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Abstract: We generalize Keller and Lefèvre-Hasegawa’s filt construction
and Kadeishvili’s minimality theorem from the case of a ground field F to the
case of an arbitrary commutative ground ring R. Kadeishvili has constructed
a minimal model on the homology of a given A∞-algebra over F. We construct
a model on an arbitrary projective resolution of the homology of a given
A∞-algebra over R.
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Preface to extended version: In both my bachelor thesis [20] and
my master thesis, I investigated problems in the context of A∞-theory. For
the bachelor thesis, I wrote an introduction to A∞-theory, which could not be
reused directly in the official version of the master thesis to avoid duplication
of the bachelor thesis. Instead, only the necessary parts were reused. In
particular, the proofs were quoted from [20] and many illustrative parts do
not appear at all in the master thesis.
To facilitate reading, the present "extended version" of the master thesis

was prepared. It contains all the parts that were cut out in the official version
due to formal reasons as explained above. Furthermore, I sketched some
further observations that might be useful.

0.1. Introduction

Suppose R is a commutative ring. By graded modules, we denote Z-graded R-modules.
By graded maps, we denote R-linear graded maps between graded modules.

Note that at the evaluation of tensor products of graded modules, the Koszul sign rules
yields additional signs, cf. Definition 15.
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0.1.1. A∞-algebras

Our first guiding example are differential graded algebras (dg-algebras): A dg-algebra
over R is a graded module A, a graded map m1 : A→ A of degree 1 and a graded map
m2 : A⊗ A→ A of degree 0 such that

m1 ◦m1 = 0 (m1 is a differential)
m1 ◦m2 =m2(m1 ⊗ 1 + 1⊗m1) (Leibniz rule)

m2 ◦ (m2 ⊗ 1) =m2 ◦ (1⊗m2) (Associativity of the multiplication map m2) .

Stasheff introduced in [22] a generalization of dg-algebra structures on A to A∞-algebra
structures on A, which consists of a graded "multiplication map" mk : A⊗k → A of
degree 2− k for each k ≥ 1 satisfying the Stasheff identities, cf. Definition 22. The tuple
(A, (mk)k≥1) is then called an A∞-algebra. The first three of the Stasheff identities are

0 =m1 ◦m1

0 =m1 ◦m2 −m2 ◦ (m1 ⊗ 1 + 1⊗m1)

0 =m1 ◦m3 +m2 ◦ (1⊗m2 −m2 ⊗ 1)

+m3 ◦ (m1 ⊗ 1⊗2 + 1⊗m1 ⊗ 1 + 1⊗2 ⊗m1).

Note the similarity to the equations for dg-algebras. E.g. the third Stasheff identity is a
replacement of associativity. Moreover, we recover the dg-algebras as the A∞-algebras
with mk = 0 for k ≥ 3, cf. e.g. Example 23. An A∞-algebra (A, (mk)k≥1) is called
minimal if m1 = 0.

The bar construction yields a bijective correspondence between A∞-structures on A and
graded codifferentials of degree 1 on the graded tensor coalgebra TSA = ⊕k≥1(SA)⊗k,
where SA is the Z-graded module with (SA)q = Aq+1 (i.e. we shift the grading of A), cf.
section 2.1. For instance, the laborious signs appearing in the Stasheff identities (4)[k]
disappear via this bijection. This way, the bar construction can be used to explain the
intricate list of Stasheff identities. In the literature, there are slightly different variants
of the bar construction in use which yield different variants of the Stasheff identities. We
use the variant given e.g. in [14].

Given A∞-algebras (A′, (m′k)k≥1) and (A, (mk)k≥1), an A∞-morphism or morphism of
A∞-algebras from A′ to A is a tuple (fk)k≥1 such that for k ≥ 1, the map fk : A′⊗k → A
is of degree 1− k and such that certain equations hold, cf. Definition 22. The first two of
these equations are

f1 ◦m′1 =m1 ◦ f1

f1 ◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1) =m1 ◦ f2 +m2 ◦ (f1 ⊗ f1).

In particular, the first equation implies that f1 : (A′,m′1) → (A,m1) is a morphism of
complexes. The A∞-morphism (fk)k≥1 is called a quasi-isomorphism of A∞-algebras if
f1 : (A′,m′1)→ (A,m1) is a quasi-isomorphism. If (fk)k≥1 is a quasi-isomorphism, then
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A′ is called a model of A. If additionally m′1 = 0, then A′ is called a minimal model of A.
Similarly to how the bar construction associates A∞-algebras with differential coalgebras,
it associates A∞-morphisms with morphisms of differential coalgebras, cf. section 2.1.
Using composition of morphisms of differential coalgebras, this provides a natural way to
define composition of A∞-morphisms, cf. section 2.3.

0.1.2. A∞-categories

Our second guiding example are Hom∗-dg-categories, which will illustrate the concept of
A∞-categories.

Suppose given an (ordinary) R-algebra B. Suppose given a set I and a complex (C(i), d(i))
over B for each i ∈ I. We obtain the complex (C := ⊕i∈IC(i), d := ⊕i∈Id(i)) over B. We
have the graded module A := Hom∗B(C,C) = ⊕i,j∈I Hom∗B(C(i), C(j)). Here for i, j ∈ I
and k ∈ Z, the R-module Homk

B(C(i), C(j)) =
∏

z∈Z HomB(C
(i)
z+k, C

(j)
z ) is the R-module

of graded B-linear morphisms of degree k from C(i) to C(j) (which are not necessarily
compatible with the differential), which then is the homogeneous component of degree k
of the graded R-module Hom∗B(C(i), C(j)) := ⊕q∈Z Homq

B(C(i), C(j)). On A, we have the
differential dHom∗B(C,d) that is given for f ∈ Ak = Homk(C,C) as

dHom∗B(C,d)(f) := d ◦ f − (−1)kf ◦ d.

On A, there is a dg-algebra structure given by setting m1 := dHom∗B(C,d) and setting m2

to be composition, that is for homogeneous f, g ∈ A, we have m2(f ⊗ g) := f ◦ g. Recall
that mk := 0 for k ≥ 3 for dg-algebras.

Note that m1 and m2 respect the decomposition A = ⊕i,j∈I Hom∗B(C(i), C(j)): For
i, j, j′, k ∈ I, we have

m1(Hom∗B(C(i), C(j))) ⊆ Hom∗B(C(i), C(j))
m2(Hom∗B(C(j), C(k))⊗ Hom∗B(C(i), C(j))) ⊆ Hom∗B(C(i), C(k))
m2(Hom∗B(C(j′), C(k))⊗ Hom∗B(C(i), C(j))) = 0 if j 6= j′.

This behaviour of the dg-algebra (A, (mk)k≥1) is the prototype of an A∞-category. Indeed,
by setting A(i, j) := Hom∗B(C(j), C(i)) (note the swapped indices), we obtain the tuple
(ObjA := I, A, (mk)k≥1) which satisfies the following definition of an A∞-category.

An A∞-category is a tuple (ObjA,A = ⊕i,j∈ObjAA(i, j), (mk : A⊗k → A)k≥1) such that
the following hold.

• (A, (mk)k≥1) is an A∞-algebra.

• For k ≥ 1 and j0, . . . , jk ∈ ObjA, we have

mk(A(j0, j1)⊗ . . .⊗ A(jk−1, jk)) ⊆ A(j0, jk).

For k ≥ 1 and i1, . . . , ik, j1, . . . , jk ∈ ObjA such that there exists x ∈ [1, k− 1] with
jx 6= ix+1, we have

mk(A(i1, j1)⊗ . . .⊗ A(ik, jk)) = 0.
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So an A∞-category is an A∞-algebra A together with a decomposition of A into a direct
sum such that the mk respect this decomposition.

Given A∞-categories (ObjA′, A′, (m′k)k≥1) and (ObjA,A, (mk)k≥1), a morphism of A∞-
algebras (or A∞-functor) from A′ to A is a tuple f = (fObj, (fk)k≥1) such that the
following hold.

• (fk)k≥1 is a morphism of A∞-algebras from (A′, (m′k)k≥1) to (A, (mk)k≥1).

• fObj : ObjA′ → ObjA is a map.

• For k ≥ 1 and j0, . . . , jk ∈ ObjA′, we have

fk(A
′(j0, j1)⊗ . . .⊗ A′(jk−1, jk)) ⊆ A(fObj(j0), fObj(jk)).

For k ≥ 1 and i1, . . . , ik, j1, . . . , jk ∈ ObjA′ such that there exists x ∈ [1, k − 1]
with jx 6= ix+1, we have

fk(A
′(i1, j1)⊗ . . .⊗ A′(ik, jk)) = 0.

The A∞-functor f is called a local quasi-isomorphism if for i, j ∈ ObjA′, the com-
plex morphism f1|

A(fObj(i),fObj(j))

A′(i,j) : (A′(i, j),m′1) → (A(fObj(i), fObj(j)),m1) is a quasi-
isomorphism.

0.1.3. The filt construction

Suppose given an (ordinary) R-algebra B. Given B-modules Si for i ∈ I, the filt
construction provides a complete description of the full subcategory filt(Si, i ∈ I) of
B-Mod given by the B-modules that have a finite filtration such that each subquotient is
isomorphic to some Si for i ∈ I.

Keller and and Lefèvre-Hasegawa’s original version of the filt construction requires that R
is a field, cf. [11, Problem 2]. We generalize the filt construction to arbitrary commutative
ground rings R such as Z or Z(p) for p a prime.

In our notation, the filt construction proceeds as follows. First, we choose a projective
resolution (P (i), d(i)) of Si for each i ∈ I. Then, we define the dg-category (I, A =
⊕i,j∈IA(j, i) = ⊕i,j∈I Hom∗(C(i), C(j)), (mk)k≥1) as in our second guiding example.

Choose an A∞-category (ObjA′ := I, A′, (m′k)k≥1) such that there is a local quasi-
isomorphism of A∞-categories f = (idI , (fk)k≥1) from A′ to A. From A, A′ and f , we
obtain the A∞-categories twA and twA′ and the local quasi-isomorphism of A∞-categories
tw f from twA′ to twA. Very loosely speaking, twA, twA′ and tw f are matrix versions of
A, A′ and f that are twisted by strictly lower triangular matrices obeying the generalized
Maurer-Cartan equations, cf. Definition/Lemma 121 and Definition/Lemma 122. The
objects of twA and twA′ are prototypes of the modules in filt(Si, i ∈ I), so twA and
twA′ typically have a lot more objects than A and A′.
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The zeroth homology of an A∞-category carries the structure of a semicategory, i.e. of a
"category without identities", cf. section 1.4.2. In practice, these semicategories are often
categories1. In our case, we obtain the categories H0 twA′ and H0 twA and the fully
faithful functor H0 tw f from H0 twA′ to H0 twA. There is an equivalence of categories
Q from H0 twA to filt(Si, i ∈ I). The composite functor Q ◦ H0 tw f is dense, so we
have the

Theorem 1 (cf. Theorem 131). Q ◦H0 tw f is an equivalence of categories from H0 twA′

to filt(Si, i ∈ I).

Hence, we may describe the category filt(Si, i ∈ I) by the category H0 twA′.

Note that if A′ is minimal, then we have A′ = ⊕i,j∈I Ext∗B(Si, Sj) equipped with m′1 = 0,
with m′2 given by the Yoneda product and with some m′k for k ≥ 3. Note that A is
typically a dg-algebra of enormous size and that A′ is comparatively small, and so much
better suited for practical purposes, even taking into account the (possibly nonvanishing)
higher multiplication maps m′k for k ≥ 3. In Keller and Lefèvre-Hasegawa’s original
variant, A′ is chosen in such a way that it is minimal. If R is a field, Kadeishvili’s
minimality theorem ensures that this is possible. Over arbitrary rings R, finding a
suitable A′ is more complex: As detailed in section 0.1.4, the minimality theorem does
not hold over arbitrary rings R, but it is still possible to find a suitable small model A′.

We generalize Keller and Lefèvre-Hasegawa’s filt construction to arbitrary commutative
ground rings as follows.

Keller and Lefèvre-Hasegawa use A∞-modules and factorization of the Yoneda functor
(cf. [11, Theorem in section 7.5]). We use a direct approach. The choice to use a direct
approach was also influenced by the wish to precisely understand how the assembly of
objects of filt(Si, i ∈ I) from the Si translates to the objects of H0 twA and of H0 twA′.
We prove the fact that tw f is a local quasi-isomorphism directly from the fact that f is
a local quasi-isomorphism. This implies that H0 tw f is fully faithful. Establishing Q as
a fully faithful functor from H0 twA to filt(Si, i ∈ I) combines well-known results on
projective resolutions with a straightforward translation to A∞-terminology. The proof
that Q as well as Q ◦ H0 tw f are dense is done using explicit constructions with the
horseshoe lemma as key ingredient.

0.1.4. Small models of A∞-algebras and A∞-categories over arbitrary ground
rings. The extended Kadeishvili minimal method.

In the filt construction explained in section 0.1.3, we are given an A∞-category
(ObjA,A, (mk)k≥1) and we want to construct an A∞-category (ObjA′, A′, (m′k)k≥1)

1In our applications, we obtain this almost effortlessly by Lemmas 36 and 39 using the presence of
a suitable local quasi-isomorphisms of A∞-categories. In contrast, there are various concepts of
"unital" A∞-algebras resp. A∞-categories such as strictly unital A∞-algebras (cf. [11, section 3.5])
and unital A∞-categories, (cf. [15, Definition 7.3]). These ensure a priori that the semicategories
mentioned above are categories but introduce additional constraints.
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together with a local quasi-isomorphism of A∞-categories (fObj, (fk)k≥1) from A′ to A
such that fObj : ObjA′ → ObjA is bijective.

We will first discuss the simpler case where we are given an A∞-algebra (A, (mk)k≥1) and
we want to construct an A∞-algebra (A′, (m′k)k≥1) together with an quasi-isomorphism
of A∞-algebras (fk)k≥1 from A′ to A. We will return to the more general case of
A∞-categories at the end.

In the context of the filt construction, it is desirable that A′ is as small as possible since
then H0 twA′ also becomes as small and (hopefully) as simple as possible. If m′1 = 0
then A′ is as small as possible since then A′ is essentially the homology of A. Recall that
in that case, A′ is called a minimal model of A. If the ground ring R is a field, then
the existence of minimal models is guaranteed by Kadeishvili’s minimality theorem, cf.
[12] (history), [9], [10]. The original version of the minimality theorem given in [10] uses
Kadeishvili’s algorithm: After constructing f1 : A′ → A and m′1 = 0 in the initial step,
Kadeishvili’s algorithm constructs the fk and m′k successively for k = 2, 3, . . ., cf. e.g.
Theorem 55.

Over a ground ring R that is not a field, the minimality theorem does not hold in general.
If e.g. R is an integral domain but not a field, we may easily obtain an A∞-algebra that
does not have a minimal model, cf. section 4.1.

Kadeishvili’s algorithm works if the homology of A is projective over R, cf. e.g. Theorem 55.
Hence, one reasonable approach is setting A′ to be a direct sum of R-projective resolutions
of the HiA for i ∈ Z. One way of concretizing this idea was done by Sagave in [19] by
extending the concept of A∞-algebras to dA∞-algebras. In addition to the "vertical"
grading present in A∞-algebras, dA∞-algebras feature a "horizontal" grading. The
horizontal rows then contain the projective resolutions that A′ is composed of. The
multiplication maps of a dA∞-algebras obey grading conditions and a variant of the
Stasheff identities that involve both the horizontal and the vertical grading. Using
model categories, Sagave obtains in [19] minimal models in the sense of dA∞-algebras for
dg-algebras over arbitrary commutative rings. However, it is unknown to what extent the
projective resolutions occurring in A′ can be chosen, cf. [19, Remark 4.14]. In particular,
it is not known how large such a minimal model A′ in the sense of dA∞-algebras is.

We introduce eA∞-algebras. Each eA∞-algebra has an underlying A∞-algebra, which
facilitates the use of the filt construction. I.e. eA∞-algebras are A∞-algebras with
additional structure. Using a certain notion of minimality for eA∞-algebras, we obtain
the

Theorem 2 (cf. Theorem 90). Suppose given an A∞-algebra (A, (mk)k≥1). Choose
projective resolutions P (z) of HzA for z ∈ Z.

Then there exists a minimal eA∞-algebra (A′, (m′k)k≥1) with A′ := ⊕z∈ZP (z) and a quasi-
isomorphism of A∞-algebras (fk)k≥1 from (A′, (m′k)k≥1) to (A, (mk)k≥1).

The construction of the m′k and fk for k ≥ 1 is done incrementally via an algorithm called
the extended Kadeishvili minimal method. This algorithm requires knowledge about how
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the projective resolutions P (z) decompose into their positions. The need to store this
information is the cause for introducing eA∞-algebras, which are A∞-algebras that are
equipped with an additional structure that is precisely designed to hold that information.
Technically, this is done by introducing an additional, "horizontal" Z-grading somewhat
similar to Sagave’s dA∞-algebras. The projective resolutions P (z) then run diagonally
in contrast to dA∞-algebras, where they run horizontally. For a detailed comparison of
dA∞-algebras and eA∞-algebras, see section 4.3.5.

In the same way we have generalized from A∞-algebras to A∞-categorise, we may now
generalize from eA∞-algebras to eA∞-categories.

Suppose given an A∞-category (ObjA,A, (mk)k≥1). The concept of eA∞-algebras and
the concept of A∞-categories do not interfere with each other. Thus we can perform
the extended Kadeishvili minimal method basically separately on the components of
A = ⊕i,j∈ObjAA(i, j) to obtain the

Theorem 3 (cf. Theorem 98). Suppose given an A∞-category (ObjA,A, (mk)k≥1).
Choose a projective resolution P (z)

o1,o2 of HzA(o1, o2) for each z ∈ Z and each o1, o2 ∈ ObjA.
For o1, o2 ∈ ObjA, let A′(o1, o2) = ⊕z∈ZP (z). Let A′ := ⊕o1,o2∈ObjAA

′(o1, o2). Then
there exists a minimal eA∞-category (ObjA′ := ObjA,A′, (m′k)k≥1) and a local quasi-
isomorphism of A∞-categories (id, (fk)k≥1) : (ObjA′, A′, (m′k)k≥1)→ (ObjA,A, (mk)k≥1).

0.1.5. Models for cyclic groups over arbitrary ground rings

Suppose given an (ordinary) R-algebra B, a B-module M and a projective resolution P
ofM over B. If R is a field, the minimality theorem ensures that there is an A∞-structure
(m′k)k≥1 on Ext∗B(M,M) = H∗Hom∗B(P, P ) such that (Ext∗B(M,M), (mk)k≥1) becomes a
minimal model of the dg-algebra Hom∗B(P, P ). In the context of this introduction, we
call such an A∞-structure on Ext∗B(M,M) a canonical A∞-structure on Ext∗B(M,M).
We regard group cohomology algebras as a special cases of Ext∗-algebras, so the same
terminology applies for group cohomology algebras.

For an arbitrary field F and n ∈ Z≥1, Madsen computed a canonical A∞-structures
on Ext∗F[α]/(αn)(F,F), where F is the trivial F[α]/(αn)-module of the algebra F[α]/(αn).
For F := Fp and n := pk for a prime p and an integer k ≥ 1, the algebra Fp[α]/(αp

k
)

is isomorphic to the group algebra FpCpk of the cyclic group Cpk . So this yields also a
canonical A∞-structure on the group cohomology Ext∗FpC

pk
(Fp,Fp) of the cyclic group Cpk

as given by Vejdemo-Johansson in [23, Theorem 4.3.8].

In [23], Vejdemo-Johansson developed an algorithm to compute canonical A∞-structures
on group cohomology algebras partially. This algorithm has become a part of the Magma
computing framework, where it can be used to partially compute canonical A∞-structures
on the cohomology algebras of p-groups. In [23], it is used to partially compute canonical
A∞-structure on the cohomology algebras over F2 of the dihedral groups D8 and D16 as
well as the quaternion group Q8.
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In [24] and [23] (note the comments at [23, p. 41]), Vejdemo-Johannson investigated
a canonical A∞-structure (mn)n≥1 on the group cohomology Ext∗Fp(Ck×Cl)(Fp,Fp), where
k, l ≥ 4 are multiples of the prime p. He showed that in that case, the multiplication
maps m2, mk, ml, mk+l−2, m2(k−2)+l and m2(l−2)+k are non-zero, cf. [23, Theorem 3.3.3].

In [13], Klamt applied A∞-theory to representation theory of Lie-algebras. Given certain
direct sums M of parabolic Verma modules, she examined canonical A∞-structures on
Ext∗Op(M,M). Given such a canonical A∞-structure (mk)k≥1, she proved upper bounds
for the maximal k such that mk is non-zero. In certain cases, she computed complete
canonical A∞-structures.

In [20], a canonical A∞-structure on the group cohomology Ext∗FpSp(Fp,Fp) of the sym-
metric group Sp over Fp has been computed where p is a prime.

To test the theory of eA∞-algebras, we examine the case of cyclic groups over an arbitrary
ground ring:

Recall that R is a commutative ring. Let n ≥ 1. Let e be a generator of the cyclic group
Cn. We have the following projective resolution of the trivial RCn-module R.

P := (· · · → RCn

∑n−1
i=0 ei

−−−−−→ RCn
1−e−−→ RCn

∑n−1
i=0 ei

−−−−−→ RCn
1−e−−→ RCn → 0→ · · · )

We want to obtain a model (A′, (m′k)k≥1) of the dg-algebra Hom∗RCn(P, P ) such that
(A′, (m′k)k≥1) is a minimal eA∞-algebra and such that A′ consists of standard projective
resolutions of the Hi Hom∗RCn(P, P ) = ExtiRCn(R,R), i ∈ Z.

Let A′ be the free R-module over the set {ιj, χιj | j ∈ Z≥0}.
A′ is Z-graded by setting ιj to be homogeneous of degree 2j and setting χιj to be
homogeneous of degree 2j + 1 for j ∈ Z≥0.

Examining models (A′, (m′k)k≥1) of Hom∗RCn(P, P ) on A′ that exploit the periodicity
of P leads to a certain condition (cf. (67)) on the coefficients of the m′k, cf. Defini-
tion/Remark 104 and Propositions 105 and 110. Some experimentation revealed that
this condition is equivalent to the equation

(h− e)g = r

for formal power series g ∈ RCn[[X]], h ∈ RCn[[X]] and r ∈ R[[X]] with certain
constant and linear terms, cf. Proposition 115. Here, r encodes (m′k)k≥1 and g and
h encode the quasi-isomorphism of A∞-algebras from (A′, (m′k)k≥1) to Hom∗RCn(P, P ).
Since multiplication with e is a circular shift in Cn, the equation of power series given
above is some kind of recurrence relation on g. Indeed, if we restrict us to the case
h ∈ R[[X], then all solutions can be constructed as follows.

Choose ǧ =
∑

i≥0 ǧiX
i ∈ R[[X]] and h =

∑
i≥0 hiX

i ∈ R[[X]] such that h0 = ǧ0 = 1 and
such that h1 is a unit in R. We then obtain g and r by

g :=
n−1∑
i=0

hn−1−iǧei

11



r := (hn − 1)ǧ.

Given such r, g and h, we may then use r to obtain a model of Hom∗RCn(P, P ) on A′ as
follows. We have r =

∑
i≥0 riX

i for some ri ∈ R, i ≥ 0.

On A′, an A∞-structure (m′k)k≥1 is given by setting

m′k(χ
a1ιj1 ⊗ . . .⊗ χakιjk) :=


χa1+a2ιj1+j2 if 0 ∈ {a1, . . . , ak} and k = 2

0 if 0 ∈ {a1, . . . , ak} and k 6= 2

rkιj1+...+jk+1 if a1 = . . . = ak = 1

for k ≥ 1, a1, . . . , ak ∈ {0, 1} and j1, . . . , jk ≥ 0. The A∞-algebra (A′, (m′k)k≥1) carries
the structure of a minimal eA∞-algebra, cf. Remark 111. We have the following

Proposition 4 (cf. Propositions 110 and 117). The minimal eA∞-algebra (A′, (m′k)k≥1)
is quasi-isomorphic to the dg-algebra Hom∗RCn(P, P ).

Note that if R = Fp for some prime p and n = pc for c ∈ Z≥1, we recover the model given
by Madsen and Vejdemo-Johansson, cf. Remarks 114 and 118.

0.1.6. Connecting Hom∗-dg-algebras with A∞-morphisms

Suppose given an R-algebra B and two projective resolutions P,Q of the same B-module
M . In the situation detailed in section 0.1.7, it was necessary to be able to obtain a
sensible A∞-morphism from the dg-algebra Hom∗B(P, P ) to the dg-algebra Hom∗B(Q,Q).
Note that in this situation, the comparison theorem implies that the complexes P and Q
are homotopy equivalent. So we are able to use the following

Definition/Lemma 5 (cf. Definition/Lemma 63). Suppose given an R-algebra B.
Suppose given complexes (P, dP ), (Q, dQ) over B. We have the dg-algebras A′ :=
Hom∗B(P, P ) and A := Hom∗B(Q,Q).

Suppose given complex morphisms g1 : P → Q and g2 : Q → P . Suppose given a
homotopy h ∈ Hom−1

B (P, P ) such that g2 ◦ g1 = idP +dHom∗B(P,P )(h).

Then there is a morphism of A∞-algebras fg1,g2,h = (fk)k≥1 from A′ = Hom∗B(P, P ) to
A = Hom∗B(Q,Q) given as follows. For k ≥ 1 and homogeneous elements xi ∈ (A′)ki for
i ∈ [1, k], we set

fk(x1 ⊗ . . .⊗ xk) := (−1)
k(k−1)

2 (−1)
∑
i∈[1,k] ki(k−i)g1 ◦ (x1 ◦ h ◦ x2 ◦ . . . ◦ h ◦ xk) ◦ g2.

Note that f1 maps an element x ∈ Hom∗B(P, P ) to g1 ◦ x ◦ g2 ∈ Hom∗B(Q,Q). So fg1,g2,h

is in a certain sense induced by g1 and g2.
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0.1.7. Restriction to a subgroup in terms of minimal models on the group
cohomology algebras

Suppose given a field F. Suppose given a finite group G. Suppose given a projective
resolution P of the trivial FG-module F. By the minimality theorem, there exists
an A∞-structure on the group cohomology Ext∗FG(F,F) = H∗Hom∗FG(P, P ) such that
Ext∗FG(F,F) becomes a minimal model of the dg-algebra Hom∗FG(P, P ). Recall that in
this introduction, we call such an A∞-structure on Ext∗FG(F,F) a canonical structure
on Ext∗FG(F,F). Suppose given a subgroup H of G. The restriction from G to H
induces an inclusion map resG,H : Hom∗FG(P, P ) ↪→ Hom∗FH(P, P ) and thus a map
H∗ resG,H : Ext∗FG(F,F) → Ext∗FH(F,F), cf. e.g. [1, p. 73]. At the presentation of my
bachelor thesis [20], Steffen König asked whether it was known if resG,H somehow provides
a connection in the A∞-sense between canonical A∞-structures on Ext∗FG(F,F) and on
Ext∗FH(F,F).

In [20], a canonical A∞-structures on Ext∗Fp Sp(Fp,Fp) has been established, where p
is a prime, Fp is the field with p elements and Sp is the symmetric group with p!
elements. Further investigation showed that the canonical A∞-structure obtained on
Ext∗Fp Sp(Fp,Fp) (cf. [20, Definition 38, Theorem 39]) bears a striking resemblance to
canonical A∞-structures obtained on Ext∗FpCp(Fp,Fp), cf. [16, Appendix B Example 2.2]
and [23, Theorem 4.3.8]. This resemblance is given as follows. For both cases, there are
homogeneous generators a, b such that the group cohomology algebra has the Fp-basis
{aj, baj | j ∈ Z≥0} =: B. Evaluating the multiplication maps mk for k ≥ 1 on elements
x1 ⊗ . . .⊗ xk with xi ∈ B for i ∈ [1, k], the only non-zero images are

m2(aj ⊗ aj′) = aj+j
′
for j, j′ ∈ Z≥0

m2(baj ⊗ aj′) = baj+j
′
for j, j′ ∈ Z≥0

m2(aj ⊗ baj′) = baj+j
′
for j, j′ ∈ Z≥0

mp(ba
j1 ⊗ . . .⊗ bajp) =

{
a1+j1+...+jp for j1, . . . , jp ∈ Z≥0 for the case Cp

(−1)pa(p−1)+j1+...+jp for j1, . . . , jp ∈ Z≥0 for the case Sp.

For the cyclic groups, a =: aCp has degree 2 and b =: bCp has degree 1. For the symmetric
groups, a =: aSp has degree 2(p− 1) and b =: bSp has degree 2(p− 1)− 1. So if we identify
aSp with ap−1

Cp
and bSp with −bCpa

p−2
Cp

, the formulas for the mk are compatible. I.e. we
obtain the canonical model on Ext∗Fp Sp(Fp,Fp) as a (suitably defined) sub-A∞-algebra of
the canonical model on Ext∗FpCp(Fp,Fp).

In section 3.2, we develop results which show that this behaviour can partially be
generalized to group / subgroup pairs where the index of the subgroup in the group is
invertible in the underlying field:

On the one hand using a specialized version of Kadeishvili’s algorithm, we obtain the

Proposition 6 (cf. Proposition 66). Suppose given a field F. Suppose given a finite
group G and a subgroup H 6 G such that [G : H] is invertible in F. Suppose given a
projective resolution P of the trivial FG-module F over FG.
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Note that the dg-algebra homomorphism resG,H : Hom∗FG(P, P )→ Hom∗FH(P, P ) has an
A∞-version called strict∞(resG,H), cf. Definition 58.

Suppose given a minimal A∞-structure (m′n
(G))n≥1on Ext∗FG(F,F) and a quasi-isomorphism

of A∞-algebras (f
(G)
n )n≥1 : (Ext∗FG(F,F), (m′n

(G))n≥1) → Hom∗FG(P, P ) such that f (G)
1

induces the identity in homology.

Then there is a minimal A∞-structure (m′n)n≥1 on Ext∗FH(F,F) and a quasi-isomorphism
of A∞-algebras (fn)n≥1 : (Ext∗FH(F,F), (m′n)n≥1)→ Hom∗FH(P, P ) such that

• f1 induces the identity in homology,

• strict∞(H∗ resG,H) : (Ext∗FG(F,F), (m′n
(G))n≥1)→ (Ext∗FH(F,F), (m′n)n≥1) is an A∞-

morphism and

• the following diagram of A∞-morphisms commutes.

(Ext∗FG(F,F), (m′n
(G))n≥1)

strict∞(H∗ resG,H)

��

(f
(G)
n )n≥1 // Hom∗FG(P, P )

strict∞(resG,H)

��
(Ext∗FH(F,F), (m′n)n≥1)

(fn)n≥1 // Hom∗FH(P, P )

On the other hand using a result by Keller and Prouté (cf. [11, Theorem in section 3.7],
see also [18, Théorème 4.27] and [21, Corollary 1.14]), we obtain the following

Proposition 7 (cf. Proposition 67). Suppose given a field F. Suppose given finite groups
G,H with H 6 G. Suppose given a projective resolution P of the trivial FG-module F
and a projective resolution Q of the trivial FH-module F.

Suppose given minimal A∞-algebras

M (G) := (Ext∗FG(F,F), (m′k
(G)

)k≥1),

M (H) := (Ext∗FH(F,F), (m′k
(H)

)k≥1)

together with quasi-isomorphisms of A∞-algebras

f (G) = (f
(G)
k )k≥1 : M (G) → Hom∗FG(P, P )

f (H) = (f
(H)
k )k≥1 : M (H) → Hom∗FH(Q,Q).

Suppose given FH-linear complex morphisms g1 : P → Q and g2 : Q→ P together with
a homotopy h ∈ Hom−1

FH(P, P ) such that g2 ◦ g1 = idP +dHom∗FH(P,P )(h).

From g1, g2 and h, we obtain via Definition/Lemma 5 the A∞-morphism fg1,g2,h from
Hom∗FH(P, P ) to Hom∗FH(Q,Q).

14



Then there exists an A∞-morphism fmin from M (G) to M (H) such that the following
diagram commutes up to homotopy in the sense of [11, section 3.7].

M (G) f (G)
//

fmin

��

Hom∗FG(P, P )

fg1,g2,h◦strict∞(resG,H)

��
M (H) f (H)

// Hom∗FH(Q,Q)

Comparing the two results, note that in Proposition 6, an explicit construction is used and
the morphism between the minimal models is the A∞-morphism induced by restriction.
In Proposition 7, however, the canonical A∞-structure on Ext∗FH(F,F) can be chosen
and we have no restriction on the index [G : H], but we know less about the morphism
between the minimal models and we obtain commutativity only up to homotopy.
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0.3. Notations and conventions

Miscellaneous

• For modules M,N , we write M 6 N if M is a submodule of N . For groups H,G,
we write H 6 G if H is a subgroup of G. If G and H are finite groups and H 6 G,
we write [G : H] to denote the index of H in G.

• If we denote a commutative ring R as the ground ring, we understand linear
maps between R-modules to be R-linear. Furthermore, tensor products are tensor
products over R.

Graded modules are Z-graded modules over R, cf. section 1.1. Graded maps are
R-linear graded maps, cf. section 1.1.

• Concerning "∞", we assume the set Z ∪ {∞} to be ordered in such a way that
∞ is greater than any integer, i.e. ∞ > z for all z ∈ Z, and that the integers are
ordered as usual.

• For a ∈ Z, b ∈ Z ∪ {∞}, we denote by [a, b] := {z ∈ Z | a ≤ z ≤ b} ⊆ Z the
integral interval. In particular, we have [a,∞] = {z ∈ Z | z ≥ a} ⊆ Z for a ∈ Z.

• For n ∈ Z≥0, k ∈ Z, let the binomial coefficient
(
n
k

)
be defined by the number of

subsets of the set {1, . . . , n} that have cardinality k. In particular, if k < 0 or
k > n, we have

(
n
k

)
= 0. Then the formula

(
n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
holds for all k ∈ Z.
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• Rings are unital rings.

• For a commutative ring R, an R-module M and a, b ∈M , c ∈ R, we write

b ≡c a :⇐⇒ a− b ∈ cM.

Often we have M = R as module over itself.

• For a prime q, let Fq denote the finite field containing q elements.

• Let R be a commutative ring. An R-algebra (A, ρ) is a ring A together with a ring
morphism ρ : R → A such that ρ(R) is a subset of the center of A. By abuse of
notation, we often just write A for (A, ρ). A is an R-module via r · a := ρ(r) · a for
r ∈ R, a ∈ A.

For R-algebras (A, ρ) and (B, τ), a morphism of R-algebras g : (A, ρ)→ (B, τ) is a
ring morphism g : A→ B such that g ◦ ρ = τ .

• Morphisms will be written on the left.

• Modules are left-modules unless otherwise specified. For a ring A, we denote by
A-Mod the category of left A-modules.

• We denote a tuple by enclosing it in parentheses. I.e. for a set M and ai ∈ M ,
i ∈ [1, n], n ≥ 0, we have the tuple (a1, a2, . . . , an) = a. In particular, () is the
empty tuple.

For a map g : M → N from M to a set N , we define

g(a) := (g(x) : x ∈ a) := (g(a1), g(a2), . . . , g(an)).

For a set M ′, by abuse of notation, we denote by M ′ \ a the set difference between
M ′ and the set of elements of a. Similarly, we write a ⊆M ′ if each entry of a is an
element of M ′.

We will express ordered bases of finite-rank free modules as tuples of pairwise
distinct elements.

• For sets, we denote by t the disjoint union of sets. For tuples a = (a1, . . . , an) and
b = (b1, . . . , bm), we denote by t the concatenation:

a t b := (a1, a2, . . . , an, b1, b2, . . . , bm)

• | · |: For y a real number, |y| denotes its absolute value. For a = (a1, . . . , an) a
tuple, |a| := n is the number of its entries.

For an element x of a graded module, let |x| := {k ∈ Z | x is homog. of degree k},
cf. section 1.1. Hence, x is homogeneous of degree k iff |x| 3 k. For a linear
map g between graded modules, let |g| := {k ∈ Z | g is graded of degree k}, cf.
section 1.1.
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• Suppose given an I × J-graded module M = ⊕i∈I,j∈JM i,j for sets I, J . We say
that we suppress the grading along I or say that we suppress the grading along
i if we consider M as a J-graded module where given j ∈ J , the homogeneous
component of M of degree j is ⊕i∈IM i,j . In the same way, components of gradings
indexed by Cartesian products of more than two sets may be suppressed.

Restricting and extending maps and morphisms

• Suppose given a function f : A→ B.
For a set A′ ⊆ A, we denote by f |A′ : A′ → B the restriction in the domain.
For a set B′ ⊆ B such that f(A) ⊆ B′, we denote by f |B′ : A→ B′ the restriction
in the codomain.
For sets A′ ⊆ A, B′ ⊆ B such that f(A′) ⊆ B′, let f |B′A′ := (f |A′)|B

′ .

• Suppose given sets A,B,C. Suppose given a set B′ ⊆ B. Suppose given maps
f : A→ B′ and g : B → C. We define the composition g ◦ f by g ◦ f := h, where
h : A→ C is given by h(x) := g(f(x)) for x ∈ A. I.e. the inclusion map from A′ to
A is inserted implicitly between g and f .

• Suppose given a commutative ring R. Suppose given R-modules A,B. Suppose
given submodules C,C ′ 6 B. Suppose given R-linear maps f : A→ C, g : A→ C ′.
We define f + g to be the R-linear map f + g : A→ (C+C ′) given by (f + g)(x) :=
f(x) + g(x) for x ∈ A. Note that this notion for sums of morphisms is commutative
and associative.

• When combining the two previous conventions, there is the following simplification.
Suppose given a commutative ring R. Suppose given R-modules A,B,C. Suppose
given submodules B′1, B′2, B′′ 6 B. Suppose given R-linear maps f1 : A → B′1,
f2 : A→ B′2 and g : B′′ → C. The morphism (f1 +f2) : A→ B′1 +B′2 is composable
with g : B′′ → C iff B′1 +B′2 ⊆ B′′. This holds iff B′1 ⊆ B′′ and B′2 ⊆ B′′. In that
case, we have g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 : A→ C.

We conclude that in order to verify that an expression of the form g ◦ (f1 + f2)
with R-linear maps f1, f2, g is sensible, we only need to check that f1 and f2 have
the same domain and that the domains of both f1 and f2 are submodules of the
domain of g.

Complexes Let R be a commutative ring and B an R-algebra.

• Suppose given a (descending) complex of B-modules

(C, d) = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · ).

We often write C instead of (C, d).
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The k-th boundaries, cycles and homology groups of C are defined by Bk(C) :=
im dk+1, Zk(C) := ker dk and Hk(C) := Zk(C)/Bk(C). Write Z∗(C) := ⊕k∈ZZk(C),
B∗(C) := ⊕k∈ZBk(C) and H∗(C) := ⊕k∈ZHk(C).

For a cycle x ∈ Zk(C), we denote by x := x+ Bk(C) ∈ Hk(C) its equivalence class
in homology.

• Suppose given an (ascending) complex of B-modules

(C, d) = (· · · → Ck−1 dk−1

−−→ Ck dk−→ Ck+1 → · · · ).

We often write C instead of (C, d).

The k-th boundaries, cycles and homology groups of C are defined by Bk(C) :=
im dk−1, Zk(C) := ker dk and Hk(C) := Zk(C)/Bk(C). Write Z∗(C) := ⊕k∈ZZk(C),
B∗(C) := ⊕k∈ZBk(C) and H∗(C) := ⊕k∈ZHk(C).

For a cycle x ∈ Zk(C), we denote by x := x+ Bk(C) ∈ Hk(C) its equivalence class
in homology.

• Given a descending complex of B-modules

· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · ,

we may obtain an ascending complex of B-modules by setting Ck := C−k and
dk := d−k for k ∈ Z.

Conversely given an ascending complex of B-modules

· · · → Ck−1 dk−1

−−→ Ck dk−→ Ck+1 → · · · ,

we may obtain an descending complex of B-modules by setting Ck := C−k and
dk := d−k for k ∈ Z.
So we may transform ascending and descending complexes into each other. We
will denote both ascending and descending complexes simply as complexes and
distinguish them from each other by using upper indices for ascending complexes
and lower indices for descending complexes.

• For a complex of B-modules C = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 →) and z ∈ Z,
the shifted complex C[z] =: C̃ is defined by C̃k := Ck+z, d̃k := (−1)zdk+z.

• Let

C = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · )

C ′ = (· · · → C ′k+1

d′k+1−−→ C ′k
d′k−→ C ′k−1 → · · · )

be complexes of B-modules.
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Given z ∈ Z, let

Homz
B(C,C ′) :=

∏
i∈Z

HomB(Ci+z, C
′
i).

This is used to define the graded R-module

Hom∗B(C,C ′) :=
⊕
k∈Z

Homk
B(C,C ′).

For an additional complex C ′′ = (· · · → C ′′k+1

d′′k+1−−→ C ′′k
d′′k−→ C ′′k−1 → · · · ) and maps

h = (hi)i∈Z ∈ Homm
B (C,C ′), h′ = (h′i)i∈Z ∈ Homn

B(C ′, C ′′), m,n ∈ Z, we define the
composition by component-wise composition as

h′ ◦ h := (h′i ◦ hi+n)i∈Z ∈ Homm+n
B (C,C ′′).

Furthermore, we define composition on Hom∗B(C ′, C ′′)⊗ Hom∗B(C,C ′) by linearly
extending the definition given on the summands of Hom∗B(C ′, C ′′)⊗Hom∗B(C,C ′) =
⊕m,n∈Z Homn(C ′, C ′′)⊗ Homm(C,C ′).

The graded R-module Hom∗B(C,C ′) =
⊕

k∈Z Homk
B(C,C ′) becomes a complex via

the differential dHom∗B(C,C′), which is defined on elements g ∈ Homk
B(C,C ′), k ∈ Z

by

dHom∗B(C,C′)(g) := d′ ◦ g − (−1)kg ◦ d ∈ Homk+1
B (C,C ′),

where d := (di+1)i∈Z ∈ Hom1
B(C,C) and analogously d′ := (d′i+1)i∈Z ∈ Hom1

B(C ′, C ′).

An element h ∈ Hom0
B(C,C ′) is called a complex morphism if it satisfies

dHom∗B(C,C′)(h) = 0, i.e. d′ ◦ g = g ◦ d.
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1. A∞-algebras

Suppose given a commutative ground ring R.

1.1. Graded modules. The Koszul sign rule. Graded projectivity.

In this subsection, we review basic definitions and results concerning graded modules
and the Koszul sign rule.

Definition 8. A graded R-module or graded module V is an R-module of the form
V = ⊕q∈ZV q. An element vq ∈ V q, q ∈ Z is said to be of degree q. An element v ∈ V is
called homogeneous if there is an integer q ∈ Z such that v ∈ V q. For elements v ∈ V ,
let |v| := {k ∈ Z | v is homogeneous of degree k}.

Definition 9. Let A = ⊕q∈ZAq, B = ⊕q∈ZBq be graded R-modules. A graded map of
degree z ∈ Z from A to B is a linear map g : A→ B such that im g

∣∣
Aq
⊆ Bq+z for q ∈ Z.

For linear maps g : A→ B, let |g| := {k ∈ Z | g is graded of degree k}.

Definition 10 (Arithmetics of degrees). Given sets M,M ′ ⊆ Z, we define their sum by
M +M ′ := {m+m′ | m ∈M,m′ ∈M ′}.

Remark 11. Let A,B be graded modules. Let f : A→ B be a linear map. Let x ∈ A.

If kx ∈ |x| and kf ∈ |f |, then x ∈ Akx and f is graded of degree kf . This implies
f(x) ∈ Bkx+kf , so kx + kf ∈ |f(x)|. We conclude |x|+ |f | ⊆ |f(x)|.

Definition 12. The category R-ModZ of graded R-modules is given as follows. Objects
are graded R-modules. Morphisms are graded maps of degree 0. The category R-ModZ is
isomorphic to the category of functors from the discrete category Z to R-Mod. So R-ModZ
is an abelian category since R-Mod is abelian, cf. e.g. [17, II.11].

For A,B ∈ Obj(R-ModZ), the direct sum A ⊕ B =
⊕

q∈Z(Aq ⊕ Bq) is then graded by
(A⊕B)q = Aq⊕Bq. We denote a direct summand in R-ModZ as a graded direct summand.

For A ∈ Obj(R-ModZ), a submodule M of A is called a graded submodule2 of A if
M = ⊕q∈Z(Aq ∩M). In that case, the inclusion map M ↪→ A is a graded map of degree
0.

Lemma 13 (cf. e.g. [2, §11.3 Proposition 3(i)] ). Suppose given graded modules A,B
and a graded map f : A→ B. Then im(f) ⊆ B is a graded submodule of B.

Proof. Choose kf ∈ |f |. We have

im(f) = ⊕p∈Zf(Ap)
f(Ap)⊆Bp+kf

⊆ ⊕p∈Z(im(f) ∩Bp+kf ) = ⊕q∈Z(im(f) ∩Bq) ⊆ im(f).

Hence we have equality everywhere. In particular, we have im(f) = ⊕q∈Z(im(f)∩Bq).
2By some authors, a graded submodule resp. a graded direct summand is also called a homogeneous
submodule resp. a homogeneous direct summand.
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Definition 14. Let A = ⊕q∈ZAq, B = ⊕q∈ZBq be graded R-modules. We have

A⊗B =
⊕

z1,z2∈Z

Az1 ⊗Bz2 =
⊕
q∈Z

( ⊕
z1+z2=q

Az1 ⊗Bz2

)
.

As we understand the direct sums to be internal direct sums in A⊗B and understand
Az1 ⊗ Bz2 to be the linear span of the set {a⊗ b ∈ A⊗ B | a ∈ Az1 , b ∈ Az2}, we have
equations in the above, not just isomorphisms.

We then set A ⊗ B to be graded by A ⊗ B =
⊕

q∈Z(A ⊗ B)q, where (A ⊗ B)q :=⊕
z1+z2=q A

z1 ⊗Bz2 .

Note that given a ∈ A, b ∈ B, the assumption ka ∈ |a|, kb ∈ |b| implies ka + kb ∈ |a⊗ b|.
I.e. |a|+ |b| ⊆ |a⊗ b|.

Definition 15. In the definition of the tensor product of graded maps, we implement the
Koszul sign rule: Let A1, A2, B1, B2 be graded R-modules and g : A1 → B1, h : A2 → B2

graded maps with kg ∈ |g| and kh ∈ |h|. Then g⊗h is given on elements x⊗y ∈ Akx
1 ⊗A

ky
2

by

(g ⊗ h)(x⊗ y) := (−1)kh·kxg(x)⊗ h(y). (1)

Note that if kg ∈ |g| and kh ∈ |h|, then kg + kh ∈ |g ⊗ h|. I.e. |g|+ |h| ⊆ |g ⊗ h|.

