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Abstract

We show certain standard constructions of the theory of Verdier triangulated categories to be valid
in the Heller triangulated framework as well; viz. Karoubi hull, exactness of adjoints, localisation.
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0 Introduction

0.1 Extending from Verdier to Heller

The following facts are part of the classical theory that Verdier triangulated categories.

• Verdier triangulated categories are stable under formation of the Karoubi hull [1].

• The Karoubi hull construction is functorial within Verdier triangulated categories and

exact functors [1].

• Verdier triangulated categories are stable under localisation at a thick subcategory [13].

• Such a localisation has a universal property within Verdier triangulated categories and

exact functors [13].

• An adjoint functor of an exact functor is exact [11, App. 2, Prop. 11], [5, 1.6].

We extend these assertions somewhat to fit into the Heller triangulated setting.

• Heller triangulated categories are stable under formation of the Karoubi hull; cf. Proposi-

tion 12.

• The Karoubi hull construction is functorial within Heller triangulated categories and exact

functors; cf. Proposition 13.

• Closed Heller triangulated categories are stable under localisation at a thick subcategory;

cf. Proposition 36. (Concerning closedness, see remark below.)

• Such a localisation has a universal property within closed Heller triangulated categories

and exact functors; cf. Proposition 38.

• An adjoint functor of an exact functor is exact; cf. Proposition 28.

In a general Heller triangulated category, it is unknown whether there exists a cone on a given

morphism. This however is true if all idempotents split [8, Lem. 3.1]. It is technically convenient

to extend this assertion in the following manner. Define a Heller triangulated category to be

closed if this property holds; cf. [9, Def. 13], Definition 14, Remark 15, Lemma 20. Prove

that certain constructions yield closed Heller triangulated categories or preserve closedness; cf.

[9, Cor. 21], Proposition 36.

An exact functor between Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′) is a pair (F, a)

consisting of a subexact functor F and an isotransformation a : TF - F T′ such that ϑ, ϑ′

and a are compatible; cf. [5, Def. 1.4], Definition 1. Exactness of such a pair can also be

characterised via n-triangles; cf. Proposition 25. The deeper reason behind that fact is that

closed Heller triangulated categories can, alternatively, be defined via sets of n-triangles for

n > 0 with suitable properties with respect to quasicyclic and folding operations, as S. Thomas

informed me.
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The proof of the exactness of an adjoint of an exact functor does not have to make recourse to

n-triangles. Neither does the construction of the Heller triangulation on the Karoubi hull. This

shows the convenience of the definition of a triangulation via a tuple ϑ = (ϑn)n>0 of isomorphisms

between certain shift functors, and to view the n-triangles as accessory, if useful; which is no

longer the point of view taken in [7].

0.2 Desirables

Still missing is a precise formulation in which sense the dual of a Heller triangulated category

is again a Heller triangulated category, and also in which sense the constructions above are

compatible with duality. Moreover, we do not treat exactness of derived functors, except im-

plicitly, in those cases where a derived functor can be written as a composite of an adjoint of

a localisation functor, an exact functor and another localisation functor. Still missing, in the

Heller triangulated context, is furthermore the exactness of the lift of the inclusion of the heart

to a functor on the bounded derived category [2, Prop. 3.1.10], or more generally, the functor

Z appearing in the construction of [5, Ex. 2.3] ; cf. [5, Th. 3.2].

0.3 Notations and conventions

We use the notations and conventions from [8]. In particular, we write composition of morphisms

and functors in the natural order; viz. morphisms as -f -g = -fg = -f ·g and functors as
-F -G = -FG = -F?G

. Similarly for transformations.

Epic and epimorphic are synonymous, and so are monic and monomorphic.

1 Exact functors

Let (C,T, ϑ), (C ′,T′, ϑ′) and (C ′′,T′′, ϑ′′) be Heller triangulated categories; cf. [8, Def. 1.5.(ii)].

In [8, Def. 1.5.(ii)], we required a strictly exact functor C - C′ to satisfy F T′ = TF . The adjoint
functor of a strictly exact functor does not always seem to be strictly exact. Following Keller and
Vossieck, we shall prove below that if we call a functor exact, if it satisfies the weakened condition
F T′ ' TF instead (and an accordingly modified compatibility with the Heller triangulations),
then an adjoint of an exact functor is exact; cf. [5, 1.4].

Nonetheless, generally speaking, usually one deals with strictly exact functors. Hence we shall
also state an extra condition of shiftcompatibility on the adjunction that ensures a shiftcompatibly
adjoint functor of a strictly exact functor to be strictly exact.

Given n > 0 and a transformation G -a G′ between subexact additive functors C -
-G

G′
C ′, we

denote by G+(∆̄#
n ) -a+(∆̄#

n )
G′+(∆̄#

n ) the transformation given by(
X(a+(∆̄#

n ))
)
β/α

:= Xβ/αa : Xβ/αG - Xβ/αG
′
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for X ∈ Ob C(∆̄#
n ), and for β/α ∈ ∆̄#

n , i.e. for α, β ∈ ∆̄n with β−1 6 α 6 β 6 α+1. Moreover,

we denote by G+(∆̄#
n ) -

a+(∆̄#
n )

G′+(∆̄#
n ) the induced transformation between the induced

functors on the stable categories.

Sometimes, we abbreviate (G -
a

G′) :=
(
G+(∆̄#

n ) -
a+(∆̄#

n )
G′+(∆̄#

n )
)
.

Definition 1

A pair (F, a), consisting of an additive functor C -F C ′ and a transformation TF -a F T′,

is called an exact pair, or an exact functor, if the following conditions hold.

(1) a is an isotransformation.

(2) F is subexact, i.e. its induced functor Ĉ -F̂ Ĉ ′ on the Freyd categories is exact.

(3) We have

(ϑn ? F
+(∆̄#

n )) · a+(∆̄#
n ) = F+(∆̄#

n ) ? ϑ′n

for all n > 0.

In particular, provided TF = F T′, then (F, 1) is exact if and only if F is strictly exact; cf.

[8, Def. 1.5.(iii)]. In this case, we sometimes identify F and (F, 1).

Calling a pair (F, a) an exact functor instead of an exact pair is an abuse of notation.

We shall not discuss whether condition (1) is redundant; we need it for the construction of Ỹ in §4,
but that may be due to the order of our arguments.

Condition (3) asserts that the following cylindrical diagram commutes for all n > 0.

C+(∆̄#
n )

F+(∆̄#
n )

//

[−]+1

��

[−+1]

��

C′+(∆̄#
n )

[−]+1

��

[−+1]

��

1
2:

a+(∆̄#
n )

:B

C+(∆̄#
n )

F+(∆̄#
n )

// C′+(∆̄#
n )

ϑn +3 ϑ′n +3

I.e., using the abbreviation just introduced, we require XϑnF ·Xa = XFϑ′n to hold in C′+(∆̄#
n ) for

all X ∈ Ob C+(∆̄#
n ) = Ob C+(∆̄#

n ).

Definition 2 Suppose given exact functors (F, a) from C to C ′, and (F ′, a′) from C ′ to C ′′. The

composite of (F, a) and (F ′, a′) is defined to be

(F, a) ? (F ′, a′) = (F, a)(F ′, a′) := (FF ′, (aF ′)(Fa′)) = (F ? F ′, (a ? F ′) · (F ? a′)) .

Composition is associative.

Remark 3 If (F, a) and (F ′, a′) are exact, then so is their composite (F, a)(F ′, a′).
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Proof. To be able to distinguish more easily, we shall make use, from the second to the last but

first step, of the notation a ? F = aF , F ? F ′ = FF ′ etc. Given n > 0, we obtain(
ϑn ? (F ? F ′)+(∆̄#

n )
)
·
(
(a ? F ′) · (F ? a′)

)+
(∆̄#

n )

=
(
ϑn ? F

+(∆̄#
n ) ? F ′+(∆̄#

n )
)
·
(
a+(∆̄#

n ) ? F ′+(∆̄#
n )

)
·
(
F+(∆̄#

n ) ? a′+(∆̄#
n )

)
=

(
F+(∆̄#

n ) ? ϑ′n ? F
′+(∆̄#

n )
)
·
(
F+(∆̄#

n ) ? a′+(∆̄#
n )

)
= F+(∆̄#

n ) ? F ′+(∆̄#
n ) ? ϑ′′n

= (F ? F ′)+(∆̄#
n ) ? ϑ′′n .

Definition 4 Suppose given exact functors (F, a) and (G, b) from (C,T, ϑ) to (C ′,T′, ϑ′).

A transformation F -s G such that (T ? s) · b = a · (s ? T′) holds, is called periodic.

The periodicity condition requires that

X+1F
X+1s //

Xa o
��

X+1G

Xbo
��

(XF )+1 (Xs)+1

// (XG)+1

commute for all X ∈ Ob C.

Remark 5 Suppose given exact functors (F, a), (G, b) and (H, c) from C to C ′, and periodic

transformations F -
-s

s′
G -t H.

(1) The composite F -s·t H is periodic.

(2) The identity F -1 F is periodic.

(3) If s is a periodic isotransformation from (F, a) to (G, b), then s− is a periodic isotransfor-

mation from (G, b) to (F, a).

(4) The difference F -
s−s′

G of two periodic transformations is periodic.

(5) The direct sum (F, a) ⊕ (G, b) := (F ⊕ G, a ⊕ b) = (F ⊕ G,
(
a 0
0 b

)
) is exact, with periodic

inclusions from and periodic projections to (F, a) and (G, b).

Definition 6 Write C, C ′ ex for the category of the exact functors and periodic transforma-

tions from C to C ′ ; cf. Definitions 1, 4, Remark 5.

Write C, C ′ st ex for the full subcategory of C, C ′ ex of the strictly exact functors and periodic

transformations from C to C ′ .
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2 Idempotents and cones

Let (C,T, ϑ) be a Heller triangulated category; cf. [8, Def. 1.5].

2.1 A general remark on residue classes

Concerning Frobenius categories, cf. e.g. [8, Sec. A.2.3].

Remark 7 Given a full and faithful exact functor G : F - F ′ of Frobenius categories that

sends all bijective objects to bijective objects. Then the induced functor G : F - F ′ on the

classical stable categories is full and faithful.

Proof. By construction, it is full. We claim that it is faithful. Suppose given X - Y in F such

that

(XG - Y G) = (XG - B′ - Y G)

in C ′ for some bijective object B′ of C ′. Choose X -r B in C with B bijective in C. Since G

preserves pure monomorphy, XG - B′ factors over XG -r BG, whence XG - Y G factors

over XG -r BG, whence X - Y factors over X -r B.

Suppose given weakly abelian categories A and A′. Suppose given a subexact functor A -F A′ .
Suppose given n > 0. We obtain an induced functor

F+(∆̄#
n ) : A+(∆̄#

n ) - A′+(∆̄#
n )

on the respective stable categories of n-pretriangles. Cf. [8, §1.2.1.3, §A.6.3].

Remark 8 If F is full and faithful, so is F+(∆̄#
n ) .

In particular, if F is the embedding of a full subcategory, we may and will also consider F+(∆̄#
n )

to be the embedding of a full subcategory.

Proof. By [8, Prop. 5.5], both A+(∆̄#
n ) and A′+(∆̄#

n ) are Frobenius categories; and the full and

faithful functor F+(∆̄#
n ) : A+(∆̄#

n ) -A′+(∆̄#
n ) induced by F preserves bijective objects, viz.

split objects, and pure short exact sequences, viz. pointwise split short exact sequences. So by

Remark 7, the assertion follows.

