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Abstract

The elementary divisors of the Gram matrices of Specht modules Sλ over the
symmetric group are determined for two-row partitions and for two-column par-
titions λ. More precisely, the subquotients of the Jantzen filtration are calculated
using Schaper’s formula. Moreover, considering a general partition λ of n at a prime
p > n − λ1, the only possible non trivial composition factor of SλFp is induced by
the morphism of Carter and Payne, as shown by means of Kleshchev’s modular
branching rule. This enables the Jantzen filtration to be calculated in this case as
well.
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0 Introduction

0.1 Problem

Specht modules Sλ are combinatorially defined ZSn-modules, indexed by partitions λ of n,
which yield a complete set of pairwise nonequivalent ordinary irreducible representations
of the symmetric group Sn after scalar extension to C. A Specht module Sλ carries a
nondegenerate Sn-invariant bilinear form, inducing an embedding into its Z-linear dual,
Sλ -

�� Sλ,∗. The problem is to determine the structure of the quotient

Sλ,∗/Sλ

as an abelian group. Reformulated, we ask for the elementary divisors of the Gram matrix
of this bilinear form on Sλ, or, for short, for the elementary divisors of Sλ.

0.2 Known Results

0.2.1 Simple modules

Let p be a prime. Denote by λ′ the transposed partition of λ. The number of elementary
divisors of Sλ not divisible by p is either zero, or the dimension of a simple FpSn-module.

Theorem [5, 11.5]. Let Dλ
Fp

be the image of Sλ - Sλ,∗/pSλ,∗. If λ is p-regular, that is,

λ′i − λ′i+1 < p for all i > 1, then Dλ
Fp

is a simple FpSn-module. Up to isomorphism, all

simple FpSn-modules occur this way. If λ is p-singular, we have Dλ
Fp

= 0.

Allowing for Dλ
Fp

to denote the zero module if λ is not a p-regular partition turns out to
be a convenient convention.

0.2.2 Schaper’s formula

First of all, the product of the elementary divisors of Sλ is known.



3

Theorem [9, p. 224]. There is an explicit combinatorial formula for the determinant of
the Gram matrix of Sλ.

More precisely, given a prime p, the quotient Sλ,∗/Sλ is expressible as a linear combi-
nation of Specht modules in the Grothendieck group of ZSn-modules of finite length by
Schaper’s formula. Given a commutative ring A, we abbreviate SλA := A⊗Z S

λ.

Theorem [28, p. 60], cf. [16, Cor. 5.33]. There are combinatorially determined integral
coefficients αµ such that

[Sλ,∗Z(p)
/SλZ(p)

] =
∑
i>1

[SλFp(i)] =
∑
µ

αµ[SµFp ] ∈ K0(modf-Z(p)Sn) ,

where SλFp(i) denotes the ith piece of the Jantzen filtration of SλFp.

Together with calculations of decomposition numbers due to James, Williams, To
Law, Benson, Müller et al. [2, 5, 10, 18, 19, 20, 30], Schaper’s formula represents
our principal tool.

0.2.3 Numerical results

There is an estimate for the first elementary divisor, found by James in the course of the
construction of the simple modules Dµ

Fp
.

Lemma [5, 10.4]. The product
∏

i>1(λ′i − λ′i+1)! divides the first elementary divisor of

Sλ. In turn, the first elementary divisor of Sλ divides the product
∏

i>1(λ′i − λ′i+1)!i.

For instance, 3! divides the first elementary divisor 12 of S(23), which in turn divides 3!2.
The James factor

∏
i>1(λ′i − λ′i+1)! will reappear constantly.

Numerically, the relation between the elementary divisors of Sλ and Sλ
′

has been known.

Proposition [13, 6.2.10]. Let nλ := rkZS
λ, and let i ∈ [1, nλ]. The product of the ith

elementary divisor of Sλ and the (nλ + 1− i)th elementary divisor of Sλ
′

yields n!/nλ.

In particular, the elementary divisors of Sλ and Sλ
′

mutually determine each other. We
shall give a module version of this relation in terms of Jantzen subquotients (4.1).

0.2.4 Related work

Grabmeier used Schaper’s analoguous formula for the Weyl modules over the Schur al-
gebra as an ingredient to determine the graduated hull of p-adic Schur algebras [4, 11.13].

Kleshchev and Sheth [12, 3.4], and independently, Reuter [26, 4.2.22], described

the submodule structure of S
(n−m,m)
Fp

.
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0.3 Results

0.3.1 Two-row partitions

Let n > 1, let 0 6 m 6 n/2 and let p be a prime. Since the decomposition numbers

of S
(n−m,m)
Fp

are in {0, 1} by James’ formula, the Jantzen filtration may be calculated by
means of Schaper’s formula.

Theorem (2.5). The multiplicities of the simple modules in the subquotients of the

Jantzen filtration of S
(n−m,m)
Fp

are determined. In particular, the elementary divisors of

S(n−m,m) are calculated.

Moreover, combining arguments of Plesken [25] and Wirsing [31], we show that if

m > 3, then S
(n−m,m)
Q does not contain a unimodular ZSn-lattice, that is, a lattice X

satisfying X ' X∗ (2.13). For m ∈ {1, 2}, unimodular lattices do occur and have been
classified by Plesken [25, p. 98 and II.5].

0.3.2 At a large prime

Suppose given a partition λ of n and a prime p > n− λ1. Using the theorem of Carter
and Payne [3, p. 425], the direction of the Carter conjecture proven by James and
Murphy [9, p. 222], as well as Kleshchev’s modular branching rule [11, 0.6], the
Jantzen filtration of SλFp may be calculated.

Theorem (3.5). If p does not divide a first row hook length in the range [1, λ2], then
SλFp is simple. If p divides the first row hook length ht of the node (1, t), t ∈ [1, λ2],

then [SλFp ] = [Dλ
Fp

] + [D
λ[t]
Fp

], where λ[t] is the partition arising from λ by the according

Carter-Payne box shift. The constituent [D
λ[t]
Fp

] lies in the vp(ht)th Jantzen subquotient.

0.3.3 Explicit diagonalization

The results mentioned so far are based on Schaper’s formula, so that no diagonalizing
bases can be deduced. In general, an explicit diagonalization seems to be complicated. For
hook partitions, however, it is easier to diagonalize directly (5.5) than to apply Schaper’s
formula, as has already been remarked by James and Mathas [unpublished].

Moreover, for S(22,1n−4), we give bases essentially diagonalizing the Gram matrix (5.14).
In general, it might be worthwhile to employ modular morphisms in order to fully solve
the diagonalization problem (cf. 6.8). But note that from such a complete solution, bases
for the simple FpSn-modules would ensue.

0.3.4 The scope of Schaper’s formula

Some three- and four-part partitions are treated in §2.5, partly conjecturally. The problem
that remains to be solved, once all decomposition numbers and Jantzen subquotients are
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known, is the following.

Let p be a prime, let eµ be a primitive idempotent of Z(p)Sn belonging to Dµ
Fp

and let

ελ be the central-primitive idempotent of QSn belonging to SλQ. The investigation of the

elementary divisors of Sλ -
�� Sλ,∗ can be reduced to the consideration of

SλZ(p)
eµ -

�� Sλ,∗Z(p)
eµ .

This is a ελeµZ(p)Sneµ-linear map, the determinant of which can be deduced from Schaper’s
formula. So we are led to consider the Z(p)-order ελeµZ(p)Sneµ, which is of rank [SλFp : Dµ

Fp
]2

over Z(p).

In particular, if [SλFp : Dµ
Fp

] = 1, we obtain ελeµZ(p)Sneµ ' Z(p), which enables us to

calculate elementary divisors. If [SλFp : Dµ
Fp

] > 1, however, Schaper’s formula alone is too
coarse.

In another disguise, concerning the distribution of the multiplicity of a simple module Dµ
Fp

over the Jantzen subquotients, Schaper’s formula gives the value of a certain sum of which
one needs to know the summands (cf. 1.5 iii). If [SλFp : Dµ

Fp
] = 1, then this sum consists of

a single nonzero summand, that is, the Jantzen subquotient Dµ
Fp

appears in is determined.

But this purely numerical point of view hides the role of the ring ελeµZ(p)Sneµ in case
[SλFp : Dµ

Fp
] > 1.
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0.5 Conventions

(i) Composition of maps is written on the right, -a -b = -ab . Exception is made for ‘standard’
maps, such as traces, characters . . . Unless mentioned otherwise, a module is a finitely generated
right module.

(ii) For a, b ∈ Z, we denote by [a, b] := {c ∈ Z | a 6 c 6 b} the integral interval.

(iii) If A is an assertion, which might be true or false, we let {A} equal 1 if A is true, and 0 if A is false.
If, in a sum, a summand has a factor {A} attached, this summand is zero if A is false, regardless
whether it is well defined or not.

(iv) Let m be a positive integer, let ā denote the residue class of a modulo m. The assertion ā ∈
{b̄1, . . . , b̄l} will be written as a ≡m b1, . . . , bl. In particular, a ≡m b means a− b ∈ mZ.

(v) Let p be a prime, let n > 1. The FpSn-module Dµ
Fp

is defined for any composition µ of n, and we
let it be zero if µ is not a p-regular partition. If µ is a p-regular partition, it is defined in [5, 11.2].
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(vi) Given a partition λ, its transpose is denoted by λ′, i.e. j 6 λi ⇐⇒ i 6 λ′j . Given a λ-tableau [a],
its transpose is a λ′-tableau denoted by [a′].

(vii) The sign of σ ∈ Sn is denoted by εσ.

(viii) Let Jac(B) denote the Jacobson radical of a ring B.

(ix) The binomial coefficient
(
a
b

)
is zero unless a > b > 0.

(x) Given a ring A, we denote by modf-A the abelian category of A-modules of finite length, and
by K0(modf-A) its Grothendieck group. So K0(modf-A) is the quotient of the free abelian
group on the objects of modf-A modulo a relation X − (X ′ + X ′′) for each short exact sequence
0 - X ′ - X - X ′′ - 0 in modf-A. The image of X ∈ Ob modf-A in K0(modf-A) shall be
denoted by [X]. Cf. [27, 3.1.6].

1 General considerations

1.1 Situation

1.1.1 An order Λ

Let R be a discrete valuation ring with maximal ideal generated by π, let K be its field
of fractions. Given an R-module M , we denote its reduction by M̄ := M/πM .

Let A be a simple K-algebra (to which we may pass from a semisimple K-algebra, cf.
1.1). Let Λ ⊆ A be a full R-order in A, that is, an R-algebra that spans A as a vec-
torspace such that Λ is finitely generated free as a module over R. Let 1Λ = e1 + · · ·+ ek
be an orthogonal decomposition into primitive idempotents of Λ, which correspond to
indecomposable projective Λ-modules Pj := ejΛ.

Remark 1.1 Suppose given a semisimple K-algebra B, a full R-order Ξ in B and a
simple Ξ-lattice X, that is, a Ξ-module that is finitely generated free over R such that
KX := K⊗RX is a simple B-module. Let ε ∈ B be the central-primitive idempotent that
acts as identity on KX. Then X remains a simple lattice over the quasiblock Λ = Ξε,
which is a full R-order in A = Bε, and to which we may reduce the situation for our
purposes. Note that in general, the quasiblock Λ = Ξε will not be a direct summand of
Ξ.

If Q is an indecomposable projective Ξ-module, then Qε (⊆ KQ) is either zero or an inde-
composable projective Λ-module. All indecomposable projective Λ-modules are obtained
this way.

For instance, if G is a finite group and K a field of characteristic 0, we may take B = KG,
Ξ = RG and ε the rational central-primitive idempotent belonging to the simple KG-
module KX.
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1.1.2 A suborder ∆ ⊆ Λ

Let Pjl be representatives of the isomorphism classes of the indecomposable projective
Λ-modules, l ∈ [1,m], and let

fl :=
∑

j′∈[1,k], Pj′ 'Pjl

ej′ .

Then the fl + Jac(Λ) are the central-primitive idempotents of Λ/Jac(Λ). Letting Dl :=
ejlΛ/ejlJac(Λ), a complete system of inequivalent simple Λ-modules is given by {Dl | l ∈
[1,m]}, and fl operates as identity on Dl.

This allows to introduce an R-suborder

∆ :=
∏

l∈[1,m]

flΛfl ⊆ Λ

that has the same Grothendieck group as Λ, but that allows to decompose modules into
smaller pieces. Since Λ =

⊕
l,l′∈[1,m] flΛfl′ has Jacobson radical

Jac(Λ) =

(⊕
l

Jac(flΛfl)

)
⊕

(⊕
l 6=l′

flΛfl′

)
,

the inclusion ∆ ⊆ Λ induces an isomorphism

∆/Jac(∆) -∼ Λ/Jac(Λ) ,

whence restriction yields

K0(modf-∆) �∼ K0(modf-Λ) .

