On coefficient valuations of Eisenstein polynomials

M. Künzer, E. Wirsing

January 10, 2006

Abstract

Let $p \geqslant 3$ be a prime, let $n>m \geqslant 1$. Let π_{n} be the norm of $\zeta_{p^{n}}-1$ under C_{p-1}, so that $\mathbf{Z}_{(p)}\left[\pi_{n}\right] \mid \mathbf{Z}_{(p)}$ is a purely ramified extension of discrete valuation rings of degree p^{n-1}. The minimal polynomial of π_{n} over $\mathbf{Q}\left(\pi_{m}\right)$ is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at π_{m}. The function field analogue, as introduced by Carlitz and Hayes, is studied as well.

Contents

0 Introduction 2
0.1 Problem and methods . 2
0.2 Results . 3
0.2.1 The number field case . 3
0.2.2 The function field case . 4
0.3 Notations and conventions . 5

1 A polynomial lemma 5
2 Consecutive purely ramified extensions 6
2.1 Setup . 6
2.2 Characteristic 0 . 7
2.3 As an illustration: cyclotomic polynomials . 8
2.4 Characteristic p. 9

3 Towers of purely ramified extensions 9
4 Galois descent of a divisibility 11
5 Cyclotomic number fields 11
5.1 Coefficient valuation bounds . 11
5.2 A different proof of (5.3. i, i^{\prime}) and some exact valuations . 12
5.3 Some traces . 13
5.4 An upper bound for $N(p)$. 16

6 Cyclotomic function fields, after Carlitz and Hayes 17
6.1 Notation and basic facts . 17
6.2 Coefficient valuation bounds . 19
6.3 Some exact valuations . 20
6.4 A simple case . 21

AMS subject classification: 11R18, 11R60.

0 Introduction

0.1 Problem and methods

Consider a primitive p^{n} th root of unity $\zeta_{p^{n}}$ over \mathbf{Q}, where p is a prime and $n \geqslant 2$. One has $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p^{n}}\right) \mid \mathbf{Q}\right) \simeq C_{p^{n-1}} \times C_{p-1}$. To isolate the p-part of this extension, let π_{n} be the norm of $\zeta_{p^{n}}-1$ under C_{p-1}; that is, the product of the Galois conjugates $\left(\zeta_{p^{n}}-1\right)^{\sigma}$, where σ runs over the subgroup C_{p-1}. Then

We ask for the minimal polynomial $\mu_{\pi_{n}, \mathbf{Q}}(X)=\sum_{j \in\left[0, p^{n-1}\right]} a_{j} X^{j} \in \mathbf{Z}[X]$ of π_{n} over \mathbf{Q}. By construction, it is an Eisenstein polynomial; that is, $v_{p}\left(a_{j}\right) \geqslant 1$ for $j \in\left[0, p^{n-1}-1\right]$, and $v_{p}\left(a_{0}\right)=1$, where v_{p} denotes the valuation at p.
More is true, though. Our basic objective is to give lower bounds bigger than 1 for these p-values $v_{p}\left(a_{j}\right)$, except, of course, for $v_{p}\left(a_{0}\right)$. As a byproduct of our method of proof, we shall also obtain congruences between certain coefficients for varying n.
A consideration of the trace $\operatorname{Tr}_{\mathbf{Q}\left(\pi_{n}\right) \mid \mathbf{Q}}\left(\pi_{n}\right)$ yields additional information on the second coefficient of $\mu_{\pi_{n}, \mathbf{Q}}(X)$. By the congruences just mentioned, this also gives additional information for certain coefficients of the minimal polynomials $\mu_{\pi_{l}, \mathbf{Q}}(X)$ with $l>n$; these coefficients no longer appear as traces.
Finally, a comparison with the different ideal $\mathfrak{D}_{\mathbf{Z}_{(p)}\left[\pi_{n}\right] \mid \mathbf{Z}_{(p)}}=\mathbf{Z}_{(p)}\left[\pi_{n}\right] \mu_{\pi_{n}, \mathbf{Q}}^{\prime}\left(\pi_{n}\right)$ then yields some exact coefficient valuations, not just lower bounds.
Actually, we consider the analogous question for the coefficients of the slightly more general relative minimal polynomial $\mu_{\pi_{n}, \mathbf{Q}\left(\pi_{m}\right)}(X)$, where $n>m \geqslant 1$, which can be treated using essentially the same arguments. Note that $\pi_{1}=p$.
Except for the trace considerations, the whole investigation carries over mutatis mutandis to the case of cyclotomic function field extensions, as introduced by Carlitz [1] and Hayes [5].
As an application, we mention the Wedderburn embedding of the twisted group ring (with trivial 2-cocycle)

$$
\mathbf{Z}_{(p)}\left[\pi_{n}\right] \prec C_{p^{n-1}} \quad \stackrel{\omega}{\longleftrightarrow} \operatorname{End}_{\mathbf{Z}_{(p)}} \mathbf{Z}_{(p)}\left[\pi_{n}\right] \simeq \mathbf{Z}_{(p)}^{p^{n-1} \times p^{n-1}}
$$

to which we may reduce the problem of calculating $\mathbf{Z}_{(p)}\left[\zeta_{p^{n}}\right] 〕\left(C_{p^{n-1}} \times C_{p-1}\right)$ by means of Nebe decomposition. The image $\omega\left(\pi_{n}\right)$ is the companion matrix of $\mu_{\pi_{n}, \mathbf{Q}}(X)$. To describe the image $\omega\left(\mathbf{Z}_{(p)}\left[\pi_{n}\right]<C_{p^{n-1}}\right)$ of the whole ring, we may replace this matrix modulo a certain
ideal. To do so, we need to know the valuations of its entries, i.e. of the coefficients of $\mu_{\pi_{n}, \mathbf{Q}}(X)$, or at least a lower bound for them. So far, this could be carried through only for $n=2[\mathbf{1 0}]$.

In this article, however, we restrict our attention to the minimal polynomial itself.

0.2 Results

0.2.1 The number field case

Let $p \geqslant 3$ be a prime, and let $\zeta_{p^{n}}$ denote a primitive p^{n} th root of unity over \mathbf{Q} in such a way that $\zeta_{p^{n+1}}^{p}=\zeta_{p^{n}}$ for all $n \geqslant 1$. Put

$$
\begin{aligned}
& F_{n}=\mathbf{Q}\left(\zeta_{p^{n}}\right) \\
& E_{n}=\operatorname{Fix}_{C_{p-1}} F_{n}
\end{aligned}
$$

so $\left[E_{n}: \mathbf{Q}\right]=p^{n}$. Letting

$$
\pi_{n}=\mathrm{N}_{F_{n} \mid E_{n}}\left(\zeta_{p_{n}}-1\right)=\prod_{j \in[1, p-1]}\left(\zeta_{p^{n}}^{j^{p^{n-1}}}-1\right)
$$

we have $E_{n}=\mathbf{Q}\left(\pi_{n}\right)$. In particular, $E_{m+i}=E_{m}\left(\pi_{m+i}\right)$ for $m, i \geqslant 1$. We fix m and write

$$
\mu_{\pi_{m+i}, E_{m}}(X)=\sum_{j \in\left[0, p^{i}\right]} a_{i, j} X^{j}=X^{p^{i}}+\left(\sum_{j \in\left[1, p^{i}-1\right]} a_{i, j} X^{j}\right)-\pi_{m} \in \mathbf{Z}_{(p)}\left[\pi_{m}\right][X] .
$$

Theorem (5.3, 5.5, 5.8).
(i) We have $p^{i} \mid j a_{i, j}$ for $j \in\left[0, p^{i}\right]$.
(i') If $j<p^{i}(p-2) /(p-1)$, then $p^{i} \pi_{m} \mid j a_{i, j}$.
(ii) We have $a_{i, j} \equiv_{p^{i+1}} a_{i+\beta, p^{\beta} j}$ for $j \in\left[0, p^{i}\right]$ and $\beta \geqslant 1$.
(ii') If $j<p^{i}(p-2) /(p-1)$, then $a_{i, j} \equiv_{p^{i+1} \pi_{m}} a_{i+\beta, p^{\beta} j}$ for $\beta \geqslant 1$.
(iii) The element $p^{i-\beta}$ exactly divides $a_{i, p^{i}-\left(p^{i}-p^{\beta}\right) /(p-1)}$ for $\beta \in[0, i-1]$.
(iv) We have $\mu_{\pi_{n}, \mathbf{Q}}(X) \equiv_{p^{2}} X^{p^{n-1}}+p X^{(p-1) p^{n-2}}-p$ for $n \geqslant 2$.

Assertion (iv) requires the computation of a trace, which can be reformulated in terms of sums of $(p-1)$ th roots of unity in \mathbf{Q}_{p} (5.6). Essentially, one has to count the number of subsets of $\boldsymbol{\mu}_{p-1} \subseteq \mathbf{Q}_{p}$ of a given cardinality whose sum is of a given valuation at p. We have not been able to go much beyond this reformulation, and this seems to be a problem in its own right - see e.g. (5.9).

To prove ($\mathrm{i}, \mathrm{i}^{\prime}$, ii, ii^{\prime}), we proceed by induction. Assertions ($\mathrm{i}, \mathrm{i}^{\prime}$) also result from the different $\mathfrak{D}_{\mathbf{Z}_{(p)}\left[\pi_{m+i}\right] \mid \mathbf{Z}_{(p)}\left[\pi_{m}\right]}=\left(\mu_{\pi_{m+i}, E_{m}}^{\prime}\left(\pi_{m+i}\right)\right)=\left(p^{i} \pi_{m+i}^{p^{i}-1-\left(p^{i}-1\right) /(p-1)}\right)$. Moreover, (ii) yields (iii) by an argument using the different. (In the function field case below, we will no longer be able to use the different for the assertion analogous to ($\mathrm{i}, \mathrm{i}^{\prime}$), and we will have to resort to induction).

Suppose $m=1$. Let us call an index $j \in\left[1, p^{i}-1\right]$ exact, if either $j<p^{i}(p-2) /(p-1)$ and $p^{i} \pi_{m}$ exactly divides $j a_{i, j}$, or $j \geqslant p^{i}(p-2) /(p-1)$ and p^{i} exactly divides $j a_{i, j}$. If $i=1$ and e.g. $p \in\{3,19,29,41\}$, then all indices $j \in[1, p-1]$ are exact. If $i \geqslant 2$, we propose to ask whether the number of non-exact indices j asymptotically equals p^{i-1} as $p \rightarrow \infty$.