2.2 A Heller triangulation on the Karoubi hull

Let Ĉ denote the Freyd category of C ; cf. e.g. [8, A.6.3]. We consider the full and faithful functor

C - Ĉ as an embedding of a full subcategory. Let C̃ denote the full subcategory of bijectives in

the abelian Frobenius category Ĉ. So we have full subcategories

C ⊆ C̃ ⊆ Ĉ
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Since the image of C in Ĉ is a big enough subcategory of bijectives, the embedding C -
�� C̃ is

a Karoubi hull of C ; cf. [6, III.II]. Cf. also Remark 43, Lemma 44 – which we will not use and

argue directly instead.

We shall give a Heller triangulation on this Karoubi hull C̃ of C. The Verdier triangulated version

of this construction is due to Balmer and Schlichting; cf. [1, Th. 1.12].

As a full subcategory of bijective objects in abelian Frobenius category, the category C̃ is weakly

abelian.

The shift T on C induces a shift T̂ on Ĉ, which restricts to a shift T̃ on C̃.

Remark 9 Suppose given n > 0 and X ∈ Ob C̃+(∆̄#
n ) . There exists Z ∈ Ob C+(∆̄#

n ) such

that X is isomorphic to a direct summand of Z in C̃+(∆̄#
n ) . In other words, there exists

Z ∈ Ob C+(∆̄#
n ) and a split monomorphism X -i Z in C̃+(∆̄#

n ) .

Proof. By [8, Prop. 2.6], it suffices to prove that given X ∈ Ob C̃(∆̇n), there exists

Z ∈ Ob C(∆̇n) such that X is isomorphic, in C̃(∆̇n), to a direct summand of Z.

It suffices to prove the existence of a split monomorphism X - Z in C̃(∆̇n) with Z ∈ Ob C(∆̇n).

For i ∈ [1, n], let Yi ∈ Ob C̃ be such that Xi ⊕ Yi is isomorphic to an object in C. Let

Y ∈ Ob C̃(∆̇n) have entry Yi at position i for 1 6 i 6 n and the morphism from position i

to position j be zero for 1 6 i < j 6 n. The diagram X ⊕ Y has X as a summand and is

isomorphic to an object in C(∆̇n).

Remark 10 Given n > 0, a diagram X ∈ Ob C̃+(∆̄#
n ) , a split monomorphism X - Z with

Z ∈ Ob C+(∆̄#
n ) and a morphism X -x X ′, then there exists a commutative quadrangle

X
��
•
��

x // X ′
��
•
��

Z // Z ′

in C̃+(∆̄#
n ) with Z ′ ∈ Ob C+(∆̄#

n ) .

Moreover, if X -X ′ is a split monomorphism, we may choose Z - Z ′ to be a split monomor-

phism.

Proof. We form

X
��
•(1 0)

��

x // X ′
��
•
��

��
•(1 0)

��
X ⊕ Y “

x 0
0 1

” // X ′ ⊕ Y ,

where X ⊕ Y ' Z. By Remark 9, there is a split monomorphism from X ′ ⊕ Y to an object Z ′

of Ob C+(∆̄#
n ) .

Moreover, if X -x X ′ is split monic, so is the composite (X ⊕ Y -

“
x 0
0 1

”
X ′ ⊕ Y - Z ′).
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Construction 11 Given n > 0, we define [−]+1 -ϑ̃n [−+1] on C̃+(∆̄#
n ) as follows.

Given X ∈ Ob C̃+(∆̄#
n ) , choose a split monomorphism X -i Z with Z ∈ Ob C+(∆̄#

n ) , existent

by Remark 9, and choose a retraction p to i. Define

([X]+1 -
Xϑ̃n

[X+1]) := ([X]+1 -
[i]+1

[Z]+1 -
Zϑn

[Z+1] -
[p+1]

[X+1]) .

To prove that Xϑ̃n is welldefined, we shall first show that it is independent of the choice of the

retraction p. Given d : Z -X with id = 0, we have to show that [i]+1Zϑn[d+1] = 0. Since [i+1]

is monic, it suffices to show that [i]+1Zϑn[d+1][i+1] = 0. In fact,

[i]+1Zϑn[d+1][i+1] = [i]+1Zϑn[(di)+1] = [i]+1[di]+1Zϑn = [id]+1[i+1]Zϑn = 0 ,

since di is in C+(∆̄#
n ) .

Now assume given another split monomorphism X - Z ′ with Z ′ ∈ Ob C+(∆̄#
n ) . By Re-

mark 10, we may assume that this split monomorphism factors into two split monomorphisms

X -i Z -i
′
Z ′. Let ip = 1 and i′p′ = 1. Then (ii′)(p′p) = 1, and we may conclude

[ii′]+1(Z ′ϑn)[(p′p)+1] = [i]+1[i′]+1
(
Z ′ϑn[p′+1]

)
[p+1] = [i]+1[i′]+1

(
[p′]+1Zϑn

)
[p+1] = [i]+1Zϑn[p+1] ,

since p′ is in C+(∆̄#
n ) .

To show that ϑn is a transformation, we suppose given a morphism X -f X ′ in C̃+(∆̄#
n ) and have

to show that Xϑ̃n[f+1]
!

= [f ]+1X ′ϑ̃n. By Remarks 9 and 10, we find a commutative quadrangle

X
��
•i
��

f // X ′
��
•i′
��

Z
g // Z ′

in C̃+(∆̄#
n ) with Z, Z ′ ∈ Ob C̃+(∆̄#

n ) . Choose p and p′ such that ip = 1 and i′p′ = 1. It suffices

to show that Xϑ̃n[f+1][i′+1]
!

= [f ]+1X ′ϑ̃n[i′+1] by monomorphy of [i′+1]. In fact,

Xϑ̃n[f+1][i′+1] = Xϑ̃n[i+1][g+1] = [i]+1Zϑn[p+1][i+1][g+1]

= [i]+1Zϑn[(pig)+1] = [i]+1[pig]+1Z ′ϑn = [ig]+1Z ′ϑn

= [fi′]+1Z ′ϑn = [fi′]+1[p′i′]+1Z ′ϑn = [fi′]+1Z ′ϑn[(p′i′)+1]

= [f ]+1[i′]+1Z ′ϑn[p′+1][i′+1] = [f ]+1X ′ϑ̃n[i′+1] .

Note that Zϑ̃n = Zϑn for Z ∈ Ob C+(∆̄#
n ) .

End of construction.

Proposition 12

(1) The tuple ϑ̃ := (ϑ̃n)n>0 is the unique Heller triangulation on (C̃, T̃) such that the full and

faithful inclusion functor C -
�� C̃ is strictly exact; cf. [8, Def. 1.5.(i, ii)].

(2) An n-pretriangle U ∈ Ob C+(∆̄#
n ) is an n-triangle with respect to (C,T, ϑ) if and only if it

is an n-triangle with respect to (C̃, T̃, ϑ̃).
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Proof. Ad (1). We have to show that given m, n > 0 and a periodic monotone map ∆̄n
�p ∆̄m ,

we have p#?ϑ̃m
!

= ϑ̃n?p
#. Let us verify this at X ∈ Ob C̃+(∆̄#

n ) . Choose a split monomorphism

X -i Z with Z ∈ Ob C+(∆̄#
n ) by Remark 9. It suffices to show that (Xp#)ϑ̃m[(ip#)+1]

!
=

(Xϑ̃n)p#[(ip#)+1]. In fact, we obtain

(Xp#)ϑ̃m[(ip#)+1] = [ip#]+1(Zp#)ϑm = [ip#]+1(Zϑn)p#

= ([i]+1Zϑn)p# = (Xϑ̃n[i+1])p# = (Xϑ̃n)p#[(ip#)+1] .

We have to show that given n > 0, we have f
n
? ϑ̃n+1

!
= ϑ̃2n+1 ? f

n
. Let us verify this at

X ∈ Ob C̃+(∆̄#
2n+1) . Choose a split monomorphism X -i Z with Z ∈ Ob C+(∆̄#

2n+1) by Re-

mark 9. It suffices to show that (Xf
n
)ϑ̃n+1[(if

n
)+1]

!
= (Xϑ̃2n+1)f

n
[(if

n
)+1]. In fact, we obtain

(Xf
n
)ϑ̃n+1[(if

n
)+1] = [if

n
]+1(Zf

n
)ϑn+1 = [if

n
]+1(Zϑ2n+1)f

n

= ([i]+1Zϑ2n+1)f
n

= (Xϑ̃2n+1[i+1])f
n

= (Xϑ̃2n+1)f
n
[(if

n
)+1] .

The inclusion functor C -
�� C̃ is strictly exact since it strictly commutes with shift by construc-

tion, since it is subexact because the induced functor on the Freyd categories is an equivalence,

and since Zϑ̃n = Zϑn for Z ∈ Ob C+(∆̄#
n ) .

Now suppose that both ϑ̃ and ϑ̃′ are Heller triangulations on (C̃, T̃) such that C -
�� C̃ is strictly

exact. Suppose given n > 0 and X ∈ Ob C̃+(∆̄#
n ) . We have to show that Xϑ̃n

!
= Xϑ̃′n . Choose

a split monomorphism X -i Z with Z ∈ Ob C+(∆̄#
n ) ; cf. Remark 9. It suffices to show that

Xϑ̃n[i+1]
!

= Xϑ̃′n[i+1]. In fact,

Xϑ̃n[i+1] = [i]+1Zϑ̃n = [i]+1Zϑn = [i]+1Zϑ̃′n = Xϑ̃′n[i+1] .

Ad (2). Suppose given an n-pretriangle U ∈ Ob C+(∆̄#
n ) . Now U is an n-triangle with respect

to (C,T, ϑ) if and only if Uϑn = 1 , and with respect to (C̃, T̃, ϑ̃) if and only if Uϑ̃n = 1 ; cf.

[8, Def. 1.5.(ii)]. Since Uϑn = Uϑ̃n , these assertions are equivalent. Cf. also [8, Lem. 3.8].

2.3 Functoriality of the Karoubi hull

We shall prove the universal property of the Karoubi hull directly, without making recourse to
Remark 43 and Lemma 44. We will make use of the universal property and the abelianness of the
Freyd category, however.

Proposition 13 Suppose given Heller triangulated categories (C,T, ϑ), (C ′,T′, ϑ′). Call the

strictly exact inclusion functors K : C - C̃ and K′ : C ′ - C̃ ′.

(1) Suppose given an exact functor (F, a) from C to C ′.
We may construct an exact functor (F̃ , ã) from C̃ to C̃ ′ such that

C
(F,a) //

K
��

C ′

K′

��

C̃
(F̃ ,ã) // C̃ ′
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commutes, i.e. such that (F, a)(K′, 1) = (K, 1)(F̃ , ã), i.e. such that F ? K′ = K ? F̃ and

a ? K′ = K ? ã, i.e. such that uF̃ = uF for u ∈ Mor C and Zã = Za for Z ∈ Ob C.

The functor F̃ and the condition a?K′ = K ? ã uniquely determines ã. If a = 1, then ã = 1.

(2) Given two exact functors (F̃1 , ã1) and (F̃2 , ã2) such that (F, a)(K′, 1) = (K, 1)(F̃1 , ã1) =

(K, 1)(F̃2 , ã2), there exists a unique isotransformation F̃1
-ϕ∼ F̃2 such that K ?ϕ = 1, i.e.

such that Zϕ = 1 for Z ∈ Ob C. This isotransformation ϕ is periodic.

(3) Suppose given exact functors (F, a) and (G, b) from C to C ′. Suppose given a periodic

transformation s from F to G.

Construct (F̃ , ã) and (G̃, b̃) as in (1).

There exists a unique periodic transformation s̃ from F̃ to G̃ such that K ? s̃ = s ? K′, i.e.

such that Zs̃ = Zs for Z ∈ Ob C.

Proof. Given X ∈ Ob C̃, we choose X -
iX

ZX -
pX

X in C̃ such that iX · pX = 1X and such

that ZX ∈ Ob C.

Moreover, choose these objects and morphisms in such a way that ZXT̃ = ZX T, iXT̃ = iXT̃ and

pXT̃ = pXT̃ for X ∈ Ob C̃.