1.1.3 Multiplicities

Let X be a simple Λ-lattice. There are various multiplicities to be considered.

By [X̄ : Dl] we denote the multiplicity of Dl in a composition series of X̄ in the sense of
Jordan-Hölder. By [Λ : Pj] we denote the multiplicity of Pj as a direct summand of Λ,
which is well defined since Krull-Schmidt holds for projective Λ-modules by Nakayama’s
Lemma. Finally, by [KPj : KX] we denote the multiplicity of KX in KPj as a Jordan-
Hölder constituent, or, equivalently, as a direct summand.

Denote E := dimK EndAKX and El := dimR̄ EndΛDl. Brauer reciprocity holds,

E · [KPjl : KX] = El · [X̄ : Dl] ,

since the K-dimension of KXejl and the R̄-dimension of X̄ejl coincide, and since the
latter is calculated by the right hand side, as we see after passing to the case Λ = ∆fl,
and subsequently reducing moritaequivalently to the case ejl = 1. Moreover,

El · [Λ : Pjl ] = dimR̄Dl .
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In particular, fl is the sum of E−1
l · dimR̄Dl primitive idempotents.

More generally, if M is a ∆-module of finite length over R, then [M : Dl] denotes the
Jordan-Hölder multiplicity of Dl in M as a ∆-module. If M happens to be the restriction
of a Λ-module to ∆, this is the same as the multiplicity of Dl in M as a Λ-module. So
we do not need to specify whether the multiplicity refers to ∆ or to Λ.

Remark 1.2 If there exists a l ∈ [1,m] such that El = 1 and [X̄ : Dl] = 1, then E = 1.
In other words, if some Dl is absolutely simple and appears with multiplicity 1 in X̄, then
KX is absolutely simple, too.

Conversely, if KX is absolutely simple and [KPjl : KX] = 1, then Dl is absolutely simple.

1.2 Jantzen filtration

We recall the basic facts concerning Jantzen’s filtration arising from an embedding of
simple Λ-lattices. This filtration is a tool to compare decomposition numbers with Jordan-
Hölder multiplicities in the quotient of this embedding.

Let X -ϕ Y be a nonzero Λ-linear map between simple lattices X and Y , thus necessarily
injective. There exists an N > 0, which we choose and fix, such that πNY ⊆ Xϕ.

Definition 1.3 For i > 0, we let

X̄(i) := ((πiY )ϕ−1 + πX)/πX ⊆ X̄

be the ith piece of the Jantzen filtration of X̄ with respect to X -ϕ Y . In particular,
X̄(0) = X̄, and X̄(N+1) = 0. Given l ∈ [1,m], the ith Jantzen multiplicity of Dl is given
by

ϑl,i := [X̄(i)/X̄(i+ 1) : Dl] .

Remark 1.4 Note that X(i) ' (πiY ∩Xϕ)/(πiY ∩ πXϕ), and thus

X̄(i)

X̄(i+ 1)
' πiY ∩Xϕ

(πi+1Y ∩Xϕ) + (πiY ∩ πXϕ)
.

If we consider this subquotient as an R-module, by an elementary divisor decomposition
we may assume that X = Y = R, and that ϕ is given by multiplication by πj for some
j > 0. Then X̄(i)/X̄(i+ 1) is isomorphic to R̄ if i = j, and to zero otherwise. Returning
to the general case, we obtain therefore

Y/Xϕ 'R
⊕
i>0

(R/πiR)dimR̄ X̄(i)/X̄(i+1) 'R
⊕

l∈ [1,m]

(⊕
i>0

(R/πiR)ϑl,i

)dimR̄Dl

.
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Lemma 1.5 (Jantzen’s Lemma)

(i) In K0(modf-Λ), we have [Y/Xϕ] =
∑

i>1[X̄(i)] =
∑

i>0 i [X̄(i)/X̄(i+ 1)].

(ii) In K0(modf-∆), we have [Y fl/Xϕfl] =
∑

i>1[X̄(i)fl] =
∑

i>0 i [X̄(i)fl/X̄(i + 1)fl]
for any l ∈ [1,m].

(iii) Given l ∈ [1,m], we have∑
i>0 ϑl,i = [X̄ : Dl] = [X̄fl : Dl]∑
i>0 iϑl,i = [Y/Xϕ : Dl] = [Y fl/Xϕfl : Dl] .

Assertion (ii) follows from (i) by decomposition in modf-∆. The second formula in (iii)
follows from (i, ii), the first follows from the definition of ϑl,i.

It remains to prove (i). There is a filtration of Λ-modules

πNXϕ = πN−0Xϕ ∩ πNY ⊆ πN−1Xϕ ∩ πNY ⊆ · · · ⊆ πN−NXϕ ∩ πNY = πNY ,

the ith subquotient of which is

πN−iXϕ ∩ πNY
πN−(i−1)Xϕ ∩ πNY

' Xϕ ∩ πiY
πXϕ ∩ πiY

= X̄(i)

for i ∈ [1, N ].

Corollary 1.6 Suppose given l ∈ [1,m]. If [X̄ : Dl] = 1, then

ϑl,i =

{
1 if i = [Y/Xϕ : Dl] ,

0 otherwise .

Corollary 1.7 Suppose given l ∈ [1,m]. Let s > 1. If ϑl,i = 0 for i ∈ [0, s − 1] and if
[Y/Xϕ : Dl] 6 s[X̄ : Dl], then

ϑl,i =

{
[X̄ : Dl] if i = s ,

0 otherwise .

In fact, the assumptions yield
∑

i>s+1(i− s)ϑl,i 6 0.

1.3 The reverse embedding

Suppose given Λ-linear maps (X -ϕ Y -ψ X) = (X -a X), where a ∈ R and vπ(a) = N .
Note that given ϕ and N as above, such a map ψ exists. Consider the Jantzen filtration
X̄(i) with respect to ϕ and the Jantzen filtration Ȳ (j) with respect to ψ.
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Remark 1.8 Given i ∈ [0, N ], we have
X̄(i)

X̄(i+ 1)
' Ȳ (N − i)

Ȳ (N − i+ 1)
. For i > N , we

have X̄(i)/X̄(i+ 1) = 0.

In fact,

X̄(i)

X̄(i+ 1)

(1.4)
' πiY ∩Xϕ

(πi+1Y ∩Xϕ) + (πiY ∩ πXϕ)

' Y ψ ∩ πN−iX
(πY ψ ∩ πN−iX) + (Y ψ ∩ πN−i+1X)

(1.4)
' Ȳ (N − i)

Ȳ (N − i+ 1)
.

1.4 Block diagonalization

We shall describe, to a certain extent, the block matrices of the block diagonalization of

X -ϕ Y resulting from a decomposition of 1Λ into orthogonal primitive idempotents. The
problem that remains, once all decomposition numbers and Jantzen multiplicities deter-
mined, is to find the elementary divisors of the blocks of size > 1. This amounts to a study
of the local and rationally simple R-algebras ejΛej , which in concrete examples seems to
be difficult to get a grip on.

Lemma 1.9 For l ∈ [1,m], we have

Y ejl/Xϕejl 'R
⊕
i>0

(R/πiR)ϑl,i·El .

In fact,

Y ejl/Xϕejl 'R
⊕

i>0(R/πiR)dimR̄ X̄(i)ejl/X̄(i+1)ejl

=
⊕

i>0(R/πiR)(dimR̄ X̄(i)fl/X̄(i+1)fl)·El·(dimR̄Dl)
−1

=
⊕

i>0(R/πiR)[X̄(i)fl/X̄(i+1)fl:Dl]·El

=
⊕

i>0(R/πiR)ϑl,i·El .

Corollary 1.10 Choosing R-linear bases in the direct summands Xej of X and Y ej of
Y , the matrix of ϕ appears in main diagonal block form. Given l ∈ [1,m], the block

belonging to Xejl
-ϕ Y ejl has edge length

dimK KXejl = E · [KPjl : KX] = El · [X̄ : Dl] ,

it appears with multiplicity

[Λ : Pjl ] = E−1
l · dimR̄Dl

and the valuation at π of its determinant is given by

El · [Y/Xϕ : Dl] .
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2 Elementary divisors for Specht modules

The calculation of the elementary divisors of the Gram matrix of a Specht lattice is equiv-
alent to the determination of the quotient Sλ,∗/Sλ as an abelian group. Now, Schaper’s
formula expresses Sλ,∗Z(p)

/SλZ(p)
as a linear combination of Specht modules in the Grothendieck

group of Z(p)Sn-modules of finite length. Provided the decomposition numbers of the oc-
curring Specht modules are known, this allows, by means of Jantzen’s Lemma, to compare
the decomposition of Sλ,∗Z(p)

/SλZ(p)
with the decomposition of SλFp

, and thus in simple cases

to determine the distribution of the simple constituents of SλFp
over the subquotients of the

Jantzen filtration. Together with the dimensions of these simple constituents, this yields
the structure of Sλ,∗Z(p)

/SλZ(p)
as an abelian group by (1.4).

2.1 Specht modules

A λ-tabloid {a} is a λ-tableau [a] with unordered rows. Let Mλ be the free Z-module on
the set of λ-tabloids, carrying a structure as a ZSn-module by entrywise operation of Sn.
That is, Mλ is isomorphic to the permutation module on (Sλ1 × · · · × Sλn)\Sn. Let the
Sn-invariant bilinear form (−,=) on Mλ be defined by

({a}, {b}) :=

{
1 if {a} = {b},
0 if {a} 6= {b}.

Let Ca 6 Sn denote the column stabilizer of [a]. A λ-polytabloid is given by

〈a〉 :=
∑
σ∈Ca

{a}σεσ ∈ Mλ .

The Specht module Sλ is defined to be the Z-linear span of the λ-polytabloids in Mλ.
It carries a ZSn-module structure as a submodule of Mλ, and it carries an Sn-invariant
bilinear form by restriction of (−,=) to Sλ, again denoted by (−,=). To simplify notation,
we sometimes rescale by the James factor to

(−,=)0 :=

(∏
i>1

(λ′i − λ′i+1)!

)−1

· (−,=) ,

cf. [5, 10.4].

A standard basis of Sλ over Z is given by the set of standard polytabloids, where a standard
polytabloid 〈a〉 is attached to a tableau [a] with strictly increasing rows from left to right,
and strictly increasing columns from top to bottom. For the Garnir relations between
polytabloids we refer to [5, 7.2]. Let

Sλ -η Sλ,∗

ξ - (ξ,−) ,

whose cokernel shall be denoted by Sλ,∗/Sλ.
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For a commutative ring A, we denote by SλA the ASn-module A⊗Z S
λ.

Given a prime p, the Jantzen filtration of SλFp with respect to SλZ(p)

-η Sλ,∗Z(p)
has been

defined in (1.3) as being given by

SλFp(i) =
(

(piSλ,∗Z(p)
)η−1 + pSZ(p)

)
/pSZ(p)

⊆ SλFp ,

yielding a decreasing filtration as i runs over Z>0. Note that SλFp(0)/SλFp(1) ' Dλ
Fp

, which
is, according to the convention adopted here, nonzero if and only if λ is p-regular [5, 12.2,
11.1]. In this case, Dλ

Fp
does not appear in SλFp(1) by [5, 12.2].

In a linear combination expressing [SλFp ] in K0(modf-Z(p)Sn) in terms of simple modules, a
lower index i > 0 indicates that this summand appears as a summand of the subquotient
[SλFp(i)/S

λ
Fp

(i + 1)]. Thus, this summand appears with multiplicity i in [Sλ,∗Z(p)
/SλZ(p)

] (1.5

iii). This is similar to the notation in [15], where one finds e.g.

[S
(4,3,22,1)
F2

] = [D
(8,3,1)
F2

]2 + [D
(6,5,1)
F2

]3 + [D
(10,2)
F2

]4 + [D
(10,2)
F2

]7 + 3[D
(12)
F2

]4 + 2[D
(12)
F2

]7

+[D
(6,4,2)
F2

]5 + [D
(6,4,2)
F2

]8 + [D
(7,3,2)
F2

]5 + [D
(8,4)
F2

]5 + [D
(7,5)
F2

]6 + [D
(7,5)
F2

]7

+[D
(11,1)
F2

]6 + 4[D
(11,1)
F2

]9 + 2[D
(9,3)
F2

]7 + [D
(9,3)
F2

]9 + [D
(5,4,2,1)
F2

]10 .