Remark 16. It is known that for graded R-modules A,B,C, the map

Θ : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)
(a⊗ b)⊗ c 7−→ a⊗ (b⊗ c) (2)

is an isomorphism of R-modules. Because of the following, Θ is homogeneous of degree 0.

((A⊗B)⊗ C)q =
⊕

y+z3=q

(A⊗B)y ⊗ Cz3 =
⊕

y+z3=q

⊕
z1+z2=y

(Az1 ⊗Bz2)⊗ Cz3

=
⊕

z1+z2+z3=q

(Az1 ⊗Bz2)⊗ Cz3

(A⊗ (B ⊗ C))q =
⊕

z1+y=q

Az1 ⊗ (B ⊗ C)y =
⊕

z1+y=q

⊕
z2+z3=y

Az1 ⊗ (Bz2 ⊗ Cz3)

=
⊕

z1+z2+z3=q

Az1 ⊗ (Bz2 ⊗ Cz3)

Let A1, A2, B1, B2, C1, C2 be graded R-modules, f : A1 → A2, g : B1 → B2, h : C1 → C2

graded maps with kf ∈ |f |, kg ∈ |g|, kh ∈ |h|. For homogeneous elements x ∈ A1, y ∈ B1,
z ∈ C1 with kx ∈ |x|, ky ∈ |y|, kz ∈ |z|, we have

((f ⊗ g)⊗ h)((x⊗ y)⊗ z) = (−1)(kx+ky)kh((f ⊗ g)(x⊗ y))⊗ h(z)

= (−1)(kx+ky)kh+kxkg(f(x)⊗ g(y))⊗ h(z)
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(f ⊗ (g ⊗ h))(x⊗ (y ⊗ z)) = (−1)kx(kg+kh)f(x)⊗ ((g ⊗ h)(y ⊗ z))

= (−1)kx(kg+kh)+kykhf(x)⊗ (g(y)⊗ h(z))

= (−1)(kx+ky)kh+kxkgf(x)⊗ (g(y)⊗ h(z)).

Thus we have the following commutative diagram (Θ1 and Θ2 are derived from (2))

(A1 ⊗B1)⊗ C1
Θ1 //

(f⊗g)⊗h
��

A1 ⊗ (B1 ⊗ C1)

f⊗(g⊗h)
��

(A2 ⊗B2)⊗ C2
Θ2 // A2 ⊗ (B2 ⊗ C2)

It is therefore valid to use Θ as an identification and to omit the brackets for the
tensorization of graded R-modules and the tensorization of graded maps.

Lemma 17. Let Ai, Bi, i ∈ {1, 2, 3} be graded R-modules and f : A1 → A2, g : B1 → B2,
h : A2 → A3, i : B2 → B3 graded maps. Suppose |f | 3 kf and |i| 3 ki. Then

(h⊗ i) ◦ (f ⊗ g) = (−1)kf ·ki(h ◦ f)⊗ (i ◦ g). (3)

Proof. Choose kh ∈ |h| and kg ∈ |g|. Let a ∈ A1 resp. b ∈ B1 be homogeneous elements
of degree ka resp. kb. We have

((h⊗ i) ◦ (f ⊗ g))(a⊗ b) = (−1)ka·kg(h⊗ i)(f(a)⊗ g(b))

kf+ka∈|f(a)|
= (−1)ka·kg+(kf+ka)ki(h ◦ f)(a)⊗ (i ◦ g)(b)

= (−1)ka(kg+ki)+kf ·ki(h ◦ f)(a)⊗ (i ◦ g)(b)

kg+ki∈|i◦g|
= (−1)kf ·ki((h ◦ f)⊗ (i ◦ g))(a⊗ b).

Repeated application of Lemma 17 yields the following

Corollary 18. Let n ≥ 1. Given graded R-modules Vi, Wi, Ui and graded maps
fi : Vi → Wi, gi : Wi → Ui with |fi| 3 kfi, |gi| 3 kgi for i ∈ [1, n], we have

(g1 ⊗ · · · ⊗ gn) ◦ (f1 ⊗ · · · ⊗ fn) = (−1)s(g1 ◦ f1)⊗ · · · ⊗ (gn ◦ fn),

where s =
∑

2≤i≤n kgi ·
(∑

1≤j<i kfj

)
=
∑

1≤j<i≤n kgi · kfj .

Definition 19. Let P be a graded module. We denote P to be graded projective iff for
each surjective graded map b : D � C of degree kb for some graded module C,D and
for each graded map c : P → C of degree kc, there exists a graded map d : P → D with
kd ∈ |d| such that c = b ◦ d and kc = kb + kd.

P

c
��

∃d

~~
D

b // // C
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Lemma 20. Suppose given a graded module P which is projective over R (⇔ all P i are
projective over R). Then P is graded projective.

Proof. Suppose given C,D, b, c, kb, kc as in Definition 19. Set kd := kc− kb. For x ∈ Z, we
construct morphisms dx : P x → Dx+kd as follows. Since b is surjective and graded, the
restricted map b|Cx+kc

Dx+kc−kb
= b|Cx+kc

Dx+kd
is surjective. Since P x is projective, and c(P x) ⊆ Cx+kc ,

there is a morphism dx : P x → Dx+kd such that b|Cx+kc

Dx+kd
◦ dx = c|Cx+kc

Px . From the maps dx,
we obtain a graded map d : P → D of degree kd by setting d|D

x+kd
Px := dx for x ∈ Z. By

the construction of the dx, we have b ◦ d = c.

1.2. A∞-algebras

Concerning the signs in the definition of A∞-algebras and A∞-morphisms, we follow the
variant given e.g. in [14].

Definition 21. Let n ∈ Z≥0 ∪ {∞}.

(i) Let A be a graded R-module. A pre-An-structure on A is a family of graded maps
(mk : A⊗k → A)k∈[1,n] with |mk| 3 2− k for k ∈ [1, n]. The tuple (A, (mk)k∈[1,n]) is
called a pre-An-algebra.

(ii) Let A′, A be graded R-modules. A pre-An-morphism from A′ to A is a family of
graded maps (fk : A′⊗k → A)k∈[1,n] with |fk| 3 1− k for k ∈ [1, n].

A pre-An-morphism (fk)k∈[1,n] is called strict if fk = 0 for k ∈ [2, n].

Definition 22. Let n ∈ Z≥0 ∪ {∞}.

(i) An An-algebra is a pre-An-algebra (A, (mk)k∈[1,n]) such that for k ∈ [1, n], the
Stasheff identity ∑

k=r+s+t,
r,t≥0,s≥1

(−1)rs+tmr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) = 0 (4)[k]

holds.

In abuse of notation, we sometimes abbreviate A = (A, (mk)k≥1) for A∞-algebras.

(ii) Let (A′, (m′k)k∈[1,n]) and (A, (mk)k∈[1,n]) be An-algebras. An An-morphism or mor-
phism of An-algebras from (A′, (m′k)k∈[1,n]) to (A, (mk)k∈[1,n]) is a pre-An-morphism
(fk)k∈[1,n] such that for k ∈ [1, n], we have∑
k=r+s+t
r,t≥0,s≥1

(−1)rs+tfr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t) =
∑

1≤r≤k
i1+...+ir=k

all is≥1

(−1)vmr ◦ (fi1 ⊗ fi2 ⊗ . . .⊗ fir),

(5)[k]
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where

v :=
∑

1≤t<s≤r

(1− is)it. (6)

An An-morphism is called strict if it is a strict pre-An-morphism.

Given ñ ∈ Z≥0, ñ < n, we may forget a part of the structure of an An-algebra
(A, (mk)k∈[1,n]) to obtain the Añ-algebra (A, (mk)k∈[1,ñ]). This is often done without
comment.

Example 23 (dg-algebras). Let (A, (mk)k≥1) be an A∞-algebra. If mn = 0 for n ≥ 3
then A is called a differential graded algebra or dg-algebra. In this case the equations
(4)[n] for n ≥ 4 become trivial: We have (r + 1 + t) + s = n+ 1 ⇒ (r + 1 + t) + s ≥ 5
⇒ mr+1+t = 0 or ms = 0. So all summands in (4)[n] are zero for n ≥ 4. Here are the
equations for n ∈ {1, 2, 3}:

(4)[1] : 0 =m1 ◦m1

(4)[2] : 0 =m1 ◦m2 −m2 ◦ (m1 ⊗ 1 + 1⊗m1)

(4)[3] : 0 =m1 ◦m3 +m2 ◦ (1⊗m2 −m2 ⊗ 1)

+m3 ◦ (m1 ⊗ 1⊗2 + 1⊗m1 ⊗ 1 + 1⊗2 ⊗m1)
m3=0

=m2 ◦ (1⊗m2 −m2 ⊗ 1)

So (4)[1] ensures that m1 is a differential. Moreover, (4)[3] states that m2 is an
associative binary operation, since for homogeneous x, y, z ∈ A we have 0 = m2 ◦
(1⊗m2 −m2 ⊗ 1)(x⊗ y ⊗ z) = m2(x⊗m2(y ⊗ z)−m2(x⊗ y)⊗ z), where because of
|m2| = 0 there are no additional signs caused by the Koszul sign rule. Equation (4)[2] is
the Leibniz rule which can be motivated by the product rule in the algebra of differential
forms on a smooth manifold: We set m1f := ∂f and m2(f ⊗ g) := f ∧ g and we have for
homogeneous differential forms f, g

∂(f ∧ g) = (∂f) ∧ g + (−1)|f |f ∧ (∂g).

The signs on the right side also motivate the Koszul sign rule.

Example 24 (An-morphisms induce complex morphisms).
Let n ∈ Z≥1 ∪ {∞}. Let (A′, (m′k)k∈[1,n]) and (A, (mk)k∈[1,n]) be An-algebras and let
(fk)k∈[1,n] : (A′, (m′k)k∈[1,n])→ (A, (mk)k∈[1,n]) be an An-morphism.

By (4)[1], (A′,m′1) and (A,m1) are complexes. Equation (5)[1] is

f1 ◦m′1 =m1 ◦ f1.

Thus f1 : (A′,m′1)→ (A,m1) is a complex morphism.

If n ≥ 2, we have also (5)[2]:

f1 ◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1) =m1 ◦ f2 +m2 ◦ (f1 ⊗ f1) (7)
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Recall the conventions concerning Homk
B(C,C ′).

Lemma 25. Let B be an (ordinary) R-algebra and M = ((Mi)i∈Z, (di)i∈Z) a complex of
B-modules, that is a sequence (Mi)i∈Z of B-modules and B-linear maps di : Mi →Mi−1

such that di−1 ◦ di = 0 for all i ∈ Z. Let

Homi
B(M,M) :=

∏
z∈Z

HomB(Mz+i,Mz)

= {g = (gz)z∈Z | gz ∈ HomB(Mz+i,Mz) for z ∈ Z}.

We then obtain the graded R-module

A = Hom∗B(M,M) :=
⊕
i∈Z

Homi
B(M,M).

We have d := (dz+1)z∈Z ∈ Hom1
B(M,M). We define m1 := dHom∗(M,M) : A→ A, that is

for homogeneous g ∈ A of degree kg, we have

m1(g) = d ◦ g − (−1)kgg ◦ d.

We define m2 : A⊗2 → A for homogeneous g, h ∈ A to be composition, i.e.

m2(g ⊗ h) := g ◦ h.

For n ≥ 3 we set mn : A⊗n → A, mn = 0. Then (mn)n≥1 is an A∞-algebra structure on
A = Hom∗B(M,M). More precisely, (A, (mn)n≥1) is a dg-algebra.

Proof. Since d is homogeneous of degree 1, the map m1 is graded of degree 1 = 2− 1.
The graded map m2 has degree 0 = 2−2. The other maps mn are zero and have therefore
automatically correct degree. As discussed in Example 23 we only need to check (4)[n]
for n = 1, 2, 3. Equation (4)[1] holds because for homogeneous g ∈ A of degree kg, we
have

m1(m1(g)) =m1(d ◦ g − (−1)kgg ◦ d)

= d ◦ [d ◦ g − (−1)kgg ◦ d]− (−1)kg+1[d ◦ g − (−1)kgg ◦ d] ◦ d
d2=0

= − (−1)kgd ◦ g ◦ d− (−1)kg+1d ◦ g ◦ d = 0.

Concerning (4)[2], we have for homogeneous g, h ∈ A of degrees kg ∈ |g| and kh ∈ |h|

(m2 ◦ (m1 ⊗ 1+1⊗m1))(g ⊗ h) = m2(m1(g)⊗ h+ (−1)kgg ⊗m1(h))

= (d ◦ g − (−1)kgg ◦ d) ◦ h+ (−1)kgg ◦ (d ◦ h− (−1)khh ◦ d)

= d ◦ g ◦ h− (−1)kg+khg ◦ h ◦ d
= (m1 ◦m2)(g ⊗ h).

The map m2 is induced by the composition of morphisms which is associative. As
discussed in Example 23, equation (4)[3] holds.
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Definition 26 (Homology of A∞-algebras, quasi-isomorphisms, minimality, minimal
models). Let n ∈ Zn≥1 ∪ {∞}. Let (A, (mk)k∈[1,n]) be an An-algebra. As m2

1 = 0 (cf.
(4)[1]) and as m1 is graded of degree 1, we have the complex

· · · → Ai−1 m1|Ai−1−−−−−→ Ai
m1|Ai−−−→ Ai+1 → · · · .

We define the homology of the An-algebra A to be the homology of this complex (A,m1).
I.e. for k ∈ Z, we have HkA = ker(m1|Ak)/ im(m1|Ak−1). Recall H∗A =

⊕
k∈Z HkA, which

gives the homology of A the structure of a graded R-module.

A morphism of An-algebras (fk)k∈[1,n] : (A′, (m′k)k∈[1,n])→ (A, (mk)k∈[1,n]) is called a quasi-
isomorphism if the morphism of complexes f1 : (A′,m′1)→ (A,m1) (cf. Example 24) is a
quasi-isomorphism.

An An-algebra is called minimal, if m1 = 0. If A is an An-algebra and A′ is a minimal
An-algebra quasi-isomorphic to A, then A′ is called a minimal model of A.

The existence of minimal models is assured by the following theorem.

Theorem 27 (minimality theorem, cf. [12] (history), [10], [9] ). Let (A, (mk)k≥1) be an
A∞-algebra such that the homology H∗A is a projective R-module.

Then there exists an A∞-algebra structure (m′k)k≥1 on H∗A and a quasi-isomorphism of
A∞-algebras (fk)k≥1 : (H∗A, (m′k)k≥1)→ (A, (mk)k≥1), such that

• m′1 = 0 and

• the complex morphism f1 : (H∗A,m′1)→ (A,m1) induces the identity in homology.
I.e. each element x ∈ H∗A, which is a homology class of (A,m1), is mapped by f1

to a representing cycle.

We give a proof of Theorem 27 in section 2.2, cf. Theorem 55.

There is a general statement concerning the computation of minimal models of dg-algebras:

Lemma 28 (cf. [25, Theorem 5]). Let R be a commutative ring and (A, (mn)n≥1) be a
dg-algebra (over R). Suppose given a graded R-module B and graded maps fn : B⊗n → A,
m′n : B⊗n → B for n ≥ 1. Suppose given k ≥ 1 such that

fi = 0 for i ≥ k

m′i = 0 for i ≥ k + 1,

and such that (5)[n] is satisfied for 1 ≤ n ≤ 2k− 2. Then (5)[n] is satisfied for all n ≥ 1.

Proof. We need to check (5)[n] for n ≥ 2k − 1:
The left side of (5)[n] is zero: For fr+1+t ◦ (1⊗r ⊗m′s⊗ 1⊗t) to be non-zero it is necessary
that r+ 1 + t ≤ k− 1 and s ≤ k, so n+ 1 = r+ s+ t+ 1 ≤ 2k− 1, which is not the case.
Thus all summands on the left side of (5)[n] are zero.
The right side of (5)[n] is zero: As A is a dg-algebra, we have mn = 0 for n ≥ 3. So all
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non-zero summands on the right side have r ≤ 2. For a non-zero summand we also have
iy ≤ k − 1 for all y ∈ [1, r]. So for those we have

n =
r∑

y=1

iy
r≤2

≤ 2(k − 1) = 2k − 2.

But n ≥ 2k − 1, so all summands on the right side of (5)[n] are zero.

1.3. A∞-categories

The following may be found e.g. in [11, sections 7.2 and 7.3].

Definition 29. Let n ∈ Z≥0∪{∞}. A pre-An-category A is a tuple (ObjA,A, (mk)k∈[1,n])
as follows.

(a) ObjA =: I is the set of objects3.

(b) A = ⊕(i,j,z)∈I×I×ZA
i,j,z
0 is an I2 × Z-graded R-module.

For i, j ∈ I, let A(i, j) := ⊕z∈ZAi,j,z0 , which is a Z-graded module. The module A
becomes a Z-graded module by A = ⊕i,j∈IA(i, j).

(c) For k ∈ [1, n], the map mk : A⊗k → A satisfies the following.

a) Given iy, jy ∈ ObjA for y ∈ [1, k] such that there exists x ∈ [1, k − 1] with
jx 6= ix+1, we have

mk(A(i1, j1)⊗ . . .⊗ A(ik, jk)) = 0.

b) Given iy ∈ ObjA for y ∈ [1, k + 1], we have

mk(A(i1, i2)⊗ A(i2, i3)⊗ . . .⊗ A(ik, ik+1)) ⊆ A(i1, ik+1).

Property (c) ensures that knowledge of mk

∣∣
A(i1,i2)⊗A(i2,i3)⊗...⊗A(ik,ik+1)

for i1, . . . , ik+1 ∈
ObjA is sufficient to obtain mk.

Definition 30. Let n, n′, n′′ ∈ Z≥0 ∪ {∞}. Suppose given a pre-An′-category
(ObjA′, A′, (m′k)k∈[1,n′]) and a pre-An-category (ObjA,A, (mk)k∈[1,n]). A pre-An′′-functor
from A′ to A is a tuple (fObj, (fk)k∈[1,n′′]) as follows.

(a) fObj is a map from ObjA′ to ObjA.

(b) For k ∈ [1, n′′], the map fk : (A′)⊗k → A satisfies the following.

3In the literature, it is not always required that ObjA is a set, cf. e.g. [11, 7.2]. Requiring ObjA to
be a set allows us to simplify notation. Furthermore, it allows us to perform constructions which
require a choice for each pair of objects, cf. e.g. section 4.3.4.
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a) Given iy, jy ∈ ObjA′ for y ∈ [1, k] such that there exists x ∈ [1, k − 1] with
jx 6= ix+1, we have

fk(A
′(i1, j1)⊗ . . .⊗ A′(ik, jk)) = 0.

b) Given iy ∈ ObjA′ for y ∈ [1, k + 1], we have

fk(A
′(i1, i2)⊗ A′(i2, i3)⊗ . . .⊗ A′(ik, ik+1)) ⊆ A(fObj(i1), fObj(ik+1)).

Example 31. Suppose given an R-algebra B. Suppose given a set I and complexes
(C(i), d(i)) over B for i ∈ I. For i, j ∈ I, we set A(i, j) := Hom∗B(C(j), C(i)), which is
a graded R-module (Note that i and j are swapped). For i, j, k ∈ I, f ∈ A(i, j) =
Hom∗B(C(j), C(i)), g ∈ A(j, k) = Hom∗B(C(k), C(j)), we set

m1(f) :=dHom∗B(C(j),C(i))(f)

m2(f ⊗ g) :=f ◦ g.

For n ≥ 3, set mn := 0. Then (I, A := ⊕i,j∈IA(i, j), (mn)n≥1) is a pre-A∞-category.

Definition 32. Let n ∈ Z≥0 ∪ {∞}.

An An-category is a pre-An-category (ObjA,A, (mk)k∈[1,n]) such that (A, (mk)k∈[1,n]) is
an An-algebra.

Suppose given An-categories (ObjA′, A′, (m′k)k∈[1,n]) and (ObjA,A, (mk)k∈[1,n]). An
An-functor ormorphism of An-categories fromA′ toA is a pre-An-functor (fObj, (fk)k∈[1,n])
from A′ to A such that (fk)k∈[1,n] is a morphism of An-algebras from (A′, (m′k)k∈[1,n]) to
(A, (mk)k∈[1,n]).

The An-functor (fObj, (fk)k∈[1,n]) is called a quasi-isomorphism of An-categories if the
morphism of An-algebras (fk)k∈[1,n] is a quasi-isomorphism.

The An-functor (fObj, (fk)k∈[1,n]) is called a local quasi-isomorphism of An-categories
if for all i, j ∈ ObjA′, the complex morphism f1|

A(fObj(i),fObj(j))

A′(i,j) : (A′(i, j),m′1|
A′(i,j)
A′(i,j)) →

(A(fObj(i), fObj(j)),m1|
A(fObj(i),fObj(j))

A(fObj(i),fObj(j))
) is a quasi-isomorphism.

An example is given by the following

Lemma 33. The pre-A∞-category (I, A := ⊕i,j∈IA(i, j), (mn)n≥1) given in Example 31
is an A∞-category.

Proof. We need to show that (A, (mn)n≥1) is an A∞-algebra. By construction,
(A, (mn)n≥1) is a pre-A∞-algebra. So we need to verify the Stasheff identities (4)[k] for
k ≥ 1. By Example 23, it suffices to verify (4)[k] for k ∈ {1, 2, 3}. Since (A, (mn)n≥1)
is a pre-A∞-category, it suffices to verify (4)[k] on elements of A(i1, j1)⊗ . . .⊗ A(ik, jk)
where jx = ix+1 for x ∈ [1, k−1]. Eq. (4)[1] holds since m1 is obtained from a differential.
Since m2 is associative and since m3 = 0, eq. (4)[3] holds, cf. Example 23. It remains to
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verify (4)[2] on elements of A(i, i′) ⊗ A(i′, i′′) = Hom∗B(C(i′), C(i)) ⊗ Hom∗B(C(i′′), C(i′)).
Suppose given g ∈ A(i, i′) and h ∈ A(i′, i′′) such that g is homogeneous of degree kg and
h is homogeneous of degree kh. We have

(m2 ◦ (m1 ⊗ 1 + 1⊗m1)(g ⊗ h)

(1)
=m2(m1(g)⊗ h+ (−1)kgg ⊗m1(h))

=m2(dHom∗B(C(i′),C(i))(g)⊗ h+ (−1)kgg ⊗ dHom∗B(C(i′′),C(i′))(h))

=m2((d(i) ◦ g − (−1)kgg ◦ d(i′))⊗ h+ (−1)kgg ⊗ (d(i′) ◦ h− (−1)khh ◦ d(i′′)))

= (d(i) ◦ g − (−1)kgg ◦ d(i′)) ◦ h+ (−1)kgg ◦ (d(i′) ◦ h− (−1)khh ◦ d(i′′))

= d(i) ◦ g ◦ h− (−1)kg+khg ◦ h ◦ d(i′′)

= dHom∗B(C(i′′),C(i))(g ◦ h) = m1(g ◦ h) = (m1 ◦m2)(g ⊗ h).

Thus (m1◦m2−m2◦(m1⊗1+1⊗m1))(g⊗h) = 0. Hence (4)[2] holds. Thus (A, (mn)n≥1)
is an A∞-algebra.

Lemma 34. Let n ∈ Z≥1 ∪ {∞}. Suppose given An-categories (ObjA′, A′, (m′k)k∈[1,n′]),
(ObjA,A, (mk)k∈[1,n]) and an An-functor (fObj, (fk)k∈[1,n]) from A′ to A. If fObj is bijec-
tive then the following are equivalent.

(a) (fObj, (fk)k∈[1,n]) is a quasi-isomorphism of An-categories.

(b) (fObj, (fk)k∈[1,n]) is a local quasi-isomorphism of An-categories.

Proof. To shorten notation, we write fObj =: g. The complexes (A′,m′1) and (A,m1)
decompose as

(A′,m1) =
⊕

i,j∈ObjA′

(A′(i, j),m′1|
A′(i,j)
A′(i,j)) and

(A,m1) =
⊕

i,j∈ObjA

(A(i, j),m1|A(i,j)
A(i,j)).

For i, j ∈ ObjA′, we have f1(A
′(i, j)) ⊆ A(g(i), g(j)). So the complex morphism

f1 : (A′,m′1)→ (A,m1) decomposes as

⊕
i,j∈ObjA′(A

′(i, j),m′1|
A′(i,j)
A′(i,j))

f1=
⊕
i,j∈ObjA′ f1|A(g(i),g(j))

A′(i,j)
��⊕

i,j∈ObjA′(A(g(i), g(j)),m1|A(g(i),g(j))
A(g(i),g(j)))=

⊕
i,j∈ObjA(A(i, j),m1|A(i,j)

A(i,j)).

Hence, f1 : (A′,m′1)→ (A,m1) is a quasi-isomorphism iff all components
f1|A(g(i),g(j))

A′(i,j) : (A′(i, j),m′1|
A′(i,j)
A′(i,j))→ (A(g(i), g(j)),m1|A(g(i),g(j))

A(g(i),g(j))) are quasi-isomorphisms.
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1.4. Homology of A∞-categories

It is well-known that the homology of dg-algebras and A∞-algebras resp. of dg-categories
and A∞-categories carries the structure an algebra resp. a category if we somehow ensure
the existence of a unit resp. of identity morphisms, cf. e.g. [11, sections 3.5, 7.2 and
7.7] and [21, Definition (1a)]. In the following, we present a variant which initially does
not require the homology of an A∞-category to have identity morphisms. I.e. it is not
necessarily a category. Instead there is a simple way to use suitable context for proving
the existence of identity morphisms, cf. Lemmas 36 and 39.

1.4.1. Semicategories

We will see that, similarly to a category, the homology of an A∞-category features an
associative composition map for morphisms but it may lack identity morphisms. Such a
structure is called a semicategory:

Definition/Remark 35 (cf. e.g. [6]). A semicategory C consists of

• a set of objects Obj C

• for each pair A,B ∈ Obj C, a set of morphisms C(A,B)

• for each triple A,B,C ∈ Obj C, a function

(·) : C(A,B)× C(B,C) −→ C(A,C)
(f, g) 7−→ f · g

called composition such that composition is associative. Note that in the context of
semicategories, we write composition on the right. We use a dot ("·") to distinguish
it from composition on the left, which is denoted by a circle ("◦").

Composition on the right is used to simplify notation when constructing semicate-
gories as homologies of A∞-categories.

For A ∈ Obj C, we call a morphism idA ∈ C(A,A) an identity morphism on A if for all
B ∈ Obj C and for all f ∈ C(A,B), g ∈ C(B,A), we have idA ·f = f and g · idA = g.

If there are identity morphisms idA,(1), idA,(2) on A ∈ C, we have idA,(1) = idA,(1) · idA,(2) =
idA,(2). So identity morphisms are unique, which justifies the notation idA for an identity
map on A. We say that C has identities iff for each object A ∈ Obj C, there is an identity
morphism on A. In that case, C is a category.

If C and D are categories, then a semifunctor F : C→ D consists of

• a function F : Obj C→ Obj D

• for each pair A,B ∈ Obj C, a function

FAB : C(A,B)→ D(F (A), F (B))
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such that for A,B,C ∈ Obj C, f ∈ C(A,B) and g ∈ D(B,C), we have
FAB(f) · FBC(g) = FAC(f · g).

We call the semifunctor F surjective iff F : Obj C→ Obj D is surjective.
We call F faithful iff for all A,B ∈ Obj C, the map FAB is injective.
We call F full iff for all A,B ∈ Obj C, the map FAB is surjective.

Lemma 36. Suppose given a fully faithful semifunctor F : C→ D, where D has identities.
Then C has identities and F : C→ D is a fully faithful functor between categories.

Proof. Since F is fully faithful, the maps FAB for A,B ∈ Obj C are all bijective. For
A ∈ Obj C, we set idA := F−1

AA(idF (A)). For B ∈ Obj C, f ∈ C(A,B) and g ∈ C(B,A), we
have

FAB(idA ·f) = FAA(idA) · FAB(f) = idF (A) ·FAB(f) = FAB(f)

FBA(g · idA) = FBA(g) · FAA(idA) = FBA(g) · idF (A) = FBA(g).

Since FAB and FBA are injective, we have idA ·f = f and g · idA = g. Hence, idA is an
identity on A for A ∈ Obj C. I.e. C is a category. Since F is a semifunctor, it preserves
composition. By the definition of the idA, the semifunctor F preserves identities, so it is
actually a functor.

1.4.2. A∞-categories

Definition/Remark 37. Let n ∈ Z≥3 ∪ {∞}. Suppose given an An-category
(ObjA,A(i, j)i,j∈ObjA, (mk)k∈[1,n]). We define its zeroth homology H0A, which is a
semicategory.

The objects of H0A are the same as those of A. I.e. Obj(H0A) := ObjA.

For i, j ∈ ObjA, (A(i, j),m1) is a complex. We set (H0A)(i, j) := H0(A(i, j),m1).

For i1, i2, i3 ∈ ObjA, we define composition by

(·) : (H0A)(i1, i2)× (H0A)(i2, i3) −→ (H0A)(i1, i3)
(g + B0(A(i1, i2),m1) , f + B0(A(i2, i3),m1)) 7−→ m2(g ⊗ f) + B0(A(i1, i3),m1).

Recall here that we have H0C = Z0C/B0C.

We need to check that (·) defined above is well-defined and associative. By (4)[2], we
have

m1(m2(Z0(A(i1, i2),m1)⊗ Z0(A(i2, i3),m1)))

=m2((m1 ⊗ 1 + 1⊗m1)(Z0(A(i1, i2),m1)⊗ Z0(A(i2, i3),m1))) = 0,

so pairs of cycles are mapped by m2 to cycles. Once more by (4)[2], we have

m2(B0(A(i1, i2),m1)⊗ Z0(A(i2, i3),m1))
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=m2((m1 ⊗ 1)(A(i1, i2)−1 ⊗ Z0(A(i2, i3),m1)))

=(m1 ◦m2 −m2 ◦ (1⊗m1))(A(i1, i2)−1 ⊗ Z0(A(i2, i3),m1))

=m1(m2(A(i1, i2)−1 ⊗ Z0(A(i2, i3),m1))) ⊆ B0(A(i1, i3),m1).

Similarly, we have

m2(Z0(A(i1, i2),m1)⊗ B0(A(i2, i3),m1)) ⊆ B0(A(i1, i3),m1),

so (·) is well-defined.

(4)[3] is

m2(m2 ⊗ 1− 1⊗m2) = m1 ◦m3 +m3 ◦ (m1 ⊗ 1⊗2 + 1⊗m1 ⊗ 1 + 1⊗2 ⊗m1)

Hence, for i1, i2, i3, i4 ∈ ObjA and for f ∈ Z0(A(i1, i2),m1), g ∈ Z0(A(i2, i3),m1) and
h ∈ Z0(A(i3, i4),m1), we have

m2(m2 ⊗ 1− 1⊗m2)(f ⊗ g ⊗ h) = m1(m3(f ⊗ g ⊗ h)) ⊆ B0(A(i1, i4),m1).

Hence (f̄ · ḡ) · h̄− f̄ · (ḡ · h̄) = 0. Thus the composition (·) is associative.

1.4.3. A∞-functors

Definition/Remark 38. Let n′ ∈ Z≥3 ∪ {∞}. Let n ∈ Z≥2 ∪ {∞}. Suppose given An′-
categories (ObjA′, A′, (m′k)k∈[1,n′]), (ObjA,A, (mk)k∈[1,n′]). Suppose given an An-functor
f = (fObj, fk∈[1,n]) from A′ to A. Then f induces a semifunctor H0f from H0A′ to H0A
as follows.

We set
(H0f)Obj := fObj : ObjA′ → ObjA.

For i, j ∈ ObjA′, we set

(H0f)ij := H0
(
f1|

A(fObj(i),fObj(j))

A′(i,j) : (A′(i, j),m′1)→ (A(fObj(i), fObj(j)),m1)
)
.

By (5)[2] (cf. (7)), we have

f1 ◦m′2 −m2 ◦ (f1 ⊗ f1) = m1 ◦ f2 + f2 ◦ (m′1 ⊗ 1 + 1⊗m′1).

Hence for i, j, k ∈ ObjA′ and ḡ1 ∈ (H0A′)(i, j), ḡ2 ∈ (H0A′)(j, k) with representatives
g1 ∈ Z0(A′(i, j),m′1), g2 ∈ Z0(A′(j, k),m′1) , we have

(H0f)ik(ḡ1·ḡ2)− (H0f)ij(ḡ1) · (H0f)jk(ḡ2)

=(f1 ◦m′2)(g1 ⊗ g2)− (m2 ◦ (f1 ⊗ f1))(g1 ⊗ g2)

=(m1 ◦ f2 + f2 ◦ (m′1 ⊗ 1 + 1⊗m′1))(g1 ⊗ g2)
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=(m1 ◦ f2)(g1 ⊗ g2)︸ ︷︷ ︸
∈B0(A(fObj(i),fObj(k)),m1)

+ (f2 ◦ (m′1 ⊗ 1 + 1⊗m′1))(g1 ⊗ g2)︸ ︷︷ ︸
=0

= 0 .

Hence
(H0f)ij(ḡ1) · (H0f)jk(ḡ2) = (H0f)ik(ḡ1 · ḡ2),

so H0f is a semifunctor.

Lemma 39. Let n′ ∈ Z≥3 ∪ {∞}. Let n ∈ Z≥2 ∪ {∞}. Suppose given An′-categories
(ObjA′, A′, (m′k)k∈[1,n′]), (ObjA,A, (mk)k∈[1,n′]) and an An-functor f = (fObj, fk∈[1,n])
from A′ to A. Suppose that f is a local quasi-isomorphism. Then H0f is fully faithful.

Proof. For i, j ∈ ObjA′, the complex morphism f1|
A(fObj(i),fObj(j))

A′(i,j) : (A′(i, j),m′1) →
(A(fObj(i), fObj(j)),m1) is a quasi-isomorphism since f is a local quasi-isomorphism.
Hence for i, j ∈ ObjA′, the map (H0f)ij : (H0A′)(i, j) → (H0A)(fObj(i), fObj(j)) is an
isomorphism. Thus (H0f) is fully faithful.
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2. On the bar construction

Suppose given a commutative ground ring R.

2.1. The bar construction

The following may be found e.g. in [14, 1.2.2].

Definition 40.

(i) A R-coalgebra (B,∆) is an R-module B equipped with a linear and coassocia-
tive comultiplication ∆ : B → B ⊗B. Coassociativity means that (1⊗∆) ◦∆ =
(∆⊗ 1) ◦∆. We will denote R-coalgebras simply as "coalgebras".

(ii) A coderivation of a coalgebra (B,∆) is a linear map b : B → B such that
∆ ◦ b = (b⊗ 1 + 1⊗ b) ◦∆.

(iii) A codifferential of a coalgebra (B,∆) is a coderivation b : B → B satisfying b2 = 0.

(iv) A coalgebra morphism F : (B′,∆′)→ (B,∆) between coalgebras (B′,∆′), (B,∆) is
a linear map F : B′ → B such that ∆ ◦ F = (F ⊗ F ) ◦∆′.

(v) A differential coalgebra (B,∆, b) is a coalgebra (B,∆) with a codifferential b on
(B,∆).

(vi) A morphism of differential coalgebras F : (B′,∆′, b′) → (B,∆, b) is a coalge-
bra morphism F : (B′,∆′) → (B,∆) that commutes with the differentials, i.e.
b ◦ F = F ◦ b′.

Lemma 41.

(a) A morphism of coalgebras is an isomorphism if and only if it is bijective.

(b) A morphism of differential coalgebras is an isomorphism if and only if it is bijective.

Proof. Each isomorphism of (differential) coalgebras is bijective as it is also an isomor-
phism in the category of sets.

Now let F : (B′,∆′)→ (B,∆) be a bijective morphism of coalgebras. Then we have an
R-linear inverse F ′. We have

∆′ ◦ F ′ = (F ′ ⊗ F ′) ◦ (F ⊗ F ) ◦∆′ ◦ F ′ = (F ′ ⊗ F ′) ◦∆ ◦ F ◦ F ′ = (F ′ ⊗ F ′) ◦∆

so F ′ is a morphism of coalgebras and F an isomorphism of coalgebras.

For a bijective morphism of differential coalgebras F : (B′,∆′, b′)→ (B,∆, b), we need
to check that its inverse coalgebra morphism F ′ commutes with the differentials. In fact,

F ′ ◦ b = F ′ ◦ b ◦ F ◦ F ′ = F ′ ◦ F ◦ b ◦ F ′ = b ◦ F ′.

So F is an isomorphism of differential coalgebras.
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Definition/Remark 42. Let V be a graded R-module. We shall define the structure
of a (graded) coalgebra on the graded module TV :=

⊕
k≥1 V

⊗k which then will be
called the tensor coalgebra of V . The grading on TV is given by the grading of tensor
products and sums of graded R-modules, i.e. for homogeneous elements v1, . . . , vk of
degrees k1, . . . , kk, the element v1⊗· · ·⊗vk is graded of degree k1 + . . .+kk. The coalgebra
structure is given by the comultiplication ∆ : TV → TV ⊗ TV defined for elements
v1 ⊗ · · · ⊗ vk ∈ V ⊗k by

∆(v1 ⊗ · · · ⊗ vk) :=
∑

1≤i≤k−1

(v1 ⊗ · · · ⊗ vi) ⊗ (vi+1 ⊗ · · · ⊗ vk)

=
∑

i1+i2=k
i1,i2≥1

(v1 ⊗ · · · ⊗ vi1) ⊗ (vi1+1 ⊗ · · · ⊗ vi1+i2).

∆ is coassociative, as for v1 ⊗ · · · ⊗ vk ∈ V ⊗k we have

((∆⊗ 1) ◦∆)(v1⊗ · · · ⊗ vk)

=
∑

i1+i2+i3=k
i1,i2,i3≥1

(v1 ⊗ · · · ⊗ vi1) ⊗ (vi1+1 ⊗ · · · ⊗ vi1+i2) ⊗ (vi1+i2+1 ⊗ · · · ⊗ vk)

= ((1⊗∆) ◦∆)(v1 ⊗ · · · ⊗ vk).

So (TV,∆) is indeed a coalgebra. The map ∆ is graded of degree 0.

We have the canonical inclusions and projections for k ≥ 1:

ιk : V ⊗k −→ TV
πk : TV −→ V ⊗k

If we have several graded R-modules V , V ′, we will usually distinguish the comultiplica-
tions, inclusions and projections on TV resp. TV ′ by ∆ resp. ∆′, ιk resp. ι ′k and πk resp.
π′k etc.

We will prove ∆x = 0 ⇔ x ∈ V for x ∈ TV , i.e.

ker ∆ = V. (8)

We have readily V ⊆ ker ∆. To prove equality, we first compose ∆ with the projection
π1 ⊗ id : TV ⊗ TV → V ⊗ TV which maps TV ⊗ TV =

⊕
k≥1(V

⊗k ⊗ TV ) onto
its first component. Secondly we compose with the multiplication µ : V ⊗ TV →
TV, v1 ⊗ (v2 ⊗ · · · ⊗ vk) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vk. Application to v1 ⊗ · · · ⊗ vk ∈ V ⊗k, k ≥ 2,
gives

TV
∆−→ TV ⊗ TV

v1 ⊗ · · · ⊗ vk 7→
∑

i1+i2=k
i1,i2≥1

(v1 ⊗ · · · ⊗ vi1)⊗(vi1+1 ⊗ · · · ⊗ vi1+i2)

π1⊗id−→ V ⊗ TV µ−→ TV
7−→ v1 ⊗ (v2 ⊗ · · · ⊗ vk) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vk .
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So ∆ is injective on
⊕

k≥2 V
⊗k and zero on V , which proves (8).

For n ∈ Z≥0 ∪ {∞}, we set

TV≤n :=
⊕
k∈[1,n]

V ⊗k ⊆ TV.

In particular TV≤∞ = TV .

Note that for k ∈ Z≥1, we have

im
(
∆
∣∣
V ⊗k

)
⊆ TV≤k−1 ⊗ TV≤k−1 ⊆ TV≤k ⊗ TV≤k , (9)

so
(
TV≤n,∆

∣∣
TV≤n

)
is a subcoalgebra of (TV,∆).

Lemma 43 (Lifting to coderivations). Let V be a graded R-module. Let n∈Z≥1∪{∞}.
Then the map from the set of graded coderivations of TV≤n of degree 1 to the set of
families of graded maps (bk : V ⊗k → V )k∈[1,n] with |bk| 3 1 for k ∈ [1, n] that is given by

b 7−→ (π1 ◦ b
∣∣
V ⊗k

)k∈[1,n] = (π1 ◦ b ◦ ιk)k∈[1,n]

is bijective. Its inverse is given by (bk)k∈[1,n] 7→ b, where b is defined by

b
∣∣
V ⊗k

:=
∑

r+s+t=k
r,t≥0, s≥1

1⊗r ⊗ bs ⊗ 1⊗t . (10)

Proof. To show that b 7→ (bk)k∈[1,n] is surjective, let (bk : V ⊗k → V )k∈[1,n] be a family of
graded maps with |bk| 3 1 for k ∈ [1, n] and construct b as given in (10). The properties
|b| 3 1, im b ⊆ TV≤n and π1 ◦ b

∣∣
V ⊗k

= bk follow immediately. We show that b is a
coderivation:

∆ ◦ b|V ⊗k = ∆ ◦
∑

r+s+t=k
r,t≥0,s≥1

1⊗r ⊗ bs ⊗ 1⊗t

=
∑

r1+r2+s+t=k
r2,t≥0
r1,s≥1

1⊗r1 ⊗ (1⊗r2 ⊗ bs ⊗ 1⊗t) +
∑

r+s+t1+t2=k
r,t1≥0
t2,s≥1

(1⊗r ⊗ bs ⊗ 1⊗t1) ⊗ 1⊗t2

=
∑

r1+t2=k
r1,t2≥1

 ∑
r2+s+t=t2
r2,t≥0,s≥1

1⊗r1 ⊗ (1⊗r2 ⊗ bs ⊗ 1⊗t) +
∑

r+s+t1=r1
r,t1≥0,s≥1

(1⊗r ⊗ bs ⊗ 1⊗t1) ⊗ 1⊗t2


= (1⊗ b+ b⊗ 1) ◦∆

So b 7→ (bk)k∈[1,n] is surjective and we find a preimage as indicated by (10). For injectivity,
we use the fact that set of graded coderivations of degree 1 is closed under addition, i.e.
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it is an R-module. So we only need to check that the kernel of b 7→ (bk)k∈[1,n] is zero:
Let b : TV≤n → TV≤n be a graded coderivation of degree 1 such that π1 ◦ b

∣∣
V ⊗k

= 0

for all k ∈ [1, n]. We prove by induction on k ≥ 0 that b
∣∣
TV≤k

= 0 thus b = 0: For
k = 0 there is nothing to prove. So suppose for the induction step that b

∣∣
TV≤k

= 0 and

k + 1 ∈ [1, n]. Then ∆ ◦ b ◦ ιk+1 = (1⊗ b + b⊗ 1) ◦∆ ◦ ιk+1
(9),ind.hyp.

= 0. So by (8), we
have b ◦ ιk+1 = ι1 ◦ (π1 ◦ b ◦ ιk+1) = 0 and we have proven b

∣∣
TV≤k+1

= 0.
Thus the map b 7→ (bk)k∈[1,n] is bijective and its inverse images are given by (10).

Lemma 44 (Lifting to coalgebra morphisms).
Let V, V ′ be graded R-modules. Let n ∈ Z≥1 ∪ {∞}.
The map from the set of graded coalgebra morphisms F : TV ′≤n → TV≤n of degree 0 to the
set of families of graded maps (Fk : V ′⊗k → V )k∈[1,n] with |Fk| 3 0 for k ∈ [1, n] given by

F 7→ (π1 ◦ F
∣∣
V ′⊗k

)k∈[1,n] = (π1 ◦ F ◦ ι ′k)k∈[1,n]

is bijective. Its inverse is given by (Fk)k∈[1,n] 7→ F , where F is defined by

F
∣∣
V ′⊗k

:=
∑

i1+...+is=k
all ij≥1

Fi1 ⊗ · · · ⊗ Fis . (11)

Proof. To show that F 7→ (Fk)k∈[1,n] is surjective, let (Fk : V ′⊗k → V )k∈[1,n] be a family
of graded maps with |Fk| 3 0 for all k ∈ [1, n] and construct F be as in (11). The
properties π1 ◦F |V ′⊗k = Fk, imF ⊆ TV≤n and |F | 3 0 follow immediately. We show that
F is a coalgebra morphism:

∆ ◦ F |V ′⊗k =
∑

i1+...+is+s′=k

s,s′≥1, all ij≥1

(Fi1 ⊗ · · · ⊗ Fis) ⊗ (Fis+1 ⊗ · · · ⊗ Fis+s′ )

=
∑

y1+y2=k
y1,y2≥1

∑
i1+...+is=y1

is+1+...+is+s′=y2

all ij≥1

(Fi1 ⊗ · · · ⊗ Fis) ⊗ (Fis+1 ⊗ · · · ⊗ Fis+s′ )

= (F ⊗ F ) ◦∆′

So F 7→ (Fk)k∈[1,n] is surjective and we obtain a preimage as indicated by (11). To prove
that F 7→ (Fk)k∈[1,n] is injective, let (Fk)k∈[1,n] be as before and let F, F ′ : TV ′≤n → TV≤n
be coalgebra morphisms of degree 1 satisfying π1 ◦ F

∣∣
V ′⊗k

= π1 ◦ F ′
∣∣
V ′⊗k

= Fk for all
k ∈ [1, n]. We prove by induction on k ≥ 0 that F

∣∣
TV ′≤k

= F ′
∣∣
TV ′≤k

, so F = F ′. For

k = 0, there is nothing to prove. So suppose F
∣∣
TV ′≤k

= F ′
∣∣
TV ′≤k

and k + 1 ∈ [1, n] for the
induction step. We have

∆ ◦ (F − F ′) ◦ ι ′k+1 = (F ⊗ F − F ′ ⊗ F ′) ◦∆′ ◦ ι ′k+1

= (F ⊗ (F − F ′)− (F ′ − F )⊗ F ′) ◦∆′ ◦ ι ′k+1 = 0
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as ∆′(V ′⊗k+1) ⊆ TV ′≤k ⊗ TV ′≤k. As ker ∆ = V , we have

(F − F ′) ◦ ι ′k+1 = ι1 ◦ π1 ◦ (F − F ′) ◦ ι ′k+1 = ι1 ◦ (Fk+1 − Fk+1) = 0.

Thus we have F
∣∣
TV ′≤k+1

= F ′
∣∣
TV ′≤k+1

and the induction is complete. We have F = F ′ so
F 7→ (Fk)k∈[1,n] is bijective and its inverse images are given by (11).

