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Abstract

Suppose given a commutative quadrangle in a Verdier triangulated category such that
there exists an induced isomorphism on the horizontally taken cones. Suppose that the
endomorphism ring of the initial or the terminal corner object of this quadrangle satisfies
a finiteness condition. Then this quadrangle is homotopy cartesian.
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0 Introduction

In an abelian category, a commutative quadrangle is called bicartesian if its diagonal sequence
is short exact, i.e. if it is a pullback and a pushout. A commutative quadrangle is bicartesian
if and only if we get induced isomophisms on the horizontal kernels and on the horizontal
cokernels.

In a triangulated category in the sense of Verdier [3, Def. 1-1], a commutative quadrangle
is called homotopy cartesian (or a Mayer-Vietoris square, or a distinguished weak square),
if its diagonal sequence fits into a distinguished triangle. A homotopy cartesian square has
a (non-uniquely) induced isomorphism on the horizontally taken cones [2, Lem. 1.4.4]. We
consider the converse question : a commutative quadrangle that has an isomorphism induced
on the horizontally taken cones, is it homotopy cartesian? We show this to be true if the
endomorphism ring of the object in the terminal or initial corner satisfies a finiteness condition.

This finiteness condition is for instance satisfied for the endomorphism rings occurring in
Db(A -mod), where A is a finite-dimensional algebra over some field; or in A -mod, where
A is a finite-dimensional Frobenius algebra over some field.

This finiteness condition, however, in general fails for the endomorphism rings occurring in
Kb(Z -proj). We show by an example that the conclusion on our commutative quadrangle to
be homotopy cartesian fails there as well.
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1 A ring theoretical lemma

Let R be a ring. Denote by J(R) its Jacobson radical.

If R/J(R) is artinian, we fix the notation R/J(R) '
∏n

i=1D
ki×ki
i for its Wedderburn decompo-

sition, where Di is a skewfield for 1 ≤ i ≤ n.

A ring R shall be called head-finite if its head R/J(R) is artinian and if in the Wedderburn de-
composition of R/J(R), the skewfield Di is finite dimensional over its centre for each 1 ≤ i ≤ n.

For example, finite dimensional algebras over some field are head-finite. For another example,
a local ring R for which R/J(R) is commutative is head-finite.

Lemma 1.1 Suppose given a head-finite ring R and an element ε ∈ R.

(1) There exists α ∈ R such that 1 + ε+ αε2 is a unit in R.

(2) There exists β ∈ R such that 1 + ε+ ε2β is a unit in R.

Proof. Assertion (2) follows by an application of (1) to R◦, so it remains to prove (1).

Since an element ρ ∈ R is a unit in R if and only if ρ+J(R) is a unit in R/J(R), we may assume
J(R) = 0 and R to be a product of matrix rings over skew fields which are finite-dimensional
over their centres. Furthermore, we may assume R to be a single matrix ring over a skewfield
which is finite-dimensional over its centre K. In particular, we may assume R to be a finite
dimensional K-algebra.

Let m ≥ 0 and s(X) ∈ K[X] be such that ε is a root of the polynomial Xm +Xm+1s(X). Let
α := s(ε). Then

(ε+ αε2)m+1 =
(
εm(1 + s(ε)ε)

)(
ε(1 + s(ε)ε)m

)
= 0 ,

and thus 1 + ε+ αε2 is a unit in R.

Remark 1.2

(1) The conclusions of Lemma 1.1 do not hold for all rings, as the example R = Z and ε = 3
shows.

(2) The conclusions of Lemma 1.1 hold for a local ring R, regardless whether R/J(R) is finite-
dimensional over its centre or not. In fact, if ε ∈ J(R), then 1 + ε is a unit in R, and we
may choose α = 0. If ε ∈ Rr J(R), then ε is a unit in R, and we may choose α = −ε−1.

(3) In Lemma 1.1.(1), we do not claim that αε = εα. Whereas this property can be achieved
if R is a finite dimensional algebra over some field, as we have seen in the proof of loc.
cit., the first reduction step at the beginning of this proof possibly might not respect this
property.
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2 The criterion for homotopy cartesianess

Let C be a triangulated category in the sense of Verdier [3, Def. 1-1].

A commutative quadrangle

B

b
��

g // C

c

��
B′

g′ // C ′

in C is said to be homotopy cartesian if there exists a distinguished triangle containing the
sequence

B

“
b
g

”
// B′ ⊕ C

(g′ −c ) // C ′ ,

cf. [2, Def. 1.4.1]. We remark that by [2, Lem. 1.4.4], such a homotopy cartesian square fits
into a morphism of distinguished triangles of the form (b, c, 1) (and, by symmetry, also in one
of the form (g, g′, 1)).

Proposition 2.1 Suppose given a commutative diagram in C

A
f //

ao
��

B
g //

b

��

C
h //

c

��

A[1]

a[1]o
��

A′
f ′ // B′

g′ // C ′
h′ // A′[1]

whose rows are distinguished triangles.

