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Abstract

We mention briefly an elementary compatibility of distinguished weak (dweak) squares
with the shift functor, which holds in a closed Heller triangulated category.

In a Verdier triangulated category, one can still formulate this compatibility assertion, but
I do not know whether it can be proven there.

To obtain a counterexample to this compatibility assertion in a Verdier triangulated cate-
gory, however, one would need a Verdier triangulated category that is not a closed Heller
triangulated category. I do not know an example of such a category.

Let (C, T,9) be a closed Heller triangulated category; cf. [2, Def. 1.5.i], [3, Def. A.6]. Recall that
closedness just means that each morphism can be completed to a 2-triangle. Heller triangulated
categories in which idempotents split, are closed; cf. [2, Lem. 3.1]. The stable category of a
Frobenius category is closed.

We use the conventions and notations of [2].

A closed Heller triangulated category is in particular Verdier triangulated, taking the set (1) of
2-triangles as set of distinguished triangles; cf. [5, Def. 1-1]; this is proven just as [2, Prop. 3.6].

Suppose given n > 2. Each chain of morphisms X1fH1 LS » in C can be
prolonged to an n-triangle, and this prolongation is unique up to isomorphism; cf.
[2, Def. 1.5.ii.2, Lem. 3.1, Lem. 3.4.6].

A distinguished weak square, for short dweak square (%), is a weak square whose diagonal sequence
fits into a 2-triangle. Dweak squares are indicated by the symbol ®. Note that to define dweak
squares, a Verdier triangulated category suffices.

Since a completion of a morphism to a 2-triangle is unique up to isomorphism, so is completion
of an angle T to a dweak square T 5 T ; and dually.

Using a 4-triangle, one sees that dweak squares compose. There is an elegant method, due to
NEEMAN, to show this fact already in Verdier triangulated categories; cf. [4, Lem. 2.1].

'In a sufficiently big universe.
2Also known as a homotopy cartesian square.



Completing iteratively to dweak squares, we may therefore form

0— X,

e ne1

E) ) I3

0 X}

T ) B ) f1

0 Xi
T D) T B ) )

X, ex, P I x 0,

fi

and the resulting chain X| — ~"=% X! is unique up to isomorphism.

Remark 1. The following compatibility of dweak squares and shift holds in our Heller triangu-
lated category (C,T,9).
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Proof. Complete the chain X; SRRy X, to an n-triangle. By [2, Lem. 3.4.1, Lem.

3.4.2], an n-triangle consists of dweak squares. The result follows from the uniqueness up to
isomorphism stated just before Remark 1. o

In a Verdier triangulated category, in which the axiom [1, 1.1.13] holds, the assertion of Remark 1
holds if
n =2

and, by the octahedral axiom in the form of loc. cit., if
n =3.

But we may ask for this assertion for
n > 4

as well. In fact, both sides of the isomorphism in question are still welldefined up to isomorphism
resp. welldefined.

If n = 4, the valid assertion in the cases n = 2 and n = 3, together with [2, Lem. 3.4.1], yields
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But in a Verdier triangulated category with [1, 1.1.13] added, I do not know how to prove that,
say, ué’z’d may be chosen equal to u§’4.

Neither do I know a Verdier triangulated category in which the assertion of Remark 1 fails, say, for

n = 4. Worse still, I do not know an example of a Verdier triangulated category that is not closedly
Heller triangulated.
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