Corollary 45. Let n ∈ Z≥1∪{∞}. Let V , V ′ be graded modules. Let F : TV ′≤n → TV≤n
be a morphism of coalgebras of degree 0. Then F (TV ′≤k) ⊆ TV≤k for k ∈ [0, n].

Proof. This follows from (11) in Lemma 44.

Lemma 46. Let n ∈ Z≥1 ∪ {∞}. Let k ∈ [0, n] such that k + 1 ∈ [1, n].

(i) Let V be a graded R-module and b : TV≤n → TV≤n be a graded coderivation of
degree 1. Then b2

∣∣
TV≤k

= 0 implies im(b2 ◦ ιk+1) ⊆ V .

(ii) Let V , V ′ be graded R-modules and b : TV≤n→TV≤n, b′ : TV ′≤n→TV ′≤n be graded
coderivations. Let F : TV ′≤n → TV≤n be a graded coalgebra morphism of degree 0.
Then (b ◦ F − F ◦ b′)

∣∣
TV ′≤k

= 0 implies im
(
(b ◦ F − F ◦ b′) ◦ ι ′k+1

)
⊆ V .

Proof. At the steps marked by "∗" in the following, we use (9), and b2
∣∣
TV≤k

= 0 respec-
tively (F ◦ b′ − b ◦ F )

∣∣
TV ′≤k

= 0.

∆ ◦ b2 ◦ ιk+1 = (1⊗ b+ b⊗ 1) ◦ (1⊗ b+ b⊗ 1) ◦∆ ◦ ιk+1

(3),|b|31
= [1⊗ b2 − b⊗ b+ b⊗ b+ b2 ⊗ 1] ◦∆ ◦ ιk+1

= [1⊗ b2 + b2 ⊗ 1] ◦∆ ◦ ιk+1
∗
= 0

∆ ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′k+1 = [(F ⊗ F ) ◦∆′ ◦ b′ − (1⊗ b+ b⊗ 1) ◦∆ ◦ F ] ◦ ι ′k+1

= [(F ⊗ F ) ◦ (1⊗ b′ + b′ ⊗ 1)− (1⊗ b+ b⊗ 1) ◦ (F ⊗ F )] ◦∆′ ◦ ι ′k+1

(3),|F |30
= [F ⊗ (F ◦ b′ − b ◦ F ) + (F ◦ b′ − b ◦ F )⊗ F ] ◦∆′ ◦ ι ′k+1

∗
= 0

The lemma now follows from ker ∆ = V , cf. (8).

Definition/Remark 47. For a graded R-module A, we define the R-module SA with
shifted grading by SA = A and (SA)q := Aq+1. We have the shift map ω : SA → A,
ω(x) = x which is a graded map of degree 1. If we have multiple graded modules, say A
and A′, we usually distinguish the shift maps accordingly as ω and ω′.

We write SA⊗k := (SA)⊗k for k ≥ 1.

Let n ∈ Z≥0 ∪ {∞}. A corresponding pre-An-triple on A is defined as a triple
((mk)k∈[1,n], (bk)k∈[1,n], b) consisting of

(i) a pre-An-structure (mk)k∈[1,n] on A,
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(ii) a family of graded maps (bk : SA⊗k → SA)k∈[1,n] with |bk| 3 1 for k ∈ [1, n] and

(iii) a graded coderivation b : TSA≤n → TSA≤n of degree 1

such that 4bk = ω−1 ◦mk ◦ ω⊗k for k ∈ [1, n] and π1 ◦ b
∣∣
SA⊗k

= bk for k ∈ [1, n].
Given a pre-An-structure (mk)k∈[1,n] on A, a family of graded maps (bk : SA⊗k →
SA)k∈[1,n] with |bk| 3 1 for k ∈ [1, n] or a graded coderivation b : TSA≤n → TSA≤n
of degree 1, i.e. a datum of type (i), (ii) or (iii), it can be uniquely extended to a
corresponding pre-An-triple on A: The condition bk = ω−1 ◦ mk ◦ ω⊗k for k ∈ [1, n]
induces a bijection between data of type (i) and of type (ii). Similarly, Lemma 43 gives a
bijection between data of types (ii) and (iii).

Let n ∈ Z≥0 ∪ {∞}. Let A, A′ be graded R-modules. A corresponding pre-An-morphism
triple from A′ to A is defined as a triple ((fk)k∈[1,n], (Fk)k∈[1,n], F ) consisting of

(i) a pre-An-morphism (fk)k∈[1,n] from A′ to A,

(ii) a family of graded maps (Fk : SA′⊗k → SA)k∈[1,n] with |Fk| 3 0 for k ∈ [1, n] and

(iii) a graded coalgebra morphism F : TSA′≤n → TSA≤n of degree 0

such that Fk = ω−1◦fk◦ω′⊗k for k ∈ [1, n] and π1◦F
∣∣
SA′⊗k

= Fk for k ∈ [1, n]. Analogous
to corresponding pre-An-triples, given a datum of type (i), (ii) or (iii), it can be uniquely
extended to a corresponding pre-An-morphism triple via Lemma 44 and the bijection
induced by the condition Fk = ω−1 ◦ fk ◦ ω′⊗k.

We write an asterisk ("∗") in place of an entry of a corresponding triple to denote that
the value of that entry is uninteresting.

Theorem 48 (Stasheff [22]). Let A be a graded R-module. Let ñ ∈ Z≥0 ∪ {∞}. Let
((mk)k∈[1,ñ], (bk)k∈[1,ñ], b) be a corresponding pre-Añ-triple on A.
Let n ∈ Z≥0 ∪ {∞}, n ≤ ñ. The following are equivalent:

(a) Equation (4)[k] holds for k ∈ [1, n], i.e. (mk)k∈[1,n] is an An-structure on A.

(b) For k ∈ [1, n], we have ∑
k=r+s+t,
r,t≥0, s≥1

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t) = 0. (12)[k]

(c) b2
∣∣
TSA≤n

= 0, i.e. b
∣∣
TSA≤n

is a coalgebra differential on TSA≤n.

Proof. We prove (a) ⇔ (b): Recall |ω| 3 1. Recall |bi| 3 1 and |mi| 3 2− i for i ∈ [1, k].

4Note that we have mk = (−1)
k(k−1)

2 bk. I.e. we get an additional sign in situations where the mk are
inferred from the bk such as in FIXME 63 and 121. There are other versions of the bar construction
in use (with suitable versions of the Stasheff identities) where inferring the mk from the bk is easier.
E.g. in [11], we have the variant mk = ω ◦ bk ◦ (ω−1)⊗k.
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We have ∑
k=r+s+t,
r,t≥0, s≥1

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

=
∑

k=r+s+t,
r,t≥0, s≥1

ω−1 ◦mr+1+t ◦ (ω⊗r ⊗ ω ⊗ ω⊗t) ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

C.18
=ω−1 ◦

∑
k=r+s+t,
r,t≥0, s≥1

(−1)t·1mr+1+t ◦ (ω⊗r ⊗ (ω ◦ bs)⊗ ω⊗t)

=ω−1 ◦
∑

k=r+s+t,
r,t≥0, s≥1

(−1)tmr+1+t ◦ (ω⊗r ⊗ (ms ◦ ω⊗s)⊗ ω⊗t)

C.18
=ω−1 ◦

∑
k=r+s+t,
r,t≥0, s≥1

(−1)t(−1)r(2−s)mr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) ◦ (ω⊗r ⊗ ω⊗s ⊗ ω⊗t)

=ω−1 ◦
∑

k=r+s+t,
r,t≥0, s≥1

(−1)rs+tmr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) ◦ ω⊗k. (13)

So (4)[k] ⇔ (12)[k], whence (a) ⇔ (b).

We prove (b)⇔ (c): We first prove for finite n that ((12)[k] for k ∈ [1, n])⇔ b2|TSA≤n = 0.
We proceed by induction on n ≥ 0.
For n = 0 we have [1, n] = ∅ and TSA≤n = {0}, so there is nothing to prove. So now
assume for induction that b2|TSA≤n = 0 ⇔ (12)[k] for k ∈ [1, n]. We have to show that
b2|TSA≤n+1

= 0 ⇔ (12)[k] for k ∈ [1, n+ 1]. It is sufficient to prove under the assumption
b2|TSA≤n = 0 the equivalence b2|SA⊗n+1 = 0 ⇔ (12)[n + 1]. So we assume b2|TSA≤n = 0.
By Lemma 46(i), we have

b2 ◦ ιn+1 = ι1 ◦ π1 ◦ b2 ◦ ιn+1
(10)
= ι1 ◦

∑
n+1=r+s+t,
r,t≥0, s≥1

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t).

So b2|SA⊗n+1 = 0 ⇔ (12)[n+ 1] and the induction step is complete.

The case n =∞ follows by

∀k ∈ Z≥1 : (12)[k] ⇔ ∀k ∈ Z≥0 ∀k′ ∈ [1, k] : (12)[k′]
⇔ ∀k ∈ Z≥0 : b2|TSA≤k = 0 ⇔ b2 = 0.

We need a pointwise version of the Theorem 48:

Theorem 49. Let A be a graded R-module. Let ñ ∈ Z≥0 ∪ {∞}.
Let ((mk)k∈[1,ñ], (bk)k∈[1,ñ], b) be a corresponding pre-Añ-triple on A.
Let n ∈ [1, ñ]. Let x ∈ SA⊗n. The following are equivalent:
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(a) Equation (4)[n] holds on ω⊗n(x), that is∑
n=r+s+t,
r,t≥0,s≥1

(−1)rs+t(mr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) ◦ ω⊗n)(x) = 0.

(b) Eq. (12)[n] holds on x, that is∑
n=r+s+t,
r,t≥0, s≥1

(br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t))(x) = 0.

If additionally (4)[k] holds for all k ∈ [1, n− 1] (⇔ (12)[k] holds for all k ∈ [1, n− 1] ⇔
b2|TSA≤n−1

= 0, cf. Theorem 48), then (a) and (b) are equivalent to

(c) b2(x) = 0.

Proof. The equivalence (a) ⇔ (b) follows from (13).

So suppose b2|TSA≤n−1
= 0. By Lemma 46(i), we have

b2(x) = ι1(π1(b2(x)))
(10)
= ι1

 ∑
n=r+s+t,
r,t≥0, s≥1

(br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t))(x)

 .

This proves the equivalence (b) ⇔ (c).

Lemma 50. Let A,A′ be graded R-modules. Let ñ ∈ Z≥0 ∪ {∞}.
Let ((mk)k∈[1,ñ], (bk)k∈[1,ñ], b) resp. ((m′k)k∈[1,ñ], (b

′
k)k∈[1,ñ], b

′) be corresponding pre-Añ-
triples on A resp. A′. Let ((fk)k∈[1,ñ], (Fk)k∈[1,ñ], F ) be a corresponding pre-Añ-morphism
triple from A′ to A.
Let n ∈ Z≥0 ∪ {∞} be such that n ≤ ñ. The following are equivalent:

(a) Assertion (5)[k] holds for k ∈ [1, n].

(b) For k ∈ [1, n], we have∑
k=r+s+t
r,t≥0, s≥1

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) =
∑

1≤r≤k
i1+...+ir=k

all is≥1

br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir). (14)[k]

(c) F ◦ b′
∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

Note that we only require conditions on the grading of (mn)n≥1 and (m′n)n≥1. However if A
and A′ are actually An-algebras, then condition (a) holds iff (fk)k∈[1,n] is an An-morphism.
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Proof. We prove (a) ⇔ (b): Analogously to the proof of (a) ⇔ (b) of Theorem 48 we
obtain for the left side of (14)[k]∑
k=r+s+t
r,t≥0, s≥1

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) = ω−1◦
∑

k=r+s+t
r,t≥0, s≥1

(−1)rs+tfr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t) ◦ ω′⊗k.

(15)

It remains to examine the right side:∑
1≤r≤k

i1+...+ir=k
all is≥1

br ◦ (Fi1 ⊗ · · · ⊗ Fir) =
∑

1≤r≤k
i1+...+ir=k

all is≥1

ω−1 ◦mr ◦ ω⊗r ◦ (Fi1 ⊗ · · · ⊗ Fir)

C.18
=ω−1 ◦

∑
1≤r≤k

i1+...+ir=k
all is≥1

(−1)0mr ◦ ((ω ◦ Fi1)⊗ · · · ⊗ (ω ◦ Fir))

=ω−1 ◦
∑

1≤r≤k
i1+...+ir=k

all is≥1

mr ◦ ((fi1 ◦ ω′⊗i1)⊗ · · · ⊗ (fir ◦ ω′⊗ir))

=ω−1 ◦
∑

1≤r≤k
i1+...+ir=k

all is≥1

(−1)vmr ◦ (fi1 ⊗ · · · ⊗ fir) ◦ ω′⊗k (16)

In the last step, Corollary 18 gives the exponent

v =
∑

2≤s≤r

(
(1− is)︸ ︷︷ ︸
∈|fis |

∑
1≤t<s

it︸︷︷︸
∈|ω′⊗it

)
=

∑
1≤t<s≤r

(1− is)it. (17)

So we have (5)[k] ⇔ (14)[k], whence (a) ⇔ (b).

We prove (b) ⇔ (c).
We first prove (b) ⇔ (c) for finite n. We proceed by induction on n ∈ [0, ñ]: For n = 0
we have [1, n] = ∅ and TSA′≤n = {0}, so there is nothing to prove. Now suppose given n.
As induction hypothesis, suppose the equivalence F ◦ b′

∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

⇔ ((14)[k]

for k ∈ [1, n]) holds. For the induction step we need to prove that F ◦ b′
∣∣
TSA′≤n+1

=

b ◦ F
∣∣
TSA′≤n+1

⇔ ((14)[k] for k ∈ [1, n+ 1]). Suppose that F ◦ b′
∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

. It

suffices to show the equivalence F ◦ b′
∣∣
SA′⊗n+1 = b ◦ F

∣∣
SA′⊗n+1 ⇔ (14)[n+ 1].

By Lemma 46(ii), we have (F ◦ b′ − b ◦ F ) ◦ ι ′n+1 = ι1 ◦ [π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1]. Now
π1 ◦ (F ◦ b′− b ◦F ) ◦ ι ′n+1 is exactly the difference of the sides of (14)[n+ 1], cf. (10),(11).
So F ◦ b′

∣∣
SA′⊗n+1 = b ◦ F

∣∣
SA′⊗n+1 ⇔ (14)[n+ 1] and the induction step is complete.

The case n =∞ follows by

∀k ∈ Z≥1 : (14)[k] ⇔ ∀k ∈ Z≥0 ∀k′ ∈ [1, k] : (14)[k′]
⇔ ∀k ∈ Z≥0 : F ◦ b′

∣∣
TSA′≤k

= b ◦ F
∣∣
TSA′≤k

⇔ F ◦ b′ = b ◦ F.
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Similarly to Theorem 48 and Theorem 49, we have a pointwise version of Lemma 50
given as follows.

Lemma 51. Let A,A′ be graded R-modules. Let ñ ∈ Z≥0 ∪ {∞}.
Let ((mk)k∈[1,ñ], (bk)k∈[1,ñ], b) resp. ((m′k)k∈[1,ñ], (b

′
k)k∈[1,ñ], b

′) be corresponding pre-Añ-
triples on A resp. A′. Let ((fk)k∈[1,ñ], (Fk)k∈[1,ñ], F ) be a corresponding pre-Añ-morphism
triple from A′ to A.
Let n ∈ [1, ñ]. Let x ∈ SA′⊗n. The following are equivalent:

(a) Assertion (5)[n] holds on ω′⊗n(x), that is∑
n=r+s+t
r,t≥0,s≥1

(−1)rs+t(fr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t) ◦ ω′⊗n)(x)

=
∑

1≤r≤n
i1+...+ir=n

all is≥1

(−1)v(mr ◦ (fi1 ⊗ fi2 ⊗ . . .⊗ fir) ◦ ω′⊗n)(x),

where v is given by (6).

(b) Assertion (14)[n] holds on x, that is∑
n=r+s+t
r,t≥0, s≥1

(Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t))(x) =
∑

1≤r≤n
i1+...+ir=n

all is≥1

(br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir))(x). (18)

If additionally (5)[k] holds for all k ∈ [1, n− 1] (⇔ (14)[k] holds for all k ∈ [1, n− 1] ⇔
(F ◦ b′)|TSA′≤n−1

= (b ◦ F )|TSA′≤n−1
, cf. Lemma 50), then (a) and (b) are equivalent to

(c) (F ◦ b′)(x) = (b ◦ F
)
(x).

Proof. The equivalence (a) ⇔ (b) follows from (15), (16) and (17).

So suppose (F◦b′)|TSA′≤n−1
= (b◦F )|TSA′≤n−1

. By Lemma 46(ii), we have (F◦b′−b◦F )(x) =

(ι1 ◦ [π1 ◦ (F ◦ b′ − b ◦ F )])(x). Now (π1 ◦ (F ◦ b′ − b ◦ F ))(x) is exactly the difference of
the sides of (18), cf. (10),(11). This proves the equivalence (b) ⇔ (c).

2.2. Applications. Kadeishvili’s algorithm and the minimality
theorem.

In this subsection we will discuss the construction of minimal models of A∞-algebras.
Firstly, Lemma 52 states that certain pre-An-structures and pre-An-morphisms that arise
in the construction of minimal models are actually An-structures and An-morphisms.
Secondly, we give a proof of Theorem 27. We will review Kadeishvili’s original proof
of [10] as it gives a an algorithm for constructing minimal models which can be used for
the direct calculation of examples.
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Lemma 52. Let n ∈ Z≥1 ∪ {∞}. Let (A′, (m′k)k∈[1,n]) be a pre-An-algebra. Let
(A, (mk)k∈[1,n]) be an An-algebra. Let (fk)k∈[1,n] be a pre-An-morphism from A′ to A such
that (5)[k] holds for k ∈ [1, n]. Suppose that f1 is injective.
Then (A′, (m′k)k∈[1,n]) is an An-algebra and (fk)k∈[1,n] is a morphism of An-algebras from
(A′, (m′k)k∈[1,n]) to (A, (mk)k∈[1,n]).

Proof. We have the corresponding pre-An-triple ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′), the corre-
sponding pre-An-triple ((mk)k∈[1,n], (bk)k∈[1,n], b) and the corresponding pre-An-morphism
triple ((fk)k∈[1,n], (Fk)k∈[1,n], F ). It suffices to prove by induction on k ∈ [0, n] that
(b′)2

∣∣
TSA′≤k

= 0, cf. Theorem 48.
For k = 0, we have TSA′≤k = 0 so there is nothing to prove. For the induction step,
suppose that b′ 2

∣∣
TSA′≤k

= 0 for some k ≥ 0 with k + 1 ∈ [0, n]. By the induction
hypothesis and Lemma 46(i), we have

im(b′ 2 ◦ ι ′k+1) ⊆ SA′. (19)

Thus 0
T.48
= b2◦F ◦ι ′k+1

L.50
= F ◦b′ 2◦ι ′k+1

(19)
= F ◦ι ′1◦π′1◦b′ 2◦ι ′k+1

(11)
= ι1◦F1◦π′1◦b′ 2◦ι ′k+1. As

the injectivity of f1 implies the injectivity of F1, we have 0 = ι ′1◦π′1◦b′ 2◦ι ′k+1

(19)
= b′ 2◦ι ′k+1.

Together with the induction hypothesis, we obtain b′ 2
∣∣
TSA′≤k+1

= 0, which completes the
induction step.

The following two lemmas give the incremental step in Kadeishvili’s algorithm. By a
quasi-monomorphism of complexes we will denote a complex morphism that induces
monomorphisms on homology.

Lemma 53. Let n ∈ Z≥1. Let A, A′ be graded R-modules.
Let ((m′k)k∈[1,n+1], (b′k)k∈[1,n+1], b

′) be a corresponding pre-An+1-triple on A′.
Let ((mk)k≥1, (bk)k≥1, b) be a corresponding pre-A∞-triple on A.
Let ((fk)k∈[1,n+1], (Fk)k∈[1,n+1], F ) be a corresponding pre-An+1-morphism triple from A′

to A.
Suppose that the following hold.

(i) We have b′ 2
∣∣
TSA′≤n

= 0, b2 = 0 and F ◦ b′
∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

.

(ii) We have b′1 = 0 and F1 is a quasi-monomorphism from the complex (SA′, b′1) to the
complex (SA, b1).

We set h : SA′⊗n+1 → SA,

h :=
∑

n+1=r+s+t
r,t≥0,s∈[2,n]

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) −
∑

r∈[2,n+1]
i1+...+ir=n+1

all is≥1

br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir).

Then
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(a) b′ 2 = 0, i.e. (A′, (m′k)k∈[1,n+1]) is an An+1-algebra5, cf. Theorem 48.

(b) b1 ◦ h = 0.

(c) F ◦ b′ = b ◦ F ⇔ F1 ◦ b′n+1 − b1 ◦ Fn+1 + h = 0.

Proof. By Lemma 50, we have F ◦ b′ = b ◦ F ⇔ (14)[n+ 1]. The difference of the sides
of (14)[n+ 1] is given by

G :=
∑

n+1=r+s+t
r,t≥0,s≥1

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) −
∑

1≤r≤n+1
i1+...+ir=n+1

all is≥1

br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir)

b′1=0
=F1 ◦ b′n+1 − b1 ◦ Fn+1 + h

Thus we have F ◦b′ = b◦F ⇔ (14)[n+1]⇔ F1◦b′n+1−b1◦Fn+1 +h = 0, which proves (c).
Note that by (10) and (11), we have π1◦(F ◦b′−b◦F )◦ι ′n+1 = G = F1◦b′n+1−b1◦Fn+1+h.
Thus we have

b1 ◦ h = b1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1 − b1 ◦ F1 ◦ b′n+1 + (b1)2 ◦ Fn+1

(i),(14)[1]
= b1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1 − F1 ◦ b′1 ◦ b′n+1

b′1=0
= b1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

D./R.47
=π1 ◦ b ◦ ι1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

L.46(ii)
=π1 ◦ b ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

(i)
= π1 ◦ b ◦ F ◦ b′ ◦ ι ′n+1

As b′1 = 0, we obtain im(b′ ◦ ι ′n+1) ⊆ TSA′≤n, cf. (10). By b ◦F
∣∣
TSA′≤n

= F ◦ b′
∣∣
TSA′≤n

, we
conclude

b1 ◦ h = π1 ◦ F ◦ b′ 2 ◦ ι ′n+1

L.46(i)
=π1 ◦ F ◦ ι ′1 ◦ π′1 ◦ b′ 2 ◦ ι ′n+1

D./R.47
= F1 ◦ π′1 ◦ b′ 2 ◦ ι ′n+1. (20)

For x ∈ SA′⊗n+1, the element y := (π′1 ◦ b′ 2 ◦ ι ′n+1)(x) is a cycle as b′1 = 0. Now

F1(y) = (F1 ◦ π′1 ◦ b′ 2 ◦ ι ′n+1)(x)
(20)
= (b1 ◦ h)(x) is a boundary. As F1 is a quasi-

monomorphism, y is a boundary. As b′1 = 0, this implies y = 0. Hence π′1 ◦ b′ 2 ◦ ι ′n+1 = 0.
Applying Lemma 46(i) via (i), we obtain

(b′ 2 ◦ ι ′n+1)(x) = 0. (21)

Together with (i), we obtain b′ 2 = 0, whence (m′k)k∈[1,n+1] is an An+1-structure on A′ as

claimed in (a). Thus, b1 ◦ h
(20)
= F1 ◦ π1 ◦ b′ 2 ◦ ι ′n+1

(21)
= 0 as claimed in (b).

5Note that (4)[n+ 1] does not depend on m′n+1 or fn+1, as m′1 = ω′ ◦ b′1 ◦ (ω′)−1 = 0.
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Lemma 54. Let n ∈ Z≥1. Let (A, (mk)k≥1) be an A∞-algebra. Let (A′, (m′k)k∈[1,n]) be
an An-algebra. Let (fk)k∈[1,n] be an An-morphism from (A′, (m′k)k∈[1,n]) to (A, (mk)k∈[1,n]).
Suppose the following hold.

(i) We have m′1 = 0 and f1 is a quasi-isomorphism from the complex (A′,m′1) to the
complex (A,m1).

(ii) A′ is a projective R-module.

Then there exist fn+1 and m′n+1 such that (A′, (m′k)k∈[1,n+1]) is an An+1-algebra and
(fk)k∈[1,n+1] is an An+1-morphism from (A′, (m′k)k∈[1,n+1]) to (A, (mk)k∈[1,n+1]).

Note that (A′)k ∼= Hk(A,m1) for k ∈ Z.

Proof. We have the corresponding triples ((mk)k≥1, (bk)k≥1, b), ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′)
and ((fk)k∈[1,n], (Fk)k∈[1,n], F ). For the complexes (SA, b1) and (SA′, b′1), we will use the
usual notation for boundaries, cycles and homology. As f1 : (A′,m′1)→ (A,m1) is a quasi-
isomorphism, the complex morphism F1 : (SA′, b′1)→ (SA, b1) is a quasi-isomorphism.
We have b′1 = 0 since m′1 = 0. Note that the term h of Lemma 53 does not depend on
b′n+1 or Fn+1, so h can be unambiguously defined even when m′n+1 and Fn+1 are not yet
defined and we have b1 ◦ h = 0. Furthermore, h is graded of degree 1 since for k ∈ [1, n],
we have 1 ∈ |bk|, 1 ∈ |b′k| and 0 ∈ |Fk|. Motivated by Lemma 53(c), we seek (properly
graded) morphisms b′n+1 : SA′⊗n+1 → SA′ and Fn+1 : SA′⊗n+1 → SA such that the
following holds.

h
!

= b1 ◦ Fn+1 − F1 ◦ b′n+1

The module A′ is projective, so SA′ and thus also SA⊗n+1 is projective. So Lemma 20
implies that SA′⊗n+1 is graded projective. Since b1 ◦ h = 0, we have h(SA′⊗n+1) ⊆ Z∗SA.
Since b′1 = 0, we have Z∗SA′ = SA′. We have the following diagram.

SA′⊗n+1 h|Z∗SA //

∃b′n+1 **

Z∗SA
p // H∗SA

SA′ = Z∗SA′

−F1|Z
∗SA

Z∗SA′

OO

−p◦(F1|Z
∗SA

Z∗SA′ )

44 44

Here, p : Z∗SA → H∗SA is the residue class map. Since F1 : (SA′, b′1) → (SA, b1) is
a quasi-isomorphism, the map −p ◦ (F1|Z

∗SA
Z∗SA′) is surjective. The map p ◦ (h|Z∗SA) is

graded of degree 1. The map p ◦ (F1|Z
∗SA

Z∗SA′) is graded of degree 0. So since SA′⊗n+1 is
graded projective, there is a graded map b′n+1 : SA′⊗n+1 → SA′ of degree 1 such that
p◦(h|Z∗SA) = −p◦(F1|Z

∗SA
Z∗SA′)◦b′n+1|Z

∗SA′ . Hence, im((h+F1◦b′n+1)|Z∗SA) ⊆ ker p = B∗SA.
Since (h+ F1 ◦ b′n+1)|B∗SA is graded of degree 1, since b1|B

∗SA is a graded epimorphism
of degree 1 and since SA′⊗n+1 is graded projective, there exists a graded map Fn+1 :
SA′⊗n+1 → SA of degree 0 such that (h + F1 ◦ b′n+1)

B∗SA = b1|B
∗SA ◦ Fn+1. Hence, we

have

h = b1 ◦ Fn+1 − F1 ◦ b′n+1 (22)
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Using b′n+1 and Fn+1, we extend the corresponding triples ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′)

and ((fk)k∈[1,n], (Fk)k∈[1,n], F ) to corresponding triples ((m′k)k∈[1,n+1], (b
′
k)k∈[1,n+1], b̂

′) and
((fk)k∈[1,n+1], (Fk)k∈[1,n+1], F̂ ). By Lemma 53(a), (A′, (m′k)k∈[1,n+1]) is an An+1-algebra.
By (22) and Lemma 53(c), we obtain F̂ ◦ b̂′ = b ◦ F̂ . Hence Lemma 50 yields that
(fk)k∈[1,n+1] : (A′, (m′k)k∈[1,n+1])→ (A, (mk)k∈[1,n+1]) is a morphism of An+1-algebras.

Concerning Lemma 54, we may now also construct m′m+1 and fm+1 directly: We construct
(properly graded) maps m′m+1 and fm+1 such that (5)[m+ 1] holds. Such m′m+1 and fm+1

exist by Lemma 54. Then Lemma 52 ensures that all other requirements are met.

Theorem 55 (Kadeishvili’s algorithm for the minimality theorem). Let (A, (mk)k≥1) be
an A∞-algebra. Let H∗A be its homology. Suppose H∗A is a projective R-module. Then
we construct a minimal model as follows:

The residue class map p : Z∗A→ H∗A is graded of degree 0 and surjective. Since H∗A
is by Lemma 20 graded projective, there is a graded map g : H∗A → Z∗A of degree 0
such that p ◦ g = idH∗A. Let f1 : H∗A→ A be the composite of g : H∗A→ Z∗A with the
inclusion map of the inclusion Z∗A ⊆ A. The relation p ◦ g = idH∗A implies that g (and
thus also f1) maps each homology class in H∗A to a representing cycle in Z∗A.

We set m′1 : H∗A → H∗A, m′1 := 0. We have f1 ◦m′1
m′1=0

= 0
im f1⊆Z∗A=kerm1

= m1 ◦ f1, so
f1 : (H∗A,m′1)→ (A,m1) is a complex morphism. I.e. it is a morphism of A1-algebras.
Since f1 : (H∗A,m′1) → (A,m1) maps each element of H∗A to a representing cycle, it
induces the identity in homology. In particular, f1 is a quasi-isomorphism of A1-algebras.

We then use Lemma 54 and the construction principle given in Lemma 134 to successively
construct an A∞-structure (m′k)k≥1 on H∗A and a quasi-isomorphism (fk)k≥1 of A∞-
algebras from (H∗A, (m′k)k≥1) to (A, (mk)k≥1).

2.3. More on A∞-morphisms. The category of A∞-algebras.

The following may be found e.g. in [11, section 3.4].

Definition/Remark 56. Suppose n ∈ Z≥0 ∪ {∞}. Suppose given graded modules
A,A′, A′′. Suppose given a pre-An-morphism f = (fk)k∈[1,n] from A to A′. Suppose
given a pre-An-morphism f ′ = (f ′k)k∈[1,n] from A′ to A′′. We define the composite
f ′ ◦ f := (gk)k∈[1,n] to be the pre-An-morphism from A to A′′ given by

gk :=
∑

1≤r≤k
i1+...+ir=k

all is≥1

(−1)vf ′r ◦ (fi1 ⊗ . . .⊗ fir) (23)

where

v :=
∑

1≤t<s≤r

(1− is)it.
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(This is the same sign as in (5)[k]). Since fi and f ′i are graded of degree 1− i, the term
f ′r◦(fi1⊗. . .⊗fir) in (23) is graded of degree (1−r)+

∑
j∈[1,r](1−ij) = 1−

∑
j∈[1,r] ij = 1−k.

Thus gk is graded of degree 1− k. Hence, (gk)k∈[1,n] is a pre-An-morphism from A to A′′.

This definition is motivated as follows. We have seen that the bar construction relates
morphisms of (pre-)An-algebras bijectively to certain morphisms of graded coalgebras of
degree 0, cf. Definition/Remark 47 and Lemma 50. Composition of coalgebra morphisms
is given by composition of the underlying maps. Hence, composition of An-morphisms
is defined in such a way that it coincides with the composition induced by the bar
construction and composition of coalgebra morphisms:

Lemma 57. Suppose n ∈ Z≥0 ∪ {∞}. Suppose given graded modules A,A′, A′′. Sup-
pose given a pre-An-morphism f = (fk)k∈[1,n] from A to A′ and a pre-An-morphism
f ′ = (f ′k)k∈[1,n] from A′ to A′′. We have the corresponding An-morphism triples
((fk)k∈[1,n], (Fk)k∈[1,n], F ) and ((f ′k)k∈[1,n], (F

′
k)k∈[1,n], F

′), cf. Definition/Remark 47 .

Then for f ′ ◦ f = (gk)k∈[1,n] as given in Definition/Remark 56, we have the corresponding
pre-An-morphism triple ((gk)k∈[1,n], (Gk)k∈[1,n], G), where the Gk are given by

Gk :=
∑

1≤r≤k
i1+...+ir=k

all is≥1

F ′r ◦ (Fi1 ⊗ . . .⊗ Fir)

and where G := F ′ ◦ F .

Proof. Concerning the grading of the maps, we have |Fi| 3 0 and |F ′i | 3 0 for i ∈ [1, n].
Hence, we have |Gk| 3 0 for k ∈ [1, n]. Since |F | 3 0 and |F ′| 3 0, we have |F ′ ◦ F | 3 0.
Since F and F ′ are coalgebra morphisms, G = F ′ ◦F is a coalgebra morphism. It remains
to show that Gk = (ω′′)−1 ◦ gk ◦ ω⊗k and π′′1 ◦G ◦ ιk = Gk for k ∈ [1, n].

For k ∈ [1, n], we have

Gk =
∑

1≤r≤k
i1+...+ir=k

all is≥1

F ′r ◦ (Fi1 ⊗ . . .⊗ Fir)

=
∑

1≤r≤k
i1+...+ir=k

all is≥1

(ω′′)−1 ◦ f ′r ◦ (ω′)⊗r ◦ (Fi1 ⊗ . . .⊗ Fir)

∗
=(ω′′)−1 ◦

∑
1≤r≤k

i1+...+ir=k
all is≥1

f ′r ◦ ((ω′ ◦ Fi1)⊗ . . .⊗ (ω′ ◦ Fir))

= (ω′′)−1 ◦
∑

1≤r≤k
i1+...+ir=k

all is≥1

f ′r ◦ ((fi1 ◦ ω⊗i1)⊗ . . .⊗ (fir ◦ ω⊗ir))
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∗∗
= (ω′′)−1 ◦

∑
1≤r≤k

i1+...+ir=k
all is≥1

(−1)vf ′r ◦ (fi1 ⊗ . . .⊗ fir) ◦ ω⊗k.

Here at ∗, we use (3) and the fact that |Fi| 3 0. At ∗∗, we use (3) and the fact that
|fi| 3 1− i and |ω⊗j| 3 j.

Hence, we have Gk = (ω′′)−1 ◦ gk ◦ ω⊗k for k ∈ [1, n].

Let k ∈ [1, n]. By Corollary 45, we have F (TSA≤k) ⊆ TSA′≤k. Hence, we have

π′′1 ◦G ◦ ιk =π′′1 ◦ F ′ ◦ F ◦ ιk =
∑

1≤r≤k

π′′1 ◦ F ′ ◦ ι ′r ◦ π′r ◦ F ◦ ιk

=
∑

1≤r≤k

F ′r ◦ π′r ◦ F ◦ ιk
(11)
=

∑
1≤r≤k

i1+...+ir=k
all is≥1

F ′r ◦ (Fi1 ⊗ . . .⊗ Fir) = Gk .

Thus ((gk)k∈[1,n], (Gk)k∈[1,n], G) is a corresponding pre-An-morphism triple.

Definition 58. Suppose given graded modules A, A′. Suppose given a graded map
g : A → A′ of degree 0. Suppose given n ∈ Z≥0 ∪ {∞}. We define the strict pre-An-
morphism

strictn(g) = (fk)k∈[1,n]

from A to A′ by

fk :=

{
g if k = 1

0 else.

Example 59. Suppose given n ∈ Z≥0 ∪ {∞}. Suppose given graded modules A, A′, A′′.
Suppose given a graded map g : A→ A′ of degree 0. Suppose given a pre-An-morphism
f = (fk)k∈[1,n] from A′ to A′′ and a pre-An-morphism f ′ = (f ′k)k∈[1,n] from A′′ to A. Then
we have

f ◦ strictn(g) = (fk ◦ g⊗k)k∈[1,n]

and

strictn(g) ◦ f ′ = (g ◦ f ′k)k∈[1,n] .

In particular if we replace f by a strict pre-An-morphism strictn(g′) for some graded
map g′ : A′ → A′′ of degree 0, we have

strictn(g′) ◦ strictn(g) = strictn(g′ ◦ g).

Lemma 60. Suppose given n ∈ Z≥0 ∪ {∞}.

(i) Composition of pre-An-morphisms is associative.
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(ii) For a graded module A, the triple (strictn(idA), (Fk)k∈[1,n], idTSA≤n) is a pre-An-
morphism triple, where

Fk :=

{
idSA if k = 1

0 else.

(iii) For a graded module A, the pre-An-morphism strictn(idA) is the identity pre-An-
morphism on A.

Proof. (i): This follows by Lemma 57 from the associativity of the composition of
coalgebra morphisms.

(ii): We need to show that (strictn(idA), (Fk)k∈[1,n], idTSA≤n) is a pre-An-morphism triple.
The pre-An-morphism strictn(idA) is well-defined since | idA | 3 0. We have |Fk| 3 0 for
all k ∈ [1, n]. We have | idTSA≤n | 3 0.

For k ∈ [2, n], we have ω−1 ◦ strictn(idA)k ◦ ω⊗k = ω−1 ◦ 0 ◦ ω⊗k = 0 = Fk.
Furthermore, we have ω−1 ◦ strictn(idA)1 ◦ ω⊗1 = ω−1 ◦ idA ◦ω = idSA = F1.
Hence, we have ω−1 ◦ strictn(idA)k ◦ ω⊗k = Fk for k ∈ [1, n].

Recall that the πi, ιi are the projections and inclusions of the direct sum
TSA≤n = ⊕k∈[1,n](SA)⊗k. Hence for k ∈ [1, n], we have

π1 ◦ idTSA≤n ◦ιk =

{
idSA if k = 1

0 else.

=Fk.

(iii): This follows from (ii) and Lemma 57.

Definition/Lemma 61. Let n ∈ Z≥0∪{∞}. We define the composite of An-morphisms
to be the composite of the underlying pre-An-morphisms, cf. Definition/Remark 56.

We have

(i) The composite of two An-morphisms is an An-morphism.

(ii) Composition of An-morphisms is associative.

(iii) Given an An-algebra (A, (mk)k∈[1,n]), the pre-An-morphism strictn(idA) is the iden-
tity An-morphism on A.

Proof. (i): Suppose given An-algebras (A, (mk)k∈[1,n]), (A′,(m′k)k∈[1,n]) and (A′′, (m′′k)k∈[1,n]),
with corresponding triples ((mk)k∈[1,n], ∗, b), ((m′k)k∈[1,n], ∗, b′) and ((m′′k)k∈[1,n], ∗, b′′). Sup-
pose given An-morphisms f = (fk)k∈[1,n] : A → A′ and f ′ = (f ′k)k∈[1,n] : A′ → A′′, with
corresponding triples ((fk)k∈[1,n], ∗, F ) and ((f ′k)k∈[1,n], ∗, F ′).

By Lemma 57, the pre-An-morphism f ′ ◦ f has the corresponding triple (f ′ ◦ f, ∗, F ′ ◦F ).
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By Lemma 50, we have b′ ◦ F = F ◦ b and b′′ ◦ F ′ = F ′ ◦ b′.
This implies b′′ ◦ (F ′ ◦ F ) = F ′ ◦ b′ ◦ F = (F ′ ◦ F ) ◦ b. Hence by Lemma 50, f ′ ◦ f is an
An-morphism from (A, (mk)k∈[1,n]) to (A′′, (m′′k)k∈[1,n]).

(ii): This results directly from Lemma 60(i).

(iii): We have the corresponding triples ((mk)k∈[1,n], ∗, b) and (by Lemma 60(ii) )
(strictn(idA), ∗, idTSA≤n). We have b ◦ idTSA≤n = b = idTSA≤n ◦b. Hence, Lemma 50
implies that strictn(idA) is an An-morphism from (A, (mk)k∈[1,n]) to (A, (mk)k∈[1,n]).
By Lemma 60(iii), strictn(idA) is the identity morphism on A with respect to pre-
An-morphisms. Each An-morphism is also a pre-An-morphism, cf. Definition 22. So
the An-morphism strictn(idA) is also the identity on (A, (mk)k∈[1,n]) with respect to
An-morphisms.

Example 62. Suppose given dg-algebras (A′, (m′k)k≥1) and (A, (mk)k≥1), cf. Example 23.
Suppose given a graded map f : A′ → A of degree 0 such that

f ◦m′1 =m1 ◦ f and
f ◦m′2 =m2 ◦ (f ⊗ f) . (24)

I.e. f is a morphism of dg-algebras.

Then strict∞(f) is an A∞-morphism from (A′, (m′k)k≥1) to (A, (mk)k≥1).

Proof. Let (fk)k≥1 = strict∞(f). Recall f1 = f and fk = 0 for k ≥ 2. Recall that for
k ≥ 3, we have mk = 0 and m′k = 0. Thus for k ≥ 3, eq. (5)[k] holds since all summands
in (5)[k] are zero. Since f2 = 0 and f1 = f , the equations (5)[1] and (5)[2] are the
equations in (24), cf. also Example 24.
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3. Restriction to a subgroup in terms of minimal
models on the group cohomology algebras

3.1. An A∞-morphism between Hom∗-dg-algebras

Definition/Lemma 63. Suppose given a commutative ground ring R. Suppose given
an R-algebra B. Suppose given complexes (P, dP ), (Q, dQ) over B. Lemma 25 yields the
dg-algebras (A′ := Hom∗B(P, P ), (m′k)k≥1) and (A := Hom∗B(Q,Q), (mk)k≥1).

Suppose given complex morphisms g1 : P → Q and g2 : Q → P . Suppose given a
homotopy h ∈ Hom−1

B (P, P ) such that g2 ◦ g1 = idP +dHom∗B(P,P )(h).

Then there is an A∞-morphism fg1,g2,h = (fk)k≥1 from A′ to A given as follows. For k ≥ 1
and homogeneous elements xi ∈ (A′)ki for i ∈ [1, k], we set

fk(x1 ⊗ . . .⊗ xk) := (−1)
k(k−1)

2 (−1)
∑
i∈[1,k] ki(k−i)g1 ◦ (x1 ◦ h ◦ x2 ◦ . . . ◦ h ◦ xk) ◦ g2.

Note that e.g. if P = Q, g1 = g2 = idP and h = 0, then fg1,g2,h is the identity-A∞-
morphism on Hom∗B(P, P ), cf. Definition/Lemma 61(iii).

Proof. We need to prove that fg1,g2,h is actually an A∞-morphism. It is readily checked
that it is a pre-A∞-morphism. We have the corresponding triples ((mk)k≥1, (bk)k≥1, ∗),
((m′k)k≥1, (b

′
k)k≥1, ∗) and ((fk)k≥1, (Fk)k≥1, ∗). By Lemma 50, it suffices to show (14)[k]

for k ≥ 1.

Suppose given homogeneous elements X1 ∈ SAkX1 , X2 ∈ SAkX2 . We have

b1(X1) = (ω−1 ◦m1 ◦ ω)(X1) = ω−1(m1(ω(X1)))

=ω−1(dQ ◦ ω(X1)− (−1)kX1
+1ω(X1) ◦ dQ)

=ω−1(dQ ◦ ω(X1) + (−1)kX1ω(X1) ◦ dQ)

b2(X1 ⊗X2) = (ω−1 ◦m2 ◦ ω⊗2)(X1 ⊗X2)
(1)
= (−1)kX1ω−1(m2(ω(X1)⊗ ω(X2)))

= (−1)kX1ω−1(ω(X1) ◦ ω(X2)).

Analogous identities hold for b′1 and b′2.

Suppose given k ≥ 1. Suppose given homogeneous elements Xi ∈ (SA′)ki for i ∈ [1, k].
For convenience, let xi := ω′(Xi) ∈ (A′)ki+1 for i ∈ [1, k]. We use the symbol "�" as an
abbreviation of "◦h◦", i.e. as a symbol for composition with h inserted in between. We
have

(ω ◦ Fk)(X1 ⊗ . . .⊗Xk)

= (ω ◦ ω−1 ◦ fk ◦ (ω′)⊗k)(X1 ⊗ . . .⊗Xk)
(1)
= (−1)

∑
i∈[1,k](k−i)kifk(x1 ⊗ . . .⊗ xk)

= (−1)
∑
i∈[1,k] ki(k−i)(−1)

∑
i∈[1,k](ki+1)(k−i)︸ ︷︷ ︸

=(−1)
∑
i∈[1,k](k−i)=(−1)

k(k−1)
2

(−1)
k(k−1)

2 g1 ◦ (x1 � x2 � . . . � xk) ◦ g2
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= g1 ◦ (x1 � . . . � xk) ◦ g2.