(Presumably, there are also examples in which the multiplicity of a simple module is
distributed over more than two Jantzen subquotients.) Thus for instance,

[S
(4,3,22,1)
F2

(7)/S
(4,3,22,1)
F2

(8)] = [D
(10,2)
F2

] + 2[D
(12)
F2

] + [D
(7,5)
F2

] + 2[D
(9,3)
F2

] .

Hence the multiplicity of Z/27Z as a summand of the abelian group S
(4,3,22,1),∗
Z(2)

/S
(4,3,22,1)
Z(2)

is given by dimF2 D
(10,2)
F2

+ 2 dimF2 D
(12)
F2

+ dimF2 D
(7,5)
F2

+ 2 dimF2 D
(9,3)
F2

(1.4).

2.2 Two-row partitions

We consider Specht modules indexed by two-row partitions, that is, partitions of the form
(n − m,m). The basic ingredients that allow to use Jantzen’s Lemma are the theorem
of James on the decomposition numbers of Specht modules of two-row partitions, which
are contained in {0, 1}, and the theorem of Schaper, expressing [Sλ,∗Z(p)

/SλZ(p)
] as linear

combination of Specht modules [SµFp
].

Let n > 1, let 0 6 m 6 n/2 and let p be a prime number.

Lemma 2.1 ([5, 20.1]) We have rkZ S
(n−m,m) =

(
n

m

)
· n−2m+1

n−m+1
.

Suppose given integers s and t. If s > 0 and t > 1, we write them p-adically as s + 1 =∑
i∈[0,k] sip

i and t =
∑

i∈[0,l] tip
i, where si, ti ∈ [0, p − 1] and where sk 6= 0 and tl 6= 0.
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The integer s + 1 is said to contain t to base p if (s > 0, t > 1, k > l and ti ∈ {0, si} for
i ∈ [0, l]) or if (s > 0 and t = 0). Let

fp(s, t) :=

{
1 if s+ 1 contains t to base p

0 otherwise .

Theorem 2.2 ([5, 24.15]) Let j ∈ [1,m]. We have

[S
(n−m,m)
Fp

: D
(n−j,j)
Fp

] = fp(n− 2j,m− j) (∈ {0, 1}) .

Theorem 2.3 (particular case of Schaper’s formula [28, p. 60], see also [16, 5.33])

In K0(modf-Z(p)Sn), we have

[S
(n−m,m),∗
Z(p)

/S
(n−m,m)
Z(p)

] =
∑

i∈[0,m−1]

vp
(
n+1−m−i

m−i

)
[S

(n−i,i)
Fp

] .

For j ∈ [0,m], we abbreviate

µ(n,m, p ; j) :=
∑

i∈[j,m−1]

vp

(
n+ 1−m− i

m− i

)
fp(n− 2j, i− j) .

Corollary 2.4 Combining (2.2) and (2.3), we get

[S
(n−m,m),∗
Z(p)

/S
(n−m,m)
Z(p)

] =
∑

j∈[0,m−1]

µ(n,m, p ; j) [D(n−j,j)] .

We denote by (bp ; i,j)06i,j6n/2 the inverse of the lower triangular unipotent integral matrix

(fp(n− 2j, i− j))06i,j6n/2 , and remark that dimFp D
(n−j,j)
Fp

=
∑

l∈[0,j] bp ; j,l

(
n

l

)
· n−2l+1
n−l+1

.

Theorem 2.5 In K0(modf-Z(p)Sn), we have

(2.5.1) [S
(n−m,m)
Fp

] =
∑
j∈[0,m]

fp(n− 2j,m− j)[D(n−j,j)
Fp

]µ(n,m,p ; j) .

Thus as Z(p)-modules, we have

(2.5.2) S
(n−m,m),∗
Z(p)

/S
(n−m,m)
Z(p)

'
⊕

j ∈ [0,m−1]

(
Z/pµ(n,m,p ; j)Z

)Pl∈[0,j] bp ; j,l

„
n

l

«
·n−2l+1
n−l+1

.

In other words, the right hand side lists the p-part of the elementary divisors of the Gram
matrix of the invariant bilinear form on the Specht module S(n−m,m), which is unique up
to scalar, in an unordered manner.

Formula (2.5.1) follows by an application of (1.6) to (2.2) and (2.4), where R = Z(p),

π = p, Λ = Z(p)Sn, and where (X -ϕ Y ) = (S
(n−m,m)
Z(p)

-η S
(n−m,m),∗
Z(p)

). Cf. [5, 4.12, 11.5].

Formula (2.5.2) now ensues by (1.4).
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We draw a conclusion that will follow again from (3.5) below.

Corollary 2.6 If p > m, we obtain

(2.6.1) [S
(n−m,m)
Fp

] = [D
(n−m,m)
Fp

]0 +
∑

j∈[0,m−1]

{n ≡p m+ j − 1}[D(n−j,j)
Fp

]vp(n+1−m−j) .

Thus as Z(p)-modules, we have

(2.6.2) S
(n−m,m),∗
Z(p)

/S
(n−m,m)
Z(p)

'
⊕

j ∈ [0,m−1]

(
Z(p)/(n+ 1−m− j)Z(p)

)„ n
j

«
·n−2j+1
n−j+1

.

For j ∈ [0,m− 1], we obtain µn,m,p ;j = vp(n+ 1−m− j), whence (2.6.1).

In (2.6.2) and (2.5.2), we remark that the summands are zero unless j ≡p n + 1 − m,
which happens at most once. If j ≡p n + 1 − m, we recall that the outer exponent in

(2.5.2) is just dimFp D
(n−j,j)
Fp

, which equals dimFp S
(n−j,j)
Fp

by (2.2).

2.3 Numerical examples

Example 2.7 (case m = 1) Let n > 2. For p arbitrary, (2.6.2) yields

S
(n−1,1),∗
Z(p)

/S
(n−1,1)

Z(p)
' Z(p)/nZ(p) .

This is also a particular case of (5.5) below.

Example 2.8 (case m = 2) Let n > 4. For p > 2, (2.6.2) yields

S
(n−2,2),∗
Z(p)

/S
(n−2,2)

Z(p)
'
(
Z(p)/(n− 1)Z(p)

)
⊕
(
Z(p)/(n− 2)Z(p)

)n−1

.

For p = 2, (2.5.2) yields

S
(n−2,2),∗
Z(2)

/S
(n−2,2)

Z(2)
'
(
Z(2)/

(
n−1

2

)
Z(2)

)
⊕
(
Z(2)/(n− 2)Z(2)

)n−2

.

Note that for n = 4, where the elementary divisors of S(2,2) are 2 and 6, the result is formu-
lated using redundant zero summands. In (5.14) below, we will give two bases essentially
diagonalizing the Gram matrix of the Specht module to the transposed partition (cf. 4.3).

Example 2.9 (case m = 3) Let n > 6. For p > 3, (2.6.2) yields

S
(n−3,3),∗
Z(p)

/S
(n−3,3)

Z(p)
'
(
Z(p)/(n−2)Z(p)

)
⊕
(
Z(p)/(n−3)Z(p)

)n−1

⊕
(
Z(p)/(n−4)Z(p)

)n(n−3)
2

.

For p = 3, (2.5.2) yields

S
(n−3,3),∗
Z(3)

/S
(n−3,3)

Z(3)
'
(
Z(3)/

(
n−2

3

)
Z(3)

)
⊕
(
Z(3)/(n− 3)Z(3)

)n−2

⊕
(
Z(3)/(n− 4)Z(3)

)n(n−3)
2 −1

.

For p = 2, (2.5.2) yields

S
(n−3,3),∗
Z(2)

/S
(n−3,3)

Z(2)
'
(
Z(2)/

n−2
2{n≡40}Z(2)

)
⊕
(
Z(2)/

(
n−3

2

)
Z(2)

)(n−1)−{n≡20}

⊕
(
Z(2)/(n− 4)Z(2)

)n(n−3)
2 −(n−1)+{n≡40}

.
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Example 2.10 (case m = 4) Let n > 8. For p > 4, (2.6.2) yields

S
(n−4,4),∗
Z(p)

/S
(n−4,4)

Z(p)
'
(
Z(p)/(n− 3)Z(p)

)
⊕
(
Z(p)/(n− 4)Z(p)

)n−1

⊕
(
Z(p)/(n− 5)Z(p)

)n(n−3)
2 ⊕

(
Z(p)/(n− 6)Z(p)

)n(n−1)(n−5)
6

.

For p = 3, (2.5.2) yields

S
(n−4,4),∗
Z(3)

/S
(n−4,4)

Z(3)
'
(
Z(3)/

(
3−{n≡90,6}(n− 3)

)
Z(3)

)
⊕
(
Z(3)/

(
n−4

3

)
Z(3)

)(n−1)−{n≡30}

⊕
(
Z(3)/(n− 5)Z(3)

)n(n−3)
2 −(n−1)

⊕
(
Z(3)/(n− 6)Z(3)

)n(n−1)(n−5)
6 −(n−1)+{n≡90,6}

.

For p = 2, (2.5.2) yields

S
(n−4,4),∗
Z(2)

/S
(n−4,4)

Z(2)
'
(
Z(2)/

(
n−3

4

)
Z(2)

)
⊕
(
Z(2)/

(
2−{n≡42}(n− 4)

)
Z(2)

)n−2

⊕
(
Z(2)/

(
n−5

2

)
Z(2)

)n(n−3)
2 −{n≡42}(n−1)−{n≡41}

⊕
(
Z(2)/(n− 6)Z(2)

)n(n−1)(n−5)
6 −n(n−3)

2 +{n≡42}(n−2)

.

2.4 Unimodular lattices in S
(n−m,m)
Q

Closely connected to the question for the elementary divisors of the Gram matrix is the
question of the existence of unimodular lattices in a Specht module. For two-row partitions
this investigation has been initiated by Plesken [25]. Our result now asserts the non-
existence of such lattices in the cases not treated in loc. cit. Reformulated, this amounts to
the assertion that a certain system of two Pell equations is only trivially solvable, the proof
of which we owe to E. Wirsing. The number of solutions of general Pellian systems has
been studied extensively (cf. [1], where also further references may be found). The method
employed in the particular case here does not seem to generalize.

Let R be a localization of Z at a maximal ideal, or Z itself, let λ be a partition of n, and
let X ⊆ SλQ be a full RSn-lattice, i.e. an RSn-submodule that is finitely generated free

over R of rank dimQ S
λ
Q. We denote by

X# := {v ∈ SλQ | (v,X) ⊆ R} ⊆ SλQ

its dual lattice. Note that X# ' X∗, the latter denoting the abstract R-dual.

If X ' X∗, the RSn-lattice X is called unimodular. Under our assumptions, this is
equivalent to the existence of a scalar a ∈ Q such that X = aX#.

Given an inclusion X ⊆ Y ⊆ SλQ of full RSn-lattices, by self duality of simple FpSn-

modules for each prime p, we have [Y/X] = [X#/Y #] in the Grothendieck group [5,
11.5].

We include a proof of a corollary of Plesken, restricting his argument to this corollary
as well.
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Proposition 2.11 ([25, Cor. II.4]) Let p be a prime and assume λ to be p-regular. If
SλQ contains a unimodular Z(p)Sn-lattice, then

[Sλ,∗Z(p)
/SλZ(p)

] ∈ 2K0(modf-Z(p)Sn) .

Let X ⊆ SλQ be a unimodular Z(p)Sn-lattice, let a ∈ Q such that X = aX#. Let m ∈ Z(p)

be such that mSλZ(p)
⊆ X. The filtration

mSλZ(p)
⊆ X = aX# ⊆ am−1Sλ,#Z(p)

shows that [am−1Sλ,#Z(p)
/mSλZ(p)

] ∈ 2K0(modf-Z(p)Sn). Therefore, there exists s ∈ Z such

that

[Sλ,∗Z(p)
/SλZ(p)

] + s[SλFp ] ∈ 2K0(modf-Z(p)Sn)

Since λ is p-regular, counting multiplicities of Dλ
Fp

yields s ∈ 2Z by (1.5 i) and [5, 12.2].

Remark 2.12 The converse to (2.11) holds as well, provided the decomposition numbers
of SλFp are in {0, 1}. For this direction, λ need not be p-regular.

In fact, suppose [Sλ,∗Z(p)
/SλZ(p)

] ∈ 2K0(modf-Z(p)Sn). Let SλZ(p)
⊆ M ⊆ Sλ,∗Q be a full

Z(p)Sn-lattice that is maximal with respect to the property that (M,M) ⊆ Z(p). Let
a > 0 such that p2aM# ⊆M .

