
ELEMENTARY DIVISORS OF SPECHT MODULES

MATTHIAS KÜNZER AND ANDREW MATHAS

1. Introduction and statement of main results

The irreducible representations of the symmetric groups and their Iwahori-Hecke
algebras have been classified and constructed by James [6] and Dipper and James [2],
yet simple properties of these modules, such as their dimensions, are still not known.
Every irreducible representation of these algebras is constructed by quotienting out
the radical of a bilinear form on a particular type of module, known as a Specht
module. The bilinear forms on the Specht modules are the objects of our study.

One way of determining the dimension of the simple modules would be to first
find the elementary divisors of its Gram matrix over Z[q, q−1] and then specialize.
This would also give the dimensions of the subquotients of the Jantzen filtrations
of the Specht modules over an arbitrary field; see [7]. In general, such an approach
is not possible because, as Andersen has shown, Gram matrices need not be di-
agonalizable over Z[q, q−1]; see [1, Remark 5.11]. We also give some examples of
non–diagonalizable Specht modules in section 7.

Let G(λ) be the Gram matrix of the Specht module S(λ). Then the first result in
this paper shows that G(λ) is diagonalizable if and only if G(λ′) is diagonalizable,
where λ′ is the partition conjugate to λ. Moreover, ifG(λ) is divisibly diagonalizable
(that is, G(λ) is equivalent to a diagonal matrix diag(d1, . . . , dm) such that di
divides di+1, for 1 ≤ i < m), then so is G(λ′). In this case we can speak of
elementary divisors and we show how the elementary divisors of G(λ) and G(λ′)
determine each other. This is a q–analogue of the corresponding result for the
symmetric group [8].

We next consider the elementary divisors for the hook partitions. We show that
when λ = (n − k, 1k), for 0 ≤ k < n, the Gram matrix G(λ) is always divisibly
diagonalizable over Z[q, q−1], and we determine the elementary divisors. Again, this
is a q–analogue of the corresponding result for the symmetric groups [8], however,
the proof in the Hecke algebra case is more involved and requires some interesting
combinatorics.

2. The Hecke algebra and permutation modules

Fix a positive integer n and let Sn be the symmetric group of degree n.
Let R be a commutative domain and let q be an invertible element in R.
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The Iwahori–Hecke algebra of Sn with parameter q is the unital associative
algebra H with generators T1, T2, . . . , Tn−1 and relations

(Ti − q)(Ti + 1) = 0 for 1 ≤ i < n,
TiTj = TjTi for 1 ≤ i < j − 1 < n− 1,

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i < n− 1 .

Let ri = (i, i + 1), for i = 1, 2, . . . , n − 1. Then {r1, r2, . . . , rn−1} generate Sn

(as a Coxeter group). If w ∈ Sn then w = ri1 · · · rik for some ij with 1 ≤ ij < n.
The word w = ri1 . . . rik is reduced if k is minimal; in this case we say that w has
length k and we define `(w) = k.

If ri1 . . . rik is reduced then we set Tw = Ti1 · · ·Tik . Then Tw is independent of
the choice of reduced expression for w; see, for example, [10, 1.11]. Furthermore,
H is free as an R–module with basis {Tw | w ∈ Sn }.

A composition µ of n is a sequence of non–negative integers (µ1, µ2, . . . ) that
sum to n. If, in addition, µ1 ≥ µ2 ≥ . . . , then µ is a partition of n.

Let µ be a composition of n and let Sµ be the associated Young subgroup. Then
H (Sµ) = 〈Tw | w ∈ Sµ 〉 is a subalgebra of H . Given a (right) H (Sµ)–module V ,
we define the induced H –module

IndH
H (Sµ)(V ) = V ⊗H (Sµ) H .

Let Dµ = { d ∈ Sn | `(dri) > `(d) for all ri ∈ Sµ } be the set of distinguished right
coset representatives of Sµ in Sn. Then, as an R-module,

IndH
H (Sµ)(V ) ∼=

⊕
d∈Dµ

V ⊗ Td

by [2, Theorem 2.7].
Let xµ =

∑
w∈Sµ

Tw. Then Twxµ = xµTw = q`(w)xµ for all w ∈ Sµ. The trivial

representation of H (Sµ) is the free R–module 1µ = Rxµ.
Let yµ =

∑
w∈Sµ

(−q)−`(w)Tw. Then Twyµ = yµTw = (−1)`(w)yµ for all w ∈ Sµ.
The sign representation of H (Sµ) is the free R–module Eµ = Ryµ.

For any composition µ we define the permutation moduleM(µ) = IndH
H (Sµ)(1µ) ∼=

xµH . ThenM(µ) is free as anR–module of rank [Sn : Sµ] with basis {xµTd | d ∈ Dµ }.
The H –action on M(µ) is determined by

xµTdTi =


qxµTd, if `(dri) > `(d) and dri 6∈ Dµ,
xµTdri , if `(dri) > `(d) and dri ∈ Dµ,
qxµTdri + (q − 1)xµTd, otherwise.

Note that if `(dri) < `(d) then dri ∈ Dµ.
Let ∗ : H −→H be the R–linear map on H determined by T ∗w = Tw−1 , for all

w ∈ Sn. This defines an R-algebra anti–automorphism on H of order 2.
The module M(µ) carries a symmetric bilinear form 〈 , 〉µ given by

〈xµTa, xµTb〉µ =

{
q`(a), if a = b,

0, otherwise,

for a, b ∈ Dµ. It follows from the formulae above that the form 〈 , 〉µ is associative
in the sense that

〈xh, y〉µ = 〈x, yh∗〉µ
for all x, y ∈M(µ) and all h ∈H .
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We will need two dualities on the category of right H –modules. Both of them
come from involutions on H . The first duality comes from the involution ∗ defined
above. The second is induced from the automorphism # : H −→H which is the
R–linear map on H determined by T#

w = (−q)l(w)T−1
w−1 , for all w ∈ Sn. It is

straightforward to check that # preserves the relations in H and, hence, that it is
an R-algebra automorphism of order 2. Note that the involutions # and ∗ commute.

If V is an H -module let V ∗ be its R-linear dual. Then V ∗ becomes an H –
module by letting (φ · ξ)(v) := φ(vξ∗), where φ ∈ V ∗, v ∈ V and ξ ∈H . With the
according operation on morphisms, this defines a contravariant self–equivalence on
the category of H -modules.

If V is an H -module let V # the H -module with underlying R-module V and
operation v ·# ξ := v ·ξ#, where v ∈ V and ξ ∈H . With the identical operation on
morphisms, this defines a covariant self–equivalence on the category of H -modules.

3. Specht modules

We recall some well-known facts due to Dipper and James [2].
Let λ = (λ1, λ2, . . . ) be a composition of n. The diagram of λ is the set [λ] =

{ (i, j) ∈ N2 | 1 ≤ j ≤ λi }. We identify the diagram of λ with an array of boxes in
the plane. For example, if λ = (4, 3, 2) then

[λ] = .

The conjugate of λ is the partition λ′ = (λ′1, λ
′
2, . . . ), where λ′j = # { i ≥ 1 | λi ≥ j }

for all j; that is, λ′ is the partition of n whose diagram is obtained by interchanging
the rows and columns of the diagram of λ.

Formally, a λ–tableau is a bijection t : [λ]−→{1, 2, . . . , n}; however, we will think
of a λ–tableau as a labelling of the diagram of λ by the numbers 1, 2, . . . , n. Ac-
cordingly, we will speak of the rows and columns of a tableau. For example,

1 2 3
4 5

, 1 3 5
2 4

, 1 4 5
2 3

and 2 3 4
1 5

are all (3, 2)–tableaux.
A tableau is row standard if in each row its entries increase from left to right.

