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Abstract

Let p > 3 be a prime, let n > m > 1. Let πn be the norm of ζpn − 1 under Cp−1, so
that Z(p)[πn]|Z(p) is a purely ramified extension of discrete valuation rings of degree
pn−1. The minimal polynomial of πn over Q(πm) is an Eisenstein polynomial; we
give lower bounds for its coefficient valuations at πm. The function field analogue, as
introduced by Carlitz and Hayes, is studied as well.
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0 Introduction

0.1 Problem and methods

Consider a primitive pnth root of unity ζpn over Q, where p is a prime and n > 2. One has
Gal(Q(ζpn)|Q) ' Cpn−1 × Cp−1. To isolate the p-part of this extension, let πn be the norm
of ζpn−1 under Cp−1; that is, the product of the Galois conjugates (ζpn−1)σ, where σ runs
over the subgroup Cp−1. Then

Q(πn)

pn−1

Q

�
��

��p−1

��
��
�p−1

Q(ζpn)

pn−1

Q(ζp)

We ask for the minimal polynomial µπn,Q(X) =
∑

j∈[0,pn−1] ajX
j ∈ Z[X] of πn over Q. By

construction, it is an Eisenstein polynomial; that is, vp(aj) > 1 for j ∈ [0, pn−1 − 1], and
vp(a0) = 1, where vp denotes the valuation at p.

More is true, though. Our basic objective is to give lower bounds bigger than 1 for these
p-values vp(aj), except, of course, for vp(a0). As a byproduct of our method of proof, we
shall also obtain congruences between certain coefficients for varying n.

A consideration of the trace TrQ(πn)|Q(πn) yields additional information on the second coeffi-
cient of µπn,Q(X). By the congruences just mentioned, this also gives additional information
for certain coefficients of the minimal polynomials µπl,Q(X) with l > n; these coefficients
no longer appear as traces.

Finally, a comparison with the different ideal DZ(p)[πn]|Z(p)
= Z(p)[πn]µ′πn,Q(πn) then yields

some exact coefficient valuations, not just lower bounds.

Actually, we consider the analogous question for the coefficients of the slightly more general
relative minimal polynomial µπn,Q(πm)(X), where n > m > 1, which can be treated using
essentially the same arguments. Note that π1 = p.

Except for the trace considerations, the whole investigation carries over mutatis mutandis to
the case of cyclotomic function field extensions, as introduced by Carlitz [1] and Hayes
[5].

As an application, we mention the Wedderburn embedding of the twisted group ring (with
trivial 2-cocycle)

Z(p)[πn] o Cpn−1 -
�� ω

EndZ(p)
Z(p)[πn] ' Zpn−1×pn−1

(p) ,

to which we may reduce the problem of calculating Z(p)[ζpn ] o (Cpn−1 × Cp−1) by means of
Nebe decomposition. The image ω(πn) is the companion matrix of µπn,Q(X). To describe
the image ω(Z(p)[πn] oCpn−1) of the whole ring, we may replace this matrix modulo a certain
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ideal. To do so, we need to know the valuations of its entries, i.e. of the coefficients of
µπn,Q(X), or at least a lower bound for them. So far, this could be carried through only
for n = 2 [10].

In this article, however, we restrict our attention to the minimal polynomial itself.

0.2 Results

0.2.1 The number field case

Let p > 3 be a prime, and let ζpn denote a primitive pnth root of unity over Q in such a
way that ζppn+1 = ζpn for all n > 1. Put

Fn = Q(ζpn)

En = FixCp−1Fn ,

so [En : Q] = pn. Letting

πn = NFn|En(ζpn − 1) =
∏

j∈[1,p−1]

(ζj
pn−1

pn − 1) ,

we have En = Q(πn). In particular, Em+i = Em(πm+i) for m, i > 1. We fix m and write

µπm+i, Em(X) =
∑
j∈[0,pi]

ai,jX
j = Xpi +

( ∑
j∈[1,pi−1]

ai,jX
j
)
− πm ∈ Z(p)[πm][X] .

Theorem (5.3, 5.5, 5.8).

(i) We have pi | jai,j for j ∈ [0, pi].

(i′) If j < pi(p− 2)/(p− 1), then piπm | jai,j.

(ii) We have ai,j ≡pi+1 ai+β,pβj for j ∈ [0, pi] and β > 1.

(ii′) If j < pi(p− 2)/(p− 1), then ai,j ≡pi+1πm ai+β,pβj for β > 1.

(iii) The element pi−β exactly divides ai,pi−(pi−pβ)/(p−1) for β ∈ [0, i− 1].

(iv) We have µπn,Q(X) ≡p2 Xpn−1
+ pX(p−1)pn−2 − p for n > 2.

Assertion (iv) requires the computation of a trace, which can be reformulated in terms of
sums of (p − 1)th roots of unity in Qp (5.6). Essentially, one has to count the number of
subsets of µp−1 ⊆ Qp of a given cardinality whose sum is of a given valuation at p. We
have not been able to go much beyond this reformulation, and this seems to be a problem
in its own right — see e.g. (5.9).
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To prove (i, i′, ii, ii′), we proceed by induction. Assertions (i, i′) also result from the different

DZ(p)[πm+i]|Z(p)[πm] =
(
µ′πm+i,Em

(πm+i)
)

=
(
piπ

pi−1−(pi−1)/(p−1)
m+i

)
. Moreover, (ii) yields (iii)

by an argument using the different. (In the function field case below, we will no longer be
able to use the different for the assertion analogous to (i, i′), and we will have to resort to
induction).

Suppose m = 1. Let us call an index j ∈ [1, pi− 1] exact, if either j < pi(p− 2)/(p− 1) and
piπm exactly divides jai,j, or j > pi(p− 2)/(p− 1) and pi exactly divides jai,j. If i = 1 and
e.g. p ∈ {3, 19, 29, 41}, then all indices j ∈ [1, p− 1] are exact. If i > 2, we propose to ask
whether the number of non-exact indices j asymptotically equals pi−1 as p→∞.

0.2.2 The function field case

Let p > 3 be a prime, ρ > 1 and r = pρ. We write Z = Fr[Y ] and Q = Fr(Y ). We want
to study a function field analogue over Q of the number field extension Q(ζpn)|Q. Since
1 is the only pnth root of unity in an algebraic closure Q̄, we have to proceed differently,
following Carlitz [1] and Hayes [5]. First of all, the power operation of pn on Q̄ becomes
replaced by a module operation of fn on Q̄, where f ∈ Z is an irreducible polynomial. The
group of pnth roots of unity

µpn = {ξ ∈ Q̄ : ξp
n

= 1}

becomes replaced by the annihilator submodule

λfn = {ξ ∈ Q̄ : ξf
n

= 0} .