If p2bM# ⊆ M for some b > 1, then (p2b−1
M#, p2b−1

M#) = (M#, p2bM#) ⊆ (M#,M) ⊆
Z(p), whence M = M + p2b−1

M# by maximality of M , i.e. p2b−1
M# ⊆ M . By induction,

starting with b = a, we conclude that pM# ⊆M ⊆M#.

Now by the filtration SλZ(p)
⊆ M ⊆ M# ⊆ Sλ,#Z(p)

, the decomposition numbers of M#/M

are even. But since M#/M is a quotient of M#/pM#, the decomposition numbers of
which are in {0, 1} by assumption, we infer that M = M#.

Now let λ = (n −m,m). The cases m = 1 and m = 2 have been treated in [25, p. 98
and II.5].

Theorem 2.13 Let 3 6 m 6 n/2. The module S
(n−m,m)
Q does not contain a unimodular

ZSn-lattice.

Given a prime p, Schaper’s formula reads

[S
(n−m,m),∗
Z(p)

/S
(n−m,m)
Z(p)

] =
∑
i∈[1,m]

vp

(
n− 2m+ 1 + i

i

)
[S

(n−m+i,m−i)
Fp

] .

First, let us consider the case 2m = n. If there was a unimodular ZSn-lattice, there would
be a unimodular Z(3)Sn-lattice. However, D

(m+2,m−2)
F3

appears in [S
(n−m,m),∗
Z(3)

/S
(n−m,m)
Z(3)

]

with multiplicity 1, so this is impossible by (2.11).
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Now, let us consider the case 2m < n and assume the existence of a unimodular ZSn-
lattice. At a prime p, existence of a unimodular Z(p)Sn-lattice implies by (2.11) that

all multiplicities of simple modules in [S
(n−m,m),∗
Z(p)

/S
(n−m,m)
Z(p)

] are even. Considering the

multiplicity of D
(n−m+i,m−i)
Fp

for i ∈ [1,m], beginning with i = 1, we obtain the condition

that 2 divides vp
(
n−2m+1+i

i

)
for all i ∈ [1,m]. Since this holds for all primes p, and at

least for i ∈ [1, 3], we conclude that there exist positive integers x, y, z such that

n− 2m+ 2 = x2

n− 2m+ 3 = 2y2

n− 2m+ 4 = 3z2 ,

whence

(∗)
2y2 − x2 = 1

3z2 − x2 = 2 .

E. Wirsing [31] proved that (x, y, z) = (1, 1, 1) is the only solution of (∗) in positive
integers, as reproduced below. Since x = 1 would correspond to n = 2m−1, this assertion
contradicts the assumption on the existence of a unimodular ZSn-lattice and proves the
theorem.

First, we remark that a solution (x, y, z) consists of pairwise coprime integers, and that
x ≡2 1.

The rational points (ξ, ζ) on the ellipse ξ2 + 3ζ2 = 4 are parametrized by

(ξ, ζ) =

(
2

1− 3t2

1 + 3t2
,

4t

1 + 3t2

)
,

where t ∈ Q ∪ {∞}. Letting (ξ, ζ) = (x
y
, z
y
), a solution (x, y, z) yields such a rational

point. We may exclude t =∞, corresponding to (−2, 0), since z 6= 0. Writing t = r
s

with
coprime positive integers r and s, we obtain r ≡2 s ≡2 1 since r 6≡2 s would imply x ≡2 0.
If s 6≡3 0, then rs and (s2 + 3r2)/4 are coprime, whence

(x, y, z) =
(
(s2 − 3r2)/2, (s2 + 3r2)/4, rs

)
.

Now x2 = 3z2 − 2 yields

(∗∗1) s4 − 1 = 2 ·
(

3

4
(r2 − s2)

)2

.

If s ≡3 0, then rs/3 and (s2 + 3r2)/12 are coprime, whence

(x, y, z) =
1

3

(
(s2 − 3r2)/2, (s2 + 3r2)/4, rs

)
.

Now x2 = 3z2 − 2 yields

(∗∗2) r4 − 1 = 2 ·
(

1

12
(s2 − 9r2)

)2

.
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By a result of Euler, however, the integral equation

(∗∗) u4 − v4 = 2w2

is unsolvable if w 6= 0 [32, p. 82]. Therefore, the only solution to (∗) in positive integers
results from (∗∗2) as being (x, y, z) = (1, 1, 1).

2.5 Some three- and four-part partitions

The partial results and conjectures that follow we could lift from the table of F. Lübeck

[15] and from calculations of decomposition numbers due to James, Williams, To Law,

Benson, Müller et al. [2, 5, 10, 18, 19, 20, 30]. See also [5, p. 113]. A general result
for p large that covers the respective first cases listed in this section, is given below (3.5).

Recall that we stipulated the module Dµ
Fp

to be zero whenever µ is not a p-regular parti-
tion.

Proposition 2.14 (n− 3,2,1) Let n > 5. For p > 3, we have

[S
(n−3,2,1)
Fp

] = [D
(n−3,2,1)
Fp

]0 + {n ≡p 3}[D(n−2,12)
Fp

]vp(n−3) + {n ≡p 1}[D(n−2,2)
Fp

]vp(n−1) .

For p = 2, we have

[S
(n−3,2,1)
F2

] = [D
(n−3,2,1)
F2

]0 + {n ≡2 1}[D(n−2,2)
F2

]v2(n−1)+v2(n−3)

+{n ≡2 1}[D(n)
F2

]2{n≡41}+(v2(n−3)−1){n≡43} .

For p = 3, we have

[S
(n−3,2,1)
F3

] = [D
(n−3,2,1)
F3

]0 + [D
(n−3,3)
F3

]1 + {n ≡3 1}[D(n−2,2)
F3

]1+v3(n−1)

+{n ≡3 0}[D(n−1,1)
F3

]1+v3(n−3) + {n ≡3 0}[D(n−2,12)
F3

]v3(n−3)

+(1 + {n ≡9 2, 3, 4})[D(n)
F3

]1 .

Schaper’s formula (see e.g. [16, 5.33]) reads

[S
(n−3,2,1),∗
Z(p)

/S
(n−3,2,1)
Z(p)

] = vp(3)[S
(n−3,3)
Fp

] + vp(n− 1)[S
(n−2,2)
Fp

]− vp
(
n−1

3

)
[S

(n)
Fp

]

+vp(n− 3)[S
(n−2,12)
Fp

] ,

where p is an arbitrary prime, and where n > 6. We expand this formula into simple
modules using [5, 24.15] and [10, App.]. Since by loc. cit. the decomposition numbers of

S
(n−3,2,1)
Fp

itself are contained in {0, 1, 2}, we may apply (1.6, 1.7) to obtain the distribution
of the occurring simple modules over the Jantzen subquotients as stated above.

Lemma 2.15 Let n > 6. We have [S
(n−4,22)
F2

: D
(n−2,2)
F2

] = {n ≡2 0} .

This follows by [10, 3.13] if n is odd, and by [10, 4.5] if n is even. We state this explicitly
since in this case we do not have λ3 < p, cf. [10, Introduction; more precisely, 4.13].
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Conjecture 2.16 Let n > 6. We have [S
(n−4,22)
F2

: D
(n)
F2

] = 1 + {n ≡4 0, 1} .

Proposition 2.17 (n− 4,22) Let n > 6. For p > 3, we have

[S
(n−4,22)
Fp

] = [D
(n−4,22)
Fp

]0 + {n ≡p 2}[D(n−2,2)
Fp

]vp(n−2) + {n ≡p 3}[D(n−3,2,1)
Fp

]vp(n−3) .

Suppose p = 2. If (2.16) holds true, then

[S
(n−4,22)
F2

] = [D
(n−4,3,1)
F2

]1 + (1 + {n ≡4 0, 1})[D(n)
F2

]1+{n≡42,3}

+{n ≡2 0}[D(n−2,2)
F2

]v2(n−2)+1 + {n ≡2 1}[D(n−3,2,1)
F2

]v2(n−3)+1 .

Suppose p = 3. For n = 6, we have

[S
(23)
F3

] = [D
(3,2,1)
F3

]1 + [D
(6)
F3

]2 .

If n > 7, there exist an, bn > 1 with an + bn = (1 + v3(n− 3)) + (1 + v3(n− 3)) such that

[S
(n−4,22)
F3

] = [D
(n−4,22)
F3

]0 + [D
(n−4,4)
F3

]1 + {n ≡3 0}[D(n−3,2,1)
F3

]v3(n−3)

+{n ≡3 0}[D(n−3,3)
F3

]v3(n−3)+1 + {n ≡3 2}[D(n−2,2)
F3

]v3(n−2)+1

+(1 + {n ≡9 4, 5, 6})[D(n−1,1)
F3

]1 + {n ≡9 0, 6}[D(n)
F3

]2

+{n ≡9 3}([D(n)
F3

]an + [D
(n)
F3

]bn) .

Schaper’s formula reads

[S
(n−4,22),∗
Z(p)

/S
(n−4,22)
Z(p)

] = vp
(

3
2

)
[S

(n−4,4)
Fp

] + vp
(
n−2

2

)
[S

(n−2,2)
Fp

]− vp
(
n−2

3

)
[S

(n−1,1)
Fp

]

+vp(2)[S
(n−4,3,1)
Fp

] + vp(n− 3)[S
(n−3,2,1)
Fp

]− vp
(
n−3

2

)
[S

(n−2,12)
Fp

] ,

where p is an arbitrary prime and where n > 8. The result now follows by [5, 24.15] and
[10], using (1.6, 1.7, 2.15).

Proposition 2.18 (n− 4,3,1) Suppose n > 7. For p > 4, we have

[S
(n−4,3,1)
Fp

] = [D
(n−4,3,1)
Fp

]0 + {n ≡p 2}[D(n−3,3)
Fp

]vp(n−2) + {n ≡p 4}[D(n−2,12)
Fp

]vp(n−4)

+{n ≡p 5}[D(n−3,2,1)
Fp

]vp(n−5) .

Suppose p = 2. There exist an, bn, cn, dn, en, fn, gn, hn, in, jn > 1 with

an + bn = 1 + (1 + v2(n− 2))

cn + dn = 2 + 2

en + fn + gn = 1 + 1 + v2(n− 4)

hn + in + jn = 1 + 1 + v2(n− 5)
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such that

[S
(n−4,3,1)
F2

] = [D
(n−4,3,1)
F2

]0 + [D
(n−4,4)
F2

]2 + {n ≡2 0}[D(n−3,3)
F2

]2+v2(n−2)

+{n ≡2 1}[D(n−3,2,1)
F2

]v2(n−5) + {n ≡4 0}[D(n−2,2)
F2

]v2(n−4)

+{n ≡4 1}[D(n−2,2)
F2

]1+v2(n−5) + {n ≡4 2}([D(n−2,2)
F2

]an + [D
(n−2,2)
F2

]bn)

+{n ≡4 0}[D(n−1,1)
F2

]2+v2(n−4) + {n ≡8 2, 7}[D(n)
F2

]2

+{n ≡8 3, 6}([D(n)
F2

]cn + [D
(n)
F2

]dn) + 2{n ≡8 0, 1}[D(n)
F2

]1

+{n ≡8 4}([D(n)
F2

]en + [D
(n)
F2

]fn + [D
(n)
F2

]gn)

+{n ≡8 5}([D(n)
F2

]hn + [D
(n)
F2

]in + [D
(n)
F2

]jn) .

Suppose p = 3. We have

[S
(n−4,3,1)
F3

] = [D
(n−4,3,1)
F3

]0 + {n ≡3 2}[D(n−3,3)
F3

]v3(n−2)+v3(n−5) + {n ≡3 2}[D(n−3,2,1)
F3

]v3(n−5)

+{n ≡3 1}[D(n−2,12)
F3

]v3(n−4) + {n ≡9 2}[D(n)
F3

]2 + {n ≡9 5}[D(n)
F3

]v3(n−5)−1 .

Schaper’s formula reads

[S
(n−4,3,1),∗
Z(p)

/S
(n−4,3,1)
Z(p)

] = −vp
(
n−2

4

)
[S

(n)
Fp

] + vp(n− 2)[S
(n−3,3)
Fp

] + vp(4)[S
(n−4,4)
Fp

]

+vp
(
n−4

2

)
[S

(n−2,12)
Fp

] + vp(n− 5)[S
(n−3,2,1)
Fp

] ,

where p is an arbitrary prime, and where n > 8. The result follows by [5, 24.15] and [10,
App.], using (1.6).

Lemma 2.19 Suppose given n > 6.

(i) If n > 8, then [S
(n−4,2,12)
F2

: D
(n−4,3,1)
F2

] = 1.

