -).

2.2 Monoidal functors

Let (C, Ic, (}Cb), (D, Ip, ®) and (&, I¢, (?) be monoidal categories.
D

Definition 31 (Monoidal functor)
Let F': C — D be a functor.
We call F' a monoidal functor if (1,2,3) hold.

(1) We have (X(?Y)F:XF%)YF for X, Y € Ob(C).

(2) We have (u%)v)F = uF%)vF for u,v € Mor(C).

(3) We have [F =1Ip.

For an example of how to calculate monoidal functors, cf. §A.3.

Remark 32

(1) Let F: C — D be a functor satisfying the conditions (2) and (3) of Definition 31.

Then F' is a monoidal functor.

(2) Suppose that D is an invertible monoidal category; cf. Definition 21.
Let F': C — D be a functor satisfying condition (2) of Definition 31.

Then F' is a monoidal functor.
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Proof. We show that in Definition 31, (2) implies (1).
Suppose given X,Y € Ob(C). We have
(X © Y) = ((idx ® idy)s)F = ((idx % idy)F)s = ((idxF) % (idy F))s
= (idyr$) ® (idyp§) = XFQYF.

We show that in Definition 31, (1) implies (3) if D is invertible.
We have
IcF =1 FQIcFQ(IeF) = [e®I)FR[eF) =1cFQUcF) =1Ip.
D D c D D

Now both assertions of Remark 32 follows. O
Remark 33 Let F': C — D be a monoidal functor.
(1) Let X € Ob(C) be tensor invertible in C. Then XF is tensor invertible in D and we
have (XF)®™ = (X®7)F.

(2) Let u € Mor(C) be tensor invertible in C. Then uF' is tensor invertible in D and we
have (uF)®~ = (u®")F.

Proof. Ad (1). For X € Ob(C), we have

(X*VFQXF = (X® QX)F =I,F =1Ip.
D C

Ad (2). For u € Mor(C), we have
(WP )F@uF = (u®~ Gci)u)F =id;, F =idy, .
D

Lemma 34 (Identity and composition of monoidal functors)

(1) The identity map ide: C — C is a monoidal functor.

(2) Suppose given monoidal functors F: C — D and G: D — E. Then their composite
FxG:C— & is a monoidal functor.

(3) Suppose that F': C — D is a monoidal isofunctor. Then F~: D — C is a monoidal
functor.
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Proof. We use Remark 32.

Ad (1). We have
loide = I,

and for u, v € Mor(C), we have
(u®v)ide =u®v =uide ®vide .
c c c
Ad (2). We have
1FG = IpG = I,
and for u, v € Mor(C), we have

(u(?v)FG: (uF%vF)G:uFG?vFG.

Ad (3). We have
IpF~ = I.FF = 1I,.

For u, v € Mor(D), we have

(u%v)F* = (uF*F%vF*F)F* = (uF*GC?vF*)FF* :uF*GC@vF*.

2.3 Monoidal transformations
Let (B, I, %), (C, I, %)), (D, Ip, %)) and (&, I¢, (?) be monoidal categories.

Definition 35 (Monoidal transformation)
Suppose given monoidal functors F', G: C — D . Suppose given a transformation n: F' — G .

We say that 7 is a monoidal transformation from F to G if (1,2) are satisfied.

(1) We have
IcT]:id[DZ IcF=1Ip— Ip :IcG
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(2) For X, Y € Ob(C), we have

For an example of how to calculate monoidal transformations cf. §A.4. For a further calculation
example of a monoidal transformation, cf. Example 44 below.

Remark 36 Suppose that the monoidal category (D, Ip, ®) is an invertible monoidal cate-
D

gory. Suppose given monoidal functors F, G: C — D.
Suppose given a transformation n: F' — G satisfying (2) in Definition 35.

Then n is a monoidal transformation.

Proof. We have
. R— _
Ien=1Icn @gldlp =1Icn ‘% Ien % ((Ic)n)” = (Ie %IC)U % (Ien)®
= len ®(lem)® =idp, .

]

Remark 37 Suppose given monoidal functors H: B — C, F, F', F”:C — D and
G, G': D — &. Suppose given monoidal transformations n: F — F', n': F/ — F” and
9:G— G

F G
I m N
B c — D 9 £
\W N
F// G/
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1) The transformation idr: F — F is monoidal.

(1)
(2) The vertical composite nan': F' — F" is a monoidal transformation.

(3) We have monoidal transformations Hn: HF — HF" and nG: FG — F'G.
(4) The horizontal composite n*¥: FG — F'G" is a monoidal transformation.

Proof. Ad (1). We have

Ieidp = idyp = idy, .
For X,Y € Ob(C), we have

(X @Y)idr = idx vy = idxrgye = idxr @idyp = Xide  Vidp
Ad (2). We have

Ie(nan’)=Ienalen' =idp, aid;, =idy, .

For X, Y € Ob(C), we have

(X@Y)(narf) = (XY s (XOY)i = (Xn@Yn) s (Xn' @Y)

= (X7 AXn)g(Yn Y0) = X(an) QY (narf).
Ad (3). We have
IgHn = Ien =id,,

and similarly we get
]c 7’]G = id[D G = id[s y

For A, B € Ob(B), we have
(A%)B)Hn = (AH(?BH)n = AHn %)BHU.

For X, Y € Ob(C), we have
(X(?Y)UG = (Xn(%Yn)G = XnG (?YWG.

Ad (4). We have n*9 = (F9)a(nG"): FG — F'G’".

y (3), the transformations F: FG — FG' and nG': FG — F'G’" are monoidal. Then,

(2), n* v = (FvY)a(nG') is a monoidal transformation.

]
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2.4 The functors Cat and CM

Definition 38 (Category of invertible monoidal categories)

(1) The category having as objects monoidal categories and as morphisms monoidal func-
tors is called the category of monoidal categories, and is denoted by MonCat .

(2) The full subcategory of MonCat that consists of invertible monoidal categories is called
the category of invertible monoidal categories, and is denoted by InvMonCat .

Lemma 39 (The functor Cat)

Suppose given crossed modules V = (M, G, 7, f) and W = (N, H. p, k:) Recall that we have
an invertible monoidal category given by

VCat = ((G x M, G, (s,i,t), A), la, ');
cf. Remark 29.

(1) Suppose given a crossed module morphism p = (\,p): V. — W; cf. §0.4 item 2.

We have a monoidal functor given by

pCat: VCat — WCat
g — gu for g € Ob(V Cat)
(g,m) —— (gu,m\) for (g,m) € Mor(VCat) .

(2) We have a functor

Cat: CRMod — InvMonCat
1% — VCat for V€ Ob(CR Mod)
p — p Cat for p € Mor(CRMod) .

Proof. Ad (1). We show that p Cat is a functor.
For g € G = Ob(V Cat), we have
(idg)(p Cat) = (g,1)(p Cat) = (gu, 1X) = idg, = id(g)(pcat)

Suppose given g Lom), g-mf Lomfm), g - (mm/)f in VCat.

36



2.4. THE FUNCTORS Cat AND CM

Write a := (g,m), b:= (g-mf,m’).
We have
((a)(pCat)) t = ((g,m)(pCat)) t = (g, mA)t = g - mAk = gpu-mfu = (g-mf)u
= ((g-mf)p,m'\)s = ((g-mf,m')(pCat))s = ((b)(pCat))s.

So, (a)(p Cat) and (b)(p Cat) are composable.
We have
(a)(p Cat) 4 (b)(p Cat) = (gir,mA) a ((g - mf ), m'X) = (g, mA - m'A) = (gp, (mm')\)
= (g, mm')(pCat) = ((g,m) (g - mf,m))(pCat) = (asb)(pCat).

So, p Cat is a functor.
We show that p Cat is a monoidal functor.
For (g, m) and (¢’,m') € Mor(V Cat), we have
((g.m) - (g',m))(pCat) = (g- ¢, m? -m')(pCat) = ((g- ¢')p, (m? - m)A)
= (gp- g, (mA)* - mA) = (g, mA) - (', m'\)
= (9,m)(pCat) - (¢',m’)(p Cat) .

Thus, by Remark 32.(2), p Cat is a monoidal functor.
(M)

Ad (2). Suppose given V SNV
= (N, ).

By (1), we have VCat LE V1 Cat £

First, note that

> V' in CRMod. We write p := (A, p) and

p' Cat V" Cat in InvMonCat.

idV Cat = (ldM, ldg) Cat = idVCat 3

cf. (1).

So, we have
(pCat)s = VCat = (ps) Cat,
(VCat)i = idyca = (Vi) Cat,
(pCat)t = V' Cat = (pt) Cat .
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Now suppose given u := (g, m) € Mor(VCat) = G x M. We have
(u)((pap)Cat ) )N X, pap)Cat ) = (gup',mAN) = (gu, mA) (X', 1) Cat )
)((X, w)Cat ) (X, ')Cat ) = (u)((pCat) * (p' Cat)) .

Hence, Cat is functor. O

= (g,m
= (g,m

Lemma 40 (Crossed module from an invertible monoidal category)
Suppose given an invertible monoidal category (C, 1, ®).
Recall that we have groups (Ob(C),®) and (Mor(C),®); cf. Remarks 23 and 24.

Consider the groups
G == Ob(C)

Consider the maps

(1) The maps 5 and f are group morphisms.

(2) We have a crossed module given by V = (M, G, 7, f)

Cf. [10, Lem. 2.2].

By the construction given above, we obtain a crossed module V' from an invertible monoidal
category C. We shall write

CCM =V = (M,G,7,f).

Proof. Ad (1). Suppose given X,Y € G and u,v € M.
We have
(w@v)(X)=X"@uer)eX =X"2ue X)® (X ve X)
= (u)(X7) ® (v)(X7) .

So, X7 is a group morphism.
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We have
(W) (XF)((XF7)F) = (X" @u® X)((X*7)9)
= (X)X Que X X%~
= XX QueX®X®
=u.
Likewise, we have (u)((X®7)7)(X#) = u. Therefore, (X®7)7 is the inverse of X7.
So, X7 € Aut(M). Hence, 7 is well-defined.
We have
W((X@Y)) =(X0Y)* 9ue(X®Y)=Y*" 09X ueXQY
=YY" @ W)(X9) @Y = (u)(X7)(Y7).
So, 74 is a group morphism.
Suppose given u,v € M. We have
(u@v)f=uv)t=ut@vt=uf Qvf.

So, f is a group morphism.
Ad (3). Ad (CM1). Suppose given u € M and X € G. We have
W) f=(X*"@ueaX)f= X" ueX)t=X°"Qut® X
= (ut)® = (uf)*.

Ad (CM2). Suppose given u € M. Suppose given (I-Y)e M.
Note that we have

(WRY®* Nt=0tY® =Y RY® =1.
Therefore, (v ® Y®7) € ker t.
Then, by Lemma 25, it follows that v @ Y®* Qu=u®v Y% .
So, we have

W= =Y 2uRY =0®" @ (0eY® @u)RY =v®" @ (e Y9 )®Y

=" Quev=u’.
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Example 41
Let H be an abelian group.

(1) We have the crossed module W := (H, 1,¢, /i) with

t:1— Aut(H), 1 —idy
ki H—1, h—1;

cf. [15, Ex. 11].
We consider the invertible monoidal category W Cat ; cf. Remark 29. Then
Ob(WCat) =1
Mor(WCat) =1 x H .
The tensor multiplication in Ob(WCat) = 1 is given by the group multiplication

in 1, and the tensor multiplication in Mor(WCat) = 1 x H is given by the group
multiplication in 1 x H.

The composition in W Cat is given by
(L,h)a(1,0)=(1,h-1),

for h, W' € H.

(2) Consider the invertible monoidal category (HC, H, - ) from Example 30. Recall that
Ob(HC) = {H}
Mor(HC) ={h: he H} = H.

We want to to show that HC is isomrphic to WCat via the monoidal isofunctor

F: HC — WCat
H +— 1 for H € Ob(HC)
h +—— (1,h) for h € Mor(HC)

Moreover, we show that its inverse is given by the monoidal isofunctor

F~: WCat — HC
1 — H for 1 € Ob(WCat)
(1,h) —— h for (1,h) € Mor(IWCat) .
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We show that F' is a functor:

For H -5 H € Mor(HC) and H € Ob(HC), we have
hsF'=HF =1=(1,h)s = hF's
HiF =14F = (1,1) = 1i = HFi
htFF =HF =1=(1,h)t = hF't.

For (H -5 H -5 H) in HC, we have
(hah)F = (h-I)F = (1,h-}) = (1,h) - (LK) = hF - h'F = hF s W' F |

So F'is a functor.
We show that F'is monoidal:
For h, b € Mor(HC), we have
(h-WYF=(1,h-h")=(1,h)- (1,h)=hF-NWF.

Then, by Remark 32.(2), F' is monoidal.
Consider

G: WCat — HC, (15 1) = (H-5 H).

We show that G is a functor:
For (1 R, 1) € Mor(WCat) and 1 € Ob(W Cat), we have
(1,h)sG =1G = H = hs = (1,h)Gs
liG=(1,1)G=1=Hi=1Gi
(L,h)tG =1G = H = ht = (1,h)Gt.
For 1, AR,y @, 1) in WCat, we have
(1,h)a(1,h)G =1, h-N)G=h-h=(1,h)G-(1,h)G = (1,h)G4(1,F)G.

So G is a functor.
We show that F~ = G':
For h € Mor(HC), we have
hMFxG)=(1,h)G =h.
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This shows F' « G = idpgc .
For (1,h) € Mor(W Cat), we have
(1,h)(Gx F)=hF =(1,h).

This shows G * F' = idwcat -
So we have '~ = G.
Altogether, F' is a monoidal isofunctor.

Note that F'~ is also a isomonoidal functor; cf. Lemma 34.(3).

Lemma 42 (The functor CM)
Suppose given invertible monoidal categories (C, I, %)) and (D, Ip, ®). Recall that we have
D

a crossed module given by
CCM = (ker Sc, Ob(C) 7:77 tC|kerSc) ’

where 7: Ob(C) — Aut (ker s¢), X — (u— X%~ <}CZ> u <}CE>X); cf. Lemma 40.(2).

(1) Suppose given a monoidal functor F: C — D.
We have a crossed module morphism FCM := (Ap, ur): CCM — D CM given by

pr: Ob(C) —s Ob(D) , X  +—— XF
Ap: kerse — kersp , (Ie—5X) — (Ip-5XF).

(2) We have a functor

CM: InvMonCat — CRMod
C — CCM  for C € Ob(InvMonCat)
F — FCM for F € Mor(InvMonCat) .

Proof. Ad (1). We show that pp is a group morphism.
Suppose given X,Y € Ob(C). We have
(X@Y)up = (XQY)F = XFQYF = X QY pip.

We show that Ag is well-defined.
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Suppose given (Io — X) € ker s .
We have
(UF)SD = (USC>F = IC F= ID.

So, uF' € ker sp.
We show that Ag is a group morphism.
Suppose given (Ic — X), (Ic —Y) € ker s¢ .
We have

(u(}?v})\p = (ut?v)F = uF%)vF = u)\F%)v)\F.
We show that (Ap, up) is a crossed module morphism.
Suppose given X € Ob(C) and (I — Y) € ker s¢. Write t¢ := te|kerse and £p = tpliersy -
We have

(WAp tp = uFtp =ute F = (u)te ur .

F
ker s —— ker sp

o e

Ob(C) —— Ob(D)

We have
(W= (X" @u@X)\r=(X"Q@uX)F=(XF)* @ uF @ XF
C C C C D D

Ad (2). Suppose given C LoD Y€ in InvMoncat.

FCM G CM

By (1), we have CCM —— DCM —— E£CM in CRMod, where FCM = (Ap, pir),
GCM = (Ag, ,U/G)‘
First note that

ide CM = (Aide» fide) = ideom -
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So we have
(FCM)s =CCM = (F's) CM,
(CCM)i =idecom = (Ci) CM,
(FCM)t=DCM = (Ft)CM .

Now suppose given X € Ob(C) and (I —Y) € ker s¢ .
We have
(X)((FG)CM) = XFG = (XF)G = ((X)(FCM))G = (X)((F CM)(G CM)) .
We have
(W) (FG)CM) = (Ie £ YFG) = (Ip “5 Y F) (G CM) = ((Ie == Y)(F CM)) (G CM)

= (u)((F CM)(G CM)) .
So, (FG)CM = (FCM)(GCM).
Hence, CM is a functor. O

The following proposition is essentially a reformulation of [5, Thm. 1] of Brown and Spencer.

Proposition 43

(1) Suppose given a crossed module V = (G, M,~, f)

Consider kers = {(1,m) € G x M: m € M}, the kernel of the group morphism
s:Gx M — G, (g,m) — g; c¢f. Reminder 1.

Consider the group isomorphism
mur: kers— M, (1,m) — m.
We have a crossed module isomorphism given by

(WM,idg>2 V Cat CM L)V

(2) Suppose given an invertible monoidal category C = ((Mor(C) ,Ob(C),(s,4,¢t), a ), I, ®>.
We have the monoidal isofunctor of invertible monoidal categories

F: C CM Cat - C
X — X for X € Ob(CCM Cat) ,
(X (X, I-5Y)

X® Y) — (X 225 X ®Y)  for (X,u) € Mor(CCM Cat) |
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with inverse monoidal functor

F~: C — C CM Cat
X — X for X € Ob(C) ,

(X, 1 X228 xo- g y)

(X-5Y) — (X ) Y) for (X -5 Y) € Mor(C) .

Proof. Ad (1). Recall that we have the invertible monoidal category (V Cat, 1g, - ) with
Ob(VCat) =G
Mor(VCat) = G x M ;
cf. Remark 29.

Then we have
V Cat CM = (kers, G, 7, f)

with
7: G — Aut (kers), g — ((l,m) — (g,1)” - (1,m) - (g,1) = (1,m9))

.f:t|kers: ker3_>G7 (]_7m)|—)mf’

cf. Lemma 40.
Suppose given g € Ob(VCat CM) = G and (1,m) € ker s, where m € M.
We have

(1,m)(fAidg) = (mf)ldg = mf = (1,771)(7‘(]\/[ Af)

M

ker s

7
Ob(VCat CM) ——
ldG

M
|/
G

We have

(1, m)) s = (1, m9)mar = m? = ((1,m)mar) " .

So (mar,idg) is a crossed module morphism.

Since idg and 7y, are group isomorphisms, (7, idg) is a crossed module isomorphism.
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Ad (2). We have C CM = (ker s, Ob(C), 7, t) with
7: Ob(C) — Aut (kers), X — (u— X® @u® X),

and with ¢ := ¢t ; cf. Lemma 40.

Recall from Reminder 1 that we have
CCM Cat = ((Ob(C) x kers, Ob(C), (5,11, 4), 1)

with

: Ob(C) x kers — Ob(C), (X,u) — X,

: Ob(C) X ker s <~ Ob(C), (X,id) <+ X,

: Ob(C) X kers — Ob(C), (X,u) — X Q ut.

Sy o

The composition in C CM Cat is given by
(X, I-5Y)s(X®Y,I1-52)=(X,] 2% Y ®Z),

where X,Y,Z € Ob(C) and where u, v € ker s.

The tensor multiplication in C CM Cat is given by the tensor product on Ob(C CM Cat) =
Ob(C) and by

(XN ®ueX'®u’

(X, I-%Y)e (X I 5Y)=(X®X,I y (XN RY 0 X' @Y

on Mor(C CM Cat) = Ob(C) x kers, where X, X' Y, Y’ € Ob(C) and where u, v’ € kers.
We show that F'is a functor.
Suppose given X € Ob(C), (I —Y) € kers. We have
(X, u)F)s=X®us=XQus=X®I=X=XF=((X,usi)F,
(XF)i=Xi=X®id; = (X,id;)F = (X1)F,
(X, u)F)t=Xout=XQut=XQY =(X®Y)F=((X,ul)F.

(X, 1Y) (X@Y,I-"%2)

XY

Suppose given (X

» X ®Y ® Z) in CCM Cat .
We write a := (X,u), b:= (X ®Y,v). Note that aab= (X, ] 5 X @ Y).
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We have
aF'sbF = (X, u)Fa(X @Y, 0)F = (X Qu) s (X ®Y ®0)
= (idx ® u)a (idx ® (Y @v)) = (idx +idx) ® (ua (Y ® v))
=X® (oY) 2 X ((uaidy) ® (idrav)) = X @ (u )
= (X, u®v)F = (aab)F.
So F'is a functor.
We show that F' is monoidal.
Suppose given (X, —=Y), (X/,ILY/) € Mor(C CM Cat) = Ob(C) x kers.
We have
(X,v) @ (X' u)F=XeX,(X) @ueX @u)F
=XX' X)) ueaX @u=(Xou) e (X @u)
= (X, u)F ® (X' u)F.
Thus, by Remark 32.(2), F is a monoidal functor.

Consider
G- C — C CM Cat
X b X for X € Ob(C)

(X5Y) — (X, T X225 X~ @) for (X 5Y) € Mor(C).
We show that G is a functor.
Suppose given Z € Ob(C) and (X —=Y') € Mor(C).
We have
(uG)s = (X, X® ®u)s =X = XG = (us)G,
(ZGYi = Zi = (Z,id;) = (2, 2% @idy) = (Z 25 2)G = (Zi)G,
(UGt = (X, X" @ui=X (X u)t=X0X* QY =Y =YG = (ut)G.

For X Y - Z in C, we have
uGavG = (X, X® @u). (V,Y* ®@v) = (X, X 2u®Y? @)
= (AXV7 X®_ & ((U®Y®_) Aid[) X (idyA’U))

13 (X,X®’ @ (ueY® ) ®Y) A(I®v)) = (X, X% @ (uav)) = (uav)G.
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So G is a functor.
We show that G = F'~.
(X, I1-5Y)

Suppose given (X » X ® Y) € Mor(C CM Cat) .

We have

(X, u)(FxG)=(Xou)G=(X, X" @Xou) = (X,u).
So FxG = idCCMCat .
Suppose given (X —Y) € Mor(C).

We have
WG+ F)= (X, X" @u)F =X X* Qu=u.
So G * F =ide.
This shows F'~ =G
By Lemma 34.(3), F'~ is monoidal. O

2.5 An example for a monoidal transformation:
a homotopy

Example 44 Suppose given crossed modules V' := (M, G,v, f) and W := (N, H,B,k).
Suppose given crossed module morphisms p := (A, p): V — W and jp:= (A, a): V — W.

Consider the invertible monoidal categories C := V Cat and D := WCat ; cf. Remark 29.
We recall that

Ob(C) = G, Mor(C) = G x M, Ob(D) = H, Mor(D) = H x N .

Consider the monoidal functors
F:=pCat: C—>D, (g Mg-mf) > (g,uM (g-mf)p)

F=pCat: C—=D, (9% g-mf) > (97 L% (g-mp)ji) ;

cf. Lemma 39.(1).
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A map x: G — N is called a homotopy from p to p if the following conditions (1,2,3) are
satisfied; cf. [16, §4].

(1) We have (gu)™ - gfi = (g9)(xsk) for g € G.

(2) We have (mA)™-mA = (m)(fax) forme M.

(3) We have (g-¢')x = (9x)* - ¢'x for g, € G.

=

Suppose given a homotopy x: G — N from p to p.
Then the tuple of morphisms given by

n = x Cat = ((g)(X Cat))geG = (gF Lo 90, gF)geG
is a monoidal transformation from F to F.
The tuple 7 is well-defined:
For g € G, we have
(gm)s = (g, gx)s = gn = gF",
(gm)t = (91930t = gpe- ((9) (x o k) & gfi = g I

The tuple 7 is a transformation from F to F:

Suppose given (g Lo, qg- mf) in C.

Note that

(G- mPHx 2 (g™ ((m)(Fax) Z (gx)™ - (mA)~ - mA = (gx)™ - (mA)~ - mA
=7 (mA)” - gx-mA-(m\)”-mA = (m\)~ - gx-m\.
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So we have
((g,m)F) s ((g-mf)m) = (g, mA) s ((g- mfp, (g-mf)x) = (gu, mA-(g-mf)x)
= (gp, gx - mA) = (gpt. 9x) » (gii.mA) = (gn) » ((g,m)F) .

gn ~
gF gF
(9>m)Fl l(g,m)ﬁ
(g mp)F s (g ) F

The transformation 7 is monoidal:
Concerning the tensor products on C and on D, cf. Remark 29.

For ¢,¢' € G, we have

-9 m=((g-9) (g-9)%) 2 (gn- g1, (907" - ¢'x) = (91, 9%) - (¢'11, 9'x)

=gn-g'n.

Then, by Remark 36, n is monoidal.
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Chapter 3

The symmetric crossed module
on a category

Let X = (Mor(X),0b(X),(s,1,t), s ) be a category.
Let V = (M, G, f) be a crossed module.

3.1 Definition of the symmetric crossed module
on a category

Lemma 45 (The groups Gy and My)

(1) Consider the set
G = Aut (X) = {(X¥ N X): Fis an autofunctor}

together with the composition of functors (x). Then (Gy,*) is a group and its neutral
element is given by idy .

(2) Consider the set
My := {(idy — F): F € Aut (X) and a is an isotransformation}.
On My , we define a multiplication by
(idy = F) * (idy — G) := (idx 23 FG) = aa (Fb) = ba (aG) ;
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cf. §0.3 item 3.

idy b G
N
al axb laG
N
F F
Fb G

Then (My, %) is a group.
id; “ _
Its neutral element s (idX % idX). The inverse of (idX T>F) € My with respect

to (x) is given by ™™ :=a” F~ = (idx % Fo).

For an example how to calculate Gy and My in case X = VCat for a crossed module V, cf.
§A.2, §A.5, §A.6.

Proof. Ad (1). The composition of functors is associative, and therefore, the multiplication
in Gy is associative.

Suppose given F, G € Gy .
We have F'x G € Gy, since F'G is an autofunctor.
We have F xidy = F and idy % F = F'. Therefore, 1g, = idx.

We have F x F~ = idy and F~ x F' = idy . Therefore, the inverse for F' € Gy is given
by F~.