Thus we have

∑
k=r+s+t
r,t≥0,s≥1

(ω ◦ Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t))(X1 ⊗ . . .⊗Xk)

=

(
k−2∑
r=0

ω ◦ Fk−1 ◦ (1⊗r ⊗ b′2 ⊗ 1⊗k−2−r) +
k−1∑
r=0

ω ◦ Fk ◦ (1⊗r ⊗ b′1 ⊗ 1⊗k−1−r)

)
(X1 ⊗ . . .⊗Xk)

(1)
=

k−2∑
r=0

(−1)
∑r
i=1 ki(ω ◦ Fk−1)(X1 ⊗ . . .⊗Xr ⊗ b′2(Xr+1 ⊗Xr+2)⊗Xr+3 ⊗ . . .⊗Xk)

+
k−1∑
r=0

(−1)
∑r
i=1 ki(ω ◦ Fk)(X1 ⊗ . . .⊗Xr ⊗ b′1(Xr+1)⊗Xr+2 ⊗ . . .⊗Xk)

=
k−2∑
r=0

(−1)
∑r
i=1 ki(ω ◦ Fk−1)(X1 ⊗ . . .⊗Xr⊗

(−1)kr+1(ω′)−1(xr+1 ◦ xr+2)⊗Xr+3 ⊗ . . .⊗Xk)

+
k−1∑
r=0

(−1)
∑r
i=1 ki(ω ◦ Fk)(X1 ⊗ . . .⊗Xr⊗

(ω′)−1(dP ◦ xr+1 + (−1)kr+1xr+1 ◦ dP )⊗Xr+2 ⊗ . . .⊗Xk)

=
k−2∑
r=0

(−1)
∑r+1
i=1 kig1 ◦ (x1 � . . . � xr � (xr+1 ◦ xr+2) � xr+3 � . . . � xk) ◦ g2

+
k−1∑
r=0

(−1)
∑r
i=1 kig1 ◦ (x1 � . . . � xr�

(dP ◦ xr+1 + (−1)kr+1xr+1 ◦ dP ) � xr+2 � . . . � xk) ◦ g2

=
k−2∑
r=0

(−1)
∑r+1
i=1 kig1 ◦ ((x1 � . . . � xr+1) ◦ idP ◦(xr+2 � . . . � xk)) ◦ g2

+
k−1∑
r=0

(−1)
∑r
i=1 kig1 ◦ (x1 � . . . � xr � dP ◦ xr+1 � . . . � xk) ◦ g2

+
k−1∑
r=0

(−1)
∑r+1
i=1 kig1 ◦ (x1 � . . . � xr+1 ◦ dP � xr+2 � . . . � xk) ◦ g2

r′=r+1
=

k−1∑
r′=1

(−1)
∑r′
i=1 kig1 ◦ ((x1 � . . . � xr′) ◦ idP ◦(xr′+1 � . . . � xk)) ◦ g2
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+
k−1∑
r=0

(−1)
∑r
i=1 kig1 ◦ (x1 � . . . � xr � dP︸︷︷︸

◦h◦dP if r 6=0

◦xr+1 � . . . � xk) ◦ g2

+
k∑

r′=1

(−1)
∑r′
i=1 kig1 ◦ (x1 � . . . � xr′ ◦ dP �︸︷︷︸

dP ◦h◦ if r′ 6=k

xr′+1 � . . . � xk) ◦ g2

∗
=

k−1∑
r=1

(−1)
∑r
i=1 kig1 ◦ (x1 � . . . � xr ◦ g2 ◦ g1 ◦ xr+1 � . . . � xk) ◦ g2

+ g1 ◦ dP ◦ x1 � . . . � xk ◦ g2 + (−1)
∑k
i=1 kig1 ◦ x1 � . . . � xk ◦ dP ◦ g2

∗∗
=

k−1∑
r=1

(−1)
∑r
i=1 ki(ω ◦ Fr)(X1 ⊗ . . .⊗Xr) ◦ (ω ◦ Fk−r)(Xr+1 ⊗ . . .⊗Xk)

+ dQ ◦ g1 ◦ x1 � . . . � xk ◦ g2 + (−1)
∑k
i=1 kig1 ◦ x1 � . . . � xk ◦ g2 ◦ dQ

=
k−1∑
r=1

(−1)
∑r
i=1 ki(ω ◦ Fr)(X1 ⊗ . . .⊗Xr) ◦ (ω ◦ Fk−r)(Xr+1 ⊗ . . .⊗Xk)

+ dQ ◦ (ω ◦ Fk)(X1 ⊗ . . .⊗Xk) + (−1)
∑k
i=1 ki(ω ◦ Fk)(X1 ⊗ . . .⊗Xk) ◦ dQ

=
k−1∑
r=1

(ω ◦ b2)(Fr(X1 ⊗ . . .⊗Xr)⊗ Fk−r(Xr+1 ⊗ . . .⊗Xk))

+ (ω ◦ b1)(Fk(X1 ⊗ . . .⊗Xk))

(1)
=

(
ω ◦ b1 ◦ Fk +

k−1∑
r=1

ω ◦ b2 ◦ (Fr ⊗ Fk−r)

)
(X1 ⊗ . . .⊗Xk)

=
∑

1≤r≤k
i1+...+ir=k

all is≥1

(ω ◦ br ◦ (Fi1 ⊗ . . .⊗ Fir))(X1 ⊗ . . .⊗Xk).

At the step marked by "∗", we use g2 ◦ g1 = idP +dHom∗B(P,P )(h) = idP +dP ◦ h+ h ◦ dP .
At "∗∗", we use the fact that g1 : P → Q, g2 : Q → P are complex morphisms, hence
g1 ◦ dP = dQ ◦ g1 and dP ◦ g2 = g2 ◦ dQ.

Hence, (14)[k] holds for k ≥ 1, so fg1,g2,h is by Lemma 50 a morphism of A∞-algebras.

We have the following well-known application of the comparison theorem.

Lemma 64. Suppose given a commutative ring R. Suppose given an R-algebra B.
Suppose given a B-module M . Suppose given projective resolutions P,Q of M .

There exist B-linear quasi-isomorphisms of complexes g1 : P → Q and g2 : Q → P
together with homotopies hP ∈ Hom−1

B (P, P ), hQ ∈ Hom−1
B (Q,Q) such that

g2 ◦ g1 = idP +dHom∗B(P,P )(hP )

g1 ◦ g2 = idQ +dHom∗B(Q,Q)(hQ).
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Proof. Since P and Q are projective resolutions of M , we have HiP = HiQ = 0 for
i ∈ Z \ {0} and H0P = H0Q = M .

By the comparison theorem (cf. e.g. [26, Comparison Theorem 2.2.6]), we obtain B-linear
morphisms g1 : P → Q, g2 : Q → P such that H0g1 = idM and H0g2 = idM . In
particular, g1 and g2 induce the identity on H∗P = H∗Q = M . Thus g1 and g2 are
quasi-isomorphisms.

Since H0(g2 ◦ g1) = idM = H0 idP , the comparison theorem provides a homotopy hP ∈
Hom−1(P, P ) such that g2 ◦ g1 = idP +dHom∗FH(P,P )(h). Analogously, we obtain the
homotopy hQ.

3.2. Restriction to subgroups

We use term ’canonical A∞-structure on a group cohomology algebra’ as in section 0.1.7.
There is well-known theory of how restriction to subgroups interacts with group cohomol-
ogy, cf. e.g. [1, p. 73]. As outlined in section 0.1.7, there is evidence that suggests that
restriction to subgroups behaves similarly in the context of canonical A∞-structures on
group cohomology. This is intriguing since obtaining canonical A∞-structures on group
cohomology algebras directly is an arduous process, so it would be extremely helpful
if we were somehow able to infer canonical A∞-structures on group cohomology from
canonical A∞-structures on the group cohomology algebras of subgroups of the group we
are examining. Below, we explain some of the observations made in section 0.1.7, which
can be considered a first attempt in this direction.

Remark 65 (Restriction). Suppose given a field F. Suppose given a finite group G.
Suppose H 6 G is a subgroup of G. Suppose P is a projective resolution of the trivial
FG-module F over FG, with augmentation ε : P0 → F.

Since projective FG-modules are also projective over FH and since FG-linear maps are
also FH-linear, the complex P is also a projective resolution of F over FH.

Since FG-linear maps are also FH-linear, we obtain the canonical inclusion resG,H :
Hom∗FG(P, P )→ Hom∗FH(P, P ). The map resG,H is a morphism of dg-algebras. Thus it
induces a morphism on the Ext-algebras H∗ resG,H : Ext∗FG(F,F)→ Ext∗FH(F,F).

If [G : H] is invertible in F, then H∗ resG,H is injective, cf. e.g. [1, Corollary 3.6.18].

Proposition 66. Suppose given a field F. Let F be the ground ring. Suppose given a
finite group G and a subgroup H 6 G such that [G : H] is invertible in F. Suppose given
a projective resolution P of the trivial FG-module F over FG.

Let (m
(G)
n )n≥1 resp. (mn)n≥1 be the dg-algebra structure given by Lemma 25 on

Hom∗FG(P, P ) resp. Hom∗FH(P, P ).

Suppose given a minimal A∞-structure (m′n
(G))n≥1on Ext∗FG(F,F) and a quasi-isomorphism

of A∞-algebras (f
(G)
n )n≥1 : (Ext∗FG(F,F), (m′n

(G))n≥1) → (Hom∗FG(P, P ), (m
(G)
n )n≥1) such

that f (G)
1 induces the identity in homology.
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Then there is a minimal A∞-structure (m′n)n≥1 on Ext∗FH(F,F) and a quasi-isomorphism
of A∞-algebras (fn)n≥1 : (Ext∗FH(F,F), (m′n)n≥1)→ (Hom∗FH(P, P ), (mn)n≥1) such that

• f1 induces the identity in homology,

• strict∞(H∗ resG,H) : (Ext∗FG(F,F), (m′n
(G))n≥1)→ (Ext∗FH(F,F), (m′n)n≥1) is an A∞-

morphism and

• the following diagram commutes.

(Ext∗FG(F,F), (m′n
(G))n≥1)

strict∞(H∗ resG,H)

��

(f
(G)
n )n≥1 // (Hom∗FG(P, P ), (m

(G)
n )n≥1)

strict∞(resG,H)

��
(Ext∗FH(F,F), (m′n)n≥1)

(fn)n≥1 // (Hom∗FH(P, P ), (mn)n≥1)

(25)

Note that strict∞(resG,H) is an A∞-morphism by Example 62.

Proof. Set B := Ext∗FH(F,F), A := Hom∗FH(P, P ). Since the inclusion resG,H is graded
and injective, we may identify Hom∗FG(P, P ) =: A(G) with the image of resG,H , which is a
graded subalgebra of A. Since H∗ resG,H is graded and by [1, Corollary 3.6.18] injective,
we may identify Ext∗FG(F,F) =: B(G) with the image of H∗ resG,H , which is a graded
direct submodule of B. I.e. B = B(G) ⊕B′ for some graded submodule B′ of B.

To construct (mn)n≥1 and (fn)n≥1, we modify Kadeishvili’s algorithm suitably:

By Definition 58 and Definition 22(ii), the pre-A∞-morphism strict∞(H∗ resG,H) is an
A∞-morphism iff m′n|(B(G))⊗n = m′n

(G) for n ≥ 1. Similarly, Example 59 implies that the
diagram (25) commutes iff fn|(B(G))⊗n = f

(G)
n for n ≥ 1.

We setm′1 : B → B, m′1 = 0, which is a graded map of degree 1. We construct f1 : B → A
as follows. There is a graded map g : B′ → A of degree 0 such that each element of
B′ ⊆ B = H∗A is mapped to a representing cycle. Note that H∗f

(G)
1 = idH∗A(G) = idB(G) ,

so f (G)
1 maps elements of B(G) to representing cycles. We set f1|B′ := g and f1|B(G) := f

(G)
1 .

Thus f1 maps each element of B to a representing cycle. Hence, f1 : (B,m′1)→ (A,m1)
is a complex morphism and H∗f1 = idH∗A. In particular, f1 : (B,m′1) → (A,m1) is a
quasi-isomorphism of complexes.

We construct the fn and m′n for n ≥ 2 successively using the construction principle given
in Lemma 134.

So suppose n ∈ [1,∞]. Suppose there are fk and m′k for k ∈ [1, n] such that (fk)k∈[1,n] :
(B, (m′k)k∈[1,n]) → (A, (mk)k≥1) is a quasi-isomorphism of An-algebras and such that
mk|(B(G))⊗k = m

(G)
k and fk|(B(G))⊗k = f

(G)
k for k ∈ [1, n].

We have the corresponding triples ((mk)k≥1, (bk)k≥1, b), ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′),
((fk)k∈[1,n], (Fk)k∈[1,n], F ), ((m

(G)
k )k≥1, (b

(G)
k )k≥1, b

(G)), ((m′k
(G))k≥1, (b

′
k

(G))k≥1, b
′(G)) and

((f
(G)
k )k≥1, (F

(G)
k )k≥1, F

(G)). Note that bk|(SB(G))⊗k = b
(G)
k and Fk|(SB(G))⊗k = F

(G)
k for

k ∈ [1, n]. Recall Theorem 48 and Lemma 50.
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Consider Lemma 54. There, we let B resp. A take the role of A′ resp. A. The proof of
Lemma 54 provides graded maps 0b′n+1 : (SB)⊗n+1 → SB resp. 0Fn+1 : (SB)⊗n+1 → SA
of degree 1 resp. 0 such that

h = b1 ◦ 0Fn+1 − F1 ◦ 0b′n+1,

where the term h is given in Lemma 53.

Note that application of Lemma 53(c) to the quasi-isomorphism of An+1-algebras
(f

(G)
k )k∈[1,n+1] : (Ext∗FG(F,F), (m′k

(G))k∈[1,n+1])→ (Hom∗FG(P, P ), (m
(G)
k )k≥1) yields

h|SA(G)

(SB(G))⊗n+1 = b
(G)
1 ◦ F (G)

n+1 − F
(G)
1 ◦ b′n+1

(G)
= b1|SA

(G)

SA(G) ◦ F (G)
n+1 − F1|SA

(G)

SB(G) ◦ b′n+1
(G)
.

Since B(G) is a graded direct summand of B, the module (SB(G))⊗n+1 is a graded direct
summand of (SB)⊗n+1. Hence, we have (SB)⊗n+1 = (SB(G))⊗n+1⊕Bn+1 for some graded
submodule Bn+1 of (SB)⊗n+1.

We define the graded maps b′n+1 : (SB)⊗n+1 → SB resp. Fn+1 : (SB)⊗n+1 → SA of
degree 1 resp. 0 by setting

b′n+1|(SB(G))⊗n+1 :=b′n+1
(G)

b′n+1|Bn+1 :=0b′n+1|Bn+1

Fn+1|(SB(G))⊗n+1 :=Fn+1
(G) Fn+1|Bn+1 :=0Fn+1|Bn+1 .

Now h = b1 ◦ Fn+1 − F1 ◦ b′n+1 holds since it holds on the summands of the direct sum of
(SB)⊗n+1 = (SB(G))⊗n+1 ⊕Bn+1.

Using b′n+1 and Fn+1, we extend the corresponding triples ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′)

and ((fk)k∈[1,n], (Fk)k∈[1,n], F ) to corresponding triples ((m′k)k∈[1,n+1], (b
′
k)k∈[1,n+1], b̂

′) and
((fk)k∈[1,n+1], (Fk)k∈[1,n+1], F̂ ).

By Lemma 53(a), the tuple (B, (m′k)k∈[1,n+1]) is an An+1-algebra. Lemma 53(c) and
Lemma 50 imply (5)[n+1]. Hence, (fk)k∈[1,n+1] : (B, (m′k)k∈[1,n+1])→ (A, (mk)k∈[1,n+1]) is
a quasi-isomorphism of An+1-algebras. Since b′n+1|(SB(G))⊗n+1 = b′n+1

(G) and
Fn+1|(SB(G))⊗n+1 = Fn+1

(G), we have m′n+1|(B(G))⊗n+1 = m′n+1
(G) and fn+1|(B(G))⊗n+1 =

fn+1
(G). This completes the successive step.

Using a result by Keller and Prouté (cf. [11, Theorem in section 3.7], see also [18,
Théorème 4.27] and [21, Corollary 1.14]), we obtain the following proposition. In contrast
to Proposition 66, we may choose the canonical A∞-structure on Ext∗FH(F,F) and we
have no restriction on the index [G : H], but we cannot control the morphism between
the minimal models as well and we have commutativity only up to homotopy in the sense
of [11, section 3.7].

Proposition 67. Suppose given a field F. Let F be the ground ring. Suppose given
finite groups G,H with H 6 G. Suppose given a projective resolution P of the trivial
FG-module F and a projective resolution Q of the trivial FH-module F.
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Let (m
(G)
n )n≥1 resp. (m

(H)
n )n≥1 be the dg-algebra structure on Hom∗FG(P, P ) resp.

Hom∗FH(Q,Q), cf. Lemma 25.

Suppose given minimal A∞-algebras

M (G) := (Ext∗FG(F,F), (m′k
(G)

)k≥1),

M (H) := (Ext∗FH(F,F), (m′k
(H)

)k≥1)

together with quasi-isomorphisms of A∞-algebras

f (G) = (f
(G)
k )k≥1 : M (G) → (Hom∗FG(P, P ), (m

(G)
k )k≥1)

f (H) = (f
(H)
k )k≥1 : M (H) → (Hom∗FH(Q,Q), (m

(H)
k )k≥1).

Suppose given FH-linear complex morphisms g1 : P → Q and g2 : Q→ P together with a
homotopy h ∈ Hom−1

FH(P, P ) such that g2 ◦ g1 = idP +dHom∗FH(P,P )(h) (cf. e.g. Lemma 64).

From g1, g2 and h, we obtain via Definition/Lemma 63 the A∞-morphism fg1,g2,h from
Hom∗FH(P, P ) to Hom∗FH(Q,Q).

Then there exists an A∞-morphism fmin from M (G) to M (H) such that the following
diagram commutes up to homotopy in the sense of [11, section 3.7], cf. also [18, Définition
4.1].

M (G) f (G)
//

fmin

��

(Hom∗FG(P, P ), (m
(G)
k )k≥1)

fg1,g2,h◦strict∞(resG,H)
��

M (H) f (H)
// (Hom∗FH(Q,Q), (m

(H)
k )k≥1)

(26)

Proof. Using a result of Keller and Prouté (cf. [11, Theorem in section 3.7], see also [18,
Théorème 4.27] and [21, Corollary 1.14]), we obtain a quasi-isomorphism of A∞-algebras

f̃ (H) : (Hom∗FH(Q,Q), (m
(H)
k )k≥1)→M (H)

which inverts f (H) up to homotopy in the sense of [11, section 3.7]. So by setting
fmin := f̃ (H) ◦ strict∞(resG,H) ◦ f (G), we obtain the diagram (26), which is commutative
up to homotopy in the sense of [11, section 3.7].

Question 68. Is it possible to use or improve these results in such a way that we can
obtain canonical structures on the group cohomology algebra of a group G from canonical
structures on the group cohomology algebras of subgroups of G ?
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4. Extended Kadeishvili minimal method

Suppose given a commutative ground ring R.

4.1. A counterexample to the existence of Kadeishvili-styled
minimal models over arbitrary rings

In this subsection, suppose that R be an integral domain such that there is an element
n ∈ R, n 6= 0 which is not a multiplicative unit (this facilitates the construction of
counterexamples).

Let the R-module A := R2×2 be graded by setting Aj := {0} for j ∈ Z \ {−1, 0, 1},

A−1 :=

{(
0 0
c 0

) ∣∣∣∣c ∈ R}, A0 :=

{(
a 0
0 d

) ∣∣∣∣a, d ∈ R} and A1 :=

{(
0 b
0 0

) ∣∣∣∣b ∈ R} .

On A, there is a dg-algebra structure given by

m1

((
a b
c d

))
:=n ·

(
c d− a
0 c

)
m2

((
a b
c d

)
⊗
(
a′ b′

c′ d′

))
:=

(
a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

Remark 71 will show that A is in fact the dg-algebra Hom∗(C,C), where C is the complex
C := (. . .→ 0→ R

x 7→nx−−−→ R→ 0→ . . .). But for the sake of self-containedness of this
example, we manually check that A is a dg-algebra. The maps m1 resp. m2 are graded
of degree |m1| = 1 resp. |m2| = 0. We have m2

1 = 0. Since m2 is matrix multiplication, it
is associative. By Example 23, it remains to check the Leibniz rule (4)[2]:

(m1 ◦m2)

((
a b
c d

)
⊗
(
a′ b′

c′ d′

))
= m1

((
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

))
=n ·

(
ca′ + dc′ cb′ + dd′ − aa′ − bc′

0 ca′ + dc′

)
=n ·m2

((
c d− a
0 c

)
⊗
(
a′ b′

c′ d′

)
+

(
a −b
−c d

)
⊗
(
c′ d′ − a′
0 c′

))
(1)
=m2 ◦ (m1 ⊗ 1 + 1⊗m1)

((
a b
c d

)
⊗
(
a′ b′

c′ d′

))
Hence, A is a dg-algebra.

As n is not a zero divisor, the set of cycles in A is Z∗A =

{(
x y
0 x

) ∣∣∣∣x, y ∈ R}. The set

of boundaries is B∗A =

{
n ·
(
z w
0 z

) ∣∣∣∣z, w ∈ R}. Thus we have H1A ' H0A ' (R/nR)

and H−1A = {0}, hence H∗A ' (R/nR)⊕ (R/nR).
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For the following proposition, we recall from Examples 23 and 24 that the notion of
an A1-algebra is the same as the notion of a complex. Furthermore minimality of an
A1-algebra simply means that its differential m1 is zero.

Proposition 69. (a) There is no minimal A1-structure on H∗A such that there is a
quasi-isomorphism of A1-algebras from H∗A to A.

(b) There is no minimal A2-structure on H∗A such that there is a quasi-isomorphism of
A2-algebras from A to H∗A.

This immediately yields

Corollary 70. (a) There is no minimal A∞-structure on H∗A such that there is a
quasi-isomorphism of A∞-algebras from H∗A to A.

(b) There is no minimal A∞-structure on H∗A such that there is a quasi-isomorphism of
A∞-algebras from A to H∗A.

Proof of Proposition 69. By the choice of n, the module R/nR is a non-zero torsion
module that is annihilated by n 6= 0. The same holds for H∗A.

As A is torsion-free, there is no non-zero R-linear map f1 : H∗A → A. In particular,
there is no quasi-isomorphism of complexes f1 : (H∗A, 0)→ (A,m1), which proves (a).

We prove (b) by contradiction. Assume that there is a minimal A2-algebra structure
(mi)i∈[1,2] on H∗A and a quasi-isomorphism of A2-algebras (fk)k∈[1,2] : (A, (mk)k∈[1,2])→
(H∗A, (m′k)k∈[1,2]). Hence equation (5)[2] must hold, that is

f1 ◦m2 − f2 ◦ (m1 ⊗ 1 + 1⊗m1) =m′1 ◦ f2 +m′2 ◦ (f1 ⊗ f1).

We havem1 = n·g, where g : A→ A,
(
a b
c d

)
7→
(
c d−a
0 c

)
. Thus f2◦(m1⊗1+1⊗m1) =

n · f2 ◦ (g⊗ 1 + 1⊗ g). As n annihilates H∗A, we have f2 ◦ (m1⊗ 1 + 1⊗m1) = 0 for any
R-linear map f2 : A⊗2 → H∗A. Furthermore m′1 = 0, so equation (5)[2] reduces to

f1 ◦m2 = m′2 ◦ (f1 ⊗ f1). (27)

As
(

1 0
0 1

)
=: ζ resp.

(
0 1
0 0

)
=: η generate Z0A resp. Z1A and as f1 : (A,m1)→ (H∗A, 0)

is a quasi-isomorphism, f1 (ζ) generates H0A and f1(η) generates H1A. So there is an

r ∈ R with H0A 3 −f1

((
1 0
0 0

))
= rf1

((
1 0
0 1

))
, whence f1

((
1 + r 0

0 r

))
= 0.

For ω :=

(
1 + r 0

0 r

)
⊗
(

0 1
0 0

)
−
(

0 1
0 0

)
⊗
(

1 + r 0
0 r

)
∈ A⊗2, we thus have

m′2 ◦ (f1 ⊗ f1)(ω)
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(1)
=m′2

(
f1

((
1 + r 0

0 r

))
︸ ︷︷ ︸

=0

⊗f1

((
0 1
0 0

))
− f1

((
0 1
0 0

))
⊗ f1

((
1 + r 0

0 r

))
︸ ︷︷ ︸

=0

)
= 0.

But (f1 ◦ m2)(ω) = f1

((
0 1 + r
0 0

)
−
(

0 r
0 0

))
= f1 (η) 6= 0 since f1(η) generates

H1A ' R/nR 6= {0}. Thus we have a contradiction to (27).

Remark 71. For the complex

C := (. . .→ 0→ C1 −−−→ C0 → 0→ . . .)

:= (. . .→ 0→ R
x 7→nx−−−→ R→ 0→ . . .),

we will examine Hom∗(C,C) =: Ã as a dg-algebra, cf. Lemma 25. We will show that
Ã ' A.

Let β0 resp. β1 be generators of C0 resp. C1. We have the graded module C̃ := ⊕i∈ZCi
with ordered basis B := (β0, β1). For i ∈ Z, we may identify the elements of Ãi =
Homi(C,C) with the graded maps C̃ → C̃ of degree −i, cf. Lemma 25. This way,
Ã = ⊕i∈ZÃi is identified with the endomorphism ring HomR(C̃, C̃). Hence, we may use
the ordered basis B of C̃ to identify the R-algebra Ã with the R-matrix algebra R2×2.

I.e.
(
a b
c d

)
∈ R2×2 is the morphism that maps β0 to aβ0 + cβ1 and β1 to bβ0 + dβ1.

Elements of Ã−1 are morphisms that send β0 to some multiple of β1 and send β1 to

zero. Hence, Ã−1 =

{(
0 0
c 0

) ∣∣∣∣c ∈ R}. Similarly, we have Ã0 =

{(
a 0
0 d

) ∣∣∣∣a, d ∈ R}
and Ã1 =

{(
0 b
0 0

) ∣∣∣∣b ∈ R}.
The map m2 is defined by composition, so in the matrix picture, m2 is given by matrix
multiplication.

The differential d ∈ Hom1(C,C) of C maps β0 to 0 and β1 to nβ0, so d =

(
0 n
0 0

)
. For

homogeneous elements g ∈ Ã of degree kg, we have m1(g) = d ◦ g − (−1)kgg ◦ d, cf.
Lemma 25. Hence, for a, b, c, d ∈ R, we have

m1

((
a b
c d

))
=m1

((
0 0
c 0

)
︸ ︷︷ ︸
∈A−1

+

(
a 0
0 d

)
︸ ︷︷ ︸
∈A0

+

(
0 b
0 0

)
︸ ︷︷ ︸
∈A1

)
= d ◦

(
a b
c d

)
−
(
a −b
−c d

)
◦ d

=

(
0 n
0 0

)(
a b
c d

)
−
(
a −b
−c d

)(
0 n
0 0

)
=

(
nc nd
0 0

)
−
(

0 na
0 −nc

)
=n

(
c d− a
0 c

)
.

We conclude that the dg-algebra Ã := Hom∗(C,C) is isomorphic to the dg-algebra A
given above.
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4.2. Posets

In this subsection, we review well-known basic facts concerning partially ordered sets
(posets), cf. e.g. [5]. In Lemma 75, we obtain information about the partially ordered set
(Zn≥n,≤n), which we will use in the sequel.

Definition 72 (Posets). We use the abbreviation poset for partially ordered set. Let
(X,≤) be a poset. Abusing notation, we often write X instead of (X,≤).

The poset (X,≤) is called artinian if every descending chain x0 ≥ x1 ≥ x2 ≥ x3 ≥ . . . in
X becomes stationary, i.e. there is a N ∈ Z≥0 such that xk = xN for all k ≥ N .

A set D ⊆ X is called discrete if for any x, y ∈ D such that x 6= y, we have x 6≤ y and
x 6≥ y. In that situation, the pair (x, y) is called incomparable.

The poset (X,≤) is called narrow if every discrete set D ⊆ X is finite.

Given x ∈ X, we write X≤x := (X,≤)≤x := {y ∈ X, y ≤ x} and X≥x := (X,≤)≥x :=
{y ∈ X, y ≥ x}.

A set M ⊆ X is called a lower set if X≤x ⊆M for all x ∈M . I.e. M is a lower set if for
all x ∈M , all elements of X smaller than x are also contained in M .

A morphism of posets f : (A,≤A)→ (B,≤B) is a map f : A→ B such that a1, a2 ∈ A,
a1 ≤A a2 implies f(a1) ≤B f(a2). Hence, an isomorphism of posets from (A,≤A) to
(B,≤B) is a bijective map f : A→ B such that for all a1, a2 ∈ A, we have a1 ≤A a2 ⇔
f(a1) ≤B f(a2).

For M ⊆ X, the restricted relation ≤|M×M is a partial order on M . We denote by (M,≤)
the subposet (M,≤|M×M).

Lemma 73. Let (X,≤) be a poset. The following are equivalent.

(i) The poset (X,≤) is artinian.

(ii) Every nonempty subset of X has a minimal element.

Proof. (i) ⇒ (ii): Suppose (X,≤) is artinian. Suppose given ∅ 6= M ⊆ X. We need
to prove that M has a minimal element. Assume to the contrary that there exist no
minimal elements in M . I.e. for each x ∈M there is y ∈M with x > y. Since M 6= ∅,
we can construct a strictly descending chain in M . But this is impossible since (X,≤) is
artinian. Hence the assumption is false and M has a minimal element.

(ii) ⇒ (i): Suppose every nonempty subset of X has a minimal element. Suppose given a
chain x0 ≥ x1 ≥ x2 ≥ . . . in X. By hypothesis, the set M = ∪∞i=0{xi} 6= ∅ has a minimal
element, say xN for some N ∈ Z≥0. Since the chain is descending, we have xj ≤ xN for
all j ∈ Z≥N . Since xN is minimal, we have xN ≤ xj, hence xN = xj for all j ∈ Z≥N . So
any descending chain in X becomes stationary, i.e. (X,≤) is artinian.

Definition 74. Let n ∈ Z≥1. Let the partial order ≤n on Zn be defined by

(α1, . . . , αn) ≤n (β1, . . . , βn) :⇔ αi ≤ βi for all i ∈ [1, n]
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for (α1, . . . , αn), (β1, . . . , βn) ∈ Zn. Defining Zn≥0 := (Z≥0)n ⊆ Zn, we obtain the subposet
(Zn≥0,≤n) of (Zn,≤n).

Lemma 75.

(a) For x = (x1, . . . , xn) ∈ Zn≥0, the set (Zn≥0)≤x = {(y1, . . . , yn) | yi ∈ [0, xi] for i ∈
[1, n]} is finite.

(b) The poset (Zn≥0,≤n) is artinian.

(c) The poset (Zn≥0,≤n) is narrow.

Proof. Assertion (a) follows by construction. Assertion (b) results from (a). We show (c):
We have to show that any discrete subset of (Zn≥0,≤n) is finite. We proceed by induction
on n ≥ 1. Since the poset (Z1

≥0,≤1) ' (Z≥0,≤) is, in fact, totally ordered, the claim
holds for n = 1. Suppose given n ∈ Z≥2 such that the claim holds for n− 1. Suppose
D is a discrete subset of (Zn≥0,≤n). Since ∅ is finite, we may suppose D 6= ∅. Choose
x = (x1, . . . , xn) ∈ D. For y = (y1, . . . , yn) ∈ D with x 6= y, there exists i ∈ [1, n] such
that xi > yi since x 6≤n y. Setting Mi,l := {(z1, . . . , zn) ∈ Zn≥0 | zi = l} for i ∈ [1, n] and
l ∈ Z≥0, we obtain

D = ∪i∈[1,n] ∪l∈[0,xi] (D ∩Mi,l). (28)

The sub-poset (Mi,l,≤n) of (Zn≥0,≤n) is as a poset isomorphic to (Zn−1
≥0 ,≤n−1). Hence as

(D ∩Mi,l) is a discrete subset of Mi,l, it is finite by the induction hypothesis. So by (28),
the set D is a finite union of finite sets and thus finite. So the claim holds for n, which
completes the proof.

4.3. Extended Kadeishvili Method

The purpose of this section is to obtain minimal or "almost" minimal models of a
given A∞-algebra (Ǎ, (m̌k)k≥1) over arbitrary rings R. Corollary 70 shows that it is
generally impossible to obtain a minimal A∞-structure (mk)k≥1 on H∗Ǎ such that there
is a quasi-isomorphism (fk)k≥1 : (H∗Ǎ, (mk)k≥1)→ (Ǎ, (m̌k)k≥1) or a quasi-isomorphism
(f̃k)k≥1 : (Ǎ, (m̌k)k≥1)→ (H∗Ǎ, (mk)k≥1).

Note that in the examples discussed in Corollary 70, the module H∗Ǎ is non-projective
over R since it has torsion over R. In contrast, Theorem 55 shows that Kadeishvili’s
algorithm works if H∗Ǎ is projective. So it is reasonable to replace H∗Ǎ by a the direct
sum A := ⊕i∈ZP (i), where for i ∈ Z, the complex P (i) is a projective resolution of HiǍ,
since A is projective as an R-module and its homology is isomorphic to H∗Ǎ.

We ask whether A can be made a model of Ǎ. Each P (i) carries a (generally non-zero)
differential, so if (mk)k≥1 is an A∞-structure on A such that A becomes a model of Ǎ
and such that m1 contains the differentials of the P (i) as components, then (A, (mk)k≥1)
cannot be a minimal A∞-algebra and in particular not a minimal model of Ǎ.
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Thus we will need to modify the notion of minimality and to that end, we introduce the
notion of eA∞-algebras, which are A∞-algebras with additional structure. The module
A sketched above is composed of the P (i) and each P (i) is composed of its positions. A
major feature of eA∞-categories is that they can capture this twofold decomposition of
A. To that end, eA∞-categories feature a "horizontal" and a "vertical" grading. We
may then assign the positions of the P (i) in such a way to the horizontally and vertically
homogeneous components that the P (i) run diagonally as illustrated below (cf. also
Proposition 81).

The "vertical" grading of an eA∞-algebra is the grading that is known from A∞-algebras
and which interacts with the Koszul sign rule. The "horizontal" grading is used for
bookkeeping. Minimality of eA∞-algebras requires in particular that homogeneous
elements of a certain horizontal degree are mapped by m1 to a sum of homogeneous
elements of strictly lower horizontal degree. By Remark 77, the notion of minimality of
eA∞-algebras generalizes in a certain way the notion of minimality on A∞-algebras.

Definition 76. Let n ∈ Z≥0 ∪ {∞}.
Suppose given a Z×Z-graded R-module A = ⊕i,j∈ZAj,i and suppose given R-linear maps
mk : A⊗k → A for k ∈ [1, n]. Whenever A is treated as a Z-graded module (in particular
concerning the Koszul sign rule), we refer to the grading of A = ⊕i,j∈ZAj,i obtained
by suppressing the grading along j. For convenience, let Ai := ⊕j∈ZAj,i for i ∈ Z and
Aj,− := ⊕i∈ZAj,i for j ∈ Z.

We call the tuple (A, (mk)k∈[1,n]) an eAn-algebra if (EA1), (EA2) and (EA3) hold, which
are given as follows.

(EA1) (A, (mk)k∈[1,n]) is an An-algebra (Recall that the Z-grading of A = ⊕i,j∈ZAj,i is
obtained by suppressing the grading along j).

(EA2) Aj,i is the zero module for all j < 0. I.e. A = ⊕j∈Z≥0,i∈ZA
j,i.

(EA3) For k ∈ [1, n] and j1, . . . , jk ∈ Z≥0, we have6

mk(A
j1,− ⊗ . . .⊗ Ajk,−) ⊆ ⊕j′≤(j1+...+jk)+(2k−2)A

j′,−.

6 In an earlier version of this text, the axioms (EA3) and (EA3′) were not present. Instead, an
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We call the tuple (A, (mk)k∈[1,n]) a minimal eAn-algebra if (EA1), (EA2) and (EA3′) hold,
where (EA3′) is given as follows.

(EA3′) For k ∈ [1, n] and j1, . . . , jk ∈ Z≥0, we have

mk(A
j1,− ⊗ . . .⊗ Ajk,−) ⊆ ⊕j′≤(j1+...+jk)+(2k−3)A

j′,−.

Since eAn-algebras are An-algebras with additional structure, the notations and conven-
tions given for An-algebras will also be used for eAn-algebras.

Given eAn-algebras (A, (mk)k∈[1,n]) and (A′, (m′k)k∈[1,n]), a morphism of eAn-algebras or
eAn-morphism from A to A′ is a morphism of An-algebras (fk)k∈[1,n] : (A, (mk)k∈[1,n])→
(A′(m′k)k∈[1,n]). Composition of eAn-morphisms is composition of An-morphisms.

Remark 77 (Relation of A∞- and eA∞-algebras. Some functors.). Suppose given
n ∈ Z≥0 ∪ {∞}.

Suppose given an An-algebra (A, (mk)k∈[1,n]). For i, j ∈ Z, we define

Aj,i :=

{
Ai if j = 0

0 if j 6= 0.

Thus Aj,− = 0 for j ∈ Z \ {0}.

For k ∈ [1, n] and j1, . . . , jk ∈ Z≥0, we have

mk(A
j1,− ⊗ . . .⊗ Ajk,−) ⊆ A = A0,− 2k−2≥0

⊆ ⊕j′≤(j1+...+jk)+(2k−2)A
j′,−.

I.e. by defining Aj,i as above, (A, (mk)k∈[1,n]) becomes an eAn-algebra.

Suppose n ≥ 1. For k ∈ [2, n], we have

mk(A
j1,− ⊗ . . .⊗ Ajk,−) ⊆ A = A0,− 2k−3≥0

⊆ ⊕j′≤(j1+...+jk)+(2k−3)A
j′,−.

Since additionally Aj,− = 0 for j ∈ Z \ {0}, we have the following equivalence.
(A, (mk)k∈[1,n]) is a minimal eAn-algebra
⇔ m1(A0,−) ⊆ ⊕j′≤0+2·1−3A

j′,− = ⊕j′∈Z<0A
j′,0 = 0

⇔ m1 = 0
⇔ (A, (mk)k∈[1,n]) is a minimal An-algebra.

Denote the category of An-algebras by Algn. Denote the category of eAn-algebras by
eAlgn. Axiom (EA1) yields the forgetful functor forget : eAlgn → Algn. Since the

eA∞-algebra was called minimal if m1(A
j,−) ⊆ ⊕j′≤j−1A

j,− for all j ∈ Z. The axioms (EA3) and
(EA3′) in their present version are inspired by Sagave’s dA∞-algebras, for which a satisfy similar
condition holds. Ultimately, (EA3) and (EA3′) were strengthened to their present form since it
was easily possible and since this yields strengthened results for the extended Kadeishvili minimal
method.
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eAn-morphisms are the An-morphisms, the functor forget : eAlgn → Algn is fully
faithful.

By the construction given above, we may obtain eAn-algebras from An-algebras. This
yields a functor F : Algn → eAlgn. Since the eAn-morphisms are the An-morphisms, the
functor F : Algn → eAlgn is fully faithful.

The functor forget : eAlgn → Algn is a left inverse to the functor F : Algn → eAlgn.
I.e. forget ◦ F = idAlgn . Hence, the fully faithful functor forget is dense and thus an
equivalence from eAlgn to Algn

4.3.1. Structure of the successive construction

Remark 78 (setup of the incremental step). The incremental step will be performed in
the following situation:

• n ∈ Z≥2.

• (Ǎ, (m̌k)k≥1) is an A∞-algebra.

• (A, (mk)k∈[1,n−1]) is a minimal eAn−1-algebra.

• (fk)k∈[1,n−1] is a quasi-isomorphism of An−1-algebras from A to Ǎ.

• Assertions (P1) - (P3) hold:

(P1) A is projective over R.

(P2) For all j ∈ Z, we have m1(⊕j′≤jAj
′,−) = (B∗A) ∩ (⊕j′≤j−1A

j′,−).

(P3) p ◦ (f1|Z
∗Ǎ
A0,−) is surjective, where p : Z∗Ǎ→ H∗Ǎ is the residue class map.

4.3.2. The initial step

For the initial step, we will show in Proposition 81 that the setup defined in Remark 78
is attainable for n = 2.

Definition 79. Suppose given a minimal eA1-algebra (A, (mk)k∈[1,1]). We have the
filtration A≤j,− := ⊕j′∈Z≤jAj

′,− for j ∈ Z. Note that for j ∈ Z<0, we have A≤j,− = 0

by (EA2). By (EA3′), we have m1(A
j,−) ⊆ ⊕j′≤j−1A

j′,− for j ∈ Z. Hence we have
m1(A≤j,−) ⊆ A≤j−1,− for j ∈ Z. We obtain the complex

(. . .
m̄

(j+2)
1−−−−→ A≤j+1,−/A≤j,−︸ ︷︷ ︸

j+1

m̄
(j+1)
1−−−−→ A≤j,−/A≤j−1,−︸ ︷︷ ︸

j

m̄
(j)
1−−→ . . .

. . .
m̄

(1)
1−−→ A≤0,−/A≤−1,−︸ ︷︷ ︸

0

m
(0)
1−−→ A≤−1,−/A≤−2,−︸ ︷︷ ︸

−1

→ . . .)
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= (. . .
m̄

(j+2)
1−−−−→ A≤j+1,−/A≤j,−︸ ︷︷ ︸

j+1

m̄
(j+1)
1−−−−→ A≤j,−/A≤j−1,−︸ ︷︷ ︸

j

m̄
(j)
1−−→ . . .

m̄
(1)
1−−→ A0,−︸︷︷︸

0

→ 0︸︷︷︸
−1

→ . . .),

(29)

where m̄(j)
1 is the map given by m̄(j)

1 : A≤j,−/A≤j−1,− → A≤j−1,−/A≤j−2,−, x+A≤j−1,− 7→
m1(x) + A≤j−2,− and where the positions are written underneath the entries. We call
(A, (mk)k∈[1,1]) filtered-exact if the complex (29) is exact at all positions j ∈ Z≥1.

Lemma 80. Suppose given a filtered-exact minimal eA1-algebra (A, (mk)k∈[1,1]). Then

(i) Z∗A = ((Z∗A) ∩ A0,−) + B∗A = A0,− + B∗A

(ii) m1(⊕j′≤jAj
′,−) = (B∗A) ∩ (⊕j′≤j−1A

j′,−) for j ∈ Z.

Proof. Ad (i). We use the notation given in Definition 79. By (EA3′) and (EA2), we
have m1(A0,−) ⊆ ⊕j′≤0+2−3A

j′,− = 0. Hence ((Z∗A) ∩ A0,−) + B∗A = A0,− + B∗A.
Since A =

⋃∞
j=0A

≤j,−, we have Z∗A =
⋃∞
j=0(A

≤j,− ∩ Z∗A). So since A≤0,− = A0,−, it
suffices to prove (A≤j,− ∩ Z∗A) + B∗A ⊆ (A≤j−1,− ∩ Z∗A) + B∗A for j ≥ 1. Since B∗A is
a summand on both sides, it suffices to prove A≤j,− ∩ Z∗A ⊆ (A≤j−1,− ∩ Z∗A) + B∗A for
j ≥ 1.

So suppose given x ∈ A≤j,− ∩ Z∗A for some j ≥ 1. Since x ∈ Z∗A, we have m̄(j)
1 (x +

A≤j−1,−) = 0. Since (29) is exact at position j ≥ 1, there exists y ∈ A≤j+1,− such that
m̄

(j+1)
1 (y+A≤j,−) = x+A≤j−1,−. I.e.m1(y)−x ∈ A≤j−1,−. Sincem1(y)−x ∈ Z∗A, we have

m1(y)−x ∈ A≤j−1,−∩Z∗A. Hence, x ∈ m1(y)+(A≤j−1,−∩Z∗A) ⊆ B∗A+(A≤j−1,−∩Z∗A).

Ad (ii). By (EA3′), we have m1(⊕j′≤jAj
′,−) ⊆ ⊕j′≤j−1A

j′,− for j ∈ Z. Hence

m1(⊕j′≤jAj
′,−)︸ ︷︷ ︸

=m1(A≤j,−)

⊆ B∗A︸︷︷︸
=m1(A)

∩ (⊕j′≤j−1A
j′,−)︸ ︷︷ ︸

=A≤j−1,−

for j ∈ Z. (30)

We need to show equality in (30) for j ∈ Z. For j ≤ 0, this follows from the fact that
Aj
′,− = 0 for j′ ∈ Z<0, so the right hand side in (30) is the zero module.

So we may suppose j ∈ Z>0 . We show that

m1(A≤k,−) ∩ A≤j−1,− ⊆ m1(A≤k−1,−) ∩ A≤j−1,− for k ∈ Z>j . (31)

Suppose given w ∈ m1(A
≤k,−) ∩ A≤j−1,−. There is x ∈ A≤k,− such that m1(x) = w.

We have m1(x) = w ∈ A≤j−1,− ⊆ A≤k−2,−. Hence m̄(k)
1 (x + A≤k−1,−) = 0. Since A is

filtered-exact, the complex (29) is exact at position k > 0 and so there is y ∈ A≤k+1,−

such that m̄(k+1)
1 (y + A≤k,−) = x + A≤k−1,−. I.e. m1(y) = x − z for some z ∈ A≤k−1,−.

Hence, w = m1(x) = m1(m1(y)) + m1(z) = m1(z) ∈ m1(A
≤k−1,−) which concludes the

proof of (31).

Now suppose given i ∈ Z≥j . Successive application of (31) yields m1(A≤i,−) ∩A≤j−1,− ⊆
m1(A≤j,−)∩A≤j−1,−. Since A = ∪i≥jA≤i,−, we have B∗A∩A≤j−1,− = m1(A)∩A≤j−1,− =
m1(∪i≥jA≤i,−) ∩ A≤j−1,− =

⋃
i≥j(m1(A

≤i,−) ∩ A≤j−1,−) ⊆ m1(A
≤j,−) ∩ A≤j−1,−. This

proves equality in (30).
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Proposition 81. Suppose given an A1-algebra (Ǎ, (m̌k)k∈[1,1]). Suppose given a projective

resolution P (i) = (. . . → P 2,i−2 d2,i−2

−−−→ P 1,i−1 d1,i−1

−−−→ P 0,i d0,i

−−→ 0 → . . .) of HiǍ with
augmentation εi : P 0,i → HiǍ for each i ∈ Z. Note that P j,i = 0 for i ∈ Z, j ∈ Z<0.

Let A = ⊕j,i∈ZAj,i be given by Aj,i := P j,i.

Then for i, j ∈ Z, there are morphisms ej,i : Aj,i → ⊕j′∈[0,j−2]A
j′,i+1 and there is a

morphism f1 : A→ Ǎ such that the following hold.

• The pair (A, (mk)k∈[1,1]), where m1 : A→ A is given by

m1|Aj,i := dj,i + ej,i for j, i ∈ Z,

is a minimal eA1-algebra.

• (fk)k∈[1,1] : (A, (mk)k∈[1,1])→ (Ǎ, (m̌k)k∈[1,1]) is a quasi-isomorphism of A1-algebras.

• (P1), (P2) and (P3) hold.

We write (mk)k∈[1,1] for (m1) to emphasize that Proposition 81 is the initial part of a
successive construction. The incremental step is given by Proposition 88.

Proof. As in Definition 76, the module A is graded as A = ⊕i∈ZAi, where Ai := ⊕j∈ZAi,j .
So A is the graded direct sum of the graded modules Aj,−, where Aj,− := ⊕i∈ZAj,i and
(Aj,−)i = Aj,i. For j ∈ Z, we define A≤j,− as given in Definition 79. For j ∈ Z, we set

d(j) := ⊕i∈Zdj,i : Aj,− = ⊕i∈ZAj,i → ⊕i∈ZAj−1,i+1 = Aj−1,−.

For j ∈ Z, the map d(j) is graded of degree 1. We define

ε = ⊕i∈Zεi : A0,− = ⊕i∈ZP 0,i → ⊕i∈ZHiǍ = H∗Ǎ,
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which is a graded map of degree 0. By construction, the complex

. . .→ A2,− d(2)

−−→ A1,− d(1)

−−→ A0,− ε−→ H∗Ǎ→ 0 (32)

is an exact sequence. In particular, ε is surjective.

The residue class map p : Z∗Ǎ→ H∗Ǎ is surjective and graded of degree 0. By Lemma 20,
the module A0,− is graded projective, so there exists a graded map f (0) : A0,− → Ǎ of
degree 0 such that im f (0) ⊆ Z∗Ǎ and p ◦ (f (0)|Z∗Ǎ) = ε.

A0,− ε // //

f (0)|Z∗Ǎ ##

H∗Ǎ

Z∗Ǎ

p

OOOO
(33)

For j ∈ Z<0, we set f (j) : Aj,− = 0→ Ǎ to be the zero morphism. For j ∈ Z≤0, we set
e(j) : Aj,− → ⊕j′∈[0,j−2]A

j′,− = 0 to be the zero morphism.