Instead of choosing a primitive pnth root of unity ζpn , i.e. a Z-linear generator of that
abelian group, we choose a Z-linear generator θn of this Z-submodule. A bit more precisely
speaking, the element θn ∈ Q̄ plays the role of ϑn := ζpn − 1 ∈ Q̄. Now Q(θn)|Q is the
function field analogue of Q(ϑn)|Q. See also [3, sec. 2].

To state the result, let f(Y ) ∈ Z be a monic irreducible polynomial and write q = rdeg f .
Let ξY := Y ξ + ξr define the Z-linear Carlitz module structure on an algebraic closure Q̄,
and choose a Z-linear generator θn of annfnQ̄ in such a way that θfn+1 = θn for all n > 1.
We write Fn = Q(θn), so that Gal(Fn|Q) ' (Z/fn)∗. Letting En = FixCq−1Fn, we get

[En : Q] = qn. Denoting $n = NFn|En(θn) =
∏

e∈(Z/f)∗ θ
eq
n−1

n , we obtain En = Q($n).

In particular, Em+i = Em($m+i) for m, i > 1. We fix m and write

µ$m+i, Em(X) =
∑
j∈[0,qi]

ai,jX
j = Xqi +

( ∑
j∈[1,qi−1]

ai,jX
j
)
−$m ∈ Z(f)[$m][X] .

Let vq(j) := max{α ∈ Z>0 : qα | j }.
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Theorem (6.6, 6.7, 6.9).

(i) We have f i−vq(j) | ai,j for j ∈ [0, qi].

(i′) If j < qi(q − 2)/(q − 1), then f i−vq(j)$m | ai,j.

(ii) We have ai,j ≡f i+1 ai+β,qβj for j ∈ [0, qi] and β > 1.

(ii′) If j < qi(q − 2)/(q − 1), then ai,j ≡f i+1$m ai+β,qβj for β > 1.

(iii) The element f i−β exactly divides ai,qi−(qi−qβ)/(q−1) for β ∈ [0, i− 1].

(iv) If f = Y , then µ$m+i, Em(X) ≡Y 2 Xqi + Y X(q−1)qi−1 −$m .

A comparison of the assertions (iv) in the number field case and in the function field case
indicates possible generalizations — we do not know what happens for µπm+i,Em(X) for
m > 2 in the number field case; moreover, we do not know what happens for f 6= Y in the
function field case.

0.3 Notations and conventions

(o) Within a chapter, the lemmata, propositions etc. are numbered consecutively.

(i) For a, b ∈ Z, we denote by [a, b] := {c ∈ Z : a 6 c 6 b} the interval in Z.

(ii) For m ∈ Z r {0} and a prime p, we denote by m[p] := pvp(m) the p-part of m, where vp denotes the
valuation of an integer at p.

(iii) If R is a discrete valuation ring with maximal ideal generated by r, we write vr(x) for the valuation
of x ∈ Rr {0} at r, i.e. x/rvr(x) is a unit in R. In addition, vr(0) := +∞.

(iv) Given an element x algebraic over a field K, we denote by µx,K(X) ∈ K[X] the minimal polynomial
of x over K.

(v) Given a commutative ring A and an element a ∈ A, we sometimes denote the quotient by A/a :=
A/aA — mainly if A plays the role of a base ring. For b, c ∈ A, we write b ≡a c if b− c ∈ aA.

(vi) For an assertion X, which might be true or not, we let {X} equal 1 if X is true, and equal 0 if X is
false.

Throughout, let p > 3 be a prime.

1 A polynomial lemma

We consider the polynomial ring Z[X, Y ].

Lemma 1.1 We have (X + pY )k ≡k[p]·p2Y 2 Xk + kXk−1pY for k > 1.

Since
(
k
j

)
= k/j ·

(
k−1
j−1

)
, we obtain for j > 2 that

vp(p
j
(
k
j

)
) > j + vp(k)− vp(j)

> vp(k) + 2 ,
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where the second inequality follows from j > 2 if vp(j) = 0, and from j > pvp(j) > 3vp(j) >
vp(j) + 2 if vp(j) > 1.

Corollary 1.2 We have (X + pY )k ≡k[p]·pY Xk for k > 1.

Corollary 1.3 For l > 1 and x, y ∈ Z such that x ≡pl y, we have xk ≡k[p]·pl yk for
k > 1.

Corollary 1.4 We have (X + Y )p
β+α ≡pα+1 (Xpβ + Y pβ)p

α
for all α, β > 0.

The assertion follows by (1.2) since f(X, Y ) ≡p g(X, Y ) implies that f(X, Y )p
α ≡pα+1

g(X, Y )p
α
, where f(X, Y ), g(X, Y ) ∈ Z[X, Y ].

2 Consecutive purely ramified extensions

2.1 Setup

Let T |S and S|R be finite and purely ramified extensions of discrete valuation rings, of
residue characteristic charR/rR = p. The maximal ideals of R, S and T are generated by
r ∈ R, s ∈ S and t ∈ T , and the fields of fractions are denoted by K = fracR, L = fracS
and M = fracT , respectively. Denote m = [M : L] and l = [L : K]. We may and will
assume s = (−1)m+1NM |L(t) and r = (−1)l+1NL|K(s).

We have S = R[s] with

µs,K(X) = X l +
( ∑
j∈[1,l−1]

ajX
j
)
− r ∈ R[X] ,

and T = R[t] with

µt,K(X) = X lm +
( ∑
j∈[1,lm−1]

bjX
j
)
− r ∈ R[X] .

Cf. [9, I.§7, prop. 18]. The situation can be summarized in the diagram

rR ⊆ R

sS ⊆ S = R[s]

tT ⊆ T = S[t] = R[t]

��

��

��

K

l

L

m

M

Note that r | p, and that for z ∈M , we have vt(z) = m · vs(z) = ml · vr(z).



7

2.2 Characteristic 0

In this section, we assume charK = 0. In particular, Z(p) ⊆ R.

Assumption 2.1 Suppose given x, y ∈ T and k ∈ [1, l − 1] such that

(i) p | y and tm ≡y s,

(ii) x | jaj for all j ∈ [1, l − 1], and

(iii) xr | jaj for all j ∈ [1, k − 1].

Put c := gcd(xysk−1, ylsl−1) ∈ T .

Lemma 2.2 Given (2.1), we have c | µs,K(tm) .

We may decompose

µs,K(tm) = µs,K(tm)− µs,K(s)

= (tml − sl) +
(∑

j∈[1,k−1] aj(t
mj − sj)

)
+
(∑

j∈[k,l−1] aj(t
mj − sj)

)
.

Now since tm = s+ zy for some z ∈ T by (2.1.i), we have

tmj
(1.1)
≡ jy2 s

j + jsj−1zy ≡jsj−1y s
j

for any j > 1, so that sj−1 | r | p | y gives tmj ≡jsj−1y s
j.