Ad (2). Note that the multiplication (x) is the horizontal composition of transformations;
cf. §0.3 item 3. So in particular, (%) is associative.

Suppose given (idX % F), (id/y % G) € My .

We have axb = aaFb = baaG:idy — FG. So, a x b is an isotransformation to an
autofunctor F'GG. Therefore, a xb € My .

We have
a . id; . . .
a*idiqy = (idy = F) * (idy — idy) = idiay « (aidy) = a,
and we have

idi, *a = (idy —% idy) * (idy - F) = aa (iday F) = asidp = a.
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Therefore, 1y, = idig, -

We have a*~ =a F~:idy — F~. Soa™ is an isotransformation where F~ is an isofunctor.
Therefore, a*~ € My .

Further, we have
axa"” = (idy - F) * (idx o, F)=(a" F)a(aF)=(a sa)F"~
—idp F~ = idpp- = idiq, = lni,
and we have
a* xa= (id;( LN F_) * (idXL>F) =aa(a” F7F)=asa” =ida, = ly, -
Therefore, a™~ is the inverse of a. n

Remark 46 (Inverses in My) Suppose given a = (idy %F) € My ; ¢f. Lemma 45.(2).

We have
a =aF =Fa".

Proof. We have

ax(F a )=as(FF a)=asa =idya, .
Therefore, F~a~ = a™™ = a”F~ ; cf. Lemma 45.(2). O
Remark 47 Suppose given functors F,G: X — X .

Suppose given transformations (id;( N F) and (idX LN G) such that a *b = b * a = idjq,,
holds.

Then we have the following statements (1,2) .

(1) We have F, G € Aut (X), i.e. the functors F' and G are autofunctors. Moreover, we
have G = F~ .

(2) The transformations a and b are isotransformations.

Proof. Ad (1). We have the following commutative diagram.

b
id y G
N
aJ axb aG
N
F F
Fb G
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Since we have a * b = idjq, : idy — idy by assumption, we have FG = idy .
Likewise, we have GF = idy .
Ad (2). From (1), we know that G = F'~.
We have
aa(Fb) =axb=idig, ,
and

(Fb)aa= (Fb)a ((FF)a) = F(ba(F~a)) = F(bxa) = Fidi, = idp.

Therefore, a— = F'b and a is an isotransformation.
Likewise, we have b~ = Ga and b is an isotransformation. O
Lemma 48 (Symmetric crossed module)
Consider the groups

Gx = Aut (X)

My = {(idx == F): F € Aut (X) and a is an isotransformation }
from Lemma 45.
We have an action of Gy on My given by the group morphism

Ya: Gy — Aut (My)
G — ((idx 2 F) = (idx <25 67FG))
and a group morphism
fx: My = Gy, (iddx —F) — F .

Then, (MX, GX,VX,fX) 1s a crossed module, called the symmetric crossed module on X.
We write

Sx = (Mx,Gr,va.fx).
For G € Gy and (idX %F) € My, we write
a® ;= (a)(Gyx) = G7aG: idy - F¢ =G FG

for the action of G on a.
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For examples of symmetric crossed modules, cf. Example 54 and §A.2—§A.9.

Proof. We show that vy is well-defined.
Suppose given G € Gy and (idX %)F), (idX %H) € My .

We have
G aG:idy - G FG,

where G~ F G is an autofunctor of X and G~ aG is an isotransformation. So G- aG € My .

We have
G (a*xb)G =G (as FO)G =G aGaG FbG = G aGa (GTFG)(G7bQA)
= (G a@G) x (GTbEG) .

Moreover, we have

(GT) (GTaG)G™ = GG~ aGG™ =a,
and

G_((G_)_aG_)G =G GaG " G=a.
This shows that yy is a well-defined map from Gy to Aut(My).

We show that vy is a group morphism.

Suppose given G, H € Gy and suppose given (idX %) F) € My .
We have
(@)((GH)yx) = (idx
= (idy =25 G FG)(Hyx) = (idy -2 F)(Gya)(Hvx)
= (a)(Gyx)(Hvx).

Thus, vy is a group morphism.

(GH)"a(GH) H-G~aGH
—— )

(GH)"F(GH)) = (idy =2 H-G"FGH

We show that fy is a group morphism. Suppose given (idX % F), (idX %> G’) € My.

We have
(a*b)fx = (idy 2% FG) fx = FG = (idy —2 F) fa #(idy —> G) fa = (afx) = (bfx)
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Ad (CM1). Suppose given (idx %> F) € My and G € Gy . We have

(@) fr = (idx T2% G~ FG) fx = G~ FG = F¢ = (af)C.

Ad (CM2). Suppose given (idX %> F), (id;( %)G) € My . We have
a® =b*" xaxb= (idy o G7) # (idy —= F) # (idy — G)
= ("G7)a (G~a)) * (idx —+ G) = ba (b"G7)a(G™a))G =ba(b"G~G) 4 (G aG)
=ba b a(G7aG) = G7aG = a% = a"'* .

3.2 Inner automorphisms of a category

Lemma 49 (Construction of isotransformations)
Suppose given bijective maps ¢, 1: Ob(X) — Ob(X). Suppose given tuples of isomorphisms
a= (X% Xy) s and b= (X =

XeOb(x P Xl/})XeOb(X) :

(1) We can define a functor F,: X — X by letting

XF, = Xop for X € Ob(X),

uF, = (Xa) asuaYa: X¢ =Yy for (X —Y) € Mor(X).
Then F, is an autofunctor of X .
Its inverse is given as follows. Consider the tuple of isomorphisms

X&::((Xgof)a)i

a .= (X — Xgo_)XGOb(X) .

Then Fj is the inverse of F, .
For (X —=Y) € Mor(X), we also write u® := uF, = (Xa)” auaYa.

(2) The tuple a is an isotransformation from idy to Fy .
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(3) We have F, x F, = F.y, .

Proof. Ad (1). We show that F, is a functor.

Suppose given X —Y —» 7 in X.

We have
(uF,)s = X = XF, = (us)F,
(XF,)i=idx, = (Xa)”" aXa=(Xa) aidy s Xa=idx F, = (X1)F,
(uFE)t=Yp=YF, = (ut)F,.

Further, we have
(uav)F, = (Xa) " auasvaZa=(Xa) auaYaa(Ya) avaZa= (uF,)a(vF,).
So, F,: X — X is a functor.
Then F;: X — X is a functor as well.
We show that Fj is the inverse of F, .
For (X —=Y) € Mor(X), we have
u(F,* F3) = ((Xa)"auaYa)F; = ((X¢)a) a(Xa) suaYas(Ye)a

= (((0)a) ) o swava (91570

=Xaas(Xa) " auaYaas(Ya)” =u

This shows F, x F; =idy .
For (X —=Y) € Mor(X), we have
u(Fy* F,) = ((Xa) " auaYa)F, = (X¢ )a) +(Xa) auaYaa (Yo )a
:XdA(Xd)_AUAYELA(Y) =u.
This shows Fj x F, = idy .

Therefore F; = (F,)”. In particular, F, is an autofunctor.

Ad (2). We show that a = (X BN Xo) is a transformation from idy to F, .

X €0b(X)
For (X —Y') € Mor(X), we have
XaauF, = Xas(Xa) " aursYa=uaYa.
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Therefore, we have the following commutative diagram.

Xa

X XF,
Jq
Y YF,

a

So a is a transformation from idy to F, . Since it consists of isomorphisms, it is an isotrans-
formation.

Ad (3). By (2), we know that a = (idx %> F,) is an isotransformation from idy to F, and
b= (idX %) Fb) is an isotransformation from idy to £y .

Recall that a b = aa F,b: idy — F, * F}, ; cf. Lemma 45.(2). Note that, for X € Ob(&X),
we have

X(Fy*xFy) = (Xo)F, = Xpi).
Moreover,
X(axb)=X(aaFyb) = Xaa(Xp)b
is an isomorphism, for X € Ob(X).
Consider the isotransformation

axb= (X 25 X(F, « )

X(a a Fyb)
~ XW/’)XEOb(X) :

By (1), the functor F,.,: X — X is defined by the following construction.

Xeob(x) — (X

XFop = Xov for X € Ob(X)
uFp = (X(axb)) aua(Y(axb)): Xopp = Yoy for (X —Y) € Mor(X)

For (X —Y') € Mor(X), we have
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So, Foup = F, % Fp . O
Definition 50 (Inner automorphism) Let F' € Aut (X).
If idy ~ F then we call F' an inner automorphism. We write
Inn(X) := {F € Aut (X): F is an inner automorphism} = {F € Aut (X): idy ~ F'};
cf. Lemma 52 below.
Remark 51 Let F' € Aut (X') be an inner automorphism.

Suppose given an isotransformation (id X %> F )

We have F' = F,; cf. Lemma 49.

Proof. Since F' is an automorphism, we have the bijection ¢: Ob(X) — Ob(X) given by
Xy :=XF for X € Ob(X).

Note that a = (X 2% X) So, XF = X¢ = XF, for X € Ob(&).

X€eOob(X) "

For (X = Y) € Mor(X), we have the following commutative diagram.

X
X —%— XF
Ul luF
Y YF
a
Hence, uF' = (Xa)” u (Ya) = u® = uF,. O

Lemma 52 (Inner automorphism group)

Consider the symmetric crossed module Sy = (MX, Gy, Y, fx ); cf. Lemma 48.
We have Inn(X) = My fy < Gy = Aut (X)) ; cf. Definition 50.

We call Inn(X') the inner automorphism group of the category X.

Proof. Let F' € Aut (X). Then
F elnn(X) < We haveidy %) F for an isotransformation a < F &€ Myfy .

Therefore, Inn(X) = My fy .
We have My fy < Gy since fy is a group morphism.

Further, we have My fy < Gy ; cf. e.g. [15, Lem. 7.(2)]. O
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Remark 53 Consider the symmetric crossed module Sy = (MX, Gy, Y, fx )

(1) We have Sy m; = Aut (idy).

(2) We have Sy my = Aut (X)/Inn(X).
Cf. §0.4 item 5.

Proof. Ad (1). Recall that Sy m; = ker (fy).
Suppose given (idx % F) € My . We have
ac€kerfy & afy=idy & F=idy & ac€Aut (ld)()

So, kerfy = Aut (idy).

Ad (2). Recall that Sy mp = Gy /My fx .

We have Gy = Aut (X)) and My fy = Inn(&X); cf. Lemma 45 and Lemma 52.

So, Sx my = Aut (X)/ Inn(X). O

3.3 An example for a symmetric crossed module

Example 54 Let G be a group. We have a category GC with Ob(GC) := {G} and
Mor(GC) :={g: g € G} = G. Composition is given by multiplication in G .

Consider the symmetric crossed module Sge = (MGC, Gae, ch,‘YGc) ; cf. Lemma 48.

Consider the crossed module (G, Aut (G),idawt (@), c) with

c: G—Aut (G), g (x— a9);
cf. e.g. [15, Ex. 8].
We want to show that (G, Aut (@), idaus(c), ) A Sce .

We show that Gge e Aut(G) .
Suppose given F' € Gge, i.e. F': GC — GC is an autofunctor.
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Then we have Ob(F) : {G} — {G}, G — G. Moreover, we have the group isomorphism
Mor(F): G — G, g+ gF.

Conversely, each group isomorphism ¢: G — G yields an autofunctor ¢C that consists
Ob(¢C) : {G} — {G}, G — G and of Mor(¢C) : G — G, g — gyp.

So we have the group isomorphism
p: Aut(G) = Gge, ¢ = (¢C: g — go).
Hence, we have Aut (G) ~ Gge

We show that M¢ge ~ G.

Consider the map

A G—> MVCat; T Qp = (G G_:JZ> G)GEOb(GC) = (G%G) :

Suppose given = € G. By Lemma 49.(1,2), we have the isotransformation
(e 2 1) = (6-26).

where the autofunctor F, maps a morphism u € Mor(GC) = G to uv® = z-uzx. So A is a
well-defined map.

Moreover, for z,y € G, we have
(G) (A *yA) = (G)(az * ay) = (G)(az & (Fray)) = Gag 2 (GF,a,) = Gaga Ga, = zy
= Gayy = (G)(xy)X.

This shows zA x yA = (zy)\.
So A is a group morphism.

Consider the map \': Mge — G, (idgc %> F) — Ga.

We show that N = A\~
For x € GG, we have

([E)()\A )\/) = (idGC a—(\i) Fgc)/\, = Gaw =x.
This shows Aa X =1idg .
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For (idGC %) F) = (G %} G) € Mgce, we have
(@)X 4 X) = (Ga)\ = (idge 2% Fao) = (G25G) = (idge — F) = a.
This shows X a A = idy, -

So we have A = A~ and we have the group isomorphism

Al G—>Mgc, T — (idGC%Fm).

Thus, we have Mge ~ G .
Recall the group morphisms

fge: Mae = Gee, (dge == Fy) — F,

and
Yac: GG’C —  Aut (Mgc)

oC ((idcc —% F,) = (idge M (@C)_Fx@PC)))
_ <a$ (G Sl ente) G)>
~ (@ (¢2506))
= (az aw) )
where ¢ € Aut(G) and = € G; cf. Lemma 48.

We show that (A, u): (G, Aut (Q), idaut (@) c) — Sgg is a crossed module isomorphism; cf.
§0.4 item 2, [15, Lem. 15].

For g € G and ¢ € Aut (G), we have
(97X = (90)A = agp = (ag)* = (gN)*",

and

(g)cu = (v = 2%) pu=F, = (ag) fae = (9)A fac -

A

G = Mee
¢ l fae
Aut (G) Gae
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So, altogether, we have
()\7 M) : (G7 Aut (G)7 idAut (G)> C) l> SGC .

3.4 Action of a crossed module on a category

Lemma 55 (V-category from a crossed module morphism)

Consider SX = (Mx, G/\(,‘Y,y, fX ) .

Suppose we have a crossed module morphism (A, p): V — Sy . So we have \: M — My and
w:G— Gy.

(1) The set Ob(X) is a G-set via

X - g:=(X)(gn) € Ob(X)
for X € Ob(X), g € G.
(2) The set Mor(X) is a G x M-set via
u-(g,m) = u(gp) » (ut)(gu)(mA) € Mor(X)
for u € Mor(X), g€ G, m € M.
(3) We have an V-crossed set given by
[Mor(X),Ob(X)]set = (Mor(X),0b(X), (s, 1, t))
together with the group actions from (1) and (2); c¢f. Reminder 1.

(4) The category X = (Mor(X),0b(X),(s,1,t), s ) together with the structure of a
V-crossed set given as in (3) is a V-category; cf. Definition 2.

Proof. Ad (1). Suppose given X € Ob(X), g,h € G.

We have
X-1=X)(1p) =X.

We have
(X -g)-h=((X)(gn)(hr) = (X)((gp)(hps)) = (X)((gh)p) = X - (gh).
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Ad (2). Suppose given (X L>Y) € Mor(X), g,h € G, m,n € M.
We have

Note that mAfy = mfu, for m € M, since (A, ) is a crossed module morphism.
So, ((X)(mA))t = (X)(mfp) form e M, X € Ob(X).
We have

n) (multiplication in G x M)
((m"-n)A) (definition of (-))
((m™)X\ % nA) (A group morphism)

)
)
) (ma) < na) ((A, 12) crossed module morphism)
)
)

= U((gh)u)A<Y(9h)u) (hpe)~ (mA)(hpr)) (Y ) ~ (mfu)(hp)) (nX)

(
gp) (hpe) &Y (gpe) () (hye) = (mA) (hpe) 8 Y (gpe) () (hpn) = (mof i) () (nX)
)

= u(gp)(hp) s Y( (

= u(gp)(hp) oY (gp)(mA)(hp) o Y (gp) (mf 1) (hys) (nA)

= (u(gn) 2 Y (gi)(mA) (hpe) & (Y () (mf 1)) (hgz)(nA) -~ (hys functor)
= (wlgn) + Y (g)(mA)) - (h,n) (definition of (-))
= (u-(g,m)) - (h,n) (definition of (-))

Ad (3). Suppose given X € Ob(X), (X —Y) € Mor(X) and g € G, m € M.
Ad (CS1). We have Xis = X and Xit = X.
Ad (CS2). We have

(u-(g,m))s = (u(gn) s Y (gu)(mX))s = X(gu) = X - g = us - (g,m)s.
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We have
(u-(g,m))t = (u(gn)a Y (gp)(mA)t =Y (gu)(mfp) =Y ((g-mf)u) =Y - (g-mf)
=ut-(g,m)t.
We have
(X -9)i= (X(g,u))i = idx(gu) = idx(gp) 4 idx (g = idx(gp) « X (gp)idia, = idx - (g, 1)
=Xi-gi.

Ad (4). By (3), it suffices to show the properties (CC1), (CC2) and (CC3).
For (X L>Y) € Mor(X), g € G, m € M, note that we have
u-(g,1) = u(gp) » Y (gp)idia, = u(gp) aidy (g = ulgp),

and

u-(1,m) =uidya Yidy(mA) = uaY(mA).

Suppose given X — Y —+ Z in X and suppose given g € G, m € M.
Ad (CC1). We have
(wav) - (g,1) = (wav)(gp) = ulgp) avign) = (u-(g,1)) s (v- (9.1)).

Ad (CC2). We have
(wav) - (1,m) = (uav)aZ(mA) = ua (vaZ(mA)) =ua(v-(1,m)).

Ad (CC3). By Remark 3, it suffices to show that
(wav)-(1,m) = (u-(1,m))a(v-(mf,1)).

Since (id X m—;\> mf u) is an isotransformation, we have the following commutative diagram.

Y (m)

Y Y(mfu)
v| [ )
Z Z(mfp)

Z(m\)
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So we have
(wav) - (L,m) =wavaZ(mA) = uaY(mA)av(mfp) = (u-(1,m))a(v- (mf,1)).

Lemma 56 (Crossed module morphism from a V-category)
Suppose that X is a V-category.

We have a crossed module morphism (Ax, pux): V — Sy given by

u u-(g,1
ux: G— Gy, g|—>g,LLX::((X—>Y)»—>(X-g£>Y~g)
ldx(l,m)
Axy: M = My, m—mly = [ X X -mf
Y Y -mf
ldy(l,m)

Hence, mAy is an isotransformation from idy to mfuy . Note that X -mf = (X)(mfux)
for X € Ob(X).

So, as formulas, we have

(W)gpx) = u-(g,1) foruw e Mor(X), g€G,
(X)(gpa) = X-g Jor X € Ob(X), g€ G,
(X)(mAy) = idx-(1,m) for X € Ob(X), me M.

We also have

u(gpa) a (ut)(gux)(mix) =u-(g,m) foru e Mor(X), g€ G, me M.

Proof. We shall abbreviate p:= py and A := Ay .
We show that p is a well-defined map.
Suppose given X —Y —+ 7 in X and g € G.
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We have

(CS2)

and we have

(wav)(gp) = (uav) - (g,1) “CY (u-(9,1)a (v- (9,1)) = ulgpe) s v(gp) -

So g is a functor.
For v € Mor(X), we have
ulgm)(g=n) = (u-(g. D) (g™ ) =u-(g.1) - (g7, ) =u-(1,1) = u.

Likewise, we also have u(g~p)(gp) = u.
So, g~ is the inverse of gpu.
Altogether, we have gu € Aut (X') = Gy . Therefore, p is a well-defined map.
We show that up is a group morphism.
Suppose given u € Mor(X) and g,h € G. We have
u((gh)p) =u-(gh,1) =u-(g,1) - (h,1) = (u- (g, 1)) b = (u)((ge) (hpr)) -

Therefore, (gh)p = (gu)(hp).

We show that A is a well-defined map.
Suppose given m € M and (X —Y) € Mor(X).
We have

(CS2)
S =

(idx - (1,m))
(idx - (1,m))¢t

(idy)s-(IL,m)s=X-1=X,

E2 (i)t (1,m)t = X -mf = (X)(mfu).

We have
cQ2

wa (idy - (1,m)) “E (waidy) - (1,m) = (idy au) - (1,m) 2 (idy - (1,m)) a (u- (mf, 1)) .
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So we have the following commutative diagram.

idy - (1,m
x - )X

u| |- (mf. 1)
Y

idy : (1, m)

Therefore, mA is a transformation from idy to mfu for m € M.
To show that mA is a well-defined map, it remains to show that mA € My for m € M.
We have

X(mAxm=X) = X(mAa(mfp)(m= X))

X (mA) « X(mf 1) (m~A)

X(mA)a (X -mf)(m~\)
= (idx - (1,m)) a (idx.ns - (1,m7))
= (idx - (L,m) o (s - (1m7) - (7 £1)) - (mf 1))
2 <1dXA idx.mf - (1,m*)-(m*f,1))> ~(1,m)
= <1dX.mf (m~f, (m_)m_f)>~(1,m)
idx.mp- (m~f,m™)-(1,m)
idx.ny - (m™f,1)
idx (g (M f 1)
= idx (mfu)(mfu)”

= idy.

Therefore, mA * m~\ = idq,, .

Likewise, we have m~\ * mA = idyq,,

Thus, by Remark 47.(2), the transformations mA and m~\ are isotransformations.
Altogether, we have mA € My . Therefore, A is well-defined.

We show that A is a group morphism.
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For m,n € M and X € Ob(X), we have

X(mAxnX) = X((m\)a(mfp)(n\))
X(mA)a (X)(mfp)(nA)
(mA) a (X -mf)(n)\)
(1dX (1, )) (ldX.mf -(1,n))
(1,m) ((idx.mf () (e f.1) - (mf. 1))
3 (1dXA (idsoms - (1,m) - (m~ f, 1))) (1,m)
= idxams - (1) (m*f, 1)-(1,m)
= idxpy - (m~f,n™ 1 -m)
idx.ms - (m™ f,mn)
(m~f,1) - (1,mn)
= idx(mp)mep - (1,mn)
= idx - (1,mn)
= X((mn)A).

id .y -

So A is a group morphism.
We show that (A, ) is a crossed module morphism.
Suppose given X € Ob(X') and m € M. We have
X(mAfy) = (X(mN)fr = (idx - (1,m)) fx = X -mf = X(mfp).

So, My = fu.
Suppose given X € Ob(X) and m € M, g € G. We have
X((m?)A) =idx - (1,m?) =idx - (g7, 1) - (1,m) - (9, 1) = ((idx)(9~p)) - (L,m) - (1, 9)
= 1dgp - ( ) (9.1) = (X (g~ w)(mN)) - (9.1)
= X((g~ ) (mA)(gn)) = X ((mA)*).

So, (m9)\ = (mA)9.
Therefore, (A, ) is a crossed module morphism.

Finally, suppose given (X —Y) € Mor(Xx), g € G and m € M.
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We have

u'(gam) = (U'(g,1)> '<1’m): (U'(g,l)Aidy.g) '(17m)
=" w-(g,1)a (idyg - (1,m)) = u(gu) 2 Y (gu)(mA).

Proposition 57

(1) Recall that we are given a category X = (Mor(X),0b(X), (s,1,t), a ).
Suppose given the structure of a V-category on X; cf. Definition 2.

Recall that Mor(X) is a G x M-set and that Ob(X) is a G-set. Let us denote the
action of G x M on Mor(X) by B: G x M — Syerxy and the action of G on Ob(X)
by 0: G — SOb(X) .

From the V-category X we obtain the crossed module morphism (A, u): V — Sy given
in Lemma 56.

In turn, by Lemma 55, the morphism (X, u) induces the structure of a V-category on
the category X = (Mor(X),Ob(X) (8,1, 8), ) In particular, we obtain actions
B/: Gx M — SMor(X) and 0': G — SOb(X) .

Then, we have

(Mor(X), Ob(X), (5,7, ), (x), 8,8) = (Mor(X), Ob(X), (s, i, ), (x), 8, ).

(2) Suppose given a crossed module morphism (A, u): V — Sx .
By Lemma 55, we obtain the structure of a V-category on the category X .
In turn, by Lemma 56, the V-category X gives a crossed module morphism
()\/,/L,)I V —Sx.
Then, we have

(Ap) =N, ')

Proof. Ad (1). Suppose given X € Ob(X), (X —=Y) € Mor(X), g € G and m € M.
We have
56 55 '
X(g6) = X(gn) = X(g¢).
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Therefore, gd = gd’, and so § = ' .
We have
u((g,m)B) = ulgn) + Y (gu)(mA) 2 u((g,m)B') .

Therefore, (g,m)3 = (¢g,m)f’, and so f = .
Ad (2). Suppose given (X —Y) € Mor(X) and g € G. We have

u(gp) = u(gn) « Y (gu)idia, = u(gu) « Y (gu)(10) - (g,1) Z u(gy') -

Therefore, gu = gy, and so u = p'.
Suppose given X € Ob(X) and m € M. We have
X(mA) = idx 2 X(m)) = idy (1) a (idx £)(1p)(mA) 2 idy - (1,m) Z (X) (mN).

Therefore, mA = mM, and so A = \'. m

3.5 The Cayley embedding

3.5.1 Mapping into a symmetric crossed module

Lemma 58 Let X be a V-category.

Consider the crossed module morphism (Ax, pux): V — Sy given in Lemma 56.
u u-(g,1

nx: G —Gu, g = guai= (X -5Y) = (X -9 22 v . g))

Axy: M — My, m—= miy = (XMX-mf)

XeOb(X)

Recall that Mor(X) is a (G x M)-set.

The crossed module morphism (Ax, px) is injective if and only if the action
B: G X M — Syior(x)

18 1njective.

Proof. We write A := Ay and p:= py .
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By Lemma 56, we have

u-(g,m) =u(gp) s (Y - g)(mA)
for g€ G, m € M and (X —=Y) € Mor(&X).
Ad =-. Suppose that (A, p) is injective; cf. §0.4 item 4.

Suppose given g € G, m € M such that u - (g,m) = u holds for (X —=Y) € Mor(X). We
have to show that (g, m) = (1,1).

For X € Ob(X), note that we have

X = (idy)s = (idx - (g,m))s ‘= (idx)s - (g,m)s = X - g,

and
idy =idx - (g,m) =idx (gu) a (X - g)(mA) = idx a X(mA) =idx - (1,m) .