A tableau is standard if it is row standard and in each column its entries increase
from top to bottom. Let Std(λ) be the set of standard λ-tableaux.

All of the tableaux above are row standard; however, only the first two tableaux
are standard.

The initial λ–tableau tλ is the standard λ–tableau which has the numbers 1, 2, . . . , n
entered in order from left to right, and then top to bottom, along its rows. The
terminal λ–tableau tλ is the standard λ–tableau which has the numbers 1, 2, . . . , n
entered in order from top to bottom, and then left to right, along its columns. Of
the (3, 2)–tableaux above, the first is t(3,2) and the second is t(3,2).

The symmetric group Sn acts from the right on the set of λ–tableaux by per-
muting their entries. If t is a λ–tableau let d(t) be the unique permutation such
that t = tλd(t). In particular, we set wλ = d(tλ).

We remark that Dµ = { d(t) | t is a row standard µ–tableau } .
Suppose that λ is a partition of n and let zλ = xλTwλyλ′ . The Specht module is

the submodule S(λ) = zλH of M(λ).
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Let S(λ)⊥ = {x ∈M(λ) | 〈x, y〉 = 0 for all y ∈ S(λ) }. As 〈 , 〉λ is associative,
S(λ)⊥ is an H -submodule of M(λ). More precisely, S(λ)⊥ is the kernel of the
H -linear map

M(λ) -δλ S(λ)∗ ; xλh - 〈xλh,−〉λ ,

where h ∈H .
By restricting the bilinear form 〈 , 〉λ on M(λ) we obtain a bilinear form on

S(λ). If R is a field then D(λ) = S(λ)/S(λ) ∩ S(λ)⊥ is either zero or absolutely
irreducible. Moreover, all of the irreducible H –modules arise uniquely in this
way [2, Theorem 5.2].

Before we can give a basis of S(λ) we need some more notation. If t is a λ–
tableau let t′ be the λ′–tableau obtained by interchanging the rows and columns
of t. For example, (tλ)′ = tλ′ and (tλ)′ = tλ

′
. Finally, if t is a standard λ–tableau

let vt = zλTd(t′).

3.1 (Dipper–James [2, Theorem 5.6]) The Specht module S(λ) is free as an R–
module with basis { vt | t ∈ Std(λ) }.

We call { vt | t ∈ Std(λ) } the Dipper–James basis of S(λ). Let nλ = # Std(λ) be
the number of standard λ–tableaux. Then, as an R-module, S(λ) is free of rank nλ.

Fix an ordering of Std(λ) and let

G(λ) =
(
〈vs, vt〉λ

)
s,t∈Std(λ)

be the Gram matrix of the bilinear form 〈 , 〉λ, with respect to the Dipper–James
basis. The matrix G(λ) depends on the choice of ordering on Std(λ); however,
all of the quantities that we are interested in will be independent of this choice.
We remark that detG(λ) has been explicitly computed by Dipper and James [3,
Theorem 4.11].

4. Diagonalizability and elementary divisors

Given an integer m ≥ 1, an m×m matrix A with coefficients in R is diagonalizable
if there exist matrices S and T in GLm(R) such that SAT is a diagonal matrix. The
matrix A is divisibly diagonalizable if SAT = diag(d1, . . . , dm) is a diagonal matrix
such that di divides di+1 in R, for 1 ≤ i < m. If A is divisibly diagonalizable
and SAT = diag(d1, . . . , dm) satisfies this condition, then we call d1, . . . , dm the
elementary divisors of A.

Given A ∈ Rm×m, we let Ik(A) be the ideal of the k × k minors of A, for
1 ≤ k ≤ m. Note that for B ∈ Rm×m, we have Ik(AB) ⊆ Ik(A) and Ik(BA) ⊆
Ik(A). Hence for S, T ∈ GLm(R), we have Ik(A) = Ik(SAT ). Therefore, if A is
divisibly diagonalizable with resulting diagonal elements d1, . . . , dm, then Ik(A) =
Ik(diag(d1, . . . , dm)) is the principal ideal generated by d1d2 · · · dk. This shows that
the resulting diagonal entries are independent, up to multiplication by units, of the
choice of the diagonalizing matrices. In other words, the elementary divisors of a
divisibly diagonalizable matrix are well–defined modulo units.

Whether or not A is diagonalizable, the ideals Ik(A) ⊆ R are invariant under the
equivalence relation A ∼ SAT . It would be interesting to consider the equivalence
classes within {A ∈ Rm×m | Ik(A) = Jk for 1 ≤ k ≤ m } for a fixed tuple (Ji) of
ideals of R.
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If R is a principal ideal domain then every matrix A ∈ Rm×m is divisibly di-
agonalizable by the elementary divisor theorem. The resulting diagonal matrix is
known as the Smith normal form.

Now the Laurent polynomial ring Z[q, q−1] is not a principal ideal domain and,
in fact, there are strict inclusions of the set of divisibly diagonalizable matrices in
the set of diagonalizable matrices, and of the set of diagonalizable matrices in all
matrices with coefficients in Z[q, q−1]. For example, the matrix A =

( q−1 0
0 q+1

)
is diagonalizable, but not divisibly diagonalizable because I1(A), the ideal of R
generated by the entries of A, is not principal.

Proving that a matrix is not diagonalizable is slightly harder. For example, we
claim that the matrix B =

( q+1 2
0 q+1

)
is not diagonalizable over Z[q, q−1]. To see

this, notice that over Q[q, q−1] the matrix B has elementary divisors 1 and (q+1)2.
Therefore, if B is diagonalizable over Z[q, q−1] then one of these diagonal entries
must be a unit in Q[q, q−1]; that is, of the form aqb with a, b ∈ Z. Reducing modulo
2 this shows that one of the elementary divisors of B over F2[q, q−1] is zero or a
unit. However, this is a contradiction because the elementary divisors of B over
F2[q, q−1] are q + 1 and q + 1.

In proving that certain Gram matrices G(λ) are divisibly diagonalizable over
Z[q, q−1], we shall make use of the following simple lemma.

4.1. Lemma. Let A be an m ×m matrix with coefficients in R, and suppose that
there exist invertible matrices S, T ∈ GLm(R) such that

SAT =


d1 b12 . . . b1m
0 d2 . . . b2m
...

. . . . . .
...

0 · · · 0 dm

 ,

where d1 | d2 | . . . | dm and di divides bij for all j. Then A is divisibly diagonalizable
and d1, d2, . . . , dm are the elementary divisors of A.

Proof. The matrix SAT can be written as the product of diag(d1, . . . , dm) with a
matrix in GLm(R). �

As we saw with the non–diagonalizable matrix
( q+1 2

0 q+1

)
above, the requirement

that di divides bij for all j is not superfluous.

5. Elementary divisors for conjugate partitions

Let R = Z[q, q−1]. Let λ be a partition of n. In this section we relate the Gram
matrices G(λ) and G(λ′). We start with some mild generalizations of some results
about Specht modules which were proved by Dipper and James [2] over a field.

Recall that if Y is a submodule of an R–free module X then Y is pure if the
quotient module X/Y is R-free.