In particular, ylsl−1 | tml − sl.

Moreover, xysl |
∑

j∈[1,k−1] aj(t
mj − sj) by (2.1.iii).

Finally, xysk−1 |
∑

j∈[k,l−1] aj(t
mj − sj) by (2.1.ii).

The following proposition will serve as inductive step in (3.2).

Proposition 2.3 Given (2.1), we have t−jc | bj if j 6≡m 0 and t−jc | (bj − aj/m) if j ≡m 0,
where j ∈ [1, lm− 1].

From (2.2) we take ∑
j∈[1,lm−1]

(
bj − {j ≡m 0} aj/m

)
tj = −µs,K(tm) ≡c 0 .

Since the summands have pairwise different valuations at t, we obtain(
bj − {j ≡m 0} aj/m

)
tj ≡c 0

for all j ∈ [1, lm− 1].
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2.3 As an illustration: cyclotomic polynomials

For n > 1, we choose primitive roots of unity ζpn over Q in such a manner that ζppn+1 = ζpn .
We abbreviate ϑn = ζpn − 1.

We shall show by induction on n that writing

µϑn,Q(X) = Φpn(X + 1) =
∑

j∈[0,pn−1(p−1)]

dn,jX
j

with dn,j ∈ Z, we have pn−1 | jdn,j for j ∈ [0, pn−1(p − 1)], and even pn | jdn,j for
j ∈ [0, pn−1(p− 2)].

This being true for n = 1 since Φp(X + 1) = ((X + 1)p − 1)/X, we assume it to be true for
n − 1 and shall show it for n, where n > 2. We apply the result of the previous section to
R = Z(p), r = −p, S = Z(p)[ϑn−1], s = ϑn−1 and T = Z(p)[ϑn], t = ϑn. In particular, we have
l = pn−2(p−1) and µs,K(X) = Φpn−1(X+1); we havem = p and µt,L(X) = (X+1)p−1−ϑn−1;
finally, we have µt,K(X) = Φpn(X + 1).

We may choose y = pϑn, x = pn−2 and k = pn−2(p−2)+1 in (2.1). Hence c = pn−1ϑp
n−2pn−1+1
n .

By (2.3), we obtain that pn−1ϑp
n−2pn−1+1−j
n divides dn,j − dn−1,j/p if j ≡p 0 and that it di-

vides dn,j if j 6≡p 0. Since the coefficients in question are in R, we may draw the following
conclusion.

(I)


If j ≡p 0, then pn | dn,j − dn−1,j/p if j 6 pn−1(p− 2),

and pn−1 | dn,j − dn−1,j/p if j > pn−1(p− 2);
if j 6≡p 0, then pn | dn,j if j 6 pn−1(p− 2),

and pn−1 | dn,j if j > pn−1(p− 2).

By induction, this establishes the claim.

Using (1.4), assertion (I) also follows from the more precise relation

(II) Φpn(X + 1)− Φpn−1(Xp + 1) ≡pn Xpn−1(p−2)
(

(Xp + 1)p
n−2
− (X + 1)p

n−1
)

for n > 2, which we shall show now. In fact, by (1.4) we have (X + 1)p
n ≡pn (Xp + 1)p

n−1
as

well as (Xp + 1)p
n−2 − (X + 1)p

n−1 ≡pn−1 0, and so(
(X + 1)p

n − 1
)(

(Xp + 1)p
n−2 − 1

)
−
(

(Xp + 1)p
n−1 − 1

)(
(X + 1)p

n−1 − 1
)

≡pn

(
(Xp + 1)p

n−1 − 1
)(

(Xp + 1)p
n−2 − 1

)
−
(

(Xp + 1)p
n−1 − 1

)(
(X + 1)p

n−1 − 1
)

=
(

(Xp + 1)p
n−1 − 1

)(
(Xp + 1)p

n−2 − (X + 1)p
n−1
)

≡pn Xpn
(

(Xp + 1)p
n−2 − (X + 1)p

n−1
)

= Xpn−1(p−2)
(

(Xp + 1)p
n−2 − (X + 1)p

n−1
)
·Xpn−1 ·Xpn−1

≡pn Xpn−1(p−2)
(

(Xp + 1)p
n−2 − (X + 1)p

n−1
)(

(X + 1)p
n−1 − 1

)(
(Xp + 1)p

n−2 − 1
)
,

and the result follows by division by the monic polynomial(
(X + 1)p

n−1
− 1
)(

(Xp + 1)p
n−2
− 1
)
.

Finally, we remark that writing Fn(X) := Φpn(X + 1) + Xpn−2pn−1
(X + 1)p

n−1
, we can

equivalently reformulate (II) to

(II′) Fn(X) ≡pn Fn−1(Xp) .
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2.4 Characteristic p

In this section, we assume charK = p.

Assumption 2.4 Suppose given x, y ∈ T and k ∈ [1, l − 1] such that

(i) tm ≡ys s,

(ii) x | ajyj[p] for all j ∈ [1, l − 1], and

(iii) xr | ajyj[p] for all j ∈ [1, k − 1].

Let c := gcd(xsk, yl[p]sl) ∈ T .

Lemma 2.5 Given (2.4), we have c | µs,K(tm) .

We may decompose

µs,K(tm) = µs,K(tm)− µs,K(s)

= (tml − sl) +
(∑

j∈[1,k−1] aj(t
mj − sj)

)
+
(∑

j∈[k,l−1] aj(t
mj − sj)

)
.

Now since tm ≡ys s, we have tmj ≡yj[p]sj sj for any j > 1.

In particular, yl[p]sl | tml − sl.

Moreover, xsl |
∑

j∈[1,k−1] aj(t
mj − sj) by (2.4.iii).

Finally, xsk |
∑

j∈[k,l−1] aj(t
mj − sj) by (2.4.ii).

Proposition 2.6 Given (2.4), we have t−jc | bj if j 6≡m 0 and t−jc | (bj − aj/m) if j ≡m 0
for j ∈ [1, lm− 1].

This follows using (2.5), cf. (2.3).

3 Towers of purely ramified extensions

Suppose given a chain
R0 ⊆ R1 ⊆ R2 ⊆ · · ·

of finite purely ramified extensions Ri+1|Ri of discrete valuations rings, with maximal ideal
generated by ri ∈ Ri, of residue characteristic charRi/riRi = p, with field of fractions
Ki = fracRi, and of degree [Ki+1 : Ki] = pκ = q for i > 0, where κ > 1 is an integer
stipulated to be independent of i. We may and will suppose that NKi+1|Ki(ri+1) = ri for
i > 0. We write

µri,K0(X) = Xqi +
( ∑
j∈[1,qi−1]

ai,jX
j
)
− r0 ∈ R0[X] .