(1) Suppose EndC C
′ to be head-finite. Then the quadrangle (g, g′, b, c) is homotopy cartesian.

(2) Suppose EndC B to be head-finite. Then the quadrangle (g, g′, b, c) is homotopy cartesian.

Proof. By duality, it suffices to prove (1). By isomorphic replacement at A′, we may assume
that A = A′ and a = 1.

By [2, Lem. 1.4.3], there exists C -̃c C ′ such that the quadrangle (g, g′, b, c̃) is homotopy
cartesian and such that h′ ◦ c̃ = h. It suffices to show that the quadrangles (g, g′, b, c) and
(g, g′, b, c̃) are isomorphic.

Since (c̃− c) ◦ g = 0, there exists A[1] -ψ C ′ such that ψ ◦ h = c̃− c. Let

ε := ψ ◦ h′ ∈ EndC C
′ .

By assumption on EndC C
′, we may apply Lemma 1.1 to find an element α ∈ EndC C

′ such
that 1 + ε+ α ◦ ε2 is a unit in EndC C

′, i.e. an automorphism of C ′.
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We claim that we have the following isomorphism of commutative quadrangles.

B
g //

b

  AAAAAAA C
c

  AAAAAAA

B′
g′ // C ′

1+ε+α ◦ ε2o

��

B
g //

b

  AAAAAAA C
c̃

  AAAAAAA

B′
g′ // C ′

In fact,

(1 + ε+ α ◦ ε2) ◦ c = c+ ψ ◦ h′ ◦ c+ α ◦ ψ ◦ h′ ◦ ψ ◦ h′ ◦ c
= c+ ψ ◦ h+ α ◦ ψ ◦ h′ ◦ ψ ◦ h
= c̃+ α ◦ ψ ◦ h′ ◦ (c̃− c)
= c̃+ α ◦ ψ ◦ (h− h)

= c̃ ,

and
(1 + ε+ α ◦ ε2) ◦ g′ = g′ + ψ ◦ h′ ◦ g′ + α ◦ ψ ◦ h′ ◦ ψ ◦ h′ ◦ g′

= g′ .

Question 2.2 (open) Suppose given a diagram as in Proposition 2.1. Is the cone of b iso-
morphic to the cone of c?

Note that the isomorphism in question is not required to satisfy any commutativities. In §3,
we give an example in which there is no isomorphism between these cones that is compatible
with the diagram.

Note that the middle quadrangle of such a diagram is a weak square by the kernel-cokernel
criterion applied in the Freyd category of C; cf. e.g. [1, §A.6.3, Def. A.9, Lem. A.11].

Question 2.3 (open) Suppose given a commutative quadrangle that has an isomorphism in-
duced on the horizontally and on the vertically taken cones. Is it homotopy cartesian?

Of course, provided the endomorphism ring of its object in the initial or terminal corner is
head-finite, such a quadrangle is homotopy cartesian by Proposition 2.1.

3 A counterexample

We shall give an example of a commutative quadrangle in a triangulated category that hori-
zontally fits into a morphisms of triangles containing an isomorphism as in Proposition 2.1, but
that is not homotopy cartesian; somewhat worse still, vertically, it does not fit into a morphism
of triangles containing an isomorphism. This will show that the head-finiteness conditions in
Proposition 2.1 cannot be entirely dropped.
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Let C := Kb(Z -proj). As to sign conventions, the standard distinguished triangle on a morphism

X -f Y in C is given as follows.

...

��

...

��

...

��

...

��
X i

f i
//

δi

��

Y i

“
1
0

”
//

∂i

��

Y i ⊕X i+1
(0 1) //„

∂i f i+1

0 −δi+1

«
��

X i+1

−δi+1

��
X i+1

f i+1
//

��

Y i+1

“
1
0

”
//

��

Y i+1 ⊕X i+2
(0 1) //

��

X i+2

��
...

...
...

...

We shall allow ourselves to omit zero object entries when displaying complexes. By Z⊕m we
denote the direct sum of m copies of Z, where m ≥ 2.

Lemma 3.1 The following triangles are distinguished in C for every a, b ∈ Z.

(1)

0 //

��

0 //

��

Z
1 //„

b
a2

«
��

Z

a2

��
Z

−a2

��

b // Z

��

“
1
0

”
// Z⊕2

��

(0 1) // Z

��
Z // 0 // 0 // 0

(2)

0 //

��

Z
1 //„

−a
a2

«
��

Z
a //„

−a3

a2

«
��

Z

a2

��
Z

−a2

��

“
1
0

”
// Z⊕2

��

„
a2 0
0 1

«
// Z⊕2

��

(−1 0) // Z

��
Z // 0 // 0 // 0

(3)
0 //

��

Z

“
1
a

”
//„

−a3

a2

«
��

Z⊕2
(a −1) //„

a2 0
0 a2

«
��

Z

��
Z

„
a2

0

«
// Z⊕2

“
0 1
−1 0

”
// Z⊕2 // 0

(4)

0 //

��

0 //

��

Z
1+a //

a2

��

Z

��
Z

a2
// Z

1−a // Z // 0
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Proof. It is enough to show that each triangle is of the form

X
f // Y

u◦g // Z ′
h◦u−1

// X[1]

with X -f Y -g Z -h X[1] a standard distinguished triangle and Z -u Z ′ an isomorphism
in C. Indeed, (1) is already standard, and it is straightforward to check that in cases (2), (3)
and (4) one can take respectively the following morphisms for u.

