A construction principle for Frobenius categories

Manuscript

Matthias Künzer

June 15, 2007

Abstract

This note is a supplement to [3]. Let \mathcal{C} be a weakly abelian category. Let $n \geq 0$. Let $\mathcal{C}(\dot{\Delta}_n)$ be the category of diagrams of shape $\dot{\Delta}_n = [1, n]$ with values in \mathcal{C} . Let $\underline{\mathcal{C}}(\dot{\Delta}_n)$ be its quotient modulo split such diagrams. We know by [3, Prop. 5.5.(1), Prop. 2.6] that there is a Frobenius category $\mathcal{C}(\bar{\Delta}_n^{\#})$ whose classical stable category $\underline{\mathcal{C}}(\bar{\Delta}_n^{\#})$ is equivalent to $\underline{\mathcal{C}}(\dot{\Delta}_n)$. In particular, $\underline{\mathcal{C}}(\dot{\Delta}_n)$ is weakly abelian. We give a direct proof of this fact, exhibiting a structure of a Frobenius category on $\mathcal{C}(\dot{\Delta}_n)$ such that $\mathcal{C}(\dot{\Delta}_n)$ is its classical stable category.

Contents

0	Introduction	1
	0.1 A construction principle for Frobenius categories	
	0.2 Application to $\mathcal{C}(\Delta_n)$	
	0.3 Notation and conventions	2
1	Construction of exact categories	3
2	The construction principle	5
3	Application to $\mathcal{C}(\dot{\Delta}_n)$	6

0 Introduction

0.1 A construction principle for Frobenius categories

Given an exact category \mathcal{E} and a full subcategory $\mathcal{N} \subseteq \mathcal{E}$, we ask for a modification of the exact structure on \mathcal{E} in such a way that the result is a Frobenius category with \mathcal{N} as a sufficiently big subcategory of bijective objects.

Declaring a pure short exact sequence in \mathcal{E} to be \mathcal{N} -pure if each object of \mathcal{N} is bijective with respect to it, we verify that \mathcal{E} , equipped with the set of \mathcal{N} -pure short exact sequences,

MSC2000: 18E30.

actually is an exact category. For it to be Frobenius, \mathcal{N} only has to be big enough; see Remark 4.

0.2 Application to $C(\Delta_n)$

Let \mathcal{C} be a weakly abelian category; cf. e.g. [3, Def. A.26]. Let $n \geq 0$.

Let $\mathcal{C}(\dot{\Delta}_n)$ be the category of diagrams of shape $\dot{\Delta}_n = [1, n]$ with values in \mathcal{C} . Let $\underline{\mathcal{C}}(\dot{\Delta}_n)$ be its quotient modulo split such diagrams.

For the definition of the poset $\bar{\Delta}_n^{\#}$, see [3, §1.1]. For the definition of the category $\mathcal{C}^+(\bar{\Delta}_n^{\#})$, see [3, §1.2.1.1]. Roughly, it is the category of diagrams on $\bar{\Delta}_n^{\#}$ that have zeroes on the boundaries and weak squares wherever possible. The category $\mathcal{C}^+(\bar{\Delta}_n^{\#})$ is Frobenius by [3, Prop. 5.5.(1)].

Its classical stable category $\underline{\mathcal{C}^+(\bar{\Delta}_n^{\#})}$ is equivalent to $\underline{\mathcal{C}}(\dot{\Delta}_n)$ by [3, Prop. 2.6]. In particular, since $\mathcal{C}^+(\bar{\Delta}_n^{\#})$ is weakly abelian, so is $\mathcal{C}(\dot{\Delta}_n)$. Cf. also [1, Prop. 8.4].

We find a structure of an exact category on $\mathcal{C}(\Delta_n)$ such that it is a Frobenius category with $\mathcal{C}(\dot{\Delta}_n)$ as its classical stable category. This reproves the fact that $\mathcal{C}(\dot{\Delta}_n)$ is weakly abelian.