For j > 1, we denote vq(j) := max{α ∈ Z>0 : j ≡qα 0}. That is, vq(j) is the largest
integer below vp(j)/κ. We abbreviate g := (q − 2)/(q − 1).



10

Assumption 3.1 Suppose given f ∈ R0 such that rq−1
i f | rqi − ri−1 for all i > 0.

If charK0 = 0, then suppose p | f | q. If charK0 = p, then suppose r0 | f .

Proposition 3.2 Assume (3.1).

(i) We have f i−vq(j) | ai,j for i > 1 and j ∈ [1, qi − 1].

(i′) If j < qig, then f i−vq(j)r0 | ai,j.

(ii) We have ai,j ≡f i+1 ai+β,qβj for i > 1, j ∈ [1, qi − 1] and β > 1.

(ii′) If j < qig, then ai,j ≡f i+1r0 ai+β,qβj for β > 1.

Consider the case charK0 = 0. To prove (i, i′), we perform an induction on i, the assertion
being true for i = 1 by (3.1). So suppose given i > 2 and the assertion to be true for i− 1.
To apply (2.3), we let R = R0, r = r0, S = Ri−1, s = ri−1, T = Ri and t = ri. Furthermore,
we let y = rq−1

i f , x = f i−1 and k = qi−1 − (qi−1 − 1)/(q − 1), so that (2.1) is satisfied by
(3.1) and by the inductive assumption. We have c = f irqk−1

i .

Consider j ∈ [1, qi − 1]. If j 6≡q 0, then (2.3) gives

vri(ai,j/f
i) > qk − 1− j ,

whence f i divides ai,j; f
i strictly divides ai,j if j < qig, since 0 < (qk−1)−qig = 1/(q−1) <

1.

If j ≡q 0, then (2.3) gives

vri((ai,j − ai−1,j/q)/f
i) > qk − 1− j ,

whence f i divides ai,j−ai−1,j/q; strictly, if j < qig. By induction, f i−1−vq(j/q) divides ai−1,j/q;
strictly, if j/q < qi−1g. But ai−1,j/q ≡f i ai,j, and therefore f i−vq(j) divides also ai,j; strictly,
if j < qig. This proves (i, i′).

The case β = 1 of (ii, ii′) has been established in the course of the proof of (i, i′). The
general case follows by induction.

Consider the case charK0 = p. To prove (i, i′), we perform an induction on i, the assertion
being true for i = 1 by (3.1). So suppose given i > 2 and the assertion to be true for
i − 1. To apply (2.6), we let R = R0, r = r0, S = Ri−1, s = ri−1, T = Ri and t = ri.
Furthermore, we let y = r−1

i f , x = r−1
i f i and k = qi−1 − (qi−1 − 1)/(q − 1), so that (2.4) is

satisfied by (3.1) and by the inductive assumption. In fact, xy−j[p] = r
j[p]−1
i f i−j[p] divides

f i−1−vq(j) both if j 6≡p 0 and if j ≡p 0; in the latter case we make use of the inequality

pα−1(p− 1) > α + 1 for α > 1, which needs p > 3. We obtain c = f irqk−1
i .

Using (2.6) instead of (2.3), we may continue as in the former case to prove (i, i′), and, in
the course of this proof, also (ii, ii′).
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4 Galois descent of a divisibility

Let

S -
�� G

S̃

6

� �m
6

� �m
T -

�� G
T̃

be a commutative diagram of finite, purely ramified extensions of discrete valuation rings.
Let s ∈ S, t ∈ T , s̃ ∈ S̃ and t̃ ∈ T̃ generate the respective maximal ideals. Let L = fracS,
M = fracT , L̃ = frac S̃ and M̃ = frac T̃ denote the respective fields of fractions. We
assume the extensions M |L and L̃|L to be linearly disjoint and M̃ to be the composite of
M and L̃. Thus m := [M : L] = [M̃ : L̃] and [L̃ : L] = [M̃ : M ]. We assume L̃|L to be
galois and identify G := Gal(L̃|L) = Gal(M̃ |M) via restriction. We may and will assume
that s = NL̃|L(s̃), and that t = NM̃ |M(t̃).

Lemma 4.1 In T̃ , the element 1− t̃m/s̃ divides 1− tm/s .

Let d̃ = 1− t̃m/s̃, so that t̃m = s̃(1− d̃). We conclude

tm = NM̃ |M(t̃m)

= NL̃|L(s̃) ·
∏

σ∈G(1− d̃σ)

≡sd̃ s .

5 Cyclotomic number fields

5.1 Coefficient valuation bounds

For n > 1, we let ζpn be a primitive pnth root of unity over Q. We make choices in such
a manner that ζppn = ζpn−1 for n > 2. We denote ϑn = ζpn − 1 and Fn = Q(ζpn). Let
En = FixCp−1Fn, so [En : Q] = pn−1. Let

πn = NFn|En(ϑn) =
∏

j∈[1, p−1]

(ζj
pn−1

pn − 1) .

The minimal polynomial µϑn,Fn−1(X) = (X+1)p−ϑn−1−1 shows that NFn|Fn−1(ϑn) = ϑn−1,
hence also NEn|En−1(πn) = πn−1. Note that π1 = p and E1 = Q.

Let O be the integral closure of Z(p) in En. Since NEn|Q(πn) = π1 = p, we have

Z(p)/pZ(p)
-∼ O/πnO. In particular, the ideal πnO in O is prime. Now πp

n−1

n O = pO,

since πp
n−1

n /p = πp
n−1

n /NEn|Q(πn) ∈ Z(p)[ϑn]∗ ∩ En = O∗. Thus O is a discrete valuation
ring, purely ramified of degree pn−1 over Z(p), and so O = Z(p)[πn] [9, I.§7, prop. 18]. In
particular, En = Q(πn).
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Remark 5.1 The subring Z[πn] of Q(πn), however, is not integrally closed in general. For
example, if p = 5 and n = 2, then µπ2,Q(X) = X5 − 20X4 + 100X3 − 125X2 + 50X − 5 has
discriminant 58 · 76, which does not divide the discriminant of Φ52(X), which is 535.

Lemma 5.2 We have πpn ≡πp−1
n p πn−1 for n > 2.

First of all, ϑpn ≡ϑnp ϑn−1 since (X−1)p− (Xp−1) is divisible by p(X−1) in Z[X]. Letting
T̃ = Z(p)[ϑn] and (t̃, s̃, t, s) = (ϑn, ϑn−1, πn, πn−1), (4.1) shows that 1 − ϑpn/ϑn−1 divides
1− πpn/πn−1. Therefore, ϑnp ϑ

−1
n−1πn−1 | πn−1 − πpn.