Z⊕2
(1 0) // −a 1

a2 0
0 a2

!
��

Z„
−a3

a2

«
��

Z⊕3

„
a2 0 −1
0 1 0

«
// Z⊕2

Z⊕2

“
1 0
a −1

”
//„

−a3 a2

a2 0

«
��

Z⊕2„
a2 0
0 a2

«
��

Z⊕2

“
0 1
−1 0

”
// Z⊕2

Z
1−a //

a2

��

Z

a2

��
Z

1−a // Z

Let a ∈ Z be such that a ≥ 3. Consider the following morphism of distinguished triangles. The
differentials of the complexes are displayed from lower left to upper right, and the triangles are
displayed from left to right. Notice that the triangles are distinguished because they can be
obtained by applying axiom (TR 2) to the triangles (2) and (1) (with b = −a) of Lemma 3.1.

(∗)

Z⊕2

„
a2 0
0 1

«
// Z⊕2

(−1 0) //

(0 1)

��

Z //

��

0

Z
1 //

(
−a
a2

) BB���������
Z

a //

(
−a3

a2

) BB���������

1

��

Z

“−1
0

”
//

a2

BB���������

1+a

��

Z⊕2

BB���������

0 //

BB���������
0 //

BB���������

��

0 //

BB���������

��

Z

(
a
−a2

) BB���������

Z⊕2
(0 1) // Z // 0 // 0

Z
1 //

(
−a
a2

)BB���������
Z

a //

a2

BB���������
Z

“−1
0

”
//

BB���������
Z⊕2

BB���������

0 //

BB���������
0 //

BB���������
0 //

BB���������
Z

(
a
−a2

)BB���������
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As an aside, we remark that the second morphism from the left in (∗) is split epimorphic.

We claim that the middle quadrangle of (∗) is not homotopy cartesian.

We assume the contrary. The diagonal sequence of the middle quadrangle is given as follows.

Z

“
1
a

”
//„

−a3

a2

«
��

Z⊕2
(a −1−a ) //„

a2 0
0 a2

«
��

Z

��
Z⊕2

“
0 1
−1 0

”
// Z⊕2 // 0

In contrast, the following sequence fits into the distinguished triangle (3) of Lemma 3.1.

Z

“
1
a

”
//„

−a3

a2

«
��

Z⊕2
(a −1) //„

a2 0
0 a2

«
��

Z

��
Z⊕2

“
0 1
−1 0

”
// Z⊕2 // 0

By uniqueness of the cone up to isomorphism in C, there exists a commutative triangle in C

Z

��
Z⊕2„

a2 0
0 a2

«
��

(a −1−a )
//

(a −1)

33hhhhhhhhhhhhhhhhhhhhhhhhhh
Z

s

??�������

��

0

Z⊕2 //

hhhhhhhhhhhhhhhhhhh

33hhhhhhh

0

@@��������

with s ∈ {−1,+1}. We conclude that sa ≡a2 a and −s− sa ≡a2 −1. If s = 1, then the second
congruence gives a ≡a2 0, which is impossible since a ≥ 2. If s = −1, then the first congruence
gives 2a ≡a2 0, which is impossible since a ≥ 3. We have arrived at a contradiction.

We claim that vertically, the middle quadrangle of (∗) does not fit into a morphism of distin-
guished triangles that contains an isomorphism. We note that this claim implies the preceding
claim (cf. [2, Lem. 1.4.4]), which we will thus have proven twice.

We assume the contrary. Inserting triangles (1) (with b = −a3) and (4) of Lemma 3.1 vertically,
we obtain the following commutative quadrangle above our given one, where t ∈ {−1,+1}.
Differentials are displayed from lower left to upper right.

Z
t //(

1
0

)
��

Z

1−a

��

0

::uuuuuuuuuu //

��

0

<<xxxxxxxxx

��

Z⊕2
(−1 0) // Z

Z

(
−a3

a2

)
;;vvvvvvvvv a // Z

a2

<<yyyyyyyyy

Commutativity of this quadrangle in C means that t(1 − a) ≡a2 −1. If t = −1, then a ≡a2 0
ensues, which is impossible since a ≥ 2. If t = 1, then 2 ≡a2 a and hence 2 ≡a 0 ensues, which
is impossible since a ≥ 3. We have arrived at a contradiction.
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