Furthermore, if X ∈ Ob C, then choose ZX = X and iX = 1X and pX = 1X .

Given X -u Y in C̃, we let ZX -zu ZY be defined by zu := pX · u · iY ; cf. Remark 39.

Ad (1). Since F is subexact, F̂ is exact. Since W is a summand of an object in C, also WF̂ is a

summand of an object in C ′, hence bijective. So F̃ := F̂ |C̃′C̃ is welldefined.

We want to show that the functor F̃ preserves weak kernels and is therefore subexact; cf.

Lemma 41. In fact, given W -w B -f C in C̃ such that w is a weak kernel of f , we get

a factorisation w = w′i, where K -ri B is a kernel of f in Ĉ. Considering an epimorphism

P -
p
K in Ĉ with P ∈ Ob C̃, we obtain a factorisation pi = p′w = p′w′i, whence p = p′w′,

whence w′ is epic. Since w′F̂ is epic and iF̂ is a kernel of fF̂ , we obtain that wF̂ = wF̃ is a

weak kernel of fF̂ = fF̃ .

The universal property of the Freyd construction yields a transformation â : T̂F̂ - F̂ T̂
′
. We let

the transformation ã : T̃F̃ - F̃ T̃
′
be defined on X ∈ Ob C̃ ⊆ Ob Ĉ as Xã := Xâ. In particular,

Zã = Za for Z ∈ Ob C.

Given n > 0, it remains to be shown that F̃+(∆̄#
n ) ? ϑ̃′n

!
= (ϑ̃n ? F̃

+(∆̄#
n )) · ã+(∆̄#

n ); cf. Defi-

nition 1. Let us verify this at X ∈ Ob C̃+(∆̄#
n ). Let X -i Z be a split monomorphism with

Z ∈ Ob C+(∆̄#
n ), existent by Remark 9. It suffices to show that

(XF̃+(∆̄#
n ))ϑ̃′n · [(iF̃+(∆̄#

n ))+1]
!

= (Xϑ̃n)F̃+(∆̄#
n ) ·Xã+(∆̄#

n ) · [(iF̃+(∆̄#
n ))+1] .
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In fact, we obtain

(XF̃+(∆̄#
n ))ϑ̃′n · [(iF̃+(∆̄#

n ))+1] = [iF̃+(∆̄#
n )]+1 · (ZF̃+(∆̄#

n ))ϑ̃′n

= [iF̃+(∆̄#
n )]+1 · (ZF+(∆̄#

n ))ϑ′n
(F, a) ex.

= [iF̃+(∆̄#
n )]+1 · (Zϑn)F+(∆̄#

n ) · Za+(∆̄#
n )

= [iF̃+(∆̄#
n )]+1 · (Zϑ̃n)F̃+(∆̄#

n ) · Zã+(∆̄#
n )

= [i]+1F̃+(∆̄#
n ) · (Zϑ̃n)F̃+(∆̄#

n ) · Zã+(∆̄#
n )

= (Xϑ̃n)F̃+(∆̄#
n ) · [i+1]F̃+(∆̄#

n ) · Zã+(∆̄#
n )

= (Xϑ̃n)F̃+(∆̄#
n ) ·Xã+(∆̄#

n ) · [(iF̃+(∆̄#
n ))+1] .

If a = 1, then â = 1, so ã = 1.

It remains to show that ã is uniquely determined by F̃ and the condition a ?K′ = K ? ã. In fact,

given X ∈ Ob C̃, we have

Xã · iXF̃ T̃
′

= iXT̃F̃ · ZX ã = iXT̃F̃ · ZXa ,

and iXF̃ T̃
′

is monic.

Ad (2). Define ϕ : F̃1
-∼ F̃2 at X ∈ Ob C̃ by

ZXF
pX F̃1 //

1

��

XF̃1

iX F̃1 //

oXϕ

��

ZXF

1

��
ZXF

pX F̃2 // XF̃2

iX F̃2 // ZXF ;

cf. Remark 40.

The tuple ϕ = (Xϕ)X∈Ob C̃ is actually a transformation from F̃1 to F̃2 , for given X -u Y in C̃,
we obtain

pXF̃1 · uF̃1 · Y ϕ · iY F̃2 = pXF̃1 · uF̃1 · iY F̃1

= pXF̃1 · (u · iY )F̃1 = pXF̃1 · (iX · zu)F̃1

= pXF̃1 · iXF̃1 · zuF̃1 = ((pX · iX) · zu)F

= (zu · (pY · iY ))F = zuF̃2 · pY F̃2 · iY F̃2

= (zu · pY )F̃2 · iY F̃2 = (pX · u)F̃2 · iY F̃2

= pXF̃2 · uF̃2 · iY F̃2 = pXF̃1 ·Xϕ · uF̃2 · iY F̃2 ,

and pXF̃1 is epic and iY F̃2 is monic.

Note that commutativity of the diagram above is also necessary, for we require K ?ϕ = 1. This

ensures uniqueness of ϕ.

It remains to show that ϕ is a periodic transformation from (F̃1 , ã1) to (F̃2 , ã2). In fact, given
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X ∈ Ob C̃, we get

Xã1 ·XϕT̃
′ · iXF̃2T̃

′
= Xã1 · iXF̃1T̃

′

= iXT̃F̃1 · ZX ã1 = iXT̃F̃1 · ZX ã1

= iXT̃F̃1 · ZXa = iXT̃F̃1 · ZX ã2

= XT̃ϕ · iXT̃F̃2 · ZX ã2 = XT̃ϕ · iXT̃F̃2 · ZX ã2

= XT̃ϕ ·Xã2 · iXF̃2T̃
′
,

and iXF̃2T̃
′

is monic.

Ad (3). Define s̃ : F̃ - G̃ at X ∈ Ob C̃ by

ZXF
pX F̃ //

ZXs

��

XF̃
iX F̃ //

oXs̃
��

ZXF

ZXs

��
ZXG

pXG̃ // XG̃
iXG̃ // ZXG ;

cf. Remark 40.

The tuple s = (Xs)X∈Ob C̃ is actually a transformation from F̃ to G̃, for given X -u Y in C̃, we

obtain
pXF̃ · uF̃ · Y s̃ · iY G̃ = pXF̃ · uF̃ · iY F̃ · ZY s

= pXF̃ · (u · iY )F̃ · ZY s = pXF̃ · (iX · zu)F̃ · ZY s

= pXF̃ · iXF̃ · zuF̃ · ZY s = ((pX · iX) · zu)F · ZY s

= (zu · (pY · iY ))F · ZY s = ZXs · (zu · (pY · iY ))G

= ZXs · zuG̃ · pY G̃ · iY G̃ = ZXs · (zu · pY )G̃ · iY G̃

= ZXs · (pX · u)G̃ · iY G̃ = ZXs · pXG̃ · uG̃ · iY G̃

= pXF̃ ·Xs̃ · uG̃ · iY G̃ ,

and pXF̃ is epic and iY G̃ is monic.

Note that commutativity of the diagram above is also necessary, for we require K ? s̃ = s ? K′.

This ensures uniqueness of s.

It remains to show that s̃ is a periodic transformation from (F̃ , ã) to (G̃, b̃). In fact, given

X ∈ Ob C̃, we get

Xã ·Xs̃T̃′ · iXG̃ T̃
′

= Xã · iXF̃ T̃
′ · ZXsT̃

′

= iXT̃F̃ · ZX ã · ZXsT̃
′

= iXT̃F̃ · ZX ã · ZXsT̃
′

= iXT̃F̃ · ZXa · ZXsT′ = iXT̃F̃ · ZX T s · ZXb

= iXT̃F̃ · ZXT̃s · ZX b̃ = iXT̃F̃ · ZXT̃s · ZX b̃

= XT̃s̃ · iXT̃G̃ · ZX b̃ = XT̃s̃ · iXT̃G̃ · ZX b̃

= XT̃s̃ ·Xb̃ · iXG̃ T̃
′
,

and iXG̃ T̃
′

is monic.
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2.4 Closed Heller triangulated categories

Recall that given a Heller triangulated category (C,T, ϑ), its Karoubi hull C̃ is Heller triangulated,

too; cf. Proposition 12.(1). More precisely, (C̃, T̃ , ϑ̃) is Heller triangulated, where T̃ and ϑ̃ are as

in §2.2.

Definition 14

A Heller triangulated category (C,T, ϑ) is called closed if whenever (X, Y, Z̃) is a 2-triangle

in C̃ and X, Y ∈ Ob C, then Z̃ is isomorphic to an object of C.

Cf. [8, Def. 1.5.(i, iii)].

I do not know an example of a non-closed Heller triangulated category.

As usual, we will call Z̃ the cone of X - Y , being unique up to isomorphism. Thus we may

rephrase that by definition, (C,T, ϑ) is closed if it is closed under taking cones in the Karoubi

hull C̃.

Remark 15 The Heller triangulated category (C,T, ϑ) is closed if and only if given X -f Y in

C, there exists a 2-triangle X -f Y - Z -X+1 in C.

Cf. [9, Def. A.6].

Proof. If (C,T, ϑ) is closed, then given X -f Y in C, there exists a 2-triangle

X -f Y - Z̃ -X+1 in C̃ by [8, Lem. 3.1], and we may substitute Z̃ isomorphically by an

object Z in Ob C, so we are done by [8, Lem. 3.4.(4)].

Conversely, if we dispose of this existence property, and if we are given a 2-triangle (X, Y, Z̃) in

C̃ with X, Y ∈ Ob C, then there exists a 2-triangle (X, Y, Z) with Z ∈ Ob C, too, and we may

apply [8, Lem. 3.4.(6)] to conclude that Z ' Z̃. So (C,T, ϑ) is closed.

Remark 16 If idempotents split in C, then (C,T, ϑ) is closed.

Proof. If idempotents split in C, then C = C̃.

Remark 17 Suppose given Heller triangulated categories (C,T, ϑ), (C ′,T′, ϑ′) and a full and

faithful strictly exact functor C -F C ′. Furthermore, suppose that whenever given a 2-triangle

(XF, Y F, Z ′) in C ′, where X, Y ∈ Ob C, then there exists Z ∈ Ob C such that Z ′ ' ZF .

Suppose that C ′ is closed. Then C is closed.

Proof. Suppose given X -f Y in C. There exists a 2-triangle XF -fF Y F - Z ′ -XF+1 in C ′.
By assumption, there exists Z ∈ Ob C such that ZF ' Z ′. By isomorphic substitution and
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fullness of F , we obtain a 2-triangle XF -fF Y F -gF ZF -hF XF+1 in C ′ ; cf. [8, Lem. 3.4.(4)].

Since

(X, Y, Z)ϑ2F
+(∆̄#

2 ) = (X, Y, Z)F+(∆̄#
2 )ϑ′2 = (XF, Y F, ZF )ϑ′2 = 1 ,

we conclude by faithfulness of F+(∆̄#
2 ) that (X, Y, Z)ϑ2 = 1 ; cf. Remark 8, [8, Def. 1.5.(ii)]. So

we are done by Remark 15.

Remark 18 A closed Heller triangulated category is Verdier triangulated.

Proof. Its Karoubian hull is Verdier triangulated [8, Prop. 3.6]. An additive shift-closed sub-

category of a Verdier triangulated category that is closed under forming cones is Verdier trian-

gulated.

Definition 19 Suppose given a closed Heller triangulated category (C,T, ϑ).

Suppose given n > 0 and Y ∈ Ob C(∆̇n) and X ∈ Ob C+, ϑ=1(∆̄#
n ) such that X|∆̇n

= Y .

Then Y is called the base of the n-triangle X.

Lemma 20 Suppose given a closed Heller triangulated category (C,T, ϑ) and n > 0. The re-

striction functor C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n C(∆̇n) is strictly dense, i.e. surjective on objects. In other

words, each object Y ∈ Ob C(∆̇n) is the base of an n-triangle.