Using the construction principle given in Lemma 134, we will successively construct
morphisms e(j) : Aj,− → A≤j−2,− and f (j) : Aj,− → Ǎ for j ∈ Z≥1 satisfying conditions
(i)-(vi) given below. We call this the outer iteration. For given j ∈ Z and given e(j′) and
f (j′) for j′ ∈ [1, j], we define

m
(≤j)
1 : A≤j,− −→ A≤j−1,− ,

m
(≤j)
1 |Aj′,− := e(j′) + d(j′) for j′ ∈ Z≤j (34)

and

f (≤j) : A≤j,− −→ Ǎ ,

f (≤j)|Aj′,− := f (j′) for j′ ∈ Z≤j. (35)

They are to satisfy the following conditions

(i) e(j) is graded of degree 1.

(ii) f (j) is graded of degree 0.

(iii) m(≤j−1)
1 ◦ (e(j) + d(j)) = 0.

(iv) m̌1 ◦ f (j) = f (≤j−1) ◦ (e(j) + d(j)).

(v) m(≤j)
1 ◦m(≤j)

1 = 0.

(vi) m̌1 ◦ f (≤j) = f (≤j) ◦m(≤j)
1 .

Note that (i)-(vi) hold for j ≤ 0.

So suppose given k ∈ Z≥1 and suppose given f (1), . . . , f (k−1) and e(1), . . . , e(k−1) such that
(i)-(vi) hold for j ∈ [1, k − 1]. We need to show that there are maps f (k) : Ak,− → Ǎ and
e(k) : Ak,− → A≤k−2,− such that (i)-(vi) hold for j = k. To that end, we will prove the
following

69



Claim: m(≤k−1)
1 (d(k)(Ak,−))

!

⊆ imm
(≤k−2)
1 .

So suppose given x ∈ Ak,−. We have y := m
(≤k−1)
1 (d(k)(x)) = (d(k−1) + e(k−1))(d(k)(x)) =

e(k−1)(d(k)(x)) ∈ A≤k−3,−.

For k ≤ 2, we have A≤k−3,− = 0. So in that case, we have y = 0 ∈ imm
(≤k−2)
1 . So

suppose k ≥ 3.

Since (v) holds for j = k − 1, we have m(≤k−3)
1 (y) = (m

(≤k−1)
1 )2(d(k)(x)) = 0. Hence

y = yk−3 + ỹk−3, where yk−3 := y ∈ kerm
(≤k−3)
1 and ỹk−3 := 0 ∈ imm

(≤k−2)
1 .

We show by induction on i ∈ [0, k − 3] that there exist yk−3−i ∈ kerm
(≤k−3−i)
1 and

ỹk−3−i ∈ imm
(≤k−2)
1 such that y = yk−3−i + ỹk−3−i.

We have already proven the initial step i = 0.
So suppose given i ∈ [0, k− 4], yk−3−i ∈ kerm

(≤k−3−i)
1 and ỹk−3−i ∈ imm

(≤k−2)
1 such that

y = yk−3−i + ỹk−3−i. We have yk−3−i = ŷk−3−i + y̌k−3−i for some ŷk−3−i ∈ Ak−3−i,− and
y̌k−3−i ∈ A≤k−3−(i+1),−. We have

0 =m
(≤k−3−i)
1 (yk−3−i) = m

(≤k−3−i)
1 (ŷk−3−i) +m

(≤k−3−i)
1 (y̌k−3−i)

= d(k−3−i)(ŷk−3−i)︸ ︷︷ ︸
∈Ak−3−i−1

+ e(k−3−i)(ŷk−3−i) +m
(≤k−3−(i+1))
1 (y̌k−3−i)︸ ︷︷ ︸

∈A≤k−3−i−2,−

.

So in particular d(k−3−i)(ŷk−3−i) = 0. We have k − 3 − i ≥ k − 3 − (k − 4) = 1. So
since (32) is exact, we have ker d(k−3−i) = im d(k−2−i). Hence there is z ∈ Ak−2−i,− such
that d(k−2−i)(z) = ŷk−3−i. We have e(k−2−i)(z) ∈ A≤k−3−(i+1),−. We set yk−3−(i+1) :=

−e(k−2−i)(z)+ y̌k−3−i ∈ A≤k−3−(i+1),− and ỹk−3−(i+1) := m
(≤k−2)
1 (z)+ ỹk−3−i ∈ imm

(≤k−2)
1 .

We have

y = yk−3−i + ỹk−3−i = ŷk−3−i + y̌k−3−i + ỹk−3−i

= (d(k−2−i) + e(k−2−i))(z)− e(k−2−i)(z) + y̌k−3−i + ỹk−3−i

=m
(≤k−2)
1 (z)− e(k−2−i)(z) + y̌k−3−i + ỹk−3−i

= yk−3−(i+1) + ỹk−3−(i+1).

We have

m
(≤k−3−(i+1))
1 (yk−3−(i+1)) = m

(≤k−3)
1 ( y︸︷︷︸

∈kerm
(≤k−3)
1

− ỹk−3−(i+1)︸ ︷︷ ︸
∈imm

(≤k−2)
1

)
(v)
= 0.

Hence yk−3−(i+1) ∈ kerm
(≤k−3−(i+1))
1 . This completes the induction step of the induction

over i.

In particular, for i = k − 3 we obtain y0 ∈ kerm
(≤0)
1 ⊆ A0,− and ỹ0 ∈ imm

(≤k−2)
1 such

that y = y0 + ỹ0. I.e. y = y0 +m
(≤k−2)
1 (w) for some w ∈ A≤k−2,−.
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Recall that p : Z∗Ǎ→ H∗Ǎ is the residue class map. We have

f (≤k−1)(y) = (f (≤k−1) ◦m(≤k−1)
1 ◦ d(k))(x)

(vi)
= (m̌1 ◦ f (≤k−1) ◦ d(k))(x).

Thus we have

0 = p(f (≤k−1)(y)) = p(f (≤k−1)(y0)) + p(f (≤k−1)(m
(≤k−2)
1 (w)))

(vi)
= ε(y0) + p(m̌1(f (≤k−1)(w))) = ε(y0).

By exactness of (32), we have ker ε = im d(1). Combined with im e(1) ⊆ A≤1−2,− = 0, we
obtain y0 ∈ im d(1) = imm

(≤1)
1 ⊆ imm

(≤k−2)
1 . Thus y = y0 + ỹ0 ∈ imm

(≤k−2)
1 .

This proves the claim. I.e. we have proven m(≤k−1)
1 (d(k)(Ak,−)) ⊆ imm

(≤k−2)
1 .

Since m(≤k−2)
1 |imm

(≤k−2)
1 is graded of degree 1 and surjective, since the map m(≤k−1)

1 ◦ d(k)

is graded of degree 2 and since Ak,− is by Lemma 20 graded projective, there is a graded
map ẽ : Ak,− → A≤k−2,− of degree 1 such that m(≤k−2)

1 ◦ ẽ = m
(≤k−1)
1 ◦ d(k).

Ak,−
(m

(≤k−1)
1 ◦d(k))|imm

(≤k−2)
1

//

∃ẽ
++

imm
(≤k−2)
1

A≤k−2,−

m
(≤k−2)
1 |imm

(≤k−2)
1

OOOO

Thus

m
(≤k−1)
1 ◦ (d(k) − ẽ) = 0. (36)

Hence, (m̌1 ◦ f (≤k−1) ◦ (d(k) − ẽ))(Ak,−)
(vi)
= (f (≤k−1) ◦m(≤k−1)

1 ◦ (d(k) − ẽ))(Ak,−) = 0. So
(f (≤k−1) ◦ (d(k) − ẽ))(Ak,−) ⊆ Z∗Ǎ.

Recall that im f (0) ⊆ Z∗Ǎ. We will construct a graded map ê : Ak → A0,− of degree 1
such that

p ◦ (f (≤k−1) ◦ (d(k) − ẽ))|Z∗Ǎ = p ◦ (f (0)|Z∗Ǎ) ◦ ê. (37)

Case k = 1: We set ê := 0. We have im ẽ ⊆ ⊕j′≤1−2A
j′,0 = 0. Thus p ◦ (f (≤k−1) ◦ (d(k) −

ẽ))|Z∗Ǎ = p ◦ (f (0) ◦ d(1))|Z∗Ǎ = p ◦ (f (0)|Z∗Ǎ) ◦ d(1) = ε ◦ d(1) = 0 = p ◦ (f (0)|Z∗Ǎ) ◦ ê.

Case k ≥ 2: The map p ◦ (f (0)|Z∗Ǎ) = ε : A0,− → H∗Ǎ is a graded epimorphism of degree
0. So since Ak,− is graded projective and since p ◦ (f (≤k−1) ◦ (d(k) − ẽ))|Z∗Ǎ is graded of
degree 1, there is a graded map ê : Ak,− → A0,− of degree 1 such that (37) holds.

A0,− ε // // H∗A

Ak,−
∃ê

cc

p◦(f (≤k−1)◦(d(k)−ẽ))|Z∗Ǎ

OO
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Eq. (37) yields

im(f (≤k−1) ◦ (d(k) − ẽ− ê)) = im(f (≤k−1) ◦ (d(k) − ẽ)− f (0) ◦ ê) ⊆ ker p = B∗Ǎ. (38)

We set e(k) := (−ẽ− ê)|A≤k−2
: Ak,− → A≤k−2,− (recall ê = 0 in case k = 1), which is a

graded map of degree 1. Thus property (i) holds for j = k. We have

m
(≤k−1)
1 ◦ (d(k) + e(k)) =m

(≤k−1)
1 ◦ (d(k) − ẽ− ê) (36)

= −m(≤k−1)
1 ◦ ê ∗= 0,

where in the step marked by ∗, we use im ê ⊆ A0,− and m(≤k−1)
1 |A0,− = d(0) + e(0) = 0 + 0.

Thus (iii) holds for j = k. By (38), we have im(f (≤k−1) ◦ (d(k) + e(k))) ⊆ B∗Ǎ. The
maps f (≤k−1) ◦ (d(k) + e(k)) and m̌1|B

∗Ǎ are both graded of degree 1. So since m̌1|B
∗Ǎ is

surjective and since Ak,0 is graded projective, there is a graded map f (k) : Ak,− → Ǎ of
degree 0 such that

m̌1 ◦ f (k) = f (≤k−1) ◦ (d(k) + e(k)).

Ǎ
m̌1|B

∗Ǎ
// // B∗Ǎ

Ak,−
∃f (k)

ff

(f (≤k−1)◦(d(k)+e(k)))|B∗Ǎ

OO

I.e. (ii) and (iv) hold for j = k. Having constructed e(k) and f (k), we define m(≤k)
1 and

f (≤k) by (34) and (35). Since (v) and (vi) hold for j = k − 1, we have

(m
(≤k)
1 ◦m(≤k)

1 )|A≤k−1,− = m
(≤k−1)
1 ◦m(≤k−1)

1 = 0 and

m̌1 ◦ f (≤k)|A≤k−1,− = m̌1 ◦ f (≤k−1) = f (≤k−1) ◦m(≤k−1)
1 = (f (≤k) ◦m(≤k)

1 )|A≤k−1,− .

Since (iii) and (iv) hold for j = k, we have

(m
(≤k)
1 ◦m(≤k)

1 )|Ak,− = m
(≤k−1)
1 ◦ (d(k) + e(k)) = 0 and

m̌1 ◦ f (≤k)|Ak,− = m̌1 ◦ f (k) = f (≤k−1) ◦ (e(k) + d(k)) = (f (≤j) ◦m(≤j)
1 )Ak,− .

Hence, (v) and (vi) hold for j = k. This concludes the outer iteration.

We define the graded map m1 : A→ A of degree 1 by setting

m1|Aj,− := d(j) + e(j) for j ∈ Z.

We define the graded map f1 : A→ Ǎ of degree 0 by setting

f1|Aj,− := f (j) for j ∈ Z.

For j ∈ Z, we have m1|A
≤j−1,−

A≤j,− = m
(≤j)
1 and f1|A≤j,− = f (≤j). So since A =

⋃
j≥0A

≤j,−

and since (v) and (vi) hold for j ∈ Z≥0, we have

m1 ◦m1 = 0 and
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m̌1 ◦ f1 = f1 ◦m1.

I.e. (A, (m1)) is an A1-algebra and (f1) is a morphism of A1-algebras from A to Ǎ. We
prove that (A, (m1)) is a minimal eA1-algebra: We have just proven (EA1). Assertion
(EA2) holds by construction. For j ∈ Z, we have m1(A

j,−) ⊆ (d(j) + e(j))(Aj,−) ⊆
Aj−1,− + A≤j−2,− = A≤j−1,−. Thus (EA3′) holds.

For j ∈ Z, define m̄(j)
1 as given in Definition 79. For j ∈ Z, the composite t(j) : Aj,− ↪→

A≤j,− � A≤j,−/A≤j−1,− is an isomorphism of graded modules. For j ∈ Z and x ∈ Aj,−,
we have

m̄
(j)
1 (t(j)(x)) =m1(x) + A≤j−2,− = d(j)(x) + e(j)(x)︸ ︷︷ ︸

∈A≤j−2,−

+A≤j−2,−

= d(j)(x) + A≤j−2,− = t(j−1)(d(j)(x)).

Hence, the complex (29) is via the complex morphism (t(j))j∈Z isomorphic to the complex

→ Aj+1,−︸ ︷︷ ︸
j+1

d(j+1)

−−−→ Aj,−︸︷︷︸
j

d(j)

−−→ . . .
d(1)

−−→ A0,−︸︷︷︸
0

→ 0︸︷︷︸
−1

→ . . . , (39)

where the positions are written underneath the entries. The complex (39) (and thus also
the complex (29)) is exact at all positions j ≥ 1 since (32) is an exact sequence. Hence,
(A, (m1)) is a filtered-exact minimal eA1-algebra.

Assertion (P1) holds since all Aj,i = P j,i are projective. Lemma 80(ii) implies (P2).

We have A0,− ⊆ Z∗A. We have p◦(f1|Z
∗Ǎ
A0,−) = p◦(f (0)|Z∗Ǎ)

(33)
= ε. So since ε : A0,− → H∗Ǎ

is surjective, the map p ◦ (f1|Z
∗Ǎ
A0,−) is surjective, which proves (P3). In particular, the map

H∗f1 : H∗A → H∗Ǎ is surjective. For injectivity of H∗f1, suppose given x ∈ H∗A such
that (H∗f1)(x) = 0. By Lemma 80(i), we may represent x by an element y ∈ A0,− ⊆ Z∗A.
We have 0 = (H∗f1)(x) = (p ◦ (f1|Z

∗Ǎ
A0,−))(y) = (p ◦ (f (0)|Z∗Ǎ))(y)

(33)
= ε(y). Since (32)

is exact, we have ker ε = im d(1). So there is z ∈ A1,− such that d(1)(z) = y. Since
im e(1) ⊆ A≤1−2,− = 0, we have y = d(1)(z) = (d(1) + e(1))(z) = m1(z). I.e. y ∈ B∗A,
whence x = ȳ = 0. Hence H∗f1 : H∗A→ H∗Ǎ is injective, thus bijective. Thus we have
proven that (f1) : (A, (m1))→ (Ǎ, (m′1)) is a quasi-isomorphism of A1-algebras.

Finally, we have for i, j ∈ Z

m1|
⊕j′∈[0,j−1]A

j′,i+1

Aj,i
= dj,i + ej,i,

where ej,i : Aj,i → ⊕j′∈[0,j−2]A
j′,i+1 is given by ej,i := e(j)|⊕j′∈[0,j−2]A

j′,i+1

Aj,i
.

Lemma 82 (cf. e.g. [3, VII §3]). Suppose R is a principal ideal domain. Then every
module over R has projective dimension ≤ 1.
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Proof. Suppose given an R-module M . Choose a cover ε : P �M such that P is free.
The sequence

ker ε
⊆−→ P

ε
�M (40)

is short exact. By [3, VII §3 Corollaire 2], ker ε ⊆ P is free. So (40) is a free (so in
particular a projective) resolution of M of length ≤ 1.

Corollary 83 given below shows that if in Proposition 81, the projective resolutions P (i)

all have length ≤ 1, we obtain ej,i = 0 for all i, j ∈ Z. This may be used in case R is
a principal ideal domain, since then all R-modules have projective dimension ≤ 1, cf.
Lemma 82.

Corollary 83. Suppose given an A1-algebra (Ǎ, (m̌k)k∈[1,1]). Suppose given a projective

resolution P (i) = (. . . → P 2,i−2 d2,i−2

−−−→ P 1,i−1 d1,i−1

−−−→ P 0,i d0,i

−−→ 0 → . . .) of HiǍ with
augmentation εi : P 0,i → HiǍ with length ≤ 1 for each i ∈ Z.

Let A = ⊕j,i∈ZAj,i be given by Aj,i := P j,i.

Then there is a morphism f1 : A→ Ǎ such that the following hold.

• The pair (A, (mk)k∈[1,1]), where m1 : A→ A is given by

m1|Aj,i := dj,i for j, i ∈ Z,

is a minimal eA1-algebra.

• (fk)k∈[1,1] : (A, (mk)k∈[1,1])→ (Ǎ, (m̌k)k∈[1,1]) is a quasi-isomorphism of A1-algebras.

• (P1), (P2) and (P3) hold.

Proof. We apply Proposition 81 to obtain ej,i : Aj,i → ⊕j′∈[0,j−2]A
j′,i+1 for i, j ∈ Z and

f1 : A → Ǎ. Given the assertions of Proposition 81, it suffices to prove ej,i = 0 for
j, i ∈ Z. For i ∈ Z, j ∈ Z \ {0, 1}, the domain of ej,i is Aj,i = 0, hence ej,i = 0. For i ∈ Z,
j ∈ {0, 1}, the codomain of ej,i is ⊕j′∈[0,j−2]A

j′,i+1 = 0, hence ej,i = 0. Thus ej,i = 0 for
j, i ∈ Z.

4.3.3. The incremental step

Suppose we have the situation given in Remark 78.

We will show that there exist mn : A⊗n → A and fn : A⊗n → Ǎ such that (A, (mk)k∈[1,n])
is a minimal eAn-algebra and (fk)k∈[1,n] is a quasi-isomorphism of An-algebras from A to
Ǎ (Proposition 88).

By the bar construction, we have corresponding triples ((mk)k∈[1,n−1], (bk)k∈[1,n−1], ∗),
((fk)k∈[1,n−1], (Fk)k∈[1,n−1], ∗) and ((m̌k)k∈[1,n], (b̌k)k∈[1,n], b̌), cf. Definition/Remark 47. We
will solve the equivalent problem of constructing suitable maps bn : (SA)⊗n → SA
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and Fn : (SA)⊗n → SǍ, cf. Theorem 48 and Lemma 50. For the complexes (SA, b1)
and (SǍ, b̌1), we will use the usual notation for boundaries, cycles and homology. As
f1 : (A,m1)→ (Ǎ, m̌1) is a quasi-isomorphism, the complex morphism F1 : (SA, b1)→
(SǍ, b̌1) is a quasi-isomorphism. For k ∈ [0, n], let

π≤k : TSA≤n = ⊕i∈[1,n]SA
⊗i −→⊕i∈[1,k] SA

⊗i = TSA≤k and
ι≤k : TSA≤k = ⊕i∈[1,k]SA

⊗i −→⊕i∈[1,n] SA
⊗i = TSA≤n

be the projection and inclusion maps. Let

b
(n)
1 :=

∑
r∈[0,n−1]

1⊗r ⊗ b1 ⊗ 1⊗n−r−1 : (SA)⊗n → (SA)⊗n. (41)

For j ∈ Z, we define SAj,− := ⊕i∈ZSAj,i, which is a graded direct summand of SA. For
α = (α1, . . . , αn) ∈ Zn, we define

SAα := SAα1,− ⊗ . . .⊗ SAαn,−,

which is projective and a graded direct summand of (SA)⊗n. By (EA2), the module SAα
is the zero module unless α ∈ Zn≥0. Furthermore, (SA)⊗n = ⊕α∈ZnSAα = ⊕α∈Zn≥0

SAα.
For I ⊆ Zn, we define

SAI := ⊕α∈ISAα.

For α ∈ Zn≥0, we define
Rα := {β ∈ Zn≥0 | β <n α}.

We aim to construct Fn and bn by constructing them on each summand of the direct
sum (SA)⊗n = ⊕α∈Zn≥0

SAα such that (12)[n] and (14)[n] hold. More explicitly, these
equations are as follows.

(12)[n] : bn ◦ b(n)
1 + b1 ◦ bn +

∑
n=r+s+t,

r,t≥0, s∈[2,n−1]

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t) = 0

(14)[n] : Fn ◦ b(n)
1 + F1 ◦ bn +

∑
n=r+s+t

r,t≥0, s∈[2,n−1]

Fr+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

= b̌1 ◦ Fn +
∑

2≤r≤n
i1+...+ir=n

all is≥1

b̌r ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir)

Suppose given α = (α1, . . . , αn) ∈ Zn≥0. Condition (EA3′) asserts for k = 1 that

b1(SAj,−) ⊆ ⊕j′≤j−1SA
j′,− (42)
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for all j ∈ Z, hence

b
(n)
1 (SAα) ⊆

n−1∑
i=0

(1⊗i ⊗ b1 ⊗ 1n−i−1)(SAα1,− ⊗ . . .⊗ SAαn,−)

⊆
n−1∑
i=0

SA(α1,...,αi) ⊗ b1(SAαi+1,−)⊗ SA(αi+2,...,αn)

⊆
n−1∑
i=0

∑
j′≤αi+1−1

SA(α1,...,αi,j
′,αi+2,...,αn) ⊆

⊕
β∈Rα

SAβ = SARα . (43)

Hence, if (12)[n] and (14)[n] are evaluated at an element of SAα, the bn and Fn that
occur are evaluated only at elements of ⊕β∈(Zn≥0)≤αSA

β. I.e. minimality of A, in particular
the part of (EA3′) where k = 1, allows us to decouple the problem.

Definition 84. We call a triple (L, bn, Fn) admissible, if (i)-(vi) hold.

(i) L ⊆ Zn≥0 is a lower set.

(ii) bn : SAL → SA is a graded map of degree 1.

(iii) Fn : SAL → SǍ is a graded map of degree 0.

(iv) Eq. (12)[n] holds on SAL. That is[
bn ◦ b(n)

1 + b1 ◦ bn +
∑

n=r+s+t,
r,t≥0, s∈[2,n−1]

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

]
(x) = 0

for x ∈ SAL.

(v) Eq. (14)[n] holds on SAL. That is[
Fn ◦ b(n)

1 + F1◦bn +
∑

n=r+s+t
r,t≥0, s∈[2,n−1]

Fr+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

]
(x)

=

[
b̌1 ◦ Fn +

∑
2≤r≤n

i1+...+ir=n
all is≥1

b̌r ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir)
]
(x)

for x ∈ SAL.

(vi) For (j1, . . . , jn) ∈ L, we have bn(SA(j1,...,jn)) ⊆ ⊕j′≤(j1+...+jn)+(2n−3)SA
j′,−.

Let M be the set of admissible triples. The set M is partially ordered by the relation

(L̂, b̂n, F̂n) ≤ (L̃, b̃n, F̃n) :⇔ L̂ ⊆ L̃ and b̃n|SAL̂ = b̂n and F̃n|SAL̂ = F̂n.

The set M is nonempty since (∅, bn : {0} → SA, Fn : {0} → SǍ) ∈M .
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Lemma 85. Suppose given (L̂, b̂n, F̂n) ∈M . Suppose given α ∈ Zn≥0 such that Rα ⊆ L̂.
Then there exists (L̂ ∪ {α}, b̃n, F̃n) ∈M such that (L̂ ∪ {α}, b̃n, F̃n) ≥ (L̂, b̂n, F̂n).

Proof. We may assume α = (α1, . . . , αn) /∈ L̂. We write L̂ ∪ {α} =: L̃, which is a lower
set. Suppose given a graded map g : SA⊗n → SA of degree 1 such that g|SAL̂ = b̂n and
such that

g(SAα) ⊆ ⊕j′≤(α1+...+αn)+(2n−3)SA
j′,−. (44)

Suppose given a graded map h : SA⊗n → SǍ of degree 0 such that h|SAL̂ = F̂n. We
remark that such maps g, h exist since SAL̂ = ⊕β∈L̂SAβ is a graded direct summand of
SA⊗n.

We define b[g] : TSA≤n → TSA≤n as the unique graded coderivation of degree 1 such
that

π1 ◦ b[g] ◦ ιk = bk for k ∈ [1, n− 1] and
π1 ◦ b[g] ◦ ιn = g, (45)

cf. Lemma 43. So (∗, (bk)k∈[1,n−1] t (g), b[g]) is a corresponding pre-An-triple.

We define F [h] : TSA≤n → TSǍ≤n as the unique graded coalgebra morphism of degree
0 such that

π̌1 ◦ F [h] ◦ ιk =Fk for k ∈ [1, n− 1] and
π̌1 ◦ F [h] ◦ ιn =h, (46)

cf. Lemma 44. So (∗, (Fk)k∈[1,n−1] t (h), F [h]) is a corresponding pre-An-morphism triple.

The definition of b[g] in (10) and the equation (41) yield

b[g] = ιn ◦ b(n)
1 ◦ πn + ι≤n−1 ◦ π≤n−1 ◦ b[g]. (47)

In particular, we have

πn ◦ b[g] ◦ ιn = b
(n)
1 . (48)

We also remark that since Rα ⊆ L̂, eq. (43) implies

b
(n)
1 (SAα) ⊆ SARα ⊆ SAL̂. (49)

Since (L̂, b̂n, F̂n) is admissible, property (iv) together with Theorem 49 yields

b[g]2|SAL̂ = 0, (50)

and property (v) together with Lemma 51 yields

b̌ ◦ F [h]|SAL̂ = F [h] ◦ b[g]|SAL̂ . (51)
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Furthermore, Theorem 48 yields

b[g]2|TSA≤n−1
= 0 and (52)

b̌2 = 0. (53)

Lemma 50 yields

b̌ ◦ F [h]|TSA≤n−1
= F [h] ◦ b[g]|TSA≤n−1

. (54)

We show that b[g]2(SAα) ⊆ B∗SA. We have

b[g]3|SAα
(47)
=
(
b[g]2 ◦ ιn ◦ b(n)

1 ◦ πn + b[g]2 ◦ ι≤n−1 ◦ π≤n−1 ◦ b[g]
)∣∣
SAα

(52)
= b[g]2 ◦ ιn ◦ b(n)

1 ◦ πn|SAα
(49),(50)

= 0.

By (52) and Lemma 46(i), we have b[g]2(SAα) ⊆ b[g]2(SA⊗n) ⊆ SA.
Hence, b1 ◦ π1 ◦ b[g]2(SAα) = π1 ◦ b[g] ◦ ι1 ◦ π1 ◦ b[g]2(SAα) = π1 ◦ b[g]3(SAα) = 0. So we
conclude that b[g]2(SAα) ⊆ Z∗SA. We have

ι̌1 ◦ b̌1 ◦ π̌1 ◦ (F [h] ◦ b[g]− b̌ ◦ F [h])|SAα
(54),L.46(ii)

=
(10)

b̌ ◦ (F [h] ◦ b[g]− b̌ ◦ F [h])|SAα

(53),(47)
= b̌ ◦ F [h] ◦ (ιn ◦ b(n)

1 ◦ πn + ι≤n−1 ◦ π≤n−1 ◦ b[g])|SAα

=
(
b̌ ◦ F [h] ◦ ιn ◦ b(n)

1 ◦ πn + b̌ ◦ F [h] ◦ ι≤n−1 ◦ π≤n−1 ◦ b[g]
)
|SAα

(54)
=
(
b̌ ◦ F [h] ◦ ιn ◦ b(n)

1 ◦ πn + F [h] ◦ b[g] ◦ ι≤n−1 ◦ π≤n−1 ◦ b[g]
)
|SAα

(49),(51)
=
(
F [h] ◦ b[g] ◦ ιn ◦ b(n)

1 ◦ πn + F [h] ◦ b[g] ◦ ι≤n−1 ◦ π≤n−1 ◦ b[g]
)
|SAα

(47)
=F [h] ◦ b[g]2|SAα

(52),L.46(i)
= F [h] ◦ ι1 ◦ π1 ◦ b[g]2|SAα

(11)
= ι̌1 ◦ F1 ◦ π1 ◦ b[g]2|SAα . (55)

So b[g]2(SAα) ⊆ Z∗SA and F1 maps b[g]2(SAα) to boundaries. Thus H∗F1 maps the
homology classes of the elements of b[g]2(SAα) to zero. Since F1 is a quasi-isomorphism,
the homology classes of the elements of b[g]2(SAα) vanish. Hence, b[g]2(SAα) ⊆ B∗SA.

We have

π1 ◦ b[g]2 ◦ ιn =
∑
k∈[1,n]

π1 ◦ b[g] ◦ ιk ◦ πk ◦ b[g] ◦ ιn

(45)
= b1 ◦ π1 ◦ b[g] ◦ ιn + g ◦ πn ◦ b[g] ◦ ιn +

∑
k∈[2,n−1]

bk ◦ πk ◦ b[g] ◦ ιn

(45),(48),(10)
= b1 ◦ g + g ◦ b(n)

1 +
∑

k∈[2,n−1]

∑
r+s+t=n,
r+1+t=k,
r,t≥0,s≥1

bk ◦ (1⊗r ⊗ bs ⊗ 1⊗t). (56)
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Up to now, g and h were arbitrary. Our strategy is the following. We fix some g and
h, which do not necessarily satisfy (12)[n] and (14)[n] on SAα. Then, we add some
correction terms to g and h to cancel out the defect in (12)[n] and (14)[n] on SAα.

So choose a g =: g1 and a h =: h1 as above. Recall b[g1]2(SAα) ⊆ B∗SA.

Set τ := (2n− 3) +
∑n

i=1 αi. By (56), we have

π1 ◦ b[g1]2(SAα) ⊆ b1(g1(SAα)) + g1(b
(n)
1 (SAα))

+
∑

k∈[2,n−1]

∑
r+s+t=n,
r+1+t=k,
r,t≥0,s≥1

bk((1
⊗r ⊗ bs ⊗ 1⊗t)(SAα))

(44),(49),(EA3′)
⊆ b1(⊕j≤τSAj,−) + g1

(
SARα

)
+

∑
k∈[2,n−1]

∑
r+s+t=n,
r+1+t=k,
r,t≥0,s≥1

∑
j≤(αr+1+...+αr+s)+(2s−3)

bk
(
SA(α1,...,αr,j,αr+s+1,...,αn)

)

g1|
SAL̂

=b̂n
= b1(⊕j≤τSAj,−) + b̂n

∑
i∈[1,n]

∑
j≤αi−1

SA(α1,...,αi−1,j,αi+1,...,αn)


+

∑
k∈[2,n−1]

∑
r+s+t=n,
r+1+t=k,
r,t≥0,s≥1

∑
j≤(αr+1+...+αr+s)+(2s−3)

bk
(
SA(α1,...,αr,j,αr+s+1,...,αn)

)
(EA3′),(vi),(EA3′)

⊆ ⊕j̃≤τ−1 SA
j̃,− +⊕j̃≤(α1+...+αn)+(2n−4)SA

j̃,−

+
∑

k∈[2,n−1]

∑
r+s+t=n,
r+1+t=k,
r,t≥0,s≥1

⊕j̃≤(α1+...+αn)+(2s−3)+(2k−3)SA
j̃,−

k+s=n+1
= ⊕j̃≤τ−1 SA

j̃,− +⊕j̃≤(α1+...+αn)+(2(n+1)−3−3)SA
j̃,−

= ⊕j̃≤τ−1 SA
j̃,−.

Hence, b[g1]2(SAα) ⊆ B∗SA ∩ (⊕j≤τ−1SA
j,−).

By (P2), the map b1|
B∗SA∩(⊕j≤τ−1SA

j,−)

⊕j≤τSAj,−
is an epimorphism. Since ⊕j≤τSAj,− is a

graded direct summand of SA and since b1|⊕j≤τSAj,− is a graded map, B∗SA ∩
(⊕j≤τ−1SA

j,−) = b1(⊕j≤τSAj,−) is by Lemma 13 a graded submodule of SA. Hence, the
map b1|

B∗SA∩(⊕j≤τ−1SA
j,−)

⊕j≤τSAj,−
is a graded epimorphism. Combined with the fact that SAα

is by Lemma 20 graded projective, we obtain a graded map w : SAα → SA of degree
1 with imw ⊆ ⊕j≤τSAj,− such that b1 ◦ w = −π1 ◦ b[g1]

2|SAα . We define the graded
map g2 : SA⊗n → SA of degree 1 by g2|SAα := g1|SAα + w and g2|SAβ := g1|SAβ for
β ∈ Zn≥0 \ {α}. Note that g2 satisfies the stipulations for g given above. We have

π1 ◦ (b[g2]2 − b[g1]2)|SAα
(56)
= b1 ◦ (g2 − g1)|SAα + (g2 − g1) ◦ b(n)

1 |SAα
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∗
= b1 ◦ (g2 − g1)|SAα = b1 ◦ w = −π1 ◦ b[g1]2|SAα ,

where for ∗, we use (49) and g2|SAL̂ = g1|SAL̂ = b̂n. Hence,

π1 ◦ b[g2]2|SAα = 0. (57)

We have

b̌1 ◦ π̌1 ◦ (F [h1] ◦ b[g2]− b̌ ◦ F [h1])(SAα)
(55)
= F1 ◦ π1 ◦ b[g2]2(SAα)

(57)
= 0.

I.e. π̌1 ◦ (F [h1] ◦ b[g2]− b̌ ◦ F [h1])(SAα) ⊆ Z∗SǍ. We have the following diagram.

SAα
(π̌1◦(F [h1]◦b[g2]−b̌◦F [h1]))|Z∗SǍSAα //

∃w′ ,,

Z∗SǍ
p // H∗SǍ

SA0,−

F1|Z
∗SǍ
SA0,−

OO

p◦(F1|Z
∗SǍ
SA0,−)

22 22 (58)

Here, p is the residue class map. By (P3), the map p ◦ (F1|Z
∗SǍ
SA0,−) is surjective. Note that

(42) implies SA0,− ⊆ Z∗SA, hence Z∗SA∩SA0,− = SA0,−. We have |p◦F1|Z
∗SǍ
SA0,− | 3 0 and

|p◦ π̌1 ◦ (F [h1]◦ b[g2]− b̌◦F [h1])| 3 1. Since SAα is by Lemma 20 graded projective, there
is a graded map w′ : SAα → SA of degree 1 with w′(SAα) ⊆ SA0,− = Z∗SA ∩ SA0,−

such that

p ◦ (π̌1 ◦ (F [h1] ◦ b[g2]− b̌ ◦ F [h1]))|Z∗SǍSAα = p ◦ (F1|Z
∗SǍ
SA0,−) ◦ w′|SA0,−

.

Hence, [F1 ◦ w′ − π̌1 ◦ (F [h1] ◦ b[g2] − b̌ ◦ F [h1])](SA
α) ⊆ ker p = B∗SǍ. Since b̌1|B

∗SǍ

is surjective with |b̌1| 3 1, the graded projectivity of SAα provides a graded map
v : SAα → SǍ of degree 0 such that b̌1 ◦ v = F1 ◦w′ − π̌1 ◦ (F [h1] ◦ b[g2]− b̌ ◦ F [h1])|SAα .
I.e.

π̌1 ◦ F [h1] ◦ b[g2]|SAα − F1 ◦ w′ = π̌1 ◦ b̌ ◦ F [h1]|SAα − b̌1 ◦ v. (59)

We define the graded maps g3 : SA⊗n → SA resp. h2 : SA⊗n → SǍ of degree 1 resp. 0
by

g3|SAα := g2|SAα − w′, h2|SAα := h1|SAα − v and
g3|SAβ := g2|SAβ , h2|SAβ := h1|SAβ for β ∈ Zn≥0 \ {α}.

Note that g3 resp. h2 satisfy the stipulations for g resp. h given above. In particular,

assertion (44) holds since w′(SAα) ⊆ SA0,−
n≥2, all αi≥0

⊆ ⊕j≤(α1+...+αn)+(2n−3)SA
j,−. We

have

π̌1 ◦ F [h2] ◦ b[g3]|SAα =
∑
k∈[1,n]

π̌1 ◦ F [h2] ◦ ιk ◦ πk ◦ b[g3]|SAα

(46)
=h2 ◦ πn ◦ b[g3]|SAα + F1 ◦ π1 ◦ b[g3]|SAα +

∑
k∈[2,n−1]

Fk ◦ πk ◦ b[g3]|SAα
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(48),(45),(10)
=h2 ◦ b(n)

1 |SAα + F1 ◦ g3|SAα +
∑

k∈[2,n−1]

∑
r+s+t=n
r+1+t=k,
r,t≥0, s≥1

Fk ◦ (1⊗r ⊗ bs ⊗ 1⊗t)|SAα

=h2 ◦ b(n)
1 |SAα + F1 ◦ (g2|SAα − w′) +

∑
k∈[2,n−1]

∑
r+s+t=n
r+1+t=k,
r,t≥0, s≥1

Fk ◦ (1⊗r ⊗ bs ⊗ 1⊗t)|SAα

∗
=h1 ◦ b(n)

1 |SAα + F1 ◦ (g2|SAα − w′) +
∑

k∈[2,n−1]

∑
r+s+t=n
r+1+t=k,
r,t≥0, s≥1

Fk ◦ (1⊗r ⊗ bs ⊗ 1⊗t)|SAα

∗∗
= π̌1 ◦ F [h1] ◦ b[g2]|SAα − F1 ◦ w′

(59)
= π̌1 ◦ b̌ ◦ F [h1]|SAα − b̌1 ◦ v. (60)

For ∗, we have used (49) and h1|SAL̂ = h2|SAL̂ . The step marked by ∗∗ is just the reversal
of the first three steps with h2 replaced by h1 and g3 replaced by g2. We have

π̌1 ◦ b̌ ◦ F [h2]|SAα = π̌1 ◦ b̌ ◦ ι̌1 ◦ π̌1 ◦ F [h2]|SAα +
∑
k∈[2,n]

π̌1 ◦ b̌ ◦ ι̌k ◦ π̌k ◦ F [h2]|SAα

(10),(46)
= b̌1 ◦ h2|SAα +

∑
k∈[2,n]

b̌k ◦ π̌k ◦ F [h2]|SAα

(11)
= b̌1 ◦ h2|SAα +

∑
k∈[2,n]

∑
i1+...+ik=n,

all ij≥1

b̌k ◦ (Fi1 ⊗ . . .⊗ Fik)|SAα

= b̌1 ◦ (h1|SAα − v) +
∑
k∈[2,n]

∑
i1+...+ik=n,

all ij≥1

b̌k ◦ (Fi1 ⊗ . . .⊗ Fik)|SAα

= − b̌1 ◦ v + b̌1 ◦ h1|SAα +
∑
k∈[2,n]

∑
i1+...+ik=n,

all ij≥1

b̌k ◦ (Fi1 ⊗ . . .⊗ Fik)|SAα

∗
=− b̌1 ◦ v + π̌1 ◦ b̌ ◦ F [h1]|SAα

(60)
= π̌1 ◦ F [h2] ◦ b[g3]|SAα .

The step marked by ∗ is just the reversal of the first three steps with h2 replaced by h1.
So we have

π̌1 ◦ b̌ ◦ F [h2]|SAα = π̌1 ◦ F [h2] ◦ b[g3]|SAα .

Using Lemma 46(ii) and (54), this yields F [h2]◦ b[g3]|SAα = b̌◦F [h2]|SAα . Since g3 and h2

satisfy the stipulations given for g and h, eq. (51) implies F [h2]◦ b[g3]|SAL̂ = b̌◦F [h2]|SAL̂ .
Hence, we have F [h2] ◦ b[g3]|SAL̃ = b̌ ◦ F [h2]|SAL̃ .

We have

π1 ◦ b[g3]2|SAα
(57)
= π1 ◦ (b[g3]2 − b[g2]2)|SAα

(56)
= b1 ◦ (g3 − g2)|SAα + (g3 − g2) ◦ b(n)

1 |SAα
∗
= b1 ◦ (g3 − g2)|SAα = −b1 ◦ w′

imw′⊆Z∗SA
= 0,
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where for ∗, we use (49) and g3|SAL̂ = b̂n = g2|SAL̂ . Lemma 46(i) and (52) yield
b[g3]2|SAα = 0. Since g3 satisfies the assumptions given for g, eq. (50) yields b[g3]2|SAL̂ = 0.
Thus b[g3]2|SAL̃ = 0.

By Theorem 49 and Lemma 51, we conclude that (L̃, g3|SAL̃ , h2|SAL̃) is admissible.

Recall the poset M defined in Definition 84.

Lemma 86. Every ascending chain in M has an upper bound.

Proof. Suppose given a chain C = {( Li , bi n, Fi n ) : i ∈ I} ⊆ M for a set I. We set
L̃ := ∪i∈I Li , which is a lower set. Since { Li : i ∈ I} is totally ordered by inclusion, the
set of submodules {⊕β∈ Li SA

β : i ∈ I} of (SA)⊗n is totally ordered by inclusion. For each
a ∈ ⊕β∈L̃SAβ, there exist β1, . . . , βm ∈ L̃ such that a ∈ ⊕mj=1SA

βj . We conclude that

⊕
β∈L̃

SAβ =
⋃
i∈I

⊕
β∈ Li

SAβ

 . (61)

I.e. {⊕β∈ Li SA
β : i ∈ I} is a set of submodules totally ordered by inclusion whose union

is ⊕β∈L̃SAβ. Hence since C is totally ordered, there are b̃n : ⊕β∈L̃SAβ → SA and
F̃n : ⊕β∈L̃SAβ → SǍ such that b̃n|⊕β∈ L

i
SAβ = bi n and F̃n|⊕β∈ L

i
SAβ = Fi n for all i ∈ I.

The ( Li , bi n, Fi n ) are admissible for i ∈ I, so assertions (ii)-(vi) hold for ( Li , bi n, Fi n ) for
i ∈ I. So because of (61), assertions (ii)-(vi) hold for (L̃, b̃n, F̃n). Thus (L̃, b̃n, F̃n) ∈M
is an upper bound of C.

Lemma 87. For every x = (L, bn, Fn) ∈M , there exists (L̃, b̃n, F̃n) ∈M≥x with L̃ = Zn≥0.

This is a stronger statement than Proposition 88. Lemma 87 may be useful for computa-
tion, since it shows that any "partial solution" may be extended to a complete solution.
Note also that Lemma 87 may easily deduced from Zorn’s lemma: Lemma 86 and Zorn’s
lemma show that there exists a maximal element (L̃, b̃n, F̃n) ∈ M≥x. Then Lemma 85
and Lemma 75(b) show that L̃ = Zn≥0. However, the uncomplicated structure of the
poset (Zn≥0,≤n) allows us to give a more explicit proof as follows.

Proof. By Lemma 86, it suffices to construct an ascending chain {( Lk , bk n, Fk n ) : k ∈
Z≥0} ⊆M≥x such that ∪k∈Z≥0

Lk = Zn≥0.

Firstly, we construct a certain sequence ( Lk )k≥0 with L0 = L and ∪k∈Z≥0
Lk = Zn≥0 by

induction on k ≥ 0: For k = 0, set L0 := L. For the induction step, suppose given Lk for
some k ≥ 0. Let Dk be the set of minimal elements in Zn≥0 \ Lk . We set Lk+1 := Dk ∪ Lk .
This completes the induction. We postpone the proof of ∪k∈Z≥0

Lk = Zn≥0.

Using the construction principle given in Lemma 134, we construct bk n and Fk n succes-
sively on k ≥ 0 such that {( Lk , bk n, Fk n ) : k ∈ Z≥0} ⊆M≥x is an ascending chain.
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For k = 0, set b0 n := bn and F0 n := Fn. I.e. ( L0 , b0 n, F0 n ) = (L, bn, Fn) =: x0. For
the incremental step, suppose given ( Lk′ , bk′ n, Fk′ n ) =: xk′ for k′ ∈ [1, k] such that
x0 ≤ . . . ≤ xk. We have Dk = Lk+1 \ Lk , which is the set of minimal elements in
Zn≥0 \ Lk . In particular, we have Rα ⊆ Lk for α ∈ Dk. Since two distinct minimal
elements are incomparable, Dk is discrete. Lemma 75(c) states that (Zn≥0,≤n) is narrow,
so Dk is finite. So by successively applying Lemma 85 for each element of Dk, we obtain
( Lk+1 , bk+1 n, Fk+1 n ) ≥ ( Lk , bk n, Fk n ). This completes the incremental step.

It remains to show that ∪k∈Z≥0
Lk = Zn≥0. Suppose given z ∈ Zn≥0. By Lemma 75(a),

the set Qk := {y ∈ Zn≥0 \ Lk | y ≤n z} ⊆ (Zn≥0)≤z is finite for k ∈ Z≥0. Let D̃k be the
set of minimal elements in Qk. We show that D̃k = Dk ∩ Qk. It suffices to show that
D̃k ⊆ Dk ∩Qk. So suppose given y ∈ D̃k. Suppose given y′ ∈ Zn≥0 \ Lk with y′ ≤n y. So
y′ ≤n y ≤n z, hence y′ ∈ Qk. So y′ = y, since y is minimal in Qk. Thus, y is minimal in
Zn≥0 \ Lk . So y ∈ Dk ∩Qk. We conclude that D̃k = Dk ∩Qk. Since Lk+1 = Lk ∪Dk, we
have Qk+1 = Qk \Dk = Qk \ (Qk ∩Dk) = Qk \ D̃k.
If Qk 6= ∅, we have D̃k 6= ∅ by Lemma 73. Hence, |Qk| > |Qk+1| if |Qk| 6= 0. Since |Q0| is
finite, there is a k such that Qk = ∅. In particular, we have z ∈ Lk . We conclude that
∪k∈Z≥0

Lk = Zn≥0.

Application of Lemma 87 to (∅, bn : {0} → SA, Fn : {0} → SA) ∈M yields

Proposition 88. Let n ∈ Z≥2. Let (Ǎ, (m̌k)k≥1) be an A∞-algebra. Let (A, (mk)k∈[1,n−1])
be a minimal eAn−1-algebra. Suppose there is a quasi-isomorphism of An−1-algebras
(fk)k∈[1,n−1] from A to Ǎ. Suppose that (P1), (P2) and (P3) hold.

Then there exist mn : A⊗n → A and fn : A⊗n → Ǎ such that (A, (mk)k∈[1,n]) is a minimal
eAn-algebra and (fk)k∈[1,n] is a quasi-isomorphism of An-algebras from A to Ǎ.