0.2.2 The function field case

Let $p \geqslant 3$ be a prime, $\rho \geqslant 1$ and $r=p^{\rho}$. We write $\mathcal{Z}=\mathbf{F}_{r}[Y]$ and $\mathcal{Q}=\mathbf{F}_{r}(Y)$. We want to study a function field analogue over \mathcal{Q} of the number field extension $\mathbf{Q}\left(\zeta_{p^{n}}\right) \mid \mathbf{Q}$. Since 1 is the only p^{n} th root of unity in an algebraic closure $\overline{\mathcal{Q}}$, we have to proceed differently, following Carlitz [1] and Hayes [5]. First of all, the power operation of p^{n} on $\overline{\mathbf{Q}}$ becomes replaced by a module operation of f^{n} on $\overline{\mathcal{Q}}$, where $f \in \mathcal{Z}$ is an irreducible polynomial. The group of p^{n} th roots of unity

$$
\boldsymbol{\mu}_{p^{n}}=\left\{\xi \in \overline{\mathbf{Q}}: \xi^{p^{n}}=1\right\}
$$

becomes replaced by the annihilator submodule

$$
\boldsymbol{\lambda}_{f^{n}}=\left\{\xi \in \overline{\mathcal{Q}}: \xi^{f^{n}}=0\right\} .
$$

Instead of choosing a primitive p^{n} th root of unity $\zeta_{p^{n}}$, i.e. a \mathbf{Z}-linear generator of that abelian group, we choose a \mathcal{Z}-linear generator θ_{n} of this \mathcal{Z}-submodule. A bit more precisely speaking, the element $\theta_{n} \in \overline{\mathcal{Q}}$ plays the role of $\vartheta_{n}:=\zeta_{p^{n}}-1 \in \overline{\mathbf{Q}}$. Now $\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}$ is the function field analogue of $\mathbf{Q}\left(\vartheta_{n}\right) \mid \mathbf{Q}$. See also [3, sec. 2].
To state the result, let $f(Y) \in \mathcal{Z}$ be a monic irreducible polynomial and write $q=r^{\operatorname{deg} f}$. Let $\xi^{Y}:=Y \xi+\xi^{r}$ define the \mathcal{Z}-linear Carlitz module structure on an algebraic closure $\overline{\mathcal{Q}}$, and choose a \mathcal{Z}-linear generator θ_{n} of $\operatorname{ann}_{f^{n}} \overline{\mathcal{Q}}$ in such a way that $\theta_{n+1}^{f}=\theta_{n}$ for all $n \geqslant 1$. We write $\mathcal{F}_{n}=\mathcal{Q}\left(\theta_{n}\right)$, so that $\operatorname{Gal}\left(\mathcal{F}_{n} \mid \mathcal{Q}\right) \simeq\left(\mathcal{Z} / f^{n}\right)^{*}$. Letting $\mathcal{E}_{n}=\operatorname{Fix}_{C_{q-1}} \mathcal{F}_{n}$, we get $\left[\mathcal{E}_{n}: \mathcal{Q}\right]=q^{n}$. Denoting $\varpi_{n}=\mathrm{N}_{\mathcal{F}_{n} \mid \mathcal{E}_{n}}\left(\theta_{n}\right)=\prod_{e \in(\mathcal{Z} / f)^{*}} \theta_{n}^{e^{q^{n-1}}}$, we obtain $\mathcal{E}_{n}=\mathcal{Q}\left(\varpi_{n}\right)$. In particular, $\mathcal{E}_{m+i}=\mathcal{E}_{m}\left(\varpi_{m+i}\right)$ for $m, i \geqslant 1$. We fix m and write

$$
\mu_{\varpi_{m+i}, \mathcal{E}_{m}}(X)=\sum_{j \in\left[0, q^{i}\right]} a_{i, j} X^{j}=X^{q^{i}}+\left(\sum_{j \in\left[1, q^{i}-1\right]} a_{i, j} X^{j}\right)-\varpi_{m} \in \mathcal{Z}_{(f)}\left[\varpi_{m}\right][X] .
$$

Let $v_{q}(j):=\max \left\{\alpha \in \mathbf{Z}_{\geqslant 0}: q^{\alpha} \mid j\right\}$.

Theorem (6.6, 6.7, 6.9).
(i) We have $f^{i-v_{q}(j)} \mid a_{i, j}$ for $j \in\left[0, q^{i}\right]$.
(i') If $j<q^{i}(q-2) /(q-1)$, then $f^{i-v_{q}(j)} \varpi_{m} \mid a_{i, j}$.
(ii) We have $a_{i, j} \equiv_{f^{i+1}} a_{i+\beta, q^{\beta} j}$ for $j \in\left[0, q^{i}\right]$ and $\beta \geqslant 1$.
(ii') If $j<q^{i}(q-2) /(q-1)$, then $a_{i, j} \equiv_{f^{i+1} \varpi_{m}} a_{i+\beta, q^{\beta} j}$ for $\beta \geqslant 1$.
(iii) The element $f^{i-\beta}$ exactly divides $a_{i, q^{i}-\left(q^{i}-q^{\beta}\right) /(q-1)}$ for $\beta \in[0, i-1]$.
(iv) If $f=Y$, then $\mu_{\varpi_{m+i}, \mathcal{E}_{m}}(X) \equiv_{Y^{2}} X^{q^{i}}+Y X^{(q-1) q^{i-1}}-\varpi_{m}$.

A comparison of the assertions (iv) in the number field case and in the function field case indicates possible generalizations - we do not know what happens for $\mu_{\pi_{m+i}, E_{m}}(X)$ for $m \geqslant 2$ in the number field case; moreover, we do not know what happens for $f \neq Y$ in the function field case.

0.3 Notations and conventions

(o) Within a chapter, the lemmata, propositions etc. are numbered consecutively.
(i) For $a, b \in \mathbf{Z}$, we denote by $[a, b]:=\{c \in \mathbf{Z}: a \leqslant c \leqslant b\}$ the interval in \mathbf{Z}.
(ii) For $m \in \mathbf{Z} \backslash\{0\}$ and a prime p, we denote by $m[p]:=p^{v_{p}(m)}$ the p-part of m, where v_{p} denotes the valuation of an integer at p.
(iii) If R is a discrete valuation ring with maximal ideal generated by r, we write $v_{r}(x)$ for the valuation of $x \in R \backslash\{0\}$ at r, i.e. $x / r^{v_{r}(x)}$ is a unit in R. In addition, $v_{r}(0):=+\infty$.
(iv) Given an element x algebraic over a field K, we denote by $\mu_{x, K}(X) \in K[X]$ the minimal polynomial of x over K.
(v) Given a commutative ring A and an element $a \in A$, we sometimes denote the quotient by $A / a:=$ $A / a A$ - mainly if A plays the role of a base ring. For $b, c \in A$, we write $b \equiv_{a} c$ if $b-c \in a A$.
(vi) For an assertion X, which might be true or not, we let $\{X\}$ equal 1 if X is true, and equal 0 if X is false.

Throughout, let $p \geqslant 3$ be a prime.

1 A polynomial lemma

We consider the polynomial ring $\mathbf{Z}[X, Y]$.
Lemma 1.1 We have $(X+p Y)^{k} \equiv_{k[p] \cdot p^{2} Y^{2}} X^{k}+k X^{k-1} p Y$ for $k \geqslant 1$.
Since $\binom{k}{j}=k / j \cdot\binom{k-1}{j-1}$, we obtain for $j \geqslant 2$ that

$$
\begin{aligned}
v_{p}\left(p^{j}\binom{k}{j}\right) & \geqslant j+v_{p}(k)-v_{p}(j) \\
& \geqslant v_{p}(k)+2
\end{aligned}
$$

where the second inequality follows from $j \geqslant 2$ if $v_{p}(j)=0$, and from $j \geqslant p^{v_{p}(j)} \geqslant 3^{v_{p}(j)} \geqslant$ $v_{p}(j)+2$ if $v_{p}(j) \geqslant 1$.

Corollary 1.2 We have $(X+p Y)^{k} \equiv_{k[p] \cdot p Y} X^{k}$ for $k \geqslant 1$.
Corollary 1.3 For $l \geqslant 1$ and $x, y \in \mathbf{Z}$ such that $x \equiv_{p^{l}} y$, we have $x^{k} \equiv_{k[p] \cdot p^{l}} y^{k}$ for $k \geqslant 1$.

Corollary 1.4 We have $(X+Y)^{p^{\beta+\alpha}} \equiv_{p^{\alpha+1}}\left(X^{p^{\beta}}+Y^{p^{\beta}}\right)^{p^{\alpha}}$ for all $\alpha, \beta \geqslant 0$.
The assertion follows by (1.2) since $f(X, Y) \equiv_{p} g(X, Y)$ implies that $f(X, Y)^{p^{\alpha}} \equiv_{p^{\alpha+1}}$ $g(X, Y)^{p^{\alpha}}$, where $f(X, Y), g(X, Y) \in \mathbf{Z}[X, Y]$.

2 Consecutive purely ramified extensions

2.1 Setup

Let $T \mid S$ and $S \mid R$ be finite and purely ramified extensions of discrete valuation rings, of residue characteristic char $R / r R=p$. The maximal ideals of R, S and T are generated by $r \in R, s \in S$ and $t \in T$, and the fields of fractions are denoted by $K=\operatorname{frac} R, L=\operatorname{frac} S$ and $M=\operatorname{frac} T$, respectively. Denote $m=[M: L]$ and $l=[L: K]$. We may and will assume $s=(-1)^{m+1} \mathrm{~N}_{M \mid L}(t)$ and $r=(-1)^{l+1} \mathrm{~N}_{L \mid K}(s)$.
We have $S=R[s]$ with

$$
\mu_{s, K}(X)=X^{l}+\left(\sum_{j \in[1, l-1]} a_{j} X^{j}\right)-r \in R[X]
$$

and $T=R[t]$ with

$$
\mu_{t, K}(X)=X^{l m}+\left(\sum_{j \in[1, l m-1]} b_{j} X^{j}\right)-r \in R[X]
$$

Cf. [9, I.§7, prop. 18]. The situation can be summarized in the diagram

Note that $r \mid p$, and that for $z \in M$, we have $v_{t}(z)=m \cdot v_{s}(z)=m l \cdot v_{r}(z)$.

2.2 Characteristic 0

In this section, we assume char $K=0$. In particular, $\mathbf{Z}_{(p)} \subseteq R$.
Assumption 2.1 Suppose given $x, y \in T$ and $k \in[1, l-1]$ such that
(i) $p \mid y$ and $t^{m} \equiv_{y} s$,
(ii) $x \mid j a_{j}$ for all $j \in[1, l-1]$, and
(iii) $x r \mid j a_{j}$ for all $j \in[1, k-1]$.

Put $c:=\operatorname{gcd}\left(x y s^{k-1}, y l s^{l-1}\right) \in T$.

Lemma 2.2 Given (2.1), we have $c \mid \mu_{s, K}\left(t^{m}\right)$.
We may decompose

$$
\begin{aligned}
\mu_{s, K}\left(t^{m}\right) & =\mu_{s, K}\left(t^{m}\right)-\mu_{s, K}(s) \\
& =\left(t^{m l}-s^{l}\right)+\left(\sum_{j \in[1, k-1]} a_{j}\left(t^{m j}-s^{j}\right)\right)+\left(\sum_{j \in[k, l-1]} a_{j}\left(t^{m j}-s^{j}\right)\right) .
\end{aligned}
$$

Now since $t^{m}=s+z y$ for some $z \in T$ by (2.1.i), we have

$$
t^{m j} \stackrel{(1.1)}{\equiv} j y^{2} s^{j}+j s^{j-1} z y \equiv_{j s^{j-1} y} s^{j}
$$

for any $j \geqslant 1$, so that $s^{j-1}|r| p \mid y$ gives $t^{m j} \equiv_{j^{j-1} y} s^{j}$.
In particular, $y l s^{l-1} \mid t^{m l}-s^{l}$.
Moreover, $x y s^{l} \mid \sum_{j \in[1, k-1]} a_{j}\left(t^{m j}-s^{j}\right)$ by (2.1.iii).
Finally, $x y s^{k-1} \mid \sum_{j \in[k, l-1]} a_{j}\left(t^{m j}-s^{j}\right)$ by (2.1.ii).

The following proposition will serve as inductive step in (3.2).

Proposition 2.3 Given (2.1), we have $t^{-j} c \mid b_{j}$ if $j \not \equiv_{m} 0$ and $t^{-j} c \mid\left(b_{j}-a_{j / m}\right)$ if $j \equiv_{m} 0$, where $j \in[1, l m-1]$.