5.1. Lemma. Suppose that λ is a partition. Then the Specht module S(λ) is a pure
submodule of M(λ).

Proof. Using the Dipper–James basis of S(λ), and the basis {xλTd | d ∈ Dλ } of
M(λ), suitably ordered, the matrix representing the embedding S(λ) - M(λ)
Z[q, q−1]-linearly becomes triangular with 1s on the diagonal [2, Theorem 5.8]. �

5.2. Corollary. The map M(λ) -δλ S(λ)∗ is surjective.
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Proof. The map δλ is the composition of the map

M(λ) -∼ M(λ)∗ ; ξ - 〈ξ,−〉λ
with the dual of the inclusion map S(λ) - M(λ). This is surjective by Lemma
5.1. �

Let α(λ) =
∑
i≥1(i− 1)λi =

∑
i≥1

(
λ′i
2

)
. Note that α(λ) = `(w0,λ′), where w0,λ′

is the unique element of longest length in Sλ′ . The next lemma is well known; see,
for example, [13, Prop. 2.2]. We include a proof for completeness.

Recall that automorphism #, and the corresponding operation on the module
category of H , were defined at the end of section 2.

5.3. Lemma. We have x#
λ = qα(λ′)yλ and y#

λ = q−α(λ′)xλ.

Proof. As # is an involution the two equalities are equivalent, so we prove only
the first. For any integer i, with 1 ≤ i < n, we have x#

λ Ti = (xλT
#
i )# = −x#

λ .
Write x#

λ =
∑
w∈Sλ

awTw, for some aw ∈ Z[q, q−1]. Comparing coefficients on both
sides of the equation x#

λ Ti = −x#
λ shows that awri = (−q)aw for each w that has

a reduced expression ending in ri; compare [10, Cor. 1.7]. Hence, x#
λ is a scalar

multiple of yλ. Then T#
w0,λ

= (−1)`(w0,λ)Tw0,λ plus a linear combination of Tv where
v ∈ Sλ and `(v) < `(w0,λ). Therefore, comparing the coefficient of Tw0,λ in x#

λ and
yλ gives the result. �

Recall that S(λ) = zλH , where zλ = xλTwλyλ′ . The importance of zλ, and the
irreducibility of S(λ) in the semisimple case, follow from the following simple fact.
5.4 (Dipper–James [2, Lemma 4.1]) Suppose that w ∈ Sn. Then

xλTwyλ′ =

{
±qazλ, if w ∈ SλwλSλ′ ,

0, otherwise,

for some integer a.
The proof of this result amounts to the observation that Sλ ∩ wSλ′w

−1 = {1}
if and only if w ∈ SλwλSλ′ .

5.5. Lemma (The Submodule Theorem). If U is a pure submodule of M(λ), then
S(λ) ⊆ U or U ⊆ S(λ)⊥.

Proof. For all u ∈ U , we have uyλ′ = αuzλ for some αu ∈ Z[q, q−1] by (5.4).
Case 1: αu = 0 for all u ∈ U . Therefore, if u ∈ U and h ∈ H then we have

〈u, zλh〉λ = 〈uh∗yλ′ , xλTwλ〉λ, since y∗λ′ = yλ′ . But uh∗ ∈ U , so uh∗yλ′ = 0 and
u ∈ S(λ)⊥. Hence, U ⊆ S(λ)⊥.

Case 2: αu 6= 0 for some u ∈ U . Now U 3 uyλ′ = αuzλ implies zλ ∈ U since
U ⊆Mλ is a pure submodule. Therefore, S(λ) ⊆ U . �

Note that the right ideal yλ′T−1
wλ
xλH is isomorphic to S(λ)# via ξ - ξ#. Com-

posing left multiplication by yλ′T−1
wλ

with this isomorphism, and using Lemma 5.3,
we obtain a surjective H -linear map

M(λ) = xλH -θλ S(λ′)# ; xλh - zλ′ ·# h ,

where h ∈H .
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5.6. Lemma. We have Kern θλ = S(λ)⊥. This induces an isomorphism

S(λ′)# -ψλ
∼ S(λ)∗ ; zλ′ ·# h - 〈xλh,−〉λ ,

where h ∈H .

Proof. Both Kern θλ and S(λ)⊥ are pure submodules of M(λ). Over Z[q, q−1], both
S(λ′)# and S(λ)∗ are free of rank nλ, so it suffices to prove that Kern θλ ⊆ S(λ)⊥.
By (5.5) this is equivalent to showing that S(λ) 6⊆ Kern θλ. So it is enough to show
that zλθλ 6= 0. The bilinear form 〈 , 〉λ′ is associative, so

〈zλθλ, xλ′〉λ′ = q−α(λ)〈zλ′T−1
wλ′

xλ′ , xλ′〉λ′

= q−α(λ′)(
∑

w∈Sλ′

q`(w))〈zλ′ , xλ′T−1
wλ
〉λ′ .

Now, zλ′ =
∑
v∈Sλ

(−q)−`(v)xλ′Twλ′v, where each wλ′v is a distinguished coset
representative for Sλ′ . In contrast, T−1

wλ
is equal to Twλ′ plus a linear combi-

nation of terms Tu, where u ∈ Sn with `(u) < `(wλ′). Thus 〈zλ′ , xλ′T−1
wλ
〉λ′ =

〈xλ′Twλ′ , xλ′Twλ′ 〉λ = q`(wλ′ ). Hence, 〈zλθλ, xλ′〉λ′ 6= 0.
A comparison of the short exact sequences

0 - Kern θλ - M(λ) -θλ S(λ′)# - 0

and

0 - S(λ)⊥ - M(λ) -δλ S(λ)∗ - 0

yields the isomorphism ψλ. �

For each node (i, j) ∈ [λ], we let hi,j = (λi−j)+(λ′j−i)+1 be the corresponding
hook length and set hλ(q) =

∏
(i,j)∈[λ][hi,j ]q. The next lemma follows from results

of Murphy [11].

5.7. Lemma. We have zλT−1
wλ
zλ = qn−α(λ)hλ(q)zλ.

Proof. For the purpose of this proof, we may assume R = Q(q). By [11, p. 510–
511], there exists an element Ψ∗tλ = Twλ′ +

∑
`(v)<`(wλ′ )

rvTv ∈H , for some rv ∈ R,
such that

zλΨ∗tλ = qn−α(λ)+`(wλ′ )hλ(q)Eλ ,

where Eλ is a primitive idempotent such that EλH = zλH = S(λ). In particular
Eλzλ = zλ. (Note that zλ = zλt in Murphy’s notation; see [11, p. 496, p. 498].)

Note that T−1
wλ

= q−`(wλ)Twλ′ +
∑
`(v)<`(wλ′ )

rvTv, for some rv ∈ R. Now,
if `(v) < `(wλ′) then v 6∈ Sλ′wλ′Sλ, so yλ′Tvxλ = (xλT ∗v yλ′)

∗ = 0 by (5.4).
Consequently, zλTvzλ = 0. Therefore,

zλT
−1
wλ
zλ = q−`(wλ)zλTwλ′ zλ

= q−`(wλ)zλΨ∗tλzλ

= qn−α(λ)hλ(q)Eλzλ

= qn−α(λ)hλ(q)zλ .

�
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Consider the H -linear map

S(λ) -γλ S(λ)∗ ; ξ - 〈ξ,−〉λ .

5.8. Lemma. The composition

S(λ) -γλ S(λ)∗ -ψ
−1
λ

∼ S(λ′)# -γ
#
λ′ S(λ′)∗,# -(ψ#

λ′ )
−1

∼ S(λ)

is equal to scalar multiplication by (−q)`(wλ′ )qn−α(λ)−α(λ′)hλ(q).