Suppose given (X —+Y) € Mor(X). We have
w=u-(g,m)=u(gu)a(Y - g)(mA) Zu(gp)a (idy - (1,m)) = u(gn) sidy = u(gp) .
So, u(gp) = u for u € Mor(&'). Therefore gu = idy . Since p is injective we conclude that
g=1.
We have

idx-(1,m)
—_—

mA = (X X -mf) — (X 25 X)

X€Ob(X) = idiay -

X€Ob(X)

Since A is injective we conclude that m = 1.

Hence, we have (g, m) = (1,1).

Ad <. Suppose that 3: G x M — Syor(x) is injective.

We show that g is injective.

Suppose given g € G such that gy = idy . For (X L)Y) € Mor(X'), we have
(w)((9.1)8) = u-(g,1) = u(gp) = uidx = u.

So, (g,1)3 = idmor(x) - Since f is injective it follows that (g,1) = (1,1). So, g = 1.
Therefore, u is injective.

We show that A is injective.

72



3.5. THE CAYLEY EMBEDDING

Suppose given m € M such that mA = idiq, . For (X = Y) € Mor(X), we have

() ((1,m)B) = u- (1,m) Zu(lp)a (Y - 1)(m)) = uidy & YVidiay = uaidy = u.
So, (1,m)B = idmor(x) - Since B is injective it follows that (1,m) = (1,1). So, m = 1.
Therefore, A is injective.

So, (A, p) is injective. O

The following proposition is a crossed module analogue of Cayley’s Theorem for groups.

Proposition 59 We have an injective crossed module morphism

Cayley Cayley = Cayley
Pv = (A )

= ()\VCataluVCat) Vo= SVCat
called Cayley embedding , where

Cayley . Cayley |,
[y, 0 G — Gycat, T = Ty =

Cayl Cayl (g:n)
AV M — Mycar, me nAyY Y = (g —g- nf)geG;

cf. Lemma 56.
So, forn € M, we have

g . (g, n) o nf
nA = (g,m) (gjm)[ [(g%f, n-mn)
g-mf g‘mf(g'mf’n)g'(m”)f

So the crossed module V' is isomorphic to a crossed submodule of the symmetric crossed
module Sycay on the category V Cat.

; Cayley .__ \Cayley Cayley .__ ,,Cayley
We often write \¥'Y := Ay, and p~» Y =y, .

For an example of the Cayley embedding cf. §A.10.
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Proof. The category VCat is a V-category; cf. Remark 5.(2).

Lemma 56 yields the crossed module morphism (A, 1) := (Avcat, hvcat): V' — Sycar given
as follows.

We have
p: G — Gycat

i ap = (9 g-mf) = (g2 2D (g mf)z) = (g0 2 (g-mf)z)).

We have
A M — Mycas, n+— n\,

9
where n\ maps a morphism ( l(gvm)) € Mor(V Cat) to the diagram morphism

gmf
1) - (1,n
) (9,1) - (L,nf) g nf
P TR R
; (g,nf) g nf
= (g,m)l [(g-nf,m”f)
g-mf G mih) g-(mn)f
(g,nf) g nf
(CM2) (g,m) l [ (g-nf,n"mn)
g-mf G mF.n]) g (mn)f
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The action of G x M on Mor(VCat) = G x M is given by the right multiplication of G x M
on G x M, i.e.

B:Gx M = Saum, (g,m) — ((h,n) — (h,n)-(g,m) = (hg,n? -m)).
Since this action § is injective we conclude that (A, ) is injective; cf. Lemma 58.

By Remark 11, we have ker(A, u) = 1. Therefore, V' is isomorphic to im(\, ) < Sycat;
cf. [15, Lem. 27]. O

3.5.2 Comparison with Cayley for G/M f

Suppose given a crossed module V' = (M, G, f)
Recall that

Vg =G/Mf

Vmy =ker f;
cf. §0.4 item 5.
Consider the category V Cat; cf. Remark 4.
Recall that

Ob(VCat) =G
Mor(VCat) =G x M .
Consider the symmetric crossed module Sy cay = ( Gvcats Mycat, Yveat, fvcat ); cf. Lemma 48.
Recall that
Gveat = {F: VCat — VCat: F is an autofunctor}

My car = {idycat %> F': a is an isotransformation, F' € Gy cat}

Yvcat: Gveas = Aut(Mycat), H — (a— H aH)

fVCat: MVCat — GVCat ) (idVCat %) F) = I

We write Inn := Inn(V Cat) = My cat fvcas - Then Sycas o = Gycay / Inn.
Lemma 60 We have the group morphism

Svcat T = Gycar /Inn 5 Sg/ars = Svry,
Flnm— ((FInn)g: G/Mf — G/Mf, g(Mf)— gF(Mf)).
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Proof. Suppose given F' € Gy gt -

The map up: G/Mf — G/Mf, g(Mf)— gF(Mf) is well-defined:

Suppose given g, g € G such that g(M f) = g(M f). Then g = g-mf for some m € M. We
show that gF (M f) = gE(Mf),ie. (gF) - (g-mf)F é Mf.

Consider the morphism (g lom), qg- mf) € Mor(VCat) = G x M. Then the morphism

(9,m)F = (gF ot (9-mf)F) € Mor(VCat) = G x M is of the form (g, m)F = (gF,n)

for some n € M. We have
(g-mf)F = ((g.m)F)t = (gF,n)t = gF -nf .
So, (gF)~ - (g-mf)F =nf e Mf.
Therefore, up is well-defined.
We claim that up is bijective.
Consider F'~ € Gyca - Then the composite map
upaup-: G/Mf = G/Mf, g(Mf)— gFF (Mf)=g(Mf)

is the identity. Similarly, the composite

up-aup: G/Mf — G/Mf, g(Mf) — gF~F(Mf)=g(Mf)
is the identity.
This proves the claim.

This defines a map

¢ Gycar — Sa/my
F — Fp:= (uF:G/Mf—>G/Mf,g(Mf)»—>gF(Mf)).

We show that ¢ is a group morphism.
Suppose given F, F' € Gycat -
For g € G, we have
(9(M ) (FF")@) = gF F'(M f) = (gF (M f))(F'$) = (9(Mf))(F)(F'¢).
So (FF')¢ = (F@)(F'p).

Therefore, ¢ is a group morphism.
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We show that ¢ maps Inn to the trivial subgroup.

Suppose given H € Inn. We show that Hp - idg/my.

Since H € Inn = Myca fycoas, there exists an isotransformation a € My g, such that
H = afycat, i.e. such that a = (idvcat %H) € My cat -

Suppose given g € G = Ob(V Cat). Consider the morphism

(92 gH) € Mor(VCat) = G x M.

Then ga is of the form ga = (g, z) for some x € M .
We have
gH = (ga)t = (g, 2)t =g-xf.

So we get

(g(M[f))(H@) = gH(MF) = (g-2f)(M[) = g(M[).
Therefore, Hp = idg g -
So we have the group morphism

©: Sycat To — Sa/mf
Fln — (Flnn)yp = (Fg: G/Mf — G/Mf, g(Mf)~ gF(Mf)).

Lemma 61 Consider the injective group morphism
Vg = G/Mf 5 Sans = Svm,
s(Mf) = (2(Mf)¥ = (g(M[f)— gu(Mf))
giwen by Cayley’s Theorem for groups.
Consider the group morphism

,ucayley: G — GVCat: T xluCayley — ((g M qg- mf) — (gx M (g . mf).%'))

from Proposition 59.

Consider the group morphism

(Acayleya Mcayley)ﬂoi Vg = Sycat o, ©(Mf) — xﬂcayley Inn .
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Consider the group morphism
©: Sycat Ty — Vg, Flon— (g(Mf) — gF(Mf))

from Lemma 60.

Then we have
|- ()\Cayley7 IuCayley)T[O A,

i.e. we have the following commutative diagram.

VT[O

()\Cayley’ uCayley)TEO l K

Sy Cat o

SVTIO
In particular, (\C1eY | Sy, s injective.

Proof. Suppose given z € G. For g € GG, we have
(9(M 1)) (M)A, 51wy o) = (g(MF)) (2 Tum)p)
= (

a0 (1)
(M)

g
= (g ) (=1 )¥).

So (w(M f)) (A ey ymy o = (x(M f)) ¥ and therefore (A, Oy s o = ¥, O

Theorem 62 Recall from Proposition 59 that for our crossed module V' we have the Cayley
embedding, 1.e. the injective crossed module morphism

Cayley .
pV V= SVCat .

: 1 1 .
The group morphisms p?,ay Y19 and pgay Y7 are injective.
In particular, every crossed module is isomorphic to a crossed submodule of a symmetric
crossed module on a category such that the inclusion morphism is injective on 1y and T .

Cayley

Proof. This follows from Proposition 59 and from Lemma 61, observing that py/ injective

implies that pu®'7, is injective. O
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The following example shows that the group morphism ¢ from Lemma 60 is not injective in
general.

Example 63 Suppose given an abelian group M.
Consider the crossed module V' := (M 1, /i) , where

ke M =1, me1
t:1 = Aut(M), 1+ idy;

of. [15, Ex. 11].
We consider the category VCat. Then
Ob(VCat) =1
Mor(VCat) = 1 x M%M, (I,m) — m.

Moreover, (1,m)a (1,m') = (1, mm') for m, m' € M.
In particular, we have

(1, m)a(1,m"))p=mm'=(1,m)p- (1,m')p.

We want to determine the symmetric crossed module Sy ca; = (MVCata Gvcats Yvoat, fvcat ) )
Step 1. We claim that we have the mutually inverse group isomorphisms

£ Gyea — Aut(M), F+— (Ff m (1,m)Fp)

¢ Aut(M) — Grow, ¢ (6¢: (155 1) o (1 222 1))
Construction of £ .
Suppose given F' € Gycat -
The map vp: M — M, m — (1, m)Fp is a group morphism:
For m, m' € M, we have

(m-m')vp = (L,mm')Fp= ((1,m)s(1,m"))Fp= ((1,m)F(1,m)F)p
=(1,m)Fp-(1,m)Fp= (m)vr- (m)vp.

Therefore, vg is a group morphism.
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The map vg is bijective:
Consider F'~ € Gycat . For m € M, we have
m(”F‘UF_) = ((17m)Fp)UF— = (17 (1,TTI,)Fp)F7p = (Lm)FFip = (17m)p =m.

Therefore, vpavp- =idy, .
Likewise, we have vp- avp = idy, .
So vp is bijective.
This defines a map
&: Gyoa — Aut(M), F = F&:= (vp: M — M, m— (1,m)Fp).

The map £ is a group morphism:

Suppose given F', I' € Gyca: . For m € M, we have
(m)((FE)(F'E)) = ((1,m)Fp) (F'¢) = (1, (1,m)Fp) ) F'p = (1,m) FF'p
= (m)((FF)¢) .

So (FE)(F'S) = (FF)E.
Therefore, ¢ is a group morphism.
Construction of £ .

Suppose given ¢ € Aut(M).

We show that U:b: VCat — VCat, (1 M 1) — (1 M 1) is a functor:

We have
Gy = (132 1) = (10 22 1) =id, .

For (1 (l—m)> 1 M 1) in VCat, we have

(1) (1)) ey = (1, Yol = (1, (m')6) = (1, (mo)(n'9)) = (1,1) s (1, m'9)
= ((1, m)v;) R ((1,m/)v(;) )

So v; is a functor.
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We show that v, is an autofunctor:
Consider ¢~ € Aut(M). For (1,m) € Mor(V Cat), we have
(L, m)(W) a0y ) = (Lmé)oly = (1moe™) = (1,m).

So vfﬁ N U:b— = idy st - Likewise, we have U;_ N vfb = idycat -
Therefore, v(’z) is an autofunctor. So vé) € Gycat -
This defines a map
¢ Aut(M) = Gycar, ¢ ¢& = (v),: VCat — VCat, (1 ), 1) — (1 Amd), 1)).
The map £ is a group morphism:
Suppose given ¢, ¢’ € Aut(M). For (1,m) € Mor(V Cat), we have
(L,m)((0d)E) = (1,me¢') = (1,me)(¢'¢') = (1,m)((6€)(¢'€)) -

So (¢ ¢')E = (&) (¢'E’) . Therefore, £ is a group morphism.
We show that &' = .
Suppose given F' € Gyt . For (1,m) € Mor(V Cat), we have

(Lm)(FEE) = (1m(FE)) = (1, (1m)Fp) = (1, m)F.

This shows £ ¢ = idg,q,, -
Suppose given ¢ € Aut(M). For m € M, we have
(m)(¢¢' &) = (L, m) (¢ )p = (1, me)p = mo.

This shows &' 4 & = idaut s -
So ¢ =¢.

Altogether, we have the mutually inverse group isomorphisms &: Gycae — Aut(M) and
& Aut M — Gycat , which shows the claim.

Step 2. We claim that we have the mutually inverse group isomorphisms
(1,m)

(" Mycat — M, (1 ——>1) —m

C: M ﬁ MVCat7 T = (-’EC idVCat — idVCa‘c) ;
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where
1 1 L’ 1
o = J(m) . <1,m>l J(m)
1 T’ 1

So x( = (1 ﬂ) 1)161.

Construction of C.

Suppose given x € M.

1, . . .
We show that (1 (Tx)> 1)1€1 is an isotransformation:

Suppose given (1 am), 1) € Mor(VCat). We have

(IL,m)a(1l,z) = (1,mz) = (1,2m) = (1,2) a (1,m),

since M is abelian.

So the following diagram is commutative.

This defines a map
¢ M = Myca, @05 aC = (155 1)

~ lel”’

We show that ( is a group morphism:

For x, 2’ € M , we have
(20)  (¢/C) = #Caidyou(@'C) = (1 L2 1) (1 L2 1) = (o L2220, )

:(1%1):(95-1”)0
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Therefore, ( is a group morphism.

Construction of (.

Suppose given a € Myca; . Then a = (idvcat % F) = (1 ﬂ 1

— )161 for some F' € Gycat

and some x € M .

Suppose given (1,m) € Mor(VCat). Then we have the following commutative diagram.

So
(Lm)F = (L,2)" a (Lm) s (1,2) = (L,a"ma) = (1,m)
since M is abelian.

Therefore F' = idy ¢yt -

So a € Mor(VCat) is of the form a = (idycas %idvcm) = (1 L),

re M.
We show that (' = .
For x € M, we have

1)161 = x( for some

(@)(¢a¢) = (155 1), )¢ =

This shows (1’ =1idy, .

For (1 % 1)161 € My cat , we have

(1221, )0 =e¢= (1221,

This shows ("a ¢ = idmy.,, -
So (' =(".

Altogether, we have mutually inverse group morphisms (: M — Mycy and
("t Mycat — M, which shows the claim.
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Step 3. For (idVCat % idVCat) c MOI(VC&t) , We have afVCat = idycat -

Therefore
(1,m)

fVCat: MVCat — GVCat7 (1 —:_> 1 = idVCa‘n :

)161

Step 4. We have
Vg =1/Mf=1/1~1
Svcat T = Gvcat / Mycat fvcas =~ Aut (M) /(Myca) ~ Aut (M)
Svme ~ Sy ~ 1.

So the commutative diagram

VT(()

()\Cayley, MCayley)T[O l X

SVCat T

SVﬂTo

from Lemma 61, where ¢ is given in Lemma 60, can be replaced isomorphically by the
following diagram.

1

|

Aut (M)

Step 5. For instance, for M := C5, we have Aut (M) ~ C5 % 1. So the group morphism ¢
from Lemma 60 is not injective in general.
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R-linear categories

Let R be a commutative ring with identity 1 = 1p.

We shall recall some basic facts on R-linear categories; cf. [13, §1.4].

4.1 Definition of an R-linear category

Definition 64 (Preadditive category) A category M together with maps
(+) = (+X7Y): ./\/l(Xa Y) X M(Xv Y) - M<X7 Y)? (man) = m+n
for X, Y € Ob(M) is called a preadditive category if (1,2,3) hold.

(1) For X, Y € Ob(M), we have an abelian group (M(X, Y), +X,y) )
We often write  0=0xy :=0,xy) forX,Y e ObWM).

b1
(2) For W - X —XY -5 7 in M, we have
b

(IA(bl+b2)AC:aAb1AC—|—CLAbQAC.

Definition 65 (R-linear category) A preadditive category M together with a ring mor-
phism ¢: R — End(id) is called an R-linear category.
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For r € R and (X —Y) € Mor(M), we write
ur:=uaY(re) = X(re)au: X =Y.

X(re)
X

g

X

}l/u

Y (re)

In particular, we have X (re) =idxr: X — X, for X € Ob(M) and r € R.
We often write M := (M, ¢).
Remark 66 Let M = (M, ¢) be an R-linear category.

Suppose given r, r' € R. Suppose given X XY — Z in M.

1) We have (uav)r =uavr =urav.

2) We have (u+a)r = ur + ar.

4

(1)
(2)
(3) We have u(r+r'") = ur +ur'.
(4) We have — u(rr') = (ur)r'.

(5)

5) We have ulgr = u.

In particular, pm(X,Y) is an R-module.

Proof. Ad (1). We have
(wav)r = (uav)a Z(re) = ua (va Z(re)) = uavr,

uavr =ua (vaZ(re)) =ua (Y(re)av) = (uaY(re)) av =urav.

Ad (2). We have
(ut+a)r=(u+a)aY(re) =uaY(re) +uaY(re) = ur +ar.

Ad (3). We have
u(r+7) =uaY((r+r)e) =usY((re) + (r'e)) = ua (Y(re) + Y (r'e))
=uaY(re) +uaY(r'e) = ur + ur’.
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Ad (4). We have
u(rr’) = ua Y ((r')e) = uaY((re)a (r'e)) = uaY(re)a Y (r'e) = (ur)r’.

Ad (5). We have

ulp =uaY(lge) = uaYidig,, = u.

Definition 67 (R-linear subcategory)

Suppose given R-linear categories M = (M, ¢) and N' = (N, ¢’).

We say that N is an R-linear subcategory of M if the conditions (1,2, 3) are satisfied.
(1) The category N is a subcategory of M.

(2) For X, Y € Ob(N), we have the following commutative diagram.

(+)
M(X,Y) X M (X,Y) M(X,Y)

J )

./\/'(Xay) XN(XvY) N(va)

(+)
(3) For r € R and X € Ob(N), we have
X(re'y =X(re): X - X .

Remark 68 Let M = (M, ¢) be an R-linear category.
Suppose given a subcategory N of M. Suppose that the conditions (1,2) hold.

(1) For X, Y € Ob(N), we have
(X RVCEN Y) € Mor(N) .

(2) Forr, 7" € Rand X —X Y in NV, we have

u/

(X 27 ) € Mor(N) .
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Then, for X, Y € Ob(N), the map
<+) M(Xuy) X M(Xay) —M (X7Y>

restricts to the map

(+): N(X’Y) X N(va) —N (va)

Let

¢ R— End(idy), 7+ (X(TE))XeOb(N) :

Then r¢’ is in fact a transformation, for r € R.
Moreover, €’ is a ring morphism.
Finally, (NV,&’) is an R-linear subcategory of (M, ¢).

In particular, every full subcategory of M is an R-linear subcategory of M.

4.2 R-linear functors

Definition 69 (Additive functor) Let M, N be preadditive categories. Let F: M — N
be a functor.

We call F' additive if
(u+v)F =uF +vF
holds for (X —Y), (X —Y) € Mor(M), X,Y € Ob(M).

Definition 70 (R-linear functor) Let M = (M, ¢) and N = (N, ¢’) be R-linear categories.
Let F: M — N be a functor.

We say that F'is R-linear if it is additive and if
F(re') = (re)F
holds for r € R.

Remark 71 Let M = (M,¢e) and N = (N,€') be R-linear categories. Let F: M — N be
a functor. Then (1) and (2) are equivalent.

(1) The functor F is R-linear.
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4.2. R-LINEAR FUNCTORS

(2) Forr,s € R and (X —Y), (X —Y) € Mor(M), we have
(ur +vs)F = (uF)r + (vF)s.

Recall that we have ur = uaY(re) = X(re)au forr € R, (X —Y) € Mor(M); cf.
Definition 65.

Proof. Ad (1) = (2). Suppose given r,s € R and (X —Y), (X —Y) € Mor(M).
We have
(ur +vs)F = (uaY(re) + vaY(se))F
= (uaY(re))F + (vaY(se))F
=uF.Y(re)F +vF .Y (se)F
=uF.YF(re') + vF .Y F(se')
= (uF)r+ (vF)s.

Ad (2) = (1). For u, v € Mor(M), we have
(u+v)F =uF +vF.

So F'is additive.
Suppose given X € Ob(M). Suppose given r, s € R.

Note that the map
MXY) =5 N XEYF), a— aF

is R-linear.
We have
X ((re)F) = (X (re))F £ (idx r)F = (idx F)r = idx F 1 (XF)(re) = (X F)(re)
= X (F(re)).
This shows (re)F' = F(re). O

Lemma 72 Let M = (M,e), N = (N,&') and P = (P,e") be R-linear categories. Let
F: M — N and G: N — P be R-linear functors.

(1) The functoridy : M — M is an R-linear functor.
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(2) The composite F'« G: M — P is an R-linear functor.

(3) Suppose that F: M — N is an R-linear isofunctor. The inverse F~: N — M is an
R-linear functor.

Proof. We use Remark 71.

ul
Suppose given X —_X Y in M. Suppose given r,s € R.

ug
Ad (1). We have

(urr + ug 8)idpg = urr + ug s = (ug idag)r + ug idpy)s .

Ad (2). We have
(wr +us $)(F % G) = (w F)r + (usF)s)G = (w1 FG)r + (uaFG)s
= (u(F % G))r + (ua(F % G))s.

Ad (3). We have
(wr +up $)F~ = (i F~F)r + (ueF~F)s)F~ = (i F7)r + (upF~)s) FF~
— (ulF_)T‘ + (UQF_)S .

4.3 Monoidal R-linear categories

Definition 73 (Monoidal R-linear category)

Suppose given a preadditive category A.

Let (A, ¢) be an R-linear category; cf. Definition 65.
Let (A, I,®) be a monoidal category; cf. Definition 12.
Suppose that (1,2) hold.

(1) For r € R and u,v € Mor(A) we have
(uRV)r=u®ur=ur®u.
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(2) For X :1>> Y in A and v € Mor(A) we have

(ur +u2) @ v = (u1 ®v) + (ug V)
v ® (uy +uz) = (V@ up) + (v ®uy).

Then we call (A, I, ®,¢) a monoidal R-linear category. We often write A = (A, I, ®, ).

Definition 74 (Monoidal R-linear functor) Suppose given monoidal R-linear categories A
and B. Suppose given a functor F': A — B.

We say that F' is a monoidal R-linear functor if F is monoidal and R-linear; cf. Defini-
tions 31, 70.

Remark 75 Suppose given a monoidal R-linear category A = (A, I, ®,¢).
For (A—% B) € Mor(A) and X, Y € Ob(A), we have

a®0xy = 0agx, Boy -

Proof. Suppose given (A — B) € Mor(A) and X, Y € Ob(A).
Note that
G®OX7Y G_A(A@X,B@Y).

We have
a®0xy =(a®0xy)+ (a®0xy) — (a®0xy) = (a® (Oxy +0xy)) — (a®0xy)
=(a®0xy)— (a®0xy) = 04gx, Boy -
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Chapter 5

Endp(M) and Aut%M(/\/l) of an R-linear
category M

Let M an R-linear category.

5.1 The monoidal R-linear category Endg(M)

Lemma 76 (The preadditive category [B,C|)

Let B be a category. Let C be a preadditive category. Consider the category of functors [B,C] ;
cf. §0.3 item 1.

For X € Ob(B) and (F —G), (FLG) € Mor([B,C]) let
X(a+0b) :=Xa+ Xb.

Endowed with this addition, [B,C] is a preadditive category.
In particular, we have

0rc = (OxF, xa) xecobs)

for F, G € Ob([B,C]).

Proof. Suppose given F, G € Ob([B,(]).
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Then ([B,C](F G, +) is an abelian group with neutral element

XG)xeons) ;

in which, for a € g¢)(F, G), its inverse is given by

OxF xa

Opc = (XF

—a = (XF ;X—a> XG)XEOb(B) .

b1
Suppose given F' -G X H — K in [B,C]. For X € Ob(B) we have
ba

X(aA(bl +bQ>AC) = Xaa (X(bl —l—bg)) AXC:X(ZA(Xbl —|—Xb2)AXC
:XCLAXblAXC+XCLAXb2AXC:X(CLAblAC) +X(CLAb2AC)
:X(CLAblAC+CLAb2AC).

Thus, aa (b +bs)ac=aabiac+aabyac. O
Lemma 77 (The preadditive category ,q44(8,C])
Suppose given preadditive categories B, C.

We have the full subcategory .q44|B,C] C [B,C] given by
Ob(aaa[B,C]) := {Biﬂfz F' is additive } .
Then 4qa[B,C]| is a preadditive category.
Proof. By Lemma 76, [B,C] is a preadditive category. Since ,qq[B,C] C [B,C] is a full
subcategory, .q4[B,C] is also a preadditive category. O
Corollary 78 (The preadditive category End,qq(.A))
Suppose given a preadditive category A. Let Endaqq(A) := aqa[A, A] .
Then Endaqq(A) is a preadditive category.

Proof. This is Lemma 77 with A =B =C. ]

Definition 79 (The category Endg(M))

Consider the functor category [M, M]; cf. §0.3 item 5.

By Endg(M) we denote the full subcategory Endg(M) C [M, M] given by
Ob(Endg(M)) := {M - M: F is an R-linear functor }:
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cf. Definition 70.

Moreover, we have

EndR(M) - Endadd(./\/l) - [M,M] ;
cf. Corollary 78.
Lemma 80 (The endomorphism monoidal R-linear category Endz(M))

Recall that M = (M,¢) is an R-linear category, where ¢: R — End(ida) is a ring mor-
phism.

Consider the category Endg(M) C [M, M| from Definition 79.