Now suppose given m > 1. To apply (3.2), we let f = q = p, Ri = Z(p)[πm+i] and ri = πm+i

for i > 0. We keep the notation

µπm+i, Em(X) = µri,K0(X) = Xpi +
( ∑
j∈[1,pi−1]

ai,jX
j
)
− πm ∈ R0[X] = Z(p)[πm][X] .

Theorem 5.3

(i) We have pi | jai,j for i > 1 and j ∈ [1, pi − 1].

(i′) If j < pi(p− 2)/(p− 1), then piπm | jai,j.

(ii) We have ai,j ≡pi+1 ai+β,pβj for i > 1, j ∈ [1, pi − 1] and β > 1.

(ii′) If j < pi(p− 2)/(p− 1), then ai,j ≡pi+1πm ai+β,pβj.

Assumption (3.1) is fulfilled by virtue of (5.2), whence the assertions follow by (3.2).

Example 5.4 For p = 5, m = 1 and i = 2, we have

µπ3,Q(X) = X25 − 4 · 52X24 + 182 · 52X23 − 8 · 56X22 + 92823 · 52X21

− 6175454 · 5X20 + 12194014 · 52X19 − 18252879 · 53X18

+ 4197451 · 55X17 − 466901494 · 53X16 + 8064511079 · 52X15

− 4323587013 · 53X14 + 1791452496 · 54X13 − 113846228 · 56X12

+ 685227294 · 55X11 − 15357724251 · 53X10 + 2002848591 · 54X9

− 4603857997 · 53X8 + 287207871 · 54X7 − 291561379 · 53X6

+ 185467152 · 52X5 − 2832523 · 53X4 + 121494 · 53X3 − 514 · 54X2

+ 4 · 54X − 5 .

Now v5(a3,22) = 6 6= 5 = v5(a4,5·22), so the valuations of the coefficients considered in (5.3.ii)
differ in general. This, however, does not contradict the assertion a3,22 ≡54 a4, 5·22 from loc.
cit.

5.2 A different proof of (5.3. i, i′) and some exact valuations

Let m > 1 and i > 0. We denote Ri = Z(p)[πm+i], ri = πm+i, Ki = fracRi,

R̃i = Z(p)[ϑm+i] and r̃i = ϑm+i. Denoting by D the respective different [9, III.§3], we

have DR̃i|R̃0
= (pi) and DR̃i|Ri = (r̃p−2

i ) [9, III.§3, prop. 13], whence

(∗) DRi|R0 =
(
µ′ri,K0

(ri)
)

= DR̃i|R̃0
DR̃0|R0

D−1

R̃i|Ri
=
(
pir

pi−1−(pi−1)/(p−1)
i

)
,
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cf. [9, III.§3, cor. 2]. Therefore, pir
pi−1−(pi−1)/(p−1)
i divides jai,jr

j−1
i for j ∈ [1, pi − 1], and

(5.3. i, i′) follow.

Moreover, since only for j = pi − (pi − 1)/(p− 1) the valuations at ri of pir
pi−1−(pi−1)/(p−1)
i

and jai,jr
j−1
i are congruent modulo pi, we conclude by (∗) that they are equal, i.e. that pi

exactly divides ai,pi−(pi−1)/(p−1).

Corollary 5.5 The element pi−β exactly divides ai,pi−(pi−pβ)/(p−1) for β ∈ [0, i− 1].

This follows by (5.3.ii) from what we have just said.

E.g. in (5.4), 51 exactly divides a2,25−5 = a2,20, and 52 exactly divides a2,25−5−1 = a2,19.

5.3 Some traces

Let µp−1 denote the group of (p−1)st roots of unity in Qp. We choose a primitive (p−1)st
root of unity ζp−1 ∈ µp−1 and may thus view Q(ζp−1) ⊆ Qp as a subfield. Note that
[Q(ζp−1) : Q] = ϕ(p−1), where ϕ denotes Euler’s function. The restriction of the valuation
vp at p on Qp to Q(ζp), is a prolongation of the valuation vp on Q to Q(ζp−1) (there are
ϕ(p− 1) such prolongations).

Proposition 5.6 For n > 1, we have

TrEn|Q(πn) = pnsn − pn−1sn−1 ,

where

sn :=
1

p− 1

∑
H ⊆µp−1

(−1)#H
{
vp
(∑

ξ∈H ξ
)

> n
}

for n > 0 .

We have s0 = 0, and sn ∈ Z for n > 0. The sequence (sn)n becomes stationary at some
minimally chosen N0(p). We have

N0(p) 6 N(p) := max
H ⊆µp−1

{
vp
(∑

ξ∈H ξ
)

:
∑

ξ∈H ξ 6= 0
}

+ 1 .

An upper estimate for N(p), hence for N0(p), is given in (5.13).

Proof of (5.6). For j ∈ [1, p− 1] the p -adic limits

ξ(j) := lim
n→∞

jp
n

exist since jp
n−1 ≡pn jp

n
by (1.3). They are distinct since ξ(j) ≡p j, and, thus, form the

group µp−1 = {ξ(j) | j ∈ [1, p− 1]}. Using the formula

TrFn|Q(ζmpn) = pn
{
vp(m) > n

}
− pn−1

{
vp(m) > n− 1

}
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and the fact that jp
n−1 ≡pn ξ(j), we obtain

TrFn|Q(πn) = TrFn|Q

(∏
j∈[1, p−1]

(
1− ζj

pn−1

pn

))
=

∑
J ⊆ [1, p−1]

(−1)#J TrFn|Q

(
ζ

P
j∈J j

pn−1

pn

)
=

∑
J ⊆ [1, p−1]

(−1)#J

(
pn
{
vp
(∑

j∈J ξ(j)
)

> n
}

− pn−1
{
vp
(∑

j∈J ξ(j)
)

> n− 1
})

= (p− 1)(pnsn − pn−1sn−1) ,

whence

TrEn|Q(πn) = pnsn − pn−1sn−1 .

Now s0 = 0 ∈ Z by the binomial formula. Therefore, by induction, we conclude from
pnsn − pn−1sn−1 ∈ Z that pnsn ∈ Z. Since (p− 1)sn ∈ Z, too, we obtain sn ∈ Z.

As soon as n > N(p), the conditions vp(
∑

ξ∈H ξ) > n and vp(
∑

ξ∈H ξ) = +∞ on H ⊆ µp−1

become equivalent, and we obtain

sn =
1

p− 1

∑
H⊆µp−1

(−1)#H
{∑

ξ∈H ξ = 0
}
,

which is independent of n. Thus N0(p) 6 N(p).

Lemma 5.7 We have s1 = 1. In particular, TrE2|Q(π2) ≡p2 −p .

Since TrE1|Q(π1) = TrQ|Q(p) = p, and since s0 = 0, we have s1 = 1 by (5.6). The congruence
for TrE2|Q(π2) follows again by (5.6).