Successive application of Proposition 88, using the construction principle given in
Lemma 134, yields

Proposition 89. Let n ∈ Z≥1. Let (Ǎ, (m̌k)k≥1) be an A∞-algebra. Let (A, (mk)k∈[1,n])
be a minimal eAn-algebra. Suppose there is a quasi-isomorphism of An-algebras (fk)k∈[1,n]

from A to Ǎ. Suppose that (P1), (P2) and (P3) hold.

Then there exist (mk)k∈[n+1,∞] and (fk)k∈[n+1,∞] such that (A, (mk)k∈[1,∞]) is a minimal
eA∞-algebra and (fk)k∈[1,∞] is a quasi-isomorphism of A∞-algebras from A to Ǎ.

Combination of Propositions 81 and 89 yields

Theorem 90. Suppose given an A∞-algebra (Ǎ, (m̌k)k≥1). Suppose given a projective

resolution (P (i), d(i)) = (. . . → P 2,i−2 d2,i−2

−−−→ P 1,i−1 d1,i−1

−−−→ P 0,i d0,i

−−→ 0 → . . .) of HiǍ with
augmentation εi : P 0,i → HiǍ for each i ∈ Z. Let A := ⊕i,j∈ZP j,i.
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Then there exists a minimal eA∞-structure (mk)k≥1 on A (cf. Proposition 81 for the
relationship of m1 and the di,j) such that there is a quasi-isomorphism of A∞-algebras
(fk)k≥1 : (A, (mk)k≥1)→ (Ǎ, (m̌k)k≥1).

This implies

Theorem 91. Let (Ǎ, (m̌k)k≥1) be an A∞-algebra.

Then there exists a minimal eA∞-algebra (A, (mk)k≥1) and a quasi-isomorphism of A∞-
algebras (fk)k≥1 : (A, (mk)k≥1)→ (Ǎ, (m̌k)k≥1).

Question 92. What is the relationship between different minimal eA∞-models ? Is
there something like the uniqueness property given e.g. in [11, Theorem in section 3.3] ?
Confer also [18, Théorème 4.27] and [11, Theorem in section 3.7].

Proposition 93. Suppose given an A∞-algebra (Ǎ, (m̌k)k≥1). Suppose given a complex
(A,m1) and a quasi-isomorphism of A1-algebras f1 : (A,m1)→ (Ǎ, m̌1). Suppose that A
and B∗A are projective.

Then there exist (mk : A⊗k → A)k≥2 and (fk : A⊗k → Ǎ)k≥2 such that (A, (mk)k≥1) is
an A∞-algebra and (fk)k≥1 : (A, (mk)k≥1) → (Ǎ, (m̌k)k≥1) is a quasi-isomorphism of
A∞-algebras.

Proof. The map m1|B
∗A : A → B∗A is graded of degree 1 and surjective. The map

idB∗A : B∗A→ B∗A is graded of degree 0. By Lemma 20, B∗A is graded projective, so
there is a graded map t : B∗A→ A of degree −1 such that (m1|B

∗A) ◦ t = idB∗A.

A
m1|B

∗A
// // B∗A

B∗A

idB∗A

OO

∃t

dd

Let C := im t, which is a graded submodule of A. The map t is a section of m1|B
∗A

in the short exact sequence Z∗A
⊆−→ A

m1|B
∗A

−−−−→ B∗A. Thus by the splitting lemma, we
have A = Z∗A ⊕ (im t) = Z∗A ⊕ C. Since Z∗A and C are both graded submodules of
A, the direct sum A = Z∗A⊕ C is a graded direct sum. For i ∈ Z, we set A0,i := ZiA
and A1,i := Ci. For i ∈ Z and j ∈ Z \ {0, 1}, we set Aj,i := 0. By construction, we have
A = ⊕i,j∈ZAj,i = ⊕i∈Z(A0,i ⊕ A1,i). Since ⊕i∈ZA0,i = Z∗A, we have m1(⊕i∈ZA0,i) = 0.
Since ⊕i∈ZA1,i = C and since m2

1 = 0, we have m1(⊕i∈ZA1,i) ⊆ kerm1 = Z∗A = ⊕i∈ZA0,i.
Hence, (A, (mk)k∈[1,1]) is a minimal eA1-algebra. We have the quasi-isomorphism of
A1-algebras (fk)k∈[1,1] : (A, (mk)k∈[1,1])→ (Ǎ, (m̌k)k∈[1,1]). We show (P1), (P2) and (P3).
Assertion (P1) holds since A is projective. Consider (P2). For j < 0, we have

m1(⊕j′≤jAj
′,−) = m1({0}) = {0} = (B∗A) ∩ {0} = (B∗A) ∩ (⊕j′≤j−1A

j′,−).

For j = 0, we have

m1(⊕j′≤jAj
′,−) = m1(Z∗A) = {0} = (B∗A) ∩ {0} = (B∗A) ∩ (⊕j′≤j−1A

j′,−).
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For j = 1, we have

m1(⊕j′≤jAj
′,−) =m1(A) = B∗A = (B∗A) ∩ (Z∗A) = (B∗A) ∩ A0,−

= (B∗A) ∩ (⊕j′≤j−1A
j′,−) .

For j ≥ 2, we have

m1(⊕j′≤jAj
′,−) = m1(A) = B∗A = (B∗A) ∩ A = (B∗A) ∩ (⊕j′≤j−1A

j′,−).

This proves (P2). Since f1 : (A,m1)→ (Ǎ,m1) is a quasi-isomorphism, the composite
p ◦ (f1|Z

∗Ǎ
Z∗A) is surjective, where p : Z∗Ǎ → H∗Ǎ is the residue class map. So since

Z∗A = A0,−, we have (P3). Application of Proposition 89 completes the proof.

As a special case of Proposition 93, we obtain the well-known

Proposition 94 (cf. e.g. [14, Théorème 1.4.1.1]). Suppose that R is a field. Suppose given
an A∞-algebra (Ǎ, (m̌k)k≥1). Suppose given a complex (A,m1) and a quasi-isomorphism
of A1-algebras f1 : (A,m1)→ (Ǎ, m̌1).

Then there exist (mk : A⊗k → A)k≥2 and (fk : A⊗k → Ǎ)k≥2 such that (A, (mk)k≥1) is
an A∞-algebra and (fk)k≥1 : (A, (mk)k≥1) → (Ǎ, (m̌k)k≥1) is a quasi-isomorphism of
A∞-algebras.

Proof. Since R is a field, all R-modules are projective over R. In particular, A and B∗A
are projective. Apply Proposition 93.

4.3.4. eAn-categories

Definition 95. Let n ∈ Z≥0 ∪ {∞}. An eAn-category is a triple (ObjA,A, (mk)k∈[1,n]),
where A = ⊕(k,l,j,i)∈ObjA×ObjA×Z×ZA(k, l)j,i is a ObjA×ObjA×Z×Z-graded R-module
such that the following hold.

(a) (A, (mk)k∈[1,n]) is an eAn-algebra if the grading of A along ObjA×ObjA is suppressed.

(b) (ObjA, A, (mk)k∈[1,n]) is an An-category if we suppress the grading along j of
A = ⊕(k,l,j,i)∈ObjA×ObjA×Z×ZA(k, l)j,i.

An eAn-category is called minimal if the underlying eAn-algebra (cf. (a)) is a minimal
eAn-algebra, cf. Definition 76.

We define eAn-functors (also called morphisms of eAn-categories) between two eAn-
categories to be the An-functors between the underlying An-categories (cf. (b)). An
eAn-functor is a (local) quasi-isomorphism if the underlying An-functor is a (local)
quasi-isomorphism.
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In sections 4.3.1 to 4.3.3, we developed methods for constructing minimal eAn-algebras
but we did not cover eAn-categories at all. This approach was chosen in order to be
able to introduce the new concept of eAn-algebras without the additional notational
complexity of eAn-categories. All results of sections 4.3.2 and 4.3.3 can be adapted to
eAn-categories by performing the constructions component-wise on suitable directs sums:

For the incremental step, we modify Remark 78 to

Remark 96 (setup of the incremental step for eAn-categories). The incremental step
will be performed in the following situation:

• n ∈ Z≥2.

• (Obj Ǎ, Ǎ, (m̌k)k≥1) is an A∞-category.

• (ObjA,A, (mk)k∈[1,n−1]) is a minimal eAn−1-category.

• (fObj, (fk)k∈[1,n−1]) is a quasi-isomorphism of An−1-categories from A to Ǎ.

• Assertions (P1) - (P3) hold. Recall that they are given as follows.

(P1) A is projective over R.

(P2) For all j ∈ Z, we have m1(⊕j′≤jAj
′,−) = (B∗A) ∩ (⊕j′≤j−1A

j′,−).

(P3) p ◦ (f1|Z
∗Ǎ
A0,−) is surjective, where p : Z∗Ǎ→ H∗Ǎ is the residue class map.

• ObjA = Obj Ǎ and fObj is the identity map.

The initial step is performed as follows. Set ObjA := Obj Ǎ, fObj = id. Then for
each i, j ∈ ObjA, we obtain the eA1-algebra (A(i, j),m1|A(i,j)

A(i,j)) and the morphism of

A1-algebras f1|Ǎ(i,j)
A(i,j) : (A(i, j),m1|A(i,j)

A(i,j))→ (Ǎ(i, j), m̌1|Ǎ(i,j)

Ǎ(i,j)
) by applying Proposition 81

(resp. Corollary 83 if there are projective resolutions of the HkǍ(i, j), k ∈ Z with
length ≤ 1) to the A1-algebra (Ǎ(i, j), m̌1|Ǎ(i,j)

Ǎ(i,j)
). So we have attained the setup given in

Remark 96 for n = 2.

The incremental step is performed as follows. Given A0-categories (ObjA,A, ()) and
(ObjA,A′, ()), we denote an R-linear map f : D ⊆ A⊗k → A′ for some k ≥ 1 and
some R-module D ⊆ A⊗k to be category-compatible if it satisfies the following (cf. e.g.
Definition 29).

(1) Given iy, jy ∈ ObjA for y ∈ [1, k] such that there exists x ∈ [1, k−1] with jx 6= ix+1,
we have

f((A(i1, j1)⊗ . . .⊗ A(ik, jk)) ∩D) = 0.

(2) Given iy ∈ ObjA for y ∈ [1, k + 1], we have

f((A(i1, i2)⊗ A(i2, i3)⊗ . . .⊗ A(ik, ik+1)) ∩D) ⊆ A′(i1, ik+1).

Note that composites and sums of category-compatible maps are also category-compatible.
E.g. the left hand side of (4) is category-compatible if all mk are category-compatible.
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In Definition 84, we need to add the requirement that bn and Fn are category-compatible
to the definition of admissibility. We now examine Lemma 85. In the proof we additionally
require that g and h and thus also g1, g2, g3, h1, h2 are category-compatible. For existence
of category-compatible g and h, note that the category-compatible maps b̂n and F̂n are
defined on

SAL̂ =
⊕

(α1,...,αn)∈L̂,k1,...,kn∈Z,
i1,...,in,j1,...,jn ObjA

SA(i1, j1)α1,k1 ⊗ . . .⊗ SA(in, jn)αn,kn .

Thus we obtain suitable g resp. h on

SA⊗n =
⊕

α1,...,αn∈Z,k1,...,kn∈Z,
i1,...,in,j1,...,jn ObjA

SA(i1, j1)α1,k1 ⊗ . . .⊗ SA(in, jn)αn,kn

by extending b̂n resp. F̂n by zero to the remaining summands.

Consider the construction of g2. Since g1 and h1 are category-compatible and since bk
is category-compatible for k ∈ [1, n − 1], the map π1 ◦ b[g1]

2 ◦ ιn is by (56) category-
compatible. Since b1|

B∗SA∩(⊕j≤τ−1SA
j,−)

⊕j≤τSAj,−
is by (P2) a graded epimorphism and since b1 is

category-compatible, the map b1|
B∗SA∩(⊕j≤τ−1SA(o1,o2)j,−)

⊕j≤τSA(o1,o2)j,− is a graded epimorphism for all
o1, o2 ∈ ObjA. We have the direct sum SAα = ⊕i1,...ik,j1,...,jk∈ObjASA

α ∩ (SA(i1, j1) ⊗
. . .⊗ SA(ik, jk)), so we can construct a graded category-compatible map w : SAα → SA
of degree 1 with imw ⊆ ⊕j≤τSAj,− such that b1 ◦ w = −π1 ◦ b[g1]2|SAα by constructing
it on each summand of that direct sum: On summands of type (1) of the definition of
category-compatibility, we set w to be zero. On summands of type (2), we use the graded
projectivity of that summand to obtain w.

Since g2 is obtained from the category-compatible maps g1 and w, it is category-
compatible.

Consider now the construction of g3 and h2. The map p ◦ π̌1 ◦ (F [h1] ◦ b[g2] − b̌ ◦
F [h1]) used in the construction of w′ is category-compatible, cf. (10), (11). Since F1

is category-compatible and since p ◦ (F1|Z
∗SA
SA0,−) is surjective, the map (p|H

∗SA(o1,o2)
Z∗SA(o1,o2) ) ◦

(F1|Z
∗SA(o1,o2)

SA(o1,o2)0,−) is surjective for all o1, o2 ∈ ObjA. So analogous to the way we refined the
construction of w to ensure category-compatibility, we obtain a category-compatible w′.
The map

(
F1 ◦ w′ − π̌1 ◦ (F [h1] ◦ b[g2]− b̌ ◦ F [h1])|SAα

)
|B∗SǍ used in the construction

of v is category-compatible. For the construction of w, we have already shown that
b1|

B∗SA∩(⊕j≤τ−1SA(o1,o2)j,−)

⊕j≤τSA(o1,o2)j,− is a graded epimorphism for all o1, o2 ∈ ObjA. So analogous to
the refinement of the construction of w to ensure category-compatibility of w, we obtain
a category-compatible v. Since g3 and h2 are obtained from the category-compatible
maps g2, h1, w′ and v, they are category-compatible. This concludes our examination of
Lemma 85.

In Lemma 86, we remark that in its proof, admissibility of the ( Li , bi n, Fi n ) implies
category-compatibility of the Li and bi n for i ∈ I. This implies the category-compatibility
of b̃n and F̃n and thus the admissibility of (L̃, b̃n, F̃n).
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All other parts of section 4.3.3 can be adapted directly for eAn-categories. In particular,
the adapted versions of Proposition 89 to Proposition 94 are given below. Note that
by Lemma 34, the quasi-isomorphisms of A∞-categories obtained below are also local
quasi-isomorphisms.

Proposition 97. Let n ∈ Z≥1. Let (Obj Ǎ, Ǎ, (m̌k)k≥1) be an A∞-category. Let
(ObjA,A, (mk)k∈[1,n]) be a minimal eAn-category. Suppose there is a quasi-isomorphism
of An-categories (fObj, (fk)k∈[1,n]) from A to Ǎ such that fObj is bijective. Suppose (P1),
(P2) and (P3) hold.

Then there exist (mk)k∈[n+1,∞] and (fk)k∈[n+1,∞] such that (ObjA, (mk)k∈[1,∞]) is a mini-
mal eA∞-category and (fObj, (fk)k∈[1,∞]) is a quasi-isomorphism of A∞-categories from A
to Ǎ.

Theorem 98. Suppose given an A∞-category (Obj Ǎ, Ǎ, (m̌k)k≥1). Suppose given a

projective resolution (P
(i)
o1,o2 , d

(i)
o1,o2) = (. . .→ P 2,i−2

o1,o2

d2,i−2
o1,o2−−−→ P 1,i−1

o1,o2

d1,i−1
o1,o2−−−→ P 0,i

o1,o2

d0,i
o1,o2−−−→ 0→

. . .) of HiǍ(o1, o2) with augmentation εi,o1,o1 : P 0,i
o1,o2
→ HiǍ(o1, o2) for i ∈ Z and o1, o2 ∈

Obj Ǎ. We have the eA0-category (Obj Ǎ, A, ()) given by A := ⊕o1,o2∈Obj Ǎ,j,i∈ZP
j,i
o1,o2

.

Then there exist (mk)k≥1, (fk)k≥1 (cf. Proposition 81 for the relationship of the m1|A(o1,o2)
A(o1,o2)

and the di,jo1,o2
) such that (Obj Ǎ, A, (mk)k≥1) is a minimal eA∞-category and (id, (fk)k≥1) :

(Obj Ǎ, A, (mk)k≥1)→ (Obj Ǎ, Ǎ, (m̌k)k≥1) is a quasi-isomorphism of A∞-categories.

Theorem 99. Let (Obj Ǎ, Ǎ, (m̌k)k≥1) be an A∞-category.

Then there exists a minimal eA∞-category (Obj Ǎ, A, (mk)k≥1) and a quasi-isomorphism
of A∞-categories (id, (fk)k≥1) : (Obj Ǎ, A, (mk)k≥1)→ (Obj Ǎ, Ǎ, (m̌k)k≥1).

Proposition 100. Suppose given an A∞-category (Obj Ǎ, Ǎ, (m̌k)k≥1). Suppose given
an A1-category (ObjA,A, (m1)). Suppose given a quasi-isomorphism of A1-categories
(fObj, (f1)) : (ObjA,A, (m1))→ (Obj Ǎ, Ǎ, (m̌1)) such that fObj is bijective. Suppose that
A and B∗A are projective.

Then there exist (mk : A⊗k → A)k≥2 and (fk : A⊗k → Ǎ)k≥2 such that (ObjA,A, (mk)k≥1)
is an A∞-category and (fObj, (fk)k≥1) : (ObjA,A, (mk)k≥1) → (Obj Ǎ, Ǎ, (m̌k)k≥1) is a
quasi-isomorphism of A∞-categories.

Proposition 101. Suppose R is a field. Suppose given an A∞-category (ObjǍ, Ǎ, (m̌k)k≥1).
Suppose given an A1-category (ObjA,A, (m1)) and a quasi-isomorphism of A1-categories
(fObj, (f1)) : (ObjA,A, (m1))→ (Obj Ǎ, Ǎ, (m̌1)) such that fObj is bijective.

Then there exist (mk : A⊗k → A)k≥2 and (fk : A⊗k → Ǎ)k≥2 such that (ObjA,A, (mk)k≥1)
is an A∞-category and (fObj, (fk)k≥1) : (ObjA,A, (mk)k≥1) → (Obj Ǎ, Ǎ, (m̌k)k≥1) is a
quasi-isomorphism of A∞-categories.
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4.3.5. Comparison with Sagave’s dA∞-algebras

Remark 102 (Comparison with Sagave’s dA∞-algebras). The eA∞-algebras are a
variant of Sagave’s dA∞-algebras, cf. Definition 76 and [19, Definition 2.1]. Before we
examine their relationship more closely, we will motivate the introduction of eA∞-algebras.

We would like to apply Keller and Lefèvre-Hasegawa’s filt construction (cf. section 6, [11,
section 7.7]) to the representation theory of group rings RG, where R is not necessarily
a field. But over arbitrary commutative ground rings, minimal models of A∞-algebras
may not exist, cf. Corollary 70. Sagave’s dA∞-algebras provide minimal models in the
dA∞-sense for arbitrary dg-algebras over arbitrary ground rings R, but it is unknown
if the filt construction can be adapted for dA∞-algebras. Thus, a generalization of
A∞-algebras was sought that has the following properties.

• In a certain sense, minimal models exist.

• Generalized A∞-algebras have A∞-algebras as underlying structure. Hence, the filt
construction can be applied directly.

These generalized A∞-algebras are named eA∞-algebras reminiscent of the name of
dA∞-algebras.

So let us examine dA∞-algebras and eA∞-algebras more closely.

Suppose given an eA∞-algebra (A, (mk)k≥1). For the remainder of this remark, we will
denote the Z-grading on A given by A = ⊕j∈ZAj,− the horizontal grading of A. The
horizontal grading on A induces a grading on A⊗k, k ≥ 1, which we also call horizontal.
We will distinguish the usual gradings on A and A⊗k from the horizontal gradings by
calling the usual gradings vertical.

For dA∞-algebras, the multiplication maps consist of horizontally and vertically graded
maps mij : A⊗j → A. A similar approach can be pursued for eA∞-algebras:

Suppose given k ≥ 1. For j ∈ Z, denote by Bj the horizontally homogeneous component
of degree j of A⊗k. For j ∈ Z, denote by pj : A→ Aj,− the projection to the horizontally
homogeneous component Aj,− of degree j of A.
Suppose given j′ ∈ Z. We define the R-linear map mj′,k : A⊗k = ⊕j∈ZBj → A by

mj′,k|Bj := pj−j′ ◦mk|Bj .

The map mj′,k is horizontally graded of degree −j′ and vertically graded of degree 2− k.
Note that given x ∈ A⊗k, we have mj,k(x) = 0 for almost all j ∈ Z. So abusing notation,
we have

mk =
∑
j∈Z

mj,k,

where for x ∈ Ak, we define (
∑

j∈Zmj,k)(x) to be
∑

j∈Z,mj,k(x)6=0 mj,k(x).
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In this formulation, eq. (4)[k] means that for j ∈ Z, we have

0 =
∑

k=r+s+t
r,t≥0,s≥1
j′+j′′=j

(−1)rs+tmj′,r+1+t ◦ (1⊗r ⊗mj′′,s ⊗ 1⊗t). (62)

We note the following differences between dA∞-algebras and eA∞-algebras.

(i) The signs in (62) differ from the signs that appear in the defining equation of
dA∞-algebras, cf. [19, eq. (2.2)].

(ii) The map mj,k of the eA∞-algebra given above has horizontal degree −j and vertical
degree 2− k, whereas for a dA∞-algebra, the map mjk has horizontal degree −j
and vertical degree −(2− j − k).

(iii) For dA∞-algebras, the horizontal grading interacts with the Koszul sign rule. That
is not the case for eA∞-algebras.

(iv) For dA∞-algebras, all maps mjk with j < 0 vanish. For eA∞-algebras, due to (EA3)
all maps mj,k with j < −(2k − 2) vanish.

One question that arises naturally is whether dA∞-algebras and eA∞-algebras are in
some way compatible or whether somehow these differences might be mitigated:

Difference (ii) is due to different layouts of the gradings. It can be avoided by a suitable
reparametrisation of the degrees. For (iv), the bounds for eA∞-algebras and in particular
for minimal eA∞-algebras are chosen in such a way that they fit the bounds that are
achieved by the extended Kadeishvili minimal method. Hence, difference (iv) is caused
on the side of eA∞-algebras by mere convenience and not by some intentional decision.

Difference (i) together with (iii) effects that the bar construction for dA∞-algebras yields
a twisted chain complex, cf. [19, Lemma 4.1], while the bar construction for eA∞-algebras
(which is the bar construction of the underlying A∞-algebras) yields a chain complex.
It is unknown to me if there exists a way to make twisted chain complexes into chain
complexes and vice versa.

Finally, we briefly discuss some of the results available for dA∞-algebras and for eA∞-
algebras. Sagave constructs in [19] minimal models in the dA∞-sense for arbitrary
dg-algebras over arbitrary base rings, cf. [19, Theorem 1.1]. For eA∞-algebras, we obtain
minimal models in the sense of eA∞-algebras for arbitrary A∞-algebras over arbitrary
base rings, cf. Theorem 91, but the bounds for the degrees of the non-zero parts of the
multiplications maps are weaker than those of dA∞-algebras, cf. difference (iv). Sagave
uses model categories to obtain minimal models in the dA∞-sense, cf. [19, Theorem 3.4].
It is unknown to what extent the underlying modules of minimal models in the dA∞-sense
can be chosen, cf. [19, Remark 4.14]. Hence, it is unknown how large such minimal
models become in practice. For eA∞-algebras, the approach for constructing minimal
models in the sense of eA∞-algebras is the following. Given an A∞-algebra (A, (mk)k≥1),
we fix arbitrary projective resolutions P (i) of HiA for i ∈ Z and form their direct sum
⊕i∈ZP (i) =: P . Similar to Kadeishvili’s algorithm, the desired minimal eA∞-structure
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is then constructed on P in an incremental way, cf. Theorem 90 and Propositions 81
and 89. In fact, this method is based on Kadeishvili’s algorithm.
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5. Models for cyclic groups over arbitrary ground
rings

Suppose given a commutative ground ring R. Suppose n ∈ Z≥1.

We denote the cyclic group of order n by Cn. In Cn, we fix a generator e of Cn.

Definition 103. Let a := 1 − e ∈ RCn and b :=
∑n−1

i=0 e
i ∈ RCn. We define the

RCn-linear maps

α : RCn −→ RCn, x 7→ a · x
β : RCn −→ RCn, x 7→ b · x

ε : RCn −→ R,
n−1∑
i=0

xie
i 7→

n−1∑
i=0

xi ,

where the codomain R of ε is the trivial RCn-module.

We have ker β = ker ε = imα = {
∑n−1

i=0 xie
i ∈ RCn |

∑n−1
i=0 xi = 0}.

We have kerα = im β = {
∑n−1

i=0 xie
i ∈ RCn | x0 = x1 = . . . = xn−1}.

Hence, the sequence

P := (· · · → RCn︸︷︷︸
4

β−→ RCn︸︷︷︸
3

α−→ RCn︸︷︷︸
2

β−→ RCn︸︷︷︸
1

α−→ RCn︸︷︷︸
0

→ 0︸︷︷︸
−1

→ · · · ), (63)

where the positions are written underneath, is a projective resolution of the trivial
RCn-module R, with augmentation ε.

Let (A, (mk)k≥1) be the dg-algebra on A := Hom∗RCn(P, P ) as given in Lemma 25.

Let A′ be the free R-module on the set

B := {ιj, χιj | j ∈ Z≥0}.

By stipulating that the basis element ιj is to be homogeneous of degree |ιj| := 2j and
that the basis element χιj is to be homogeneous of degree |χιj| := 2j + 1 for j ∈ Z≥0,
the free module A′ becomes a Z-graded R-module. For convenience, let χ0ιj := ιj and
χ1ιj := χιj for j ∈ Z≥0.

Note that for k ∈ Z≥1, the set

B⊗k := {χa1ιj1 ⊗ . . .⊗ χakιjk | all ai ∈ {0, 1}, all ji ∈ Z≥0} ⊆ (A′)⊗k (64)

is an R-basis of (A′)⊗k consisting of homogeneous elements.

In A, we fix the following 2-periodic elements. For convenience, we highlight position 0
in the complexes by underlining it.

ι :=


· · · // RCn

β //

1

��

RCn
α //

1

��

RCn
β //

1

��

RCn
α //

1

��

RCn
β //

1

��

RCn
α //

��

RCn
//

��

0 //

��

· · ·

· · · // RCn
β // RCn

α // RCn
β // RCn

α // RCn
// 0 // 0 // 0 // · · ·

 ∈ A2
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ι0 :=


· · · // RCn

β //

0

��

RCn
α //

1

��

RCn
β //

0

��

RCn
α //

1

��

RCn
β //

0

��

RCn
α //

��

RCn
//

��

0 //

��

· · ·

· · · // RCn
β // RCn

α // RCn
β // RCn

α // RCn
// 0 // 0 // 0 // · · ·

 ∈ A2

ι1 :=


· · · // RCn

β //

1

��

RCn
α //

0

��

RCn
β //

1

��

RCn
α //

0

��

RCn
β //

1

��

RCn
α //

��

RCn
//

��

0 //

��

· · ·

· · · // RCn
β // RCn

α // RCn
β // RCn

α // RCn
// 0 // 0 // 0 // · · ·

 ∈ A2

χ0 :=


· · · // RCn

β //

1

��

RCn
α //

0

��

RCn
β //

1

��

RCn
α //

0

��

RCn
β //

1

��

RCn
α //

0

��

RCn
//

��

0 //

��

· · ·

· · · // RCn
α // RCn

β // RCn
α // RCn

β // RCn
α // RCn

// 0 // 0 // · · ·

 ∈ A1

χ1 :=


· · · // RCn

β //

0

��

RCn
α //

1

��

RCn
β //

0

��

RCn
α //

1

��

RCn
β //

0

��

RCn
α //

1

��

RCn
//

��

0 //

��

· · ·

· · · // RCn
α // RCn

β // RCn
α // RCn

β // RCn
α // RCn

// 0 // 0 // · · ·

 ∈ A1

Note that multiplication with ι is "shift by a period" in the 2-periodic projective resolution
P . Hence, the 2-periodic elements ι0, ι1, χ0 and χ1 commute with ι and its powers ιj for
j ≥ 0.

The ring RCn is commutative, so given RCn-modules M and N , the R-module structure
on HomRCn(M,N) canonically extends to an RCn-module structure on HomRCn(M,N),
that is, given f ∈ HomRCn(M,N) and x ∈ RCn, we have xf := (y 7→ x · f(y)) ∈
HomRCn(M,N). In this way, the Z-graded R-module A = Hom∗RCn(P, P ) becomes a
Z-graded RCn-module.

Note the following relations. Given j, j′ ∈ Z≥0, we have

m1(χ0ι
j) = aιj+1 m2(χ0ι

j ⊗ χ0ι
j′) =χ0ι

j ◦ χ0ι
j′ = 0

m1(χ1ι
j) = bιj+1 m2(χ1ι

j ⊗ χ1ι
j′) =χ1ι

j ◦ χ1ι
j′ = 0

m1(ιj) = 0 m2(χ0ι
j ⊗ χ1ι

j′) =χ0ι
j ◦ χ1ι

j′ = ι0ι
j+j′

(ι0 + ι1)ιj = ιj+1 m2(χ1ι
j ⊗ χ0ι

j′) =χ1ι
j ◦ χ0ι

j′ = ι1ι
j+j′ . (65)

Definition/Remark 104. Suppose given sequences (rk)k≥1, (gk)k≥1 and (hk)k≥1 such
that rk ∈ R and gk, hk ∈ RCn for k ≥ 1.

We define the pre-A∞-structure (m′k)k≥1 on A′ and the pre-A∞ morphism (fk)k≥1 from
A′ to A as follows. For k ∈ Z≥1, we define m′k and fk by defining them on the elements
χa1ιj1 ⊗ . . .⊗ χakιjk of the R-bases B⊗k of (A′)⊗k, cf.(64).

Case 1: Elements χa1ιj1 ⊗ . . .⊗ χakιjk ∈ B⊗k such that 0 ∈ {a1, . . . , ak}.
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We set

m′2(χa1ιj1 ⊗ χa2ιj2) :=χa1+a2ιj1+j2 (Note that a1 + a2 ∈ {0, 1}.)
m′k(χ

a1ιj1 ⊗ . . .⊗ χakιjk) := 0 for k ∈ Z≥1 \ {2}.

We set

f1(χ0ιj1) = f1(ιj1) := ιj1

fk(χa1ιj1 ⊗ . . .⊗ χakιjk) := 0 for k ∈ Z≥2 . (66)

Case 2: Elements χa1ιj1 ⊗ . . .⊗ χakιjk ∈ B⊗k such that a1 = . . . = ak = 1.

For k ∈ Z≥1, we set

m′k(χι
j1 ⊗ . . .⊗ χιjk) := rkι(j1+...+jk)+1

fk(χιj1 ⊗ . . .⊗ χιjk) := (gkχ0 + hkχ1)ιj1+...+jk .

Proof. We need to show that (A′, (m′k)k≥1) is a pre-A∞-algebra and that (fk)k≥1 is a
pre-A∞-morphism from A′ to A. For this, we need to verify that the m′k are graded of
degree 2−k and the fk are graded of degree 1−k. This is done by comparing the degrees
of the elements of the bases B⊗k with the degrees of their images under m′k respectively
fk.

We say that an element x of an R-module is R-torsion-free if rx 6= 0 for r ∈ R \ {0}.
Note that in this case, 〈x〉R is free over R with basis {x}.

Proposition 105. Suppose that g1 or h1 is R-torsion-free. Suppose that

gka+ hkb+
∑

i∈[1,k−1]

gihk−i = rk for k ∈ Z≥1 . (67)

Then the tuple (A′, (m′k)k≥1) given in Definition/Remark 104 is an A∞-algebra and the
tuple (fk)k≥1 is a morphism of A∞-algebras from (A′, (m′k)k≥1) to (A, (mk)k≥1).

The proof of Proposition 105 is similar to the proof of [20, Theorem 39].

For the proof of Proposition 105, we will need the Lemmas 106, 108 and 109.

Lemma 106. The equations (5)[1] and (5)[2] hold.

Proof. We check (5)[1] resp. (5)[2] by checking them on B resp. B⊗2: Concerning the
Koszul sign rule, note that |m′1| 3 1 and |f1| 3 0. For j ∈ Z≥0, we have

(f1 ◦m′1)(ιj) = f1(0)
(65)
= m1(ιj) = (m1 ◦ f1)(ιj)
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(f1 ◦m′1)(χιj) = f1(r1ιj+1) = r1ι
j+1 (67)

= (g1a+ h1b)ι
j+1

(65)
=m1((g1χ0 + h1χ1)ιj) = (m1 ◦ f1)(χιj).

For j, j′ ∈ Z≥0, we have

(f1◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1))(ιj ⊗ ιj′) = f1(ιj+j′)− f2(0 + 0)

= ιj+j
′
= m1(0) +m2(ιj ⊗ ιj′) = (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(ιj ⊗ ιj′)

(f1◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1))(ιj ⊗ χιj′) = f1(χιj+j′)− f2(0 + ιj ⊗ r1ιj
′+1)

= (g1χ0 + h1χ1)ιj+j
′
+ 0 = m1(0) +m2(ιj ⊗ (g1χ0 + h1χ1)ιj

′
)

= (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(ιj ⊗ χιj′)
(f1◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1))(χιj ⊗ ιj′) = f1(χιj+j′)− f2(r1ιj+1 ⊗ ιj′ − 0)

= (g1χ0 + h1χ1)ιj+j
′
+ 0 = m1(0) +m2((g1χ0 + h1χ1)ιj ⊗ ιj′)

= (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(χιj ⊗ ιj′)
(f1◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1))(χιj ⊗ χιj′)

= f1(r2ιj+j
′+1)− f2(r1ιj+1 ⊗ χιj′ − χιj ⊗ r1ιj

′+1) = r2ι
j+j′+1 + 0

(67)
= (g2a+ h2b+ g1h1)ιj+j

′+1 (65)
= m1((g2χ0 + h2χ1)ιj+j

′
) + g1h1(ι0 + ι1)ιj+j

′

(65)
=m1((g2χ0 + h2χ1)ιj+j

′
) +m2((g1χ0 + h1χ1)ιj ⊗ (g1χ0 + h1χ1)ιj

′
)

= (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(χιj ⊗ χιj′).

Let k ≥ 3.

Equation (5)[k] can be reformulated as

f1 ◦m′k +
∑

k=r+s+t
r,t≥0,s≥1
s≤k−1

(−1)rs+tfr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t)

︸ ︷︷ ︸
=:Φk

= m1 ◦ fk +
∑

2≤r≤k
i1+...+ir=k

all is≥1

(−1)vmr ◦ (fi1 ⊗ fi2 ⊗ . . .⊗ fir)

︸ ︷︷ ︸
=:Ξk

,

where v =
∑

1≤t<s≤r(1− is)it.

A term of the form fr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t), s ∈ Z≥1 \ {2}, r + t ≥ 1, is zero because of
(66) and the definition of m′s. Thus

Φk =
∑

k=r+2+t
r,t≥0

(−1)2r+tfk−1 ◦ (1⊗r ⊗m′2 ⊗ 1⊗t)
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=
∑

r∈[0,k−2]

(−1)k−rfk−1 ◦ (1⊗r ⊗m′2 ⊗ 1⊗k−r−2). (68)

Since mr = 0 for r ≥ 3, we have

Ξk =
∑

i1+i2=k
i1,i2≥1

(−1)(1−i2)i1m2 ◦ (fi1 ⊗ fi2) =
∑

i∈[1,k−1]

(−1)kim2 ◦ (fi ⊗ fk−i). (69)

We have proven:

Lemma 107. For k ≥ 3, condition (5)[k] is equivalent to f1 ◦m′k + Φk = m1 ◦ fk + Ξk

where Φk and Ξk are as in (68) and (69).

Lemma 108. Condition (5)[k] holds for k ≥ 3 and arguments χa1ιj1 ⊗ . . . ⊗ χakιjk ∈
B⊗k = {χa1ιj1 ⊗ . . .⊗ χakιjk ∈ (A′)⊗k | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, k]} such
that 0 ∈ {a1, . . . , ak}.

Proof. Because of Definition/Remark 104, we have m′k(χa1ιj1 ⊗ . . . ⊗ χakιjk) = 0 and
fk(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0. So by Lemma 107, it suffices to show that

Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = Ξk(χa1ιj1 ⊗ . . .⊗ χakιjk)

if there exists z ∈ [1, k] such that az = 0.

Case 1 |{z ∈ [1, k] | az = 0}| ≥ 2.
To show Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0, we show
fk−1(1

⊗r ⊗ m′2 ⊗ 1⊗k−r−2)(χa1ιj1 ⊗ . . . ⊗ χakιjk) = 0 for r ∈ [0, k − 2]: In case
both factors of the argument of m′2 are of the form χ0ιj, the result of m′2 is
a multiple of some ιj′ (see Definition/Remark 104). Since 2 ≤ k − 1, eq. (66)
implies that the result of fk−1 is zero. Otherwise, at least one of the factors of the
argument of fk−1 must be of the form ιj and the result of fk−1 is zero as well. So
Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0.
To show Ξk(χa1ιj1⊗. . .⊗χakιjk) = 0, we showm2(fi⊗fk−i)(χa1ιj1⊗. . .⊗χakιjk) = 0
for i ∈ [1, k − 1]:

• Suppose that i ∈ [2, k − 2]: The statements a1 = . . . = ai = 1 and ai+1 =
. . . = ak = 1 cannot be both true, so fi or fk−i evaluates to 0. Hence, we have
m2(fi ⊗ fk−i)(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0.

• Suppose that i = 1. Since |{z ∈ [1, k] | az = 0}| ≥ 2, the statement
a2 = . . . = ak = 1 cannot be true. Since k − 1 ≥ 2, the map fk−1 evaluates to
0 and we have m2(f1 ⊗ fk−1)(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0.

• The case i = k − 1 is analogous to the case i = 1.

So we have Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0 = Ξk(χa1ιj1 ⊗ . . .⊗ χakιjk).

Case 2 |{z ∈ [1, k] | az = 0}| = 1.
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Case 2a {z ∈ [1, k] | az = 0} = {x}, where x ∈ [2, k − 1].
We have Φk(χa1ιj1 ⊗ . . . ⊗ χakιjk) = 0: We have m′2(χιj ⊗ χιj

′) = r2ιj+j
′+1 for

j, j′ ∈ Z≥0, so (66) implies fk−1(1⊗r ⊗m′2 ⊗ 1⊗k−r−2)(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0
unless r ∈ {x− 2, x− 1}. So

Φk(χa1ιj1 ⊗ . . .⊗ χakιjk)
= (−1)k−x+2fk−1(1⊗x−2 ⊗m′2 ⊗ 1⊗k−x − 1⊗x−1 ⊗m′2 ⊗ 1k−x−1)

(χa1ιj1 ⊗ . . .⊗ χakιjk)
= (−1)k−xfk−1(χιj1 ⊗ . . .⊗ χιjx−2 ⊗m′2(χιjx−1 ⊗ ιjx)⊗ χιjx+1 ⊗ . . .⊗ χιjk

− χιj1 ⊗ . . .⊗ χιjx−1 ⊗m′2(ιjx ⊗ χιjx+1)⊗ χιjx+2 ⊗ . . .⊗ χιjk)
= (−1)k−xfk−1(χιj1 ⊗ . . .⊗ χιjx−2 ⊗ χιjx−1+jx ⊗ χιjx+1 ⊗ . . .⊗ χιjk

− χιj1 ⊗ . . .⊗ χιjx−1 ⊗ χιjx+jx+1 ⊗ χιjx+2 ⊗ . . .⊗ χιjk)
= (−1)k−x((gk−1χ0 + hk−1χ1)ιj1+...+jn − (gk−1χ0 + hk−1χ1)ιj1+...+jn) = 0.

To show Ξk(χa1ιj1⊗. . .⊗χakιjk) = 0, we showm2(fi⊗fk−i)(χa1ιj1⊗. . .⊗χakιjk) = 0
for i ∈ [1, k − 1]: The element χaxιjx is a tensor factor of the argument of fi or
of fk−i. Since x /∈ {1, k}, (66) implies that fi or fk−i evaluates to 0. Thus
m2(fi ⊗ fk−i)(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0.
So Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0 = Ξk(χa1ιj1 ⊗ . . .⊗ χakιjk).

Case 2b {z ∈ [1, k] | az = 0} = {1}.
We have fk−1(1⊗r ⊗m′2 ⊗ 1⊗k−r−2)(χa1ιj1 ⊗ . . .⊗ χanιjk) = 0 unless r = 0. So

Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = (−1)kfk−1(1⊗0 ⊗m′2 ⊗ 1⊗k−2)(χa1ιj1 ⊗ . . .⊗ χakιjk)
= (−1)kfk−1(m′2(ιj1 ⊗ χιj2)⊗ χιj3 ⊗ . . .⊗ χιjk)
= (−1)kfk−1(χιj1+j2 ⊗ χιj3 ⊗ . . .⊗ χιjk)
= (−1)k(gk−1χ0 + hk−1χ1)ιj1+...+jk .

We have (fi ⊗ fk−i)(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0 if i ≥ 2. So

Ξk(χa1ιj1 ⊗ . . .⊗ χakιjk) = (−1)1·km2(f1 ⊗ fk−1)(ιj1 ⊗ χιj2 ⊗ . . .⊗ χιjk)
(1)
= (−1)km2

(
f1(ιj1)⊗ fk−1(χιj2 ⊗ . . .⊗ χιjk)

)
= (−1)km2

(
ιj1 ⊗ (gk−1χ0 + hk−1χ1)ιj2+...+jk

)
= (−1)k(gk−1χ0 + hk−1χ1)ιj1+...+jk .

So Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = Ξn(χa1ιj1 ⊗ . . .⊗ χakιjk).

Case 2c {z ∈ [1, k] | az = 0} = {k}.
We have fk−1(1⊗r ⊗m′2 ⊗ 1⊗k−r−2)(χa1ιj1 ⊗ . . .⊗ χanιjk) = 0 unless r = k − 2. So

Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = (−1)2fk−1(1⊗k−2 ⊗m′2 ⊗ 1⊗0)(χa1ιj1 ⊗ . . .⊗ χakιjk)
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(1)
= fk−1(χιj1 ⊗ . . .⊗ χιjk−2 ⊗m′2(χιjk−1 ⊗ ιjk))
= fk−1(χιj1 ⊗ . . .⊗ χιjk−2 ⊗ χιjk−1+jk)

= (gk−1χ0 + hk−1χ1)ιj1+...+jk .

We have (fi ⊗ fk−i)(χa1ιj1 ⊗ . . .⊗ χakιjk) = 0 if i ≤ k − 2. So

Ξk(χa1ιj1 ⊗ . . .⊗ χakιjk) = (−1)k(k−1)m2(fk−1 ⊗ f1)(χa1ιj1 ⊗ . . .⊗ χakιjk)
(1)
=m2

(
fk−1(χιj1 ⊗ . . .⊗ χιjk−1)⊗ f1(ιjk)

)
=m2((gk−1χ0 + hk−1χ1)ιj1+...+jk−1 ⊗ ijk)
= (gk−1χ0 + hk−1χ1)ιj1+...+jk .

So Φk(χa1ιj1 ⊗ . . .⊗ χakιjk) = Ξk(χa1ιj1 ⊗ . . .⊗ χakιjk).

Now we examine the case where a1 = . . . = an = 1:

Lemma 109. Condition (5)[k] holds for k ≥ 3 and arguments χιj1⊗ . . .⊗χιjk ∈ B⊗k =
{χa1ιj1 ⊗ . . .⊗ χakιjk ∈ (A′)⊗k | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, k]}.

Proof. We have m′2(χιj ⊗ χιj′) = r2ιj+j
′+1 for j, j′ ∈ Z≥0, so (66) implies

fk−1(1⊗r ⊗m′2 ⊗ 1⊗k−r−2)(χιj1 ⊗ . . .⊗ χιjk) = 0 for r ∈ [0, k − 2]. Hence, we have
Φk(χιj1 ⊗ . . .⊗ χιjk) = 0.

We have

(m1 ◦ fk+ Ξk)(χιj1 ⊗ . . .⊗ χιjk)

=m1((gkχ0 + hkχ1)ιj1+...+jk) +
∑

i∈[1,k−1]

(−1)kim2((fi ⊗ fk−i)(χιj1 ⊗ . . .⊗ χιjk))

(65),(1)
= (agk + bhk)ι

(j1+...+jk)+1

+
∑

i∈[1,k−1]

(−1)ki+(1−k+i)im2(fi(χιj1 ⊗ . . .⊗ χιji)⊗ fk−i(χιji+1 ⊗ . . .⊗ χιjk))

= (agk + bhk)ι
(j1+...+jk)+1

+
∑

i∈[1,k−1]

m2((giχ0 + hiχ1)ιj1+...+ji ⊗ (gk−iχ0 + hk−iχ1)ιji+1+...+jk)

(65)
= (agk + bhk)ι

(j1+...+jk)+1 +
∑

i∈[1,k−1]

(gihk−iι0 + higk−iι1)ιj1+...+jk

= (agk + bhk)ι
(j1+...+jk)+1 +

∑
i∈[1,k−1]

(gihk−iι0 + hk−igiι1)ιj1+...+jk

(65)
=

agk + bhk +
∑

i∈[1,k−1]

gihk−i

 ι(j1+...+jk)+1
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(67)
= rkι

(j1+...+jk)+1 = f1(rkι(j1+...+jk)+1) + 0

= (f1 ◦m′k + Φk)(χιj1 ⊗ . . .⊗ χιjk) .

Application of Lemma 107 completes the proof.

Proof of Proposition 105. Lemmas 106, 108 and 109 ensure that (5)[k] holds for k ∈ Z≥1.
We show that f1 is injective. Suppose given j ∈ Z≥0. The element ιj is R-torsion free.
Since h1 or g1 is R-torsion-free, the element (g1χ0 + h1χ1)ιj is R-torsion-free.

So since the set X := {ιj | j ∈ Z≥0} ∪ {(g1χ0 + h1χ1)ι
j | j ∈ Z≥0} ⊆ A consists of

R-torsion-free elements of different summands of the direct sum A =
⊕

k∈Z Homk(P, P ),
it is linearly independent. The set B, which is a basis of A′, is mapped bijectively to X
by f1, so f1 is injective.

Lemma 52 proves that (A′, (m′k)k≥1) is an A∞-algebra and (fk)k≥1 is an A∞-morphism
from (A′, (m′k)k≥1) to (A, (mk)k≥1).

Proposition 110. Suppose that ε(h1) is a unit in R and that (67) holds. Then the tuple
(A′, (m′k)k≥1) given in Definition/Remark 104 is an A∞-algebra and the tuple (fk)k≥1 is
a quasi-isomorphism of A∞-algebras from (A′, (m′k)k≥1) to (A, (mk)k≥1).