(ii) For p an arbitrary prime, we have [S
(n−4,2,12)
Fp

: D
(n−3,2,1)
Fp

] = {n ≡p 1}.

(iii) For p > 4 prime, we have [S
(n−4,2,12)
Fp

: D
(n−3,13)
Fp

] = {n ≡p 4}.

This follows from [10, 3.6, 3.13]. Again, we state this explicitly, this time since
(n− 4, 2, 12) is a four-part-partition. Assertion (i) also follows by [6, Th. A].

Conjecture 2.20 Suppose given n > 6.

(i) If n > 9, then [S
(n−4,2,12)
F2

: D
(n−4,4)
F2

] = 1.

(ii) If n > 7, then [S
(n−4,2,12)
F2

: D
(n−3,3)
F2

] = {n ≡2 0}.

(iii) We have [S
(n−4,2,12)
F2

: D
(n−2,2)
F2

] = 2{n ≡4 0, 1}+ 3{n ≡4 2}+ {n ≡4 3}.

(iv) We have [S
(n−4,2,12)
F2

: D
(n−1,1)
F2

] = 2{n ≡4 0}+ {n ≡4 2}.
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(v) If n > 7, then [S
(n−4,2,12)
F2

: D
(n)
F2

] = {n ≡8 7} + 2{n ≡8 0, 2, 3} + 3{n ≡8 1, 4, 6} +
4{n ≡8 5}.

(vi) We have [S
(n−4,2,12)
F3

: D
(n−3,3)
F3

] = {n ≡3 1}.

(vii) We have [S
(n−4,2,12)
F3

: D
(n)
F3

] = {n ≡3 1}+ {n ≡9 4}.

Proposition 2.21 (n− 4,2,12) Suppose n > 6. For p > 4, we have

[S
(n−4,2,12)
Fp

] = [D
(n−4,2,12)
Fp

]0 + {n ≡p 1}[D(n−3,2,1)
Fp

]vp(n−1) + {n ≡p 4}[D(n−3,13)
Fp

]vp(n−4) .

Suppose p = 2. For n = 6, we obtain

[S
(22,12)
F2

] = [D
(4,2)
F2

]3 + [D
(5,1)
F2

]2 + [D
(6)
F2

]2 .

If n > 7 and if (2.20 i-v) and (2.16) hold true, then there exist an, . . . , zn > 1 with

an + bn = 1 + (3 + v2(n− 4))

cn + dn + en = 1 + 1 + 4

fn + gn = 3 + 3

hn + in + jn = 2 + 2 + (1 + v2(n− 1))

kn + ln = 2 + 2

mn + on + qn = 2 + 2 + (1 + v2(n− 4))

rn + sn + tn + un = 1 + 1 + 3 + 3

vn + wn + xn = 1 + 1 + 3

yn + zn = (1 + v2(n− 4)) + (1 + v2(n− 4))

such that

[S
(n−4,2,12)
F2

] = [D
(n−4,3,1)
F2

]3 + [D
(n−4,4)
F2

]1 + {n ≡2 1}[D(n−3,2,1)
F2

]3+v2(n−1)

+{n ≡2 0}[D(n−3,3)
F2

]1+v2(n−4) + (2{n ≡4 1}+ {n ≡4 3})[D(n−2,2)
F2

]1

+{n ≡4 0}([D(n−2,2)
F2

]an + [D
(n−2,2)
F2

]bn)

+{n ≡4 2}([D(n−2,2)
F2

]cn + [D
(n−2,2)
F2

]dn + [D
(n−2,2)
F2

]en)

+{n ≡8 0}([D(n)
F2

]fn + [D
(n)
F2

]gn)

+{n ≡8 1}([D(n)
F2

]hn + [D
(n)
F2

]in + [D
(n)
F2

]jn)

+{n ≡8 2, 3}([D(n)
F2

]kn + [D
(n)
F2

]ln)

+{n ≡8 4}([D(n)
F2

]mn + [D
(n)
F2

]on + [D
(n)
F2

]qn)

+{n ≡8 5}([D(n)
F2

]rn + [D
(n)
F2

]sn + [D
(n)
F2

]tn + [D
(n)
F2

]un)

+{n ≡8 6}([D(n)
F2

]vn + [D
(n)
F2

]wn + [D
(n)
F2

]xn) + {n ≡8 7}[D(n)
F2

]3

+{n ≡4 2}[D(n−1,1)
F2

]2 + {n ≡4 0}([D(n−1,1)
F2

]yn + [D
(n−1,1)
F2

]zn) .

Suppose p = 3. If (2.20 vi, vii) hold true, then

[S
(n−4,2,12)
F3

] = [D
(n−4,2,12)
F3

]0 + {n ≡3 1}[D(n−3,3)
F3

]v3(n−1) + ({n ≡3 1}+ {n ≡9 4})[D(n)
F3

]v3(n−1)

+{n ≡3 1}[D(n−3,2,1)
F3

]v3(n−1)+v3(n−4) .
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Schaper’s formula reads

[S
(n−4,2,12),∗
Z(p)

/S
(n−4,2,12)
Z(p)

] = vp(2)[S
(n−4,22)
Fp

] + vp(4)[S
(n−4,3,1)
Fp

] + vp(n− 1)[S
(n−3,2,1)
Fp

]

−vp(2)[S
(n−4,4)
Fp

]− vp
(
n−1

2

)
[S

(n−2,2)
Fp

] + vp
(
n−1

4

)
[S

(n)
Fp

]

+vp(n− 4)[S
(n−3,13)
Fp

] ,

where p is an arbitrary prime, and where n > 8. The result follows by [5, 24.15] and [10,
App.], using (1.6, 1.7).

As a general pattern, one seems to observe the following.

Conjecture 2.22 Let p be a prime, let n > 1. Given a partition λ of n and an integer
k > 0, we denote by λ+ k the partition (λ1 + k, λ2, λ3, . . .). Suppose λ to be a partition of
n, and µ to be a p-regular partition of n.

(i) There exists integers a, J > 0 such that for j > J , we have

[SλFp : Dµ
Fp

] = [Sλ+jpa

Fp
: Dµ+jpa

Fp
] .

(ii) Let λr denote the p-regularization of λ in the sense of [6], and suppose (λr)1 = λ1.

The multiplicity [Sλ+k,∗
Z(p)

/Sλ+k
Z(p)

: D
(λ+k)r

Fp
] does not depend on k > 0. (Cf. [6, Th. A]

and (1.6).)

3 At a large prime

Notation 3.1 Let n > 1. Given a partition µ of n and j ∈ [1, µ2], we denote by µ[j] the
partition of n defined by

µ[j]i :=


µ1 + µµ′j − j + 1 if i = 1

j − 1 if i = µ′j
µi otherwise

for i > 0. I.e. we cut the last row that meets the jth column in the jth column and
append that piece in the first row.

Let R(µ) = {i > 1 | µi > µi+1} be the set of row numbers of removable nodes. Given
k ∈ R(µ), we denote by µ(k) the partition of n− 1 defined by

µ(k)i :=

{
µi − 1 if i = k

µi else

for i > 0. I.e. the diagram of µ(k) is obtained from the diagram of µ by removing the last
node in row k.
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Let λ be a partition of n, and suppose λ 6= (n). Suppose p to be a prime strictly bigger
than n − λ1 =

∑
i>2 λi. Given j ∈ [1, λ2], we denote by hj := λ1 − j + λ′j the hook

length of the node (1, j) of the diagram of λ. Note that p divides at most one of the
numbers hj for j ∈ [1, λ2] since h1− hλ2 < p. If p divides ht, we denote s = λ′t. Note that
t ∈ [λs+1 + 1, λs].

We shall need a particular case of the direction of the Carter Conjecture that has been
proven by James and Murphy.

Theorem 3.2 ([9, p. 222]) If p does not divide hj for all j ∈ [1, λ2], then SλFp is irre-
ducible.

The following is a particular case of a result of Carter and Payne.

Theorem 3.3 ([3, p. 425]) Suppose that p divides ht. Then HomFpSn(S
λ[t]
Fp
, SλFp) 6= 0.

In particular, [SλFp : D
λ[t]
Fp

] > 1.

The idea of proof and the main ingredient of (3.4), hence of (3.5), are due to Kleshchev.

Proposition 3.4 Suppose that p divides ht. Then [SλFp ] = [Dλ
Fp

] + [D
λ[t]
Fp

].

Consider the case λ1 > λ2. By (3.3), it suffices to show equality of the restrictions to
Sn−1 in the Grothendieck group. To prove this equality, by induction, we may assume the
assertion to hold for Sn−1, yielding

[SλFp ]|Sn−1

[5, 9.2]
=

∑
i∈R(λ)[S

λ(i)
Fp

]
induction

=
∑

i∈R(λ)

(
[D

λ(i)
Fp

] + {i 6= 1 and λi 6= t}[Dλ(i)[t]
Fp

]

+ {i = 1 and λs+1 + 1 < t}[Dλ(1)[t−1]
Fp

]
)
.

On the other hand, since all removable nodes, except for (s, t) if λs = t, are normal, and,
using p |ht, all normal nodes are good, modular branching [11, 0.6] enables us to calculate

[Dλ
Fp ]|Sn−1 =

∑
i∈R(λ)

{λi 6= t}[Dλ(i)
Fp

] ,

as well as
[D

λ[t]
Fp

]|Sn−1 = {λs+1 + 1 < t}[Dλ(s)[t−1]
Fp

] +
∑

i∈R(λ)\{s}

[D
λ(i)[t]
Fp

] .

We are done by remarking that if λs > t, then λ(s)[t] = λ(1)[t]; that if λs = t, then
λ(s) = λ(1)[t]; and that if λs+1 + 1 < t, then λ(s)[t− 1] = λ(1)[t− 1].

Consider the case λ1 = λ2. From p |ht we conclude that λ2 + λ′1 > p + 1, and from
p > n− λ1 we infer that λ2 + λ′1 < p+ 2. Now, λ2 + λ′1 = p+ 1 leads to λ = (k2, 1l), with
k > 1, l > 0 and k + l = p− 1, so in particular t = 1.
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If k = 1, then [SλFp ] = [Dλ
Fp

] + [D
λ[t]
Fp

], since [D
(1p)
Fp

] = 0 by convention, and since [S
(1p)
Fp

] =

[D
(2,1p−2)
Fp

] by [6, Th. A].

If k > 1, we obtain one the one hand, by induction,

[SλFp ]|Sn−1 = [D
(k,k−1,1l)
Fp

] + {l > 1}
(

[D
(k+1,k−1,1l−1)
Fp

] + [D
(k2,1l−1)
Fp

]
)

+ {l = 0}[D(n−1)
Fp

] .

On the other hand, modular branching [11, 0.6] yields

[D
(k2,1l)
Fp

]|Sn−1 = [D
(k,k−1,1l)
Fp

]

{l > 1}[D(k+1,k,1l−1)
Fp

]|Sn−1 = {l > 1}
(

[D
(k+1,k−1,1l−1)
Fp

] + [D
(k2,1l−1)
Fp

]
)

{l = 0}[D(n)
Fp

]|Sn−1 = {l = 0}[D(n−1)
Fp

] .

Thus

[SλFp ] = [S
(k2,1l)
Fp

]

= [D
(k2,1l)
Fp

] + {l > 1}[D(k+1,k,1l−1)
Fp

] + {l = 0}[D(n)
Fp

]

= [Dλ
Fp

] + [D
λ[t]
Fp

] .

Theorem 3.5 Let λ be a partition of n, let p be a prime such that p > n − λ1. Let hj
and, if existent, t be as in (3.1).

If p does not divide hj for any j ∈ [1, λ2], then

[SλFp ] = [Dλ
Fp ]0 .

If p divides ht, then

[SλFp ] = [Dλ
Fp ]0 + [D

λ[t]
Fp

]vp(ht) .

If p divides ht, Schaper’s formula (see e.g. [16, 5.33]) reads

[Sλ,∗Z(p)
/SλZ(p)

] =
∑
i∈[2,s]

(−1)s−ivp(ht)[S
λ〈i〉
Fp

] ,

where the diagram of the partition of λ〈i〉 is obtained by removing the skew hook belonging
to the node (i, t) from the diagram of λ, and by attaching as many nodes to the first row
as there are in this skew hook (cf. [9, p. 223]).

