Dweak squares in Heller triangulated categories

Matthias Künzer

November 5, 2007

Abstract

We mention briefly an elementary compatibility of distinguished weak (dweak) squares with the shift functor, which holds in a closed Heller triangulated category.

In a Verdier triangulated category, one can still formulate this compatibility assertion, but I do not know whether it can be proven there.

To obtain a counterexample to this compatibility assertion in a Verdier triangulated category, however, one would need a Verdier triangulated category that is not a closed Heller triangulated category. I do not know an example of such a category.

Let $(\mathcal{C}, \mathrm{T}, \vartheta)$ be a closed Heller triangulated category; cf. [2, Def. 1.5.i], [3, Def. A.6]. Recall that closedness just means that each morphism can be completed to a 2-triangle. Heller triangulated categories in which idempotents split, are closed; cf. [2, Lem. 3.1]. The stable category of a Frobenius category is closed.

We use the conventions and notations of [2].
A closed Heller triangulated category is in particular Verdier triangulated, taking the set $\left({ }^{1}\right)$ of 2-triangles as set of distinguished triangles; cf. [5, Def. 1-1]; this is proven just as [2, Prop. 3.6].
Suppose given $n \geqslant 2$. Each chain of morphisms $X_{1} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{n-1}} X_{n}$ in \mathcal{C} can be prolonged to an n-triangle, and this prolongation is unique $u p$ to isomorphism; cf. [2, Def. 1.5.ii.2, Lem. 3.1, Lem. 3.4.6].

A distinguished weak square, for short dweak square $\left({ }^{2}\right)$, is a weak square whose diagonal sequence fits into a 2-triangle. Dweak squares are indicated by the symbol \boxplus. Note that to define dweak squares, a Verdier triangulated category suffices.

Since a completion of a morphism to a 2-triangle is unique up to isomorphism, so is completion of an angle $\uparrow \underset{\longrightarrow}{\longrightarrow}$ to a dweak square $\xlongequal[\longrightarrow]{\boxplus} \uparrow$; and dually.

Using a 4-triangle, one sees that dweak squares compose. There is an elegant method, due to Neeman, to show this fact already in Verdier triangulated categories; cf. [4, Lem. 2.1].

[^0]Completing iteratively to dweak squares, we may therefore form

and the resulting chain $X_{1}^{\prime} \xrightarrow{f_{1}^{\prime}} \cdots \xrightarrow{f_{n-1}^{\prime}} X_{n}^{\prime}$ is unique up to isomorphism.
Remark 1. The following compatibility of dweak squares and shift holds in our Heller triangulated category $(\mathcal{C}, \mathrm{T}, \vartheta)$.

$$
\left(X_{1}^{\prime} \xrightarrow{f_{1}^{\prime}} \cdots \xrightarrow{f_{n-1}^{\prime}} X_{n}^{\prime}\right) \simeq\left(X_{1}^{+1} \xrightarrow{f_{1}^{+1}} \cdots \xrightarrow{f_{n-1}^{+1}} X_{n}^{+1}\right) .
$$

Proof. Complete the chain $X_{1} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{n-1}} X_{n}$ to an n-triangle. By [2, Lem. 3.4.1, Lem. 3.4.2], an n-triangle consists of dweak squares. The result follows from the uniqueness up to isomorphism stated just before Remark 1.

In a Verdier triangulated category, in which the axiom [1, 1.1.13] holds, the assertion of Remark 1 holds if

$$
n=2
$$

and, by the octahedral axiom in the form of loc. cit., if

$$
n=3
$$

But we may ask for this assertion for

$$
n \geqslant 4
$$

as well. In fact, both sides of the isomorphism in question are still welldefined up to isomorphism resp. welldefined.
If $n=4$, the valid assertion in the cases $n=2$ and $n=3$, together with [2, Lem. 3.4.1], yields isomorphisms

But in a Verdier triangulated category with [1, 1.1.13] added, I do not know how to prove that, say, $u_{3}^{1,2,3}$ may be chosen equal to $u_{3}^{3,4}$.
Neither do I know a Verdier triangulated category in which the assertion of Remark 1 fails, say, for $n=4$. Worse still, I do not know an example of a Verdier triangulated category that is not closedly Heller triangulated.

References

[1] Bernstein, J.; Beilinson, A.A.; Deligne, P., Faisceaux pervers, Astérisque 100, 1982.
[2] KÜnzer, M., Heller triangulated categories, Homol., Homot. Appl. 9 (2), p. 233-320, 2007.
[3] KÜnzer, M., Nonisomorphic Verdier octahedra on the same base, preprint, arxiv, 0708.0151, 2007.
[4] Neeman, A., K-theory for triangulated categories I (A), Asian J. Math. 1 (2), p. 330-417, 1997.
[5] Verdier, J.L., Catégories Derivées, published in SGA 4 1/2, SLN 569, p. 262-311, 1977 (written 1963).

[^0]: ${ }^{1}$ In a sufficiently big universe.
 ${ }^{2}$ Also known as a homotopy cartesian square.