Proof. The element zλ is mapped via γλ to 〈zλ,−〉λ, which is mapped via ψ−1
λ

to zλ′ ·# Twλyλ′ = zλ′T
#
wλ
y#
λ′ , which in turn goes to 〈zλ′T#

wλ
y#
λ′ ,−〉λ via γ#

λ′ , and
finally to

zλ ·# Twλ′ yλT
#
wλ
y#
λ′ = (−q)`(wλ′ )q−α(λ′)zλT

−1
wλ
zλ

= (−q)`(wλ′ )qn−α(λ)−α(λ′)hλ(q)zλ

via (ψ#
λ′)
−1, by Lemma 5.7. �

Let Im be the m×m identity matrix. Recall that nλ = # Std(λ) is the dimension
of the Specht module S(λ).

5.9. Proposition. Suppose that λ is a partition of n.

(1) There exist invertible matrices A,B ∈ GLnλ(Z[q, q−1]) such that

G(λ) ·A ·G(λ′) ·B = hλ(q) · Inλ .

(2) G(λ) is diagonalizable to the diagonal matrix D if and only if G(λ′) is
diagonalizable to the diagonal matrix hλ(q)D−1.

(3) G(λ) is divisibly diagonalizable if and only if G(λ′) is divisibly diagonal-
izable. In this case, the product of the ith elementary divisor of G(λ) and
the (nλ + 1− i)th elementary divisor of G(λ′) is equal to hλ(q).

Recall that elementary divisors are only well defined up to a unit in Z[q, q−1];
the same is true of their product in (3).

Proof. (1) The R-linear map γλ is represented by the matrix G(λ) with respect to
the Dipper–James basis and its dual basis. Thus the assertion follows by (5.8).

(2) If G(λ) = SDT with S, T ∈ GLnλ(Z[q, q−1]) and D ∈ Z[q, q−1]nλ×nλ is
a diagonal matrix, then G(λ′) = A−1T−1(hλ(q)D−1)S−1B−1. Since G(λ′) has
coefficients in Z[q, q−1], so does hλ(q)D−1.

(3) Repeat the argument of (2). �

We remark that all of the results in this section hold more generally when the
Hecke algebra H is defined over an integral domain R such that H ⊗R Q is
semisimple, where Q is the field of fractions of R. (We need semisimplicity over Q
only when we apply Murphy’s results in the proof of Lemma 5.7.) In particular,
Proposition 5.9 holds when R = F [q, q−1] and F is any field. Notice that G(λ) is
always diagonalizable in this case because F [q, q−1] is a principal ideal domain.
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6. The elementary divisors for hook partitions

Throughout this section we fix an integer k, with 0 ≤ k < n, and consider the
Specht module S(λ), where λ = (n − k, 1k). We will show that G(λ) is divisibly
diagonalizable by explicitly constructing two bases of S(λ) which transform G(λ)
into an upper triangular matrix satisfying the requirements of Lemma 4.1. In
particular, this will allow us to determine the elementary divisors of S(λ).

The Specht module S(λ) is defined as a submodule of the permutation module
M(λ); however, to compute the elementary divisors we will work inside a different
permutation module.

By definition, S(λ) = xλTwλyλ′H = x(n−k,1k)Tw(n−k,1k)
y(k+1,1n−k−1). We first

need to understand the permutation wλ = w(n−k,1k) a little better. This requires
some new notation. For integers non–negative i and j define

ri,j =


1, if i = 0 or j = 0,
riri+1 . . . rj , if 0 < i ≤ j,
riri−1 . . . rj , if i > j > 0,

and set Ti,j = Tri,j . Next, let a and b be non–negative integers such a + b ≤ n. If
either a = 0 or b = 0 then set wa,b = 1. If both a and b are non–zero then define
wa,b = (ra+b−1,1)b; then one can check that, in two–line notation,

wa,b =
( 1 2 . . . a a+ 1 a+ 2 . . . a+ b
b+ 1 b+ 2 . . . a+ b 1 2 . . . b

)
.

It is not hard to see that wb,a = w−1
a,b and that wa,b = ra,a+b−1wa−1,b and `(wa,b) =

`(ra,a+b−1) + `(wa−1,b); see [4]. Consequently,

wa,b = ra,a+b−1ra−1,a+b−2 . . . r1,b = r1,ar2,a+2 . . . rb,a+b−1

with the lengths adding in both cases. Hence, `(wa,b) = ab.
The permutation w(n−k,1k) is essentially one of these permutations because

w(n−k,1k) =
( 1 2 · · · n− k n− k + 1 · · · n

1 k + 2 · · · n 2 · · · k + 1

)
.

Hence, w(n−k,1k) = rn−k,n−1rn−k−1,n−2 . . . r2,k+1, with the lengths adding. So

Tw(n−k,1k)
= Tn−k,n−1 . . . T2,k+1,

Notice also that Twn−k.k = Tw(n−k,1k)
T1,k.

If w ∈ S(k,n−k)
∼= Sk × Sn−k then we write w = (u, v), where u ∈ Sk and

v ∈ S(1k,n−k) are the unique permutations such that w = uv = vu. Set

x(k|n−k) = y(k,1n−k)x(1k,n−k) =
∑

(u,v)∈S(k,n−k)

(−q)−`(u)Tuv.

Then it is easy to see that Rx(k|n−k) is an H (Sµ)–module on which the subal-
gebras H (Sk) and H (S(1k,n−k)) act via their sign and trivial representations,
respectively. Let

M(k|n−k) = IndH (Sn)
H (S(k,n−k))

(
Rx(k|n−k)

) ∼= x(k|n−k)H .
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As in section 2, the induced module M(k|n−k) is free as an R–module with ba-
sis {x(k|n−k)Td | d ∈ D(k,n−k) }. Furthermore, M(k|n−k) possesses a natural non–
degenerate associative bilinear form 〈 , 〉(k|n−k) which is determined by

〈x(k|n−k)Tu, x(k|n−k)Tv〉(k|n−k) =

{
q`(u), if u = v,

0, otherwise,

for u, v ∈ D(k,n−k). Donkin [5] calls M(k|n−k) a trivial source module.
Let y′k+1 = 1 +

∑k
j=1(−q)j−k−1Tk,j = 1− q−1Tk + q−2Tk,k−1 + · · ·+ (−q)−kTk,1.

This is a sum over the right coset representatives of Sk in Sk+1. Consequently, it
follows that y(k+1,1n−k−1) = y(k,1n−k)y

′
k+1. The reason for introducing the module

M(k|n−k) is the following result.
Given a non–negative integer k > 1 let [k]q = 1 + q + · · · + qk−1 and [k]!q =

[1]q[2]q · · · [k]q. Notice that if q = 1 then [k]1 = k and [k]!1 = k!.

6.1. Proposition. Let λ = (n− k, 1k). The map

πk : S(λ) −→ M(k|n−k) ; zλh 7−→ x(k|n−k)y
′
k+1h

is an injective H –module homomorphism. Moreover,

〈x, y〉λ = q
k
2 (2n−3k−1)[k]!q〈π(x), π(y)〉(k|n−k),

for all x, y ∈ S(λ).