From (2.2) we take

$$
\sum_{j \in[1, l m-1]}\left(b_{j}-\left\{j \equiv_{m} 0\right\} a_{j / m}\right) t^{j}=-\mu_{s, K}\left(t^{m}\right) \equiv_{c} 0 .
$$

Since the summands have pairwise different valuations at t, we obtain

$$
\left(b_{j}-\left\{j \equiv_{m} 0\right\} a_{j / m}\right) t^{j} \equiv_{c} 0
$$

for all $j \in[1, l m-1]$.

2.3 As an illustration: cyclotomic polynomials

For $n \geqslant 1$, we choose primitive roots of unity $\zeta_{p^{n}}$ over \mathbf{Q} in such a manner that $\zeta_{p^{n+1}}^{p}=\zeta_{p^{n}}$. We abbreviate $\vartheta_{n}=\zeta_{p^{n}}-1$.
We shall show by induction on n that writing

$$
\mu_{\vartheta_{n}, \mathbf{Q}}(X)=\Phi_{p^{n}}(X+1)=\sum_{j \in\left[0, p^{n-1}(p-1)\right]} d_{n, j} X^{j}
$$

with $d_{n, j} \in \mathbf{Z}$, we have $p^{n-1} \mid j d_{n, j}$ for $j \in\left[0, p^{n-1}(p-1)\right]$, and even $p^{n} \mid j d_{n, j}$ for $j \in\left[0, p^{n-1}(p-2)\right]$.
This being true for $n=1$ since $\Phi_{p}(X+1)=\left((X+1)^{p}-1\right) / X$, we assume it to be true for $n-1$ and shall show it for n, where $n \geqslant 2$. We apply the result of the previous section to $R=\mathbf{Z}_{(p)}, r=-p, S=\mathbf{Z}_{(p)}\left[\vartheta_{n-1}\right], s=\vartheta_{n-1}$ and $T=\mathbf{Z}_{(p)}\left[\vartheta_{n}\right], t=\vartheta_{n}$. In particular, we have $l=p^{n-2}(p-1)$ and $\mu_{s, K}(X)=\Phi_{p^{n-1}}(X+1)$; we have $m=p$ and $\mu_{t, L}(X)=(X+1)^{p}-1-\vartheta_{n-1}$; finally, we have $\mu_{t, K}(X)=\Phi_{p^{n}}(X+1)$.
We may choose $y=p \vartheta_{n}, x=p^{n-2}$ and $k=p^{n-2}(p-2)+1$ in (2.1). Hence $c=p^{n-1} \vartheta_{n}^{p^{n}-2 p^{n-1}+1}$. By (2.3), we obtain that $p^{n-1} \vartheta_{n}^{p^{n}-2 p^{n-1}+1-j}$ divides $d_{n, j}-d_{n-1, j / p}$ if $j \equiv_{p} 0$ and that it divides $d_{n, j}$ if $j \not \equiv_{p} 0$. Since the coefficients in question are in R, we may draw the following conclusion.

$$
\left\{\begin{array}{c}
\text { If } j \equiv_{p} 0, \text { then } p^{n} \mid d_{n, j}-d_{n-1, j / p} \text { if } j \leqslant p^{n-1}(p-2), \tag{I}\\
\text { and } p^{n-1} \mid d_{n, j}-d_{n-1, j / p} \text { if } j>p^{n-1}(p-2) ; \\
\text { if } j \not \equiv_{p} 0, \text { then } p^{n} \mid d_{n, j} \text { if } j \leqslant p^{n-1}(p-2) \\
\text { and } p^{n-1} \mid d_{n, j} \text { if } j>p^{n-1}(p-2) .
\end{array}\right.
$$

By induction, this establishes the claim.
Using (1.4), assertion (I) also follows from the more precise relation

$$
\begin{equation*}
\Phi_{p^{n}}(X+1)-\Phi_{p^{n-1}}\left(X^{p}+1\right) \equiv_{p^{n}} X^{p^{n-1}(p-2)}\left(\left(X^{p}+1\right)^{p^{n-2}}-(X+1)^{p^{n-1}}\right) \tag{II}
\end{equation*}
$$

for $n \geqslant 2$, which we shall show now. In fact, by (1.4) we have $(X+1)^{p^{n}} \equiv_{p^{n}}\left(X^{p}+1\right)^{p^{n-1}}$ as well as $\left(X^{p}+1\right)^{p^{n-2}}-(X+1)^{p^{n-1}} \equiv_{p^{n-1}} 0$, and so

$$
\begin{array}{ll}
& \left((X+1)^{p^{n}}-1\right)\left(\left(X^{p}+1\right)^{p^{n-2}}-1\right)-\left(\left(X^{p}+1\right)^{p^{n-1}}-1\right)\left((X+1)^{p^{n-1}}-1\right) \\
\equiv_{p^{n}} & \left(\left(X^{p}+1\right)^{p^{n-1}}-1\right)\left(\left(X^{p}+1\right)^{p^{n-2}}-1\right)-\left(\left(X^{p}+1\right)^{p^{n-1}}-1\right)\left((X+1)^{p^{n-1}}-1\right) \\
= & \left(\left(X^{p}+1\right)^{p^{n-1}}-1\right)\left(\left(X^{p}+1\right)^{p^{n-2}}-(X+1)^{p^{n-1}}\right) \\
\equiv_{p^{n}} & X^{p^{n}}\left(\left(X^{p}+1\right)^{p^{n-2}}-(X+1)^{p^{n-1}}\right) \\
= & X^{p^{n-1}(p-2)}\left(\left(X^{p}+1\right)^{p^{n-2}}-(X+1)^{p^{n-1}}\right) \cdot X^{p^{n-1}} \cdot X^{p^{n-1}} \\
\equiv_{p^{n}} & X^{p^{n-1}(p-2)}\left(\left(X^{p}+1\right)^{p^{n-2}}-(X+1)^{p^{n-1}}\right)\left((X+1)^{p^{n-1}}-1\right)\left(\left(X^{p}+1\right)^{p^{n-2}}-1\right),
\end{array}
$$

and the result follows by division by the monic polynomial

$$
\left((X+1)^{p^{n-1}}-1\right)\left(\left(X^{p}+1\right)^{p^{n-2}}-1\right)
$$

Finally, we remark that writing $F_{n}(X):=\Phi_{p^{n}}(X+1)+X^{p^{n}-2 p^{n-1}}(X+1)^{p^{n-1}}$, we can equivalently reformulate (II) to

$$
F_{n}(X) \equiv_{p^{n}} \quad F_{n-1}\left(X^{p}\right)
$$

2.4 Characteristic p

In this section, we assume char $K=p$.
Assumption 2.4 Suppose given $x, y \in T$ and $k \in[1, l-1]$ such that
(i) $t^{m} \equiv_{y s} s$,
(ii) $x \mid a_{j} y^{j[p]}$ for all $j \in[1, l-1]$, and
(iii) $x r \mid a_{j} y^{j[p]}$ for all $j \in[1, k-1]$.

Let $c:=\operatorname{gcd}\left(x s^{k}, y^{l[p]} s^{l}\right) \in T$.
Lemma 2.5 Given (2.4), we have $c \mid \mu_{s, K}\left(t^{m}\right)$.
We may decompose

$$
\begin{aligned}
\mu_{s, K}\left(t^{m}\right) & =\mu_{s, K}\left(t^{m}\right)-\mu_{s, K}(s) \\
& =\left(t^{m l}-s^{l}\right)+\left(\sum_{j \in[1, k-1]} a_{j}\left(t^{m j}-s^{j}\right)\right)+\left(\sum_{j \in[k, l-1]} a_{j}\left(t^{m j}-s^{j}\right)\right) .
\end{aligned}
$$

Now since $t^{m} \equiv_{y s} s$, we have $t^{m j} \equiv_{y_{j}[p] s^{j}} s^{j}$ for any $j \geqslant 1$.
In particular, $y^{l[p]} s^{l} \mid t^{m l}-s^{l}$.
Moreover, $x s^{l} \mid \sum_{j \in[1, k-1]} a_{j}\left(t^{m j}-s^{j}\right)$ by (2.4.iii).
Finally, $x s^{k} \mid \sum_{j \in[k, l-1]} a_{j}\left(t^{m j}-s^{j}\right)$ by (2.4.ii).
Proposition 2.6 Given (2.4), we have $t^{-j} c \mid b_{j}$ if $j \not \equiv_{m} 0$ and $t^{-j} c \mid\left(b_{j}-a_{j / m}\right)$ if $j \equiv_{m} 0$ for $j \in[1, l m-1]$.
This follows using (2.5), cf. (2.3).

3 Towers of purely ramified extensions

Suppose given a chain

$$
R_{0} \subseteq R_{1} \subseteq R_{2} \subseteq \cdots
$$

of finite purely ramified extensions $R_{i+1} \mid R_{i}$ of discrete valuations rings, with maximal ideal generated by $r_{i} \in R_{i}$, of residue characteristic char $R_{i} / r_{i} R_{i}=p$, with field of fractions $K_{i}=\operatorname{frac} R_{i}$, and of degree $\left[K_{i+1}: K_{i}\right]=p^{\kappa}=q$ for $i \geqslant 0$, where $\kappa \geqslant 1$ is an integer stipulated to be independent of i. We may and will suppose that $\mathrm{N}_{K_{i+1} \mid K_{i}}\left(r_{i+1}\right)=r_{i}$ for $i \geqslant 0$. We write

$$
\mu_{r_{i}, K_{0}}(X)=X^{q^{i}}+\left(\sum_{j \in\left[1, q^{i}-1\right]} a_{i, j} X^{j}\right)-r_{0} \in R_{0}[X] .
$$

For $j \geqslant 1$, we denote $v_{q}(j):=\max \left\{\alpha \in \mathbf{Z}_{\geqslant 0}: j \equiv_{q^{\alpha}} 0\right\}$. That is, $v_{q}(j)$ is the largest integer below $v_{p}(j) / \kappa$. We abbreviate $g:=(q-2) /(q-1)$.

Assumption 3.1 Suppose given $f \in R_{0}$ such that $r_{i}^{q-1} f \mid r_{i}^{q}-r_{i-1}$ for all $i \geqslant 0$. If char $K_{0}=0$, then suppose $p|f| q$. If char $K_{0}=p$, then suppose $r_{0} \mid f$.

Proposition 3.2 Assume (3.1).
(i) We have $f^{i-v_{q}(j)} \mid a_{i, j}$ for $i \geqslant 1$ and $j \in\left[1, q^{i}-1\right]$.
(i') If $j<q^{i} g$, then $f^{i-v_{q}(j)} r_{0} \mid a_{i, j}$.
(ii) We have $a_{i, j} \equiv_{f^{i+1}} a_{i+\beta, q^{\beta} j}$ for $i \geqslant 1, j \in\left[1, q^{i}-1\right]$ and $\beta \geqslant 1$.
(ii') If $j<q^{i} g$, then $a_{i, j} \equiv{ }_{f^{i+1} r_{0}} a_{i+\beta, q^{\beta} j}$ for $\beta \geqslant 1$.
Consider the case char $K_{0}=0$. To prove ($\mathrm{i}, \mathrm{i}^{\prime}$), we perform an induction on i, the assertion being true for $i=1$ by (3.1). So suppose given $i \geqslant 2$ and the assertion to be true for $i-1$. To apply (2.3), we let $R=R_{0}, r=r_{0}, S=R_{i-1}, s=r_{i-1}, T=R_{i}$ and $t=r_{i}$. Furthermore, we let $y=r_{i}^{q-1} f, x=f^{i-1}$ and $k=q^{i-1}-\left(q^{i-1}-1\right) /(q-1)$, so that (2.1) is satisfied by (3.1) and by the inductive assumption. We have $c=f^{i} r_{i}^{q k-1}$.