(1) We have the preadditive category Endg(M).

(2) We have a ring morphism

e: R — End <1dEndR(M))
F(re)

roe ore=(F F)FGOb<EndR(M)) ’
with
X(F(re)) (X(rs))F
F(Te)z(XF—————)XF)XEob(M) = (XF—__)XF)XeOb(M)
(XF)(re)
= (XF—>XF)X60b(M)’
for F '€ Ob(Endg(M)); cf. Definition 70.
(3) We have a functor
(x):  Endg(M) x Endg(M) — Endg(M)
( F : G ) — FG for F,G € Ob(Endg(M))
F G FxG
( e , Lo ) — ( l“”’) for a,b € Mor(Endg(M)).
F' e FrsG!

(4) We have an R-linear category given by (EndR(/\/l), e); cf. Definition 73.
Forr € R and (F — G) € Mor(Endg(M)), we have
ar =aaG(re) = F(re)aa.
So X(ar) = (Xa)r for X € Ob(M), a € Mor (Endg(M)), r € R.

95



CHAPTER 5. Endg(M) AND AutS™(M) OF AN R-LINEAR CATEGORY M

(5) We have a monoidal category given by (Endg(M),ida, *); cf. Definition 12.

(6) We have a monoidal R-linear category given by (EndR(/\/l)7 idag, *, e); cf. Defi-
nition 73.

We call
Endp(M) = (Endg(M), idp, *, €)

the endomorphism monoidal R-linear category of M.

Proof. Ad (1). By Corollary 78, End,qq(M) is a preadditive category. Since Endgr(M) is a
full subcategory of End,qq(M), we have the preadditive category Endz(M).

Ad (2). We show that € is a well-defined map.

Suppose given r € R. We have to show that re is a transformation from idgnq, to
idEnd g (M) -

Suppose given F' € Ob (EndR(M)). We have to show that F(re) is a transformation from

F to F.
X (re)

Suppose given (X BN Y) € Mor(M). Consider the transformation re = (X e X)XEQb(M)
from id 4 to idp,. Then we have
X(re)au=uaY(re).
X(re)
X X
Y Y
Y (re)
Therefore
X(F(re))auF = (X(re))FauF = (X(re)au)F = (uaY(re))F = uF a (Y(re)) F

= ’LLFAY(F(TG)) .
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This shows that the following diagram is commutative.

X (F(Te))

XF XF
YF YF

Y (F(re))

So F(re) is a transformation from F' to F.
Suppose given (F — G) € Mor (Endg(M)).

Suppose given X € Ob(M).

Y (re)

Consider the transformation re = (Y — from idys to idy,. Consider the

Y)YeOb(M)
morphism (X F 29 x G) € Mor(M). Then we have the following commutative diagram.

p (XF)(re) F
Xal lXa
XG (XC)(re) XG
So we have
X(F(re)aa) = X(F(re))aXa= (XF)(re)) s Xa = Xaa (XG)(re)) = Xas X (G(re))

= X(asG(re)) .

This shows F'(re)aa = aaG(re).
Therefore, we have the following commutative diagram.

F(re)

F(re)

So re = (F —5 F is a transformation from idgna,m) t0 idEndsm) -

) FeOb ( Endp(M))

Therefore, € is a well-defined map.
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We show that € is a ring morphism.

Suppose given r, s € R.

For F' € Ob(Endg(M)) and X € Ob(M), we have
X(F(le)) = (XF)(le) = (X F)idia,, = idxp = Xidp = X(Fid,

id pm ldEndR(M)) :
So, F'(le) = Fididg,,, u, for F' € Ob(M). Therefore e = id;
For F' € Ob(Endg(M)) and X € Ob(M), we have
X(F((r+5)e)) = (XF)((r + 5)e) = (XF)(re + s¢) = (XF)(re) + (XF)(s2)
= X (F(re)) + X (F(se)) = X (F(re) + F(se)) = X (F(re + se)) .

idgnap(m)

So, F((r+ s)e) = F(re + se) for ' € Ob(M). Therefore (r + s)e = re + se.
For F' € Ob(Endg(M)) and X € Ob(M), we have
X(F((rs)e)) = (XF)((rs)e) = (XF)(rease) = (XF)(re) « (X F)(se)
= X (F(re)) s X (F(se)) = X (F(re)a F(se)) = X (F(rease)) .

So, F((rs)e) = F(rease) for F € Ob(M). Therefore (rs)e = re.a se.

This shows that € is a ring morphism.

Ad (3). Suppose given F —* [ B and G- @ S G in Endg(M). Note that the
composite F'x G is an R-linear functor since F' and G are R-linear; cf. Lemma 72.

We have
We have
(CLA(I,) * (bAb/) = (CLACL,)GAF”(bAb/) = CLGA (CL,GAF”b) AF”b, = CLGA (a’ * b) AF”b,
= (aGaF'b)a (/G s F"V') = (axb)a(a x).

Ad (4). By (1), Endg(M) is a preadditive category.
By (2), €: R — End(idgna,(a)) is a ring morphism.

So, (Endg(M), €) is an R-linear category.

Suppose given r € R and (F — G) € Mor(Endg(M)).
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We have
ar =aaG(re) = F(re)aa;

cf. Definition 65.
For X € Ob(M), we have
X(ar) = X(aaG(re)) = Xaa X (G(re)) = Xaa (XG)(re) = (Xa)r.

Ad (5). For (F - @) € Mor(Endg(M)), we have
idig,, * @ = (idia,, F') a (idpg @) =
a*idyq,, = aidyga F'id

id amq =a.

idyv —

Recall that the horizontal composition of transformations () are associative; cf. §0.3 item 3.
This shows that (EndR(./\/l), id aq, *) is a monoidal category; cf. Remark 14.
Ad (6). Suppose given r € R. Suppose given (F - F"), (G N G') € Mor(Endg(M)).
We have
(axb)r = (a*xb)a(F'G)(re) =aG s F'b s F'G'(re)
axbr=aG s F'(br) = aG s F'(baG'(re)) = aG 1 F'b s F'G'(re)
arxb=(ar)G « F'b= (as F'(re))G s F'b=aG s F'((re)Gab) = aG 1 F'((re) = b)
=aG 4 F'(ba(re)G') = aG s F'b s F'(re)G @Rl (G a Flba F'G'(re) .

5.2 The crossed module AutSM(M)

Lemma 81 (The crossed module Aut$M(M))

Consider the symmetric crossed module Sy = (GM, M, fM,yM) on M; cf. Lemma 48.

(1) We have subgroups
GR, = {M L4 M: F is an R-linear autofunctor } ={F € Gy Fis R-linear } < Gy

M¥, = {(idp —= F): F € G¥,and a is an isotransformation} < M, .
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(2) Consider the maps
e MY — GYy, (idy—>F)— F
Vi Gl Aut (ME), & (i F) = (idu <25 67FG))
We have a crossed submodule
AutM (M) = (ME,, G v R £5) <Sm -
We call AutS™ (M) the automorphism crossed module of M.

The upper index CM in Aut$™ (M) should merely indicate that Aut$M(M) is a crossed module.
However, cf. Lemma 98 below.

Proof. Ad (1). By Lemma 72.(1), we have idy € G¥,. Suppose given F, G € G¥,. Then, by
Lemma 72.(2,3), we have G~ € G, and FG~ € G¥,. So, we have a subgroup G, < G-

Consider the group morphism My, RENYe! M - Since we have Gf/[ < G, we have a subgroup
34 (GRy) = {idy —— F: F € G} = M} < M.

Ad (2). Suppose given (ida % F)e MZ%, . Then
(a) R, = F = (a)fr € GF, .

R G
So, £ty = fum |M%

Suppose given (idM %) F) € Mf,t and G € Gf,l . We have
a® = (idy 2% GTFQ).

By (1), we have G"FG € G¥,. So, a® € M¥,.
Therefore, Autgr(M) < S is a crossed submodule; cf. [15, Def. 17].
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Chapter 6

The operations L = (—)R and U

We will construct in § 6.1 an operation L = (—) R that maps from monoidal categories, monoidal
functors and monoidal transformations to monoidal R-linear categories, monoidal R-linear
functors and monoidal transformations by R-linear extension.

This could be summarized by saying that L is a 2-functor from the 2-category of monoidal
categories to the 2-category of monoidal R-linear categories.

We will construct in §6.2 an operation U that maps from monoidal categories, monoidal func-
tors and monoidal transformations to invertible monoidal categories, monoidal functors and
monoidal transformations.

This could be summarized by saying that U is a 2-functor from the 2-category of monoidal
categories to the 2-category of invertible monoidal categories.

We will show that in § 6.3 that L and U are related in a way that could be called a 2-adjunction.

We hope that the reader who wishes to use the language of 2-categories will be able to rephrase
our assertions accordingly.

6.1 The operation L. =(—)R

Definition 82 (The category CR)
Recall that we are given a category C and a commutative ring R with identity.
We have a category CR given as follows.

We set
Ob(CR) := Ob(C).
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For X,Y € Ob(CR), the set of morphism from X to Y is given by the free module over R
with basis ¢(X,Y),

CR(Xa Y) = (c(X, Y))R

Writing a morphism of CR in the form ) u;r;: X — Y, we implicitly suppose given a finite
ieS
set S indexing this formal sum, and implicitly suppose (u;: X — Y) € Mor(C) and r; € R
for 1 € S. Often, we also write Y w;r; = > u;r;.
i i€S

For X =Y — Z in CR, where u = > u;r;, v= Y. v;s;, the composite is given by

i€S JjeT
wav = (D _wri)a (D vis;) = Y (wav)ris;.
i€S JET (4,5)eSXT

Lemma 83 (The R-linear category CR)

(1) The category CR is a preadditive catgory; cf. Definition 64.
(2) We have a ring morphism ¢r: R — End(idcgr), 7 +— rog , with
X(regr) :=idxr

for X € Ob(CR). Le. forr € R, we have

idxr
X X X
rYr = lu — ul lu .
Y Y Y
idy?“

So, (CR,pr) is an R-linear category; cf. Definition 65.

b
Proof. Ad (1). Suppose given W - X “2 Y %+ Z in CR. Without loss of generality, we
b/

may write a = Y, agri, b= > bis;, V' = > bs), c= D oty

keK leL leL peP
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We have
s(b+1)a Zakrk ((Zblsl) + (Zblsg)) R (Zcptp)
keK leL leL peEP
Z&krk (Zbl Sl+8l>‘(chtp)
keK leL peP

— Z (ak A bl A Cp>7“k(sl + s;)tp

(k,l,p)EKXLxP

= E (ak A bl A Cp)TkSltp + (ak A bl A Cp)TkSEtp
(I{IJ,p)eKXLXP

( Z (ak A bl A Cp>7’k8ﬂfp) —+ ( Z (ak A bl A Cp)TkSEtp)

(k,,p)EKXLXP (k,,p)EKXLxXP
( Z akrk Z blsl Z Cptp ) ( Z akrk Z blsl ( Z cptp)>
keK leL pEP keK leL pEP

:aAbAC—I—aAb/AC.

So CR is a preadditive category.
Ad (2). We show that o is well-defined.

Suppose given r € R and u = (X M Y) € Mor(CR).
We have
X(rpgr)au=1idxra (Zuzsz) = Z(idx AU)TS; = 2:(uZ aidy)rs; = Zu s aidyr
€S €S €S €S
=uaY(rer).

Therefore, rppg is a transformation from ideg to ideg .
We show that g is a ring morphism.
Suppose given r, s € R.
For X € Ob(CR), we have
X(lpgr) =idx 1g = idy .
Therefore, 1pr = idiq,,, -

For X € Ob(CR), we have
X((r + S)gOR) =idx(r+s) =idxr +idys = X(rer) + X(spr) = X(rer + s¢r) -
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Therefore, (r + s)pr = rer + SYr .
For X € Ob(CR), we have
X ((rs)pr) =idx(rs) = (idx a idy)(rs) = (idxr)a (idxs) = X (rer) « X (s¢r)
= X ((r¢r)a(ser))

Therefore, (rs)pr = (rer)a (ser) -

So @g is a ring morphism. O]

Lemma 84 (The monoidal category CR)
Suppose given a monoidal category (C, Ic, QE) ); cf. Definition 12.

Consider the category CR; cf. Definition 82.

(1) We have a functor

(C@é): CRxCR — CR
(X,Y) b Xg%Y::XQC?Y for X, Y € Ob(CR)
(Zuiri, Zvjsj) — Zuzr,) %(Zvjsj) = Z(ui(?vj)risj
) J 7 J 2y}

for > wr;i, > v;s; € Mor(CR).
i J

(2) We have a monoidal category (CR, I, é}%)

Proof. Ad (1). For u= (X =7 X7, v = (Y 2% y%) € Mor(CR), we have

(uéX])%v)SZ (;(ui?vj)risj)s:X?Y:X%Y:us%vs
(uéXI)%v)t = (;(ui?vj)risj)t:X'(?Y':X’%Y’:uté%vt

(X@Y)i= (X?Y)i:idx(?yzidx?idy =idy @ idy = Xi @ Vi.
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Moreover, for X DR Y 2t Z and X' > Y’ » 7' in CR, we have

(UAU)(%(UIAU/) = Z(Uz A U;)TiS; 8 Z U V)t = Z ((uiavy) ® (up av)))Tisjtip

PIIRIA k. >vim

1,5 1,5,k,l

= Z ((us %)u;g) s (v (?Ul))ritksjpl = Z(ul ?u%)mtk N Z(Uj (?vf)sjpl
ikl ik 4l

- / /

= (U%U)A(U%U)

So (® ) is a functor.
CR
Ad (2). Suppose given u = Y w;r;, v =Y v;s; and w = > wity € Mor(CR) . Write I := I
i j k;

We have

ug]@%idf Zun ®1d[ Zuz®1d[ Zum—u
id[%uzld[% Zum :Z1d1®ul T Zun—u

i

Further, we have

(ugv)(%w = (Z(uz ®v] rlsj Zwktk = Z (u; ®vy) ®wk)(7“isj)tk

— c C
4,5,k
— Z (wi ® (v; (?wk:))Ti(Sjtk) = Zum @ (Z(vj Ggwk)sjtk)
l,],k (3 ]7k
=u® (vRuw).
CR' CR
So, by Remark 14, (CR, I, g%) is a monoidal category. a

Lemma 85 (The monoidal R-linear category CR)
Suppose given a monoidal category (C, Ic, <§§> ); cf. Definition 12.

Consider the R-linear category (CR, ¢r); cf. Lemma 83.
Consider the monoidal category (CR, I, (;8;%); cf. Lemma 84.

Then (CR, I, g@ ,©or) 18 a monoidal R-linear category; cf. Definition 73.
R

Proof. Suppose given t € R and u = > w;r;, v =), v;s; € Mor(CR).
i J
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(u®v)t = (Z(W @ vi)risi )t =Y _(u; D y)ris;t = > (u; @ v;)ri(s;t)

i,J 1,J

2y
() g (L) —ug .
i j
(u®v)t = (> (u ©v;)ris; )t = > (s Quj)ris;t = > (i ®vy)(rit)s;

i,J 1]

i.j
— (Zuirit)g%(Zvjsj) :utg%v.

J

So, (CR, I, g}% ,vr) is a monoidal R-linear category. ]

Lemma 86 (The functor FR)

Suppose given categories C and D. Suppose given a functor F': C — D.

(1) We have an R-linear functor given by

FR: CR — DR
X —s XFR:=XF for X € Ob(CR)
u= Y wry — uFR =Y (wF)ry forue Mor(CR) .
keK keK

(2) Suppose that C and D are monoidal categories. Suppose that F: C — D is a monoidal
functor.

Then the functor FR: CR — DR given in (1) is a monoidal R-linear functor.

Proof. Ad (1). We show that FR is a functor.

Suppose given X T,y 2 “Y. Z'in CR. Write u := > wirp and v =) v;8;
We have

(uFR)s = () (w;F)r;)s = XF = XFR = (us)FR

(XFR)i = (XF)i = (Xi)F

(uFR)t = () (w;F)r;)t =YF =YFR = (ut)F,

)
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and we have
(UAU)FR = (Z(UZ AUJ')TZ'SJ')FR = Z ((uz A’Uj)F)T’Z'Sj = Z(uiF‘UjF>TiSj
LJ 1,3 1,J

= Z(Uz‘F)ﬁ (0 F)s; = (D (wiF)ri) a (Y (v;F)s;) = uFR.0FR.

i J

So FR is a functor.
We show that FR is R-linear.

Suppose given s, t € R and suppose give X — < Y € Mor(CR). Without loss of generality,

u/

we may write u =: > wu;r; and v’ =: > u,r).
i 7

We have

(ur +u's)FR = (( Z wirys) + ( Z unét)) FR = (Z ui(rs + rit)) FR

7

- Z(uzF)(ns +rit) = Z ((uiF)riS + (ulF)r;t)

7

= (D) _(wF)ri)s + (Y _(wF)rj)t = (uFR)s + (u'FR)t.

K3 K

Thus, by Remark 71, FR is R-linear.
Ad (2). By (1), FR is an R-linear functor. We have to show that FR is monoidal.
We have

(Ie)FR = (I¢)F = Ip.

Suppose given u = > w;r;, v =y v;5; € Mor(CR).
i J

We have
(w@v)FR = (3 (w @ vj)ris)) FR =} _ ((wi @ v)F)ris; = > ((wsl) @ (v3F))ris;
= (Z(uzF)n) ® (Z(ij)sj) = (uFR) ® (vFR) .
Thus, by Remark 32.(1), FR is monoidal. O
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Lemma 87 (The transformation aR)

Suppose given categories C and D . Suppose given functors F, G: C — D. Suppose given a
transformation a: F — G .

Consider the R-linear categories CR and DR; cf. Lemma 83. Consider the R-linear functors
FR, GR: CR — DR; cf. Lemma 86.

(1) Then we have a transformation aR: FR — GR given by

Xa

(X)aR XF2X% xa

aR = ((X)FR (X)GR)

X€Ob(CR) " ( )XeOb(C)'
(2) Suppose that C and D are monoidal categories. Suppose that F, G: C — D are

monotdal functors. Suppose that a: F' — G is a monoidal transformation.

Then the transformation aR: FR — GR given in (1) is a monoidal transformation.

Proof. Ad (1). For X ==Y in CR, where u = Y_ u;r; , we have

7

((X)aR) s (v)GR) = Xa. (Z(ulG)n) = Z (Xaa(wG)r;) = Z(XG/A'U/iG)TZ‘

% 7

- Z (wF)aYa)r;=> ((wF)riaYa) = () (wF)r;)aYa

% i

= ((u)FR) 4 ((Y)aR) .

xrr N vor
(u)FRl l ()GR
(Y)FR (V)aR (Y)GR

Ad (2). We have
(ICR)GR = (Ic)(lR = (]c)a = id],D = id[DR .
For X € Ob(CR) = Ob(C), we have

(XS%Y)@R = (X ® Ya = (Xa) © (Ya) = ((X)aR) ® ((Y)aR).

DR
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Lemma 88 Suppose given categories C, D, £ and K.
Suppose given functors F, F',F":C —-D and G,G': D — & and H: £ = K.

Suppose given transformations a: F'— F' and a': F' — F" and b: G — G'.

(1) We have (

(2) We have (F*G)R=FR xGR.
(3) We have (idp)R = idpg .

(4) We have (aad )R =aR 1d'R.
(5) We have (a*xb)R=aRxbR.
(6) We have (

FbH)R = (FR)(bR)(HR) .

FR GR
TN

: i
cp IR DR bR ER i KR
W \_/

F'R GR

Proof. Ad (1). For u =) w;r; € Mor(CR), we have

(u)((ide)R) = (u;ide)r; = Zur = u.

2
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So (ldc>R = idCR .
Ad (2). For u =) u;r; € Mor(CR), we have

(u)((F *G)R) = Z (ui(FaG))ri = Z (w; F)G)r; = (Z(uiF)n)(GR)
- ((Zuiri)(FR)) (GR) = (u)((FR) * (GR)) .

So (F'« G)R = FR x GR.
Ad (3). For X € Ob(CR), we have
(X)((idpr)R) = (X)idp = idxp = idxpr = (X)idpg -

So (idp)R = idgg -
Ad (4). For X € Ob(C) R, we have

(X)((aad)R) = X(asd) = Xa s Xd' = ((X)aR) 1 (X)d'R) = (X)(aR 1+ d'R).
So (aad )R =aR +d'R.
Ad (5). For X € Ob(CR), we have

So (a*b)R=aR*bR.
Ad (6). For X € Ob(C), we have
(X)((FbH)R) = (X)(FbH) = ((X)(FR))(bH) = ((X)(FR)(bR)) H
= (X)(FR)(bR)(HR) = (X)((FR)(bR)(HR)) .
So (FbH)R = (FR)(bR)(HR) . O
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Remark 89 Suppose given categories C and D. Suppose given a functor F: C — D.

(1) Suppose that F'is an isofunctor. Then FR: CR — DR is an R-linear isofunctor and its
inverse is given by F~R: DR — CR. This follows by Lemma 88.(2).

(2) Suppose that C and D are monoidal categories. Suppose that F' is a monoidal functor.
Then FR: CR — DR is a monoidal R-linear isofunctor and its inverse is given by
F~R: DR — CR. This follows by (1) and Lemma 86.(2).

Remark 90 Suppose given a category C. Consider the category CR; cf. Definition 82.

(1) We have a faithful functor given by

P: C — CR

X — XP:=X for X € Ob(C)
u +— uP:=ulp forue Mor(C).

So we may identify the category C with its image under the functor P, and thus, we
may consider C as a subcategory of CR. Hence, we write Je cr := P.

(2) Suppose that the category C is monoidal.

Then, by Lemma 84, CR is monoidal, and so, C is a monoidal subcategory of CR; cf.
Definition 16.

6.2 The construction U

Lemma 91 (The invertible monoidal category CU)
Let (C,1,®) be a monoidal category.

(1) We may define a subcategory CU of C as follows.
Ob(CU) :={X € Ob(C) : X is tensor invertible}
Mor(CU) := {(X —=Y) € Mor(C) : u is tensor invertible};

cf. Definition 19.

(2) Then (CU,I,®) is a monoidal subcategory of (C,I,®); cf. Definition 16.
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(3) The monoidal category (CU, I, ®) is an invertible monoidal category; cf. Definition 21.

Note that in general CU is not a full subcategory of C.

Proof. Ad (1). By Remark 20.(8,9), CU is closed under source, target and identity. By
Remark 20.(10), CU is closed under composition.

So CU is a subcategory of C.

Ad (2). By Remark 20.(3), the unit object I € Ob(C) is tensor invertible. Therefore
I € Ob(CU).

Suppose given u,v € Mor(CU), i.e.u and v are tensor invertible morphisms in C.

By Remark 20.(5), © ® v € Mor(C) is tensor invertible. Therefore u ® v € Mor(CU).

So, by Lemma 17, (CU, I, ®) is a monoidal subcategory of (C, I, ®).

Ad (3). Suppose given u € Mor(CU).

By Remark 20.(7), we have u®~ € Mor(CU).

Therefore, (CU, I, ®) is an invertible monoidal category; cf. Remark 22. O

Lemma 92 (The monoidal functor F'U)

Suppose given monoidal categories C and D. Suppose given a monoidal functor F': C — D;
cf. Definition 31.

Consider the invertible monoidal categories CU and DU; cf. Lemma 91.

We have the monoidal functor FU := F‘CDS .

Proof. Suppose given X € Ob(CU) and u € Mor(CU).

By Remark 33, we have (X®7)F = (XF)® € Ob(D) and (u®")F = (uF)®~ € Mor(D).
So, XF € Ob(DU) and uF' € Mor(DU).

Thus the functor F'U := FES: CU — DU exists.

Moreover, for u,v € Mor(CU), we have
(u@V)FU=(u®v)F =uF @ vF = uFU®vFU .

So, by Remark 32.(2), F'U is a monoidal functor. O
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Remark 93 Suppose given C LD % € in MonCat.

Consider CU Z% DU Y% €U in InvMonCat.

(1) We have (id¢)U = idey -
(2) We have (FxG)U = (FU)* (GU).
Remark 94 The invertible monoidal category CU is a monoidal subcategory of C; cf. Defi-

nition 16.

So we have the monoidal embedding functor Jey ¢: CU — C, (X - Y) — (X LN Y).

6.3 The relation between L and U

Lemma 95 Suppose given an invertible monoidal category C. Suppose given a monoidal
R-linear category D.

Consider the monoidal R-linear category CR; cf. Lemma 85. Consider the invertible mo-
noidal category DU ; cf. Lemma 91.

(1) Suppose given a monoidal functor F': C — DU.

Then there exists a unique monoidal R-linear functor F: CR — D such that the fol-
lowing diagram commutes.

F

C DU

Jc,cz«z[ JjJDU,D

CR - D

F
This functor F s given by
F: CR — D
X — XF:=XF for X € Ob(CR)
u= Y wry — uF:= Y (uF)r, forue Mor(CR) ;
kEK keK

cf. Definition 82.
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(2) Suppose given a monoidal R-linear functor G: CR — D.

Then there exists a unique monoidal functor G: C — DU such that the following
diagram commutes.

G

DU

C
JC,CR{ [JDU,D
D

CR

G
This functor G is given by
G: C — DU
X — XG:=XG for X € Ob(C)
u +— uG :=uG  foru € Mor(C) .

Le. we have G = G‘CDU.