So weakening the assumption in [8, Lem. 3.1] that idempotents be split in C to the assumption
that C be closed, we nonetheless obtain the conclusion of loc. cit.

Proof. Suppose given Y ∈ Ob C(∆̇n). By [8, Lem. 3.1], we obtain an n-triangle

X̃ ∈ Ob C+, ϑ=1(∆̄#
n ) such that X̃|∆̇n

= Y .

By [8, Lem. 3.4.(1)], we have a triangle (X̃α/0 , X̃β/0 , X̃β/α) whenever 0 < α < β < 0+1. Since

C is closed, X̃β/α is isomorphic to an object of C. Isomorphic substitution, which is permitted

without leaving C̃+, ϑ=1(∆̄#
n ) by [8, Lem. 3.4.(4)], yields an n-triangle in C+, ϑ=1(∆̄#

n ) that restricts

to Y on ∆̇n ; cf. Proposition 12.(2).

3 Heller triangulated subcategories

Definition 21 Given a Heller triangulated category (C ′,T′, ϑ′), a full subcategory C ⊆ C ′ is

called a full Heller triangulated subcategory of C ′ if there exist T and ϑ such that (C,T, ϑ) is a

Heller triangulated category and such that the inclusion functor C -
�� C ′ is strictly exact.

We remark that in this case, the automorphism T and the tuple of transformations ϑ are uniquely

determined by (C ′,T′, ϑ′) as respective restrictions; cf. [8, Def. 1.5.(iii)], Remark 8.

Example 22 Let (C,T, ϑ) be a Heller triangulated category. Let C̃ be the Karoubi hull of C, and

let (C̃, T̃, ϑ̃n) be the Heller triangulated category from Construction 11. By Proposition 12.(1),

C is a Heller triangulated subcategory of C̃.
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Lemma 23 Suppose given a closed Heller triangulated category (C ′,T′, ϑ′), and a full subcategory

C ⊆ C ′ such that the following conditions (1, 2) hold.

(1) C T′ = C.

(2) Given a 2-triangle (X, Y, Z ′) in C ′ with X, Y ∈ Ob C, then Z ′ is isomorphic to an object

of C.

Then C, equipped with the shift T and the tuple ϑ obtained by restriction from T′ and ϑ′, respec-

tively, is a Heller triangulated subcategory of C ′. Moreover, (C,T, ϑ) is closed.

Proof. Let T denote the restriction of T′ to an automorphism of C, which exists by assumption (1).

Write C -
�� i C ′ for the inclusion functor.

Since C ′ is closed, assumption (2) allows to conclude that C is a full additive subcategory of C ′,
and moreover, that C is weakly abelian such that i is subexact; cf. Lemma 41.

Given n > 0 and X ∈ Ob C+(∆̄#
n ), we define, by restriction, ([X]+1 -Xϑn [X+1]) :=

([X]+1 -
Xϑ′n [X+1]). Since C+(∆̄#

n ) -i C ′+(∆̄#
n ) is full and faithful by Remark 8, this is a

welldefined transformation satisfying ϑn ? i = i ? ϑ′n .

Given m, n > 0 and a periodic monotone map ∆̄n
�p ∆̄m , we have p# ? i = i ? p#, whence

p# ? ϑm ? i = p# ? i ? ϑ′m = i ? p# ? ϑ′m = i ? ϑ′n ? p
# = ϑn ? i ? p

# = ϑn ? p
# ? i ,

so that we may conclude that p# ? ϑm = ϑn ? p
#, for i is faithful.

Given n > 0, we have f
n
? i = i ? f

n
, whence

f
n
? ϑn+1 ? i = f

n
? i ? ϑ′n+1 = i ? f

n
? ϑ′n+1 = i ? ϑ′2n+1 ? f

n
= ϑ2n+1 ? i ? f

n
= ϑ2n+1 ? f

n
? i ,

so that we may conclude that f
n
? ϑn+1 = ϑ2n+1 ? f

n
, for i is faithful.

Hence ϑ is a Heller triangulation on (C,T); cf. [8, Def. 1.5.(i)]. By construction, C -
�� i C ′ is

strictly exact.

By (2) and Remark 17, the Heller triangulated category (C,T, ϑ) is closed.

4 Functors are exact if and only if they are compatible

with n-triangles

Suppose given Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′).

Concerning the notion of n-triangles in a Heller triangulated category, cf. [8, Def. 1.5.(ii)].

For n > 0, an object Y in C(∆̄#
n ) is called periodic if [Y ]+1 = [Y +1].

Suppose given an additive functor C -F C ′ and an isomorphism TF -a∼ F T′.
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For z ∈ Z, we let Tz F -a(z)

∼ F T′z be defined by

a(0) := 1F

a(z+1) := (T ? a(z)) · (a ? T′z) for z > 0

a(z−1) := (T− ? a(z)) · (T− ? a− ? T′z−1) for z 6 0

Then (Tz ? a(w)) · (a(z) ? T′w) = a(z+w) : Tz+w F -∼ F T′z+w for z, w ∈ Z.

Given a periodic n-pretriangle X ∈ Ob C+, periodic(∆̄#
n ), for sake of brevity we denote in this

section by

Y := X(F (∆̄#
n )) ∈ Ob C ′(∆̄#

n )

the diagram obtained by pointwise application of F to X. We have

Y |∆̇+1
n

= X|∆̇n
((TF )(∆̇n)) -

X|∆̇n (a(∆̇n))

∼ X|∆̇n
((F T′)(∆̇n)) = (Y |∆̇n

)+1 .

Isomorphic substitution along this isomorphism turns Y |∆̄MO
n

into a diagram Y̆ |∆̄MO
n

for a periodic

object Y̆ ∈ Ob C(∆̄#
n ) thus defined. We have an isomorphism Y -ă∼ Y̆ in C ′(∆̄#

n ) that at (β/α)+z

for 0 6 α 6 β 6 n and z ∈ Z is given by(
Y(β/α)+z -

ă(β/α)+z

∼ Y̆(β/α)+z

)
:=

(
Xβ/α Tz F -Xβ/α a

(z)

∼ Xβ/αF T′z
)
.

In fact, given 0 6 α 6 n and z ∈ Z, we obtain a commutative quadrangle

Xn/α Tz F xTz F //

Xn/α a
(z) o

��

Xα/0 Tz+1 F

Xα/0 a
(z+1)o

��
Xn/αF T′z

(xF T′z)(Xα/0 aT′z)
// Xα/0F T′z+1 ,

for

(Xn/α a
(z))(xF T′z)(Xα/0 aT′z) = (xTz F )(Xα/0 T a(z))(Xα/0 aT′z) = (xTz F )(Xα/0 a

(z+1)) .

The remaining commutativities required for the naturality of Y -ă∼ Y̆ follow by naturality of a(z).

We remark that ă|∆̇n
= 1F (∆̇n) .

If F is subexact, then Y is an n-pretriangle and Y̆ is a periodic n-pretriangle.

Lemma 24 Suppose given an exact functor (F, a).

Then for each n-triangle X of C, i.e. X ∈ Ob Cϑ=1,+(∆̄#
n ), the object Y̆ of C ′(∆̄#

n ) defined by

(1) and (2) is an n-triangle of C ′, i.e. Y̆ ∈ Ob C ′ϑ=1,+(∆̄#
n ).

(1) We have [Y̆ ]+1 = [Y̆ +1].

(2) On ∆̄MO
n , the object Y̆ |∆̄MO

n
arises from Y := X(F (∆̄#

n ))|∆̄MO
n

by isomorphic substitution

along Y |∆̇+1
n

= X|∆̇n
(T(∆̇n))(F (∆̇n)) -a(∆̇n)

∼ X|∆̇n
(F (∆̇n))(T′(∆̇n)) = (Y |∆̇n

)+1.
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Cf. [8, Lem. 3.8] for the case of a strictly exact functor.

Proof. Suppose given n > 0 and an n-triangle X ∈ Ob C+, ϑ=1(∆̄#
n ). By construction, Y̆ is

periodic. We have to show that Y̆ ϑ′n
!

= 1[Y̆ ]+1 . We obtain

Y ϑ′n = X
(
F+(∆̄#

n ) ? ϑ′n

)
= X

((
ϑn ? F

+(∆̄#
n )

)
· a+(∆̄#

n )
)

= X
(
ϑn ? F

+(∆̄#
n )

)
·Xa+(∆̄#

n )

= Xa+(∆̄#
n ) .

In particular, Y ϑ′|∆̇n
= X|∆̇n

a(∆̇n). Hence, restricting the stably commutative quadrangle

[Y ]+1 [ă]+1

//

Y ϑ′n
��

[Y̆ ]+1

Y̆ ϑ′n
��

[Y +1]
[ă+1] // [Y̆ +1]

to ∆̇n , we obtain the stably commutative quadrangle

Y |∆̇+1
n

X|∆̇na(∆̇n)
//

X|∆̇na(∆̇n)

��

(Y |∆̇n
)+1

Y̆ ϑ′n|∆̇n
��

(Y |∆̇n
)+1 1 // (Y |∆̇n

)+1 .

whence Y̆ ϑ′n|∆̇n
= 1(Y |∆̇n )+1 . Since the functor from C+(∆̄#

n ) to C(∆̇n) induced by restriction is

an equivalence by [8, Prop. 2.6], this implies that Y̆ ϑ′n = 1[Y̆ ]+1 .

Proposition 25 Suppose C to be closed.

The pair (F, a) is an exact functor if and only if for each n-triangle X of C, the object Y̆ of

C ′(∆̄#
n ) defined by (1, 2) is an n-triangle of C ′.

(1) We have [Y̆ ]+1 = [Y̆ +1].

(2) On ∆̄MO
n , the object Y̆ |∆̄MO

n
arises from Y := X(F (∆̄#

n ))|∆̄MO
n

by isomorphic substitution

along Y |∆̇+1
n

= X|∆̇n
(T(∆̇n))(F (∆̇n)) -a(∆̇n)

∼ X|∆̇n
(F (∆̇n))(T′(∆̇n)) = (Y |∆̇n

)+1.

Proof. In view of Lemma 24, it suffices to show that if each n-triangle X in C yields an n-triangle

Y̆ in C ′ by (1, 2), then (F, a) is exact.

We claim that F is subexact. By Lemma 41, it suffices to show that given a morphism S -p T

in C, there exists a weak cokernel of p that is mapped by F to a weak cokernel. Since C is

a closed Heller triangulated category, a weak cokernel of p is contained in the the completion

of S -p T to a 2-triangle X by Lemma 20. We form the corresponding 2-triangle Y̆ defined



18

by (1, 2). Since it contains a weak cokernel of SF -pF TF , and since Y̆ is isomorphic, in C ′+(∆̄#
n ),

to X(F+(∆̄#
2 )), the image under F of the weak cokernel of p that is contained in the 2-triangle

X is in fact a weak cokernel of pF . This proves the claim.

We claim that

(ϑn ? F
+(∆̄#

n )) · a+(∆̄#
n ) = F+(∆̄#

n ) ? ϑ′n

for all n > 0. Suppose given X ∈ Ob C+(∆̄#
n ). Since C is a closed Heller triangulated category,

there exists an n-triangle X ′ such that X ′|∆̇n
= X|∆̇n

; cf. Lemma 20. By [8, Prop. 2.6], we

have an isomorphism X -f∼ X ′ in C+(∆̄#
n ) that restricts to the identity on ∆̇n . We dispose of a

commutative diagram

[X]+1 Xϑn //

[f ]+1

��

[X+1]

[f+1]
��

[X ′]+1 X′ϑn // [X ′+1]

in C+(∆̄#
n ). Since, by construction, X ′ϑn = 1, we have Xϑn = [f ]+1 · [f+1]− in C+(∆̄#

n ).