Proof. Since ε(h1) is a unit in R and since ε is R-linear, the element h1 is R-torsion
free. Proposition 105 shows that (A′, (m′k)k≥1) is an A∞-algebra and (fk)k≥1 is an A∞-
morphism from (A′, (m′k)k≥1) to (A, (mk)k≥1). It remains to show that (fk)k≥1 is actually
a quasi-isomorphism of A∞-algebras. I.e. we need to show that the complex morphism
f1 : (A′,m′1)→ (A,m1) is a quasi-isomorphism.

From the augmentation ε, we obtain the quasi-isomorphism of complexes

ε̃ :=

 · · ·
// RCn

β //

��

RCn
α //

��

RCn
β //

��

RCn
α //

��

RCn
//

ε
��

0 //

��

· · ·

· · · // 0 // 0 // 0 // 0 // R // 0 // · · ·

 ∈ Hom0
RCn(P, R̃),

where R̃ is the complex that has the module R at position 0 and zero in all other positions.
By [4, §5 Proposition 4], the map

ε̂ : A = Hom∗RCn(P, P ) −→ Hom∗RCn(P, R̃)

g ∈ Ai 7−→ ε̃ ◦ g for i ∈ Z

is a quasi-isomorphism of complexes.
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For j ∈ Z≥0, we have

ε̂(f1(ιj)) = ε̂(ιj) =

 · · · // RCn
α //

��

︷ ︸︸ ︷2j + 1

RCn
β //

ε
��

︷ ︸︸ ︷2j

· · · β // RCn
α //

��

︷ ︸︸ ︷1

RCn
//

��

︷ ︸︸ ︷0

0 //

��

︷︸︸︷−1

· · ·

· · · // 0 //︸︷︷︸
1

R //︸︷︷︸
0

· · · // 0 //︸︷︷︸
1− 2j

0 //︸︷︷︸
−2j

0 //︸︷︷︸
−1− 2j

· · ·



∈ Hom2j
RCn

(P, R̃)

ε̂(f1(χιj)) = ε̂((g1χ0 + h1χ1)ιj)

=

 · · · // RCn
β //

��

︷ ︸︸ ︷2j + 2

RCn
α //

ε(h1)ε
��

︷ ︸︸ ︷2j + 1

· · · β // RCn
α //

��

︷ ︸︸ ︷1

RCn
//

��

︷ ︸︸ ︷0

0 //

��

︷︸︸︷−1

· · ·

· · · // 0 //︸︷︷︸
1

R //︸︷︷︸
0

· · · // 0 //︸︷︷︸
2j

0 //︸︷︷︸
−2j−1

0 //︸︷︷︸
−2j−2

· · ·



∈ Hom2j+1
RCn

(P, R̃),

where the positions are written above resp. below the complexes. The R-module
HomRCn(RCn, R) is free over R of rank 1 with basis {ε}. Since ε(h1) is a unit in R, we con-
clude that the R-basis B of A′ is mapped by ε̂◦f1 to an R-basis of Hom∗RCn(P, R̃). Hence,
ε̂ ◦ f1 : (A′,m′1) → (Hom∗RCn(P, R̃), dHom∗RCn

(P,R̃)) is an isomorphism of complexes. In
particular, it is a quasi-isomorphism. Since ε̂ : (A,m1)→ (Hom∗RCn(P, R̃), dHom∗RCn

(P,R̃))

is a quasi-isomorphism, we conclude that f1 : (A′,m′1)→ (A,m1) is a quasi-isomorphism
of complexes.

Remark 111. Suppose that the assumptions of Proposition 110 hold.
The A∞-algebra (A′, (m′k)k≥1) carries the structure of a minimal eA∞-algebra, where the
decomposition A′ = ⊕i,j∈Z(A′)j,i is given as follows. For i′ ∈ Z≥0, we set (A′)0,2i′ := 〈ιi′〉R
and (A′)1,2i′+1 := 〈χιi′〉R. We set all other (A′)j,i to be zero. This way, we have
(A′)i = ⊕j∈Z(A′)j,i for i ∈ Z.

We have (A′)0,− = 〈ιi′ | i′ ∈ Z≥0〉R and (A′)1,− = 〈χιi′ | i′ ∈ Z≥0〉R. For j ∈ Z \ {0, 1},
we have (A′)j,− = 0. In particular, axiom (EA2) holds. Axiom (EA1) holds since
(A′, (m′k)k≥1) is an A∞-algebra.

We need to verify (EA3′).

For k ≥ 1 and j1, . . . , jk ∈ Z, we need to show that

m′k((A
′)j1,− ⊗ . . .⊗ (A′)jk,−) ⊆

⊕
j′≤(j1+...+jk)+(2k−3)

(A′)j
′,−.
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From the definition of the m′k, we have

m′1((A′)1,−) ⊆ (A′)0,−

m′1((A′)0,−) = 0.

Hence m′1((A′)j,−) ⊆ (A′)j−1,− for j ∈ Z.

We have

m′2((A′)0,− ⊗ (A′)0,−) ⊆ (A′)0,−

m′2((A′)0,− ⊗ (A′)1,−) ⊆ (A′)1,−

m′2((A′)1,− ⊗ (A′)0,−) ⊆ (A′)1,−

m′2((A′)1,− ⊗ (A′)1,−) ⊆ (A′)0,−.

Hence m′2((A′)j1,− ⊗ (A′)j2,−) ⊆ ⊕j′≤j1+j2(A′)j
′,− ⊆ ⊕j′≤j1+j2+1(A′)j

′,− for j1, j2 ∈ Z.

For k ≥ 3, we have

m′k((A
′)1,− ⊗ . . .⊗ (A′)1,−︸ ︷︷ ︸

k factors

) ⊆ (A′)0,−.

Note that given (j1, . . . , jk) ∈ Zk, we have m′k((A
′)j1,− ⊗ . . . ⊗ (A′)jk,−) = 0 if

(j1, . . . , jk) 6= (1, . . . , 1). Hence, we have m′k((A′)j1,−⊗ . . .⊗ (A′)jk,−) ⊆ (A′)(j1+...+jk)−k ⊆
⊕j′≤(j1+...+jk)+(2k−3)(A

′)j
′ .

So we have proven (EA3′).

Note that in this example, the bounds obtained are much stronger than the bounds
required by (EA3′).

5.1. A simple solution

Lemma 112. The sequences (gk)k≥1, (hk)k≥1, (rk)k≥1 given by

gk :=
∑

i∈[1,n−1]

(
n− i− 1

k

)
ei

hk :=

{
1 if k = 1

0 else

rk :=

(
n

k

)
satisfy the assumptions of Proposition 110.

Note that gk = 0, hk = 0 and rk = 0 for k > n.
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Proof. We have gk, hk ∈ RCn and rk ∈ R for k ≥ 1. Since h1 = 1, ε(h1) = 1 is a unit in
R. It remains to check (67): For convenience, write g0 :=

∑n−1
i=0

(
n−i−1

0

)
ei =

∑n−1
i=0 e

i = b.
By the definition of the hk, we have

hkb+
∑

i∈[1,k−1]

gihk−i =

{
g0 if k = 1

0 else
+

{
0 if k = 1

gk−1 else
= gk−1.

Thus for k ≥ 1, we have

gka+ hkb+
∑

i∈[1,k−1]

gihk−i = gka+ gk−1

=
∑

i∈[0,n−1]

(
n− i− 1

k

)
ei −

∑
i∈[0,n−1]

(
n− i− 1

k

)
ei+1 +

∑
i∈[0,n−1]

(
n− i− 1

k − 1

)
ei

=
∑

i∈[0,n−1]

((
n− i− 1

k

)
+

(
n− i− 1

k − 1

))
ei −

∑
i∈[0,n−1]

(
n− (i+ 1)

k

)
ei+1

=
∑

i∈[0,n−1]

(
n− i
k

)
ei −

∑
i∈[1,n]

(
n− i
k

)
ei

=

(
n− 0

k

)
e0 −

(
n− n
k

)
︸ ︷︷ ︸

=0

en =

(
n

k

)
= rk.

In Definition/Remark 104 and Proposition 110, we have obtained a general framework
for models of the A∞-algebra A. In Remark 111, we established that models of that
type are actually minimal in the sense of eA∞-algebras. In Lemma 112, we obtained an
explicit solution of the conditions of the framework. Combining all these, we obtain

Theorem 113 (Summary). We have a minimal eA∞-algebra (A′ = ⊕i,j∈Z(A′)j,i, (m′k)k≥1)
that is quasi-isomorphic to the dg-algebra A = Hom∗RCn(P, P ), where P is the projective
resolution of the trivial RCn-module R given in (63). The eA∞-algebra A′ is given as
follows. For j ∈ Z≥0, the R-module (A′)0,2j is free over the set {ιj} and the R-module
(A′)1,2j+1 is free over the set {χιj}. All other (A′)j,i are zero.
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We give the mk by giving them on the elements of the basis

B⊗k = {χa1ιj1 ⊗ . . .⊗ χakιjk | all ai ∈ {0, 1}, all ji ∈ Z≥0} ⊆ (A′)⊗k.

For elements χa1ιj1 ⊗ . . .⊗ χakιjk ∈ B⊗k such that 0 ∈ {a1, . . . , ak}, we have

m′2(χa1ιj1 ⊗ χa2ιj2) =χa1+a2ιj1+j2 (Note that a1 + a2 ∈ {0, 1}.)
m′k(χ

a1ιj1 ⊗ . . .⊗ χakιjk) = 0 for k ∈ Z≥1 \ {2}.

For elements χa1ιj1 ⊗ . . .⊗ χakιjk ∈ B⊗k such that a1 = . . . = ak = 1, we have

m′k(χι
j1 ⊗ . . .⊗ χιjk) =

(
n

k

)
ι(j1+...+jk)+1 for k ∈ Z≥1 .

In particular, we have m′k = 0 for k > n. Concerning the differential, note that for
j ∈ Z≥0, we have m′1(χιj) = ιj+1 and m′1(ιj) = 0.

Remark 114 (Comparison with results of Madsen). Let us examine the solution given
in Lemma 112 in case R = Fp for a prime p and n = pc for some c ∈ Z≥1. By the binomial
theorem, rk =

(
pc

k

)
∈ Fp is the coefficient at Xk of the polynomial (1 +X)p

c ∈ Fp[X] for
k ≥ 1. But in Fp[X], we have (1+X)p

c
= ((1+X)p)p

c−1
= (1p+Xp)p

c−1
= (1+Xp)p

c−1
=

. . . = 1 +Xpc . Thus we have

rk =

{
1 if k = pc

0 else.
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In particular, we have r1 = 0, so m′1 = 0 in Proposition 110. This means that A′ is a
minimal model of A in the A∞-sense.

Minimal models on the group cohomology of the cyclic group Cpc over the field Fp were
given by Madsen in [16, Appendix B Example 2.2] (actually, certain path algebras are
considered, amongst them one isomorphic to the algebra FpCpc) and adapted to the
formulation of FpCpc as a group algebra by Vejdemo-Johansson in [23, Theorem 4.3.8].
Comparison of our minimal model and the minimal model given in [23, Theorem 4.3.8]
yield that they are the same, so we have recovered this particular case.

5.2. A family of solutions

While experimenting with solutions of (67), where, say, n = 3 or n = 5 and where for
k ≥ 2, we have rk ∈ [0, n − 1], I discovered that the resulting sequences for (rk)k≥1

had been described by Paul D. Hanna as coefficient series of powers of certain formal
power series, cf. [7]. Further investigation showed that (67) is actually equivalent to
the equation of formal powers series (71) and that taking powers of power series is the
mechanism that governs the class of solutions of (67) that satisfy hk ∈ R for k ≥ 1.

Suppose given sequences (rk)k≥1, (gk)k≥1 and (hk)k≥1 such that rk ∈ R and gk, hk ∈ RCn

for k ≥ 1. Let g0 :=
∑

i∈[0,n−1] e
i = b ∈ RCn and h0 := 1 ∈ RCn. Let r0 ∈ R. We will

discuss the choice of r0 later.

Consider (67): The left hand side is

gka+ hkb+
∑

i∈[1,k−1]

gihk−i = gk − egk + hkb+
∑

i∈[1,k−1]

gihk−i

= gkh0 − egk + hkg0 +
∑

i∈[1,k−1]

gihk−i

= − egk +
∑
i∈[0,k]

gihk−i .

I.e. eq. (67) holds iff

−egk +
∑
i∈[0,k]

gihk−i = rk for k ∈ Z≥1 . (70)

Consider the formal power series g :=
∑

i≥0 giX
i ∈ RCn[[X]], h :=

∑
i≥0 hiX

i ∈ RCn[[X]]
and r :=

∑
i≥0 riX

i.

Consider the equation

−eg + gh = r. (71)

By the multiplication rule for formal power series, the Cauchy product, we see that if
(71) holds, then (70) and (67) hold.
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So consider (gk)k≥1, (hk)k≥1 and (rk)k≥1 such that (67) holds. Recall that g0 and h0 are
constants. Since (70) holds, the difference of the sides of (71) is

(−eg + gh)− r = (−eg0 + h0g0)− r0 = (1− e)g0 − r0 = ab− r0 = −r0.

I.e. if (67) holds, then there is exactly one possible choice for r0 such that (71) holds and
that choice is r0 := 0.

We have proven the

Proposition 115. Let g0 :=
∑

i∈[0,n−1] e
i = b ∈ RCn and h0 := 1 ∈ RCn. Suppose given

sequences (rk)k≥1, (gk)k≥1 and (hk)k≥1 such that rk ∈ R and gk, hk ∈ RCn for k ≥ 1. The
following are equivalent.

(1) Condition (67) holds.

(2) There exists an r0 ∈ R such that for g :=
∑

i≥0 giX
i ∈ RCn[[X]], h :=

∑
i≥0 hiX

i ∈
RCn[[X]] and r :=

∑
i≥0 riX

i ∈ R[[X]], we have

−eg + gh = r.

In that case, we have r0 = 0.

Lemma 116. Suppose given h ∈ R[[X]], g ∈ RCn[[X]] and r ∈ R[[X]]. Then

−eg + gh = r (72)

if and only if there exists ǧ ∈ R[[X]] such that

g =
∑

i∈[0,n−1]

hn−1−iǧei

r = (hn − 1)ǧ. (73)

Furthermore, note that ǧ is the coefficient at en−1 of g.

Proof. "⇒": Suppose given h ∈ R[[X]], g ∈ RCn[[X]] and r ∈ R[[X]] such that (72)
holds. We have g =

∑
i∈[0,n−1] g

(i)ei for some g(i) ∈ R[[X]], i ∈ [0, n− 1]. Equation (72)
becomes

r = − eg + gh = −
∑

i∈[0,n−1]

g(i)ei+1 +
∑

i∈[0,n−1]

hg(i)ei

=hg(0) − g(n−1) +
∑

i∈[1,n−1]

(hg(i) − g(i−1))ei . (74)

Comparing coefficients of ei for i ∈ [1, n− 1], we obtain

g(i−1) = hg(i).
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Applying this identity successively, we obtain

g(i) = hn−1−ig(n−1) for i ∈ [0, n− 1].

In particular, we have g(0) = hn−1g(n−1). Thus comparing coefficients of e0 in (74), we
obtain

r = hng(n−1) − g(n−1) = (hn − 1)g(n−1).

Thus choosing ǧ := g(n−1), we have (73).

"⇐": Suppose given h ∈ R[[X]] and ǧ =
∑

i≥0 ǧiX
i ∈ R[[X]]. Let r and g be given by

(73). Then (72) holds since we have

−eg + hg = −
∑

i∈[0,n−1]

hn−(i+1)ǧei+1 + h ·
∑

i∈[0,n−1]

hn−1−iǧei

= −
∑
i∈[1,n]

hn−iǧei +
∑

i∈[0,n−1]

hn−iǧei = (hn − 1)ǧ = r.

Proposition 117. Let h0 := 1 ∈ R, ǧ0 := 1 ∈ R.

Suppose given (hi)i≥1, (ǧi)i≥1 such that hi, ǧi ∈ R for i ≥ 1 and such that h1 is a unit in
R. Write ǧ :=

∑
i≥0 ǧiX

i ∈ R[[X]] and h :=
∑

i≥0 hiX
i ∈ R[[X]].

Consider the sequences (ri)i≥1 and (gi)i≥1 given by∑
i≥0

giX
i :=

∑
i∈[0,n−1]

hn−1−iǧei ∈ RCn[[X]]

∑
i≥0

riX
i := (hn − 1)ǧ ∈ R[[X]]. (75)

Then the tuple of sequences (gi)i≥1, (hi)i≥1, (rk)i≥1 satisfies the assumptions of Propo-
sition 110. Furthermore, all tuples of sequences (gi)i≥1, (hi)i≥1, (rk)i≥1 that satisfy the
assumptions of Proposition 110 and that satisfy hi ∈ R for i ≥ 1 can be obtained in this
way.

Proof. Suppose given (hi)i≥1, (ǧi)i≥1 such that hi, ǧi ∈ R for i ≥ 1 and such that h1 is a
unit in R. Define the sequences (ri)i≥0 and (gi)i≥0 by (75).
Let g :=

∑
i≥0 giX

i ∈ RCn[[X]] and r :=
∑

i≥0 riX
i ∈ R[[X]].

Eq. (73) holds, so eq. (72) holds, cf. Lemma 116. Since h0 = 1 and ǧ0 = 1, we have
g0 =

∑
i∈[0,n−1] e

i by (75). Thus the assumptions of Proposition 115 hold. Thus by

eq. (72) and by Proposition 115, condition (67) holds. Since h1
h1∈R= ε(h1) is a unit, the

assumptions of Proposition 110 are satisfied. This proves the first assertion.

Now suppose given (gi)i≥1, (hi)i≥1, (rk)i≥1 such that the assumptions of Proposition 110
hold and that hi ∈ R for i ≥ 1. In particular, (67) holds and h1

h1∈R= ε(h1) is a unit. Let
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g0 :=
∑

i∈[0,n−1] e
i = b ∈ RCn. Let r0 := 0. Let g :=

∑
i≥0 giX

i, h :=
∑

i≥0 hiX
i and r :=∑

i≥0 riX
i. By Proposition 115 and by (67), eq. (71) holds. We have g =

∑
i∈[0,n−1] g

(i)ei

for some g(i) ∈ R[[X]], i ∈ [0, n − 1]. Note that since g0 =
∑

i∈[0,n−1] e
i, the coefficient

at X0 of g(n−1) is 1 = ǧ0. Hence g(n−1) =
∑

i≥0 ǧiX
i =: ǧ for some ǧi ∈ R, i ≥ 1. By

Lemma 116, we have g =
∑

i∈[0,n−1] h
n−1−iǧei and r = (hn− 1)ǧ. Thus (gi)i≥1 and (ri)i≥1

are of the form (75).

Remark 118. Concerning the assumptions of Proposition 117, a simple choice is setting
h1 := 1, hi := 0 for i ≥ 2, and ǧi := 0 for i ≥ 1. I.e. h = 1 + X and ǧ = 1. By the
binomial theorem, this yields the solution given in Lemma 112.
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6. The filt construction

In this section, we give explicit versions of key parts of Keller and Lefèvre-Hasegawa’s
"filt construction", cf. [11, Problem 2 and section 7.7]. For a comparison between this
version of the filt construction and Keller and Lefèvre-Hasegawa’s original version, see
Remark 132.

Suppose given a commutative ground ring R.

6.1. Matrix versions of operators

Definition 119 (Matrix versions of operators). Suppose given R-modules A and A′.
Given i, i′ ∈ Z≥0, let Ai×i

′ be the set of i × i′-matrices with entries in A. Let idi×i
′

:
Ai×i

′ → Ai×i
′ be the identity map.

Suppose given k ∈ Z≥1. Suppose given an R-linear map m : A⊗k → A′. Suppose given
i0, . . . , ik ∈ Z≥0. We define the R-linear map

m̃ : Ai0×i1 ⊗ . . .⊗ Aik−1×ik → (A′)i0×ik

by

m̃
(
(a1
ij)i∈[1,i0],j∈[1,i1] ⊗ . . .⊗ (akij)i∈[1,ik−1],j∈[1,ik]

)
:=

 ∑
(c1,...,ck−1)∈[1,i1]×...×[1,ik−1]

m(a1
c0c1
⊗ . . .⊗ akck−1ck

)


c0∈[1,i0],ck∈[1,ik]

.

Note that if A and A′ are graded modules and m is graded of degree km, then m̃ is also
graded of degree km.

Abusing notation, we will often denote m̃ by m.

Example 120 (Matrix versions of operations resemble matrix multiplication). Suppose
given A, A′, k, m as in Definition 119. We examine the case k = 2. Let i0 = i1 = i2 = 2.

Suppose given T =

(
a b
c d

)
∈ A2×2 = Ai0×i1 and T ′ =

(
a′ b′

c′ d′

)
∈ A2×2 = Ai1×i2 . We

have
m̃(T ⊗ T ′) =

(
m(a⊗ a′ + b⊗ c′) m(a⊗ b′ + b⊗ d′)
m(c⊗ a′ + d⊗ c′) m(c⊗ b′ + d⊗ d′)

)
.

So m̃ is a tensor product variant of matrix multiplication followed by a matrix version of
m.

6.2. Categories

Suppose given an A∞-category (ObjA,A, (mk)k≥1). Recall Definition/Remark 47. We
have the corresponding pre-A∞-triple ((mk)k≥1, (bk)k≥1, b).
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Definition/Lemma 121. We define the A∞-category twA as follows. The set of objects
Obj twA of the A∞-category twA consists of tuples (l, (i1, . . . , il), D), where

(1) l ∈ Z≥0,

(2) (i1, . . . , il) ⊆ ObjA is a tuple of length l,

(3) D = (Duv)u,v∈[1,l] ∈ Al×l is a strictly lower triangular matrix such that for u, v ∈ [1, l],
we have Duv ∈ A1(iu, iv) and

(4) we have ∑
k≥1

bk((ω
−1(D))⊗k) = 0 . (76)

Note that in (76), almost all summands are zero since D is strictly lower triangular.
Hence, we understand the infinite sum in (76) as well as all other infinite sums in
this section to be the sum of the non-zero summands.

Eq. (76) is called the generalized Maurer-Cartan equation, cf. e.g. [21, eq. (3.19)].

For l ≥ 0 and a matrix D ∈ Al×l where all entries are homogeneous of degree 1, we denote
by [〈D〉] the R-linear map [〈D〉] : C(R)→ SAl

i×li , 1 7→ ω−1(D). Here C(R) is the graded
R-module which is R in degree 0 and 0 in all other degrees. Hence, [〈D〉] is a graded
map of degree 0. Furthermore, given a graded R-module M , we identify M ⊗ C(R) and
C(R)⊗M with M . Hence, given a graded map g : M →M ′ of degree kg, we have e.g.

[〈D〉]⊗ g : M −→Ali×li ⊗M ′

x 7−→(ω−1(Di))⊗ g(x),

which is a graded map of degree kg.

Given objects o = (l, (i1, . . . , il), D), o′ = (l′, (i′1, . . . , i
′
l′), D

′) ∈ Obj twA, the graded
R-module (twA)(o, o′) of homomorphisms between o and o′ consists of the matrices
E = (euv)u∈[1,l],v∈[1,l′] ∈ Al×l

′ such that euv ∈ A(iu, i
′
v) for (u, v) ∈ [1, l] × [1, l′]. Given

z ∈ Z, the z-th homogeneous component (twA)(o, o′)z is given by the matrices E such
that euv ∈ Az for (u, v) ∈ [1, l]× [1, l′].

Suppose k ≥ 1. Given objects o0 = (l0, (i01, . . . , i
0
l0), D0), . . . , ok = (lk, (ik1, . . . , i

k
lk

), Dk) ∈
Obj twA and given E1 ∈ (twA)(o0, o1), . . . , Ek ∈ (twA)(ok−1, ok), we define

mtw
k (E1 ⊗ . . .⊗ Ek)

:=
∑

all jx ≥ 0

(−1)
k(k−1)

2

(
ω ◦ b(j0+...+jk)+k ◦

(
[〈D0〉]⊗j0 ⊗ idl

0×l1 ⊗[〈D1〉]⊗j1⊗ (77)

. . .⊗ [〈Dk−1〉]⊗jk−1 ⊗ idl
k−1×lk ⊗[〈Dk〉]⊗jk

)
◦ (ω−1)⊗k

)
(E1 ⊗ . . .⊗ Ek).

Given objects o0, . . . , ok−1, o
′
0, . . . , o

′
k−1 ∈ Obj twA such that there exists i ∈ [0, k − 1]

with o′i 6= oi+1, we set mtw
k |(twA)(o0,o′0)⊗...⊗(twA)(ok−1,o

′
k−1) := 0.
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Note that this definition of twA is different from the definition given originally by Keller
in [11, section 7.6]. For details, see Remark 132.

Proof. We need to show that (Obj twA, twA, (mtw
k )k≥1) is an A∞-category. By con-

struction, (Obj twA, twA, (mtw
k )k≥1) is a pre-A∞-category. It is readily checked that

(Obj twA, (mtw
k )k≥1) is a pre-A∞-algebra.

We have the corresponding pre-A∞-triple ((mtw
k )k≥1, (b

tw
k )k≥1, ∗). Suppose given k ≥ 1.

Suppose given o0 = (l0, (i01, . . . , i
0
l0), D0), . . . , ok = (lk, (ik1, . . . , i

k
lk

), Dk) ∈ Obj twA. From
the definition of the mtw

k we obtain via the bar construction and (3) the definition of the
btw
k : On S(twA)(o0, o1)⊗ . . .⊗ S(twA)(ok−1, ok), we have

btw
k =

∑
all jx ≥ 0

b(j0+...+jk)+k ◦ ([〈D0〉]⊗j0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j1⊗

. . . ⊗ [〈Dk−1〉]⊗jk−1 ⊗ idl
k−1×lk ⊗[〈Dk〉]⊗jk). (78)

Hence, we have on S(twA)(o0, o1)⊗ . . .⊗ S(twA)(ok−1, ok)∑
k=r+s+t
r,t≥0,s≥1

btw
r+1+t ◦ (1⊗r ⊗ btw

s ⊗ 1⊗t)

=
∑

k=r+s+t
r,t≥0,s≥1

all jx,j′x,j′′x≥0

b j0+...+jr
+j′′0 +...+j′′t

+r+1+t

◦
(
[〈D0〉]⊗j0⊗ idl

0×l1⊗[〈D1〉]⊗j1⊗ . . .⊗ idl
r−1×lr⊗[〈Dr〉]⊗jr ⊗ idl

r×lr+s

⊗ [〈Dr+s〉]⊗j′′0 ⊗ idl
r+s×lr+s+1 ⊗[〈Dr+s+1〉]⊗j′′1 ⊗ . . .⊗ idl

r+s+t−1×lr+s+t ⊗ [〈Dr+s+t〉]⊗j′′t
)

◦
(

1⊗r ⊗
(
b(j′0+...+j′s)+s ◦ ([〈Dr〉]⊗j′0 ⊗ idl

r×lr+1 ⊗[〈Dr+1〉]⊗j′1⊗

. . .⊗ idl
r+s−1×lr+s ⊗[〈Dr+s〉]⊗j′s)

)
⊗ 1⊗t

)
r′=r+j0+...+jr,
s′=s+j′0+...+j′s,
t′=t+j′′0 +...+j′′t=
(1)

∑
r′+s′+t′=(j′′′0 +...+j′′′k )+k,

all j′′′x ≥0,
r′,t′≥0,s′≥1,

bs′ has at least one
idx×y as argument

br′+1+t′ ◦ (1⊗r
′ ⊗ bs′ ⊗ 1⊗t

′
)

◦
(

[〈D0〉]⊗j′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′1 . . .⊗ idl

k−1×lk ⊗[〈Dk〉]⊗j′′′k
)

(76)
=

∑
r′+s′+t′=(j′′′0 +...+j′′′k )+k,

all j′′′x ≥0,
r′,t′≥0,s′≥1

br′+1+t′ ◦ (1⊗r
′ ⊗ bs′ ⊗ 1⊗t

′
)

◦
(

[〈D0〉]⊗j′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′1 . . .⊗ idl

k−1×lk ⊗[〈Dk〉]⊗j′′′k
)

(12)
= 0.
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Since (Obj twA, twA, (mtw
k )k≥1) is a pre-A∞-category, (12)[k] holds for k ≥ 1. Thus by

Theorem 48, the tuple (twA, (mtw
k )k≥1) is an A∞-algebra. So (Obj twA, twA, (mtw

k )k≥1)
is an A∞-category.

6.3. Functors

Suppose given A∞-categories (ObjA,A, (mk)k≥1), (Obj Ǎ, Ǎ, (m̌k)k≥1) and an A∞-
functor (fObj, (fk)k≥1) from A to Ǎ. We have corresponding triples ((mk)k≥1, (bk)k≥1, b),
((m̌k)k≥1, (b̌k)k≥1, b̌) and ((fk)k≥1, (Fk)k≥1, F ).

Definition/Lemma 122. We define the A∞-functor tw f = (f tw
Obj, (f

tw
k )k≥1) from twA

to tw Ǎ as follows.

Given an object o = (l, (i1, . . . , il), D) ∈ Obj(twA), we define

f tw
Obj(o) := (l, (fObj(i1), . . . , fObj(il)),

∑
k≥1ω̌(Fk((ω

−1(D))⊗k)).

Note that as declared in Definition/Lemma 121, infinite sums are the sums of their
non-zero summands.

Suppose k ≥ 1. Given objects o0 = (l0, (i01, . . . , i
0
l0), D0), . . . , ok = (lk, (ik1, . . . , i

k
lk

), Dk) ∈
Obj twA and given E1 ∈ (twA)(o0, o1), . . . , Ek ∈ (twA)(ok−1, ok), we define

f tw
k (E1 ⊗ . . .⊗ Ek)

:=
∑

all jx ≥ 0

(−1)
k(k−1)

2

(
ω̌ ◦ F(j0+...+jk)+k ◦

(
[〈D0〉]⊗j0 ⊗ idl

0×l1 ⊗[〈D1〉]⊗j1⊗

. . .⊗ [〈Dk−1〉]⊗jk−1 ⊗ idl
k−1×lk ⊗[〈Dk〉]⊗jk

)
◦ (ω−1)⊗k

)
(E1 ⊗ . . .⊗ Ek).

Given objects o0, . . . , ok−1, o
′
0, . . . , o

′
k−1 ∈ Obj twA such that there exists i ∈ [0, k − 1]

with o′i 6= oi+1, we set f tw
k |(twA)(o0,o′0)⊗...⊗(twA)(ok−1,o

′
k−1) := 0.

Proof. We need to prove that tw f is an A∞-functor. First, we need to prove that
tw f is a pre-A∞-functor. The only non-immediate part is to prove that the images
of f tw

Obj are elements of Obj tw Ǎ. So suppose given o = (l, (i1, . . . , il), D) ∈ Obj twA.
We have f tw

Obj(o) := (l, (fObj(i1), . . . , fObj(il)), Ď), where Ď =
∑

k≥1 ω̌(Fk((ω
−1(D))⊗k).

Conditions (1) - (3) of Definition/Lemma 121 are readily checked. Condition (4) is proven
by the following.∑

k≥1

b̌k((ω̌
−1(Ď))⊗k) =

∑
k≥1

∑
j1,...,jk≥1

b̌k(Fj1((ω−1(D))⊗j1)⊗ . . .⊗ Fjk((ω−1(D))⊗jk))

(1)
=
∑
k≥1

∑
j1,...,jk≥1

(b̌k ◦ (Fj1 ⊗ . . .⊗ Fjk))((ω−1(D))⊗j1+...+jk)

L.50
=

∑
r,t≥0,s≥1

(Fr+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t))((ω−1(D))⊗r+s+t)
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(1)
=

∑
r,t≥0,s≥1

Fr+1+t((ω
−1(D))⊗r ⊗ bs((ω−1(D))⊗s)⊗ (ω−1(D))⊗t)

(76)
= 0

Thus tw f is a pre-A∞-functor. It is readily checked that (f tw
k )k≥1 is a pre-A∞-

morphism from A to Â. We have the corresponding triples ((mtw
k )k≥0, (b

tw
k )k≥1, ∗),

((m̌tw
k )k≥0, (b̌

tw
k )k≥1, ∗) and ((f tw

k )k≥0, (F
tw
k )k≥1, ∗). We obtain (btw

k )k≥1 and (b̌tw
k )k≥1

from (78). Suppose given k ≥ 1. Suppose given o0 = (l0, (i01, . . . , i
0
l0), D

0), . . . , ok =
(lk, (ik1, . . . , i

k
lk

), Dk) ∈ Obj(twA). From the definition of the f tw
k we obtain via the bar

construction and (3) the F tw
k : On S(twA)(o0, o1)⊗ . . .⊗ S(twA)(ok−1, ok), we have

F tw
k =

∑
all jx ≥ 0

F(j0+...+jk)+k ◦ ([〈D0〉]⊗j0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j1⊗

. . . ⊗ [〈Dk−1〉]⊗jk−1 ⊗ idl
k−1×lk ⊗[〈Dk〉]⊗jk). (79)

Note that for j ∈ [0, k], we have f tw
Obj(oj) = (lj, (fObj(i

j
1), . . . , fObj(i

j
lj

)), Ďj), where
Ďj =

∑
i≥1 ω̌(Fi((ω

−1(Dj))⊗i)). Hence for j ∈ [0, k], we have

[〈Ďj〉] =
∑
i≥1

Fi ◦ [〈Dj〉]⊗i. (80)

On S(twA)(o0, o1)⊗ . . .⊗ S(twA)(ok−1, ok), we have∑
k=r+s+t
r,t≥0,s≥1

F tw
r+1+t ◦ (1⊗r ⊗ btw

s ⊗ 1⊗t)

=
∑

k=r+s+t
r,t≥0,s≥1

all jx,j′x,j′′x≥0

F j0+...+jr
+j′′0 +...+j′′t

+r+1+t

◦
(
[〈D0〉]⊗j0⊗ idl

0×l1⊗[〈D1〉]⊗j1⊗ . . .⊗ idl
r−1×lr⊗[〈Dr〉]⊗jr ⊗ idl

r×lr+s

⊗ [〈Dr+s〉]⊗j′′0 ⊗ idl
r+s×lr+s+1 ⊗[〈Dr+s+1〉]⊗j′′1 ⊗ . . .⊗ idl

r+s+t−1×lr+s+t ⊗ [〈Dr+s+t〉]⊗j′′t
)

◦
(

1⊗r ⊗
(
b(j′0+...+j′s)+s ◦ ([〈Dr〉]⊗j′0 ⊗ idl

r×lr+1 ⊗[〈Dr+1〉]⊗j′1⊗

. . .⊗ idl
r+s−1×lr+s ⊗[〈Dr+s〉]⊗j′s)

)
⊗ 1⊗t

)
r′=r+j0+...+jr,
s′=s+j′0+...+j′s,
t′=t+j′′0 +...+j′′t=
(1)

∑
r′+s′+t′=(j′′′0 +...+j′′′k )+k,

all j′′′x ≥0,
r′,t′≥0,s′≥1,

bs′ has at least one
idx×y as argument

Fr′+1+t′ ◦ (1⊗r
′ ⊗ bs′ ⊗ 1⊗t

′
)

◦
(

[〈D0〉]⊗j′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′1 ⊗ . . .⊗ idl

k−1×lk ⊗[〈Dk〉]⊗j′′′k
)
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(76)
=

∑
r′+s′+t′=(j′′′0 +...+j′′′k )+k,

all j′′′x ≥0,
r′,t′≥0,s′≥1

Fr′+1+t′ ◦ (1⊗r
′ ⊗ bs′ ⊗ 1⊗t

′
)

◦
(

[〈D0〉]⊗j′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′1 ⊗ . . .⊗ idl

k−1×lk ⊗[〈Dk〉]⊗j′′′k
)

L.50
=

∑
r≥1,

j1+...+jr=(j′′′0 +...+j′′′k )+k,

all jx≥1, all j′′′x ≥0

b̌r ◦ (Fj1 ⊗ . . .⊗ Fjr)

◦
(

[〈D0〉]⊗j′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′1 ⊗ . . .⊗ idl

k−1×lk ⊗[〈Dk〉]⊗j′′′k
)

(1)
=

∑
r′≥1,

j′′1 +...+j′′
r′=(j′′′′0 +...+j′′′′k )+k,

all j′′x≥1, all j′x,j′′′′x ≥0,
each F ′′jx has at least one

idx×y as argument

b̌r′+j′0+...+j′
r′

◦ (
[∑

n≥1Fn ◦ [〈D0〉]⊗n
]⊗j′0 ⊗ Fj′′1 ⊗ [∑n≥1Fn ◦ [〈D∗〉]⊗n

]⊗j′1⊗
. . . ⊗ Fj′′

r′
⊗
[∑

n≥1Fn ◦ [〈Dk〉]⊗n
]⊗j′

r′ )

◦
(

[〈D0〉]⊗j′′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′′1 ⊗ . . .⊗ idl

k−1×lk ⊗(ω−1(Dk))⊗j
′′′′
k

)
r=r′,
(80)

=
∑
r≥1,

j′′1 +...+j′′r =(j′′′′0 +...+j′′′′k )+k,

all j′′x≥1, all j′x,j′′′′x ≥0,
each Fj′′x has at least one

idx×y as argument

b̌r+j′0+...+j′r

◦ ([〈Ď0〉]⊗j′0 ⊗ Fj′′1 ⊗ [〈Ď∗〉]⊗j′1 ⊗ . . .⊗ Fj′′r ⊗ [〈Ďk〉]⊗j′r)

◦
(

[〈D0〉]⊗j′′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′′1 ⊗ . . .⊗ idl

k−1×lk ⊗(ω−1(Dk))⊗j
′′′′
k

)
(1)
=

∑
r≥1,

j′′1 +...+j′′r =(j′′′′0 +...+j′′′′k )+k,

all j′′x≥1, all j′′′′x ≥0,
each Fj′′x has at least one

idx×y as argument

b̌tw
r ◦ (Fj′′1 ⊗ . . .⊗ Fj′′r )

◦
(

[〈D0〉]⊗j′′′′0 ⊗ idl
0×l1 ⊗[〈D1〉]⊗j′′′′1 ⊗ . . .⊗ idl

k−1×lk ⊗(ω−1(Dk))⊗j
′′′′
k

)
(1)
=

∑
r≥1, all jx≥1
j1+...+jr=k

b̌tw
r ◦ (F tw

j1
⊗ . . .⊗ F tw

jr ).

Here, the index ∗ is the number of arguments of Fj′′1 of type idx×y. Hence, since
(Obj twA, twA, (mtw

k )k≥1) and (Obj tw Ǎ, tw Ǎ, (m̌tw
k )k≥1) are pre-A∞-categories and

since (f tw
Obj, (f

tw
k )k≥1) is a pre-A∞-functor from twA to tw Ǎ, eq. (14)[k] holds for k ≥ 1.
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Thus Lemma 50 shows that tw f is an A∞-functor.

Lemma 123. Suppose given a commutative diagram of complexes as follows.

A //

a
��

B //

b
��

C

c
��

Ǎ // B̌ // Č

(81)

If the rows are short exact and if a and c are quasi-isomorphisms, then b is a quasi-
isomorphism.

Proof. Each row of (81) is a short exact sequence of complexes and hence gives rise to
a long exact sequence, cf. e.g. [26, Theorem 1.3.1]. By naturality of these long exact
sequences and since the vertical arrows of (81) give a morphism of short exact sequences
of complexes, we obtain a morphism between the long exact sequences as follows:

· · · // Hj−1C ∂ //

Hj−1c
��

HjA //

Hja
��

HjB //

Hjb
��

HjC ∂ //

Hjc
��

Hj+1A //

Hj+1a
��

· · ·

· · · // Hj−1Č
∂ // HjǍ // HjB̌ // HjČ

∂ // Hj+1Ǎ // · · ·

(82)

Suppose given j ∈ Z. Since a and c are quasi-isomorphisms, the maps Hj−1c, Hja, Hjc
and Hj+1a are isomorphisms. So application of the five lemma to (82) yields that Hjb is
an isomorphism for j ∈ Z. Hence, b is a quasi-isomorphism.

Recall that we have A∞-categories (ObjA,A, (mk)k≥1), (Obj Ǎ, Ǎ, (m̌k)k≥1) and an
A∞-functor (fObj, (fk)k≥1) from A to Ǎ. Recall that we have corresponding triples
((mk)k≥1, (bk)k≥1, b), ((m̌k)k≥1, (b̌k)k≥1, b̌) and ((fk)k≥1, (Fk)k≥1, F ).

Proposition 124. If f is a local quasi-isomorphism (recall Definition 32), then tw f is
also a local quasi-isomorphism.

Proof. Suppose given objects o = (l, (i1, . . . , il), D), o′ = (l′, (i′1, . . . , i
′
l′), D

′) ∈ Obj(twA).
Let ǒ := fObj(o) =: (l, (̌i1, . . . , ǐl), Ď) and ǒ′ := fObj(o

′) =: (l′, (̌i′1, . . . , ǐ
′
l′), Ď

′). We need
to show that the complex morphism f tw

1 : ((twA)(o, o′),mtw
1 ) → ((tw Ǎ)(ǒ, ǒ′), m̌tw

1 ) is
a quasi-isomorphism. Recall that (twA)(o, o′) (and similarly (tw Ǎ)(ǒ, ǒ′)) consists of
matrices (euv)u∈[1,l],v∈[1,l′] ∈ Al×l

′ such that euv ∈ A(iu, i
′
v) for u ∈ [1, l], v ∈ [1, l′].

Write λ := l · l′. We arrange the elements of [1, l] × [1, l′] into a finite sequence
(u1, v1), . . . , (uλ, vλ) such that for k, k′ ∈ [1, λ], we have k ≤ k′ whenever uk ≥ uk′
and vk ≤ vk′ . I.e. when using the (uj, vj) as indices of entries of l × l′-matrices, indices
that are further to the right and upwards in the matrix appear later in the sequence. For
k ∈ [0, λ], we define the graded submodules

Vk := {(euv)u∈[1,l],v∈[1,l′] ∈ (twA)(o, o′) | eujvj = 0 for j > k} ⊆ (twA)(o, o′)
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V̌k := {(euv)u∈[1,l],v∈[1,l′] ∈ (tw Ǎ)(ǒ, ǒ′) | eujvj = 0 for j > k} ⊆ (tw Ǎ)(ǒ, ǒ′).

Note that for k ∈ [0, λ], we have

Vk ' ⊕j∈[1,k] A(iuj , i
′
vj

)

V̌k ' ⊕j∈[1,k] Ǎ(̌iuj , ǐ
′
vj

). (83)

Note that 0 = V0 ⊆ V1 ⊆ . . . ⊆ Vλ = (twA)(o, o′) and 0 = V0 ⊆ V1 ⊆ . . . ⊆ V̌λ =
(tw Ǎ)(ǒ, ǒ′).

On (twA)(o, o′), we have

mtw
1 =

∑
j0,j1≥0

(−1)0ω ◦ bj0+j1+1 ◦ ([〈D〉]⊗j0 ⊗ idl×l
′ ⊗[〈D′〉]⊗j1) ◦ ω−1

f tw
1 =

∑
j0,j1≥0

(−1)0ω̌ ◦ Fj0+j1+1 ◦ ([〈D〉]⊗j0 ⊗ idl×l
′ ⊗[〈D′〉]⊗j1) ◦ ω−1.

Similarly, we have on (tw Ǎ)(ǒ, ǒ′)

m̌tw
1 =

∑
j0,j1≥0

(−1)0ω̌ ◦ b̌j0+j1+1 ◦ ([〈Ď〉]⊗j0 ⊗ idl×l
′ ⊗[〈Ď′〉]⊗j1) ◦ ω̌−1.

Hence since D,D′, Ď and Ď′ are strictly lower triangular and by the ordering of the
(uj, vj), we have for k ∈ [1, λ] and E ∈ Vk, Ě ∈ V̌k

mtw
1 (E) ∈ (ω ◦ b0+0+1 ◦ idl×l

′ ◦ω−1)(E) + Vk−1 = m1(E) + Vk−1

m̌tw
1 (Ě) ∈ (ω̌ ◦ b̌0+0+1 ◦ idl×l

′ ◦ ω̌−1)(Ě) + V̌k−1 = m̌1(Ě) + V̌k−1

f̌ tw
1 (E) ∈ (ω̌ ◦ F0+0+1 ◦ idl×l

′ ◦ω−1)(E) + V̌k−1 = f1(E) + V̌k−1. (84)

In particular, we have mtw
1 (Vk) ⊆ Vk, f tw

1 (Vk) ⊆ V̌k and m̌1(V̌k) ⊆ V̌k for k ∈ [0, ll′].

Thus f tw
1 restricts for k ∈ [0, λ] to a complex morphism from (Vk,m

tw
1 |

Vk
Vk

) to (V̌k, m̌
tw
1 |

V̌k
V̌k

).
We prove by induction on k ∈ [0, λ] that

f tw
1 |

V̌k
Vk

: (Vk,m
tw
1 |

Vk
Vk

)→ (V̌k, m̌
tw
1 |

V̌k
V̌k

) (85)

is a quasi-isomorphism. The initial step k = 0 follows from V0 = 0 and V̌0 = 0.
For the induction step suppose given a k ∈ [0, λ−1] such that (85) is a quasi-isomorphism.

Consider the following diagram.

(Vk,m
tw
1 |

Vk
Vk

)
⊆ //

f tw
1 |

V̌k
Vk��

(Vk+1,m
tw
1 |

Vk+1

Vk+1
)

p //

f tw
1 |

V̌k+1
Vk+1��

(A(iuk+1
, i′vk+1

),m1)

f1|
Ǎ(̌iuk+1

,̌i′vk+1
)

A(iuk+1
,i′vk+1

)
��

(V̌k, m̌
tw
1 |

V̌k
V̌k

)
⊆ // (V̌k+1, m̌

tw
1 |

V̌k+1

V̌k+1
)

p̌ // (Ǎ(̌iuk+1
, ǐ′vk+1

), m̌1)

(86)
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Here, p and p̌ are the maps p : Vk+1 → A(iuk+1
, i′vk+1

), (euv)u∈[1,l],v∈[1,l′] 7→ euk+1vk+1
and

p̌ : V̌k+1 → Ǎ(̌iuk+1
, ǐ′vk+1

), (euv)u∈[1,l],v∈[1,l′] 7→ euk+1vk+1
(These are effectively the residue

class maps Vk+1 → Vk+1/Vk and V̌k+1 → V̌k+1/V̌k, cf. (83)). The maps denoted by
⊆ are the inclusion maps. By (84), all maps in (86) are complex morphisms and
(86) is commutative. By construction, each row of (86) is a short exact sequence of
complexes. Consider the vertical morphisms in (86): By the induction hypothesis, the
left morphism is a quasi-isomorphism. Since f is a local quasi-isomorphism, the right
morphism is a quasi-isomorphism. So by Lemma 123, the morphism in the middle is a
quasi-isomorphism. This proves the induction step. Thus for k ∈ [0, λ], the morphism
(85) is a quasi-isomorphism. For k = λ we obtain in particular that

f tw
1 : ((twA)(o, o′),mtw

1 )→ ((tw Ǎ)(ǒ, ǒ′), m̌tw
1 )

is a quasi-isomorphism which completes the proof.