Consider $j \in\left[1, q^{i}-1\right]$. If $j \not \equiv_{q} 0$, then (2.3) gives

$$
v_{r_{i}}\left(a_{i, j} / f^{i}\right) \geqslant q k-1-j,
$$

whence f^{i} divides $a_{i, j} ; f^{i}$ strictly divides $a_{i, j}$ if $j<q^{i} g$, since $0<(q k-1)-q^{i} g=1 /(q-1)<$ 1.

If $j \equiv{ }_{q} 0$, then (2.3) gives

$$
v_{r_{i}}\left(\left(a_{i, j}-a_{i-1, j / q}\right) / f^{i}\right) \geqslant q k-1-j
$$

whence f^{i} divides $a_{i, j}-a_{i-1, j / q}$; strictly, if $j<q^{i} g$. By induction, $f^{i-1-v_{q}(j / q)}$ divides $a_{i-1, j / q}$; strictly, if $j / q<q^{i-1} g$. But $a_{i-1, j / q} \equiv{ }_{f^{i}} a_{i, j}$, and therefore $f^{i-v_{q}(j)}$ divides also $a_{i, j}$; strictly, if $j<q^{i} g$. This proves ($\mathrm{i}, \mathrm{i}^{\prime}$).
The case $\beta=1$ of ($\mathrm{ii}, \mathrm{ii}^{\prime}$) has been established in the course of the proof of ($\mathrm{i}, \mathrm{i}^{\prime}$). The general case follows by induction.
Consider the case char $K_{0}=p$. To prove ($\mathrm{i}, \mathrm{i}^{\prime}$), we perform an induction on i, the assertion being true for $i=1$ by (3.1). So suppose given $i \geqslant 2$ and the assertion to be true for $i-1$. To apply (2.6), we let $R=R_{0}, r=r_{0}, S=R_{i-1}, s=r_{i-1}, T=R_{i}$ and $t=r_{i}$. Furthermore, we let $y=r_{i}^{-1} f, x=r_{i}^{-1} f^{i}$ and $k=q^{i-1}-\left(q^{i-1}-1\right) /(q-1)$, so that (2.4) is satisfied by (3.1) and by the inductive assumption. In fact, $x y^{-j[p]}=r_{i}^{j[p]-1} f^{i-j[p]}$ divides $f^{i-1-v_{q}(j)}$ both if $j \not \equiv_{p} 0$ and if $j \equiv_{p} 0$; in the latter case we make use of the inequality $p^{\alpha-1}(p-1) \geqslant \alpha+1$ for $\alpha \geqslant 1$, which needs $p \geqslant 3$. We obtain $c=f^{i} r_{i}^{q k-1}$.
Using (2.6) instead of (2.3), we may continue as in the former case to prove (i, i^{\prime}), and, in the course of this proof, also (ii, ii^{\prime}).

4 Galois descent of a divisibility

Let

be a commutative diagram of finite, purely ramified extensions of discrete valuation rings. Let $s \in S, t \in T, \tilde{s} \in \tilde{S}$ and $\tilde{t} \in \tilde{T}$ generate the respective maximal ideals. Let $L=\operatorname{frac} S$, $M=\operatorname{frac} T, \tilde{L}=\operatorname{frac} \tilde{S}$ and $\tilde{M}=\operatorname{frac} \tilde{T}$ denote the respective fields of fractions. We assume the extensions $M \mid L$ and $\tilde{L} \mid L$ to be linearly disjoint and \tilde{M} to be the composite of M and \tilde{L}. Thus $m:=[M: L]=[\tilde{M}: \tilde{L}]$ and $[\tilde{L}: L]=[\tilde{M}: M]$. We assume $\tilde{L} \mid L$ to be galois and identify $G:=\operatorname{Gal}(\tilde{L} \mid L)=\operatorname{Gal}(\tilde{M} \mid M)$ via restriction. We may and will assume that $s=\mathrm{N}_{\tilde{L} \mid L}(\tilde{s})$, and that $t=\mathrm{N}_{\tilde{M} \mid M}(\tilde{t})$.

Lemma 4.1 In \tilde{T}, the element $1-\tilde{t}^{m} / \tilde{s}$ divides $1-t^{m} / s$.
Let $\tilde{d}=1-\tilde{t}^{m} / \tilde{s}$, so that $\tilde{t}^{m}=\tilde{s}(1-\tilde{d})$. We conclude

$$
\begin{aligned}
t^{m} & =\mathrm{N}_{\tilde{M} \mid M}\left(\tilde{t}^{m}\right) \\
& =\mathrm{N}_{\tilde{L} \mid L}(\tilde{s}) \cdot \prod_{\sigma \in G}\left(1-\tilde{d}^{\sigma}\right) \\
& \equiv_{s \tilde{d}} \mathrm{~s}
\end{aligned}
$$

5 Cyclotomic number fields

5.1 Coefficient valuation bounds

For $n \geqslant 1$, we let $\zeta_{p^{n}}$ be a primitive p^{n} th root of unity over \mathbf{Q}. We make choices in such a manner that $\zeta_{p^{n}}^{p}=\zeta_{p^{n-1}}$ for $n \geqslant 2$. We denote $\vartheta_{n}=\zeta_{p^{n}}-1$ and $F_{n}=\mathbf{Q}\left(\zeta_{p^{n}}\right)$. Let $E_{n}=\mathrm{Fix}_{C_{p-1}} F_{n}$, so $\left[E_{n}: \mathbf{Q}\right]=p^{n-1}$. Let

$$
\pi_{n}=\mathrm{N}_{F_{n} \mid E_{n}}\left(\vartheta_{n}\right)=\prod_{j \in[1, p-1]}\left(\zeta_{p^{p^{n}}}^{p^{n-1}}-1\right) .
$$

The minimal polynomial $\mu_{\vartheta_{n}, F_{n-1}}(X)=(X+1)^{p}-\vartheta_{n-1}-1$ shows that $\mathrm{N}_{F_{n} \mid F_{n-1}}\left(\vartheta_{n}\right)=\vartheta_{n-1}$, hence also $\mathrm{N}_{E_{n} \mid E_{n-1}}\left(\pi_{n}\right)=\pi_{n-1}$. Note that $\pi_{1}=p$ and $E_{1}=\mathbf{Q}$.
Let \mathcal{O} be the integral closure of $\mathbf{Z}_{(p)}$ in E_{n}. Since $\mathrm{N}_{E_{n} \mid \mathbf{Q}}\left(\pi_{n}\right)=\pi_{1}=p$, we have $\mathbf{Z}_{(p)} / p \mathbf{Z}_{(p)} \xrightarrow{\sim} \mathcal{O} / \pi_{n} \mathcal{O}$. In particular, the ideal $\pi_{n} \mathcal{O}$ in \mathcal{O} is prime. Now $\pi_{n}^{p^{n-1}} \mathcal{O}=p \mathcal{O}$, since $\pi_{n}^{p^{n-1}} / p=\pi_{n}^{p^{n-1}} / \mathrm{N}_{E_{n} \mid \mathbf{Q}}\left(\pi_{n}\right) \in \mathbf{Z}_{(p)}\left[\vartheta_{n}\right]^{*} \cap E_{n}=\mathcal{O}^{*}$. Thus \mathcal{O} is a discrete valuation ring, purely ramified of degree p^{n-1} over $\mathbf{Z}_{(p)}$, and so $\mathcal{O}=\mathbf{Z}_{(p)}\left[\pi_{n}\right]$ [9, I.§7, prop. 18]. In particular, $E_{n}=\mathbf{Q}\left(\pi_{n}\right)$.

Remark 5.1 The subring $\mathbf{Z}\left[\pi_{n}\right]$ of $\mathbf{Q}\left(\pi_{n}\right)$, however, is not integrally closed in general. For example, if $p=5$ and $n=2$, then $\mu_{\pi_{2}, \mathbf{Q}}(X)=X^{5}-20 X^{4}+100 X^{3}-125 X^{2}+50 X-5$ has discriminant $5^{8} \cdot 7^{6}$, which does not divide the discriminant of $\Phi_{5^{2}}(X)$, which is 5^{35}.

Lemma 5.2 We have $\pi_{n}^{p} \equiv_{\pi_{n}^{p-1} p} \pi_{n-1}$ for $n \geqslant 2$.
First of all, $\vartheta_{n}^{p} \equiv_{\vartheta_{n} p} \vartheta_{n-1}$ since $(X-1)^{p}-\left(X^{p}-1\right)$ is divisible by $p(X-1)$ in $\mathbf{Z}[X]$. Letting $\tilde{T}=\mathbf{Z}_{(p)}\left[\vartheta_{n}\right]$ and $(\tilde{t}, \tilde{s}, t, s)=\left(\vartheta_{n}, \vartheta_{n-1}, \pi_{n}, \pi_{n-1}\right)$, (4.1) shows that $1-\vartheta_{n}^{p} / \vartheta_{n-1}$ divides $1-\pi_{n}^{p} / \pi_{n-1}$. Therefore, $\vartheta_{n} p \vartheta_{n-1}^{-1} \pi_{n-1} \mid \pi_{n-1}-\pi_{n}^{p}$.

Now suppose given $m \geqslant 1$. To apply (3.2), we let $f=q=p, R_{i}=\mathbf{Z}_{(p)}\left[\pi_{m+i}\right]$ and $r_{i}=\pi_{m+i}$ for $i \geqslant 0$. We keep the notation

$$
\mu_{\pi_{m+i}, E_{m}}(X)=\mu_{r_{i}, K_{0}}(X)=X^{p^{i}}+\left(\sum_{j \in\left[1, p^{i}-1\right]} a_{i, j} X^{j}\right)-\pi_{m} \in R_{0}[X]=\mathbf{Z}_{(p)}\left[\pi_{m}\right][X]
$$

Theorem 5.3

(i) We have $p^{i} \mid j a_{i, j}$ for $i \geqslant 1$ and $j \in\left[1, p^{i}-1\right]$.
(i') If $j<p^{i}(p-2) /(p-1)$, then $p^{i} \pi_{m} \mid j a_{i, j}$.
(ii) We have $a_{i, j} \equiv_{p^{i+1}} a_{i+\beta, p^{\beta} j}$ for $i \geqslant 1, j \in\left[1, p^{i}-1\right]$ and $\beta \geqslant 1$.
(ii') If $j<p^{i}(p-2) /(p-1)$, then $a_{i, j} \equiv_{p^{i+1} \pi_{m}} a_{i+\beta, p^{\beta} j}$.
Assumption (3.1) is fulfilled by virtue of (5.2), whence the assertions follow by (3.2).
Example 5.4 For $p=5, m=1$ and $i=2$, we have

$$
\begin{aligned}
\mu_{\pi_{3}, \mathbf{Q}}(X)= & X^{25}-4 \cdot 5^{2} X^{24}+182 \cdot 5^{2} X^{23}-8 \cdot 5^{6} X^{22}+92823 \cdot 5^{2} X^{21} \\
& -6175454 \cdot 5 X^{20}+12194014 \cdot 5^{2} X^{19}-18252879 \cdot 5^{3} X^{18} \\
& +4197451 \cdot 5^{5} X^{17}-466901494 \cdot 5^{3} X^{16}+8064511079 \cdot 5^{2} X^{15} \\
& -4323587013 \cdot 5^{3} X^{14}+1791452496 \cdot 5^{4} X^{13}-113846228 \cdot 5^{6} X^{12} \\
& +685227294 \cdot 5^{5} X^{11}-15357724251 \cdot 5^{3} X^{10}+2002848591 \cdot 5^{4} X^{9} \\
& -4603857997 \cdot 5^{3} X^{8}+287207871 \cdot 5^{4} X^{7}-291561379 \cdot 5^{3} X^{6} \\
& +185467152 \cdot 5^{2} X^{5}-2832523 \cdot 5^{3} X^{4}+121494 \cdot 5^{3} X^{3}-514 \cdot 5^{4} X^{2} \\
& +4 \cdot 5^{4} X-5 .
\end{aligned}
$$

Now $v_{5}\left(a_{3,22}\right)=6 \neq 5=v_{5}\left(a_{4,5 \cdot 22}\right)$, so the valuations of the coefficients considered in (5.3.ii) differ in general. This, however, does not contradict the assertion $a_{3,22} \equiv_{5^{4}} a_{4,5 \cdot 22}$ from loc. cit.