Whereas the category $\mathcal{C}(\dot{\Delta}_n)$ looks smaller and simpler than $\mathcal{C}^+(\bar{\Delta}_n^{\#})$, it behaves worse. Firstly, while $\underline{\mathcal{C}}^+(\bar{\Delta}_n^{\#})$ carries a shift functor by diagram shift, the category $\underline{\mathcal{C}}(\dot{\Delta}_n)$ does not allow such a diagram shift, and can only artificially be given a shift functor via the equivalence $\underline{\mathcal{C}}(\dot{\Delta}_n) \simeq \underline{\mathcal{C}}^+(\bar{\Delta}_n^{\#})$. Therefore, in the definition of a Heller triangulated category [3, Def. 1.5.(i)], we rather use $\underline{\mathcal{C}}^+(\bar{\Delta}_n^{\#})$. Secondly, and of relevance here, the exact structure on $\mathcal{C}^+(\bar{\Delta}_n^{\#})$ is the obvious one that declares pointwise split short exact sequences to be pure. The exact structure on $\mathcal{C}(\dot{\Delta}_n)$ has to be constructed; see Proposition 6 below.

0.3 Notation and conventions

- (i) Given elements x, y of some set X, we let $\partial_{x,y} = 1$ in case x = y and $\partial_{x,y} = 0$ in case $x \neq y$.
- (ii) For an assertion X, which might be true or not, we let $\{X\}$ equal 1 if X is true, and equal 0 if X is false. So for instance, $\{x = y\} = \partial_{x,y}$.
- (iii) For $a, b \in \mathbf{Z}$, we denote by $[a, b] := \{z \in \mathbf{Z} : a \leq z \leq b\}$ the integral interval.
- (iv) Given $n \ge 0$, we denote by $\Delta_n := [0, n]$ the linearly ordered set with ordering induced by standard ordering on **Z**. Let $\dot{\Delta}_n := \Delta_n \smallsetminus \{0\} = [1, n]$, considered as a linearly ordered set.
- (v) Maps act on the right. Composition of maps, and of more general morphisms, is written on the right, i.e. $\xrightarrow{a} \xrightarrow{b} = \xrightarrow{ab}$.
- (vi) Functors act on the right. Composition of functors is written on the right, i.e. $\xrightarrow{F} \xrightarrow{G} = \xrightarrow{FG}$. Accordingly, the entry of a transformation *a* between functors at an object *X* will be written *Xa*.
- (vii) All categories are supposed to be small with respect to a sufficiently big universe.
- (viii) Given a category \mathcal{C} , and objects X, Y in \mathcal{C} , we denote the set of morphisms from X to Y by $_{\mathcal{C}}(X,Y)$, or simply by (X,Y), if unambiguous.

- (ix) Pure monomorphy in an exact category is indicated by $X \longrightarrow Y$, pure epimorphy by $X \longrightarrow Y$. Concerning exact categories in the sense of QUILLEN, cf. [3, §A.2].
- (x) A morphism in an additive category \mathcal{A} is *split* if it is isomorphic, in $\mathcal{A}(\Delta_1)$, to a morphism of the form $X \oplus Y \xrightarrow{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}} Y \oplus Z$. A morphism being split is indicated by $X \xrightarrow{} Y$ (not to be confused with monomorphy). Accordingly, a morphism being a split monomorphism is indicated by $X \xrightarrow{} Y$, a morphism being a split epimorphism by $X \xrightarrow{} Y$.
- (xi) A sequence $X' \longrightarrow X \longrightarrow X''$ in an additive category \mathcal{A} is *split short exact* if it is isomorphic, in $\mathcal{A}(\Delta_2)$, to the sequence $X' \xrightarrow{(1 \ 0)} X' \oplus X'' \xrightarrow{(0 \ 1)} X''$.
- (xii) For the definition of a weakly abelian category, see e.g. [3, Def. A.26]; cf. [2, §3, l. 1–2], [1, Def. 8.6].
- (xiii) Given a weakly abelian category C and $n \ge 1$, the category $\underline{C}(\dot{\Delta}_n)$ is defined as $C(\dot{\Delta}_n)$ modulo the subcategory of split diagrams; cf. [3, §2.4].
- (xiv) Concerning the Freyd category \hat{C} of a weakly abelian category C, we refer to [3, §A.6.3]. The Freyd category \hat{C} is an abelian Frobenius category that contains C as a sufficiently big subcategory of bijectives.

1 Construction of exact categories

Remark 1 If $(\mathcal{E}, \mathcal{S}_i)$ are exact categories for *i* in some index set *I*, where \mathcal{S}_i denotes the respective set of pure short exact sequences, then also $(\mathcal{E}, \bigcap_{i \in I} \mathcal{S}_i)$ is an exact category.

A sequence $X' \longrightarrow X \longrightarrow X''$ in an exact category $(\mathcal{E}, \mathcal{S})$ is called *left exact* if $X' \longrightarrow X$ is purely monomorphic and a kernel of $X \longrightarrow X''$.