Proof. By definition, S(λ) = x(n−k,1k)Twλy(k+1,1n−k−1)H . As remarked above,
wn−k,k = w(n−k,1k)r1,k with the lengths adding. Therefore, since r1,k ∈ Sλ′ ,

x(n−k,1k)Tw(n−k,1k)
y(k+1,1n−k−1) = (−1)kx(n−k,1k)Tw(n−k,1k)

T1,ky(k+1,1n−k−1)

= (−1)kx(n−k,1k)Twn−k,ky(k+1,1n−k−1)

= (−1)kTwn−k,kx(1k,n−k)y(k+1,1n−k−1)

= (−1)kTwn−k,kx(1k,n−k)y(k,1n−k)y
′
k+1

= (−1)kTwn−k,kx(k|n−k)y
′
k+1.

Therefore, π(x) = (−1)kT−1
wn−k,k

x, for all x ∈ S(λ). As Twn−k,k is invertible, the
first claim now follows.

To prove the second claim we first suppose that R = Z[q, q−1]. If x, y ∈ S(λ)
then, by extending scalars, we may assume that x and y are elements of S(λ)Q(q) =
S(λ)Z[q,q−1] ⊗ Q(q). Now S(λ)Q(q)

∼= π
(
S(λ)Q(q)

)
is irreducible so, up to a scalar,

there is a unique associative bilinear form on S(λ)Q(q). To determine this scalar it
is enough to compare the two inner products on zλ and π(zλ). Using associativity,

〈zλ, zλ〉λ = 〈xλTwλyλ′ , xλTwλyλ′〉λ = 〈xλTwλy2
λ′ , xλTwλ〉λ

= q−(k+1
2 )[k + 1]!q〈xλTwλyλ′ , xλTwλ〉λ

= q−(k+1
2 )[k + 1]!q

∑
v∈Sλ′

(−q)−`(v)〈xλTwλv, xλTwλ〉λ

= q`(wλ)−(k+1
2 )[k + 1]!q

= q
k
2 (2n−3k−3)[k + 1]!q.
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Similarly,〈
π(zλ), π(zλ)

〉
(k|n−k)

= 〈x(k|n−k)y
′
k+1, x(k|n−k)y

′
k+1〉(k|n−k) = q−k[k + 1]q

This proves that 〈x, y〉λ = q
k
2 (2n−3k−1)[k]!q〈π(x), π(y)〉(k|n−k), for all x, y ∈ S(λ)

when R = Z[q, q−1]. The general case now follows by specialization. �

6.2. Corollary. Suppose that λ = (n − k, 1k). Then [k]!q divides 〈x, y〉λ, for all
x, y ∈ S(λ).

Let S′(λ) = π
(
S(λ)

)
= x(k|n−k)y

′
k+1H . Then S′(λ) ∼= S(λ) by the Proposition.

We will work with S′(λ) in what follows rather than working with S(λ) directly.
As a first step we need a basis of S′(λ). For any λ-tableau t define

v′t = π(vt) = x(k|n−k)y
′
k+1Td(t′).

The Dipper–James basis of S(λ), (3.1), combined with Proposition 6.1, give us
the following.

6.3. Corollary. The module S′(λ) is R–free with basis { v′t | t ∈ Std(λ) }.

In order to exploit this basis we introduce another type of tableaux. For our
purposes we could get by using (k, n − k)–tableaux; however, we use the notation
from the theory of trivial source modules.

The diagram of (k|n−k) is the ordered pair of diagrams [k|n− k] = ([k], [n− k]).
A (k|n−k)–tableau is a bijection from [k|n − k] to {1, 2, . . . , n}. Once again, we
will think of a (k|n−k)–tableau as being a labelling of [k|n − k]. Accordingly, we
will write a (k|n−k)–tableau as an ordered pair (a|b), where a and b are suitable
labellings of the diagrams of the partitions (k) and (n − k) respectively. We refer
to a and b as the first and second components of (a|b).

A (k|n−k)–tableau (a|b) is (row) standard if the entries in a increase from left to
right and the entries in b increase from left to right. Let Std(k|n− k) be the set of
standard (k|n−k)–tableaux. For example, the standard (1|3)–tableaux are(

1
∣∣∣ 2 3 4

)
,
(

2
∣∣∣ 1 3 4

)
,
(

3
∣∣∣ 1 2 4

)
and

(
4
∣∣∣ 1 2 3

)
.

Let t(k|n−k) be the standard (k|n−k)–tableau with 1, . . . , k entered in order, from
left to right, in the first omponent and the numbers k+ 1, . . . , n in the second. The
first of the tableaux above is t(1|3).

Two (k|n− k)–tableaux (a|b) and (s|t) are row equivalent if a and s contain the
same entries up to reordering (in which case, b and t also contain the same set of
entries). As with ordinary tableaux, the symmetric group acts from the right on
the set of (k|n−k)–tableaux. If (a|b) is a (k|n−k)–tableau we define d(a|b) to be
the unique permutation such that (a|b) = t(k|n−k)d(a|b). Then (a|b) and (s|t) are
row equivalent if and only if d(a|b) = wd(s|t) for some w ∈ S(k,n−k). Consequently,

D(k,n−k) = { d(a|b) | (a|b) ∈ Std(k|n−k)}.
So the standard (k|n− k)–tableaux index a basis of M(k|n−k).

For furture reference, notice that if (a|b) is a standard (k|n − k)–tableau then
`(d(a|b)) is equal to the number of pairs of integers (i, j) where i appears in a, j
appears in b and i > j. This follows because if w ∈ Sn then `(w) is equal to the
number of pairs a < b with i = aw > j = bw, and the entries in a are the images of
1, . . . , k under d(a|b), whereas the entries in b are the images of k + 1, . . . , n.
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For any (k|n−k)–tableau (a|b) define x(a|b) = x(k|n−k)Td(a|b). Here we do not
assume that (a|b) is standard. The following lemma is easily verified.

6.4. Lemma. Suppose that 0 ≤ k < n.
(i) M(k|n−k) is free as an R–module with basis {x(a|b) | (a|b) ∈ Std(k|n−k) }.

(ii) Suppose that (a|b) ∈ Std(k|n−k) and 1 ≤ i < n. Then

x(a|b)Ti =


−x(a|b), if i and i+ 1 are both contained in a,
qx(a|b), if i and i+ 1 are both contained in b,
x(ai|bi), if i is in a and i+ 1 is in b,

qx(ai|bi) + (q − 1)x(a|b), otherwise,

where (ai|bi) = (a|b)ri.

The action of H on M(k|n− k) is completely determined by (ii).
We now show how to write the basis {v′t} of S′(λ) in terms of this basis of

M(k|n − k). To do this, if t is a λ–tableau and (a|b) is a (k|n−k)–tableau write
(a|b) ≺ t if (a|b) is standard and all of the entries in a are contained in the first
column of t. Finally, if (a|b) ≺ t we set It(a|b) = i, the index of (a|b) in t, if the
number in row i of t does not appear in a.

6.5. Lemma. Suppose that t is a standard λ–tableau. Then

v′t =
∑

(a|b)≺t

(−1)k+1−It(a|b)q`(d(t′))−`(d(a|b))x(a|b).

Proof. First consider vtλ . Looking at the definitions we see that

v′tλ = x(k|n−k)y
′
k+1 = xt(k|n−k)

(
1− q−1Tk + q−2Tk,k−1 − · · ·+ (−q)−kTk,1

)
=

∑
(a|b)≺tλ

(−q)−`(d(a|b))x(a|b).