(3) Suppose given a monoidal functor F: C — DU. Consider the monoidal R-linear func-
tor F: CR — D from (1).
Then

X

F=F.
(4) Suppose giwen a monoidal R-linear functor G: CR — D. Consider the monidal functor
G: C — DU from (2).
Then

Proof. Ad (1). F is a functor:
For X € Ob(CR), we have
(idx)F = (idx)F = idxp = idy -

Suppose given X 27 Y 2 YV, 7 in CR. Write u := dowr; and v =) v;s; .
( J
We have
<UAU>F = ((Zuln) R (Zvjsj))ﬁ = (Z(u“vj)risj)ﬁ’ = Z ((u“vj)F)risj
i j irj ij
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= (B a (s F)risy = (3 (b)) a (D (0 F)sy)

i J

- ((Zum)ﬁ) A<(ZUij)F> — wF A vF

J

So, F' is a functor.
The functor F' is monoidal:

Suppose given u = > w;r;, v =y v;s; € Mor(CR).
i J

We have

(u®v) ( Zu r; (Zvjsj)>F = (Z(ul ® Uj)TiSj)F = Z ((uZ ® Uj)F)TiSj

1,J 1]

= Z wF @ viF)ris; = (Z(UZF)TZ) ® (Z(U]F)SJ)

J

= (Zum)ﬁ@ (ZUij)F:uF®UF,
i J

and
(Iep)F = (IQ)F = (Ie)F = Ip = Ipy .

So, by Remark 32.(1), F" is monoidal.
The functor F' is R-linear:

Suppose given r, s € R.
Suppose given u = (Zum X=Y) v= (Zvjsj: X —Y) € Mor(CR). We have

(ur—l—vs ( Zum r+ Zvjsj ) Zumr—FZv]sj
—Z u; P’ nr—i—Z vjF)s;s = Z(u,;F)n)r—i—(Z(ij)sj)s

= (uF)r + (vF)s.

By Remark 71, F'is R-linear.
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The diagram in (1) is commutative:
Suppose given u € Mor(C). We have
(’ZJ,)JQCR ﬁ = UF = uF = (’U,F)JDU,D = (U)F J’DU,D-

Therefore Je cr F=F Jpu,p -
The functor F' is unique with respect to this commutativity:

Suppose given an R-linear monoidal functor F:CR — D such that Je.cr F=F Jpu,p
holds.

Suppose given u = > u;r; € Mor(CR). We have

uF = (Z“m)p = Z(Uzﬁ)ﬁ = Z(Uz Je.cr F)ri = Z(UzF Jpu,p)Ti

) 7

= Z(Uz Je,cr F)Tz' = Xz(uzF)rZ = (Zum)p —ukF.

So, F =F.
Ad (2). The functor G is well-defined:

Suppose given X € Ob(C). By Remark 33.(1), XG is tensor invertible in D. Therefore
XG € Ob(DU).

Suppose given u € Mor(C). By Remark 33.(2), uG is tensor invertible in D. Therefore
uG € Mor(DU).

Thus, G‘CDU exists and we may let G := G‘?U.

The functor G is monoidal since G is monoidal, and C € CR and DU C D are monoidal
subcategories; cf. Remark 32.(2).

The diagram in (2) is commutative:
Suppose given u € Mor(C). We have
(u)Je,cr G = uG = (u)G Jpy,p = (u)é Jpu.p -
Therefore Je cr G = G Jpu,p .
The functor G is unique with respect to this commutativity:
Suppose given a monoidal functor G: C — DU such that Je.ecrnG = G Jpu,p . Suppose given
u € Mor(C).
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We have
(u)@ = (U)é JDU,D = (U)JQCRG = (u)@ JDU,D = u@
So, G = G.
Ad (3). By (1), we have the following commutative diagram.
F
C DU
JC,CR{ [JDU,D
CR " D
F

By (2), the functor F is the unique monoidal functor from C to DU such that the following
diagram is commutative.

X

F

DU

C
Jc,CR{ [JDU,D
D

CR

~

F

So we conclude that F = F.
Ad (4). By (2), we have the following commutative diagram.

C G DU
Jc,CR{ [JDU,D
D
CR e

By (1), the functor G is the unique monoidal R-linear functor from CR to D such that the
following diagram is commutative.

G

DU

C
Jc,CP{ [JDU,D
D

CR

A

G
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So we conclude that é =(@. O

Lemma 96 Suppose given an invertible monoidal category C. Suppose given a monoidal
R-linear category D.

Consider the monoidal R-linear category CR; cf. Lemma 85. Consider the invertible mo-
noidal category DU ; cf. Lemma 91.

Recall that Ob(C) = Ob(CR); cf. Definition 82.

(1) Suppose given monoidal functors F, F': C — DU. Suppose given a monoidal transfor-
mation a: F'— F'.

Consider the monoidal R-linear functors F,F': CR — D given in Lemma 95.(1).

Then there exists a unique monoidal transformation a: F — F' such that

Je,cr @ = aJpy,p.

a DU

Jpu,p

This transformation a is given by

R A Xa o Xa
a=(XF = XF,)XeOb(CR) = (XF = XF/)XeOb(C)'

(2) Suppose given monoidal R-linear functors G,G": CR — D. Suppose given a monoidal
transformation b: G — G'.

Consider the monoidal functors G,G': C — DU from Lemma 95.(2).

Then there exists a unique monoidal transformation b: G — G' such that

Je.cr b="bJpup.
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G
jz;
G’
Je.cr Jpu,p
G
J D
G/
This transformation b is given by
1 = Xb = Xb
b= (XG — XG/)XeOb(C) = (XG — XG/)XeOb(CR) :

(3) Suppose given monoidal functors F, F': C — DU. Suppose given a monoidal transfor-
mation a: F'— F'. Consider the monoidal transformation a: F — F' from (1).

Then

Q¢

=a.

(4) Suppose given monoidal R-linear functors G, G': CR — D. Suppose gwen a monoidal
transformation b: G — G'. Consider the monoidal transformation b: G — G

from (2).
Then

o

=b.

Proof. Ad (1). We show that a is a transformation:
Suppose given u := » u;r;: X — Y in CR.

We have
wEFaYa = (ZUiri)FAYa = (Z(uZF)n) WYa= Z(uiFAYa)ri

i

= Z(XaAuiF')n = Xaa (Z(u,F')n) = Xaa (Zum)ﬁ’

%

= Xa.uF'.
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So a is a transformation.
The transformation a is monoidal:
We have
(Icr)a = (I¢)a = (Ig)a = idp,, = idy, -

For X, Y € Ob(CR), we have
(X®Y)i=(X®Y)a=Xa® Ya=Xa®Ya.
CR c DU D

So a is monoidal.
The transformation a satisfies the equation given in (1):
For X € Ob(C), we have
(X)Je,cra=Xa=Xa=(X)a Jpup.

So, Je,cr @ =a Jpu,p.
The transformation a is unique with respect to this equation:
Suppose given a monoidal transformation a: F— P satistying Je cr @ = a Jpu,p.
Then, for X € Ob(C), we have
Xa=(X)Jecra=(X)a Jpup=(X)Jecra=Xa.

So, a = a.
Ad (2). We show that b is well-defined:
For X € Ob(C), we have
(XB) @ (X70) = (X & X7)b = (Ie)b = id
Likewise, we have (X®7b) % (Xb) =1idy, .
Therefore, the morphism Xb is tensor invertible in D. Hence the tuple
b= (xG 2% X - (x¢ X4 x@)

Xe0b(C) X€Ob(CR)

has entries in DU. It is a transformation from G to G’ since given X — Y in C, we obtain
UG Yb=uGaYb= XbauG = XbauG'.
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The transformation b is monoidal since b is monoidal; cf. Remark 36.
The transformation b satisfies the equation given in (2):
For X € Ob(C), we have

(X)Je.cr b= Xb= Xb= (X)b Jpu.p.

The transformation b is unique with respect to this equation:
Suppose given a monoidal transformation b: G— G satisfying Je cr b= b Jpu.p -
Then, for X € Ob(C), we have

Xb=Xb Jpu,p=XJecr b= Xb Jpup = Xb.

Ad (3). We have G: F — F'. From Lemma 95.(3), we know that F'=F and that £ = F'.

By (1), we have

Je,cr @ = aJpu,p-
By (2), @ is the unique monoidal transformation from F to F’ that satisfies the following
equation.

Je.cr @ =aJpu,p.

So we conclude that a =

Ad (4). We have b: G — ¢’ From Lemma 95.(4), we know that G = G and that &' = G'.
Sob: G— G

By (2), we have

a.

Jecr b="0bJpyu.p.

By (1), b is the unique monoidal transformation from G to G’ that satisfies the following
equation.

Je.cr b="0Jpu.p.
So we conclude that ?) =b. O
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Chapter 7

The isomorphism between

Autp(M) and ( Aut%M(./\/l)) Cat

Remark 97 (The invertible monoidal categories (Auty“(M))Cat and Autr(M))

(1) Recall that we have the invertible monoidal category (Auty“'(M))Cat with
Ob((Aut;"(M)) Cat) = G¥,
={M Ly M: F is R-linear isofunctor}
Mor (( Auti*(M)) Cat) = G, x M¥,

= {(G,idy —= F): G, F € GY; and a is an isotransformation},

st G xME, - GE (G idy -5 F) = G

. idiq

i: G x MR < GE . (Gidy —%idy) «— G

t: G, x M, — G, (G idy - F) — GF.
(G,idpy - F) (GF,idpy -5 F')

For @ GF

composite is given by

GFF' in (Autf"(M))Cat, their

axa’

(G,a)a (GF,a) = (G,idp — F) 2 (GF,idy - F') = (G, idy &% FF') = (G,a* d).

Note that each morphism from G to GF is of the form (G,idy — F) since G is an
isofunctor.



CHAPTER 7. THE ISOMORPHISM BETWEEN Autp(M) AND (Auti™(M))Cat

Cf. Lemma 39 and Lemma 81.

(2) Recall from Lemma 91, 80 that we have the invertible monoidal category ( Endg(M))U

with
Ob((Endg(M))U) =  {F € Ob(Endg(M)) : F is tensor invertible}
02O {M -5 M: Fis an R-linear isofunctor}
Mor (( Endg(M))U) {(F = G) € Mor(Endg(M)) : a is tensor invertible}

2 26

©
s
[

{(F = G) : ', G are R-linear isofunctors,
and a is an isotransformation} ,

s: Mor((Endg(M))U) = Ob((Endg(M))U) , (F--G) — F
i: Mor((Endg(M))U) < Ob((Endg(M))U) , (Fld—F>F) — F
t: Mor((Endg(M))U) = Ob((Endg(M))U) , (F--G) — G.

For F -G - H in (Endg(M))U, their composite is given by
(FG)s (G- H) = (F % H).

We write

Autp(M) := (Endg(M))U .

Lemma 98 Consider the functor CM: CR Mod — InvMonCat; cf. Lemma 42. Consider
the automorphism crossed module Auth(/\/l); cf. Lemma 81.

We have
(Autp(M))CM = AutZ(M).

Proof. We write (M',G",+, f') := (Autr(M)) CM.
We have
M' 2 {a € Mor (Autp(M)): as = idy}
= {(idm %> H): H € G¥, and a is an isotransformation }
=M%, .

The multiplication in M%, < M, is given by the group multiplication () of M, restricted
to M%,, where (%) is the horizontal composition of transformations; cf. Lemma 45.(2). The
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multiplication in M’ is the horizontal composition () in Autz(M) inherited from Endz(M),
and subsequently restricted to M’; cf. Lemma 40.

So (M’,*) = (M¥,, ).
We have
G' £ Ob (Autp(M)) = Ob ((Endg(M)U ) = G, .
The multiplication in G¥, is given by the composition of functors () in G o4 restricted to G, ;
cf. Lemma 45. The multiplication in G’ is the composition (x) of functors in Ob ( Endg(M)).
So (G, %) = (G, ).
For F € G’ and (idy —> H) € M' = MY, we have
a(Fy) £ (F~ = F) s (5 H) o« (F 25 F)
= (idv =25 F-HF)
i a(FyY).
This shows v = vy, .
For (idy — F) € M' = M}, we have
af Lat=FZafl, .
This shows f' = ff,l .
Altogether, we have (Autz(M)) CM = Autz"(M). O
Theorem 99 (The isofunctor Realy,) Suppose given an R-linear category M.

Consider the invertible monoidal categories ( Aut$" (M))Cat and Autgr(M); cf. Remark 97.

We have the monoidal isofunctor
Realy, : (AutiM(M))Cat = Autp(M)
G — GRealy, =G
for G € Ob((Autf"(M)) Cat) |

(G (@ dp = F) | GF) — (G, a)Realy = (G5 GF)

for (G, a) € Mor((Auti™(M)) Cat) .
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Its inverse is given by the monoidal isofunctor
(Realp)™: Autp(M) — (Auti"(M))Cat
G — G(Realpy)” =G for G € Ob(Autg(M))
(F,idy &% F~ G) / G)

(F-5G) —> a(Realy)” = (F
for (F - G) € Mor(Autg(M)).

The situation can be depicted as follows.

(SM )Cat EIldR<M)
(AutfY (M))Cat ReilM Autp(M) === (Endg(M))U

Proof. By Lemma 98, we have Auty"' (M) = (Autp(M)) CM.
Then, by Proposition 43.(2), for C = Autg(M), we have the monoidal isofunctor
Realy, (AutHY(M))Cat —  Autgr(M)
G — GRealyy =G
for G € Ob((Auti"(M)) Cat) ,

<G (G’ldM—>F>\GF> — (G, a) Real y :(GMG*F)

— (GE5GF)
for (G, a) € Mor(( Auti"(M)) Cat)
with inverse

(Realp)™: Autg(M) — (Auty"(M))Cat

G — G(Realy )~ =G for G € Ob(Autr(M)) ,
. idpog—*a
. Fidy 2227 pe- 4 q
(F-5G) — a(Realy)~ = (F (F id . )\G>

(F (Fidy —% F~G) | G)

for (F —+G) € Mor(Autg(M)).
O]
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Modules over
a monoidal R-linear category

Let A= (A, I4,®, ) be a monoidal R-linear category.

8.1 A-modules, A-linear functors
and A-linear transformations
8.1.1 A-modules

Definition 100 (A-module)

Suppose given an R-linear category M. Suppose given a monoidal R-linear functor

P A — EndR(M),
(M)(a®)
(A#B)H M (M)(AD) M)(B?)
km — (m)(A®) (m)(B®)
N N)(AD N)(B®
(N)(A9) e (V)50

cf. Definition 70 and Lemma &0.
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Then (M, ®) is called an A-module or a module over A.
We often write M := (M, ®).
For M,N € Ob(M), A, B € Ob(A), (M = N) € Mor(M) and (4 - B) € Mor(A), we

write

M®A = (M)(A®) € Ob(M)

m@A = (m)(AP): (M)(AP) — (N)(AD)

M®a = (M)(a®): (M)(AP) — (M)(BP)

m@a = (m)(AD)(N)(a®) = (M)(a®) s (m)(B): (M)(A®) — (N)(BD).

So we obtain the following commutative diagram in M.

Moa— MO ren
\
m® A m® a mE B
\
N®A N®B
X a

We call (®) the action tensor product of A on M.
Remark 101 Suppose gz’uen an A-module (M, ®).
Suppose given M — M' = s M in M.

Suppose given A5 A" 25 A" in A and B B in A.

We have idy ® A = idpyga -
We have (mam')@A=(m® A)s(m @ A).

We have M Q@ I4= M.

We have M ®ida = idpyea -

(1)
(2)
(3)
(4) We have m® Ly=m
(5)
(6) We have m®ids=m®A.
(7)

We have idy®a=M®a.
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(8) We have M ® (asxd)=(M®@a)s(M®d).
(9) We have (m®a)@b=m® (a®D).
(10) We have (mam/)®@ (asxd)=(m®a)s(m' @d).

Proof. Ad (1). We have
dy ® A= (ldM)(ACI)) = idM(Aq>) = idM®A.

Ad (2). We have
(mam) @ A= (mam)(A®) = (m(AD)) x (m'(AP)) = (Mm@ A)a (m' @ A).

Ad (3). We have
M@Ig=(M)Ts®) = (M) Ignazmy = (M)idpg = M .

Ad (4). We have
m® Iy = (m)(Ia®) = (m) Ignazm) = (M)idpyg =m.

Ad (5). We have
M ®idy = (M)(ida @) = (M)(idas) = idyas) = idumea -

Ad (6). We have

= (m)(AD) =m @ A.

Ad (7). We have
idy ® a = (idy ) (AP) o (M) (ad) v idygaa (M)(a®)) = (M)(a®) =M ®a.
Ad (8). We have
M@ (ard)=(M)((a2d)®) = (M)(aP s a'®) = (M)(a®) s (M)(d'®)
=(M®a)s(M®d).
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Ad (9). We have

(m®a)®b=((m)(A®) « (M')(a®)) ®b

= ((m)(A®) » (M")(a®))(B®) 4 ((M')(A'®)) (b®)

= (m)(AQ)(B®) s (M')(a®)(B®) 4 (M')(A'D)(bD)
(m)((A® B)®) 2 (M')((a®)(B®) » (A'D)(bP))

= (m)((A® B)®) 1 (M')(a® * b®)

= (m)((A® B)®) » (M")((a @ 1))

=m®(@a®b).

Ad (10). We have
(mam) @ (asd) = ((mam/) @A)+ (M" @ (asd))

m®A)a(m @A) s (M'® a)
meA)a(m @a)s(M"®@d)
mA)a (M ®@a)a(m @A) s (M"®d)
m®a)a(m ®ad).

A (M/l ® a/)

Definition 102 (A-submodule)
Suppose given A-modules (M, ®) and (N, 9’).
We say that (N, ®’) is an A-submodule of (M, ®) if (1,2,3) hold.
(1) The category N is an R-linear subcategory of M; cf. Definition 67.
(2) For A € Ob(A), we have Ad' = A(Pm//.
(3) For N € Ob(N) and (A —= B) € Mor(A), we have
(N)(a®') = (N)(a®): (N)(AB) — (N)(BE).

Lemma 103 (The functor Op) Suppose given monoidal R-linear categories (A, 14, (i%) )
and (B, Iz, %} ,@). Suppose given a monoidal R-linear functor F: A — B; cf. Definition T4.

Consider the monoidal R-linear category Endg(B); cf. Lemma 80.
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Then, we have a monoidal R-linear functor O given by

O A — Endg(B),
X%(aF)
(14L>14/)'_> X X%(AF) X%(A/F>
U u%)(AF) u(}l?(A’F)
X’ X'® (AF) X'® (A'F)
B X/Q[?((ZF) B

In particular, (B,OFr) is an A-module.

Proof. Write © := Op and ® := %) .

We show that © is well-defined.

We show that A© and a® are well-defined for A € Ob(A) and a € Mor(A).
Suppose given A € Ob(A).

We show that A© é Ob(Endg(B)), i.e. that AO is an R-linear functor.

Suppose given X — X’ s X" in B. We have
(us)(AB) = X(AO) = X R AF =us ®idar s = (u®idap)s

(ut)(AO) = (X')(A0) = X' @ AF = ut ®idar t = (uRidap)t
= (u(A40))t
(X1)(A0) = (idx)(AB) = idx ®idap = idxgar = (X(AO))i.

Further, we have
(uat)(AO) = (uat) @ idar = (U ®idar) a (v @ idar)
= (u(A0)) 4 (v (AO)) .

So AO is a functor.

131



CHAPTER 8. MODULES OVER A MONOIDAL R-LINEAR CATEGORY

uy
Suppose given r, s € R and X < X’ in B. We have

(urr 4+ uy 8)(AO) = (U1 r + ug s) ®idar = (u1 @ idar) T + (ug ® idar) s
= (u1(AO))r + (u2(AB))s .

So A© is R-linear.

Hence, A® € Ob(Endg(B)).

Suppose given (4 — A’) € Mor(A). We show that a© é Mor(Endg(B)), i.e. that a© is a
transformation.

Suppose given (X —+ X’) in Mor(B). We have
(X(a0)) » (u(A'0)) = (idx © aF) 4 (u@idyr) "L (idy Au) ® (aF sidyr)
IU®CLF (UAldX/> (ldAFACLF> (u®1dAF)A(1de ACLF)

— (u(40)) « (X'(a6)

X (a®) X(40)
u(AO) l lu(A’@)
X'(A6)

X'(a®)

So a© is a transformation.
We show that © is a functor.
Suppose given A —— A’ 2 A" in A, Suppose given X € Ob(B). We have
(as)© = AO = (aO)s
(at)® = A'© = (aO)t
(AD)O = (id4)0 = (X @ (id4)F )XGOb(B) (X ®idar)xecons) = (idxgar)xecobs)
= (idx(ae)) xconm) = idae = (AO)1.
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Further, we have

X((CLACL/)@) idX ® ((aAa’)F) = idX & (CLFACL/F) = (idx Aidx) ® (CLFACL/F)
(idy ® aF)a(idx ® d'F) = X(aO) 1 X(d'O)

=  X(a©.d0).

101.(10)

This shows (aaad')® = aB.d'©. So © is a functor.
We show that © s R-linear.

ay
Suppsose given A —< A’ in A. Suppose given r,s € R. Suppose given X € Ob(B).

a2

We have
X((ar + a25)0) = idy ® ((a17 + a2s8)F) = idx ® (a1 F)r + (a2 F)s)
= (idx @ (@ F))r + (idx @ (a2F))s
= X((@0)r) + X ((a20)s)
= X ((@1O)r + (a20)s) .
So © is R-linear; cf. Remark 71.
We show that © s monotidal.
Suppose given (A — A’'), (fl SN /I/) € Mor(A).
For X € Ob(B), we have
X(a®© % a®)

X ((a©)(A0) 4 (A'0)(a0))
X ((a@)(,&@)) 1 X((A'0)(a0))
idy ® aF)(A0)4 (X @ A'F)(a®)
idy ® aF ®id 45) a (ldxgar ® aF)
idy ® aF ®idzp)a (idx ® idar ® aF)
idy aidx) ® ((aF ®1id4z)a (idar ® aF))
idy @ ((aF aidar) ® (idgpaal))

=  idx ® (aF ®aF)

idx ® ((a®a)F)

= X((a®a)o).

This shows a© x a0 = (a ® a)0O.

—
o
—

A~
=
(=]

=

(
(
(
(
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For u € Mor(B), we have
u(lg®) =u@I4F=u®lp 101:'(4)u:uidg.
This shows 140 = idg.
So © is monoidal; cf. Remark 32.(3).
Altogether, © is a monoidal R-linear functor. m

Definition 104 (The regular .A-module)

Suppose given a monoidal R-linear category (A, I 4, <§J ,©). Consider the monoidal R-linear
functor © :=0;q,: A — Endg(A) from Lemma 103.

O: A — Endg(A),
X(%a
(ALA’)H X X(%A X(%A’
U, u® A u® A
A A
X' X' ®A X' ®A

Then (A, ©) is an A-module, called the regular A-module.

8.1.2 A-linear functors

Definition 105 (A-linear functor)

Suppose given A-modules (M, ®) and (N, ?’).

An R-linear functor F': M — N is called A-linear if we have
(m®a)F=mF®a

for m € Mor(M) and a € Mor(A).

Lemma 106 Suppose given A-modules (M, ®) and (N, ®"). Suppose given an R-linear
functor F: M — N .

Then F' is an A-linear functor if and only if the conditions (1,2) hold.
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(1) For m € Mor(M) and A € Mor(A), we have
(m®A)F=mF®A.

Le. we have

(A®)F = F(AD')
for A € Ob(A).

(2) For M € Ob(M) and a € Mor(A), we have
(M®a)F=MF®a.

Le. we have

(a®)F = F(ad')

for a € Mor(A) .

So, for an A-linear functor, we have

(M ®a)F

(M® A)F
™~
(m®a)F
~
(M'® B)F
(M'®a)F

(M & B)F

(m® A)F (m® B)F

(M'® A)F

MF ®a
MF®A
™~
mF ® a
~.
MF® B
MF®a

MF®B

mF® A mF ® B

MF®A

for (M = M") € Mor(M) and (A— B) € Mor(A).

Proof. Ad = . Suppose that F': M — N is an A-linear functor.
Suppose given (A —= B) € Mor(A) and m = (M - M') € Mor(M).
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We have
(m) (AD)F) "2V (m @ id4)F = (mF) @ ids = (m) (F(A")).
Therefore, (AD)F = F(Ad).
We have
(M) ((a®)F) 27 (idy @ a)F = (idy F) ® a = idyr®a = MF®a=(M)(F(ad')).

Therefore, (a®)F = F(ad’).
Ad <. Suppose that (1,2) hold.
For (M = M') € Mor(M) and (A —» B) € Mor(A), we have
(m®a)F=(meA)s(M'®a))F=(m®A)F.(M ®a)F
=(mMmF @A) s(M'F®a)=mF®a.

So F'is A-linear. N

Lemma 107 Suppose given A-modules M, N and P. Suppose given A-linear functors
F-M—=NadG: N —P.

(1) The identity idpy: M — M is an A-linear functor.

(2) The composite F+G: M — P is an A-linear functor.

Proof. We use Lemma 106.
Ad (1). For m € Mor(M) and a € Mor(A), we have
(m®a)idy =m®a=(midy) ®a.

Ad (2). For m € Ob(M) and a € Mor(A), we have
(m®a)FG=(mF®a)G=mFG®a.
[

Lemma 108 Suppose given monoidal R-linear categories B and C . Suppose given monoidal
R-linear functors F: A — B and G: B — C.

AL B %
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By Lemma 103, the R-linear category B is an A-module via

Op: A — Endgz(B),
X ® (aF)
(A% A o X X%)(AF) 5 X%(A’F)
U u%(AF) u%(A’F)
¢ X'@ (AF) X'® (A'F)

and the R-linear category C is an A-module via

Ora: A — Endg(C),
Y%)(aFG)
(A#A,)I—) Y Y(?(AFG) Y%@(AFG)
v v%)(AFG) v%{)(A’FG) '
Y’ Y'® (AFQG) Y'® (AFG)
¢ Y'®(aFG) ©

c
Then the R-linear functor G: B — C is A-linear.

Proof. Suppose given (M — N) € Mor(B) and (A—- B) € Mor(A).
We have
(m®a)G = ((m)(AOF) 1 (N)(aOF))G = ((m%AF) s (N%)aF))G
= (m%)AF)G A (N%aF)G = (mG%)AFG)A(NG%)aFG)
= (mG)(AOpg) 2 (NG)(aOpg) = (mG) ® a.
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8.1.3 A-linear transformations

Definition 109 (A-linear transformations)
Suppose given A-modules (M, @), (N, ®’). Suppose given A-linear functors F,G: M — N .