Likewise, we have a commutative quadrangle

[XF+(∆̄n)]+1
XF+(∆̄n)ϑ′n //

[fF+(∆̄n)]+1

��

[(XF+(∆̄n))+1]

[(fF+(∆̄n))+1]

��
[X ′F+(∆̄n)]+1

X′F+(∆̄n)ϑ′n // [(X ′F+(∆̄n))+1] ,

in C ′+(∆̄#
n ). We want to calculate its lower arrow. Since X ′ is an n-triangle, we have an

isomorphism Y ′ -
ă′

∼ Y̆ ′ formed as above, where Y̆ ′ϑ′n = 1. The stably commutative quadrangle

[Y ′]+1 [ă′]+1

//

Y ′ϑ′n
��

[Y̆ ′]+1

Y̆ ′ϑ′n = 1
��

[Y ′+1]
[ă′+1] // [Y̆ ′+1]

yields by restriction to ∆̇n the commutative diagram

X ′|∆̇n
(TF )(∆̇n)

X′|∆̇n a(∆̇n)
// X ′|∆̇n

(F T′)(∆̇n)

[Y ′]+1|∆̇n

[ă]+1|∆̇n //

Y ′ϑ′n|∆̇n
��

[Y̆ ′]+1|∆̇n

1
��

[Y ′+1]|∆̇n

1 // [Y̆ ′+1]|∆̇n
,

whence Y ′ϑ′n|∆̇n
= X ′|∆̇n

a(∆̇n) = X ′a+(∆̄#
n )|∆̇n

. Since the functor from C ′+(∆̄#
n ) to C ′(∆̇n)

induced by restriction is an equivalence by [8, Prop. 2.6], this implies that

X ′F+(∆̄n)ϑ′n = Y ′ϑ′n = X ′a+(∆̄#
n ) .
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So we can conclude that

XF+(∆̄n)ϑ′n = [fF+(∆̄n)]+1 ·X ′F+(∆̄n)ϑ′n · [(fF+(∆̄n))+1]−

= [fF+(∆̄n)]+1 ·X ′a+(∆̄#
n ) · [(fF+(∆̄n))+1]−

= [fF+(∆̄#
n )]+1 ·X ′a+(∆̄#

n ) · (f(F T′)+(∆̄#
n ))−

= [fF+(∆̄#
n )]+1 · (f(TF )+(∆̄#

n ))− ·Xa+(∆̄#
n )

= ([f ]+1 · [f+1]−)F+(∆̄#
n ) ·Xa+(∆̄#

n )

= X(ϑn ? F
+(∆̄#

n )) ·Xa+(∆̄#
n ) .

This proves the claim.

Corollary 26 Suppose (C,T, ϑ) to be closed.

Suppose given an additive functor C -F C ′ such that TF = F T′.

Then F is strictly exact if and only if for each n > 0 and each n-triangle X ∈ Ob C+, ϑ=1(∆̄#
n ),

the diagram X(F (∆̄#
n )) ∈ Ob C ′(∆̄#

n ), obtained by pointwise application of F , is an n-triangle.

Proof. In this case, we have a = 1TF = 1F T′ and Y̆ = Y = X(F (∆̄#
n )). Since (F, 1) is exact if

and only if F is strictly exact, the assertion follows by Proposition 25.

5 Adjoints

5.1 Adjoints and shifts

Suppose given categories A and A′. Suppose given an endofunctor T of A. Suppose given an

endofunctor T ′ of A′.

Suppose given functors A�-
F

G
A′ such that F a G via unit 1 -ε FG and counit GF -η 1, i.e.

(Gε)(ηG) = 1G and (εF )(Fη) = 1F .

Suppose given TF -α FT ′.

Let

(GT -β T ′G) :=
(
GT -

GTε
GTFG -

GαG
GFT ′G -

ηT ′G
T ′G

)
.

So we have the commutative diagram

GT
β //

GTε
��

T ′G

GTFG
GαG // GFT ′G .

ηT ′G

OO
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Lemma 27

(1) We have the commutative diagram

TF
α //

εTF
��

FT ′

FGTF
FβF // FT ′GF .

FT ′η

OO

(2) We have the commutative quadrangle

T
εT //

Tε
��

FGT

Fβ
��

TFG
αG

// FT ′G .

(2◦) We have the commutative quadrangle

GTF
Gα //

βF
��

GFT ′

ηT ′

��
T ′GF

T ′η
// T ′ .

(3) Suppose that T and T ′ are autofunctors. Write G′ = T ′GT−. If α is an isotransformation,

then so is β, where

(T ′G -
β−

GT ) =(
T ′G = T ′GT−T -

T ′GT−εT
T ′GT−FGT =

T ′GT−FT ′T ′−GT -
T ′GT−α−T ′−GT

T ′GT−TFT ′−GT =

T ′GFT ′−GT -
T ′ηT ′−GT

T ′T ′−GT = GT
)
.

(3◦) Suppose that T and T ′ are autofunctors. If β is an isotransformation, then so is α, where

(FT ′ -
α−

TF ) =(
FT ′ = TT−FT ′ -

TεT−FT ′

TFGT−FT ′ =

TFT ′−T ′GT−FT ′ -
TFT ′−β−T−FT ′

TFT ′−GTT−FT ′ =

TFT ′−GFT ′ -
TFT ′−ηT ′

TFT ′−T ′ = TF
)
.

Proof. Ad (2). We have

(εT )(Fβ) = (εT )(FGTε)(FGαG)(FηT ′G)

= (Tε)(εTFG)(FGαG)(FηT ′G)

= (Tε)(αG)(εFT ′G)(FηT ′G)

= (Tε)(αG) .
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Ad (1). We have

(εTF )(FβF )(FT ′η)
(2)
= (TεF )(αGF )(FT ′η)

= (TεF )(TFη)α

= α .

Ad (3). We have

β · (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (βT−T )(T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (GTT−εT )(βT−FGT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (GεT )(βT−FT ′T ′−GT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (GεT )(GTT−α−T ′−GT )(βT−TFT ′−GT )(T ′ηT ′−GT )

= (GεT )(Gα−T ′−GT )(βFT ′−GT )(T ′ηT ′−GT )
(2◦)
= (GεT )(Gα−T ′−GT )(GαT ′−GT )(ηT ′T ′−GT )

= (GεT )(ηGT )

= 1

and
(T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT ) · β

= (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )(T ′T ′−β)

= (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′GFT ′−β)(T ′ηT ′−T ′G)

= (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′GT−TFT ′−β)(T ′ηG)

= (T ′GT−εT )(T ′GT−FT ′T ′−β)(T ′GT−α−T ′−T ′G)(T ′ηG)

= (T ′GT−εT )(T ′GT−Fβ)(T ′GT−α−G)(T ′ηG)
(2)
= (T ′GT−Tε)(T ′GT−αG)(T ′GT−α−G)(T ′ηG)

= (T ′Gε)(T ′ηG)

= 1 .

5.2 An adjoint of an exact functor is exact

The Verdier triangulated version of the following proposition is due to Margolis

[11, App. 2, Prop. 11], and, in a more general form, to Keller and Vossieck [5, 1.6].

Proposition 28 Suppose given Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′).

Suppose given an exact functor (F, a) from C to C ′ ; cf. Definition 1.

Suppose given a functor C �G C ′ .

So C �-
F

G
C ′ and TF -a∼ F T′ .

(1) If F a G, then there exists an isomorphism T′G -b∼ GT such that (G, b) is an exact functor

from C ′ to C.
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Choose a unit 1C′ -
ε
FG and a counit GF -η 1C . Then, more precisely, we may choose

(T′G -b GT) := (GT -GT ε
GTFG -GaG

GF T′G -ηT′G
T′G)− .

(1◦) If G a F , then there exists an isomorphism T′G -b∼ GT such that (G, b) is an exact functor

from C ′ to C.

Choose a unit 1C′ -
ε
GF and a counit FG -η 1C . Then, more precisely, we may choose

(T′G -b GT) := (T′G -εT′G
GF T′G -Ga−G

GTFG -GT η
GT) .

Proof. Ad (1). By Lemma 42.(1◦), G is subexact.

Lemma 27.(3) yields the isotransformation b− := (GT ε)(GaG)(η T′G).

Suppose given n > 0. We shall make use of the abbreviation G = G+(∆̄#
n ) , etc. We have to

show that

(ϑ′n ? G) · b !
= G ? ϑn ,

i.e. that

(G ? ϑn) · b− !
= ϑ′n ? G ,

i.e. that

(G ? ϑn) · (G ? T ? ε) · (G ? a ? G) · (η ? T′ ? G)
!

= ϑ′n ? G

Recall that [−]+1 denotes the outer shift, that [−+1] denotes the inner shift and that

ϑn : [−]+1 -∼ [−+1] on C+(∆̄#
n ) ; similarly on C ′+(∆̄#

n ) .

We obtain

(G ? ϑn) · (G ? T ? ε) · (G ? a ? G) · (η ? T′ ? G)

= (G ? ϑn) · (G ? [−+1] ? ε) · (G ? a ? G) · (η ? T′ ? G)

= (G ? [−]+1 ? ε) · (G ? ϑn ? F ? G) · (G ? a ? G) · (η ? T′ ? G)

= (G ? [−]+1 ? ε) · (G ? ((ϑn ? F ) · a) ? G) · (η ? T′ ? G)
(F, a) ex.

= (G ? [−]+1 ? ε) · (G ? F ? ϑ′n ? G) · (η ? T′ ? G)

= (G ? [−]+1 ? ε) · (G ? F ? ϑ′n ? G) · (η ? [−+1] ? G)

= (G ? [−]+1 ? ε) · (η ? [−]+1 ? G) · (ϑ′n ? G)

= (G ? ε ? [−]+1) · (η ? G ? [−]+1) · (ϑ′n ? G)

= ϑ′n ? G .

Ad (1◦). Cf. Lemma 27.(1).

Example 29 Suppose we are in the situation of Proposition 28.(1). Then ε and η are periodic;

cf. Definition 4.

Ad ε : 1 - FG. The functor (F, a)(G, b) = (FG , aG · Fb) is exact; cf. Remark 3. The functor

(1C , 1) is exact. The quadrangle

T
Tε //

1
��

TFG

aG·Fb
��

T
εT // FGT
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commutes by Lemma 27.(2).

Ad η : GF - 1. The functor (G, b)(F, a) = (GF , bF ·Ga) is exact; cf. Remark 3. The functor

(1C′ , 1) is exact. The quadrangle

T′GF
T′ η //

bF ·Ga
��

T′

1
��

GF T′
ηT′ // T′

commutes by Lemma 27.(2◦).

5.3 A functor shiftcompatibly adjoint to a strictly exact functor is

strictly exact

Suppose given closed Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′)

Recall that an additive functor F : C - C ′ is strictly exact if and only if (F, 1) is exact; cf.

[8, Def. 1.5.(iii)], Definition 1.

Corollary 30

Suppose given a strictly exact functor C -F C ′ .

Suppose given a functor C �G C ′ .

(1) If F a G, with unit ε : 1 - FG and counit η : GF - 1 such that (GT ε)(η T′G) = 1,

then G is strictly exact.

(1◦) If G a F , with unit ε : 1 - FG and counit η : GF - 1 such that (εT′G)(GT η) = 1,

then G is strictly exact.

Proof. Ad (1). In the notation of Proposition 28.(1), we have a = 1, and, consequently,

b = (GT ε)(η T′G) = 1. Hence by loc. cit., (G, 1) is exact, i.e. G is strictly exact.

6 Localisation

We prove that the localisation C//N of a Heller triangulated category C at a thick subcategory

N is Heller triangulated in such a way that the localisation functor C -L C//N is strictly exact;

cf. [8, Def. 1.5]. There is considerable overlap with the classical localisation theory of Verdier

triangulated categories, due to Verdier [13], which we include for sake of self-containedness.

Let (C,T, ϑ) be a closed Heller triangulated category; cf. Definition 14.