As `(d(tλ)′) = `(d(tλ
′
)) = 0 and `(d(a|b)) = k + 1 − Itλ(a|b), when (a|b) ≺ tλ, the

Lemma follows in this case.
Now suppose that t is an arbitrary standard λ–tableaux. If t 6= tλ then we can

find another standard λ–tableau s and an integer i in the first column of s such
that t = sri and `(d(t)) = `(d(s)) − 1. (That is, t D s where D is the dominance
order on tableaux; see, for example, [10].) Therefore, by induction,

v′t = v′sTi =
∑

(a|b)≺s

(−1)k+1−Is(a|b)q`(d(s′))−`(d(a|b))x(a|b)Ti.

Since s and t are standard, i is in the first column of s and the first row of t and i+1
is in the first row of s and the first column of t. Therefore, if (a|b) ≺ s then the
entries in the first component of (a|b)ri are still in increasing order and the entries
in the second component are in increasing order unless i and i+1 both appear in b.
So, `(d(a|b)ri) = `(d(a|b)) + 1 and by Lemma 6.4(ii) we have

x(a|b)Ti =

{
qx(a|b), if i and i+ 1 both appear in b,

x(a|b)ri , otherwise.

In the first case, when i and i + 1 both appear in b, we have that (a|b) ≺ t. Also,
`(d(t′))− `(d(a|b)) = `(d(s′))− `(d(a|b)) + 1 and It(a|b) = Is(a|b), so x(a|b) has the
required coefficient in v′t.



ELEMENTARY DIVISORS OF SPECHT MODULES 13

In the second case, i appears in a and i+1 appears in b, so (ari|bri) = (a|b)ri ≺ t,
It(ari|bri) = Is(a|b) and `(d(t′)) − `(d(a|b)ri) = `(d(s′)) − `(d(a|b)). Hence, once
again, x(a|b)ri has the predicted coefficient in v′t.

As there are exactly k standard (k|n − k)–tableaux (a|b) satisfying (a|b) ≺ t,
this completes the proof. �

In order to compute the elementary divisors of S(λ) we need a second basis
of S′(λ). Let

xn−k = 1 + T1 + · · ·+ T1,n−k−1 =
n−k−1∑
j=0

T1,j .

(Note that r1,0 = 1.) As with y′k+1, we have x(n−k,1k) = x(1,n−k−1,1k−1)xn−k. Now,
for any standard (n− k, 1k)–tableau t we define

w′t =

{
v′t(1,n), if n appears in row 1 of t,

v′tλxn−kTd(t), otherwise.

We remark that it is not obvious that the set of elements {w′t | t ∈ Std(λ) } is a
basis of S′(λ). We will prove this below.

Lemma 6.5 gives an explicit description of the basis {v′t}. We need to do the
same for the basis {w′t}, and for this we need some more notation. If t is a standard
λ–tableau let t∗ = t(1, n). If (a|b) is a (k|n−k)–tableau write (a|b) ≺n t if (a|b) ≺ t
and n is contained in a. Finally, if 1 appears in the first row of t then we define
(a∗t |b∗t ) to be the unique standard (k|n − k)–tableau such that

(
a∗t |b∗t ) ≺ t∗ and n

appears in b∗t . So
(
a∗t |b∗t ) ≺ t∗ and

(
a∗t |b∗t ) ≺ t.

6.6. Lemma. Suppose that t is a standard λ–tableau and that n appears in the first
row of t. Then

w′t = (−1)kq2n−2k−3x(a∗t |b∗t ) +
∑

(a|b)≺nt∗

rabx(a|b),

for some scalars rab ∈ Z[q, q−1].

Proof. We now argue by downwards induction on t beginning with t = tλ, this is
an unpleasant calculation. Now,

w′tλ = x(k|n−k)y
′
k+1T1,n−1Tn−2,1 = (−1)kx(k|n−k)y

′
k+1Tk+1,n−1Tn−2,1

since x(k|n−k)y
′
k+1 = x(1k,n−k)y(k+1,1n−k−1). Therefore, using the definitions to-

gether with the braid relations,

w′tλ = (−1)kx(k|n−k)y
′
k+1Tn−1 . . . Tk+2Tk+1,n−1Tk,1

= (−1)kx(k|n−k)Tn−1 . . . Tk+2y
′
k+1Tk+1,n−1Tk,1

= (−1)kqn−k−2x(k|n−k)y
′
k+1Tk+1,n−1Tk,1
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= (−1)kqn−k−2x(k|n−k)

{
1 +

k∑
j=1

(−q)j−k−1Tk,j

}
Tk+1,n−1Tk,1

= (−1)kqn−k−2x(k|n−k)

{
qn−k−1 +

k∑
j=1

(−q)j−k−1Tk,jTk+1,n−1

}
Tk,1

= (−1)kqn−2k−3x(k|n−k)

{
qnTk,1 +

k∑
j=1

(−q)jTk,jTk+1,1Tk+2,n−1

}

= (−1)kqn−2k−3x(k|n−k)

{
qnTk,1 +

k∑
j=1

(−q)jTk+1,1Tk+1,j+1Tk+2,n−1

}

= (−1)kqn−2k−3x(k|n−k)

{
qnTk,1 −

k∑
j=1

(−q)j+1Tk,1Tk+1,j+1Tk+2,n−1

}

= (−1)kqn−2k−3x(k|n−k)Tk,1

{
qn −

k+1∑
j=2

(−q)jTk+1,jTk+2,n−1

}
.

Now, t(k|n−k)rk,1 =
(

2 · · · k + 1

∣∣ 1 k + 2 · · · n

)
= (a∗tλ |b

∗
tλ

) and, consequently,
t(k|n−k)rk,1rk+1,jrk+2,n−1 =

(
2 · · · j − 1 j + 1 · · · k + 1 n

∣∣ 1 j k + 2 · · · n − 1

)
, for

j = 2, . . . , k + 1. This completes the proof for w′tλ .
Now suppose that t is an arbitrary standard λ–tableau which has n in its first

row. Then d(t′) ∈ S(1,n−2,1) so d(t′) and (1, n) commute and `(d(t′)(1, n)) =
`(d(t′)) + `(1, n). Therefore, w′t = w′tλTd(t′). To complete the proof now argue by
induction, as in the proof of Lemma 6.5; we leave the details to the reader. (Indeed,
this shows that rab = ±qa for some integer a.) �

For convenience we now write 〈 , 〉 = 〈 , 〉(k|n−k). In terms of the standard basis
of M(k|n− k), the bilinear form 〈 , 〉 on M(k|n− k) is determined by

〈x(a|b), x(s|t)〉 =

{
q`(d(a|b)), if (a|b) = (s|t),
0, otherwise,

for standard (k|n− k)–tableaux (a|b) and (s|t).

6.7. Corollary. Suppose that s and t are standard λ–tableaux which have n in their
first row. Then

〈w′t, v′s〉 =

{
q2n−2k−3+`(d(t′)), if s = t,

0, otherwise.

Proof. By Lemma 6.5 and Lemma 6.6 we have

v′s =
∑

(as|bs)≺s

(−1)k+1−Is(as|bs)q`(d(s′))−`(d(as|bs))x(as|bs)

and, by Lemma 6.6,

w′t = (−1)kq2n−2k−3x(a∗t |b∗t ) +
∑

(at|bt)≺nt∗

ratbtx(at|bt).
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Now, all of the tableaux appearing in w′t have 1 appearing in their second compo-
nent. In contrast, the only tableau in v′s which has 1 in its second component is
the tableau (a∗s |b∗s). Therefore,

〈w′s, v′t〉 = (−1)2k+1−Is(a∗s |b
∗
s)q2n−2k−3+`(d(s′))−`(d(a∗s|b

∗
s))〈x(a∗s|b∗s), x(a∗t |b∗t )〉

=

{
(−1)1+It(a∗t |b

∗
t )q2n−2k−3+`(d(t′)), if s = t,

0, otherwise.