Corollary 5.8 We have

µπn,Q(X) ≡p2 Xpn−1

+ pX(p−1)pn−2 − p

for n > 2.

By dint of (5.7), this ensues from (5.3. i′, ii).
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Example 5.9 The last n for which we list sn equals N(p), except if there is a question mark
in the next column. The table was calculated using Pascal (p 6 53) and Magma (p > 59). In
the last column, we list the upper bound for N(p) calculated below (5.13).

sn n = 0 1 2 3 4 5 6 7

upper bound

for N(p)

p = 3 0 1

5 0 1 1

7 0 1 1

11 0 1 3 3

13 0 1 3 3

17 0 1 8 16 5

19 0 1 10 12 4

23 0 1 33 89 93 7

29 0 1 377 571 567 8

31 0 1 315 271 259 6

37 0 1 107 940 1296 9

41 0 1 6621 51693 18286 20186 20250 12

43 0 1 1707 4767 6921 6665 9

47 0 1 2250 272242 173355 181481 182361 16

53 0 1 71201 363798 1520045 1350049 1292229 1289925 18

59 0 1 1276 ? 21

61 0 1 2516 ? 12

67 0 1 407186 ? 15

71 0 1 5816605 ? 18

73 0 1 8370710 ? 18

79 0 1 169135 ? 18

83 0 1 632598 ? 30

89 0 1 26445104 ? 30

97 0 1 282789 ? 24

101 0 1 25062002 ? 31

103 0 1 56744199 ? 25

107 0 1 1181268305 ? 40

109 0 1 91281629 ? 28

113 0 1 117774911422 ? 37

127 0 1 6905447 ? 28

131 0 1 2988330952791 ? 37

137 0 1 1409600547 ? 50

139 0 1 3519937121 ? 34

149 0 1 25026940499 ? 56

151 0 1 164670499159 ? 31

157 0 1 51594129045351 ? 38

163 0 1 288966887341 ? 42

167 0 1 1205890070471 ? 64

173 0 1 17802886165762 ? 66

179 0 1 1311887715966 ? 69

181 0 1 128390222739 ? 38

191 0 1 233425263577158 ? 57

193 0 1 306518196952028 ? 51

197 0 1 347929949728221 ? 66

199 0 1 9314622093145 ? 48

211 0 1 12532938009082 ? 39

So for example if p = 31, then TrQ(π3)|Q(π3) = 271 · 313− 315 · 312, whereas TrQ(π7)|Q(π7) =
259 · 317 − 259 · 316. Moreover, N0(31) = N(31) = 4 6 6.
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Remark 5.10 Vanishing (resp. vanishing modulo a prime) of sums of roots of unity has been
studied extensively. See e.g. [2], [6], where also further references may be found.

Remark 5.11 Neither do we know whether sn > 0 nor whether TrEn|Q(πn) > 0 always hold.
Moreover, we do not know a prime p for which N0(p) < N(p).

Remark 5.12 We calculated some further traces appearing in (5.3), using Maple and Magma.

For p = 3, n ∈ [2, 10], we have TrEn|En−1(πn) = 3 · 2.

For p = 5, n ∈ [2, 6], we have TrEn|En−1(πn) = 5 · 4.

For p = 7, n ∈ [2, 5], we have TrEn|En−1(πn) = 7 · 6.

For p = 11, we have TrE2|E1(π2) = 11 · 32, whereas

TrE3|E2(π3)
= 22 · (15 + ζ2 + 2ζ3 − ζ5 + ζ6 − 2ζ8 − ζ9 + 2ζ14 − ζ16 + ζ18 − ζ20 − 2ζ24

+2ζ25 − 2ζ26 − ζ27 − ζ31 + 2ζ36 − ζ38 + ζ41 − ζ42 − 2ζ43 + 2ζ47 − 3ζ49

−ζ53 + ζ54 + 2ζ58 − ζ60 − ζ64 + ζ67 + 2ζ69 − ζ71 − 2ζ72 − ζ75 − 2ζ78

+3ζ80 − ζ82 − ζ86 + 2ζ91 − ζ93 − 2ζ95 − 3ζ97 + 2ζ102 + ζ103 − ζ104 − ζ108)
= 22 · 2014455354550939310427−1 · (34333871352527722810654

+1360272405267541318242502π − 31857841148164445311437042π2

+135733708409855976059658636π3 − 83763613130017142371566453π4

+20444806599344408104299252π5 − 2296364631211442632168932π6

+117743741083866218812293π7 − 2797258465425206085093π8

+27868038642441136108π9 − 79170513243924842π10) ,

where ζ := ζ112 and π := π2.

5.4 An upper bound for N(p)

We view Q(ζp−1) as a subfield of Qp, and now, in addition, as a subfield of C. Since complex
conjugation commutes with the operation of Gal(Q(ζp−1)|Q), we have |NQ(ζp−1)|Q(x)| =
|x|ϕ(p−1) for x ∈ Q(ζp−1).

We abbreviate Σ(H) :=
∑

ξ∈H ξ for H ⊆ µp−1. Since |Σ(H)| 6 p − 1, we have

|NQ(ζp−1)|Q(Σ(H))| 6 (p− 1)ϕ(p−1). Hence, if Σ(H) 6= 0, then

vp(Σ(H)) 6 vp(NQ(ζp−1)|Q(Σ(H))) < ϕ(p− 1) ,

and therefore N(p) 6 ϕ(p− 1). We shall ameliorate this bound by a logarithmic term.

Proposition 5.13 We have

N(p) 6 ϕ(p− 1)

(
1− log π

log p

)
+ 1

for p > 5.
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It suffices to show that |Σ(H)| 6 p/π for H ⊆ µp−1. We will actually show that

max
H⊆µp−1

|Σ(H)| =
1

sin π
p−1

,

from which this inequality follows using sinx > x− x3/6 and p > 5.

Choose H ⊆ µp−1 such that |Σ(H)| is maximal. Since p− 1 is even, the (p− 1)st roots of
unity fall into pairs (η,−η). The summands of Σ(H) contain exactly one element of each
such pair, since |Σ(H) + η|2 + |Σ(H) − η|2 = 2|Σ(H)|2 + 2 shows that at least one of the
inequalities |Σ(H) + η| 6 |Σ(H)| and |Σ(H)− η| 6 |Σ(H)| fails.

By maximality, replacing a summand η by −η in Σ(H) does not increase the value of
|Σ(H)|, whence

|Σ(H)|2 > |Σ(H)− 2η|2 = |Σ(H)|2 − 4 Re(η · Σ(H)) + 4 ,

and thus
Re(η · Σ(H)) > 1 > 0 .

Therefore, the (p − 1)/2 summands of Σ(H) lie in one half-plane, whence the value of
|Σ(H)|.