5.2 A different proof of (5.3. i, i ') and some exact valuations

Let $m \geqslant 1$ and $i \geqslant 0$. We denote $R_{i}=\mathbf{Z}_{(p)}\left[\pi_{m+i}\right], r_{i}=\pi_{m+i}, K_{i}=$ frac R_{i}, $\tilde{R}_{i}=\mathbf{Z}_{(p)}\left[\vartheta_{m+i}\right]$ and $\tilde{r}_{i}=\vartheta_{m+i}$. Denoting by \mathfrak{D} the respective different [9, III.§3], we have $\mathfrak{D}_{\tilde{R}_{i} \mid \tilde{R}_{0}}=\left(p^{i}\right)$ and $\mathfrak{D}_{\tilde{R}_{i} \mid R_{i}}=\left(\tilde{r}_{i}^{p-2}\right)$ [9, III. $\S 3$, prop. 13], whence

$$
\begin{equation*}
\mathfrak{D}_{R_{i} \mid R_{0}}=\left(\mu_{r_{i}, K_{0}}^{\prime}\left(r_{i}\right)\right)=\mathfrak{D}_{\tilde{R}_{i} \mid \tilde{R}_{0}} \mathfrak{D}_{\tilde{R}_{0} \mid R_{0}} \mathfrak{D}_{\tilde{R}_{i} \mid R_{i}}^{-1}=\left(p^{i} r_{i}^{p^{i}-1-\left(p^{i}-1\right) /(p-1)}\right) \tag{*}
\end{equation*}
$$

cf. [9, III.§3, cor. 2]. Therefore, $p^{i} r_{i}^{p^{i}-1-\left(p^{i}-1\right) /(p-1)}$ divides $j a_{i, j} r_{i}^{j-1}$ for $j \in\left[1, p^{i}-1\right]$, and (5.3. i, i') follow.

Moreover, since only for $j=p^{i}-\left(p^{i}-1\right) /(p-1)$ the valuations at r_{i} of $p^{i} r_{i}^{p^{i}-1-\left(p^{i}-1\right) /(p-1)}$ and $j a_{i, j} r_{i}^{j-1}$ are congruent modulo p^{i}, we conclude by $(*)$ that they are equal, i.e. that p^{i} exactly divides $a_{i, p^{i}-\left(p^{i}-1\right) /(p-1)}$.

Corollary 5.5 The element $p^{i-\beta}$ exactly divides $a_{i, p^{i}-\left(p^{i}-p^{\beta}\right) /(p-1)}$ for $\beta \in[0, i-1]$.
This follows by (5.3.ii) from what we have just said.
E.g. in (5.4), 5^{1} exactly divides $a_{2,25-5}=a_{2,20}$, and 5^{2} exactly divides $a_{2,25-5-1}=a_{2,19}$.

5.3 Some traces

Let $\boldsymbol{\mu}_{p-1}$ denote the group of $(p-1)$ st roots of unity in \mathbf{Q}_{p}. We choose a primitive $(p-1)$ st root of unity $\zeta_{p-1} \in \boldsymbol{\mu}_{p-1}$ and may thus view $\mathbf{Q}\left(\zeta_{p-1}\right) \subseteq \mathbf{Q}_{p}$ as a subfield. Note that $\left[\mathbf{Q}\left(\zeta_{p-1}\right): \mathbf{Q}\right]=\varphi(p-1)$, where φ denotes Euler's function. The restriction of the valuation v_{p} at p on \mathbf{Q}_{p} to $\mathbf{Q}\left(\zeta_{p}\right)$, is a prolongation of the valuation v_{p} on \mathbf{Q} to $\mathbf{Q}\left(\zeta_{p-1}\right)$ (there are $\varphi(p-1)$ such prolongations).

Proposition 5.6 For $n \geqslant 1$, we have

$$
\operatorname{Tr}_{E_{n} \mid \mathbf{Q}}\left(\pi_{n}\right)=p^{n} s_{n}-p^{n-1} s_{n-1}
$$

where

$$
s_{n}:=\frac{1}{p-1} \sum_{H \subseteq \boldsymbol{\mu}_{p-1}}(-1)^{\# H}\left\{v_{p}\left(\sum_{\xi \in H} \xi\right) \geqslant n\right\} \quad \text { for } \quad n \geqslant 0
$$

We have $s_{0}=0$, and $s_{n} \in \mathbf{Z}$ for $n \geqslant 0$. The sequence $\left(s_{n}\right)_{n}$ becomes stationary at some minimally chosen $N_{0}(p)$. We have

$$
N_{0}(p) \leqslant N(p):=\max _{H \subseteq \boldsymbol{\mu}_{p-1}}\left\{v_{p}\left(\sum_{\xi \in H} \xi\right): \sum_{\xi \in H} \xi \neq 0\right\}+1
$$

An upper estimate for $N(p)$, hence for $N_{0}(p)$, is given in (5.13).
Proof of (5.6). For $j \in[1, p-1]$ the p-adic limits

$$
\xi(j):=\lim _{n \rightarrow \infty} j^{p^{n}}
$$

exist since $j^{p^{n-1}} \equiv_{p^{n}} j^{p^{n}}$ by (1.3). They are distinct since $\xi(j) \equiv_{p} j$, and, thus, form the group $\boldsymbol{\mu}_{p-1}=\{\xi(j) \mid j \in[1, p-1]\}$. Using the formula

$$
\operatorname{Tr}_{F_{n} \mid \mathbf{Q}}\left(\zeta_{p^{n}}^{m}\right)=p^{n}\left\{v_{p}(m) \geqslant n\right\}-p^{n-1}\left\{v_{p}(m) \geqslant n-1\right\}
$$

and the fact that $j^{p^{n-1}} \equiv_{p^{n}} \xi(j)$, we obtain

$$
\begin{aligned}
\operatorname{Tr}_{F_{n} \mid \mathbf{Q}}\left(\pi_{n}\right)= & \operatorname{Tr}_{F_{n} \mid \mathbf{Q}}\left(\prod_{j \in[1, p-1]}\left(1-\zeta_{p^{n}}^{j^{n-1}}\right)\right) \\
= & \sum_{J \subseteq[1, p-1]}(-1)^{\# J} \operatorname{Tr}_{F_{n} \mid \mathbf{Q}}\left(\zeta_{p^{n}}^{\sum_{j \in J} j^{p^{n-1}}}\right) \\
= & \sum_{J \subseteq[1, p-1]}(-1)^{\# J}\left(p^{n}\left\{v_{p}\left(\sum_{j \in J} \xi(j)\right) \geqslant n\right\}\right. \\
& \left.\quad-p^{n-1}\left\{v_{p}\left(\sum_{j \in J} \xi(j)\right) \geqslant n-1\right\}\right) \\
= & (p-1)\left(p^{n} s_{n}-p^{n-1} s_{n-1}\right),
\end{aligned}
$$

whence

$$
\operatorname{Tr}_{E_{n} \mid \mathbf{Q}}\left(\pi_{n}\right)=p^{n} s_{n}-p^{n-1} s_{n-1}
$$

Now $s_{0}=0 \in \mathbf{Z}$ by the binomial formula. Therefore, by induction, we conclude from $p^{n} s_{n}-p^{n-1} s_{n-1} \in \mathbf{Z}$ that $p^{n} s_{n} \in \mathbf{Z}$. Since $(p-1) s_{n} \in \mathbf{Z}$, too, we obtain $s_{n} \in \mathbf{Z}$.
As soon as $n \geqslant N(p)$, the conditions $v_{p}\left(\sum_{\xi \in H} \xi\right) \geqslant n$ and $v_{p}\left(\sum_{\xi \in H} \xi\right)=+\infty$ on $H \subseteq \boldsymbol{\mu}_{p-1}$ become equivalent, and we obtain

$$
s_{n}=\frac{1}{p-1} \sum_{H \subseteq \boldsymbol{\mu}_{p-1}}(-1)^{\# H}\left\{\sum_{\xi \in H} \xi=0\right\}
$$

which is independent of n. Thus $N_{0}(p) \leqslant N(p)$.

Lemma 5.7 We have $s_{1}=1$. In particular, $\operatorname{Tr}_{E_{2} \mid \mathbf{Q}}\left(\pi_{2}\right) \equiv_{p^{2}}-p$.
Since $\operatorname{Tr}_{E_{1} \mid \mathbf{Q}}\left(\pi_{1}\right)=\operatorname{Tr}_{\mathbf{Q} \mid \mathbf{Q}}(p)=p$, and since $s_{0}=0$, we have $s_{1}=1$ by (5.6). The congruence for $\operatorname{Tr}_{E_{2} \mid \mathbf{Q}}\left(\pi_{2}\right)$ follows again by (5.6).

Corollary 5.8 We have

$$
\mu_{\pi_{n}, \mathbf{Q}}(X) \equiv_{p^{2}} X^{p^{n-1}}+p X^{(p-1) p^{n-2}}-p
$$

for $n \geqslant 2$.
By dint of (5.7), this ensues from (5.3. i^{\prime}, ii).

Example 5.9 The last n for which we list s_{n} equals $N(p)$, except if there is a question mark in the next column. The table was calculated using Pascal ($p \leqslant 53$) and Magma ($p \geqslant 59$). In the last column, we list the upper bound for $N(p)$ calculated below (5.13).

s_{n}	$n=0$	1	2	3	4	5	6	7	upper bound for $N(p)$
$p=3$	0	1							
5	0	1							1
7	0	1							1
11	0	1	3						3
13	0	1	3						3
17	0	1	8	16					5
19	0	1	10	12					4
23	0	1	33	89	93				7
29	0	1	377	571	567				8
31	0	1	315	271	259				6
37	0	1	107	940	1296				9
41	0	1	6621	51693	18286	20186	20250		12
43	0	1	1707	4767	6921	6665			9
47	0	1	2250	272242	173355	181481	182361		16
53	0	1	71201	363798	1520045	1350049	1292229	1289925	18
59	0	1	1276	?					21
61	0	1	2516	?					12
67	0	1	407186	?					15
71	0	1	5816605	?					18
73	0	1	8370710	?					18
79	0	1	169135	?					18
83	0	1	632598	?					30
89	0	1	26445104	?					30
97	0	1	282789	?					24
101	0	1	25062002	?					31
103	0	1	56744199	?					25
107	0	1	1181268305	?					40
109	0	1	91281629	?					28
113	0	1	117774911422	?					37
127	0	1	6905447	?					28
131	0	1	2988330952791	?					37
137	0	1	1409600547	?					50
139	0	1	3519937121	?					34
149	0	1	25026940499	$?$					56
151	0	1	164670499159	?					31
157	0	1	51594129045351	?					38
163	0	1	288966887341	?					42
167	0	1	1205890070471	?					64
173	0	1	17802886165762	?					66
179	0	1	1311887715966	?					69
181	0	1	128390222739	?					38
191	0	1	233425263577158	?					57
193	0	1	306518196952028	?					51
197	0	1	347929949728221	?					66
199	0	1	9314622093145	$?$					48
211	0	1	12532938009082	$?$					39

So for example if $p=31$, then $\operatorname{Tr}_{\mathbf{Q}\left(\pi_{3}\right) \mid \mathbf{Q}}\left(\pi_{3}\right)=271 \cdot 31^{3}-315 \cdot 31^{2}$, whereas $\operatorname{Tr}_{\mathbf{Q}\left(\pi_{7}\right) \mid \mathbf{Q}}\left(\pi_{7}\right)=$ $259 \cdot 31^{7}-259 \cdot 31^{6}$. Moreover, $N_{0}(31)=N(31)=4 \leqslant 6$.