Definition 31 A full additive subcategory N ⊆ C is called thick if the conditions (1, 2, 3) are

satisfied; cf. [12, Prop. 1.3]

(1) We have N+1 = N (closed under shift).
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(2) Given a 2-triangle (X, Y, Z) in C with X and Y in ObN , then Z ∈ ObN
(closed under taking cones).

(3) Given X, Y ∈ Ob C with X ⊕ Y in ObN , then X ∈ ObN
(closed under taking summands).

Let N be a thick subcategory of C. By Lemma 23, conditions (1) and (2) of Definition 31 yield

that N is a Heller triangulated subcategory of C.

Let M(N ) := {(X -f Y ) ∈ C : the cone of f is in ObN}. An element of M(N ) is called an

M(N )-isomorphism or often just an N-isomorphism (not to be confused with “an isomorphism

in N ”). If N is unambiguous, then an N-isomorphism is denoted by X =⇒ Y . For instance,

X =⇒ 0 if and only if 0 =⇒ X if and only if X ∈ ObN .

Lemma 32 The subset M(N ) of N-isomorphisms in C is a multiplicative system in C in the

sense of Definition 45.

Proof. Ad (Fr 2). Suppose given X1/0
-x X2/0

-x X3/0
-x X4/0 such that X1/0

-x X3/0 and

X2/0
-x X4/0 are M -isomorphisms. We complete to a 4-triangle X ∈ Ob C+, ϑ=1(∆̄#

n ) using

closedness of C ; cf. Lemma 20. By [8, Lem. 3.4.(1, 6)], we have X3/1 , X4/2 ∈ ObN . We have

to show that X2/1 , X3/2 , X4/3 , X4/1 ∈ ObN . Let the periodic monotone map ∆̄5
-p ∆̄4 be

defined by 0p := 1, 1p := 1, 2p := 2, 3p := 3, 4p := 4 and 5p := 4. The 2-triangle Xp#f2 ∈
Ob C+, ϑ=1(∆̄#

2 ) is given by

0

0 // X2+1/4

OO

0 // X1+1/2
−x //

OO

+

X1+1/4

x

OO

0 // X4/3
(1 0) //

OO

+

X4/3⊕X1+1/2

“
x
−x

”
//

“
0
1

” OO

+

X1+1/3

x

OO

0 // X3/1
x //

OO

+

X4/1
x //

x

OO

+

X4/2
//

(x x )

OO

+

0 ,

OO

cf. [8, Lem. 3.4.(1, 2), §1.2.1.2, §1.2.2.2.]. Since X3/1 , X4/2 ∈ ObN , and since N is closed

under cones, we have X4/3⊕X1+1/2 ∈ ObN . Since N is closed under summands and under shift,

we obtain X4/3 , X2/1 ∈ ObN . Since N is closed under cones and under shift, X4/1 ∈ ObN
ensues. Considering X again, since N is closed under cones, we finally obtain X3/2 ∈ ObN .

Ad (Fr 3). Let X -f Y be a morphism in C such that there exists Y
s

=⇒ Z with

fs = 0. We obtain a factorisation (X -f Y ) = (X -u N -v Y ) with N ∈ ObN . Com-

pleting (T1/0
-t T2/0

-t T3/0) := (X -u N -v Y ) to a 3-triangle by Lemma 20, we obtain

T1/2−1
t

=⇒ T1/0 , which composes to zero with (T1/0
-t T3/0) = (X -f Y ).
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Ad (Fr 4). Suppose given

X ′

X +3

OO

Y

in C. Prolonging X -X ′ to a 2-triangle (X ′′, X,X ′), then completing X ′′ -X =⇒ Y to a

3-triangle using Lemma 20, we obtain, by [8, Lem. 3.4.(6)], a 3-triangle T with (T2/0
-t T3/0) =

(X =⇒ Y ) and (T2/0
-t T2/1) = (X -X ′). Then T3/2 ∈ ObN , whence T2/1 =⇒ T3/1 . The

weak square (T2/0 , T3/0 , T2/1 , T3/1) is a completion as sought.

Note that if X ∈ (Ob C) r (ObN ), then (0, 0, 0, X) is a weak square in which 0 - 0 is an
N-isomorphism, but 0 - X is not.

The localisation of C at M(N ), defined as in §A.4, is also called the localisation of C at N , and

also written C//N := CM(N ). Concerning the localisation functor C -L C//N , we refer to §A.4.

Recall that an additive functor between weakly abelian categories is called subexact if it induces

an exact functor on the Freyd categories; cf. [8, §1.2.1.3]; cf. also Lemma 41.

Lemma 33 The category C//N is weakly abelian. The functor C -L C//N is subexact.

Proof. By Remark 51, the category C//N is additive, and the localisation functor L : C - C//N
is additive. We claim that L maps weak kernels to weak kernels. Let X -f Y be a weak kernel

of Y -g Z in C. We claim that it remains a weak kernel in C//N . Suppose given a morphism

T -t Y in C such that tg = 0 in C//N , which we, by isomorphic replacement, may assume given.

Let T ′
s

=⇒ T be such that stg = 0 in C ; cf. Remark 47. Since f is a weak kernel of g in C, we

have a factorisation st = uf . Hence t = (s−1u)f is a factorisation of t over f in C//N .

Substituting isomorphically in C//N and using duality, for C//N to be weakly abelian, it suffices

to show that each morphism X -f Y has a weak kernel resp. is a weak kernel in C//N . But by

the property of L just shown, we may use a weak kernel of f in C resp. a morphism f is a weak

kernel of in C.

Remark 34 The category C//N carries a shift automorphism C//N -T C//N , f/t - f+1/t+1.

We have L T = T L.

Proof. This functor is welldefined since N , and hence M(N ), is closed under shift in C. Likewise,

its inverse f/t - f−1/t−1 is welldefined.

Lemma 35 Suppose given a Heller triangulated category (D,T, θ).

Suppose given a weakly abelian category D′ and an automorphism D′ -T
′
D′. Suppose given a

subexact additive functor D -G D′ strictly compatible with shift, i.e. GT′ = TG. Suppose that

D(∆̇n) -G(∆̇n) D′(∆̇n) is 1-epimorphic for n > 0.

Then the functor D+(∆̄#
n ) -

G+(∆̄#
n )
D′+(∆̄#

n ) is 1-epimorphic.

Moreover, there exists a unique Heller triangulation θ′ on (D′,T′) such that D -G D′ is strictly

exact; cf. [8, Def. 1.5].
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Proof. Given n > 0. Since the residue class functors D(∆̇n) - D(∆̇n) and D′(∆̇n) - D′(∆̇n)

are full and dense, they are 1-epimorphic by [8, Cor. A.37] ; concerning notation, cf. [8, §2.4].

The commutative quadrangle

D(∆̇n)
G(∆̇n) //

��

D′(∆̇n)

��

D(∆̇n)
G(∆̇n)

// D′(∆̇n)

shows that G(∆̇n) is 1-epimorphic. Restriction induces equivalences D+(∆̄#
n ) -

(−)|∆̇n D(∆̇n) and

D′+(∆̄#
n ) -

(−)|∆̇n D′(∆̇n) by [8, Prop. 2.6]. Therefore, the commutative quadrangle

D(∆̇n)
G(∆̇n)

// D′(∆̇n)

D+(∆̄#
n )

(−)|∆̇n

OO

G+(∆̄#
n )

// D′+(∆̄#
n )

(−)|∆̇n

OO

shows that G+(∆̄#
n ) is 1-epimorphic; concerning notation, cf. [8, §1.2.1.1, §1.2.1.3]. Therefore,

we may define a transformation θ′n for D′ by the requirement that

D+(∆̄#
n )

G+(∆̄#
n )

//

[−]+1

��

[−+1]

��

D′+(∆̄#
n )

[−]+1

��

[−+1]

��
D+(∆̄#

n )
G+(∆̄#

n )
// D′+(∆̄ #

n )

θn +3 θ′n +3

be commutative, i.e. that θn ?G
+(∆̄#

n ) = G+(∆̄#
n ) ? θ′n . In other words, there exists a unique θ′n

making this diagram commutative.

Let θ′ := (θ′n)n>0 , where for n = 0, we make use of D′+(∆̄ #
0 ) = 0. We claim that θ′ is a

Heller triangulation on (D′,T′), i.e. that (D′,T′, θ′) is a Heller triangulated category. Once this

is proven, we see that by construction, D -G D′ is strictly exact; cf. [8, Def. 1.5.(iii)].

Suppose given m, n > 0 and a periodic monotone map ∆̄n
�p ∆̄m . To prove that

p# ? θ′m
!

= θ′n ? p
#, we may precompose with the 1-epimorphic functor G+(∆̄#

n ) to obtain

G+(∆̄#
n ) ? p# ? θ′m = p# ? G+(∆̄#

m) ? θ′m = p# ? θm ? G
+(∆̄#

m)

(D,T,θ)
=

Heller triangulated
θn ? p

# ? G+(∆̄#
m) = θn ? G

+(∆̄#
n ) ? p# = G+(∆̄#

n ) ? θ′n ? p
# .

Suppose given n > 0. To prove that f
n
? θ′n+1

!
= θ′2n+1 ? f

n
, we may precompose with the
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1-epimorphic functor G+(∆̄#
2n+1) to obtain

G+(∆̄#
2n+1) ? f

n
? θ′n+1 = f

n
? G+(∆̄#

n+1) ? θ′n+1

= f
n
? θn+1 ? G

+(∆̄#
n+1)

(D,T,θ)
=

Heller triangulated
θ2n+1 ? f

n
? G+(∆̄#

n+1)

= θ2n+1 ? G
+(∆̄#

2n+1) ? f
n

= G+(∆̄#
2n+1) ? θ′2n+1 ? f

n
.

Proposition 36 Recall that (C,T, ϑ) is a closed Heller triangulated category, and that N is a

thick subcategory of C.

There exists a unique Heller triangulation θ on (C//N ,T) such that C -L C//N is strictly exact;

cf. [8, Def. 1.5].

Then (C//N ,T, θ) is a closed Heller triangulated category; cf. Definition 14.

Proof. By Lemma 33, the category C//N is weakly abelian, and L : C - C//N is subexact. By

Remark 34, C//N carries a shift automorphism, and L is compatible with the shift automorphisms

on C and on C//N . By Lemma 50, the functor C(∆̇n) -L(∆̇n)
(C//N )(∆̇n) is 1-epimorphic for n > 0.

Therefore, existence and uniqueness of θ follow by Lemma 35.

It remains to be shown that C//N is closed. By isomorphic substitution, it suffices to show that

each morphism in the image of L has a cone in C//N ; cf. [8, Lem. 3.4.(6)]. But this follows from

C being closed and from L being strictly exact.

An object (X -x X ′) of the Freyd category Ĉ is called N-zero if x factors over an object of N ;
concerning Ĉ, cf. [8, §A.6.3]. Note that an object of Ĉ that is isomorphic to a summand of an
N-zero object is itself N-zero.

Remark 37 A morphism in C is an N-isomorphism if and only if its kernel and its cokernel, taken
in Ĉ, are N-zero.

Note that this criterion does not make reference to the Heller triangulated structure on C, but only to
the fact that C is weakly abelian. One might ask for conditions on N that only use weak abelianess
of C, and that nonetheless suffice to turn CM(N ) into a weakly abelian category – where now M(N )
is the subset of morphisms of C defined by the criterion given in Remark 37.

Proof of Remark 37. Suppose that X -f Y is an N-isomorphism in C. Then it has a weak kernel
N and a weak cokernel M in ObN . By construction of the kernel in Ĉ, it is of the form (N - X).
Dually, the cokernel is of the form (Y -M); cf. [8, §A.6.3].