A sequence $X' \longrightarrow X \longrightarrow X''$ in an exact category $(\mathcal{E}, \mathcal{S})$ is called *right exact* if $X \longrightarrow X''$ is purely epimorphic and a cokernel of $X' \longrightarrow X$.

Let $(\mathcal{E}, \mathcal{S})$ and $(\mathcal{E}', \mathcal{S}')$ be exact categories, and let $\mathcal{E} \xrightarrow{F} \mathcal{E}'$ be an additive functor. Let \mathcal{S}_F denote the set of short exact sequences in \mathcal{S} whose image under F, applied pointwise, is in \mathcal{S}' .

The short exact sequences in S will also be called S-pure; etc. The short exact sequences in S_F will also be called S_F -pure; etc. We will continue to denote an S-pure monomorphism in \mathcal{E} by \rightarrow , and an S-pure epimorphism by \rightarrow .

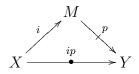
The functor F is called *left exact* if for any pure short exact sequence (X, Y, Z) in \mathcal{E} , the sequence (XF, YF, ZF) is left exact.

The functor F is called *right exact* if for any pure short exact sequence (X, Y, Z) in \mathcal{E} , the sequence (XF, YF, ZF) is right exact.

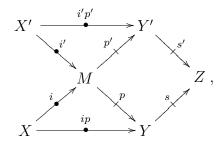
Lemma 2

- (1) If $\mathcal{E} \xrightarrow{F} \mathcal{E}'$ is left exact, then $(\mathcal{E}, \mathcal{S}_F)$ is an exact category.
- (2) If $\mathcal{E} \xrightarrow{F} \mathcal{E}'$ is right exact, then $(\mathcal{E}, \mathcal{S}_F)$ is an exact category.

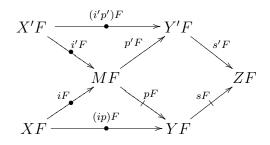
Proof. Ad (1). Consider a left exact functor $\mathcal{E} \xrightarrow{F} \mathcal{E}'$. We use the axioms from [3, §A.2.1]. The axiom (Ex 2) is redundant; cf. [4]. Verification of (Ex 3). Suppose given a commutative triangle



in \mathcal{E} in which, moreover, ip is \mathcal{S}_F -purely monomorphic and p is \mathcal{S}_F -purely epimorphic. By exactness of $(\mathcal{E}, \mathcal{S})$, we can complete it to a diagram

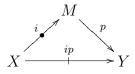


in \mathcal{E} with \mathcal{S} -pure short exact sequences (X, M, Y'), (X', M, Y), (X, Y, Z) and (X', Y', Z). Moreover, (X', M, Y) and (X, Y, Z) are \mathcal{S}_F -purely short exact, i.e. (X'F, MF, YF) and (XF, YF, ZF) are pure short exact sequences in \mathcal{E}' . Hence, application of the left exact functor F yields a diagram



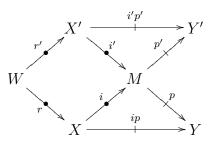
in \mathcal{E}' with (XF, MF, Y'F) and (X'F, Y'F, ZF) left exact. By composition, s'F is purely epimorphic, and hence (X'F, Y'F, ZF) is a pure short exact sequence. The quadrangle (MF, YF, Y'F, ZF) is a pure square, for on the kernels, we have the identity on X'Fas induced morphism, and the cokernels are zero; cf. [3, §A.4; §A.2.2; Lem. A.11]. In particular, it is a pullback, and so p'F is purely epimorphic. We conclude that (XF, MF, Y'F) is a pure short exact sequence.

Verification of $(Ex 3^{\circ})$. Suppose given a commutative triangle

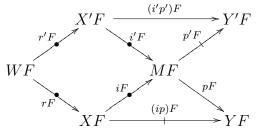


in which, moreover, ip is \mathcal{S}_F -purely epimorphic and i is \mathcal{S}_F -purely monomorphic.

By exactness of $(\mathcal{E}, \mathcal{S})$, we can complete it to a diagram



in \mathcal{E} with pure short exact sequences (X, M, Y'), (X', M, Y), (W, X, Y) and (W, X', Y'). Moreover, (X, M, Y') and (W, X, Y) are \mathcal{S}_F -purely short exact, i.e. (XF, MF, Y'F) and (WF, XF, YF) are pure short exact sequences in \mathcal{E}' . Hence, application of F yields a diagram



in \mathcal{E}' with (WF, X'F, Y'F) and (X'F, MF, YF) left exact. By composition, the morphism pF is purely epimorphic, and thus (X'F, MF, YF) is a pure short exact sequence. By (Ex 3°) in \mathcal{E}' , the morphism (i'p')F is purely epimorphic, and thus (WF, X'F, Y'F) is a pure short exact sequence.