Remark 5.10 Vanishing (resp. vanishing modulo a prime) of sums of roots of unity has been studied extensively. See e.g. [2], [6], where also further references may be found.

Remark 5.11 Neither do we know whether $s_{n} \geqslant 0$ nor whether $\operatorname{Tr}_{E_{n} \mid \mathbf{Q}}\left(\pi_{n}\right) \geqslant 0$ always hold. Moreover, we do not know a prime p for which $N_{0}(p)<N(p)$.

Remark 5.12 We calculated some further traces appearing in (5.3), using Maple and Magma.
For $p=3, n \in[2,10]$, we have $\operatorname{Tr}_{E_{n} \mid E_{n-1}}\left(\pi_{n}\right)=3 \cdot 2$.
For $p=5, n \in[2,6]$, we have $\operatorname{Tr}_{E_{n} \mid E_{n-1}}\left(\pi_{n}\right)=5 \cdot 4$.
For $p=7, n \in[2,5]$, we have $\operatorname{Tr}_{E_{n} \mid E_{n-1}}\left(\pi_{n}\right)=7 \cdot 6$.
For $p=11$, we have $\operatorname{Tr}_{E_{2} \mid E_{1}}\left(\pi_{2}\right)=11 \cdot 32$, whereas

$$
\begin{aligned}
& \operatorname{Tr}_{E_{3} \mid E_{2}}\left(\pi_{3}\right) \\
&= 22 \cdot\left(15+\zeta^{2}+2 \zeta^{3}-\zeta^{5}+\zeta^{6}-2 \zeta^{8}-\zeta^{9}+2 \zeta^{14}-\zeta^{16}+\zeta^{18}-\zeta^{20}-2 \zeta^{24}\right. \\
&+2 \zeta^{25}-2 \zeta^{26}-\zeta^{27}-\zeta^{31}+2 \zeta^{36}-\zeta^{38}+\zeta^{41}-\zeta^{42}-2 \zeta^{43}+2 \zeta^{47}-3 \zeta^{49} \\
&-\zeta^{53}+\zeta^{54}+2 \zeta^{58}-\zeta^{60}-\zeta^{64}+\zeta^{67}+2 \zeta^{69}-\zeta^{71}-2 \zeta^{72}-\zeta^{75}-2 \zeta^{78} \\
&\left.+3 \zeta^{80}-\zeta^{82}-\zeta^{86}+2 \zeta^{91}-\zeta^{93}-2 \zeta^{95}-3 \zeta^{97}+2 \zeta^{102}+\zeta^{103}-\zeta^{104}-\zeta^{108}\right) \\
&= 22 \cdot 2014455354550939310427^{-1} \cdot(34333871352527722810654 \\
&+1360272405267541318242502 \pi-31857841148164445311437042 \pi^{2} \\
&+135733708409855976059658636 \pi^{3}-83763613130017142371566453 \pi^{4} \\
&+20444806599344408104299252 \pi^{5}-2296364631211442632168932 \pi^{6} \\
&+117743741083866218812293 \pi^{7}-2797258465425206085093 \pi^{8} \\
&\left.+27868038642441136108 \pi^{9}-79170513243924842 \pi^{10}\right)
\end{aligned}
$$

where $\zeta:=\zeta_{11^{2}}$ and $\pi:=\pi_{2}$.

5.4 An upper bound for $N(p)$

We view $\mathbf{Q}\left(\zeta_{p-1}\right)$ as a subfield of \mathbf{Q}_{p}, and now, in addition, as a subfield of \mathbf{C}. Since complex conjugation commutes with the operation of $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p-1}\right) \mid \mathbf{Q}\right)$, we have $\left|\mathrm{N}_{\mathbf{Q}\left(\zeta_{p-1}\right) \mid \mathbf{Q}}(x)\right|=$ $|x|^{\varphi(p-1)}$ for $x \in \mathbf{Q}\left(\zeta_{p-1}\right)$.
We abbreviate $\Sigma(H):=\sum_{\xi \in H} \xi$ for $H \subseteq \boldsymbol{\mu}_{p-1}$. Since $|\Sigma(H)| \leqslant p-1$, we have $\left|\mathbf{N}_{\mathbf{Q}\left(\zeta_{p-1}\right) \mid \mathbf{Q}}(\Sigma(H))\right| \leqslant(p-1)^{\varphi(p-1)}$. Hence, if $\Sigma(H) \neq 0$, then

$$
v_{p}(\Sigma(H)) \leqslant v_{p}\left(\mathrm{~N}_{\mathbf{Q}\left(\zeta_{p-1}\right) \mid \mathbf{Q}}(\Sigma(H))\right)<\varphi(p-1)
$$

and therefore $N(p) \leqslant \varphi(p-1)$. We shall ameliorate this bound by a logarithmic term.

Proposition 5.13 We have

$$
N(p) \leqslant \varphi(p-1)\left(1-\frac{\log \pi}{\log p}\right)+1
$$

for $p \geqslant 5$.

It suffices to show that $|\Sigma(H)| \leqslant p / \pi$ for $H \subseteq \boldsymbol{\mu}_{p-1}$. We will actually show that

$$
\max _{H \subseteq \boldsymbol{\mu}_{p-1}}|\Sigma(H)|=\frac{1}{\sin \frac{\pi}{p-1}}
$$

from which this inequality follows using $\sin x \geqslant x-x^{3} / 6$ and $p \geqslant 5$.
Choose $H \subseteq \boldsymbol{\mu}_{p-1}$ such that $|\Sigma(H)|$ is maximal. Since $p-1$ is even, the $(p-1)$ st roots of unity fall into pairs $(\eta,-\eta)$. The summands of $\Sigma(H)$ contain exactly one element of each such pair, since $|\Sigma(H)+\eta|^{2}+|\Sigma(H)-\eta|^{2}=2|\Sigma(H)|^{2}+2$ shows that at least one of the inequalities $|\Sigma(H)+\eta| \leqslant|\Sigma(H)|$ and $|\Sigma(H)-\eta| \leqslant|\Sigma(H)|$ fails.
By maximality, replacing a summand η by $-\eta$ in $\Sigma(H)$ does not increase the value of $|\Sigma(H)|$, whence

$$
|\Sigma(H)|^{2} \geqslant|\Sigma(H)-2 \eta|^{2}=|\Sigma(H)|^{2}-4 \operatorname{Re}(\eta \cdot \overline{\Sigma(H)})+4
$$

and thus

$$
\operatorname{Re}(\eta \cdot \overline{\Sigma(H)}) \geqslant 1>0
$$

Therefore, the $(p-1) / 2$ summands of $\Sigma(H)$ lie in one half-plane, whence the value of $|\Sigma(H)|$.

6 Cyclotomic function fields, after Carlitz and Hayes

6.1 Notation and basic facts

We shall give a brief review while fixing notation.
Let $\rho \geqslant 1$ and $r:=p^{\rho}$. Write $\mathcal{Z}:=\mathbf{F}_{r}[Y]$ and $\mathcal{Q}:=\mathbf{F}_{r}(Y)$, where Y is an independent variable. We fix an algebraic closure $\overline{\mathcal{Q}}$ of \mathcal{Q}. The Carlitz module structure on $\overline{\mathcal{Q}}$ is defined by the \mathbf{F}_{r}-algebra homomorphism given on the generator Y as

$$
\begin{aligned}
\mathcal{Z} & \longrightarrow \operatorname{End}_{\mathcal{Q}} \overline{\mathcal{Q}} \\
Y & \longmapsto\left(\xi \longmapsto \xi^{Y}:=Y \xi+\xi^{r}\right) .
\end{aligned}
$$

We write the module product of $\xi \in \overline{\mathcal{Q}}$ with $e \in \mathcal{Z}$ as ξ^{e}. For each $e \in \mathcal{Z}$, there exists a unique polynomial $P_{e}(X) \in \mathcal{Z}[X]$ that satisfies $P_{e}(\xi)=\xi^{e}$ for all $\xi \in \overline{\mathcal{Q}}$. In fact, $P_{1}(X)=X, P_{Y}(X)=Y X+X^{r}$, and $P_{Y^{i+1}}=Y P_{Y^{i}}(X)+P_{Y^{i}}\left(X^{r}\right)$ for $i \geqslant 1$. For a general $e \in \mathcal{Z}$, the polynomial $P_{e}(Y)$ is given by the according linear combination of these.
Note that $P_{e}(0)=0$, and that $P_{e}^{\prime}(X)=e$, whence $P_{e}(X)$ is separable, i.e. it decomposes as a product of distinct linear factors in $\overline{\mathcal{Q}}[X]$. Let

$$
\boldsymbol{\lambda}_{e}=\operatorname{ann}_{e} \overline{\mathcal{Q}}=\left\{\xi \in \overline{\mathcal{Q}}: \xi^{e}=0\right\} \subseteq \overline{\mathcal{Q}}
$$

be the annihilator submodule. Separability of $P_{e}(X)$ shows that $\# \boldsymbol{\lambda}_{e}=\operatorname{deg} P_{e}(X)=r^{\operatorname{deg} e}$. Given a \mathcal{Q}-linear automorphism σ of $\overline{\mathcal{Q}}$, we have $\left(\xi^{e}\right)^{\sigma}=P_{e}(\xi)^{\sigma}=P_{e}\left(\xi^{\sigma}\right)=\left(\xi^{\sigma}\right)^{e}$. In particular, $\boldsymbol{\lambda}_{e}$ is stable under σ. Therefore, $\mathcal{Q}\left(\boldsymbol{\lambda}_{e}\right)$ is a Galois extension of \mathcal{Q}.

Since $\# \operatorname{ann}_{\tilde{e}} \boldsymbol{\lambda}_{e}=\# \boldsymbol{\lambda}_{\tilde{e}}=r^{\operatorname{deg} \tilde{e}}$ for $\tilde{e} \mid e$, we have $\boldsymbol{\lambda}_{e} \simeq \mathcal{Z} / e$ as \mathcal{Z}-modules. It is not possible, however, to distinguish a particular isomorphism.