Now, if h〈i〉j denotes the hook length of the node (1, j) of the diagram of λ〈i〉, where
j ∈ [1, λ2], and if p divides h〈i〉t〈i〉, then λ〈i〉[t〈i〉] = λ〈i − 1〉 for i ∈ [3, s]. Moreover,

λ〈s〉 = λ[t], and S
λ〈2〉
Fp

= D
λ〈2〉
Fp

by (3.2). Thus by (3.4), we have

[Sλ,∗Z(p)
/SλZ(p)

] = vp(ht)[D
λ[t]
Fp

] ,

and we are done by (1.6).
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Corollary 3.6 Suppose p divides ht. As modules over Z(p), we have

Sλ,∗Z(p)
/SλZ(p)

'
(
Z(p)/htZ(p)

)dimFp D
λ[t]
Fp ,

where, using the notation of the proof of (3.5), we have

dimFp D
λ[t]
Fp

=
∑
i∈[2,s]

(−1)s−i dimFp S
λ〈i〉
Fp

.

This follows using (3.5), its proof and (1.4).

4 Transposition

Let n > 1. Given a ZSn-module X, we denote X− := X ⊗Z S
(1n). Given a partition λ,

we denote nλ := rkZ S
λ.

Proposition 4.1 Suppose given n > 1, p a prime and λ a partition of n. For i ∈
[0, vp(n!/nλ)], we have

SλFp(i)

SλFp(i+ 1)
'

(
Sλ
′

Fp
(vp(n!/nλ)− i)

Sλ
′

Fp
(vp(n!/nλ)− i+ 1)

)−
.

For i > vp(n!/nλ), we have SλFp(i)/S
λ
Fp

(i+ 1) = 0.

By [5, 6.7] (and [13, 6.2.5]), we have an isomorphism

Sλ -∼ Sλ
′,∗,−

〈a〉 - ({a′},−) .

Given a λ-tableau [a], we let Ca denote the column stabilizer of [a] in Sn, and κ−a :=∑
σ∈Ca σεσ; we let Ra denote the row stabilizer of [a] in Sn and ρ+

a :=
∑

σ∈Ra σ. Consider
the composition

Sλ -η Sλ,∗ -∼ Sλ
′,− -η

−

Sλ
′,∗,− -∼ Sλ

〈a〉 - ({a},−)κ−a - 〈a′〉κ−a - ({a′},−)ρ+
a κ
−
a

- 〈a〉ρ+
a κ
−
a =

n!

nλ
〈a〉 ,

the last equality following from [5, 23.2 ii]. We localize at p and apply (1.8) to X = SλZ(p)
,

Y = Sλ
′,−

Z(p)
and N = vp(n!/nλ).

Corollary 4.2 We have SλFp(vp(n!/nλ))/S
λ
Fp

(vp(n!/nλ) + 1) ' Dλ′,−
Fp

.
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Corollary 4.3 For i ∈ [1, nλ], the product of the ith elementary divisor of the Gram
matrix of Sλ and the (nλ + 1 − i)th elementary divisor of the Gram matrix of Sλ

′
yields

n!/nλ.

In particular, the largest elementary divisor of the Gram matrix of Sλ divides n!/nλ.

The first argument is to localize at a prime p and to apply (1.4) to (4.1). In this sense,
(4.1) is the module version of (4.3).

The second argument is to consider the composition used in the proof of (4.1) directly,
which yields the result without reverting to localization.

Remark 4.4 A Brauer-Nesbitt type argument (cf. §6.3) shows that if G is a finite group,
R a discrete valuation ring of characteristic zero with fraction field K splitting G, and
X a simple RG-lattice carrying a nondegenerate G-invariant R-bilinear form, then the
quotient of the last elementary divisor by the first elementary divisor of the Gram matrix
of this bilinear form divides |G|/rkRX in R. In this generality, there is no substitute for
transposition of partitions. Nonetheless, in our particular case this fact can be derived using
transposition of partitions (4.3).

The following has been discovered by C. D. Gay and rederived by James and Murphy
(cf. [9, p. 234]).

Corollary 4.5 The product of the determinants of the Gram matrices of Sλ and of Sλ
′

is given by (n!/nλ)
nλ.

For later use, we record the related

Lemma 4.6 We have (〈a〉ρ+
a ,−) =

n!

nλ
({a},−).

To this end, we compose the string of morphisms displayed in the proof of (4.1) from Sλ,∗

to Sλ,∗.

Sometimes, we shall abbreviate 〈a〉ρ+
a =: 〈a〉ρ+.

5 Explicit bases

So far, we have been calculating elementary divisors of Gram matrices for Specht modules
without reference to any explicit diagonalization. Instead, we made use of known decom-
position numbers as well as of Schaper’s formula.
It would be preferable to construct two bases diagonalizing the Gram matrix, but this seems
to be difficult in general. For hook partitions, however, explicit diagonalization is a simple
(and precise) way to get the elementary divisors (5.5). We also treat the partition (22, 1n−4)
in this manner (5.14), but already this modest case indicates how complicated such bases
seem to look like in general, at least in terms of polytabloids. We remark that even for
simple modules whose dimension is known (such as two-row partitions, three-row partitions
with third row < p, or those treated in [17]), explicit bases are largely unknown (or at least
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unpublished). Such a basis, lifted to the Specht module of the same partition, could locally
be used as part of a diagonalizing basis. The bases found so far diagonalize globally.
To simplify, we spare ourselves the construction of the second basis by giving the first basis
in a convenient manner with respect to the standard choice of the second, see §5.1. By
a matrix inversion of a unipotent upper triangular integral matrix, a diagonalizing second
basis ensues.

5.1 A linear algebra lemma

Lemma 5.1 Let X be a finitely generated free Z-module of rank m > 1, let (−,=) be a
nondegenerate bilinear form on X. Let G be the Gram matrix of that bilinear form with
respect to some Z-linear basis. Let (x1, . . . , xm), (y1, . . . , ym) be two tuples of elements of
X such that the following hold.

(i) We have (xi, yi) 6= 0 for all i ∈ [1,m].

(ii) We have (xi, yj) = 0 for all i, j ∈ [1,m] such that i > j.

(iii) (xi, yi) divides (xi, yj) for all i, j ∈ [1,m] such that i < j.

(iv) (xi, yi) divides (xi+1, yi+1) for all i ∈ [1,m− 1].

(v)
∏

i∈[1,m](xi, yi) = ± detG.

Then the tuples (x1, . . . , xm) and (y1, . . . , ym) are Z-linear bases of X. The elementary
divisors of G are given by the tuple of integers(

(x1, y1), (x2, y2), . . . , (xn, yn)
)
.

Let g : X -X∗ send ξ ∈ X to (ξ,−). The tuple (x1, . . . , xm) is linear independent over
Z, as its image in X∗ via g shows, using (i, ii). Likewise, the tuple (y1, . . . , ym) is linearly
independent. In the composite embedding

Z〈x1, . . . , xm〉 -
�� f

X -
�� g

X∗ -
�� h

Z〈y1, . . . , ym〉∗ ,

both fgh and g have determinant ± detG, by (v). Thus f and h are equalities. Now
(i, ii, iii, iv) ensure that the elementary divisors result as claimed.

The element yi of the second basis is called the diagonal correspondent of the element xi
of the first basis.

5.2 Bases for hooks

The result of this section has independently been observed by Mathas and James [unpub-
lished]. As ingredient for (5.1 v), we shall make use of the determinant of the Gram matrix,
but not of Schaper’s formula itself.
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Let n > 2, let l ∈ [0, n− 1], and let λ := (n− l, 1l) be a hook partition of n. Note that a
λ-polytabloid is determined by the tuple of entries in the first column, read from top to
bottom. So given a tuple b = (b0, b1, . . . , bl), the entries bi ∈ [1, n] pairwise distinct, we
shall write 〈b〉 for the λ-polytabloid it determines. In the sequel, by a tuple we understand
a tuple with pairwise distinct entries. To the underlying set of a tuple we refer without
further comment.

Counting ordered tuples, we obtain rkZ S
λ =

(
n−1

l

)
.

If b is a tuple and x an element, then (x, b) denotes the tuple b with an entry x appended
on the left, (b, x) denotes the tuple b with an entry x appended on the right, etc. If tuple
brackets appear within tabloid or polytabloid brackets, we omit the tuple brackets. For

instance, if n = 5, l = 2 and b = (5, 3), then 〈2, b〉 =

〈
2 1 4

5

3

〉
.

Lemma 5.2 We have #(Sλ,∗/Sλ) = l!

„
n−1

l

«
· n

„
n−2

l−1

«
.

This follows by induction on n using the Branching Theorem for Determinants [9, p. 225].

Lemma 5.3 Suppose given increasingly ordered tuples b, c ⊆ [2, n − 1] of length #b =
#c = l. We have

(〈n, b〉, 〈1, c〉)0 =

{
1 if b = c ,

0 if b 6= c .

Lemma 5.4 Suppose given increasingly ordered tuples d ⊆ [2, n−1] of length #d = l−1,
and c ⊆ [2, n] of length #c = l. We have( ∑

s∈[1,n−1]\d

〈s, d, n〉, 〈1, c〉
)

0
=

{
n if (d, n) = c ,

0 if (d, n) 6= c .

In fact, ( ∑
s∈[1,n−1]\d

〈s, d, n〉,−
)

0
= (n− l − 1)!−1

(
〈1, d, n〉ρ+,−

)
0

(4.6)
= n ·

(
{1, d, n},−

)
.

Theorem 5.5 As abelian groups, we have

Sλ,∗/Sλ = S(n−l,1l),∗/S(n−l,1l) ' (Z/l! Z)

„
n−2

l

«
⊕ (Z/n · l! Z)

„
n−2

l−1

«
.

Bases x and y that trigonalize the Gram matrix in the sense of (5.1) are given by a tuple
y consisting of the standard basis, ordered in such a manner that all elements without
entry n in the first column are before all elements with entry n in the first column, and by
a tuple x = (x′, x′′), with x′ consisting of the elements of the form 〈n, b〉 as in (5.3), with
respective diagonal correspondent 〈1, b〉 in y, and x′′ consisting of elements of the form∑

s∈[1,n]\d〈s, d, n〉 as in (5.4), with respective diagonal correspondent 〈1, d, n〉 in y.
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Example 5.6 Let n = 4 and λ = (2, 12). With respect to

x =
(〈

4 1
2
3

〉
,

〈
1 3
2
4

〉
+
〈

3 1
2
4

〉
,

〈
1 2
3
4

〉
+
〈

2 1
3
4

〉)
, y =

(〈
1 4
2
3

〉
,

〈
1 3
2
4

〉
,

〈
1 2
3
4

〉)
,

the Gram matrix ( (xi, yj) )i,j takes the form
(

2 −2 2
0 8 0
0 0 8

)
.

Remark 5.7 (Jantzen subquotients) Let p be a prime. To consider the Jantzen sub-
quotients, we have to distinguish two cases.

Case p > 3. Given a partition ν, we denote by νr the p-regularized partition in the sense
of [6, p. 46], where the corresponding diagram construction is explained – the diagram of
ν being given by [ν] := {(i, j) ∈ Z>1 × Z>1 | j 6 νi}.

Now, if p does not divide n, then SλFp ' Dλr

Fp
is simple [6, p. 52]. By (5.5), we obtain

[SλFp ] = [Dλr

Fp ]vp(l!) .

So suppose that p divides n.

If l = 0, we obtain
[SλFp ] = [S

(n)
Fp

] = [D
(n)
Fp

]0 .

If l = n− 1, we obtain by [6, Th. A]

[SλFp ] = [S
(1n)
Fp

] = [D
(1n)r

Fp
]vp(n!) .

If l ∈ [1, n−2], the decomposition numbers of [6, p. 52] and the long exact hook sequence
of [22, Lem. 2] (cf. [13, 4.2.3, 4.2.4]) give

[SλFp ] = [S
(n−l,1l)
Fp

] = [D
(n−l−{ l > n−n/p},1∗)r

Fp
]vp(l!) + [D

(n−(l−1)−{ (l−1) > n−n/p},1∗)r

Fp
]vp(l!n) ,

where we abbreviated (n− j, 1∗) := (n− j, 1j). In fact, the image in SλFp of the differential

of the long exact hook sequence equals SλFp(l!n), as results from a comparison of [13,
4.2.3] with (5.4).

Case p = 2. Suppose given k,m > 0, written 2-adically as k + 1 =
∑

s∈[0,K] as2
s and

m =
∑

s∈[0,M ] bs2
s, where as, bs ∈ {0, 1}, where aK = 1 and where bM = 1 if m > 1, and

M = −1 if m = 0. Assume K > M . Let t := max ({s ∈ [1,M ] | as < bs} ∪ {0}), and
define

F2(k,m) :=
∑
i>0

f2(k,m−2i) = 2
P
u∈[1,t] au ·

1 +
∑

s∈[t+1,M ]

asbs · 2
P
u∈[t+1,s−1] au

·{km ≡2 0} ,

the notation being as for (2.2).