A transformation n: F' — G is called A-linear if we have

(M & A)F E20% (M@ A)G) = (MF) @ A 225 (MG) @ A)

for M € Ob(M) and A € Ob(A).
L.e. we have
(AD)n = n(A')
for A € Ob(A).
Lemma 110 Suppose given A-modules L, M, N and P . Suppose given A-linear functors

H: LM, FF'F' M — N and G,G': N — P. Suppose given A-linear transforma-
tionsn: F — F ,n: F' — F" and9¥: G = G .

F G
" /an\ N
c M — N 9 P
N N
F// G/

(1) The transformation idgp: F — F is A-linear.
(2) The vertical composite nan': F — F" is an A-linear transformation.
(3) We have A-linear transformations Hn: HF — HF' and nG: FG — F'G .

(4) The horizontal composite nx9: FG — F'G’ is an A-linear transformation.

Proof. Suppose given L € Ob(L), M € Ob(M) and A € Ob(A).
Ad (1). We have
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Ad (2). We have
= (M) (M) @ A= ((M)(narf)) @ A.

Ad (3). We have
(Lo A)Hn = ((LH)® A)n = ((LH)n) ® A= ((L)(Hn)) ® A,

and similarly
(M ®AnG = (Mn) @ A)G = (Mn)G) @ A= ((M)(nG)) ® A.

Ad (4). Recall that n* 9 = (F'9)a (nG'); cf. §0.3 item 3. By (3), FY and nG" are A-linear,
and then by (2), n * ¢ = (F9) . (nG’) is A-linear. O

8.2 The monoidal R-linear category End(.A)

Let (A, I,®,¢e) be a monoidal R-linear category.
Lemma 111 Consider the monoidal R-linear category Endg(A) ; cf. Lemma 80.
We have the subcategory End 4(A) C Endg(A) with
Ob(End4(A)) := (AL A: (a®b)F = a® (bF) for a, b € Mor(A)}
Mor(End4(A)) := {F - G: F, G € Ob( Endu(A))
and (X ®Y)a=X® (Ya) for X, Y € Ob(A)}.

So here we can consider an action of A on A from the left. The functors appearing
in Endy(A) are to be compared with Definition 105. The transformations appearing in
End4(A) are to compared with Definition 109.

Proof. Suppose given F -5 G s Hin End4(A).
Suppose given X, Y € Ob(A).
We have
(X®Y)idp =X®Y =X ® (Yidp) .

This shows idp € Mor( End4(A)).
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We have
(X ®Y)(aab) =(X®Y)ara(X@Y)b=(X®(Ya))a (X ® (YD) =X®(YasYb)
=X @ (Y(aab)).
This shows aab € Mor(End(A)).
So End4(A)) is a subcategory of Endg(A). O
Remark 112 Suppose given F € End4(A). For X, Y € Ob(A), we have
(XQY)F=X® (YF).

Proof. For X, Y € Ob(A), we have
(X ®@Y)F = ((idx ®idy)F)s = (idy ® (idy F))s = X @ (YF).

Remark 113 (The monoidal R-linear category End4(.A))
(1) The category Enda(A) is a monoidal subcategory of (Endg(A),ida, ) ; cf. Defini-
tion 16.

(2) The category Enda(A) is an R-linear subcategory of (Endg(A),€) ; ¢f. Definitions 65,
67.

(3) We have the monoidal R-linear category End4(A); cf. Definition 73.
Proof. Ad (1). For a, b € Mor(.A), we have
(a®b)idg=a®b=a® (bidy).
This shows that the unit object id 4 is contained in Ob( End(A)).

Suppose given (F — F'), (G LN G') € Mor(Enda(A)). For X, Y € Ob(A), we have
(X®@Y)(axb)=(X®Y)(aG+F'b) = (XRY)(a@)+ (X @Y)(F'b)
= (X®(Ya)Ga(X®YF))b=(X®(YaG))a (X @ (YF'D))
=X @ ((YaG)a (YF'D) = X @ (Y(aGaF'b)) = X @ (Y(axD)).
This shows a * b € Mor(End4(A)).
Then, by Lemma 17, End 4(.A) is a monoidal subcategory of Endg(A).
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Ad (2). Suppose given F, G € Ob(End4(A)).
For X, Y € Ob(A), we have
(X ®Y)0pa I Oxev)F, (xev)a = Oxa(yF), Xo(ya) EXxe Ovrya EXxe (YOrq) -

This shows Opc € Mor( End4(A)).

Suppose given r, 7' € R and F' —2 G in End4(A).

al

For X, Y € Ob(A), we have
(X@Y)(ar+dr)=(X@Y)a)r+ (X @Y)d)r'=(X® Ya))r+ (X (Yd))r
= <X ® ((Ya)r)) + (X ® ((Ya')r')) =X ® (Ya)r+ (Yad)r)
=X @ (Y(ar +d'r')).
This shows ar + a’r € Mor(End4(A)).
Then, by Remark 68, End4(A) is an R-linear subcategory of ( Endg(A),€).

Ad (3). The category End 4(.A) is a monoidal R-linear category since Endg(.A) is a monoidal
R-linear category and since (1) and (2) hold; cf. Definition 73. O

Lemma 114 We have the monoidal R-linear isofunctor

v A — EndA<.A)
A — AU = (X -5Y) - (X © A5 Y © A)) for A€ Ob(A)
(A A — a¥ for a € Mor(A)
with
X X®A XA
aVl = u —— u®A u® A
\% Y ®A YA

X a

Its inverse is given by the monoidal R-linear isofunctor

U~: Endy(A4) — A
F — IF for F € Ob(End4(.A))

(F5G) — (IFI%1G) for b e Mor(End4(A)) .
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Proof. Consider the monoidal R-linear functor ©;4,: A — Endg(A) from Definition 104.

@idA: ./4 — EndR(A),
a / X
(A—=4) X X®A 20 xeA
U u® A u® A
Y Y®A Y A

Y ®a

End 4 (A

We show that Oy A‘ exists.

Suppose given A € Ob(A). We have to show that A©q, é Ob(End4(A)).
For a, a € Mor(.A), we have

(a®a)(ABi,) = (a®a)®A=a® (@a® A) =a® (@(A0i4,)) -
This shows AB;q, € Ob(End4(.A)).

Suppose given a € Mor(.A). We have to show that a©iq, & Mor(End 4(.A)).
For X, Y € Ob(A), we have
(X®Y)(aOiu,) =X ®Y)®a=X® (Y ®a) =X @ (Y(aOia,)) -

This shows aOjq, € Mor(End4(A)).

So let ¥ := 1dA|EndA(A

Then U: A — End4(A) is a monoidal R-linear functor.
We show that ¥': Enda(A) — A, (F N G)— (IF I—b>IG) is a functor.

Suppose given F -5 G — H in End_4(A).

We have
bW's = (Ib)s = IF = bs¥’
FV'i=1Fi=idp = lidp = idp¥V' = FiV’
bU't = (Ib)t = IG = bt V',
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We have
(bAC)\If/ = I(bAC) =Jbilc= b‘I}/AC\I//.

So ¥’ is a functor.

We show that U’ is the inverse isofunctor of W.
For (A—+ A’) € Mor(A), we have
a(Ux¥)=I(aV)=I®Ra=a.
This shows W« W' =id 4.
Conversely, suppose given (F — SN G) € Mor(End4(A)). For X € Ob(A), we have
X (VW) =X((Ib)¥) =X @ (Ib) = (X @ I)b= Xb.
This shows b(V' % U) = b.
So U x ¥ = idEndA(A) .
Therefore, we have W' = U,

Then, by Lemma 34.(3), ¥~ is a monoidal functor, and by Lemma 72, U~ is an R-linear
functor.

So U~ is monoidal R-linear functor. O]

8.3 Representations of a crossed module V

8.3.1 The monoidal R-linear category (VCat)R

Remark 115 (The monoidal R-linear category (V Cat)R)

Suppose given a crossed module V' = (M Gy, f ) . Consider the invertible monoidal category
VCat; cf. Remark 29. Recall that

Ob(VCat) = G, Mor(VCat) =G x M.

For ¢ Lom), g-mf M g - (mm’)f in VCat, their composite is given by

(g7m) A (g ) mf7 m/) = (gamm/) :
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Consider the monoidal R-linear category (V Cat)R ;cf. Lemma 85. Then
Ob((VCat)R) = Ob(VCat) =G,

and for g € G and m € M, the set of morphisms from ¢ to ¢g-mf in (VCat)R is given by
weayr(9:9-mf) = (veat(g,g-mf))R.
For g € G and m,m’ € M, note that
gmf=g-m'f e mf=m'f & m(m')" €kerf & ' €kerf:m=m'k.

So, for g € G and m € M, the set of morphisms from ¢ to g-mf is given by
(VCat)R(gyg -mf) = {Z(%mi)ﬁi r; € R, m; € M, where m; f = mf}

= {Z(g,mki)m: ri € R, ki € kerf}.

Writing a morphism of (V' Cat)R in the form Z(g, mk;)r;: g — g-mf, we implicitly suppose
k; € ker f, r; € R with ¢ € I, where [ is a ﬁnifce set.

Example 116 Suppose given crossed modules V := (M, G,v, f) and W := (N, H, ﬂ,ﬁ).
Consider the invertible monoidal categories V Cat and W Cat; cf. Remark 29.

Recall that
Ob(VCat) =G, Ob(WCat) =H
Mor(VCat) =G x M, Mor(WCat) = H x N.

Consider the monoidal R-linear categories A := (V Cat)R and B := (W Cat)R; cf. Lemma 85.
Then

Ob(A) = Ob(VCat) = G,
Ob(B) = Ob(WCat) = H.

For g € G and m € M, the set of morphisms from ¢ to ¢g-mf is given by
Alg,g-mf) = {Z(Q,mi)rii ri € R, m; € M, where m;f = mf}-

Similarly, for h € H and n € N, the set of morphisms from h to h-nf is given by
g(h,h-nt) = {Z(h,nj)rj: r; € R, nj € N, where n;jl =nl} .

J

This situation now yields an example for the action tensor product.
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(1) Suppose given a crossed module morphism p = (A, u): V. — W. Consider the
monoidal R-linear functor F' := (pCat)R: A — B; cf. Lemma 39, 86.

Consider the monoidal R-linear functor Op: A — Endg(B) from Lemma 103. Then
B is an A-module via

Op: A— Endp(B), (9 2 g-mf) = (90r L% (g mf)0r)
h

(9 - mf)©OF) maps a morphism ( l(hv”)) € Mor(B) to the
h-nt

where (g@p ————>(g’m)®F

diagram morphism

hi-(g,m)F
h-gF (g,m) h-(g-mf)F
(h,n) - (gF)i l(h,n) ((g-mf)F)i
h-nt)-gF h-ntl)-(g-mfHF
(h-nt)-g (h-ne)i-(g,m)F( ) (g-mf)
h-gu,mA\
h-gu (e gre ) h-(g-mfu
= (h-gu, ngu)k [ (h (g-mfu, n(g-mf)u)
(h-nt)-gu (bt~ gm ) (h-nl)-(g-mf)u

cf. Lemma 108.

Suppose given h € Ob(B) and (h LNy nl) € Mor(B). Suppose given g € Ob(A)

and (g(g’—ng -mf) € Mor(A).
The action tensor product of A on B works as follows; cf. Definition 100.
h®@g = h(gOr)="h-gu

(h,n)®g = (h,n)(gOF) = (h,n)- (gu)i = (h,n) - (gp,1) = (h - gu,no")
h®(g,m) = h((g,m)Op) = (ki) - (g, m)F = (h,1) - (g, mA) = (h - g, mA)
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(hon g@F) (h-n)((9.m)0r) )

(91, 1)) & (R -1, 1) - (g, mA))

(h,n) @ (g.m) = ((
(7,

= (h gu nW) (h-nl- gu,m\)
(
(

h- g, no - mA) (h,n) - (gp, mA)

(2) Consider in particular the identity crossed module morphism
idy = (idps,idg): V —» V.
Write A := (VCat)R. Consider the monoidal R-linear functor
id4 =idw cayr = ((idy)Cat )R: A — A;

cf. Lemma 86.
Consider the monoidal R-linear functor © := ©yq,: A — Endg(A) from Lemma 103.
Then A is a regular A-module via

@:A—>EndR(A),(g(g—’m)—>g-mf) (g@g—)%( -mf)@)7

h
where (g@ lom)O, (g- mf)@) maps a morphism ( l(han)> € Mor(.A) to the diagram

morphism "
hi- (g, m
heg ) (gem)
(h,n)-gzi [(h»n)'(g-mf)i
h-nf)- h-nf)-(g-m
(h-nf)-g i (g (h-nf)-(g-mf)
h-g,m
heg (hg.m) he(g-mf)
_ (h.g,ng)l [(h~(g~mf),n(g'mf)) ;
henf)- h-nf)-(a-m
(h-nf)-g hnf gom) (h-nf)-(g-mf)

cf. (1) and Definition 104.
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Suppose given h € Ob(A) and (h LGN nf) € Mor(A). Suppose given g € Ob(A)

and (g(g’—m>)9~mf) € Mor(A).

The action tensor product of A on A works as follows; cf. Definition 100.

h® g = h(g®)=h-g
(h,n)®g = (h,n)(g0) = (h,n)-gi= (h,n)-(g9,1) = (h-g,n)
he(g,m) = h((g;m)®) = (hi)-(g,m) = (h,1)-(g,m) = (h-g,m)

(hyn) @ (g.m) = (hn g@) (- nf)((9.:m)0))

(2 1))+ ((h-nf.1) - (g.m))
(h- g,n9> (h-nf - g.m)
(h- g,n9 - m)

- (o,
Example 117 Suppose given crossed modules
V= (MG, f), V= (MG, f)and V" := (M",G".+", f").
Suppose given crossed modules morphisms
p=N\p):V—=Vandp:=W\N,pu): V' = V",
Consider the monoidal R-linear categories

C:=(VCat)R, C':= (V'Cat)R and C" := (V"Cat)R;

cf. Remark 115.
Consider the monoidal R-linear functors
= (pCat)R: C — C' and F' := (p' Cat)R: C' — C";
cf. Lemma 86.
So we have
cLo e
Then, by Lemma 107, F’ is an C-linear functor.

In fact, for (g’ m g - m’f) € Mor(C’) and (g lom), g- mf) € Mor(C), we have

(gm) @ (g.m)F "EY (g gp, (m’)g“-mA)F’=<(g’-gu)u’, ((m’)g“-mA)X>

= (g1 - gu, (m/ N9 mAN)
= (g, m'N) - (gup',mAN) = (¢, m")F' @ (g,m) .
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8.3.2 Representations of VV and modules over (V' Cat)R

Let V = (M, G, f) be a crossed module. Let M = (M, ) be an R-linear category.
Reminder 118 Consider the functor Cat: CR Mod — InvMonCat from the category of
crossed modules to the category of invertible monoidal categories; cf. Lemma 39.

Consider the functor CM: InvMonCat — CR Mod from the category of invertible monoidal
categories to the category of crossed modules; cf. Lemma 42.

Then we have the crossed module isomorphism (7y,idg): VCat CM — V', where

T L X M — M, (1,m) — m;

cf. Proposition 43.(1).
Note that (7TM, idg)_ = (LM, ldg) V — VCat CM with
i M —1x M, m— (1,m).

Remark 119 (The invertible monoidal category (Auty"(M))Cat)

Recall that the automorphism crossed module Aut%M(./\/l) = (Mgl, Gﬁ,yﬁ, ff\%/l) of M is
given as follows; cf. Lemma 81.

GR = {M %5 M: G is an R-linear autofunctor}
M%, = {(idy — F): F € GY, and a is an isotransformation}
Yy My = GYy, ([dy—=F) = F

YR GR = Aut(ME), G ((idy -5 F) = (idy =5 G- FG))

Consider the invertible monoidal category (Auty“'(M))Cat. Recall from Remark 97.(1)
that

Ob((Auti"(M)) Cat ) = GE,
Mor((Autz"(M)) Cat ) = G x MY, ,
and that
st (GR xME) —=al . (Gidy->F) — G
(R x ME) « GR | (G ida 2 idy) 1 @
t: (GE xME) —=GE, (Gidy-=F) ~ GF.

~.
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Composition in (Auty"(M))Cat is given by

(G,idp > F)a (GF,idp - F') = (G, idy &% FFY),
where G, F, ' € Gf,l and where a and a’ are isotransformations.

Definition 120 (Representation of a crossed module)

A crossed module morphism p: V' — Auth(/\/l) is called a representation of V on M.

Lemma 121 Suppose given a representation p =: (\, p): V — AutSH(M).

Consider the monoidal R-linear categories (VCat)R and Endg(M); cf. Remark 115 and
Lemma 80.

Then we have a monoidal R-linear functor given by

A

P, (VCat)R — Endg(M)
g g<i>p :=gp  for g € Ob(VCat)
z =) (g, mki)r; 2d, for z € Mor(V Cat)
with
(X mk;)\)r;
X (g 2NN 1
2D, = u U(QM)J u((g-mfp)
Y Y((g-mf

Y (gn) = ¥ tom)) (k) ((g-mf)n)

So altogether, we obtain a (V Cat)R-module (M, ®,); cf. Definition 100.

Proof. By applying the functor Cat: CR Mod — InvMonCat to the crossed module mor-
phism p, we obtain the monoidal functor

pCat: VCat — (Autf™(M))Cat
g — g(pCat) = gp for g € Ob(V Cat)
(9.m) — (g.m)(pCat) = (gu,idpe ™ mfu) for (g,m) € Mor(V Cat);
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cf. Lemma 39.(1).

Consider the monoidal isofunctor

Realy: (Auth"(M))Cat  — (Endg(M))U
F +  FRealy:=F for e G

(F,idy —% H) +—  (F,a)Realy for (F,a) € GE, x M¥,

with
XF
X XF © s XFH
(F,a)Realy = Fa = U, uF uFH |
Y YF YFH
Y Fa
cf. Theorem 99.
So we have the composite monoidal functor ®, := p Cat * Real y
®,: VCat — (Endg(M))U
g — g®,=gp for g € Ob(V Cat)
(g,m) — (g,m)®, for (g, m) € Mor(V Cat)
with
X ((gr)(m))
X X(gn) X((g-mfn)
(g.m)®, = | |u ——  u(gp) u((g-mf)p)
Y Y(gp) Y((g-mfn)
Y ((gu)(mA))
Then, by Lemma 95.(1), we have a monoidal R-linear functor
D, (VCat)R — Endg(M)
g — gcﬁp =gd,=gu for g € Ob(VCat)

2= (g, mki)r; Z&)p => (g, mk;)®,r; for z € Mor(VCat)

K3 (2
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with
X (g =K ONERNT
2D, = u u(gp) u((g-mf)u)
Y Y mf
Y (gn) = @) (k) ((g-mf)n)

Lemma 122 Consider the invertible monoidal category V Cat; cf. Remark 29.

Suppose given a monoidal R-linear functor ®: (VCat)R — Endgr(M), i.e. we have a
(VCat)R-module (M, ®) ; cf. Definition 100.

Then we have a representation py = (Mg, pta): V — AwtG (M) of V on M, where
Ap: M — MY m— (1,m)®
pe: G — G, g g®.

Proof. By Lemma 95.(2), we have the monoidal functor

®: VCat — (Endg(M))U = Autgr(M)
g —> ¢o:=gd for g € Ob(VCat)
(g,m) — (g,m)d = (g,m)® for (g, m) € Mor(V Cat) .

By applying the functor CM: InvMonCat — CR Mod to ®, we obtain the crossed module
morphism
(A, 1) == & CM: VCat CM — (Autz(M)) CM = AutGM (M),

where

(1,m)®
—

Arlx M — MY, (1,m) — (ida mf®),

and where

,u:G—>GfA, g— gP;

cf. Lemma 39.
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Consider the crossed module isomorphism
(LM ,idg) Vv T> VCat CM ;

cf. Reminder 118.
Then we obtain the crossed module morphism
()\qg, /Lq;.) = (LM ,idg) A Ci) CM, V= Auth(M)

with
Aot M — MY, me— mAe = (m)(tara)) = (L,m)(\) = (1, m)®
and with
po: G =GR, g guo = (9)(idgap) = g®
as desired. ]
Lemma 123

(1) Suppose given a representation p: V — AutSM(M).
By Lemma 121, we have the monoidal R-linear functor @p: (VCat)R — Endg(M).

In turn, by Lemma 122, we obtain the representation
Py, V — AutGM(M).
Then
P, = P-

P

(2) Suppose given a monoidal R-linear functor ®: (VCat)R — Endg(M), i.e. we have the
(VCat) R-module (M, ®).

By Lemma 122, we have the representation py: V — Aut$(M).

In turn, by Lemma 121, we obtain a monoidal R-linear functor
®,.: (VCat)R — Endg(M).

Then

K>

PP
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Proof. Ad (1). We write (A , pg,) == ps, and we write (A, p) := p.
For m € M, we have

mAg, B (1,m)d, ZmA.

For g € G, we have

122 = 121
ghe, = 9%, = g

This shows pg = (Ag, , 1e,) = (A 1) = p-
Ad (2). We write (Mg, tta) := po.
For 3" (g, mk;)r; € Mor((V Cat)R), we have

(g, mk)® = ((g,1) - (1, mk;))® * "Z7 (g, 1)® % (1, mk,)®
= (g®)((1,mk;) ) ((9,1)®@) ((mf)®) = (9®)((1, mk;)®) & (idy®)(m f)®
= (9@)(1, mk;)®

and thus

(Z(g,mk )rl)@ 2 Z(g,uq))((mki))\q))ri 122 Z(g(b)((l, mk;)®)r; = Z ((g, mk;)®)r;

% 7 % %

= ( Z(g, mk’i)n)@ )

i

This shows &, = @ O

8.3.3 Permutation modules

Let V = (]\/[7 G, f) be a crossed module.

Let X = (Mor(X),0b(X),(s,%,t), a ) be a category. Consider the R-linear category X R;
cf. Definition 82. Recall that

Ob(XR) = Ob(X)

xr(X,)Y) = (x(X,Y))R for X,Y € Ob(XR).

Consider the symmetric crossed module Sy = (MX, Gx, v, f X) on X and the symmetric
crossed module Sy = (MXR, GXR77XR7fXR) on XR; cf. Lemma 48.
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Recall that
Gy = Aut(X) = {X X Fisan autofunctor}
My = {(id;( LN F) : F € Gy and a is an isotransformation }
Gyr = Aut(XR) = {XRL XR: F' is an autofunctor}

Mxr = {(idxr AN F'): F' € Gyp and @' is an isotransformation} .

The symmetric crossed module Syg has the crossed submodule
At (XR) = (Mg, GXp, Yo f¥r) < Sar -
Recall that
GEL,={XR 5 XR: Fis an R-linear autofunctor}
MY, = {(idxr —— F): F € G¥ and a is an isotransformation};
cf. Lemma 81.

Lemma 124

(1) We have a crossed module morphism
Px.r = (Axr, Wxr): Sx = Sxr
with
F FR
Wy Rr: GX — GXR; (X — X) — (XR—)XR)
}\X,R: My — M){R, <1d)( L)F) — <1d)(Ra—R>FR) ;
cf. Lemma 86 and Lemma 87.
(2) We have im(pyr) < AutSY(XR), i.c. we have
im(Ay ) < GEp and im(py ) < M5 .
So we have group morphisms
- GRn R F FR
Hx.Rr ‘= LL/'\;"R‘ : Gx%GXR,(X%X)H(XR—)XR)
4 M§ R R . a . aRR
AX,R = AX,R‘ e M)(%MXR,(ldX—>F)l—>(1dXR—>FR).
We obtain a crossed module morphism
prr = (Ax g, ftvr): Sx — AutGV(AR);
cf. [15, Lem. 25.(2), Rem. 20, 19].
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Proof. Ad (1). We write ug := py g and Ag :=Ax g .
We show that ur and Ar are group morphisms.
For F,G € Gy, we have
(FxG)pupr=(F*xG)R=FR x GR= Fur * Gug;

cf. Lemma 88.(2).
So, g is a group morphism.
For a,b € My, we have
(axb)Ar = (a*b)R =aR *x bR = a\g * bAg;

cf. Lemma 88.(5).

So, Ag is a group morphism.

We show that (Ag, pr) is a crossed module morphism.
Suppose given (id;( i)F) €My and G € Gy .

We have

G~ aG (G=aG)R

(a9)Ar = (idy —= G FG)Ag = (idy ——— (G~ FG)R)

(

= (idy SBED, (G- R)(FR)(GR))
(
(

idy DGR (FR)(GR))

idy 2% FR)" = (aR)F = (aAg)%n ;

cf. Lemma 88.

We have

(@Arfrr = (idy = F)Agfyr = (idvg 2 FR) fxg = FR = (F)un

= (idx == F) fx pr = (a) fx pr.

AR

My Mxyr
fr l [ fxr
Gx Gxr

155



CHAPTER 8. MODULES OVER A MONOIDAL R-LINEAR CATEGORY

So, (Ar, pr) is a crossed module morphism.

!
Ad (2). We show that im(ugr) < G5 5.
Suppose given F' € Gy . Then Fup = FR is an R-linear functor; cf. Lemma 86.(1). So

!
We show that im(Ag) < MiR.
Suppose given a = (idy — H) € My. Then alg = (idy — H)(A\g) = (id/ya—R>HR),
where HR € G?R. S0 aAg € MﬁjR.
[

Proposition 125 (Permutation modules) Suppose given a V-category X ; cf. Definition 2.
Consider the crossed module morphism from Lemma 56

px = (Ax, ptx): V = Sy;

cf. also Proposition 57.

Recall from Lemma 56 that for X € Ob(X), we have X -g = X(gux) and that for
(X L>Y) € Mor(X) we have u-(g,m) = u(gpx) a (Y(gux)(m)\/y)) forg e G andm € M.