We shall restrict ourselves to prime powers now. We fix a monic irreducible polynomial $f=f(Y) \in \mathcal{Z}$ and write $q:=r^{\operatorname{deg} f}$. For $n \geqslant 1$, we let θ_{n} be a \mathcal{Z}-linear generator of $\boldsymbol{\lambda}_{f^{n}}$. We make our choices in such a manner that $\theta_{n+1}^{f}=\theta_{n}$ for $n \geqslant 1$. Note that $\mathcal{Z}\left[\boldsymbol{\lambda}_{f^{n}}\right]=\mathcal{Z}\left[\theta_{n}\right]$ since the elements of $\boldsymbol{\lambda}_{f^{n}}$ are polynomial expressions in θ_{n}.
Suppose given two roots $\xi, \tilde{\xi} \in \overline{\mathcal{Q}}$ of

$$
\Psi_{f^{n}}(X):=P_{f^{n}}(X) / P_{f^{n-1}}(X) \in \mathcal{Z}[X]
$$

i.e. $\xi, \tilde{\xi} \in \boldsymbol{\lambda}_{f^{n}} \backslash \boldsymbol{\lambda}_{f^{n-1}}$. Since ξ is a \mathcal{Z}-linear generator of $\boldsymbol{\lambda}_{f^{n}}$, there is an $e \in \mathcal{Z}$ such that $\tilde{\xi}=\xi^{e}$. Since $\xi^{e} / \xi=P_{e}(X) /\left.X\right|_{X=\xi} \in \mathcal{Z}\left[\theta_{n}\right], \tilde{\xi}$ is a multiple of ξ in $\mathcal{Z}\left[\theta_{n}\right]$. Reversing the argument, we see that $\tilde{\xi}$ is in fact a unit multiple of ξ in $\mathcal{Z}\left[\theta_{n}\right]$.

Lemma 6.1 The polynomial $\Psi_{f^{n}}(X)$ is irreducible.
We have $\Psi_{f^{n}}(0)=\left.\frac{P_{f^{n}}(X) / X}{P_{f^{n-1}}(X) / X}\right|_{X=0}=f$. We decompose $\Psi_{f^{n}}(X)=\prod_{i \in[1, k]} F_{i}(X)$ in its distinct monic irreducible factors $F_{i}(X) \in \mathcal{Z}[X]$. One of the constant terms, say $F_{j}(0)$, is thus a unit multiple of f in \mathcal{Z}, while the other constant terms are units. Thus, being conjugate under the Galois action, all roots of $F_{j}(X)$ in $\mathcal{Q}\left[\theta_{n}\right]$ are non-units in $\mathcal{Z}\left[\theta_{n}\right]$, and the remaining roots of $\Psi_{f^{n}}(X)$ are units. But all roots of $\Psi_{f^{n}}(X)$ are unit multiples of each other. We conclude that $\Psi_{f^{n}}(X)=F_{j}(X)$ is irreducible.

By (6.1), $\Psi_{f^{n}}(X)$ is the minimal polynomial of θ_{n} over \mathcal{Q}. In particular, $\left[\mathcal{Q}\left(\theta_{n}\right): \mathcal{Q}\right]=$ $q^{n-1}(q-1)$, and so

$$
\mathcal{Z}\left[\theta_{n}\right] \theta_{n}^{(q-1) q^{n-1}}=\mathcal{Z}\left[\theta_{n}\right] \mathrm{N}_{\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}}\left(\theta_{n}\right)=\mathcal{Z}\left[\theta_{n}\right] f
$$

In particular, $\mathcal{Z}_{(f)}\left[\theta_{n}\right]$ is a discrete valuation ring with maximal ideal generated by θ_{n}, purely ramified of index $q^{n-1}(q-1)$ over $\mathcal{Z}_{(f)}$, cf. [9, I.§7, prop. 18]. There is a group isomorphism

$$
\begin{aligned}
\left(\mathcal{Z} / f^{n}\right)^{*} & \xrightarrow{\sim} \operatorname{Gal}\left(\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}\right) \\
e & \longmapsto\left(\theta_{n} \longmapsto \theta_{n}^{e}\right),
\end{aligned}
$$

well defined since θ_{n}^{e} is a root of $\Psi_{f^{n}}(X)$, too; injective since θ_{n} generates $\boldsymbol{\lambda}_{f^{n}}$ over \mathcal{Z}; and surjective by cardinality.

Note that the Galois operation on $\mathcal{Q}\left(\theta_{n}\right)$ corresponding to $e \in\left(\mathcal{Z} / f^{n}\right)^{*}$ coincides with the module operation of e on the element θ_{n}, but not everywhere. For instance, if $f \neq Y$, then the Galois operation corresponding to Y sends 1 to 1 , whereas the module operation of Y sends 1 to $Y+1$.

The discriminant of $\mathcal{Z}\left[\theta_{n}\right]$ over \mathcal{Z} is given by $\Delta_{\mathcal{Z}\left[\theta_{n}\right] \mid \mathcal{Z}}=\mathrm{N}_{\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}}\left(\Psi_{f^{n}}^{\prime}\left(\theta_{n}\right)\right)$ $=\mathrm{N}_{\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}}\left(P_{f^{n}}^{\prime}\left(\theta_{n}\right) / P_{f^{n-1}}\left(\theta_{n}\right)\right)=\mathrm{N}_{\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}}\left(f^{n} / \theta_{1}\right)=f^{q^{n-1}(n q-n-1)}$.

Lemma 6.2 The ring $\mathcal{Z}\left[\theta_{n}\right]$ is the integral closure of \mathcal{Z} in $\mathcal{Q}\left(\theta_{n}\right)$.
Let $e \in \mathcal{Z}$ be a monic irreducible polynomial different from f. Write $\mathcal{O}_{0}:=\mathcal{Z}_{(e)}\left[\theta_{n}\right]$ and let \mathcal{O} be the integral closure of \mathcal{O}_{0} in $\mathcal{Q}\left(\theta_{n}\right)$. Let

$$
\begin{aligned}
& \mathcal{O}_{0}^{+}:=\left\{\xi \in \mathcal{Q}\left(\theta_{n}\right): \operatorname{Tr}_{\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}}\left(\xi \mathcal{O}_{0}\right) \subseteq \mathcal{Z}_{(e)}\right\} \\
& \mathcal{O}^{+}:=\left\{\xi \in \mathcal{Q}\left(\theta_{n}\right): \operatorname{Tr}_{\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}}(\xi \mathcal{O}) \subseteq \mathcal{Z}_{(e)}\right\}
\end{aligned}
$$

Then $\mathcal{O}_{0} \subseteq \mathcal{O} \subseteq \mathcal{O}^{+} \subseteq \mathcal{O}_{0}^{+}$. But $\mathcal{O}_{0}=\mathcal{O}_{0}^{+}$, since the $\mathcal{Z}_{(e)}$-linear determinant of this embedding is given by the discriminant $\Delta_{\mathcal{Z}\left[\theta_{n}\right] \mid \mathcal{Z}}$, which is a unit in \mathcal{O}_{0}.

We resume.

Proposition 6.3 ([1],[5], cf. [3, p. 115]) The extension $\mathcal{Q}\left(\theta_{n}\right) \mid \mathcal{Q}$ is galois of degree $\left[\mathcal{Q}\left(\theta_{n}\right): \mathcal{Q}\right]=(q-1) q^{n-1}$, with Galois group isomorphic to $\left(\mathcal{Z} / f^{n}\right)^{*}$. The integral closure of \mathcal{Z} in $\mathcal{Q}\left(\theta_{n}\right)$ is given by $\mathcal{Z}\left[\theta_{n}\right]$. We have $\mathcal{Z}\left[\theta_{n}\right] \theta_{n}^{\left[\mathcal{Q}\left(\theta_{n}\right): \mathcal{Q}\right]}=\mathcal{Z}\left[\theta_{n}\right] f$. In particular, θ_{n} is a prime element of $\mathcal{Z}\left[\theta_{n}\right]$, and the extension $\mathcal{Z}_{(f)}\left[\theta_{n}\right] \mid \mathcal{Z}_{(f)}$ of discrete valuation rings is purely ramified.

6.2 Coefficient valuation bounds

Denote $\mathcal{F}_{n}=\mathcal{Q}\left(\theta_{n}\right)$. Let $\mathcal{E}_{n}=\operatorname{Fix}_{C_{q-1}} \mathcal{F}_{n}$, so $\left[\mathcal{E}_{n}: \mathcal{Q}\right]=q^{n-1}$. Let

$$
\varpi_{n}=\mathrm{N}_{\mathcal{F}_{n} \mid \mathcal{E}_{n}}\left(\theta_{n}\right)=\prod_{e \in(\mathcal{Z} / f)^{*}} \theta_{n}^{e^{n-1}}
$$

The minimal polynomial $\mu_{\theta_{n}, \mathcal{F}_{n-1}}(X)=P_{f}(X)-\theta_{n-1}$ together with $X \mid P_{f}(X)$ shows that $\mathrm{N}_{\mathcal{F}_{n} \mid \mathcal{F}_{n-1}}\left(\theta_{n}\right)=\theta_{n-1}$, whence $\mathrm{N}_{\mathcal{E}_{n} \mid \mathcal{E}_{n-1}}\left(\varpi_{n}\right)=\varpi_{n-1}$. Note that $\varpi_{1}=\prod_{e \in(\mathcal{Z} / f)^{*}} \theta_{1}^{e}=\Psi_{f}(0)=$ f.

The extension $\mathcal{Z}_{(f)}\left[\varpi_{n}\right]$ is a discrete valuation ring with maximal ideal generated by ϖ_{n}, purely ramified of index q^{n-1} over $\mathcal{Z}_{(f)}$. In particular, $\mathcal{E}_{n}=\mathcal{Q}\left(\varpi_{n}\right)$.

Example 6.4 Let $r=3$ and $f(Y)=Y^{2}+1$, so $q=9$. A Magma calculation shows that

$$
\begin{aligned}
& \varpi_{2}=\theta_{2}^{60}-Y \theta_{2}^{58}+Y^{2} \theta_{2}^{56}+\left(-Y^{9}-Y^{3}-Y\right) \theta_{2}^{42}+\left(Y^{10}+Y^{4}+Y^{2}+1\right) \theta_{2}^{40} \\
& +\left(-Y^{11}-Y^{5}-Y^{3}+Y\right) \theta_{2}^{38}+\left(-Y^{6}-Y^{4}-Y^{2}\right) \theta_{2}^{36}+\left(Y^{7}+Y^{5}+Y^{3}+Y\right) \theta_{2}^{34} \\
& +\left(-Y^{8}-Y^{6}+Y^{4}-Y^{2}-1\right) \theta_{2}^{32}+\left(-Y^{5}+Y^{3}-Y\right) \theta_{2}^{30}+\left(Y^{18}-Y^{12}-Y^{10}+Y^{6}-Y^{4}+Y^{2}\right) \theta_{2}^{24} \\
& +\left(-Y^{19}+Y^{13}+Y^{11}+Y^{9}-Y^{7}+Y^{5}+Y\right) \theta_{2}^{22} \\
& +\left(Y^{20}-Y^{14}-Y^{12}+Y^{10}+Y^{8}-Y^{6}-Y^{4}+Y^{2}+1\right) \theta_{2}^{20} \\
& +\left(-Y^{15}-Y^{13}-Y^{11}-Y^{9}+Y^{7}+Y^{5}-Y^{3}\right) \theta_{2}^{18}+\left(Y^{16}+Y^{14}+Y^{12}-Y^{10}-Y^{8}-Y^{2}\right) \theta_{2}^{16} \\
& +\left(-Y^{17}-Y^{15}+Y^{13}+Y^{11}+Y^{7}+Y^{5}-Y^{3}+Y\right) \theta_{2}^{14} \\
& +\left(-Y^{14}-Y^{12}+Y^{10}-Y^{8}-Y^{6}-Y^{4}+Y^{2}+1\right) \theta_{2}^{12}+\left(-Y^{13}+Y^{11}-Y^{7}+Y^{3}\right) \theta_{2}^{10} \\
& +\left(Y^{14}-Y^{12}-Y^{10}+Y^{6}+Y^{4}\right) \theta_{2}^{8}+\left(-Y^{11}-Y^{7}+Y^{5}+Y^{3}+Y\right) \theta_{2}^{6}+\left(Y^{8}+Y^{6}+Y^{2}+1\right) \theta_{2}^{4}
\end{aligned}
$$

With regard to $\S 6.4$, we remark that $\varpi_{2} \neq \pm \theta_{2}^{q-1}$.