Remark 3 A possible source of mistakes. Given an S-pure monomorphism $X \longrightarrow Y$ in \mathcal{E} such that its image $FX \longrightarrow FY$ is purely monomorphic, we cannot conclude that $X \longrightarrow Y$ is \mathcal{S}_F -purely monomorphic. In fact, the image of every S-pure monomorphism under F is purely monomorphic.

2 The construction principle

Let $(\mathcal{E}, \mathcal{S})$ be an exact category, where \mathcal{S} denotes the set of pure short exact sequences, and let $\mathcal{N} \subseteq \mathcal{E}$ be a full additive subcategory.

Consider the following set of pure short exact sequences.

$$\mathcal{S}_{\mathcal{N}} := \left(\bigcap_{N \in \mathrm{Ob}\,\mathcal{N}} \mathcal{S}_{\varepsilon^{(N,-)}} \right) \cap \left(\bigcap_{N \in \mathrm{Ob}\,\mathcal{N}} \mathcal{S}_{\varepsilon^{(-,N)}} \right) \;.$$

Then $(\mathcal{E}, \mathcal{S}_{\mathcal{N}})$ is an exact category by Lemma 2 and Remark 1. The short exact sequences in $\mathcal{S}_{\mathcal{N}}$ are called \mathcal{N} -pure short exact sequences. The pure monomorphisms in this exact category are called \mathcal{N} -pure monomorphisms, and the pure epimorphisms therein are called \mathcal{N} -pure epimorphisms.

By construction, the subcategory $\mathcal{N} \subseteq \mathcal{E}$ consists of bijective objects in $(\mathcal{E}, \mathcal{S}_{\mathcal{N}})$; that is, each $N \in \operatorname{Ob} \mathcal{N}$ is bijective with respect to the \mathcal{N} -pure short exact sequences.

Written out, an \mathcal{N} -pure short exact sequence in \mathcal{E} is a pure short exact sequence $X' \dashrightarrow X \dashrightarrow X''$ such that for any $N \in \operatorname{Ob} \mathcal{N}$ and any morphism $N \longrightarrow X''$, there exists a factorisation $(N \longrightarrow X'') = (N \longrightarrow X \dashrightarrow X'')$; and, dually, such that for any $N \in \operatorname{Ob} \mathcal{N}$ and any morphism $X' \longrightarrow N$, there exists a factorisation $(X' \longrightarrow N) = (X' \dashrightarrow X \longrightarrow N)$.

An \mathcal{N} -pure short exact sequence $X' \longrightarrow N \longrightarrow X''$ in \mathcal{E} is called \mathcal{N} -resolving if $N \in Ob \mathcal{N}$.

Remark 4 The category $(\mathcal{E}, \mathcal{S}_{\mathcal{N}})$, i.e. the given exact category \mathcal{E} together with the set of \mathcal{N} -pure short exact sequences $\mathcal{S}_{\mathcal{N}}$, is a Frobenius category if the following conditions (1) and (2) are fulfilled. In this case, \mathcal{N} is a sufficiently big subcategory of bijectives.

- (1) For all $X'' \in Ob \mathcal{E}$, there exists a \mathcal{N} -resolving pure short exact sequence with cokernel term X''.
- (2) For all $X' \in Ob \mathcal{E}$, there exists a \mathcal{N} -resolving pure short exact sequence with kernel term X'.

3 Application to $\mathcal{C}(\Delta_n)$

Suppose given $n \ge 1$. Recall that $\dot{\Delta}_n = \Delta_n \setminus \{0\} = [1, n]$.

Let \mathcal{C} be a weakly abelian category. We shall consider the category $\mathcal{C}(\dot{\Delta}_n)$. For ease of notation, we formally put $X_{n+1} := 0$ for $X \in \text{Ob} \mathcal{C}(\dot{\Delta}_n)$.