6 Cyclotomic function fields, after Carlitz and Hayes

6.1 Notation and basic facts

We shall give a brief review while fixing notation.

Let ρ > 1 and r := pρ. Write Z := Fr[Y ] and Q := Fr(Y ), where Y is an independent
variable. We fix an algebraic closure Q̄ of Q. The Carlitz module structure on Q̄ is defined
by the Fr-algebra homomorphism given on the generator Y as

Z - EndQQ̄
Y -

(
ξ - ξY := Y ξ + ξr

)
.

We write the module product of ξ ∈ Q̄ with e ∈ Z as ξe. For each e ∈ Z, there exists
a unique polynomial Pe(X) ∈ Z[X] that satisfies Pe(ξ) = ξe for all ξ ∈ Q̄. In fact,
P1(X) = X, PY (X) = Y X +Xr, and PY i+1 = Y PY i(X) +PY i(X

r) for i > 1. For a general
e ∈ Z, the polynomial Pe(Y ) is given by the according linear combination of these.

Note that Pe(0) = 0, and that P ′e(X) = e, whence Pe(X) is separable, i.e. it decomposes as
a product of distinct linear factors in Q̄[X]. Let

λe = anneQ̄ = {ξ ∈ Q̄ : ξe = 0} ⊆ Q̄

be the annihilator submodule. Separability of Pe(X) shows that #λe = degPe(X) = rdeg e.
Given a Q-linear automorphism σ of Q̄, we have (ξe)σ = Pe(ξ)

σ = Pe(ξ
σ) = (ξσ)e. In

particular, λe is stable under σ. Therefore, Q(λe) is a Galois extension of Q.
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Since #annẽλe = #λẽ = rdeg ẽ for ẽ | e, we have λe ' Z/e as Z-modules. It is not possible,
however, to distinguish a particular isomorphism.

We shall restrict ourselves to prime powers now. We fix a monic irreducible polynomial
f = f(Y ) ∈ Z and write q := rdeg f . For n > 1, we let θn be a Z-linear generator of λfn .

We make our choices in such a manner that θfn+1 = θn for n > 1. Note that Z[λfn ] = Z[θn]
since the elements of λfn are polynomial expressions in θn.

Suppose given two roots ξ, ξ̃ ∈ Q̄ of

Ψfn(X) := Pfn(X)/Pfn−1(X) ∈ Z[X] ,

i.e. ξ, ξ̃ ∈ λfn r λfn−1 . Since ξ is a Z-linear generator of λfn , there is an e ∈ Z such that

ξ̃ = ξe. Since ξe/ξ = Pe(X)/X|X=ξ ∈ Z[θn], ξ̃ is a multiple of ξ in Z[θn]. Reversing the
argument, we see that ξ̃ is in fact a unit multiple of ξ in Z[θn].

Lemma 6.1 The polynomial Ψfn(X) is irreducible.

We have Ψfn(0) =
Pfn(X)/X

Pfn−1(X)/X

∣∣∣∣
X=0

= f . We decompose Ψfn(X) =
∏

i∈[1,k] Fi(X) in its

distinct monic irreducible factors Fi(X) ∈ Z[X]. One of the constant terms, say Fj(0),
is thus a unit multiple of f in Z, while the other constant terms are units. Thus, being
conjugate under the Galois action, all roots of Fj(X) in Q[θn] are non-units in Z[θn], and
the remaining roots of Ψfn(X) are units. But all roots of Ψfn(X) are unit multiples of each
other. We conclude that Ψfn(X) = Fj(X) is irreducible.

By (6.1), Ψfn(X) is the minimal polynomial of θn over Q. In particular, [Q(θn) : Q] =
qn−1(q − 1), and so

Z[θn]θ(q−1)qn−1

n = Z[θn]NQ(θn)|Q(θn) = Z[θn]f .

In particular, Z(f)[θn] is a discrete valuation ring with maximal ideal generated by θn, purely
ramified of index qn−1(q−1) over Z(f), cf. [9, I.§7, prop. 18]. There is a group isomorphism

(Z/fn)∗ -∼ Gal(Q(θn)|Q)

e - (θn - θen) ,

well defined since θen is a root of Ψfn(X), too; injective since θn generates λfn over Z; and
surjective by cardinality.

Note that the Galois operation on Q(θn) corresponding to e ∈ (Z/fn)∗ coincides with the
module operation of e on the element θn, but not everywhere. For instance, if f 6= Y , then
the Galois operation corresponding to Y sends 1 to 1, whereas the module operation of Y
sends 1 to Y + 1.

The discriminant of Z[θn] over Z is given by ∆Z[θn]|Z = NQ(θn)|Q(Ψ′fn(θn))

= NQ(θn)|Q
(
P ′fn(θn)/Pfn−1(θn)

)
= NQ(θn)|Q (fn/θ1) = f q

n−1(nq−n−1) .
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Lemma 6.2 The ring Z[θn] is the integral closure of Z in Q(θn).

Let e ∈ Z be a monic irreducible polynomial different from f . Write O0 := Z(e)[θn] and let
O be the integral closure of O0 in Q(θn). Let

O+
0 := {ξ ∈ Q(θn) : TrQ(θn)|Q(ξO0) ⊆ Z(e)}
O+ := {ξ ∈ Q(θn) : TrQ(θn)|Q(ξO) ⊆ Z(e)} .

Then O0 ⊆ O ⊆ O+ ⊆ O+
0 . But O0 = O+

0 , since the Z(e)-linear determinant of this
embedding is given by the discriminant ∆Z[θn]|Z , which is a unit in O0.

We resume.

Proposition 6.3 ([1],[5], cf. [3, p. 115]) The extension Q(θn)|Q is galois of degree
[Q(θn) : Q] = (q − 1)qn−1, with Galois group isomorphic to (Z/fn)∗. The integral clo-

sure of Z in Q(θn) is given by Z[θn]. We have Z[θn]θ
[Q(θn):Q]
n = Z[θn]f . In particular, θn

is a prime element of Z[θn], and the extension Z(f)[θn]|Z(f) of discrete valuation rings is
purely ramified.

6.2 Coefficient valuation bounds

Denote Fn = Q(θn). Let En = FixCq−1Fn, so [En : Q] = qn−1. Let

$n = NFn|En(θn) =
∏

e∈(Z/f)∗

θe
qn−1

n .

The minimal polynomial µθn,Fn−1(X) = Pf (X)− θn−1 together with X |Pf (X) shows that
NFn|Fn−1(θn) = θn−1, whence NEn|En−1($n) = $n−1. Note that $1 =

∏
e∈(Z/f)∗ θ

e
1 = Ψf (0) =

f .

The extension Z(f)[$n] is a discrete valuation ring with maximal ideal generated by $n,
purely ramified of index qn−1 over Z(f). In particular, En = Q($n).