Recall that then

Mx - G—>Ggg,
u u-(g,1
g (gpa: X 5 X (X-5Y) o (X g 29y g))
and
/\X:M—>M/y, ldx(l,m)
X — > X -mf
mi— miy = U U{ [u-(mf,l)
Y Y-mf
ldy(l,m)
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Then (XR,®) is a (VCat) R-module via

(VCat)R -2 Endg(XR)
g — g®:=gux forge Ob((VCat)R)

z:= (g 2ilgmba)r, g-mf) — z® for z € Mor((VCat)R)

X
where the transformation z® maps a morphism (l%fujsy‘) € Mor(XR) to the diagram
Y

morphism
ldX . ,mki T
X-g 2t (g, mh) X -(g-mf)
> (uj - (9,1))s; ‘Zj (uj - (g(mf),1))s;
Y.g Y- (g-mf)

> idy - (g, mk;)r;

We shall call (XR, ®) the permutation module over (V Cat)R corresponding to the V-category
X.

Proof. Consider the crossed module morphism from Lemma 124.(2)
pxr = Avr, fa.r): Sy — AwtS" (XR) < Sxr

with

frvr: Go— Chp (X 5 X) = (YREE XR)

Aer: My = MEg, (idy 5 F) = (ider 25 FR) .
So we have a crossed module morphism from V' to Aut%M(XR) given by

pi=pxaPxr=(Avadyg, fixaftrr): V = Auti" (XR).

We write p:= pryapyg and \:= )\XA}V\)CR.

By Lemma 121, we have a monoidal R-linear functor

d:=0d,: (VCat)R — Endg(XR)
g — g®,=gu for g € Ob(VCat)
z:=y (g,mk)r; — z®, for z € Mor(V Cat)

7
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X
where the transformation z®, maps a morphism (l%ﬁw&) € Mor(XR) to the diagram
Y

morphism

Y Y((g-mf
) g (g @)

(X X mkl )\X T
() gy IR )

=| > ((Uj)(QMX))Sj{ sz ((Uj)((g : mf);w))Sj

Y x Y mf X
(Y)(gp )Zi (Y(Q,MX))((mk?i))\X)Ti( )((g-mf)px)

X.g > idx - (g, mki)ri X (g-mf)

= > (s - (g, 1))8{ {Zj (uj - (g-mf.1))s;

Example 126

(1) Recall that we have a V-category given by VCat = (G X M,G,(s,1,t), a ); cf. Re-
mark 5.(2).

Recall that morphisms in (V Cat)R are of the form (Y_,(g, mk;)ri: g — g-mf). Often,
it suffices to consider R-linear generators of the form (g,m).

Consider the permutation module ((V Cat)R, ®) of V over VCat from Proposition 125,
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with
(VCat)R -2 Endp ((VCat)R)
(05 g.mf) — (90 2% (g-mf)D),

h
where the transformation (g,m)® maps a morphism ( | (hv”)> € Mor(XR) to the

hnf
diagram morphism

heg — 0y
(h-g,n%) l(h-g-mf,ng'mf)
h-nf-g (honfg.m) h-nf-g-mf

(2) Consider the regular (V Cat)R-module ((VCat)R,©) from Example 116.(2), with

(VCat)R -2 Endg ((VCat)R)

(99 g mf) — (90 2% (g-mp)e),

h
where the transformation (g, m)© maps a morphism < e ”)> € Mor(XR) to the

h-nf
diagram morphism

h-g (h-g,m) h-g-mf
(h-g,n9) l(h'g'mf,ng'mf)
h-nf-g hnf g h-nf-g-mf

(3) The permutation module of V over (VCat)R is the regular ((V Cat)R)-module since
o =0; cf. (1,2).
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Chapter 9

Maschke: a first step

9.1 Prefunctors

Let C, D and £ be categories.

Let A be a monoidal R-linear category.

Definition 127 (Prefunctors)
Suppose given a pair of maps P := (Mor(P) , Ob(P)) where

Ob(P): Ob(C) - Ob(D) and Mor(P): Mor(C) — Mor(D) .
We call P a prefunctor from C to D if the conditions (1,2) are satisfied.
(1) For u € Mor(C), we have
(u)(s2 Ob(P)) = (u)(Mor(P) as) and (u)(ta Ob(P)) = (u)(Mor(P) 1 t).
(2) For (X —=Y - Z) in C, we have
(uav)Mor(P) = uMor(P) avMor(P) .
For X € Ob(C), we write X P := (X ) Ob(P). For u € Mor(C), we write uP := (u) Mor(P).

So a prefunctor is a functor if it respects identities.
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Definition 128 (R-linear prefunctors)
Suppose that C and D are R-linear categories; cf. Definition 65.
Let P: C — D be a prefunctor.
We call P an R-linear prefunctor if
(ur +vs)P = (uP)r + (vP)s
holds for ;s € R, X, Y € Ob(C) and u,v € ¢(X,Y). Cf. also Remark 71.

Definition 129 (.A-linear prefunctor)

Let (M, ®, ) and (N, ®yr) be A-modules; cf. Definition 100.

An R-linear prefunctor P: M — N is called A-linear if we have
(m®a)P=mP®a

for m € Mor(M) and a € Mor(A). Cf. also Definition 105.

Lemma 130 Let (M, P ) and (N, ®yr) be A-modules; cf. Definition 100.
Suppose given an R-linear prefunctor P: M — N
Then P is an A-linear prefunctor if and only if the conditions (1,2) hold.

(1) For A € Ob(A) and m € Mor(M), we have
(m® AP=mP® A.

Le. we have

(AD ) *x P = Px (ADy)
for A € Ob(A).

(2) For a € Mor(A) and M € Ob(M), we have
(M ®a)P=idyP®a.

Le. we have

M(a® )P = ((idy P)(ADx)) & (MP(ady)) = (MP(a®p)) s ((idy P)(BOy))
for (A— B) € Mor(A) and M € Ob(M).
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Cf. also Lemma 106.

Proof. Ad = . Suppose that P is an A-linear functor.
Suppose given m € Mor(M) and A € Ob(A).
We have
(m® A)P 1L (m®ida)P =mP ®idy OO P e A.

Suppose given M € Ob(M) and a € Mor(A).
We have

(M&a)P 27 (idy ®a)P =idyP ®a.
Ad <. Suppose that (1,2) hold.
Suppose given (A - A') € Mor(A) and (M — M') € Mor(M).
We have

(m®a)P (m®A)s(M'®a))P=(m®A)Ps(M @a)P
(mP ® A)a (idyr P @ a) "2 (mP @ idy) a (idp P © a)

(mPaidpyP)® (idaaa) = (maidpy )P Qa=mP ®a.

10

=
—~

10)

Remark 131 Suppose that C, D and £ are A-modules.

(1) An A-linear functor F': C — D is an A-linear prefunctor.
(2) Suppose given A-linear prefunctors P: C — D and P': D — £ .

Then the composite P x P': C — &£ is an A-linear prefunctor.

Proof. Ad (1). Let F': C — D be an A-linear functor.
For m € Mor(C) and a € Mor(A), we have
(m®a)F=mF®a;

cf. Lemma 106.

So F'is an A-linear prefunctor.
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Ad (2). For m € Mor(C) and a € Mor(.A), we have
(m@a)(P*xP)=(mP®a)P=m(PxP)®a.

Then, by Lemma 130, P x P’ is an A-linear prefunctor. O

Remark 132 Let (M, ® ) and (N, ®yr) be A-modules.

Suppose given an A-linear prefunctor P: M — N that is not a functor.

Then there ezists some M € Ob(M) and some a € Mor(.A) such that
(M®a)P#MP®a.

Proof. Since P is not a functor there exists an M € Ob(M) such that

Then, for example, for a = id; € Mor(.A), we have

101.(7) 101.(7)

—

(M ®a)P

9.2 A first step towards Maschke

Suppose given a crossed module V' = (M, G,v, f)
Consider the invertible monoidal category V Cat ; cf. Remark 29.
Remark 133 We have the crossed module V = (Mf, G,c, f) with

c: G—= Aut (Mf), g (mf— g (mf)g =y (m?)f)
f::idG‘Mf:Mf%G, g—g,

and we have the surjective crossed module morphism
(]?, ldg> V — V
with
f::f‘Mf:M—>Mf, m— mf;

cf. [15, Lem. 37.(1)].
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MF4LﬁMf
s
G o G

Consider the invertible monoidal category V Cat ; cf. Remark 29. Recall that
Ob (\_/ Cat) =G
Mor(VCat) =GxXMf.

Then, for g, h € Ob(VCat) = (G, the set of morphisms from g to h is given as follows.

) JH{lg.g7h)} ifgheMf
VCat(gah) - {@ ng_thf

Proof. Suppose given g, h € Ob(V Cat) =dG.
We consider the case gh € M f.

Suppose given a morphism u € (g, 7). Note that u is of the form u = (z,y) for some
x € G and for some y € M f.

Then we have

g=(r,y)s ==,

and we have

h=(@yt=x-yf=g-y.

So g h=y.
This shows VCat<g7h) = {(9797}0}
We consider the case g~h & M f.

If we assume that there exists a morphism u = (z,y) € yca(9, k), where z € Gand y € M f,
then we have x = g and h = zy = gy, and so we have g~h =y € M f which contradicts the
assumption.

This shows y ca (g, ) = 0. O
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Remark 134 Consider the crossed module V = (M f,G,c, f ) , the crossed module mor-
phism (f,idg): V — V and the invertible monoidal category V Cat from Remark 133.

Consider the monoidal functor

(f,idg)Cat: VCat — V Cat

(92 g-mf) = (gide L0y (g -mfide) = (9 25 g my);

cf. Lemma 39.
By R-linear extension, we obtain the monoidal R-linear functor
F = ((f,idg)Cat )R: (VCat)R — (V Cat)R

(g 2i(gmki)ri, g-mf) (gMg-mf) = (g " g mf),

where r := ). 7;; cf. Lemma 86 and Remark 115.
By Lemma 108, (V Cat)R is a (V Cat) R-module via
Op: (VCat)R — Endg ((V Cat)R)

(g >i(g,mki)ry

U= g-mf)l—>u@p,

h
where O maps a morphism (l(h,h—h/)w) € Mor((V Cat)R) to the diagram morphism
h/

h,1)-(g,mf)r
heg (h,1) - (g.mf) b (g-mf)

(h,h=h")r" - (g, 1)[ k(h, h=h")r" - (g-mf,1)

n-g 1) (g.mf)r h-(g-mf)

with r:= ). € R, ie. to
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hg, mf)r
heg— P9I )
(hg, g~ (h=h)g)r’ (h(g-mf),(g-mf)~(h~W)(g-mf))r
h' - h-(g-m
g g mi)r (g-mf)

Moreover, recall that we have a (V Cat) R-module ((VCat)R, ©); cf. Example 116.(2).
Proposition 135 Suppose that ker f is finite and suppose that | ker f| is invertible in R.

Consider the monoidal R-linear category (V Cat)Rifrom Remark 133 and the monoidal
R-linear functor F = ((f,id¢)Cat )R: (VCat)R — (V Cat)R from Remark 134.

Consider the (VCat)R-module ((V Cat)R,©p) from Remark 134.

We have the A-linear prefunctor
P: (VCat)R — (VCat)R

_h mjf=g—
(g (9.9~ h)r h)r—><g f=g~h h).
Moreover, we have
P*F:id(VCat)R'

Proof. We write K :=ker f .
We show that P is a prefunctor.

Suppose given (g 9.9~ r, p, (70T [) in (V Cat)R.
We have
1
((9:9 h)r)sP =gP =g = (( > (g,m)r)m>5 = (9,9 h)r)Ps
mT}LEg]]\{h
1
((g,g_h)r) tP=hP=h=g¢g-g h= (( Z (g,m)r)m> t = ((g,g_h)T)Pt.
meM
mf=g~h
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We have
((g.g7 W) Pu (b)) P = <( o, >ﬁ> ‘ <<an?€£¥’1<’“”’”'> IKI>
1
- (S a0
n' f=h~1 ]
= (Z:f”’% (0:m) e
/ n' f=h~1
nT/n::%n_nm <Z meM Z neM (97 ) ) ! 2
mf=g~l nf=gh |K|
1
= ( 9,9 l 7‘7")
= ((g.9g7h)ra(h,h=)r")P.

So P is a prefunctor.

We show that P is R-linear.
Suppose given g _> <X hin (V Cat)R and suppose given s,t € R.
Note that we have u = (g,¢g~h)r and v = (g, g~ h)r’ for some r, 7’ € R; cf. Remark 133.

Then
(us + vt)P = ((g, g h)rs+ (g, g’h)r’t)P = ((g, g h)(rs+ r’t))P

1
= (9. m)(rs +1'1))
( = | K|
mf=g~h
S t
= (g,m)r)— + (gam)r,>_
(X, omr)gg+( X mr)g
mf=g~—h mf=g~h

= (uP)s+ (vP)t.
So P is R-linear.
We show that P is A-linear.
Suppose given u := (g, g~ h)r € Mor((V Cat)R) and a := Y_,(x, mk;)r; € Mor((VCat)R).

We write r' := )" /.
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Since (g, g~h) € Mor((V Cat)R) we have g~h € M f. So there exists some mg € M such
that mof = g~ h. Therefore

f7Hg™h) =moK = {mok: k € K}.

Moreover, we have

((mo)"m) f

Cl\:/ll) mofxmf:l‘_g_hxmf

So (mo)*m € f~Y(x= - g h-x-mf). Therefore

f Yo g h-2-mf) = (mo)*mK = {(mg)*mk: k€ K}.

We have

uP - a = ((g, g*h)T)P (@, mk;)r]

S0 X (gnat k)
> k;{ (9, (mok)™ - mki)rrg) %
1

> (g2, (mo)m - (k=)™ ki)w;)m

Yo (gm, (mo)*m - k/)rré) %

> (gx, n)rr’) L

n€(mo)* mK |K|

1
S (g o
neM |K|
nf=x"-g h-x-mf
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= ((g.97h)r- (x,mf)r') P

= ((g, g h)r- (Xi(z, mkﬂri)F)P
= (u-a)P.

So P is an A-linear prefunctor.
We show that P % F = 1d(¢ cat) i -
For (g,g~h)r € Mor(V Cat), we have

(9.9~ Wr) (P F) = (( > <g,m>r),—j(,>F

meM
mf=g~h

This shows P x F' = id(y cag)r - [l
Remark 136 Consider the (VCat)R-modules (V Cat)R,Op) and ((VCat)R,O)cf. Re-
mark 134.

Consider the A-linear prefunctor P: (V Cat)R — (VCat)R from Proposition 135.

(1) In general, the prefunctor P: (V Cat)R — (VCat)R given in Proposition 135 is not a
functor.

For example, if R # 0 and if f is not injective then we have

id,P = (g, )P =( ) (97m>)|ke1rﬂ 7 (9,1) = idgp

meker f

for g € Ob(VCat) =G.
(2) Suppose that R # 0 and suppose that ker f # 1.
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Let u := (g,m) € Mor((V Cat)R). Then, for z € Ob((V Cat)R) = G, we have
(@ u)P = ((,1) (g, mf))P

= @g.m)P=( Y @o.m) o
=)
(X Ggmi) o

keker f
and we have

xP-u=(z,1)-(g9,m) = (zg,m).

So in general, we have (z-u)P # zP-u for z € Ob((V Cat)R) and u € Mor((V Cat)R) ;
cf. Remark 132.
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Appendix A

Calculation of a Cayley embedding

We shall consider the assertion of Theorem 62, i.e. the analogue of Cayley’s Theorem, in an
example. To perform the necessary calculations, we use Magma [3].

A.1 An example of a crossed module V

We consider the crossed module V = (M, G,~, f) with M = (b : b?), with G = {a : a?),
with v : G — Aut(M), a — (b — b7) and with f : M — G, b — a*; cf. [14, §1.5.6],
[15, Ex. 30].

SymmetricGroup(4) ;

sub<T | T!(1,2,3,4) >;

sub<T | T!(1,2,3,4) >;

hom<M -> G | m :-> G!(m~2) > ;

xi := hom<M > M | x :-> x~-1 >;

gamma := hom< G -> AutomorphismGroup(M) | <G.1, xi>>;
Mor := CartesianProduct(Set(G),Set(M));

// testing (CM1) and (CM2)

print &and[(m@(g@gamma))@f eq (m@f)"g : g in G, m in M];
print &and[m"n eq m@(n@f@gamma) : m in M, n in M];

H Q= A
I

Magma chooses the generators G.1 = (1,2,3,4) and M.1 = (1,2,3,4).
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A.2 Preparations for
the symmetric crossed module Sy g

To calculate the underlying sets of both groups for the symmetric crossed module Sy ca¢, we
make use of the following program developed in [8, Alg. 34], which we document here for
sake of completeness.

SymmetricCrossedModule := function(M,G,f,gamma) ;
0b := Set(®);
Gseq := [x : x in G];
Mor := CartesianProduct(Set(G),Set(M));
invert := map< Mor -> Mor | x :-> <x[1] * (x[2]ef) , x[2]"-1> >;
MFP,xi := FPGroup(M);
numbO := map<{-1,0,1} -> {1,2} | [<-1,1>,<0,2>,<1,2>]>;
numb := map< Integers() -> {1,2} | z :-> Sign(z)0Onumb0 >;
m_seq := function(m)
return ElementToSequence (m@@xi) ;
end function;
nog := NumberOfGenerators(MFP) ;
M_gen := [(MFP.i)@xi : i in [1..nogll];
Mor_gen := CartesianProduct(Set(G),{1..nogl});
Mf := Image(f);
Kf := Kernel(f);
TrO := Transversal(G,Mf);
Tr := [x"-1 : x in TrO0]; // left coset representatives
TrRep := map<G -> Tr | g :-> [x : x in Tr | g"-1 * x in Mf][1]>;
MfRep := map<G -> Mf | g :-> [x"-1 x g : x in Tr | g"-1 * x in Mf][1]>;
sect := map<Mf -> M | n :=> [m : m in M | m@f eq n]l[1]>;

STr := SymmetricGroup(Set(Tr));
phi := Action(GSet(STr));
SMf := SymmetricGroup(Set(Mf));
psi := Action(GSet (SMf));

DPSMf := CartesianProduct([SMf : i in [1..#Tr]l]l);

SKf := SymmetricGroup(Set(Kf));

eta := Action(GSet(SKf));

DPSKf_inner := CartesianProduct([SKf : i in [1..#M_gen]]);
DPSKf_outer := CartesianProduct([DPSKf_inner : i in [1..#G]]);
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DPKf := CartesianProduct([Kf : i in [1..#G]]);
counter := 0;
ListOfAutofunctors := [];
ListOfIsotrafos := [];
for s in STr do
for smftup in DPSMf do
F_Ob := map<0b->0b | g:-><g@TrRep,s>@phi*<g@MfRep,smftup[Index(Tr,g@TrRep)]>Qpsi>;
for skftup in DPSKf_outer do
counter +:= 1;
sk := map< Mor_gen -> SKf | x :-> skftup[Index(Gseq,x[1])][x[2]] >;
F_Mor_gen_plus := map< Mor_gen -> Mor | x :->
< x[1]eF_0b , ( (x[1]@F_0b)~-1 * (x[1] * M_gen[x[2]]@f)@F_Ob )@sect
* < Kf! ((M_gen[x[2]]@f@sect) -1 * M_gen[x[2]]), x@sk >Qeta > >;
F_Mor_gen_minus := map< Mor_gen -> Mor | x :—>
< x[1] * (M_gen([x[2]]@f)"-1 , x[2]>Q@F _Mor_gen_plus@invert >;
F_Mor_gen := [F_Mor_gen_minus,F_Mor_gen_plus];
F_Mor := map< Mor -> Mor | x :->
< x[1]@F_0b , &*x([Id(M)] cat [(< x[1] * &*([Id(M)] cat
[ M_gen[Abs(i)]"Sign(i) where i is m_seq(x[2])[j] : j in [1..1-1]])ef,
Abs(m_seq(x[2]) [1]) >Q@F_Mor_gen[m_seq(x[2]) [1]@numb]) [2]
: 1 in [1..#m_seq(x[2]1)]]) > >;
is_functor := true;
for y in CartesianProduct([G,M,M]) do
if not (<y[1], y[2] * y[3]>@F_Mor)[2] eq
(<y[1],y[2]>@F _Mor) [2] * (<y[1] * y[2]ef, y[3]>QF_Mor) [2] then
is_functor := false;
break y;
end if;
end for;
if is_functor and #[xQ@F_Mor : x in Mor] eq #{x@F_Mor : x in Mor} then
print "autofunctor", counter;
ListOfAutofunctors cat:= [<F_0b,F_Mor>];
if s eq Id(STr) then // now searching for isotransformations
for k_tup in DPKf do
candidate_trafo := map<Ob -> Mor | g :->
< g, (Mf!(g"-1 * gOF_0b))@sect * k_tup[Index(Gseq,g)]> >;
// so this candidate transformation at g actually
// has value g@candidate_trafo
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is_trafo := true;
for z in Mor do
if not (z[1]@candidate_trafo)[2] * (z@F_Mor) [2] eq
z[2] * ((z[1]*(z[2]@f))@candidate_trafo) [2] then
is_trafo := false;
break z;
end if;
end for;
if is_trafo then
print "isotransformation", counter;
ListOfIsotrafos cat:= [<candidate_trafo,<F_0b,F_Mor>>];
end if;
end for;
end if;
end if;
end for;
end for;
end for;
return <ListOfAutofunctors, ListOfIsotrafos>;
end function;

We define
SCM := SymmetricCrossedModule(M,G,f,gamma) .

This yields #SCM[1] = 32 autofunctors of V Cat and #SCM[2] = 64 isotransformations from
the identity on V' Cat to an autofunctor of V' Cat. In other words, we have | Gycas | = 32 and
| MVCat ‘ — 64

The program neither calculates the action of Gy gy, on My cae nor the group morphism from
My cat to Gycas. We will calculate both below; cf. §A.5, A.6.

A.3 Monoidal autofunctors of VCat

We want to determine which of the autofunctors F' € Gy . are monoidal. Since VCat is an
invertible monoidal category it suffices to verify that an autofunctor F' is compatible with
the tensor product of morphisms; cf. Remark 32.(2).
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IsMonoidal := function(F);
// F: autofunctor
is_monoidal := true;

for x in Mor do
u := x@(F[2]);
for y in Mor do
ya(F[2]);
Mor!<x[1] = y[1], (x[2])e(y[1]@gamma) * y[2]>;
w := z0(F[2]);
if not w eq <ul1] * v[1], (ul[2])@(v[1]@gamma) * v[2]> then
is_monoidal := false;
break x;
end if;
end for;
end for;
return is_monoidal;
end function;

v o

zZ

for i in [1..#SCM[1]] do
print i, IsMonoidal(SCM[1][i]);
end for;

The program yields IsMonoidal(SCM[1][i]) = true for i € {1,4,5,8}. So we have 4
monoidal autofunctors in Gy g -

A.4 Monoidal isotransformations of VCat

Now we want to determine which of the isotransformations a € My ¢, are monoidal. To
that end, we consider the monoidal autofunctors and the isotransformations from idy ca to

F'. We investigate whether the isotransformation a is compatible with the evaluation on the
objects in Ob(VCat) = G

IsMonoidalIsotrafo := function(a);
// a : isotransformation from id to al[2]
F := a[2];

is_monoidal := true;
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if IsMonoidal(F) then
for g in G do
u := ge(alll);
for h in G do;
v := he(a[l]);
if not (gxh)@(al1l]) eq <ul1l] * v[1], (u[2])@(v[1]@gamma) * v[2]> then
is_monoidal := false;
break g;
end if;
end for;
end for;
return is_monoidal;
else
return false;
end if;
end function;

for i in [1..#SCM[2]] do
print i, IsMonoidalIsotrafo(SCM[2][i]);
end for;

The program yields IsMonoidalTrafo(SCM[2][j]) = true for j € {1,2,17,18}. So we
have 4 monoidal isotransformations in My ca; .

A.5 The group Gycat

In the following, we want to determine the group Gy cae as a permutation group.

To that end, we use the faithful action of Gy s on the set of morphisms in V Cat , listed in
Mor_list. The resulting permutation group will be called GroupOfAutofunctors.

Mor_list := [x : x in CartesianProduct(Set(G),Set(M))];
// morphisms in VCat

S := SymmetricGroup (#Mor_list);

// GroupOfAutofunctors will be a subgroup of S

GroupOfAutofunctors := sub<S | [S![Index(Mor_list,x@SCM[1] [k][2]) : x in Mor_list]

k in [1..#SCM[1]1]] >;
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Further, we calculate which group of order 32 from the Small-Group-Library is isomorphic
to GroupOfAutofunctors.

Index ([IsIsomorphic(Group0fAutofunctors,PermutationGroup (FPGroup(SG)))
SG in SmallGroups(32)],true);

The comparison yields the index 27. So Gy ¢, is iSsomorphic to the group SmallGroups (32) [27] .
Now we want to turn GroupOfAutofunctors into a permutation group of smaller degree.

For that, we first turn GroupOfAutofunctors into the finitely presented group GAFP, where
phil is a group isomorphism from GAFP to GroupOfAutofunctors. Then we turn GAFP into
the permutation group GA, where psiA is a group isomorphism from GAFP to GA.

GAFP
e

psiA phiA
rd ~
GA GroupOfAutofunctors

GAFP,phiA := FPGroup(GroupOfAutofunctors);
GA,psiA := PermutationGroup (GAFP);

Then GA is a permutation group of degree 8. We have GA = ( F1, F2, F3 ), where the
generators F1, F2, F3 are defined as follows.

F1 := GA'(1, 5)(2, 6)(3, 7)(4, 8);
F2 := GA'(1, 3)(2, 4);
F3 := GA!'(1, 2)(3, 4);

One may verify that we have indeed Order(sub< GA | F1, F2, F3 >) = 32.
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A.6 The group My cqu

In the following, we want to determine the group My ¢, as a permutation group. For
this purpose, we embed My @, into the symmetric group on the set My . via the Cayley
embedding. The resulting permutation group will be called GroupO0fIsotrafos.