A sequence $X' \xrightarrow{i} X \xrightarrow{p} X''$ in $\mathcal{C}(\dot{\Delta}_n)$ is called *pointwise split short exact*, if the sequence $X'_k \xrightarrow{i_k} X_k \xrightarrow{p_k} X''_k$ is split short exact for all $k \in [1, n]$. The kernel in a pointwise split short exact sequence is *pointwise split monomorphic*, the cokernel *pointwise split epimorphic*. The additive category $\mathcal{C}(\dot{\Delta}_n)$, equipped with the set of pointwise split short exact sequences as pure short exact sequences, is an exact category; cf. e.g. [3, Ex. A.3, Ex. A.4]. Consider the full subcategory $\mathcal{C}^{\text{split}}(\dot{\Delta}_n) \subseteq \mathcal{C}(\dot{\Delta}_n)$ whose objects are diagrams $X \in \text{Ob}\,\mathcal{C}(\dot{\Delta}_n)$ such that $X_k \xrightarrow{x} X_l$ is split for all $k, l \in [1, n]$ with $k \leq l$.

Let \mathcal{S} denote the set of pointwise split short exact sequences in $\mathcal{C}(\Delta_n)$.

Lemma 5 Suppose given a pointwise split short exact sequence $X' \xrightarrow{f} X \xrightarrow{g} X''$ in $\mathcal{C}(\dot{\Delta}_n)$ such that, for all $l, m \in [1, n]$ with $l \leq m$, the quadrangle (X_l, X_m, X_l'', X_m'') has the following property (*).

(*) The morphism induced from the kernel of $X_l \xrightarrow{x} X_m$ in $\hat{\mathcal{C}}$ to the kernel of $X_l'' \xrightarrow{x} X_m''$ in $\hat{\mathcal{C}}$ is epimorphic.

Suppose given $Z \in \text{Ob}\,\mathcal{C}^{\text{split}}(\dot{\Delta}_n)$. Then application of the functors $(Z, -) = {}_{\mathcal{C}(\dot{\Delta}_n)}(Z, -)$ and $(-, Z) = {}_{\mathcal{C}(\dot{\Delta}_n)}(-, Z)$ yields short exact sequences

$$\begin{array}{cccc} (Z,X') & \xrightarrow{(Z,f)} & (Z,X) & \xrightarrow{(Z,g)} & (Z,X'') \\ (X',Z) & \xleftarrow{(f,Z)} & (X,Z) & \xleftarrow{(g,Z)} & (X'',Z) \end{array}$$

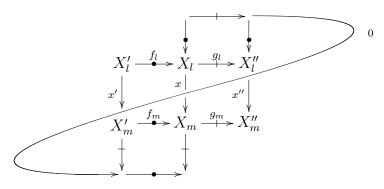
of abelian groups. In other words, the sequence $X' \xrightarrow{f} X''$ is $\mathcal{C}^{\text{split}}(\dot{\Delta}_n)$ -purely short exact; still in other words, it is contained in $\mathcal{S}_{\mathcal{C}^{\text{split}}(\dot{\Delta}_n)}$.

Proof. We claim that $(Z, X) \xrightarrow{(Z,g)} (Z, X'')$ is surjective. By Lemma [3, A.25], applied to the abelian Frobenius category $\hat{\mathcal{C}}$, we may assume that Z is an interval, say $Z = C_{[l,m]}$ with $C \in \text{Ob}\,\mathcal{C}$ and $l, m \in [1, n]$ with $l \leq m$; cf. [3, §A.6.2].

A morphism $C_{[l,m]} \to X''$ is determined by a morphism $C \xrightarrow{t} X''_l$ such that the composite $(C \xrightarrow{t} X''_l \xrightarrow{x''} X''_{m+1})$ vanishes. To prove the asserted surjectivity, we have to find a morphism $C \xrightarrow{t'} X_l$ such that the composite $(C \xrightarrow{t'} X_l \xrightarrow{x} X_{m+1})$ vanishes and such that $(C \xrightarrow{t'} X_l \xrightarrow{g_l} X''_l) = (C \xrightarrow{t} X''_l).$

To do so, we may assume that m < n. Let $K_x \xrightarrow{s} X_l$ denote the kernel of $X_l \xrightarrow{x} X_{m+1}$ in \hat{C} , and let $K_{x''} \xrightarrow{s''} X_l''$ denote the kernel of $X_l'' \xrightarrow{x''} X_{m+1}''$ in \hat{C} . By (*), we obtain an induced epimorphism $K_x \xrightarrow{\tilde{g}} K_{x''}$, characterized by $\tilde{g}s'' = sg_l$. We factor $(C \xrightarrow{t} X_l'') = (C \xrightarrow{t_1} K_{x''} \xrightarrow{s''} X_l'')$ by the universal property of s''. Then we factor $(C \xrightarrow{t_1} K_{x''}) = (C \xrightarrow{t_2} K_x \xrightarrow{\tilde{g}} K_{\tilde{x}})$ by epimorphy of \tilde{g} and by bijectivity of C in \hat{C} . We may use $t' := t_2 s$. This proves the claim.