Conversely, suppose that the kernel and the cokernel of the morphism X -f Y , taken in Ĉ, are

N-zero. Consider the exact functor Ĉ -L̂ (C//N )̂ that prolongs L on the level of Freyd categories.
It maps f to an isomorphism, since in the abelian category (C//N )̂ , the image of f has zero kernel
and zero cokernel. Since C//N - (C//N )̂ is full and faithful, the image of f under L in C//N is an
isomorphism, too. Hence f is an N-isomorphism in C ; cf. Remark 46.
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Proposition 38 (universal property) Recall that (C,T, ϑ) is a closed Heller triangulated

category, and that N is a thick subcategory of C.

Let θ be the unique Heller triangulation on (C//N ,T) such that the localisation functor C -L C//N
is strictly exact; cf. Proposition 36. Suppose given a Heller triangulated category (C ′,T′, ϑ′).

Recall that we write C, C ′ ex for the category of exact functors and periodic transformations

from C to C ′ ; cf. Definition 6.

Write C, C ′ ex, N ⊆ C, C ′ ex for the full subcategory consisting of exact functors (F, a) such

that NF ' 0 for all N ∈ ObN .

Recall that we write C, C ′ st ex for the category of strictly exact functors and periodic transfor-

mations from C to C ′ ; cf. Definition 6.

Write C, C ′ st ex, N ⊆ C, C ′ st ex for the full subcategory consisting of strictly exact functors F

such that NF ' 0 for all N ∈ ObN .

(1) We have a strictly dense equivalence

C, C ′ ex, N �
L ? (−)

C//N , C ′ ex

(L ?G , L ? b) = (L, 1) ? (G, b) � (G, b) .

(2) We have a strictly dense equivalence

C, C ′ st ex, N �
L ? (−)

C//N , C ′ st ex

L ?G � G .

Proof.

Ad (1). Welldefinedness of the functor L ? (−) follows from L being strictly exact and exact

functors being stable under composition; cf. Proposition 36, Remark 3.

We make use of the universal property of the localisation to the extent stated in Remark 51.

Suppose given exact functors C -
-(F,a)

(G,b)
C ′ and a periodic transformation F -u G.

Let F̆ : C//N - C ′ be defined by L ? F̆ := F . Let Ğ : C//N - C ′ be defined by L ? Ğ := G.

Recall that the shift on C//N is, abusively, also denoted by T, so that T ? L = L ?T. Let the

transformations ă and b̆ be defined by

L ? (T ? F̆ -̆a F̆ ? T′) := (T ?F -a F ? T′)

L ? (T ? Ğ -b̆ Ğ ? T′) := (T ?G -b G ? T′) .

Let the transformation F̆ -̆u Ğ be defined by

L ? (F̆ -̆u Ğ) := (F -u G) .

We have to show that (F̆ , ă) is exact and that ŭ is periodic.
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Ad F̆ exact. Since Xă = X L ă = Xa is an isomorphism for X ∈ Ob C//N = Ob C, the

transformation a is an isotransformation.

To show that F̆ is subexact, by Lemma 41, it suffices to show that given a morphism f in C//N ,

it has a weak cokernel that is preserved by F̆ . By isomorphic substitution, we may assume that

f = f ′ L for some morphism f ′ in C. Let (f ′, g′, h′) be a 2-triangle in C ; cf. Lemma 20. Since L

is strictly exact, the 2-triangle (f, g′ L, h′ L) results. In particular, g′ L is a weak cokernel of f .

Since F is subexact, g′F = g′ L F̆ is a weak cokernel of f ′F = f ′ L F̆ = fF̆ .

Suppose given n > 0. We shall make use of the abbreviation F = F+(∆̄#
n ) , etc. It remains to

show that

(θn ? F̆ ) · ă !
= F̆ ? ϑ′n .

Since L = L+(∆̄#
n ) is 1-epimorphic by Lemmata 50 and 35, it suffices to show that

L ? ((θn ? F̆ ) · ă)
!

= L ? F̆ ? ϑ′n .

In fact,

L ? ((θn ? F̆ ) · ă) = (L ? θn ? F̆ ) · (L ? ă)

L ex.
= (ϑn ? L ? F̆ ) · (L ? ă)

= (ϑn ? F ) · a
(F, a) ex.

= F ? ϑ′n

= L ? F̆ ? ϑ′n .

Ad ŭ periodic. We have to show that

(T ? ŭ) · b̆ !
= ă · (ŭ ? T′)

as transformations from T ? F̆ to Ğ ? T′. By Remark 51, it suffices to show that

L ? ((T ? ŭ) · b̆) !
= L ? (ă · (ŭ ? T′)) .

In fact,

L ? ((T ? ŭ) · b̆) = (L ?T ? ŭ) · (L ? b̆)

= (T ? L ? ŭ) · (L ? b̆)

= (T ? u) · b
u per.
= a · (u ? T′)

= (L ? ă) · (L ? ŭ ? T′)

= L ? (ă · (ŭ ? T′)) .

Ad (2). Welldefinedness of the functor L ? (−) follows from L being strictly exact and strictly

exact functors being stable under composition; cf. Proposition 36, Remark 3.

Keep the notation of the proof of (1). Given an exact functor (F, a) from C to C ′, we infer from

a = 1, using L ? ă = a, that ă = 1.
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A Some general assertions

This appendix serves as a tool kit consisting of known results and folklore lemmata. We do not
claim originality.

A.1 Remarks on coretractions and retractions

Remark 39 Let A be a category.

Suppose given X, Z in ObA, and morphisms X -i Z -p X such that ip = 1X .

Suppose given Y , W in ObA, and morphisms Y -j W -q Y such that jq = 1Y .

Suppose given X -u Y in A. Let Z -v W be defined by v := puj. Then vq = pu and iv = uj.

Z
p //

v

��

X
i //

u

��

Z

v

��
W

q // Y
j // W

Proof. We have vq = pujq = pu and iv = ipuj = uj.

Remark 40 Let A be a category. Suppose given Z, X, Z ′, W, Y, W ′ ∈ ObA.

Suppose given morphisms X -i Z -p X such that ip = 1X .

Suppose given morphisms X -i
′

Z ′ -
p′

X such that i′p′ = 1X .

Suppose given morphisms Y -j W -q Y such that jq = 1Y .

Suppose given morphisms Y -j
′

W ′ -
q′

Y such that j′q′ = 1Y .

Suppose given Z -v W and Z ′ -
v′

W ′ such that pi′v′ = vqj′.

Then there exists a unique morphism X -u Y in A such that vq = pu and i′v′ = uj′.

Z
p //

v

��

X
i′ //

u

��

Z ′

v′

��
W

q // Y
j′ // W ′

If v and v′ are isomorphisms, so is u.

Proof. Uniqueness follows from p being epic and j′ being monic.

For existence, we let u := ivq = i′v′q′, the latter equality holding because of pivqj′ = pipi′v′ = pi′v′ = vqj′ =
vqj′q′j′ = pi′v′q′j′, using p epic and j′ monic. Then pu = pi′v′q′ = vqj′q′ = vq and uj′ = ivqj′ = ipi′v′ = i′v′.

If v and v′ are isomorphisms, then let u′ := jv−p = j′v′−p′ to get uu′ = ivqj′v′−p′ = ipi′v′v′−p′ = 1 and
u′u = jv−p i′v′q′ = jv−vqj′q′ = 1, so that u′ = u−. In particular, u is an isomorphism.

A.2 Two lemmata on subexact functors

Suppose given weakly abelian categories A and A′ ; cf. e.g. [8, Def. A.26.(3)]. Suppose given an additive functor
F : A - A′. Recall that F is called subexact if the induced functor F̂ : Â - Â′ on the Freyd categories is
exact; cf. [8, §1.2.1.3].



31

Lemma 41 The following assertions (1, 2, 3, 3◦, 4, 4◦) are equivalent.

(1) The functor F is subexact.

(2) The functor F preserves weak kernels and weak cokernels.

(3) The functor F preserves weak kernels.

(3◦) The functor F preserves weak cokernels.

(4) For each morphism X -t Y in A, there exists a weak kernel W -w X such that wF is a weak kernel
of tF .

(4◦) For each morphism X -t Y in A, there exists a weak cokernel Y -w
′

W ′ such that w′F is a weak cokernel
of tF .

Proof. Ad (1) ⇒ (4). Suppose given a morphism X -t Y in A. Let K -ri X be a kernel of t in Â. Choose

A -
b

K with A ∈ ObA. Since F̂ is exact, AF̂ -(bi)F̂
XF̂ -tF̂ Y F̂ is exact at XF̂ . So (bi)F̂ = (bi)F is a weak

kernel of tF̂ = tF in A′.

Ad (4) ⇒ (3). Given a morphism X -t Y in A and a weak kernel W -w X, a morphism V -v X is a weak
kernel of t if and only if both (w factors over v) and (v factors over w). So if wF is a weak kernel of tF , so is
vF . Consequently, if F preserves a single weak kernel of t, it preserves all of them.

Ad (3) ⇒ (2). This follows by [8, Rem. A.27].

Ad (2) ⇒ (1). Using duality and uniqueness of the kernel up to isomorphism, it suffices to show that F̂ maps a
chosen kernel of a given morphism to a kernel of its image under F̂ . Since F preserves weak kernels, this follows
by construction of a kernel; cf. e.g. [8, §A.6.3, item (1) before Rem. A.27].

Lemma 42 Suppose that C -F C′ is subexact. Suppose given a functor C �G C′.

(1) If G a F , then G is subexact.

(1◦) If F a G, then G is subexact.

Proof. Ad (1). As an adjoint functor between additive categories, G is additive.

Let 1 -ε GF be a unit and FG -η 1 a counit of the adjunction G a F .

By Lemma 41, it suffices to show that G preserves weak cokernels. Suppose given X ′ -
u

X -v X ′′ such that
v is a weak cokernel of u. We have to show that Gv is a weak cokernel of Gu. Suppose given t : XG - T such
that uG · t = 0. Then

u ·Xε · tF = X ′ε · uGF · tF = X ′ε · (uG · t)F = 0 .

Since v is a weak cokernel of u, we obtain a morphism s : X ′′ - TF such that v · s = Xε · tF . Then

vG · (sG · Tη) = XεG · tFG · Tη = XεG ·XGη · t = t .

A.3 Karoubi hull

The construction of the Karoubi hull is due to Karoubi; cf. [6, III.II].

Suppose given an additive category A. The Karoubi hull Ã has

Ob Ã := { (A, e) : A ∈ ObA, e ∈ A(A,A) with e2 = e }
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and, given (A, e), (B, f) ∈ Ob Ã,

A
(
(A, e), (B, f)

)
:= {u ∈ A(A,B) : e · u · f = u } .

Then Ã is an additive category, in which all idempotents are split.

Composition is inherited from A. We have a full and faithful additive functor

A -K Ã

(X -u Y ) -
(
(X, 1) -u (Y, 1)

)
,

which we often consider as an inclusion of a full subcategory.

Suppose given an additive category B in which all idempotents are split.

Remark 43 Write A,B add for the category of additive functors and transformations between such from A

to B. The induced functor A,B �K ? (−)
Ã,B restricts to a strictly dense equivalence

A,B add
�K ? (−)

Ã,B add .

Lemma 44 Suppose given an additive functor A -I A′ to an additive category A′ in which all idempotents
split. By Remark 43, we obtain a functor J : Ã - A′, unique up to isomorphism, such that the following
triangle of functors commutes.

A

K

��

I // A′

Ã
J

??~~~~~~~~

If I is full and faithful, and if every object of A′ is a direct summand of an object in the image of I, then J is
an equivalence.

By abuse of notation, in the situation of Lemma 44, we also write Ã = A′ and consider I to be an inclusion of a
full subcategory.

A.4 Multiplicative systems

The construction of the quotient category of a Verdier triangulated category is due to Verdier; cf. [13].

Suppose given a category C.