Lemma 6.5 We have $\varpi_{n}^{q} \equiv_{\varpi_{n}^{q-1} f} \varpi_{n-1}$ for $n \geqslant 2$.
We claim that $\theta_{n}^{q} \equiv_{\theta_{n} f} \theta_{n-1}$. In fact, the non-leading coefficients of the Eisenstein polynomial $\Psi_{f}(X)$ are divisible by f, so that the congruence follows by $\theta_{n-1}-\theta_{n}^{q}=P_{f}\left(\theta_{n}\right)-\theta_{n}^{q}=$ $\theta_{n}\left(\Psi_{f}\left(\theta_{n}\right)-\theta_{n}^{q-1}\right)$. Letting $\tilde{T}=\mathcal{Z}_{(f)}\left[\theta_{n}\right]$ and $(\tilde{t}, \tilde{s}, t, s)=\left(\theta_{n}, \theta_{n-1}, \varpi_{n}, \varpi_{n-1}\right)$, (4.1) shows that $1-\theta_{n}^{q} / \theta_{n-1}$ divides $1-\varpi_{n}^{q} / \varpi_{n-1}$. Therefore, $\theta_{n} f \theta_{n-1}^{-1} \varpi_{n-1} \mid \varpi_{n-1}-\varpi_{n}^{q}$.

Now suppose given $m \geqslant 1$. To apply (3.2), we let $R_{i}=\mathcal{Z}_{(f)}\left[\varpi_{m+i}\right]$ and $r_{i}=\varpi_{m+i}$ for $i \geqslant 0$. We continue to denote

$$
\begin{align*}
\mu_{\varpi_{m+i}, \mathcal{E}_{m}}(X)=\mu_{r_{i}, K_{0}}(X) & =X^{q^{i}}+\left(\sum_{j \in\left[1, q^{i}-1\right]} a_{i, j} X^{j}\right)-\varpi_{m} \\
& \in R_{0}[X]=\mathcal{Z}_{(f)}\left[\varpi_{m}\right][X]
\end{align*}
$$

and $v_{q}(j)=\max \left\{\alpha \in \mathbf{Z}_{\geqslant 0}: j \equiv_{q^{\alpha}} 0\right\}$.

Theorem 6.6

(i) We have $f^{i-v_{q}(j)} \mid a_{i, j}$ for $i \geqslant 1$ and $j \in\left[1, q^{i}-1\right]$.
(i') If $j<q^{i}(q-2) /(q-1)$, then $f^{i-v_{q}(j)} \varpi_{m} \mid a_{i, j}$.
(ii) We have $a_{i, j} \equiv_{f^{i+1}} a_{i+\beta, q^{\beta} j}$ for $i \geqslant 1, j \in\left[1, q^{i}-1\right]$ and $\beta \geqslant 1$.
(ii') If $j<q^{i}(q-2) /(q-1)$, then $a_{i, j} \equiv_{f^{i+1} \varpi_{m}} a_{i+\beta, q^{\beta} j}$ for $\beta \geqslant 1$.
Assumption (3.1) is fulfilled by virtue of (6.5), whence the assertions follow by (3.2).

6.3 Some exact valuations

Let $m \geqslant 1$ and $i \geqslant 0$. We denote $R_{i}=\mathcal{Z}_{(f)}\left[\varpi_{m+i}\right], r_{i}=\varpi_{m+i}, K_{i}=$ frac R_{i}, $\tilde{R}_{i}=\mathcal{Z}_{(f)}\left[\theta_{m+i}\right]$ and $\tilde{r}_{i}=\theta_{m+i}$. We obtain $\mathfrak{D}_{\tilde{R}_{i} \mid \tilde{R}_{0}}=\left(f^{i}\right)$ and $\mathfrak{D}_{\tilde{R}_{i} \mid R_{i}}=\left(\tilde{r}_{i}^{q-2}\right)[\mathbf{9}$, III.§3, prop. 13], whence

$$
\begin{equation*}
\mathfrak{D}_{R_{i} \mid R_{0}}=\left(\mu_{r_{i}, K_{0}}^{\prime}\left(r_{i}\right)\right)=\left(f^{i} r_{i}^{q^{i}-1-\left(q^{i}-1\right) /(q-1)}\right) . \tag{**}
\end{equation*}
$$

Therefore, $f^{i} r_{i}^{q^{i}-1-\left(q^{i}-1\right) /(q-1)}$ divides $j a_{i, j} r_{i}^{j-1}$ for $j \in\left[1, q^{i}-1\right]$, which is an empty assertion if $j \equiv \equiv_{p} 0$. Thus (6.6. i, i^{\prime}) do not follow entirely.
However, since only for $j=q^{i}-\left(q^{i}-1\right) /(q-1)$ the valuations at r_{i} of $f^{i} r_{i}^{q^{i}-1-\left(q^{i}-1\right) /(q-1)}$ and $j a_{i, j} r_{i}^{j-1}$ are congruent modulo q^{i}, we conclude by $(* *)$ that they are equal, i.e. that f^{i} exactly divides $a_{i, q^{i}-\left(q^{i}-1\right) /(q-1)}$.

Corollary 6.7 The element $f^{i-\beta}$ exactly divides $a_{i, q^{i}-\left(q^{i}-q^{\beta}\right) /(q-1)}$.
This follows by (6.6.ii) from what we have just said.

6.4 A simple case

Suppose that $f(Y)=Y$ and $m \geqslant 1$. Note that

$$
\varpi_{m+1}=\prod_{e \in \mathbf{F}_{q}^{*}} \theta_{m+1}^{e}=\prod_{e \in \mathbf{F}_{q}^{*}} e \theta_{m+1}=-\theta_{m+1}^{q-1}
$$

Lemma 6.8 We have

$$
\mu_{\varpi_{m+1}, \mathcal{E}_{m}}(X)=-\varpi_{m}+\sum_{j \in[1, q]} Y^{q-j} X^{j}
$$

Using the minimal polynomial $\mu_{\theta_{m+1}, \mathcal{F}_{m}}(X)=P_{Y}(X)-\theta_{m}=X^{q}+Y X-\theta_{m}$, we get

$$
\begin{aligned}
& -\varpi_{m}+\sum_{j \in[1, q]} Y^{q-j} \varpi_{m+1}^{j} \\
= & \theta_{m}^{q-1}+\left(Y^{q+1}-\theta_{m+1}^{q^{2}-1}\right) /\left(Y+\theta_{m+1}^{q-1}\right)-Y^{q} \\
= & \left(Y \theta_{m}^{q-1} \theta_{m+1}+\theta_{m}^{q-1} \theta_{m+1}^{q}-\theta_{m+1}^{q^{2}}-Y^{q} \theta_{m+1}^{q}\right) /\left(\theta_{m+1}\left(Y+\theta_{m+1}^{q-1}\right)\right) \\
= & 0 .
\end{aligned}
$$

Corollary 6.9 Let $m, i \geqslant 1$. We have

$$
\mu_{\varpi_{m+i}, \mathcal{E}_{m}}(X) \equiv_{Y^{2}} X^{q^{i}}+Y X^{(q-1) q^{i-1}}-\varpi_{m}
$$

This follows from (6.8) using (6.6.ii).

Remark 6.10 The assertion of (6.8) also holds if $p=2$.

Conjecture 6.11 Let $m, i \geqslant 1$. We use the notation of $(\#)$ above, now in the case $f(Y)=Y$. For $j \in\left[1, q^{i}\right]$, we write $q^{i}-j=\sum_{k \in[0, i-1]} d_{k} q^{k}$ with $d_{k} \in[0, q-1]$. Consider the following conditions.
(i) There exists $k \in[0, i-2]$ such that $d_{k+1}<d_{k}$.
(ii) There exists $k \in[0, i-2]$ such that $v_{p}\left(d_{k+1}\right)>v_{p}\left(d_{k}\right)$.

If (i) or (ii) holds, then $a_{i, j}=0$. If neither (i) nor (ii) holds, then

$$
v_{\varpi_{m}}\left(a_{i, j}\right)=q^{m-1} \cdot \sum_{k \in[0, i-1]} d_{k}
$$

Remark 6.12 We shall compare (6.7) with (6.11). If $j=q^{i}-\left(q^{i}-q^{\beta}\right) /(q-1)$ for some $\beta \in[0, i-1]$, then $q^{i}-j=q^{i-1}+\cdots+q^{\beta}$. Hence $\sum_{k \in[0, i-1]} d_{k}=i-\beta$, and so according to (6.11), $v_{\varpi_{m}}\left(a_{i, j}\right)$ should equal $q^{m-1}(i-\beta)$, which is in fact confirmed by (6.7).

References

[1] Carlitz, L., A class of polynomials, Trans. Am. Math. Soc. 43 (2), p. 167-182, 1938.
[2] Dvornicich, R.; Zannier, U., Sums of roots of unity vanishing modulo a prime, Arch. Math. 79, p. 104-108, 2002.
[3] Goss, D., The arithmetic of function fields. II. The "cyclotomic" theory, J. Alg. 81 (1), p. 107-149, 1983.
[4] Goss, D., Basic structures of function field arithmetic, Springer, 1996.
[5] Hayes, D. R., Explicit class field theory for rational function fields, Trans. Am. Math. Soc. 189 (2), p. 77-91, 1974.
[6] Lam, T. Y.; Leung, K. H., On Vanishing Sums of Roots of Unity, J. Alg. 224, p. 91-109, 2000.
[7] Neukirch, J., Algebraische Zahlentheorie, Springer, 1992.
[8] Rosen, M., Number Theory in Function Fields, Springer GTM 210, 2000.
[9] Serre, J.P., Corps Locaux, Hermann, 1968.
[10] Weber, H., Künzer, M., Some additive galois cohomology rings, math.NT/0102048, to appear in Comm. Alg., 2004.

Matthias Künzer
Universität Ulm
Abt. Reine Mathematik
D-89069 Ulm kuenzer@mathematik.uni-ulm.de

Eduard Wirsing
Universität Ulm
Fak. f. Mathematik
D-89069 Ulm ewirsing@mathematik.uni-ulm.de
(M. K., 24.02.2010.) Recently, A. Lbekkouri [L, On the construction of normal wildly ramified extensions over $\mathbf{Q}_{p}(p \neq 2)$, Arch. Math. 93, p. 331-344, 2009], using work of M. Krasner [K, Sur la primitivité des corps \mathfrak{p}-adiques, Math., Cluj 13, p. 72-191, 1937], has derived congruences for the coefficients of the Eisenstein polynomial under consideration from the normality of the extension, extending a result of \varnothing. Ore $[\mathrm{O}$, Abriß einer arithmetischen Theorie der Galoisschen Körper, Math. Ann. 100 p. 650673, 1928]; cf. [O; Satz 6], [L; Th. 4.1, Th. 4.6]. In [L; Th. 4.6], nonlinear congruences appear ! Furthermore, cf. [L; Prop. 3.2].