0b := Set(®);
Mor := CartesianProduct(Set(G),Set(M));

SI := SymmetricGroup(#SCM[2]);
// GroupOfIsotrafos will be a subgroup of SI

MultOfIsotrafos := function(i,j)
// this calculates SCM[2] [i] * SCM[2] [j], multiplication in M_VCat
a := SCM[2][i][1];
// the transformation as a map from Ob to Mor
F := SCM[2] [i] [2];
// target functor of a
b := SCM[2] [j][1];
// the transformation as a map from Ob to Mor
H := scM[2] [j1[2];
// target functor of b
ab := < map< Ob -> Mor | [<g, <g,(g@a)[2] * ( ge(F[1])@b )[2]> > : g in Ob] >,
<F[1] = H[1], F[2] * H[2]> >;
for i in [1..#SCM[2]] do
if &and[g@ab[1] eq g@SCM[2] [i][1] : g in Ob] then
return i;
break 1i;
end if;
end for;
end function;

GroupOfIsotrafos := sub<SI | [SI![ MultOfIsotrafos(i,j) : i in [1..#SCM[2]] ]
j in [1..#SCM[211 1 >;

Now we want to turn GroupO0fIsotrafos into a permutation group of smaller degree.

For that, we first turn GroupOfIsotrafos into the finitely presented group GIFP, where
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phil is a group isomorphism from GIFP to GroupOfIsotrafos. Then we turn GIFP into the
permutation group GI, where psiI is a group isomorphism from GIFP to GI.

GIFP
- ~
psil phil
e ~
GI GroupOfIsotrafos

GIFP,phiI := FPGroup(GroupOfIsotrafos);
GI,psil := PermutationGroup(GIFP);

Then GI is a permutation group of degree 16. We have GI = ( al, a2, a3, a4 ) where the
generators al, a2, a3, a4 are defined as follows.

al := GI'(1, 9, 3, 11)(2, 10, 4, 12)(5, 13, 7, 15)(6, 14, 8, 16);
a2 := GI!(1, 6)(2, 5)(3, 8)(4, 7)(9, 14) (10, 13)(11, 16) (12, 15);
a3 := GI'(1, 5, 2, 6)(3, 7, 4, 8)(9, 13, 10, 14)(11, 15, 12, 16);
ad := GI!(1, 3)(2, 4)(5, T)(6, 8);

One may verify that we have indeed Order (sub< GI | al, a2, a3, a4 >) = 64.

A.7 The group morphism fyc,: Mycae — Gyoat

In §A.5 and §A.6 we have constructed the groups GA and GI that are isomorphic to Gy cas
and My, , respectively.

Now we want to find a group morphism fPerm : GI — GA as an isomorphic replacement for
fVCat: MVCat — GVCat .

First, we want to determine to which elements from the list SCM[2] the generators al,a2,a3,a4
of the group GI correspond. For that, we map al, a2, a3, a4 to GroupOfIsotrafos via
the group morphism psiI”-1 i phil. Then we map these elements to elements of the list
SCM[2], using that SCM[2] [1] is the identity of the group My cas -
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We get the following result.

actl := Action(GSet(GroupOfIsotrafos));
// action of an isotransformation in GroupOfIsotrafos
// on the elements of GroupOflIsotrafos via Cayley

<1,a1@(psiI”-1)@phiI>GactI;
// 33
<1,a20@(psiI”-1)@phiI>QactI;
/] 22
<1,a30@(psil~-1)@phil>@actI;
// 17
<1,a40@(psiI”"-1)@phiI>QactI;
// 11

We obtain the following correspondences.

al <« SCM[2][33]
a2 <> SCM[2] [22]
a3 < SCM[2][17]
a4 <« SCM[2][11]

The following function yields the number of a given morphism from the list Mor_list.

ind_ml := function(x)

// x: morphism; yields the number of the morphism x from the list Mor_list
return Index(Mor_list,x);

end function;

Note that fy ¢, maps the element SCM[2] [33] to its target functor F' := SCM[2] [33] [2] .
Moreover, we have SCM[2] [33] [2] [2] = Mor(F'). So, for x € Mor(V Cat),

(xescM[2] [33] [2] [2])@ind_ml

is the number of the morphism zF in the list Mor_list. So the map Mor(F') can be written
as the permutation
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S![(x@sCcM[2] [33][2][2])@ind_ml

: x in Mor_list] ,

where S = SymmetricGroup(#Mor_list). It is an element in GroupOfAutofunctors; cf.
§A.5. Finally, we map it to the group GA via the group morphism phiA~-1 .psiA.

We obtain the following.

(8! [(xescM[2] [33] [2] [2])@ind_ml

// (1, 3)(2, 4), this is F2

(St [(x@scM[2] [21] [2] [2])@ind_ml

// (5, 8)(6, 7), this is F1 * F2 x F3 * F1

(8t [(xescM[2] [17] [2] [2])@ind_ml

// (5, 7)(6, 8), this is F1 * F2 * F1

(St [(xescM[2] [11][2] [2])@ind_ml

// (1, 2)(3, 4), this is F3

We may now construct fPerm as follows.

FI<A1,A2,A3,A4>

eta := hom<FI -> GI
xi := hom<FI -> GA |
fPerm := hom<GI -> GA | x

:= FreeGroup(4) ;

| [al,a2,a3,a4]>;

[F2, F1%F2xF3xF1, F1xF2xF1, F3]>;

:—> x00etalxi >;

Altogether, the group morphism fPerm maps as follows.

GI
al
a2
a3
ad

Note that fPerm :

—

1111

GA

al@fPerm = (1, 3)(2,
a20fPerm = (5, 8) (6,
a3@fPerm = (5, 7) (6,
a4@fPerm = (1, 2)(3,

4) =F2
7) =F1 * F2
8) =F1 * F2
4) =F3

GI — GA is not injective since we have #GI

*

: x in Mor_list])@(phiA~-1)@psiA;
: x in Mor_list])@(phiA~-1)@psiA;
: x in Mor_list])@(phiA~-1)@psiA;

: x in Mor_list])@(phiA~-1)QpsiA;

F3 x F1
F1

64 and #GA = 32. More-

over, fPerm is not surjective since we have Order (Image (fPerm)) = 16.

In particular, the kernel of fPerm has order 4 and cokernel of fPerm has order 2. In other
words, we have | Sycas 71| = 4 and | Sycas 70| = 2.
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fVCat
My cat Gy Cat
SCM[2] SCM[1]
GroupOfIsotrafos GroupOfAutofunctors
7 ~
phil phiA~-1
— ~
GIFP GAFP
S~ /
pSiIA_l pSlA
™~ fPerm —
GI > GA

A.8 The group action Yyca: Gyear — Aut(Myca)

Now we want to determine the action of GroupOfAutofunctors on GroupOfIsotrafos
isomorphically replaced by an action of GA on GI. It suffices to determine the action on
generators.

For that, we need the following functions.

actA := Action(GSet (GroupOfAutofunctors));

// action of an autofunctor in GroupOfAutofunctors on a morphism in VCat
IsEqualIlsotrafoSmall := function(a,b)

// a, b: maps from 0b to Mor

// Compares two isotransformations at every object.

return &and[g@a eq g@b : g in 0b];

end function;
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Recall that GI = ( a1, a2, a3, a4 ) and that we have the following correspondance; cf.
8A.6.

al « SCM[2][33]

a2 <« SCM[2] [22]
a3 > SCM[2][17]
a4 <« SCcM[2] [11]

Recall that we have GA = (F1, F2, F3), and that we have the following situation; cf. §A.5.

GAFP
e ~_
psiA phiA
s ™~
GA GroupOfAutofunctors

We map the generators F1, F2, F3 to GroupOfAutofunctors.

FIM := F1@(psiA~-1)@phiA;
FOM := F2@(psiA~-1)@phiA;
F3M := F3@(psiA~-1)@phiA;

Now we want to determine the action of F1 on al, i.e. we want to calculate the isotransfor-
mation al”F1.

Suppose given g € Ob(VCat) = G. We have the following.

Mor_list[<<g,Id(M)>@ind_ml,FIM~-1>QactA];
// image of the morphism (g,1) under the functor FiM~-1

Mor_list[<<g,Id(M)>@ind_ml,FI1M~-1>QactA] [1];
// image of the object g under the functor F1M~-1

Mor_list[<<g,Id(M)>@ind_ml,FI1M~-1>QactA] [1]@SCM[2] [33] [1];

// isotransformation corresponding to al, precomposed with F1M~-1,
// evaluated at the object g
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Mor_list[<Mor_list[<<g,Id(M)>@ind_ml,FI1M~-1>QactA] [1]@SCM[2] [33] [1]
@ind_ml,F1M>@actA];

// isotransformation corresponding to al, precomposed with F1M~-1,

// postcomposed with FIM, evaluated at the object g

So the transformation al1”F1 corresponds to the following element of the list SCM[2].

altoFl := map< Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>Q@ind_ml,FIM~-1>@actA ] [1]@SCM[2] [33] [1]@ind_ml,F1M>@actA ]>;

Further,

altoFINr := [i : i in [1..#SCM[2]] |
IsEquallsotrafoSmall(altoF1,SCM[2] [i] [1]1)] [1];

yields the index 17 of the isotransformation altoF1 in the list SCM[2].

So al1”F1 is given by the following element in GI .
(SI![MultOfIsotrafos(j,altoFiNr) : j in [1..#SCM[2]]1])@(phiI~-1)@psiI;
We calculate the following.

altoFl := map< Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>Qind_ml,FIM~-1>@actA ] [1]@SCM[2] [33] [1]@ind_ml,FiM>QactA ]>;

altoFINr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(altoF1,SCM[2][i][1])][1];

// 17

(SI![MultOfIsotrafos(j,altoFiNr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (1,5, 2, 6)@, 7, 4, 8)(9, 13, 10, 14)(11, 15, 12, 16) , this is a3

altoF2 := map< Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>Qind_ml,F2M~"-1>@actA ] [1]@SCM[2] [33] [1]@ind_ml,F2M>@actA ]>;

altoF2Nr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(altoF2,SCM[2][i][1]1)][1];

// 33

(SI![MultOfIsotrafos(j,altoF2Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (1, 9, 3, 11)(2, 10, 4, 12)(5, 13, 7, 15)(6, 14, 8, 16), this is al
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altoF3 := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>@ind_ml,F3M~-1>@actA ][1]@SCM[2] [33] [1]@ind_ml,F3M>@actA ]>;

altoF3Nr := [i : i in [1..#SCM[2]] | IsEquallsotrafoSmall(altoF3,SCM[2][i][1]1)][1];

// 35

(SI![MultOfIsotrafos(j,altoF3Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (1, 11, 3, 9)(2, 12, 4, 10)(5, 15, 7, 13)(6, 16, 8, 14), this is al"-1

a2toF1l := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>@ind_ml,F1M~-1>@actA ] [1]@SCM[2] [22] [1]@ind_ml,F1M>QactA ]>;

a2toFINr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(a2toF1,SCM[2] [i][1])][1];

// 41

(SI![MultOfIsotrafos(j,a2toFiNr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16), this is al * a4

a2toF2 := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>Q@ind_ml,F2M~-1>@actA ] [1]@SCM[2] [22] [1]@ind_ml,F2M>@actA ]>;

a2toF2Nr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(a2toF2,SCM[2][i][1]1)][1];

// 22

(SI![MultOfIsotrafos(j,a2toF2Nr) : j in [1..#SCM[2]1])@(phiI~-1)@psiI;

// (1, 6)(2, 5)(3, 8)(4, 7)(9, 14)(10, 13)(11, 16)(12, 15), this is a2

a2toF3 := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>@ind_ml,F3M~-1>@actA ] [1]@SCM[2] [22] [1]@ind_ml,F3M>@actA ]>;

a2toF3Nr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(a2toF3,SCM[2][i][1]1)][1];

// 22

(SI![MultOfIsotrafos(j,a2toF3Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psiI;

// (1, 6)(2, 5)(3, 8)(4, 7)(9, 14)(10, 13)(11, 16)(12, 15), this is a2

a3toF1l := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>@ind_ml,F1M~-1>@actA ] [1]@SCM[2] [17] [1]@ind_ml,F1M>QactA ]>;

a3toFINr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(a3toF1,SCM[2] [i][1])][1];

// 33

(SI![MultOfIsotrafos(j,a3toFiNr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (1, 9, 3, 11)(2, 10, 4, 12)(5, 13, 7, 15)(6, 14, 8, 16), this is al

187



APPENDIX A. CALCULATION OF A CAYLEY EMBEDDING

a3toF2 := map<Ob -> Mor | g :-> Mor_list[ <Mor_listl[
<<g,Id(M)>Q@ind_ml,F2M~-1>@actA ] [1]@SCM[2] [17] [1]@ind_ml,F2M>@actA ]>;

a3toF2Nr := [i : i in [1..#SCM[2]] | IsEquallsotrafoSmall(a3toF2,SCM[2][i][1]1)][1];

// 17

(SI![MultOfIsotrafos(j,a3toF2Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (1, 5, 2, 6)(3, 7, 4, 8)(9, 13, 10, 14)(11, 15, 12, 16), this is a3

a3toF3 := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>@ind_ml,F3M~-1>QactA ] [1]@SCM[2] [17][1]@ind_ml,F3M>QactA ]>;

a3toF3Nr := [i : i in [1..#SCM[2]] | IsEquallsotrafoSmall(a3toF3,SCM[2] [i][1])][1];

/] 17

(SI![MultOfIsotrafos(j,a3toF3Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psiI;

// (1, 5, 2, 6)(3, 7, 4, 8)(9, 13, 10, 14)(11, 15, 12, 16), this is a3

a4toF1l := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>Q@ind_ml,FIM~-1>@actA ] [1]@SCM[2] [11] [1]@ind_ml,FiM>QactA ]>;

adtoFINr := [i : i in [1..#SCM[2]] | IsEqualIsotrafoSmall(adtoF1,SCM[2] [i][1])][1];

//'5

(SI![MultOfIsotrafos(j,adtoFiNr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (5, 6)(7, 8)(13, 14)(15, 16), this is a2 * a3

a4toF2 := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>Q@ind_ml,F2M~-1>@actA ] [1]@SCM[2] [11] [1]@ind_ml,F2M>@actA ]>;

adtoF2Nr := [i : i in [1..#SCM[2]] | IsEquallsotrafoSmall(adtoF2,SCM[2][i][1]1)][1];

// 9

(SI![MultOfIsotrafos(j,adtoF2Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psil;

// (9, 11) (10, 12)(13, 15)(14, 16), this is al"2 * a4

a4toF3 := map<Ob -> Mor | g :-> Mor_list[ <Mor_list[
<<g,Id(M)>@ind_ml,F3M"-1>QactA ] [1]@SCM[2] [11] [1]@ind_ml,F3M>QactA ]>;

adtoF3Nr := [i : i in [1..#SCM[2]] | IsEquallsotrafoSmall(adtoF3,SCM[2] [i][1])][1];

// 11

(SI![MultOfIsotrafos(j,adtoF3Nr) : j in [1..#SCM[2]]1])@(phiI~-1)@psiI;

// (1, 3)(2, 4)(5, 7)(6, 8), this is a4
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We may now construct gammaPerm as follows. Recall that

FI<A1,A2,A3,A4> = FreeGroup(4);

eta = hom<FI ->

cf. A.7. We have

zetal := hom<FI
Flaut := hom<GI
// action of F1

zeta2 := hom<FI
F2aut hom<GI
// action of F2

zeta3 := hom<FI
F3aut hom<GI
// action of F3

FA<FF1,FF2,FF3> :

GI

etadA := hom<FA ->

xiA := hom<FA -> AutomorphismGroup(GI) |

gammaPerm := hom< GA -> AutomorphismGroup(GI) | x :-> xQQetaAQ@xiA >;

So, the isomorphic replacement gammaPerm of Yy .t acts as follows.

| [al,a2,a3,a4]>;

GI | [a3,al*ad,al,a2*a3]>;
GI | x :—> x@Q@eta@zetal >;
the generators of GI

GI | [al,a2,a3,al"2 * ad]l>;
GI | x :-> x0Qeta@zetal2 >;
the generators of GI

GI | [al"-1,a2,a3,a4]>;
GI | x :-> x@@etalzeta3d >;
the generators of GI

FreeGroup(3);
A | [F1,F2,F3]>;

al"F1 = a1@(F1@gammaPerm) = a3
al"F2 = al@(F2@gammaPerm) = al

al"F3 = al@(F3@gammaPerm) = al”-1
a2"°F1 = a20(F10@gammaPerm) = al * a4

a2°F2 = a20(F2@gammaPerm) = a2
a2"F3 = a20@(F30@gammaPerm) = a2

[Flaut,F2aut,F3aut]>;

189



APPENDIX A. CALCULATION OF A CAYLEY EMBEDDING

a3"F1 = a30(F1@gammaPerm) = al

a3"F2 = a30(F20gammaPerm) = a3

a3"F3 = a30(F3@gammaPerm) = a3

a4"F1 = a40(F1@gammaPerm) = a2 * a3
a4"F2 = a40(F20gammaPerm) = al~2 * a4
a4"F3 = a40(F3@gammaPerm) = a4

A.9 The crossed module Sy, , isomorphically replaced

We summarize.

Given V as in §A.1, the crossed module Sy ¢, is isomorphic to the crossed module
(GA, GI, gammaPerm, fPerm) .

From §A.5, we have GA = ( F1, F2, F3 ), where

F1 = GA!(1, 5)(2, 6)(3, 7)(4, 8);
F2 = GA! (1, 3)(2, 4);
F3 = GA!(1, 2)(3, 4);

Moreover, from §A.6, GI = ( al, a2, a3, a4 ), where

al = GI!(1, 9, 3, 11)(2, 10, 4, 12)(5, 13, 7, 15)(6, 14, 8, 16);
a2 = GI!'(1, 6)(2, 5)(3, 8)(4, 7)(9, 14)(10, 13)(11, 16) (12, 15);
a3 = GI!(1, 5, 2, 6)(3, 7, 4, 8)(9, 13, 10, 14)(11, 15, 12, 16);
a4 = GI'(1, 3)(2, 4)(5, 7)(6, 8);

The group morphism fPerm : GI — GA maps as follows; cf. §A.7.
al — al@fPerm= (1, 3)(2, 4) =F2

a2 — a20fPerm= (5, 8)(6, 7) =F1 * F2 *x F3 *x F1
a3 — a30fPerm= (5, 7)(6, 8) =F1 x F2 x F1
a4 — ad4@fPerm= (1, 2)(3, 4) =F3
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The group morphism gammaPerm : GA — Aut(GI) maps as follows; cf. §A.8.
al”"F1 = al@(F1@gammaPerm) = a3
al"F2 = al@(F20@gammaPerm) = al
al”"F3 = al@(F3@gammaPerm) = al~-1
a2°F1 = a20(F1@gammaPerm) = al * a4
a2"F2 = a20(F20gammaPerm) = a2
a2"F3 = a20(F30@gammaPerm) = a2
a3"F1 = a30(F1l0gammaPerm) = al
a3"F2 = a30(F20gammaPerm) = a3
a3"F3 = a30(F3@gammaPerm) = a3
a4"F1 = a40(F1@gammaPerm) = a2 * a3
ad"F2 = a40(F20@gammaPerm) = al~2 x a4
a4"F3 = a40(F3@gammaPerm) = a4

A.10 The Cayley embedding

Consider the embedding (A\“»1ey ;,Cavley): V' — Sy, , where

)\Cayley: M — MVCat , mi— m)\Cayley = (9 (_Lnl) g(mf)>g€G ;

9,
~Y

cf. Proposition 59. We want to calculate the isomorphic replacements for ' and for
)\Cayley ]

A.10.1 The group morphism ¥

Recall that we have G = (a) witha =G.1 = (1, 2, 3, 4);cf. §A.1.

Here, we calculate the group morphism muCayley : G — GA, the isomorphic replacement of
poY G = Gy ag -
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muCayley := function(x)
// x : element in G
// group morphism from G to GA
0b := Set(G);
Mor := CartesianProduct(Set(G),Set(M));
F_Ob := map<Ob -> 0b | g :=> gxx >;
F_Mor := map<Mor -> Mor | u :-> <ul[l1l*x,u[2]@(x@gamma)> >;
if not &and[(<y[1], y[2] * y[3]>@F_Mor) [2] eq
(<y[1],y[2]>@F_Mor) [2] * (<y[1] * y[2]ef, y[3]>@F_Mor) [2]
y in CartesianProduct([G,M,M])] then
print "Not a functor";
end if;
return <F_0b,F_Mor>;
end function;

Then the image of G.1 under muCayley is given as follows.

autofunctor_a :=
(GroupOfAutofunctors! [(x@(muCayley(G.1) [2]))@ind_ml : x in Mor_list])@@phiA@psiA;
//(1, 8, 3, 6)(2, 7, 4, 5), this is F2 * F3 * F1 * F3

So muCayley maps as follows.

G — GA
G.1 — autofunctor.a = F2 x F3 x F1 x F3

A.10.2 The group morphism \“¥

Recall that we have M = (b) with b=M.1 = (1, 2, 3, 4);cf. §A.1.

Here, we calculate the group morphism lambdaCayley : M — GI, the isomorphic replacement
of )\C&yley: M — MVCat .

lambdaCayley := function(y)

// y : element in M

// group morphism from M to GI
Ob := Set(G);
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Mor := CartesianProduct(Set(G),Set(M));
F := muCayley(y@f);
trafo := map<0b -> Mor | g :-> <g,y> >;
if not &and[(z[1]@trafo) [2] * (z@F[2]) [2]
eq z[2] * ((z[1]*(z[2]ef))@trafo)[2] : z in Mor] then
print "Not a transformation";
end if;
return <trafo, F>;
end function;

We calculate the following.

lambdaCayley(M.1);
// image of M.1 under lambdaCayley, M.l as an isotransformation in GI

lambdaNr := [i : 1 in [1..#SCM[2]] |

IsEquallsotrafoSmall (lambdaCayley(M.1) [1], SCM[2] [i]1[11)]1[1]1;
// index of the transformation lambdaCayley(M.1) from the list SCM[2],
// this yields 49

isotrafo_b :=

(SI![MultOfIsotrafos(j,lambdaNr) : j in [1..#SCM[2]]1])@(phiI~-1)@psiI;
// M.1 as a permutation in GI,

// this yields (1, 13, 4, 16)(2, 14, 3, 15)(5, 10, 8, 11)(6, 9, 7, 12),
// which is al * a3

So lambdaCayley maps as follows.

M — GI
M.1 — isotrafob := al * a3
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Zusammenfassung

Ein verschrankter Modul V' := (M G, f ) besteht aus Gruppen M und G, einer Operation
v: G — Aut(M), g — (m — m9) und einem Gruppenmorphismus f: M — G, der

(m9)f = (mf)? und m"=m"
erfillt fiir m, n € M und g € G.

Eine monoidale Kategorie ist eine Kategorie C zusammen mit einem Einheitsobjekt I und
einem assoziativen Tensorprodukt (®) auf den Objekten Ob(C) und den Morphismen Mor(C).

Eine invertierbar monoidale Kategorie ist eine monoidale Kategorie C, deren Objekte und
Morphismen beziiglich des Tensorproduktes (®) invertierbar sind.

Die Kategorie der verschrankten Moduln und die Kategorie der invertierbaren monoidalen
Kategorien sind dquivalent vermdége des Isofunktors Cat. Zu einem verschriankten Modul V/
haben wir also eine invertierbar monoidale Kategorie V Cat.

Zu einer Menge X gibt es die symmetrische Gruppe Sy . Analog konnen wir auf einer Kate-
gorie X' den symmetrischen verschrankten Modul Sy definieren, der aus den Autofunktoren
von X und zugehorigen Isotransformationen besteht.

Nach dem Satz von Cayley gibt es zu einer Gruppe G einen injektiven Gruppenmorphismus
G — Sg . Analog gibt es die folgende Aussage: Zu einem verschrankten Modul V' gibt es
einen injektiven verschrankten Modulmorphismus V' — Sy cat -

Zu einem R-Modul M gibt es die Endomorphismen-Algebra Endg(M) und die Automor-
phismengruppe Autg(M). Analog dazu gibt es zu einer R-linearen Kategorie M die mono-
idale R-lineare Kategorie Endg(M). Diese hat die invertierbare monoidale Teilkategorie
(Endg(M))U, bestehend aus den tensorinvertierbaren Objekten und Morphismen.

Desweiteren haben wir den verschrinkten Teilmodul Aut$™ (M) von S, , bestehend aus den
R-linearen Autofunktoren von M und zugehorigen Isotransformationen.

Wir haben einen monoidalen Isofunktor zwischen invertierbaren monoidalen Kategorien
Realp: (AuthY(M))Cat — (Endg(M))U .

Klassisch lasst sich ein A-Modul, fiir eine R-Algebra A, angeben durch einen R-Modul M

und einen R-Algebrenmorphismus A — Endg(M).

Fiir eine monoidale R-lineare Kategorie A lésst sich ein A-Modul angeben durch eine
R-lineare Kategorie M und einen monoidalen R-linearen Funktor A — Endg(M).



Klassisch ist ein Darstellung von G auf M, fiir eine Gruppe G und einen R-Modul M,
definiert als ein Gruppenmorphismus G' — Autg(M).

Fiir einen verschrankten Modul V' und eine R-lineare Kategorie M ist eine Darstellung von
V auf M definiert als ein verschrinkter Modulmorphismus V' — Aut$™(M). Einer solchen
Darstellung entspricht ein monoidaler R-linearer Funktor (VCat)R — Endg(M). Somit
spielt (VCat)R die analoge Rolle zum Gruppenring im klassischen Fall.

Ferner konnen wir ein Analogon zu einem Permutationsmodul konstruieren. Sei X eine
Kategorie. Sei V' ein verschrankter Modul. Sei V' — Sy ein verschrankter Modulmorphismus,
d.h. V operiere auf X'. Sei XR die R-lineare Hiille von X. Wir konstruieren den monoidalen
R-linearen Funktor (VCat)R — Endg(XR), welcher XR zu einem (V Cat) R-Modul macht,
genannt Permutationsmodul auf der V-Kategorie X.
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