First, suppose 2l 6 n − 1. For j ∈ [0, l], [5, p. 93] and [5, 24.15] yield [SλF2
: D

(n−j,j)
F2

] =
F2(n − 2j, l − j) (cf. [29]). If n is even, we use the same argument as in the case p > 3,
if n is odd, there is no further argument necessary, to conclude

[SλF2
] = [S

(n−l,1l)
F2

] =
∑
j∈[0,l]

F2(n− 2j, l − j) [D
(n−j,j)
F2

]v2(l!n{l 6≡2j}) .
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Next, suppose 2l > n− 1. Since [SλF2
] = [Sλ

′,∗,−
F2

] = [Sλ
′

F2
], we obtain in the same manner

[SλF2
] = [S

(n−l,1l)
F2

] = [S
(l+1,1n−l−1)
F2

] =
∑

j∈[0,n−l−1]

F2(n−2j, n−l−1−j) [D
(n−j,j)
F2

]v2(l!n{l6≡2j}) .

Example 5.8 We have

[S(6,18)

F2
] = 3[D(14,0)

F2
]7 + 2[D(13,1)

F2
]8 + 2[D(12,2)

F2
]7 + [D(11,3)

F2
]8 + [D(10,4)

F2
]7 + [D(9,5)

F2
]8 .

5.3 Gram matrix entries for two-column partitions

Let n > 1, 1 6 h 6 n/2 and λ = (2h, 1n−2h). Recall that tuples have pairwise distinct
entries by convention.

Lemma 5.9 Let i ∈ [0, h]. Suppose given pairwise disjoint tuples ϕ, ψ, ϑ, ζ ⊆ [1, n] of
length

#ϕ = n− 2h+ i ,

#ψ = i ,

#ϑ = h− i ,
#ζ = h− i .

Let [a] be the tableau with first column (ϑ, ϕ) and second column (ζ, ψ). Let [b] be the
tableau with first column (ζ, ϕ) and second column (ϑ, ψ). Then(

〈a〉, 〈b〉
)

= h! · (h− i)! · (n− 2h+ i)! .

We have to calculate

��
�
�
�

C
C
C
C
C

ϑ

ϕ

ζ

ψ

C
C
C
C
C

�
�
�
�
�

, �
�
�
�
�

C
C
C
C
C

ζ

ϕ

ϑ

ψ

C
C
C
C
C

�
�
�
�
�

=
∑
τ ∈Ca

∑
σ ∈Cb

{
{a}τ = {b}σ

}
ετεσ .

First, assume that ζ and ψ remain fixed in [a], i.e. that τ restricts to the identity on ζ∪ψ.
In order to obtain {a}τ = {b}σ, the permutation σ has to restrict to the identity on ζ ∪ψ
as well. Moreover, σ and τ have to restrict to the same automorphism of ϑ, whence the
factor (h− i)!, and to the same automorphism on ϕ, whence the factor (n−2h+ i)!. Next,
removing the assumption, we remark that we may simultaneously permute the rows 1 to
h of {a}τ and of {b}σ, whence the factor h!.
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Lemma 5.10 Suppose given increasingly ordered tuples ξ, η ⊆ [1, n] of length h with
intersection of cardinality i. We write 〈ξ〉 for the polytabloid with second column ξ, and
first column [1, n]\ξ, increasingly ordered from top to bottom. Let

∑
ξ denote the sum of

the entries of ξ. Then

(〈ξ〉, 〈η〉)0 =
(h− i)!(n− 2h+ i)!

(n− 2h)!
· (−1)h−i+

P
ξ+
P
η .

This follows from (5.9) by reordering the columns of the polytabloids involved.

5.4 Bases for (22, 1n−4)

Let n > 6, let λ = (22, 1n−4). Given a, b ∈ [1, n], a 6= b, we denote by
〈
a

b

〉
the λ-

polytabloid with second column (a, b), and whose first column is increasingly ordered
from top to bottom. That is, we use the notation that has already been employed in
(5.10).

Lemma 5.11 We have

#(Sλ,∗/Sλ) = (2(n− 4)!)(n2−3n)/2 · (n− 1)(n2−3n−2)/2 · (n− 2)(n2−5n+2)/2 · 2 .

The transposed partition has #(S(n−2,2),∗/S(n−2,2)) = (n − 1) · (n − 2)n−1/2, as we take
from the first example on [9, p. 224]. Since rkZ S

λ = n(n−3)/2 by [5, 20.1], the assertion
ensues from (4.5).

Lemma 5.12 We obtain the following table for values of (−,=)0 = 1
2(n−4)!

(−,=), in

which the columns are indexed by the standard polytabloid basis of Sλ.



32

(−,=)0

〈
b
n

〉 〈
b

n−1

〉 〈
b
c

〉
b ∈ [2, n− 1] b ∈ [2, n− 2] b ∈ [2, n− 2],

c ∈ [4, n− 2], b < c

〈
3
n

〉 (n− 2)(n− 3)
if b = 3

(−1)b · (n− 3)
if b 6= 3

(n− 3)
if b = 3

(−1)b · 2
if b 6= 3

(−1)c+n+1 · (n− 3)
if b = 3

(−1)b+c+n+1 · 2
if b 6= 3

〈
3
4

〉
(−1)n+1 · (n− 3)
if b = 3

(−1)n · (n− 3)
if b = 4

(−1)b+n+1 · 2
if b 6∈ {3, 4}

(−1)n · (n− 3)
if b = 3

(−1)n+1 · (n− 3)
if b = 4

(−1)b+n · 2
if b 6∈ {3, 4}

(n− 2)(n− 3)
if b = 3, c = 4

(n− 3)
if b = 2, c = 4

(−1)c+1 · (n− 3)
if b = 3, c 6= 4

(−1)c · (n− 3)
if b = 4, c 6= 4

(−1)b+c+1 · 2
if b, c 6∈ {3, 4}

〈
k

n−1

〉
+ (−1)k

〈
1

n−1

〉
k ∈ [2, n− 2]

(n− 1)
if b = k

0
if b 6= k

(n− 1)(n− 3)
if b = k

0
if b 6= k

(−1)n+c · (n− 1)
if k = b

(−1)n+b · (n− 1)
if k = c

0
if k 6∈ {b, c}〈

3
n

〉
+(−1)n

〈
n−1
n

〉
−(n− 3)

〈
3

n−1

〉 0

−(n− 1)(n− 3)(n− 4)
if b = 3

(−1)b+1 · (n− 1)(n− 4)
if b 6= 3

(−1)c+n+1 · (n− 1)(n− 4)
if b = 3

(−1)b+c+n+1 · 2(n− 1)
if b 6= 3

〈
k
l

〉
ρ+

k ∈ [2, n− 1],
l ∈ [4, n− 1], k < l

0

(n− 1)(n− 2)
if k = b, l = n− 1

0
else

(n− 1)(n− 2)
if k = b, l = c

(−1)l+1(n− 1)(n− 2)
if k = c, b = 2

0
else

This table is to be verified using (5.10), except for the last row, for which we may most

conveniently use (4.6). Explicitly, we have for example
〈

3

4

〉
ρ+ =

〈
3

4

〉
−
〈

1

4

〉
+
〈

3

2

〉
+
〈

1

2

〉
.

Example 5.13 If n = 6, we obtain the following table.
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(−,=)0

〈
5
6

〉 〈
4
6

〉 〈
3
6

〉 〈
2
6

〉 〈
4
5

〉 〈
3
5

〉 〈
2
5

〉 〈
3
4

〉 〈
2
4

〉
〈

3
6

〉
−3 3 12 3 2 3 2 −3 −2〈

3
4

〉
2 3 −3 −2 −3 3 2 12 3〈

4
5

〉
+
〈

1
5

〉
0 5 0 0 15 0 0 −5 5〈

3
5

〉
−
〈

1
5

〉
0 0 5 0 0 15 0 5 0〈

2
5

〉
+
〈

1
5

〉
0 0 0 5 0 0 15 0 5〈

3
6

〉
+
〈

5
6

〉
− 3 ·

〈
3
5

〉
0 0 0 0 −10 −30 −10 −10 −10〈

4
5

〉
ρ+ 0 0 0 0 20 0 0 0 20〈

3
5

〉
ρ+ 0 0 0 0 0 20 0 0 0〈

2
5

〉
ρ+ 0 0 0 0 0 0 20 0 0〈

3
4

〉
ρ+ 0 0 0 0 0 0 0 20 0〈

2
4

〉
ρ+ 0 0 0 0 0 0 0 0 20

Using (5.1, 5.11), this yields

S(22,12),∗/S(22,12) ' (Z/4Z)1 ⊕ (Z/20Z)3 ⊕ (Z/40Z)1 ⊕ (Z/80Z)4

as abelian groups.

Theorem 5.14 (cf. (2.8)) Suppose n > 6. As abelian groups, we obtain

S(22,1n−4),∗/S(22,1n−4) ' (Z/2{n≡21} · 2(n− 4)! Z)1

⊕ (Z/(n− 1) · 2(n− 4)! Z)n−3

⊕ (Z/2{n≡20}(n− 1) · 2(n− 4)! Z)1

⊕ (Z/(n− 2)(n− 1) · 2(n− 4)! Z)(n2−5n+2)/2 .

Trigonalizing bases x and y in the sense of (5.1) are given as follows. Let

yi :=
〈
n−i
n

〉
for i ∈ [1, n− 2]

y(n−2)+i :=
〈
n−1−i
n−1

〉
for i ∈ [1, n− 3]

y(2n−5)+i :=
〈
bi
ci

〉
for i ∈ [1,

(
n−3

2

)
− 1] ,

where bi, ci ∈ [2, n − 2], bi < ci, (bi, ci) 6= (2, 3), and where i < j implies that ci > cj,
or that ci = cj and bi > bj (i.e. we choose a reverse lexicographical ordering, read from
bottom to top). Let

xi := (−1)n−i
〈

1

n−1

〉
+
〈
n−i
n−1

〉
for i ∈ [2, n− 2]

x(n−2)+i :=
〈
n−1−i
n−1

〉
ρ+ for i ∈ [2, n− 3]

x(2n−5)+i :=
〈
bi
ci

〉
ρ+ for i ∈ [1,

(
n−3

2

)
− 1] .
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Moreover, let

x1 :=


〈

3

4

〉
if n is odd,〈

3

n

〉
+ n−2

2

〈
3

4

〉
if n is even,

and

x(n−2)+1 :=


n−3

2

〈
n−2

n−1

〉
ρ+ − n−1

2

(〈
3

n

〉
+ (−1)n

〈
n−1

n

〉
− (n− 3)

〈
3

n−1

〉)
if n is odd,〈

n−2

n−1

〉
ρ+ +

(〈
3

n

〉
+ (−1)n

〈
n−1

n

〉
− (n− 3)

〈
3

n−1

〉)
if n is even.

Conditions (i, ii, iii, iv) of (5.1) follow by (5.12), condition (v) follows by (5.11).

6 Miscellanea

6.1 Symmetric partitions

A partition λ is called symmetric if λ = λ′, otherwise, it is called asymmetric. We remark
that by induction, ordinary branching [5, 9.2 ii] shows that if λ 6= (1) is symmetric, then
nλ := rkZ S

λ is even.

Suppose given a symmetric partition λ 6= (1). Let m be the middle jump factor, i.e. the
quotient of the (nλ/2 + 1)st and the (nλ/2)th elementary divisor of the Gram matrix of
Sλ. Let H :=

∏
i∈[1,s](2λi − 2i + 1) be the product of the main diagonal hook lengths,

where s = λs.

Proposition 6.1 The quotient H/m is a square in Q.

By (4.3), the quotient (n!/nλ)/m is the square of the (nλ/2)th elementary divisor of Sλ.
But since n!/nλ is the product of all hook lengths of λ, and since λ is symmetric, we
conclude that H/m is a square in Q.

Conjecture 6.2 The quotient H/m is an integer.