6.4. H0 tw Hom∗(·, ·)

Suppose given an R-algebra B. Suppose given a set I and suppose given complexes
(C(i), d(i)) over B for i ∈ I.

We define the A∞-category (I, A, (mk)k≥1) as in Example 31 and Lemma 33.

Definition/Remark 125. For an object o = (l, (i1, . . . , il), D = (Duv)u,v∈[1,l]) ∈
Obj twA, we define the complex (Co, do) over B as follows.

• We set Co := ⊕j∈[1,l]C
(ij). For j ∈ [1, l], let ιCoj : C(ij) → Co and πCoj : Co → C(ij)

be the canonical inclusions and projections of the direct sum Co.

• We set do : Co → Co, do :=
∑

j∈[1,l] ι
Co

j ◦ d(ij) ◦ πCoj +
∑

j,j′∈[1,l] ι
Co

j ◦Djj′ ◦ πC
o

j′ .

Proof. We need to prove that (Co, do) is actually a complex for o ∈ Obj twA. That is, we
need to prove (do)2 = 0. We have the corresponding pre-A∞-triple ((mk)k≥1, (bk)k≥1, ∗).
Recall that for k ≥ 3, we have mk = 0 hence bk = 0. By (76), we have

0 =
∑
k≥1

bk((ω
−1(D))⊗k) = b1(ω−1(D)) + b2((ω−1(D))⊗ (ω−1(D)))

(1)
= (b1 ◦ ω−1)(D)− (b2 ◦ (ω−1)⊗2)(D⊗2)

= (ω−1 ◦m1 ◦ ω ◦ ω−1)(D)− (ω−1 ◦m2 ◦ ω⊗2 ◦ (ω−1)⊗2)(D⊗2)

(3)
= (ω−1 ◦m1)(D) + (ω−1 ◦m2)(D⊗2) . (87)

In particular, we have 0 = m1(D) +m2(D⊗D). Breaking this equation of matrices down
into components, we obtain m1(Djj′′) +

∑
j′∈[1,l]m2(Djj′ ⊗ Dj′j′′) = 0 for j, j′′ ∈ [1, l].

Thus we have

(do)2 =

∑
j∈[1,l]

ιC
o

j ◦ d(ij) ◦ πCoj +
∑

j,j′∈[1,l]

ιC
o

j ◦Djj′ ◦ πC
o

j′

2

116



=
∑
j∈[1,l]

ιC
o

j ◦ (d(ij))2 ◦ πCoj +
∑

j,j′′∈[1,l]

ιC
o

j ◦ (d(ij) ◦Djj′′ +Djj′′ ◦ d(ij′′ )) ◦ πCoj′′

+
∑

j,j′,j′′∈[1,l]

ιC
o

j ◦Djj′ ◦Dj′j′′ ◦ πC
o

j′′

= 0 +
∑

j,j′′∈[1,l]

ιC
o

j ◦ dHom∗B(C
(ij′′ ),C(ij))

(Djj′′) ◦ πC
o

j′′ +
∑

j,j′,j′′∈[1,l]

ιC
o

j ◦m2(Djj′ ⊗Dj′j′′) ◦ πC
o

j′′

=
∑

j,j′′∈[1,l]

ιC
o

j ◦

m1(Djj′′) +
∑
j′∈[1,l]

m2(Djj′ ⊗Dj′j′′)

 ◦ πCoj′′ = 0.

Thus do is a differential.

Definition/Lemma 126. For objects o = (l, (i1, . . . , il), D), o′ = (l′, (i′1, . . . , i
′
l′), D

′) ∈
Obj twA, we define the map

Too′ : (twA)(o, o′) −→Hom∗B(Co′ , Co)

(euv)u∈[1,l],v∈[1,l′] 7−→
∑

u∈[1,l],v∈[1,l′]

ιC
o

u ◦ euv ◦ πC
o′

v .

For o = (l, (i1, . . . , il), D) ∈ Obj twA, we define the diagonal matrix do0 := (duv)u,v∈[1,l] ∈
A1(o, o) given by duu := d(iu) for u ∈ [1, l] and duv := 0 for u, v ∈ [1, l] with u 6= v.

(a) For o, o′ ∈ Obj twA, the map Too′ is bijective.

(b) For o = (l, (i1, . . . , il), D) ∈ Obj twA, we have do = Too(d
o
0 +D).

(c) For o, o′, o′′ ∈ Obj twA, have mtw
2 |(twA)(o,o′)⊗(twA)(o′,o′′) = m2|(twA)(o,o′)⊗(twA)(o′,o′′).

(d) For o, o′, o′′ ∈ Obj twA, E ∈ (twA)(o, o′) and E ′ ∈ (twA)(o′, o′′), we have

Too′′(m2(E ⊗ E ′)) = Too′(E) ◦ To′o′′(E ′).

(e) For o, o′ ∈ Obj twA and E ∈ (twA)(o, o′), we have

Too′(m
tw
1 (E)) = dHom∗B(Co′ ,Co)(Too′(E)).

Thus Too′ : ((twA)(o, o′),mtw
1 )→ (Hom∗B(Co′ , Co), dHom∗B(Co′ ,Co)) is by (a) an isomor-

phism of complexes.

(f) We have mtw
k = 0 for k ≥ 3.

(g) H0(twA) has identities. I.e. it is a category.

(h) We obtain a functor Q : H0(twA)→ B-Mod by setting

• For o ∈ Obj twA = Obj H0(twA), we set Q(o) := H0(Co, do).

• For o, o′ ∈ Obj twA = Obj H0(twA) and f̄ = f+B0(twA)(o, o′) ∈ H0(twA)(o, o′)
for some f ∈ Z0(twA)(o, o′), we set

Qoo′(f̄) := H0(Too′(f)) ∈HomB(H0(Co′ , do
′
),H0(Co, do)) = HomB(Q(o′), Q(o))

(note the reversal of o and o′).
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Proof. We have the corresponding pre-A∞-triple ((mk)k≥1, (bk)k≥1, ∗).
(a) and (b) hold by construction.
(c): Suppose o = (l, (i1, . . . , il), D), o′ = (l′, (i′1, . . . , i

′
l′), D

′), o′′ = (l′′, (i′′1, . . . , i
′′
l′′), D

′′) ∈
Obj twA. Since mk = 0 for k ≥ 3, we have bk = 0 for k ≥ 3. Thus in the definition
of m2 (cf. (77)), all summands with j0 + . . . + jk 6= 0 are zero. Hence, we have on
(twA)(o, o′)⊗ (twA)(o′, o′′)

mtw
2 =(−1)

2(2−1)
2 ω ◦ b2 ◦ (idl×l

′ ⊗ idl
′×l′′) ◦ (ω−1)⊗2 = −ω ◦ b2 ◦ (ω−1)⊗2

= − ω ◦ ω−1 ◦m2 ◦ ω⊗2 ◦ (ω−1)⊗2 (3)
= m2.

(d): Suppose o = (l, (i1, . . . , il), D), o′ = (l′, (i′1, . . . , i
′
l′), D

′), o′′ = (l′′, (i′′1, . . . , i
′′
l′′), D

′′) ∈
Obj twA, E = (euv)u∈[1,l],v∈[1,l′] ∈ (twA)(o, o′) and E ′ = (e′uv)u∈[1,l′],v∈[1,l′′] ∈ (twA)(o′, o′′).
We have

Too′(E) ◦ To′o′′(E ′) =

 ∑
j∈[1,l],j′∈[1,l′]

ιC
o

j ◦ ejj′ ◦ πC
o′

j′

 ◦
 ∑
j′∈[1,l′],j′′∈[1,l′′]

ιC
o′

j′ ◦ e′j′j′′ ◦ πC
o′′

j′′


=

∑
j∈[1,l],j′∈[1,l′],j′′∈[1,l′′]

ιC
o

j ◦ ejj′ ◦ e′j′j′′ ◦ πC
o′′

j′′

=
∑
j∈[1,l],
j′′∈[1,l′′]

ιC
o

j ◦

 ∑
j′∈[1,l′]

m2(ejj′ ⊗ e′j′j′′)

 ◦ πCo′′j′′ = Too′′(m2(E ⊗ E ′)).

(e): Suppose given o = (l, (i1, . . . , il), D), o′ = (l′, (i′1, . . . , i
′
l′), D

′) ∈ Obj twA. Suppose
given a homogeneous element E = (euv)u∈[1,l],v∈[1,l′] ∈ (twA)(o, o′)kE for some kE ∈ Z.
Since bk = 0 for k ≥ 3, we have

mtw
1 (E)

(77)
= (−1)0

(
ω ◦

(
b1 ◦ idl×l

′
+b2 ◦ ([〈D〉]⊗ idl×l

′
+ idl×l

′ ⊗[〈D′〉])
)
◦ (ω−1)⊗1

)
(E)

(1)
=ω

(
b1(ω−1(E)) + b2

(
ω−1(D)⊗ ω−1(E) + ω−1(E)⊗ ω−1(D′)

))
=ω

(
(ω−1 ◦m1 ◦ ω)(ω−1(E))

+(ω−1 ◦m2 ◦ ω⊗2)
(
ω−1(D)⊗ ω−1(E) + ω−1(E)⊗ ω−1(D′)

))
=m1(E) + (m2 ◦ ω⊗2)(ω−1(D)⊗ ω−1(E) + ω−1(E)⊗ ω−1(D′))

(1)
=m1(E) +m2(ω(ω−1(D))⊗ ω(ω−1(E)) + (−1)kE−1ω(ω−1(E))⊗ ω(ω−1(D′)))

=m1(E) +m2(D ⊗ E − (−1)kEE ⊗D′).

Thus we have

Too′(m
tw
1 (E))

=Too′
(
(m1(E) +m2 ◦ (D ⊗ E − (−1)kEE ⊗D′)

)
(d)
=

 ∑
j∈[1,l],j′∈[1,l′]

ιC
o

j ◦m1(ejj′) ◦ πC
o′

j′

+ Too(D) ◦ Too′(E)− (−1)kEToo′(E) ◦ To′o′(D′)
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=
∑

j∈[1,l],j′∈[1,l′]

ιC
o

j ◦ dHom∗B(C(j′),C(j))(ejj′) ◦ π
Co
′

j′

+ Too(D) ◦ Too′(E)− (−1)kEToo′(E) ◦ To′o′(D′)

=
∑

j∈[1,l],j′∈[1,l′]

ιC
o

j ◦ (d(j) ◦ ejj′ − (−1)kEejj′ ◦ d(j′)) ◦ πCo
′

j′

+ Too(D) ◦ Too′(E)− (−1)kEToo′(E) ◦ To′o′(D′)
=Too(d

o
0) ◦ Too′(E)− (−1)kEToo′(E) ◦ To′o′(do

′

0 )

+ Too(D) ◦ Too′(E)− (−1)kEToo′(E) ◦ To′o′(D′)
=Too(D + do0) ◦ Too′(E)− (−1)kEToo′(E) ◦ To′o′(D′ + do

′

0 )

(b)
= do ◦ Too′(E)− (−1)kEToo′(E) ◦ do′

= dHom∗B(Co′ ,Co)(Too′(E)).

(f): For k ≥ 3, we have mk = 0, hence bk = 0. Thus for k ≥ 3, all summands in (77) are
zero.

(g): By Definition/Remark 37, H0 twA is a semicategory. Suppose given o =
(l, (i1, . . . , il), D) ∈ Obj twA. Consider the diagonal matrix Z = (Zuv)u,v∈[1,l] ∈
(twA)(o, o)0 given by Zuu := idCiu ∈ A(iu, iu) for u ∈ [1, l] and Zuv := 0 for u, v ∈ [1, l]
with u 6= v. We have Too(Z) = idCo , so Too(Z) is in particular a complex morphism. Hence
0 = dHom∗B(Co,Co)(Too(Z))

(e)
= Too(m

tw
1 (Z)). Since Too is injective, we obtain mtw

1 (Z) = 0.
Hence, Z represents the homology class Z̄ := Z + B0(twA)(o, o) ∈ H0(twA)(o, o).

Suppose given o′ ∈ Obj twA. For all a ∈ Z0(twA)(o, o′) and b ∈ Z0(twA)(o′, o), assertion
(c) implies

mtw
2 (Z ⊗ a) = m2(Z ⊗ a) = a

mtw
2 (b⊗ Z) = m2(b⊗ Z) = b.

Hence, we have Z̄ ·ā = ā and b̄·Z̄ = b̄ for all ā ∈ H0(twA)(o, o′) and all b̄ ∈ H0(twA)(o′, o).
Thus Z̄ is the identity of the object o in H0(twA).

(h): We need to show the following.

(i) The map Q : Obj H0(twA)→ ObjB-Mod is well-defined.

(ii) For o, o′ ∈ Obj H0(twA) = Obj twA, the map

Qoo′ : H0(twA)(o, o′)→ HomB(Q(o′), Q(o))

is well-defined.

(iii) For o ∈ Obj H0(twA) = Obj twA, we have Qoo(ido) = idQ(o).

(iv) For o, o′, o′′ ∈ Obj H0(twA) = Obj twA and f ∈ H0(twA)(o, o′), g ∈ H0(twA)(o′, o′′),
we have Qoo′(f) ◦Qo′o′′(g) = Qoo′′(f · g).
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Assertion (i) is immediate from the definition of Q.
Assertion (ii) is proven as follows.
Suppose given o, o′ ∈ Obj H0(twA) = Obj twA. Suppose given f̄ ∈ H0(twA)(o, o′).
Suppose given f ∈ Z0(twA)(o, o′) such that f̄ = f + B0(twA)(o, o′). In particular, we
havemtw

1 (f) = 0. By (e), the map Too′(f) ∈ Hom0
B(Co′ , Co) is a complex morphism. Thus

H0Too′(f) : H0(Co′ , do
′
)→ H0(Co, do) exists. Suppose given f ′ ∈ Z0(twA)(o, o′) such that

f̄ = f ′ + B0(twA)(o, o′). I.e. f − f ′ ∈ B0(twA)(o, o′), which by (e) implies that the
complex morphisms Too′(f) and Too′(f ′) are homotopy equivalent. Therefore, Too′(f) and
Too′(f

′) induce the same maps in homology. In particular, we have H0Too′(f) = H0Too′(f
′).

This proves that Qoo′ is well-defined.
To prove assertion (iii), suppose given o ∈ Obj H0(twA) = Obj twA. By the proof of (g),
the identity ido ∈ H0(twA)(o, o) is represented by Z ∈ Z0(twA)(o, o), for which we have
Too(Z) = idCo . Hence Qoo(ido) = H0 idCo = idH0(Co,do) = idQ(o).
Assertion (iv) follows from (c), (d) and the functoriality of taking the 0-th homology.

Definition 127. We call a complex C = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · ) over B
a pr-complex if

• Ck = 0 for k < 0,

• all Ck are projective over B and

• HkC = 0 for k > 0.

The notation pr-complex is motivated by the fact each projective resolution of a B-module
is a pr-complex. Furthermore, we have

Remark 128. Suppose given a pr-complex C = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · ).
Then C is a projective resolution of H0C = Z0C/B0C = C0/(im d1) with the augmentation
ε : C0 → C0/(im d1) = H0C defined as the residue class map.

Lemma 129. Suppose given complexes (C, d) and (C ′, d′) over B. For e ∈ Hom1
B(C,C ′),

let de := ι ◦ d ◦ π+ ι ′ ◦ d′ ◦ π′+ ι ′ ◦ e ◦ π ∈ Hom1
B(C ⊕C ′, C ⊕C ′), where ι : C → C ⊕C ′,

ι ′ : C ′ → C ⊕ C ′ are the canonical inclusions and π : C ⊕ C ′ → C, π′ : C ⊕ C ′ → C ′ are
the canonical projections.

(a) We have e ∈ Z1 Hom∗B(C,C ′) ⇔ d2
e = 0. I.e. (C ⊕ C ′, de) is a complex if and only if

e ∈ Z1 Hom∗B(C,C ′).

(b) For e, e′ ∈ Z1 Hom∗B(C,C ′) with e− e′ ∈ B1 Hom∗B(C,C ′), the complexes (C ⊕C ′, de)
and (C ⊕ C ′, de′) are isomorphic.

Proof. (a): We have

d2
e = (ι ◦ d ◦ π + ι ′ ◦ d′ ◦ π′ + ι ′ ◦ e ◦ π)2

= ι ◦ d2 ◦ π + ι ′ ◦ (d′ ◦ e+ e ◦ d) ◦ π + ι ′ ◦ d′ 2 ◦ π′

= ι ′ ◦ dHom∗B(C,C′)(e) ◦ π.
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Hence d2
e = 0 ⇔ dHom∗B(C,C′)(e) = 0 ⇔ e ∈ Z1 Hom∗B(C,C ′).

(b): Suppose that e − e′ = dHom∗B(C,C′)(h) = d′ ◦ h − h ◦ d for some h ∈ Hom0
B(C,C ′).

Consider the morphism f := ι ◦ π+ ι ′ ◦ π′+ ι ′ ◦ h ◦ π ∈ Hom0
B(C ⊕C ′, C ⊕C ′). We have

f ◦ de − de′ ◦ f = (ι ◦ π + ι ′ ◦ π′ + ι ′ ◦ h ◦ π) ◦ (ι ◦ d ◦ π + ι ′ ◦ d′ ◦ π′ + ι ′ ◦ e ◦ π)

− (ι ◦ d ◦ π + ι ′ ◦ d′ ◦ π′ + ι ′ ◦ e′ ◦ π) ◦ (ι ◦ π + ι ′ ◦ π′ + ι ′ ◦ h ◦ π)

= ι ◦ (d− d) ◦ π + ι ′◦ (d′ − d′) ◦ π′ + ι ′◦ (e+ h ◦ d− d′ ◦ h− e′) ◦ π = 0.

Hence f : (C ⊕ C ′, de) → (C ⊕ C ′, de′) is a complex morphism. Since f is inverted by
f−1 = ι ◦ π + ι ′ ◦ π′ + ι ′ ◦ (−h) ◦ π ∈ Hom0

B(C ⊕ C ′, C ⊕ C ′), it is an isomorphism of
complexes.

Lemma 130. Suppose that (C(i), d(i)) is a pr-complex for i ∈ I.

Let filt be the full subcategory of B-Mod that consists of modules that have a finite
filtration such that each subquotient is isomorphic to some H0(C(i), d(i)) for some i ∈ I.

(a) For o ∈ Obj twA, the complex (Co, do) is a pr-complex.

(b) For each o ∈ Obj twA, the B-module H0(Co, do) is in Obj filt.

(c) Suppose given an A∞-category (ObjA′, A′, (m′k)k≥1) and a local quasi-isomorphism
of A∞-categories (fObj, (fk)k≥1) : (ObjA′, A′, (m′k)k≥1) → (I, A, (mk)k≥1). Sup-
pose that for each i ∈ I, there exists o′ ∈ ObjA′ such that H0(C

(i), d(i)) '
H0(C

(fObj(o
′)), d(fObj(o

′))). Then for each B-module M in Obj filt, there exists
o′ ∈ Obj twA′ such that H0(Co, do) 'M for o := f tw

Obj(o
′).

(d) Suppose given a B-module M in Obj filt. Then there exists o ∈ Obj twA such that
H0(Co, do) 'M .

(e) The functor Q defined in Definition/Lemma 126(h) from the category H0(twA) to
B-Mod is fully faithful.

(f) The functor Q defined in Definition/Lemma 126(h) from the category H0(twA) to
filt (cf. (b) ) is fully faithful and dense. I.e. it is an equivalence of categories from
H0(twA) to filt.

Proof. We have the corresponding pre-A∞-triple ((mk)k≥1, (bk)k≥1, ∗).
(a): Suppose given o = (l, (i1, . . . , il), D) ∈ Obj twA. We need to show that (Co, do) is a
pr-complex. The first two properties given in Definition 127 follow from Co = ⊕j∈[1,l]C

(ij)

and the fact that the (C(i), d(i)) are pr-complexes. We prove the third property by
induction on l ≥ 0.
The assertion holds for l = 0 since then Co is the zero complex, hence Hk(C

o, do) = 0 for
k ∈ Z.
For the induction step assume that the assertion holds for an l ≥ 0. Suppose given
o = (l + 1, (i1, . . . , il+1), D = (Duv)u,v∈[1,l+1]) ∈ Obj twA. Let ǒ := (1, (il+1), Ď := (0)) ∈
Obj twA. Let ô := (l, (i1, . . . , il), D̂ := (Duv)u,v∈[1,l]). We prove ô ∈ Obj twA: Properties

121



(1), (2) and (3) in Definition/Lemma 121 follow from the respective properties of o. Note
that since o ∈ Obj twA, we have 0 =

∑
k≥1 bk((ω

−1(D))⊗k) =: D̄ = (D̄uv)u,v∈[1,l+1]. Since
D can be described as a block matrix of the form

D =

(
D̂ 0

λ 0 = Ď

)
, (88)

for some 1× l-matrix λ ∈ A1×l, we have

(D̄uv)u∈[1,l],v∈[1,l] =
∑
k≥1

bk((ω
−1(D̂))⊗k).

So since D̄ = 0, we have
∑

k≥1 bk((ω
−1(D̂))⊗k) = 0. This completes the proof that

ô ∈ Obj twA.

Note that (C ǒ, dǒ) = (C(il+1), d(il+1)). We identify Co = ⊕j∈[1,l+1]C
(ij) =

(
⊕j∈[1,l]C

(ij)
)
⊕

C(ij+1) with C ô ⊕ C ǒ =
(
⊕j∈[1,l]C

(ij)
)
⊕ C(ij+1). Let ι ô : C ô → Co and ι ǒ : C ǒ → Co be

the inclusion maps. Let πô : Co → C ô and πǒ : Co → C ǒ be the projection maps.

By (88) and Definition/Lemma 126(b), we have

do =Too(d
o
0 +D)

= ι ô ◦ Tôô(dô0) ◦ πô + ι ǒ ◦ Tǒǒ(dǒ0) ◦ πǒ
+ ι ô ◦ Tôô(Dô) ◦ πô + ι ǒ ◦ Tǒǒ(Ď) ◦ πǒ + ι ǒ ◦ Tǒô(λ) ◦ πô

= ι ô ◦ dô ◦ πô + ι ǒ ◦ dǒ ◦ πǒ + ι ǒ ◦ Tǒô(λ) ◦ πô.

Hence, we have

πô ◦ do = dô ◦ πô
do ◦ ι ǒ = ι ǒ ◦ dǒ.

So πô and ι ǒ are morphisms of complexes. Hence, we obtain the short exact sequence of
complexes

C ǒ ι ǒ−→ Co πô−→ C ô. (89)

Since (C ǒ, dǒ) = (C(il+1), d(il+1)) and since (C(il+1), d(il+1)) is a pr-complex, we have
Hk(C

ǒ, dǒ) = 0 for k > 0. By the induction hypothesis, we have Hk(C
ô, dô) = 0 for k > 0.

Thus considering the long exact sequence arising from (89) (cf. e.g. [26, Theorem 1.3.1]),
we obtain Hk(C

o, do) = 0 for k > 0. Thus the assertion holds for l + 1, which completes
the induction step.

(b): We need to prove the assertion for all o = (l, (i1, . . . , il), D) ∈ Obj twA. We show
the assertion by induction on l ≥ 0. The initial step l = 0 holds since then Co = 0, hence
H0(Co, do) = 0 which implies the assertion.
For the induction step, assume that the assertion holds for some l ≥ 0. Suppose
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given o = (l + 1, (i1, . . . , il+1), D) ∈ Obj twA. In the same way as in the proof of
(a), we obtain ô := (l, (i1, . . . , il), D̂ = (Duv)u,v∈[1,l]) ∈ Obj twA, ǒ := (1, (il+1), Ď :=
(0)) ∈ Obj twA and the short exact sequence of complexes (89). Since (a) implies
Hk(C

o, do) = Hk(C
ô, dô) = Hk(C

ǒ, dǒ) = 0 for k ∈ Z \ {0}, the only part of the long exact
sequence arising from (89) (cf. e.g. [26, Theorem 1.3.1]) that may be non-zero is the short
exact sequence

H0(C ǒ, dǒ)
H0ι ǒ−−→ H0(Co, do)

H0πô−−−→ H0(C ô, dô).

By the induction hypothesis, H0(C ô, dô) has a finite filtration such that each subquotient
is isomorphic to H0(C(i), d(i)) for some i ∈ I. Since H0(C ǒ, dǒ) = H0(C(il+1), d(il+1)), this
also holds for H0(Co, do). This completes the induction step.

(c): We have the corresponding triples ((m′k)k≥1, (b
′
k)k≥1, ∗) and ((fk)k≥1, (Fk)k≥1, ∗).

Suppose given a B-module N and a filtration N = N0 > . . . > Nl = 0 such that for
j ∈ [0, l − 1], the module Nj/Nj+1 is isomorphic to H0(C

(i), d(i)) for an i ∈ I. We will
prove that there exists o′ = (l, (i′1, . . . , i

′
l), D

′) ∈ Obj twA′ such that for o := f tw
Obj(o

′) ∈
Obj twA, we have N ' H0(Co, do). We prove this by induction on the filtration length
l ≥ 0.
For the initial step, let l = 0. Thus N = 0 and N = H0(C

o, do) for o := (0, (), ()) ∈
Obj twA (the third entry is the 0×0-matrix, hence it has no entries). For o′ := (0, (), ()) ∈
Obj twA′, we have o = f tw

Obj(o
′). This proves the initial step l = 0.

For the induction step, assume that for a l ≥ 0, the assertion holds for modules with
filtration length ≤ l. Suppose given a module N and a filtration N = N0 > . . . > Nl+1 = 0
such that for j ∈ [0, l] the module Nj/Nj+1 is isomorphic to H0(C

(i), d(i)) for an i ∈ I.
By the induction hypothesis, there exists ô′ = (l, (i′1, . . . , i

′
l), D̂

′) ∈ Obj twA′ such that
for f tw

Obj(ô
′) =: (l, (i1, . . . , il), D̂) =: ô ∈ Obj twA, we have N/Nl ' H0(C

ô, dô). The
assumptions yield an i′l+1 ∈ ObjA′ such that for il+1 := fObj(i

′
l+1), we have Nl =

Nl/Nl+1 ' H0(C
(il+1), d(il+1)). Thus setting ǒ′ := (1, (i′l+1), (0) =: Ď′) ∈ Obj twA′ and

ǒ := f tw
Obj(ǒ

′) = (1, (il+1), (0) =: Ď) ∈ Obj twA, we have Nl ' H0(C ǒ, dǒ).

By Remark 128, there exist ε̂ : C ô
0 → N/Nl and ε̌ : C ǒ

0 → Nl such that (C ô, dô) is a
projective resolution of N/Nl with augmentation ε̂ and (C ǒ, dǒ) is a projective resolution
of Nl with augmentation ε̌. Consider the following diagram.

0

��
· · · // C ǒ

2
// C ǒ

1
// C ǒ

0
ε̌ // Nl

//

ι

��

0

N

π
��

· · · // C ô
2

// C ô
1

// C ô
0

ε̂ // N/Nl
//

��

0

0
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Here, ι : Nl → N is the inclusion map and π : N → N/Nl is the residue class map. The
column is a short exact sequence. The rows are the augmented projective resolutions
obtained from C ǒ and C ô. Let C := C ô ⊕ C ǒ. Let ι ô : C ô → C and ι ǒ : C ǒ → C be
the inclusion maps. Let πô : C → C ô and πǒ : C → C ǒ be the projection maps. By the
horseshoe lemma (cf. e.g. [26, Lemma 2.2.8]), there exists a differential 0d on C such that

C ǒ ι ǒ−→ C
πô−→ C ô

is a short exact sequence of complexes and such that H0(C, 0d) ' N . We have

πô ◦ 0d ◦ ι ô = dô ◦ πô ◦ ι ô = dô

πǒ ◦ 0d ◦ ι ǒ =πǒ ◦ ι ǒ ◦ dǒ = dǒ

πô ◦ 0d ◦ ι ǒ = dô ◦ πô ◦ ι ǒ = 0.

Thus we obtain the well-known result (cf. e.g. [26, Exercise 2.2.4]) that 0d is of the form

0d = ι ô ◦ dô ◦ πô + ι ǒ ◦ 0λ ◦ πô + ι ǒ ◦ dǒ ◦ πǒ

for some 0λ ∈ Hom1
B(C ô, C ǒ). By Lemma 129(a), we have 0λ ∈ Z1 Hom∗B(C ô, C ǒ). By

Proposition 124, the complex morphism f tw
1 : ((twA′)(ǒ′, ô′),m′1

tw)→ ((twA)(ǒ, ô),mtw
1 )

is a quasi-isomorphism. By Definition/Lemma 126(e), the map Tǒô : ((twA)(ǒ, ô),mtw
1 )→

(Hom∗B(C ô, C ǒ), dHom∗B(C ô,C ǒ)) is an isomorphism of complexes. Thus there exists a cycle
τ ∈ Z1((twA′)(ǒ′, ô′),m′1

tw) such that for λ := (Tǒô(f
tw
1 (τ))) ∈ Z1 Hom∗B(C ô, C ǒ), we have

λ− 0λ ∈ B1 Hom∗B(C ô, C ǒ). Let

d := ι ô ◦ dô ◦ πô + ι ǒ ◦ λ ◦ πô + ι ǒ ◦ dǒ ◦ πǒ, (90)

which is by Lemma 129(a) a differential on C. Since λ − 0λ ∈ B1 Hom∗B(C ô, C ǒ),
Lemma 129(b) implies that the complexes (C, d) and (C, 0d) are isomorphic. In par-
ticular, we have H0(C, d) ' H0(C, 0d) ' N . Thus it suffices to show that (C, d) =

(Cf tw
Obj(o

′), df
tw
Obj(o

′)) for an o′ = (l + 1, (i′1, . . . , i
′
l+1), D′) ∈ Obj twA′. We define the matrix

D′ = (D′uv)u,v∈[1,l+1] ∈ (A′)(n+1)×(n+1) as follows. Note that τ ∈ (twA′)(ǒ′, ô′)1 is an
1× l-matrix. Let

(D′uv)u∈[1,l],v∈[1,l] := D̂′ (D′uv)u∈[1,l],v=l+1 := 0 ∈ (A′)l×1

(D′uv)u=l+1,v∈[1,l] := τ (D′uv)u=l+1,v=l+1 := Ď′ = 0 .

I.e. as a block matrix, we have

D′ =

(
D̂′ 0

τ Ď′ = 0

)
.

Let o′ := (l + 1, (i′1, . . . , i
′
l+1), D

′). We show o′ ∈ Obj twA′: Properties (1), (2) and (3)
in Definition/Lemma 121 hold by construction of o′. Let D̄ = (D̄uv)u∈[1,l+1],v∈[1,l+1] :=∑

k≥1 b
′
k(((ω

′)−1(D′))⊗k). Since D′ is strictly lower diagonal, we have

(D̄uv)u∈[1,l+1],v=l+1 = 0 ∈ (A′)(l+1)×1
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(D̄uv)u∈[1,l],v∈[1,l] =
∑
k≥1

b′k(((ω
′)−1(D̂′))⊗k)

ô′∈Obj twA′
= 0

(D̄uv)u=l+1,v∈[1,l] =
∑
k,k′≥0

b′k+1+k′(((ω
′)−1(Ď′))⊗k ⊗ (ω′)−1(τ)⊗ ((ω′)−1(D̂′))⊗k

′
)

(1)
=
∑
k,k′≥0

(b′k+1+k′ ◦ ([〈Ď′〉]⊗k ⊗ id1⊗l⊗[〈D̂′〉]⊗k′))((ω′)−1(τ))

= (−1)
1(1−1)

2 (ω′)−1(m′1
tw|(twA′)(ǒ′,ô′)(τ))

∗
= 0,

where at the step marked by "∗", we use τ ∈ Z1((twA′)(ǒ′, ô′),m′1
tw). Hence D̄ = 0

which proves property (4) in Definition/Lemma 121. Thus o′ ∈ Obj twA′.

Let o = f tw
Obj(o

′) ∈ Obj twA. By the choice of the ij for j ∈ [1, l + 1], we have o = (l +

1, (i1, . . . , il+1), D) for the matrix D = (Duv)u,v∈[1,l+1] =
∑

k≥1 ω(Fk(((ω
′)−1(D′))⊗k)) ∈

A(l+1)×(l+1).

Since D′ is a strictly lower diagonal matrix, we have

(Duv)u∈[1,l+1],v=l+1 = 0 ∈ A(l+1)×1

(Duv)u∈[1,l],v∈[1,l] =
∑
k≥1

ω(Fk(((ω
′)−1(D̂′))⊗k))

ô=f tw
Obj(ô

′)
= D̂

(Duv)u=l+1,v∈[1,l] =
∑
k,k′≥0

ω(Fk+1+k′(((ω
′)−1(Ď′))⊗k ⊗ (ω′)−1(τ)⊗ ((ω′)−1(D̂′))⊗k

′
))

(1)
=
∑
k,k′≥0

(ω ◦ Fk+1+k′ ◦ ([〈Ď′〉]⊗k ⊗ id1⊗l⊗[〈D̂′〉]⊗k′) ◦ (ω′)−1)(τ)

= (−1)
1(1−1)

2 f tw
1 |(twA)(ǒ,ô)(τ) = f tw

1 (τ). (91)

We identify Co = ⊕j∈[1,l+1]C
(ij) = (⊕j∈[1,l]C

(ij))⊕Cil+1 with C ô ⊕C ǒ = C. In particular,
we have Co = C. By Definition/Lemma 126(b), we have

do =Too(d
o
0 +D)

(91)
= ι ô ◦ Tôô(dô0) ◦ πô + ι ǒ ◦ Tǒǒ(dǒ0) ◦ πǒ + ι ô ◦ Tôô(D̂) ◦ πô + ι ǒ ◦ Tǒǒ(Ď) ◦ πǒ

+ ι ǒ ◦ Tǒô(f tw
1 (τ)) ◦ πô

D./L.126(b)
= ι ô ◦ dô ◦ πô + ι ǒ ◦ dǒ ◦ πǒ + ι ǒ ◦ Tǒô(f tw

1 (τ)) ◦ πô
= ι ô ◦ dô ◦ πô + ι ǒ ◦ dǒ ◦ πǒ + ι ǒ ◦ λ ◦ πô

(90)
= d.

Hence, we have (C, d) = (Co, do) = (Cf tw
Obj(o

′), df
tw
Obj(o

′)). In particular, we have N '
H0(C, d) = H0(C

f tw
Obj(o

′), df
tw
Obj(o

′)) for o′ := (l + 1, (i′1, . . . , i
′
l+1), D

′) ∈ Obj twA′. This
completes the induction step.
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(d): This follows from (c) by setting (ObjA′, A′, (m′k)k≥1) := (I, A, (mk)k≥1) and by
setting (fObj, (fk)k≥1) := (idI , strict∞(idA)). That is, we set the A∞-functor f to be the
identity on A.

(e): Suppose given o, o′ ∈ Obj H0(twA) = Obj twA. We have proven in Defini-
tion/Lemma 126(e) that Too′ : ((twA)(o, o′),mtw

1 )→ (Hom∗B(Co′ , Co), dHom∗B(Co′ ,Co)) is an
isomorphism of complexes. Recall that (Co, do) resp. (Co′ , do

′
) are projective resolutions

of H0(C
o, do) = Q(o) resp. H0(C

o′ , do
′
) = Q(o′). Suppose given f ∈ HomB(Q(o′), Q(o)).

By the comparison theorem (cf. e.g. [26, Comparison Theorem 2.2.6]), there exists
fZ ∈ Z0(Hom∗B(Co′ , Co), dHom∗B(Co′ ,Co)) such that f = H0fZ . Together with the fact that
Too′ is an isomorphism of complexes, this shows surjectivity of Qoo′ . Uniqueness up to
chain homotopy equivalence in the comparison theorem shows that fZ is unique up to
elements of B0(Hom∗B(Co′ , Co), dHom∗B(Co′ ,Co)). Once more since Too′ is an isomorphism of
complexes, this shows injectivity of Qoo′ . Note7.

(f): By (e), the functor Q is fully faithful. By (d), it is dense.

In the case of the ground ring being a field, a variant of the following theorem was given
by Keller, cf. [11, section 7.7]. Our constructions and methods are somewhat different, cf.
Remark 132.

Recall that R is a commutative ring. Recall that B is an R-algebra. Recall that I is a
set.

Theorem 131 (The filt construction). Suppose given B-modules Mi for i ∈ I. Suppose
that for i ∈ I, the complex (C(i), d(i)) is a projective resolution of Mi. Let filt be the full
subcategory of B-Mod consisting of the modules that have a finite filtration such that each
subquotient is isomorphic to Mi for an i ∈ I. Recall that the A∞-category (I, A, (mk)k≥1)
is defined by Example 31 and Lemma 33.

Suppose given an A∞-category (ObjA′, A′, (m′k)k≥1) and a local quasi-isomorphism of
A∞-categories f = (fObj, (fk)k≥1) : (ObjA′, A′, (m′k)k≥1)→ (I, A, (mk)k≥1) such that fObj

is surjective.

We have the equivalence of categories Q : H0 twA→ filt given by Lemma 130(f).

Then the semicategory H0 twA′ is a category and Q ◦ H0(tw f) : H0 twA′ → filt is an
equivalence of categories.

Note that such f and A′ may e.g. be obtained via Theorems 98 and 99.

7Basically, we have proven here H0(twA)(o, o′) ∼= H0(Hom∗B(C
o′ , Co)) = Ext0B(Q(o′), Q(o)) ∼=

HomB(Q(o′), Q(o)). Note in particular the connection of H0(twA) to Ext0. Analogous to the cate-
gory H0 twA, one may define the category H∗ twA. Instead of H0(twA)(o, o′) = Ext0(Q(o′), Q(o)) ∼=
HomB(Q(o′), Q(o)), we then obtain H∗(twA)(o, o′) = Ext∗(Q(o′), Q(o)). So instead of an equivalence
to the category filt, we obtain an equivalence to the category Ext∗ filt. The category Ext∗ filt
has the same objects as filt, but the morphisms are given by the elements of the Ext∗-spaces and
composition of morphisms is given by the Yoneda product.
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Proof. By Proposition 124, the morphism of A∞-categories tw f is a local quasi-
isomorphism. By Lemma 39, the semifunctor H0(tw f) : H0(twA′)→ H0(twA) is fully
faithful. Recall that H0(twA) is a category by Definition/Lemma 126(g), so Lemma 36
implies that H0(twA′) is a category and that H0(tw f) : H0(twA′) → H0(twA) is a
fully faithful functor. Thus Q ◦ H0(tw f) : H0(twA′)→ filt is a fully faithful functor.
The map fObj is surjective, so Lemma 130(c) yields that Q ◦ H0(tw f) is dense. Thus
Q ◦ H0(tw f) : H0(twA′)→ filt is an equivalence of categories.

Remark 132 (Comparison with Keller and Lefèvre-Hasegawa’s original version of the
filt construction). We compare our version of the filt construction with the version given
by Keller in [11].

• Keller’s version of the filt construction uses A∞-modules as intermediary step.
Given an A∞-category A, he defines the derived category D∞A of A∞-modules over
A. Then a factorisation of a Yoneda functor is used to obtain twA. Our version
uses a direct and explicit approach as detailed in the proof of Theorem 131.

• Keller uses a field as a ground ring. In particular, he may therefore use Kadeishvili’s
minimality theorem to obtain A′ and f . Our version is designed to work over
arbitrary ground rings, so it was necessary to generalize Kadeishvili’s minimality
theorem to obtain A′ and f , cf. section 4.

• Our definition of twA is slightly different from Keller’s version. Compared to our
version, Keller’s version of twA has more objects by allowing the objects of A to
be formally shifted in their degrees. Keller calls this ’closure under shifts’, cf. [11,
section 7.6]. The construction which is called filt(A) in Keller’s notation (cf. [11,
section 7.7]) is called H0 twA in our notation.
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A. Appendix

A.1. The principle of dependent choice and the Countable
Axiom of Choice

In the following, we briefly discuss the Principle of Dependent Choice, the Countable
Axiom of Choice and their relationship with the Axiom of Choice. Furthermore, we
refine the Principle of Dependent Choice to a version which we use e.g. in Kadeishvili’s
algorithm and its variants.

The Principle of Dependent Choice and the Countable Axiom of Choice are strictly
weaker8 than the Axiom of Choice. They formalize the common concept of "constructing
a sequence by successively constructing its elements". We will usually use them without
further comment.

Principle of Dependent Choice. Suppose given a binary relation ρ over a nonempty
set A such that for every a ∈ A there exists b ∈ A such that a ρ b. Then for each a0 ∈ A,
there is a sequence a1, a2, . . . in A such that

an ραn+1 for all n ∈ Z≥0.

Countable Axiom of Choice. Suppose given a countably infinite set I. Suppose given
nonempty sets Mi for i ∈ I. Then there is a function f : I → ∪i∈IMi such that f(i) ∈Mi

for i ∈ I.

We have the well-known assertions of

Lemma 133. (i) The Axiom of Choice implies the Principle of Dependent Choice.

(ii) The Principle of Dependent Choice implies the Countable Axiom of Choice.

Proof. Ad (i): Suppose given ρ, A and a0 as in the Principle of Dependent Choice. For
a ∈ A, let Aa := {b ∈ A | a ρ b}. We have Aa 6= ∅ for a ∈ A. By the Axiom of Choice,
there is a function f : A → A such that f(a) ∈ Aa for all a ∈ A. I.e. a ρ f(a) for all
a ∈ A. For i ∈ Z≥1, set ai := f i(a0). This way, we have ai ρ ai+1 for i ∈ Z≥0.

Ad (ii): Suppose given a countably infinite set I. Suppose given nonempty sets Ai for
i ∈ I. Since I is countably infinite, I is as a set isomorphic to Z≥0. So we may assume
I = Z≥0. For i ∈ Z≥0, let A′i := {(a, i) | a ∈ Ai}. The sets of tuples A′i, i ∈ Z≥0 are
pairwise disjoint. Let A′ :=

⋃
i∈Z≥0

A′i. We define on A′ 6= ∅ the relation ρ by

a ρ b ⇔ ∃j ∈ Z≥0 : a ∈ A′j, b ∈ A′j+1.

8For strictness of the implications given in Lemma 133, confer [8]. The Axiom of Choice is Form 1.
The Countable Axiom of Choice is Form 8. The Principle of Dependent Choice is Form 43 S. The
unprovability of the converse of the implications of Lemma 133 is referenced on p. 321 resp. p. 330
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A′ and ρ satisfy the assumptions of the Principle of Dependent Choice. Choose a′0 ∈ A′0.
The Principle of Dependent Choice yields a sequence a′1, a′2, . . . , such that a′i ρ a′i+1 for
i ∈ Z≥0.

We prove by induction on i ∈ Z≥0 that a′i ∈ A′i. The initial step is a′0 ∈ A′0, which
holds by choice of a′0. So suppose i ∈ Z≥0 and a′i ∈ A′i. We have a′i ρ a′i+1. I.e. a′i ∈ A′j,
a′i+1 ∈ A′j+1 for some j ∈ Z≥0. Since the A′k, k ∈ Z≥0 are pairwise disjoint, we have j = i.
Hence a′i+1 ∈ A′j+1 = A′i+1, which completes the induction step.

Thus we have a′i ∈ A′i for i ∈ Z≥0. I.e. for i ∈ Z≥0, we have a′i = (ai, i) for some ai ∈ Ai.
Hence the function f : Z≥0 → ∪i∈Z≥0

Ai, f(i) := ai is a choice function.

We will derive from the Principle of Dependent Choice the following

Lemma 134 (Successive construction of an infinite sequence). Suppose given sets Mk

for k ∈ Z≥1. Suppose given binary functions ck : M1 × . . .×Mk → {0, 1} for k ∈ Z≥1.
For n ∈ Z≥0, we call a tuple (y1, . . . , yn) ∈M1 × . . .×Mn of length n admissible if for
k ∈ [1, n], we have ck(y1, . . . , yk) = 1. Note that the empty tuple () is admissible.

Suppose that for admissible tuples (y1, . . . , yn) ∈M1 × . . .×Mn of length n ∈ Z≥0, there
exists an element yn+1 ∈Mn+1 such that (y1, . . . , yn+1) is admissible.

Suppose given N ∈ Z≥0 and an admissible tuple (x1, . . . , xN) of length N .

Then there exists a sequence (xn)n∈Z≥N+1
∈
∏

n∈Z≥N+1
Mn such that ck(x1, . . . , xk) = 1

for k ∈ Z≥1.

In applications, ck(x1, . . . , xk) is defined to equal 1 if the tuple (x1, . . . , xk) has certain
desired properties and to equal 0 otherwise. To apply Lemma 134 one needs to show that
given (x1, . . . , xk) having the desired properties, there is xk+1 such that (x1, . . . , xk+1)
has the desired properties. Therefore constructions invoking Lemma 134 will often be
called "successive" constructions.

Proof. Denote by A ⊆ ∪k≥0(M1 × . . .×Mk) the set of admissible tuples of length ≥ 0.
Note that the empty tuple () is an element of A. We define the relation ρ on A by

(y1, . . . , yi) ρ (y′1, . . . , y
′
j) :⇔ i+ 1 = j and (y1, . . . , yi) = (y′1, . . . , y

′
i).

For i ∈ [0, N ], let ti := (x1, . . . , xi) ∈ A. Thus ti ρ ti+1 for i ∈ [0, N − 1].

The assumptions of Lemma 134 ensure that for each t ∈ A, there is a t′ ∈ A such
that t ρ t′. Thus the Principle of Dependent Choice asserts the existence of a sequence
(tn)n∈Z≥N+1

with tn ∈ A for n ∈ Z≥N+1 such that ti ρ ti+1 for i ∈ Z≥N . Hence ti ρ ti+1 for
i ∈ Z≥0.

For i ∈ Z≥0, the tuple ti has the form (x
(i)
1 , . . . , x

(i)
i ). For i ∈ [1, N ], we have xi = x

(i)
i .

For i ∈ Z≥N+1, we set xi := x
(i)
i ∈Mi. Since ti ρ ti+1 for i ∈ Z≥0, we have ti = (x1, . . . , xi)

for i ∈ Z≥0. Thus since ti is admissible, we have ck(x1, . . . , xi) = 1 for i ∈ Z≥0. I.e. the
sequence (xn)n∈Z≥N+1

∈
∏

n∈Z≥N+1
Mn satisfies the assertions of Lemma 134
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