Definition 45 A set M of morphisms of C is called a multiplicative system in C if (Fr 1-4) are satisfied. An
element of M is called an M -isomorphism and denoted by X =⇒ Y .

(Fr 1) Each identity in C is an M -isomorphism.

(Fr 2) Suppose given X -f Y -g Z -h W in C such that fg and gh are M -isomorphisms.

Then f , g, h and f · g · h are M -isomorphisms.

(Fr 3) Suppose given X -
-f

g
Y in C. There exists an M -isomorphism s such that sf = sg if and only if there

exists an M -isomorphism t such that ft = gt.
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(Fr 4) Given

X +3

��

Y

X ′

in C, there exists a completion to a commutative quadrangle

X +3

��

Y

��
X ′ +3 Y ′

.

Dually, given

Y

��
X ′ +3 Y ′

in C, there exists a completion to a commutative quadrangle

X +3

��

Y

��
X ′ +3 Y ′

.

Cf. [13, §2, no. 1].

Suppose given a multiplicative system M in C. Using (Fr 2), we note that in the first assertion of (Fr 4),
if X - X ′ is an M -isomorphism, then there exists a commutative completion with Y - Y ′ being an
M -isomorphism. And dually.

The category CM , called localisation of C at M , is defined as follows. Let Ob CM := Ob C. A morphism from X

to Y is a double fraction, which is an equivalence class of diagrams of the following form.

X ′
s

t| ppppp
ppppp

f // Y ′

X Y

t
bj MMMMMM

MMMMMM

The diagrams (s, f, t) and (s′s, s′ft′, tt′) are declared to be elementarily equivalent, provided s′ and t′ are
M -isomorphisms. To form double fractions, we take the equivalence relation generated by elementary equi-
valence.

The equivalence class of the diagram (s, f, t) is written s\ f/t. So s\ f/t = s̃\ f̃/t̃ if and only if there exist
M -isomorphisms u, ũ, v, ṽ such that us = ũs̃ and tv = t̃ṽ and ufv = ũf̃ ṽ.

ks //

��

ks

ks //

KS

��

�#
???

???ks[c ???
???

�� ���������

���������
//

ks //

KS

��

ks

ks //

KS

��

FN
���������

���������ks

ks //

KS

ks

Write f/t := 1\ f/t, called a right fraction, and s\f := s\ f/1, called a left fraction. Using (Fr 4), each morphism
in CM can be represented both by a left fraction and by a right fraction. Given right fractions f/t and f̃/t̃, they
are equal if there exist M -isomorphisms u, v and ṽ such that ufv = uf̃ ṽ and tv = t̃ṽ. By (Fr 3), this implies the
existence of M -isomorphisms v, ṽ and u′ such that f(vu′) = f̃(ṽu′) and t(vu′) = t̃(ṽu′). Dually for left fractions.

So double fractions are a self-dual way to represent morphisms in CM . Right or left fractions are more efficient in

many arguments.

The composite of two double fractions s\ f/t and u\ g/v is defined, using (Fr 4) for the commutative diagram

s

u} ssssss
ssssss

f // g′ //

X Y
t

`h IIIIII

IIIIII
Z ,

vu} tttttt
tttttt

f ′
//

x

`h IIIIIIIIIIIIII

IIIIIIIIIIIIII
u

`h IIIIII

IIIIII
g

//

y

`h IIIIIIIIIIIIII

IIIIIIIIIIIIII
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to be equivalently s\ fg′/vy or xs\ f ′g/v. By (Fr 4, 2, 3), this definition is independent of the chosen completion
with g′ and y, and, likewise, of the chosen completion with x and f ′.

Independence of the choice of the representative s\ f/t is seen considering an elementary equivalence and using
(Fr 4, 2), thus obtaining an elementary equivalence of the two possible representatives of the composite. Likewise
independence of the representative u\ g/v.

Associativity follows using right fractions and a commutative diagram constructed by means of (Fr 4),

55jjjjjj
em TTTTTT

TTTTTT55jjjjjj
fn TTTTTT

TTTTTT
55jjjjjj

em TTTTTT
TTTTTT

X

66mmmmmm
Y

dl QQQQQ
QQQQQ

66mmmmmm
Z

dl QQQQQ
QQQQQ

66mmmmmm
W .

dl QQQQQ
QQQQQ

Given f ∈ Mor C, we also write 1\ f/1 =: f in CM , by abuse of notation. Note that in CM , we have s\ f/t =
s−f t−.

Remark 46 A double fraction s\ f/t represents an isomorphism in CM if and only if f is an M -isomorphism.

Sketch. First, using (Fr 2), we reduce to the case of a right fraction g/u. For a right fraction in turn, the assertion
follows applying (Fr 2) to an associativity diagram as above.

Remark 47 Given X -
-f

g
Y in C, we have f = g in CM if and only if there exists an M -isomorphism t such

that ft = gt in C, or, equivalently, if and only if there exists an M -isomorphism s such that sf = sg in C.

Remark 48 We have a functor C -L CM , f - 1\ f/1 = f , called localisation functor.

Given a category T , we let C, T M be the full subcategory of C, T consisting of functors that send all
M -isomorphisms in C to isomorphisms in T . The induced functor

C , T M
�
L ? (−)

CM , T

is a strictly dense equivalence, i.e. it is surjective on objects, full and faithful.

Sketch. Given a functor F ∈ Ob C , T M , we may define F̆ on CM by letting XF̆ := XF for X ∈ Ob CM = Ob C
and by (s\ f/t)F̆ := (sF )− · (fF ) · (tF )−. Then L ? F̆ = F .

Given a transformation (F -u G) ∈ Mor C , T M , we may define F̆ -ŭ Ğ by setting Xŭ := Xu for
X ∈ Ob CM = Ob C. Then L ? ŭ = u.

Lemma 49 Given n > 0, the functor

C(∆̇n) -L(∆̇n)
CM (∆̇n) ,

given by pointwise application of L, is dense.

Proof. We may assume n > 1.

Suppose given X ∈ Ob CM (∆̇n). To prove that for i ∈ [1, n− 1] there exists an X ′ ∈ Ob CM (∆̇n) isomorphic to

X such that X ′j -x
′

X ′j+1 is in the image of L for j ∈ [1, i− 1], we proceed by induction on i > 1. Suppose the

assertion to be true for i. Let us prove the assertion for i + 1. Write X ′i -
x′

X ′i+1 as a right fraction f/s. If
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i = n − 1, we replace X ′i+1 by the target of f , and f/s by f . If i 6 n − 2, we write X ′i+1
-x
′

X ′i+2 as a right
fraction g/u and construct the following commutative diagram using (Fr 4).

X ′′i+1

g′ 44iiiiiiii
s′

fn UUUUUUUUUU

UUUUUUUUUU

X ′i

f 44iiiiiii X ′i+1

sfn UUUUU
UUUUU

g 44iiiiiiii
X ′i+2

u
fn UUUUUUU

UUUUUUU

We replacing the object X ′i+1 by X ′′i+1 , the morphism f/s by f and the morphism g/u by g′/us′.

In both cases, we obtain a diagram isomorphic to X ′ that conincides with X ′ on [1, i] and whose morphism from
i to i+ 1 is in the image of L.

Lemma 50 Given n > 0, the functor

C(∆̇n) -L(∆̇n)
CM (∆̇n)

is 1-epimorphic.

Proof. We shall apply [8, Lem. A.35]. By Lemma 49, L(∆̇n) is dense.

Suppose given X, Y ∈ Ob C(∆̇n) and a morphism X L(∆̇n) -g Y L(∆̇n) in CM (∆̇n). Let gi be represented by
a right fraction fi/si for i ∈ [1, n].

We claim that for i ∈ [1, n], we can find representatives f ′j/s
′
j for j ∈ [1, i] such that there exist hj with

s′jhj = ys′j+1 and f ′jhj = xf ′j+1 in C for j ∈ [1, i−1]. Let f ′1 := f1 and s′1 := s1 . Proceeding by induction on i, we
have to write the right fraction fi+1/si+1 suitably as f ′i+1/s

′
i+1 . First of all, by (Fr 4), we find an M -isomorphism

σ and a morphism ξ such that yσ = s′iξ in C. We have f ′iξσ
− = xfi+1s

−
i+1 in CM . Using (Fr 4) and (Fr 2), we

find M -isomorphisms s′ and σ′ such that σs′ = si+1σ
′ in C. Hence

f ′iξs
′ = f ′iξs

′s′−σ−si+1σ
′ = f ′iξσ

−si+1σ
′ = xfi+1s

−
i+1si+1σ

′ = xfi+1σ
′

in CM . Composing with a further M -isomorphism, we may assume that f ′iξs
′ = xfi+1σ

′ in C ; cf. Remark 47.
We take hi := ξs′ and s′i+1 := si+1σ

′ and f ′i+1 := fi+1σ
′.

Xi
x //

f ′i

��

Xi+1

fi+1

��ξ //

s′
;C�������

�������

σ′
_g HHHHHHHHH

HHHHHHHHH

Yi

s′i

KS

y // Yi+1

σ

ck OOOOOOOOOOOO

OOOOOOOOOOOO
si+1

KS

This proves the claim, in particular for i = n.

X1
x //

f ′1

��

X2
//

f ′2

��

· · · // Xn−1
x //

f ′n−1

��

Xn

f ′n

��h1 // // · · · // hn−1 //

Y1
y //

s′1

KS

Y2
//

s′2

KS

· · · // Yn−1
y //

s′n−1

KS

Yn

s′n

KS

Condition (C) of loc. cit. is satisfied letting the epizigzag have length 0, letting the monozigzag be the single
backwards diagram morphism consisting of the morphisms s′i , and letting the required diagram morphism in the
image of L(∆̇n) consist of the morphisms f ′i .
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Remark 51 Suppose the category C to be additive.

(1) An object X is isomorphic to 0 in CM if and only if X =⇒ 0, or, equivalently, if and only if 0 =⇒ X.

(2) The category CM is additive, and the functor L : C - CM is additive.

(3) Given an additive category T , the strictly dense equivalence

C , T M
�
L ? (−)

CM , T

restricts to a strictly dense equivalence from the category of additive functors from CM to T to the category
of additive functors from C to T that sends all M -isomorphisms to isomorphisms, written

C , T add,M
�
L ? (−)

CM , T add .

Sketch.

Ad (1). If X is isomorphic to 0, then X =⇒ X ′ ⇐= 0 ; cf. Remark 46. By (Fr 4), we conclude that 0 =⇒ X.

Ad (2). Given X, Y ∈ Ob C, the direct sum X ⊕ Y , together with X -
(1 0)

X ⊕ Y and Y -
(0 1)

X ⊕ Y , remains
a coproduct in CM .

For existence of an induced morphism from the coproduct, we use (Fr 4, 2) to produce a common denominator
of two right fractions.

To prove uniqueness of the induced morphism, we suppose given
(
f
g

)
/s and

(
f ′

g′

)
/s, without loss of generality

with common denominator, such that f/s = (1 0) ·
(
f
g

)
/s = (1 0) ·

(
f ′

g′

)
/s = f ′/s and g/s = (0 1) ·

(
f
g

)
/s =

(0 1) ·
(
f ′

g′

)
/s = g′/s in CM . So there exists an M -isomorphism u such that fu = f ′u, and an M -isomorphism

v such that gv = g′v, both in C. By (Fr 4, 2), we obtain a common M -isomorphism w such that fw = f ′w and
gw = g′w in C. Hence

(
f
g

)
w =

(
f ′

g′

)
w in C. Therefore

(
f
g

)
/s =

(
f ′

g′

)
/s in CM .

Moreover, the automorphism
(

1 0
1 1

)
of X ⊕X remains an automorphism in CM .

Ad (3). Since L is additive, L ? (−) sends additive functors to additive functors. Conversely, given an additive
functor F : C - T , the functor F̆ as constructed in the proof of Remark 48 is additive.
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