Here is the list of the symmetric non-hook partitions whose elementary divisors are known
so far [15]. By (4.3), it is sufficient to list the respective first half of the elementary
divisors. Thus, the last elementary divisor we give is the (nλ/2 + 1)st, together with its
multiplicity.
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λ m H elementary divisors
(2, 2) 3 3 21 · 61

(3, 2, 1) 5 5 14 · 34 · 154 · · ·
(32, 2) 15 15 821 · 12021

(33) 15 15 2421 · 36021

(4, 2, 12) 7 7 214 · 831 · 5631 · · ·
(4, 3, 2, 1) 21 21 141 · 3176 · 15167 · 315167 · · ·
(4, 32, 1) 21 21 8372 · 40222 · 840222 · · ·
(42, 22) 35 35 8131 · 24353 · 72836 · 2520836 · · ·
(42, 3, 2) 35 35 16428 · 482081 · 1441781 · 50401781 · · ·
(5, 2, 13) 9 9 656 · 30168 · 270168 · · ·
(5, 3, 2, 12) 3 27 21046 · 4460 · 844 · 16386 · 481560 · 144354 · 432354 · · ·
(5, 32, 12) 3 27 42329 · 20181 · 40857 · 1202559 · 3602082 · 10802082 · · ·
(6, 2, 14) 11 11 24208 · 482 · 144840 · 1584840 · · ·
(7, 2, 15) 13 13 120792 · 8403960 · 109203960 · · ·

Let α be the product of the strictly upper diagonal hook lengths of λ. Let γ be the
first elementary divisor of the Gram matrix of Sλ. We denote E := EndZAnS

λ and
EQ := Q⊗Z E. Symmetry of λ gives

Sλ 'ZAn Sλ,−
[5, 6.7]
' ZSn Sλ

′,∗ = Sλ,∗ ' Sλ,#,

and so

(Sλ -β Sλ) := (Sλ -
�� Sλ,# -∼ Sλ) ∈ E

(cf. §2.4). By definition of β, we have ρλ(σ)β = βρλ(σ)εσ , where ρλ(σ) is the operation
of σ ∈ Sn on Sλ.

Proposition 6.3 Suppose (−1)(n−s)/2H not to be a square in Z and denote χ :=√
(−1)(n−s)/2H. We have an isomorphism EQ ' Q(χ) (since a splitting field for EQ

contains the ordinary character values given by [8, 2.5.12, 2.15.13]), which we fix and
use as an identification. Let h ∈ Z>0 be maximal such that h2 divides H, and let
χ0 :=

√
(−1)(n−s)/2H/h2. The following hold.

(i) We have γ | αh.

(ii) If the ring of algebraic integers in EQ is given by Z[χ0], then E = Z[αγ−1χ]. If the
ring of algebraic integers in EQ is given by Z[(1 + χ0)/2], then the following holds.
If αγ−1h is even, then E = Z[αγ−1χ]; if αγ−1h is odd, then E = Z[αγ−1h(1+χ0)/2]
or E = Z[αγ−1χ].

(iii) The elementary divisors of the Gram matrix of Sλ and the elementary divisors of
the operation of αχ ∈ E on the E-module Sλ coincide.
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Using the map Sn - Gal(EQ/Q) given by conjugation by means of ρλ, we conclude that
β has trace zero, i.e. that β = ±α̃χ for some α̃ ∈ Q>0.

On the other hand, β2 = (−1)(n−s)/2α̃2H shows that the ith and the (nλ + 1 − i)th
elementary divisor of Sλ multiply to give α̃2H for i ∈ [1, nλ]. But by (4.3), they multiply
to give n!/nλ, which is the product of the hook lengths of λ [5, 20.1]. Therefore, α̃ = α,
which proves (iii).

Suppose Z[x] to be the ring of algebraic integers in a quadratic number field, and suppose
F ⊆ Z[x] to be a subring of Z-rank 2. Choosing a Z-linear basis (u + vx, w + yx) of
F , where u, v, w, y ∈ Z, the existence of 1 ∈ F shows that there are a, b ∈ Z such that

au + bw = 1, av + by = 0. Base change by
(

a b

−w u

)
yields a Z-linear basis of the form

(1, dx), d > 1, i.e. E = Z[dx].

Now, γ−1αχ is still contained in E. More precisely, α is minimal with this property, for
otherwise γ−1αχ would not have 1 as first elementary divisor.

Therefore, if the ring of algebraic integers in EQ is given by Z[χ0], minimality of α yields
d = αγ−1h. If the ring of algebraic integers in EQ is given by Z[(1 +χ0)/2], minimality of
α yields d = αγ−1h if d is odd, and d = 2αγ−1h if d is even. This proves (ii). Moreover,
in all three cases αγ−1h is integral, as asserted in (i).

Proposition 6.4 Suppose (−1)
n−s

2 H to be a square in Z, so in particular n ≡4 s. We
have an isomorphism EQ ' Q × Q (since the central-primitive idempotents of CAn
belonging to the summands of SλC|An already lie in QAn, as the character values given in
[8, 2.5.12, 2.15.13] show), which we fix and use as an identification. The following hold.

(i) We have γ | α
√
H (=

√
n!/nλ).

(ii) We have E = {(a, b) ∈ Z × Z | a ≡d b} with d = 2αγ−1
√
H if αγ−1 is even, and

either d = 2αγ−1
√
H or d = αγ−1

√
H if αγ−1 is odd.

(iii) The elementary divisors of the Gram matrix of Sλ and those of the operation of
α
√
H(1,−1) on the E-module Sλ coincide.

The nontrivial automorphism of EQ turns β into −β, whence β = ±α̃(1,−1) for some
α̃ ∈ Q>0. Since β2 = α̃2, comparison with (4.3) yields α̃ = α

√
H, which proves (iii).

We have E = {(a, b) ∈ Z× Z | a ≡d b} for some d > 1. But αγ−1
√
H is minimal in Q>0

with αγ−1
√
H(1,−1) ∈ E, that is, αγ−1

√
H is integral – as claimed in (i) – and minimal

with 2αγ−1
√
H ≡d 0. Thus, d = αγ−1

√
H if d is odd, and d = 2αγ−1

√
H if d is even,

whence (ii).
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Example 6.5 Here are some examples of the subring E ⊆ EQ.

λ E α γ

(3, 2, 1) Z[3(1 +
√

5)/2] 3 1
(4, 13) Z[

√
−7] 6 6

(4, 2, 12) Z[4
√
−7] 8 2

(32, 2) Z[
√
−15] 8 8

(33) Z[
√
−15] 24 24

(5, 14) {(a, b) ∈ Z× Z | a ≡6 b} 24 (
√
H = 3) 24

According to (6.3 iii, 6.4 iii), the main problem that remains to be solved is to determine
the structure of Sλ as an E-module. For example, the elementary divisors of S(3,2,1) are
given by 14 · 34 · 154 · 454, whereas on the free E-module E8, multiplication by αχ = 3

√
5

has the elementary divisors 18 · 458. Thus by (6.3 iii), Sλ is not free over E, and not locally
free at 3 either.

Example 6.6 The asymmetric example Sµ of smallest dimension for which two successive
elementary divisors have quotient bigger than the outer hook length µ1+µ′1−1, is given by
µ = (9, 22, 1). In fact, we obtain the elementary divisors 4792 ·83421 ·120493 ·960714 ·2880586

[15], whereas the outer hook length is 12.

The following remark on partitions of rectangular shape pertains in particular to partitions
of quadratic shape.

Remark 6.7 Let µ be a partition such that µ1 = µh, where h = µ′1. Let ν be the partition
obtained from µ by removing the lower right node in its diagram, i.e. νh := µh−1, νj := µj
for j 6= h. Then the elementary divisors of Sµ are given by the elementary divisors of Sν,
multiplied by the constant factor h.

We have Sµ|Sn−1
�∼ Sν [5, 9.3], by sending a ν-polytabloid to the µ-polytabloid obtained

by adding the entry n in the lower right corner. Thus the invariant bilinear form on
Sν induces an invariant bilinear form on Sµ, whence the Gram matrix of Sµ is a scalar
multiple of the Gram matrix of Sν . This scalar is calculated to be h by the Branching
Theorem for Determinants [9, p. 225].

6.2 A conjectural comparison of kernels

There seems to be a connection between elementary divisors and modular morphisms. Apart
from the fact that both yield necessary conditions on the shape of the quasiblock (cf. §6.3),
we do not know of any a priori reason for such a connection to exist.

Let h > 1, let k ∈ [1, h]. Abbreviate ν(k) := (2h−k, 1n−2h+k) and b := n − 2h + 1. Let
F ν(0) be the free Z-module on the ν(0)-tableaux, endowed with the natural operation of
Sn, yielding F ν(0) ' ZSn. Consider the morphism

F ν(0) -fk Sν(k)/(b+ k)Sν(k)

[a] -
∑

ζ∈Z(a,k)(−1)Σ(ζ)〈aζ〉 ,
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where Z(a, k) is the set of subtuples of length k of the second column of [a], where [aζ ] is
the µ-tableau given by removing ζ from the second column of [a] and appending it at the
bottom of the first column, and where Σ(ζ) is the sum of the positions of the entries of
ζ. So for example, if the second column is given by (3, 5, 6, 7, 9), and if ζ = (5, 7, 9), then
Σ(ζ) = 2 + 4 + 5.

Let p be a prime. Given m > 1, we denote ilogp(m) := max{i ∈ Z>0 | pi 6 m}. Let

m? :=
∏

p prime p
ilogp(m) (‘m quasi-factorial’, e.g. 4? = 12). From [14, 4.9] we take the

morphism

Sν(0) -sk Sν(k)/(b+ k)Sν(k)

〈a〉 - k? · ([a]fk) .

We will form an intersection of the kernels of a slight variation of these morphisms – the
factor k? can sometimes be lowered on a smaller domain.

Let Sν(0),∩ 0 := Sν(0), and s̃1 := s1.

Assume submodules Sν(0),∩ l−1 ⊆ Sν(0) and morphisms Sν(0),∩ l−1 -s̃l Sν(l)/(b + l)Sν(l) to
be constructed for l ∈ [1, k − 1].

Let Sν(0),∩ k−1 :=
⋂
l∈[1,k−1] Kern s̃l. Let

Sν(0),∩ k−1 -s̃k Sν(k)/(b+ k)Sν(k)∑
〈a〉 t〈a〉〈a〉 - k?

gcd(k?,γk−1)

∑
〈a〉 t〈a〉([a]fk) ,

where the t〈a〉 are coefficients in Z, and where γk−1 is the first elementary divisor of
Sν(0),∩ k−1 -

�� Sν(0).

Conjecture 6.8 The kernel of

Sν(0) -η Sν(0),∗/h! (n−h+1)!
n−2h+1

Sν(0),∗ = Sν(0),∗/ n!
rkZSν(0) S

ν(0),∗

is given by the intersection

Sν(0),∩h =
⋂

k∈[1,h]

Kern s̃k .

Conjecture (6.8) holds if n 6 8 (direct computation), or if h = 1 (5.5). If h = 2, the
kernel is contained in the intersection (5.14).

6.3 A final remark on quasiblocks

Let p be a prime, let R = Z(p), and let ελ denote the central-primitive idempotent of QSn
belonging to SλQ, for λ a partition of n. The quasiblocks ελRSn of RSn may be viewed
as the ‘building blocks’ of the locally integral representation theory of the symmetric
group. The Gram matrix determines a certain part of the structure of such a quasiblock,
sometimes it even describes it in its entirety.



39

Wedderburn’s isomorphism QSn -∼
∏

λ EndQS
λ
Q restricts toRSn -

�� ∏
λ EndRS

λ
R , which

in turn induces ελRSn -
�� ρλ EndRS

λ
R , given by sending ελσ to the operation ρλ(σ) of

σ ∈ Sn on SλR. A necessary condition for an R-linear endomorphism of SλR to lie in the

image of this embedding is its compatibility with the RSn-linear embedding SλR -
�� η

Sλ,∗R .

Namely, if SλR -ϕ SλR is in the image of ρλ, then there exists an R-linear operation

Sλ,∗R
-ψ Sλ,∗R such that ϕη = ηψ. In terms of matrices, this means that the image

ρλ(RSn) = ρλ(ελRSn) is contained in ΓλR := (R)nλ ∩
(
Gλ(R)nλ(Gλ)−1

)
, where Gλ de-

notes the Gram matrix. For instance, we obtain

ε(2,1)Z(3)S3
-ρ

(2,1)

∼ Γ
(2,1)
Z(3)

= (Z(3))2 ∩
((

1 0

0 3

)
(Z(3))2

(
1 0

0 3

)−1
)

=
(

Z(3) Z(3)

(3) Z(3)

)
.

But in general, the inclusion

ελRSn -
�� ρλ ΓλR

is not surjective – as an example we may take λ = (3, 2, 1) over R = Z(3).

If all indecomposable projective ελRSn-lattices are simple, that is, if the quasiblock is a
tiled order, we do not know whether

(i) Jac(ελRSn) -
�� ρλ Jac(ΓλR) ,

and if so, whether

(ii) there exists a K > 0 such that for all k > K

Jack(ελRSn) -ρ
λ

∼ Jack(ΓλR) .

Cf. [13, 6.1.26]. Several examples of tiled quasiblocks are given in [23, 24]. An example
of a tiled quasiblock that requires K = 2 is given in [21, 5.6.12 ii].
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