Finally, the sign vanishes when s = t because It(a∗t |b∗t ) = 1 . �

We need one more result before we can produce the elementary divisors of S(λ).

6.8. Lemma. Let (a+
λ |b

+
λ ) be the unique standard (k|n− k)–tableau which has the

numbers n− k + 1, . . . , n in a+
λ . Then

w′tλ = (−1)kq`(wλ′ )
{
q−`(d(a+

λ |b
+
λ ))[n− k]qx(a+

λ |b
+
λ )

+
∑

(a|b)≺tλ

(a|b) 6=(a+
λ |b

+
λ )

(−1)1−I
tλ

(a|b)q−`(d(a|b))
n−k−1∑
j=0

x(a|b)r1,j

}
.

Proof. By definition w′tλ = v′tλxn−k. Also, d((tλ)′) = d(tλ′) = wλ′ so, by Lemma 6.5,

w′tλ = v′tλxn−k =
∑

(a|b)≺tλ

(−1)k+1−I
tλ

(a|b)q`(wλ′ )−`(d(a|b))x(a|b)xn−k

=
∑

(a|b)≺tλ

(−1)k+1−I
tλ

(a|b)q`(wλ′ )−`(d(a|b))x(a|b)

(
1 + T1 + · · ·+ T1,n−k−1

)
.

Let (a|b) be one of the tableaux appearing in this sum. If (a|b) 6= (a+
λ |b

+
λ ) then 1 is

contained in a and all of the numbers 2, 3, . . . , n− k are contained in b. Therefore,
(a|b)r1,j is standard and x(a|b)T1,j = x(a|b)r1,j , for 0 ≤ j ≤ n− k− 1. On the other
hand, x(a+

λ |b
+
λ )T1,j = qjx(a+

λ |b
+
λ ), for 0 ≤ j ≤ n− k− 1. This completes the proof of

the Lemma. �

This result has two useful Corollaries.

6.9. Corollary. Suppose that t 6= tλ is a standard (k|n− k)–tableau. Then

〈w′tλ , v
′
t〉 = 0.

Proof. By Lemma 6.8, if x(a|b) appears in w′tλ then all but one of the entries in a
are contained in {1, n− k + 1, . . . , n}. On the other hand, by Lemma 6.5, if x(a|b)

appears in v′t then all of the entries in a are contained in the first column of t.
Suppose now that t 6= tλ. Then, by the last paragraph, x(a+

λ |b
+
λ ) cannot appear

in v′t and the only way that the inner product 〈w′tλ , v
′
t〉 can be non–zero is if the set

of numbers in the first column of t is of the form T = {1, j, n− k+ 1, . . . , n} \ {m},
for some integers j and m with 1 < j ≤ n− k and n− k < m ≤ n. Let (a|b) be the
standard (k|n − k)–tableau whose first component contains exactly the numbers
in T \ {j} and let (a′|b′) = (a|b)r1,j−1. Then (a|b) ≺ tλ, It(a|b) = 2 and It(a′|b′) =
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1. Also `(d(a′|b′)) = `(d(a|b)) + j − 1, so x(a|b)T1,j−1 = x(a′|b′). Therefore, by
Lemma 6.5 and Lemma 6.8 and the remarks above,

v′t = (−1)kq`(d(t′))
(
q−`(d(a′|b′))x(a′|b′) − q−`(d(a|b))x(a|b)

)
+ other standard terms

and

w′tλ = q`(wλ′ )−`(d(a|b))
(
x(a′|b′) + x(a|b)

)
+ other standard terms,

where none of the “other standard terms” appear both in v′t and in w′tλ . Conse-
quently, 〈w′tλ , v

′
t〉 = 0. Hence, 〈w′tλ , v

′
t〉 = 0 whenever t 6= tλ as claimed. �

6.10. Corollary. Suppose that t is a standard (n − k, 1k)–tableau and that n does
not appear in the first row of t. Then 〈w′t, v′t〉 = qk(n−k−2)[n]q.

Proof. Recall that if t is a standard λ–tableau then d(t′)d(t)−1 = wλ′ , with the
lengths adding; this is well–known and is easily proved by induction on the domi-
nance order for tableaux. Therefore,

〈w′t, v′t〉 = 〈w′tλTd(t), x(k|n−k)y
′
k+1Td(t′)〉 = 〈w′tλ , x(k|n−k)y

′
k+1Td(t′)T

∗
d(t)〉

= 〈w′tλ , x(k|n−k)y
′
k+1Td(tλ′)〉 = 〈w′tλ , v

′
tλ〉.

Hence, it is enough to consider the case where t = tλ.
Suppose that t = tλ. Then, by Lemma 6.5 and Lemma 6.8,

〈w′tλ , v
′
tλ〉 = q2`(wλ′ )

{
q−`(d(a+

λ |b
+
λ ))[n− k]q +

∑
(a|b)≺tλ

(a|b)6=(a+
λ |b

+
λ )

q−`(d(a|b))
}
.

Using the remarks before Lemma 6.4 it is not hard to see that `(d(a+
λ |b

+
λ )) =

k(n− k) and that `(d(a|b)) = (k− 1)(n− k) + 2− It(a|b), whenever (a|b) ≺ tλ and
(a|b) 6= (a+

λ |b
+
λ ). Therefore,

〈w′tλ , v
′
tλ〉 = q2`(wλ′ )

{
q−k(n−k)[n− k]q +

k+1∑
i=2

q−(k−1)(n−k)−2+i
}

= q2`(wλ′ )−k(n−k)
{

[n− k]q + qn−k
k−1∑
j=0

qj
}

= q2`(wλ′ )−k(n−k)[n]q.

As `(wλ′) = k(n− k − 1) the result follows. �

Finally, we can prove the main result of this section.

6.11. Proposition. Suppose that λ = (n−k, 1k), for some k with 0 ≤ k < n. Then
the Gram matrix G(λ) of S(λ) is divisibly diagonalizable over Z[q, q−1] with

(
n−2
k

)
elementary divisors equal to [k]!q and with the remaining

(
n−2
k−1

)
elementary divisors

being equal to [k]!q[n]q.
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Proof. By Proposition 6.1 the Gram matrix G(λ) of S(λ) is equal to [k]!q times the
Gram matrix of S′(λ). Therefore, by Lemma 4.1 it is enough to show that there is
an invertible diagonal matrix D such that

G′(λ) =
(
〈w′s, v′t〉

)
s,t∈Std(k|n−k)

= D ·
(
I ∗
0 [n]qU

)
,

where I is a
(
n−2
k

)
×
(
n−2
k

)
identity matrix and U is a

(
n−2
k−1

)
×
(
n−2
k−1

)
upper tri-

angular matrix with 1’s down its diagonal. Here we order the rows and columns
lexicographically with respect to the entries in the first columns of s and t. Because
D is invertible its non–zero entries must all be of the form ±qm, for some integer
m.

By Corollary 6.7, the rows of G′(λ) which are indexed by those tableaux which
have n in their first row have the required form. This accounts for the identity
matrix in the top half of the Gram matrix G′(λ).

Next, suppose that s is a standard (k|n−k)–tableau and that n does not appear
in the first row of s. If s = tλ then 〈w′s, v′t〉 = 0, for all t 6= s, by Corollary 6.9.
If s 6= tλ then there exists an integer i, 1 < i < n, such that `(d(s)ri) < `(d(s)).
Therefore,

〈w′s, v′t〉 = 〈w′sriTi, v
′
t〉 = 〈w′sri , v

′
tTi〉.