Example 6.4 Let r = 3 and f(Y ) = Y 2 + 1, so q = 9. A Magma calculation shows that

$2 = θ602 − Y θ582 + Y 2θ562 + (−Y 9−Y 3−Y )θ422 + (Y 10+Y 4+Y 2+1)θ402

+ (−Y 11−Y 5−Y 3+Y )θ382 + (−Y 6−Y 4−Y 2)θ362 + (Y 7+Y 5+Y 3+Y )θ342

+ (−Y 8−Y 6+Y 4−Y 2−1)θ322 + (−Y 5+Y 3−Y )θ302 + (Y 18−Y 12−Y 10+Y 6−Y 4+Y 2)θ242

+ (−Y 19+Y 13+Y 11+Y 9−Y 7+Y 5+Y )θ222

+ (Y 20−Y 14−Y 12+Y 10+Y 8−Y 6−Y 4+Y 2+1)θ202

+ (−Y 15−Y 13−Y 11−Y 9+Y 7+Y 5−Y 3)θ182 + (Y 16+Y 14+Y 12−Y 10−Y 8−Y 2)θ162

+ (−Y 17−Y 15+Y 13+Y 11+Y 7+Y 5−Y 3+Y )θ142

+ (−Y 14−Y 12+Y 10−Y 8−Y 6−Y 4+Y 2+1)θ122 + (−Y 13+Y 11−Y 7+Y 3)θ102

+ (Y 14−Y 12−Y 10+Y 6+Y 4)θ82 + (−Y 11−Y 7+Y 5+Y 3+Y )θ62 + (Y 8+Y 6+Y 2+1)θ42 .

With regard to §6.4, we remark that $2 6= ± θq−1
2 .
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Lemma 6.5 We have $q
n ≡$q−1

n f $n−1 for n > 2.

We claim that θqn ≡θnf θn−1. In fact, the non-leading coefficients of the Eisenstein polyno-
mial Ψf (X) are divisible by f , so that the congruence follows by θn−1− θqn = Pf (θn)− θqn =
θn(Ψf (θn) − θq−1

n ). Letting T̃ = Z(f)[θn] and (t̃, s̃, t, s) = (θn, θn−1, $n, $n−1), (4.1) shows
that 1− θqn/θn−1 divides 1−$q

n/$n−1. Therefore, θnfθ
−1
n−1$n−1 | $n−1 −$q

n.

Now suppose given m > 1. To apply (3.2), we let Ri = Z(f)[$m+i] and ri = $m+i for i > 0.
We continue to denote

(#)
µ$m+i, Em(X) = µri,K0(X) = Xqi +

(∑
j∈[1,qi−1] ai,jX

j
)
−$m

∈ R0[X] = Z(f)[$m][X] ,

and vq(j) = max{α ∈ Z>0 : j ≡qα 0 }.

Theorem 6.6

(i) We have f i−vq(j) | ai,j for i > 1 and j ∈ [1, qi − 1].

(i′) If j < qi(q − 2)/(q − 1), then f i−vq(j)$m | ai,j.

(ii) We have ai,j ≡f i+1 ai+β,qβj for i > 1, j ∈ [1, qi − 1] and β > 1.

(ii′) If j < qi(q − 2)/(q − 1), then ai,j ≡f i+1$m ai+β,qβj for β > 1.

Assumption (3.1) is fulfilled by virtue of (6.5), whence the assertions follow by (3.2).

6.3 Some exact valuations

Let m > 1 and i > 0. We denote Ri = Z(f)[$m+i], ri = $m+i, Ki = fracRi,

R̃i = Z(f)[θm+i] and r̃i = θm+i. We obtain DR̃i|R̃0
= (f i) and DR̃i|Ri = (r̃q−2

i ) [9, III.§3,
prop. 13], whence

(∗∗) DRi|R0 =
(
µ′ri,K0

(ri)
)

=
(
f ir

qi−1−(qi−1)/(q−1)
i

)
.

Therefore, f ir
qi−1−(qi−1)/(q−1)
i divides jai,jr

j−1
i for j ∈ [1, qi−1], which is an empty assertion

if j ≡p 0. Thus (6.6. i, i′) do not follow entirely.

However, since only for j = qi − (qi − 1)/(q − 1) the valuations at ri of f ir
qi−1−(qi−1)/(q−1)
i

and jai,jr
j−1
i are congruent modulo qi, we conclude by (∗∗) that they are equal, i.e. that f i

exactly divides ai,qi−(qi−1)/(q−1).

Corollary 6.7 The element f i−β exactly divides ai,qi−(qi−qβ)/(q−1).

This follows by (6.6.ii) from what we have just said.
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6.4 A simple case

Suppose that f(Y ) = Y and m > 1. Note that

$m+1 =
∏
e∈F∗q

θem+1 =
∏
e∈F∗q

eθm+1 = −θq−1
m+1 .

Lemma 6.8 We have

µ$m+1, Em(X) = −$m +
∑
j∈[1,q]

Y q−jXj .

Using the minimal polynomial µθm+1,Fm(X) = PY (X)− θm = Xq + Y X − θm, we get

−$m +
∑

j∈[1,q] Y
q−j$j

m+1

= θq−1
m + (Y q+1 − θq

2−1
m+1 )/(Y + θq−1

m+1)− Y q

= (Y θq−1
m θm+1 + θq−1

m θqm+1 − θ
q2

m+1 − Y qθqm+1)/(θm+1(Y + θq−1
m+1))

= 0 .

Corollary 6.9 Let m, i > 1. We have

µ$m+i, Em(X) ≡Y 2 Xqi + Y X(q−1)qi−1 −$m .

This follows from (6.8) using (6.6.ii).

Remark 6.10 The assertion of (6.8) also holds if p = 2.

Conjecture 6.11 Let m, i > 1. We use the notation of (#) above, now in the case f(Y ) = Y .
For j ∈ [1, qi], we write qi − j =

∑
k∈[0,i−1] dkq

k with dk ∈ [0, q − 1]. Consider the following
conditions.

(i) There exists k ∈ [0, i− 2] such that dk+1 < dk.

(ii) There exists k ∈ [0, i− 2] such that vp(dk+1) > vp(dk).

If (i) or (ii) holds, then ai,j = 0. If neither (i) nor (ii) holds, then

v$m
(ai,j) = qm−1 ·

∑
k∈[0,i−1]

dk .

Remark 6.12 We shall compare (6.7) with (6.11). If j = qi − (qi − qβ)/(q − 1) for some
β ∈ [0, i− 1], then qi − j = qi−1 + · · ·+ qβ . Hence

∑
k∈[0,i−1] dk = i− β, and so according to

(6.11), v$m
(ai,j) should equal qm−1(i− β), which is in fact confirmed by (6.7).
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