By expanding v′tTi and using induction, it follows that 〈w′s, v′t〉 = 0 if t appears
before s in our chosen ordering of Std(λ). Similarly, if t does not appear before s
then [n]q divides 〈w′s, v′t〉 by Corollary 6.10. �

Notice, in particular, that the Gram matrix calculation in the proof of the Propo-
sition implies that {w′t | t ∈ Std(λ) } is indeed a basis of S′(λ).

We give one application of Proposition 6.11.
Let π :S(λ)−→S′(λ) be the isomorphism of Proposition 6.1 and for each stan-

dard λ–tableau t let wt = π−1(w′t). Then {wt | t ∈ Std(λ) } is a basis of S(λ).
Then, in the case where S(λ) is not irreducible, the proof of Proposition 6.11 also
gives a basis for the simple module D(λ). More precisely, we have the following.

6.12. Corollary. Suppose that R is a field, that [k]!q 6= 0 and that [n]q = 0. Then
S(λ) is not irreducible and a basis of D(λ) = S(λ)/

(
S(λ)⊥ ∩ S(λ)

)
is given by

{wt +
(
S(λ)⊥ ∩ S(λ)

)
| t ∈ Std(λ) and n in first row of t } ,

and a basis of S(λ)⊥∩S(λ) is given by {wt | t ∈ Std(λ) and n is in first row of t } .

7. Some counterexamples

Let R = Z[q, q−1]. We write the mth cyclotomic polynomial in q as Φm = Φm(q).
Andersen remarked that in general the Gram matrix G(λ) is not diagonalizable

[1, Remark 5.11]. We give two examples of this kind.
Note that G(λ) is divisibly diagonalizable over Z(p)[q, q−1] for all but finitely

many primes p. In fact, it suffices to exclude the primes occurring in the denomi-
nators of the entries of the matrices used to diagonalize G(λ) over Q[q, q−1].

We record the elementary divisors in “jump notation”. That is, we write

-f1 m1
-f2 m2

-f3 m3
-f4 · · · -fs ms
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to indicate that the matrix has the elementary divisor f1 with multiplicity m1,
the elementary divisor f1f2 with multiplicity m2, . . . , and the elementary divisor
f1 · · · fs with multiplicity ms.

7.1. Example. Let λ = (3, 3, 2). The elementary divisors of G(3, 3, 2) over Q[q, q−1]
are given by

-Φ
2
2 1 -Φ4

20 -Φ3Φ5
20 -Φ4

1 ;
over F2[q, q−1] they are given by

-Φ
3
2 1 -Φ2

20 -Φ3Φ5
20 -Φ2

1 ;

and, putting q = 1, over Z they are given by

-2
3

21 -3·5
21 .

We claim that G(3, 3, 2) is not diagonalizable over Z(2)[q, q−1]. To see this suppose
that it is diagonalizable. Then, considered as an element of Z(2)[q, q−1], any result-
ing diagonal entry must contain the factor (q + 1) with exponent 2. Considered as
an element of F2[q, q−1] the factor (q + 1) can occur only with even exponent in
such a diagonal entry. But this is not the case, so we have a contradiction.

This claim in particular implies thatG(3, 3, 2) is not diagonalizable over Z[q, q−1].
We remark that the comparison of the elementary divisors over Q[q, q−1] and

over Z yields a contradiction to diagonalizability over Z(2)[q, q−1], too.

7.2. Example. Let λ = (4, 2, 1, 1). The elementary divisors of G(4, 2, 1, 1) over
Q[q, q−1] are given by

-Φ2
14 -Φ2

1 -Φ4
30 -Φ7

30 -Φ4
1 -Φ2

14 ;

over F2[q, q−1] they are given by

-Φ2
14 -Φ

2
2 1 -Φ2

30 -Φ7
30 -Φ2

1 -Φ
2
2 14 ;

over F3[q, q−1] they are given by

-Φ2
13 -Φ2

2 -Φ4
30 -Φ7

30 -Φ4
2 -Φ2

13 ;

and, putting q = 1, over Z they are given by

-2 14 -2
2

31 -7 31 -2
2

14 .

We claim that G(4, 2, 1, 1) is not diagonalizable over Z(2)[q, q−1]. Again, by way
of contradiction suppose that it is diagonalizable. In F2[q, q−1], 14 of the resulting
diagonal entries contain the factor (q+1) with exponent 1. Therefore, in Z(2)[q, q−1],
14 of them contain the factor (q + 1) with exponent 1 and the factor (q2 + 1) with
exponent 0. Similarly, in F2[q, q−1], 14 of the resulting diagonal entries contain the
factor (q + 1) with exponent 7. Thus in Z(2)[q, q−1], 14 of them contain the factor
(q+1) with exponent 3 and the factor (q2 +1) with exponent 2. Hence in F2[q, q−1],
no other diagonal entry can contain (q + 1) with odd exponent. But in F2[q, q−1],
there is a diagonal entry containing (q + 1) to the power 3 and another containing
it to the power 5 so, again, we have a contradiction.

We claim that G(4, 2, 1, 1) is not diagonalizable over Z(3)[q, q−1]. Assume it
to be diagonalizable. In Z(3)[q, q−1], 14 of the resulting diagonal entries contain
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(q + 1) with exponent 1. This contradicts the fact that in F3[q, q−1], only 13 of
them contain (q + 1) with exponent 1.

Both claims independently imply that G(4, 2, 1, 1) is not diagonalizable over
Z[q, q−1].

We remark that the comparison of the elementary divisors over Q[q, q−1] and
over Z yields a contradiction to diagonalizability over Z(2)[q, q−1], too.

Finally, we give a (non-exhaustive) list of elementary divisors of some divisi-
bly diagonalizable Gram matrices for non-hooks, calculated using Gap 3 [12] and
Magma [9]. We omit the respective conjugate partition; compare (5.9).

n λ Elementary divisors of G(λ)

4 (2, 2) -Φ2
1 -Φ3

1

5 (3, 2) -1 1 -Φ3
3 -Φ4

1

6 (4, 2) -1 4 -Φ4
1 -Φ2

3 -Φ5
1

(3, 3) -Φ2
1 -Φ3

3 -Φ4
1

(3, 2, 1) -1 4 -Φ3
4 -Φ5

4 -Φ3
4

7 (5, 2) -1 8 -Φ5
5 -Φ3Φ6

1

(4, 3) -1 1 -Φ3
7 -Φ4

5 -Φ5
1

(3, 3, 1) -Φ2
6 -Φ3

2 -Φ5
12 -Φ4

1

8 (6, 2) -1 13 -Φ3Φ6
1 -Φ2

5 -Φ7
1

(5, 3) -1 8 -Φ4
6 -Φ2

7 -Φ5
6 -Φ6

1

(4, 4) -Φ2
1 -Φ3

7 -Φ4
5 -Φ5

1

9 (7, 2) -1 19 -Φ7
7 -Φ4Φ8

1

(6, 3) -1 21 -Φ5
19 -Φ6

1 -Φ3
6 -Φ7

1

(5, 4) -1 1 -Φ3
15 -Φ4

18 -Φ5
7 -Φ6

1

We do not know an example of a Gram matrix G(λ) that is diagonalizable over
Z[q, q−1], but not divisibly diagonalizable.

For a general partition λ, we can not decide whether G(λ) is diagonalizable over
Z[q, q−1].
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