We claim that $(X', Z) \xrightarrow{(f,Z)} (X, Z)$ is surjective. By duality, it suffices to show that, given $l, m \in [1, n]$ with $l \leq m$, the morphism induced from the cokernel of $X'_l \longrightarrow X'_m$ in $\hat{\mathcal{C}}$ to the cokernel of $X_l \longrightarrow X_m$ in $\hat{\mathcal{C}}$, is monomorphic. This in turn follows by an application of the snake lemma in $\hat{\mathcal{C}}$ to the morphism $(X'_l, X_l, X''_l) \xrightarrow{(x', x, x'')} (X'_m, X_m, X''_m)$ of short exact sequences.



This proves the second claim.

Proposition 6 The category $\mathcal{C}(\dot{\Delta}_n)$, equipped with the set $\mathcal{S}_{\mathcal{C}^{\text{split}}(\dot{\Delta}_n)}$ of $\mathcal{C}^{\text{split}}(\dot{\Delta}_n)$ -pure short exact sequences, is a Frobenius category with $\mathcal{C}^{\text{split}}(\dot{\Delta}_n)$ as a sufficiently big subcategory of bijectives.

Proof. By Remark 4 and by duality, it suffices to show that for each object $X \in Ob \mathcal{C}(\dot{\Delta}_n)$ there exists a $\mathcal{C}^{\text{split}}(\dot{\Delta}_n)$ -resolving pure exact sequence with cokernel term X.

Write $K_{i,n+1} := X_i$ for $i \in [1, n]$. For the notion of a weak square, we refer to [3, Def. A.9].

Choose a diagram

in \mathcal{C} , and where $(K_{l,n+1} \xrightarrow{k} K_{m,n+1}) = (X_l \xrightarrow{x} X_m)$ for $l, m \in [1, n]$ with $l \leq m$. This is possible since [1, n] is linearly ordered, proceeding from right to left and from the bottom to the top.

We write also $K_{i,j} \xrightarrow{k} K_{i',j'}$ whenever $i, j, i', j' \in [1, n+1]$ with i < j, with i' < j', with $i \le i'$ and $j \le j'$. In particular, for i = i' and j = j', the morphism $K_{i,j} \xrightarrow{k} K_{i,j}$ is an identity. Note that $K_{i,j} \xrightarrow{k} K_{i',j'}$ is zero unless i' < j.

The morphism $(K_{i,j} \xrightarrow{k} K_{i,n+1})$ is a weak kernel of $(K_{i,n+1} \xrightarrow{k} K_{j,n+1}) = (X_i \xrightarrow{x} X_j)$ for $i, j \in [1, n]$ with $i \leq j$; cf. [3, Lem. A.14, Rem. A.27].

We shall define an object $P \in Ob \mathcal{C}^{\text{split}}(\dot{\Delta}_n)$. Given $l \in [1, n]$, we let

$$P_l := \bigoplus_{i \in [1,l]} \bigoplus_{j \in [l+1,n+1]} K_{i,j} .$$

Given $l, m \in [1, n]$ with l < m, we let the morphism $P_l \xrightarrow{p} P_m$ be defined by the matrix $p = (p_{(i,j),(i',j')})_{(i,j),(i',j')}$, where

$$p_{(i,j),(i',j')} := \partial_{j,j'}(\partial_{i,i'} + k\partial_{i,l}\{i' \in [l+1,m]\})$$

First, let us verify that $(P_l \xrightarrow{p} P_m \xrightarrow{p} P_r) = (P_l \xrightarrow{p} P_r)$ for l < m < r in [1, n]. In fact, at $i \in [1, l], j \in [l+1, n+1], i'' \in [1, r], j'' \in [r+1, n+1]$, we obtain

$$\begin{split} &\sum_{i' \in [1,m]} \sum_{j' \in [m+1,n+1]} \partial_{j,j'} \left(\partial_{i,i'} + k \partial_{i,l} \{i' \in [l+1,m]\} \right) \partial_{j',j''} \left(\partial_{i',i''} + k \partial_{i',m} \{i'' \in [m+1,r]\} \right) \\ &= \partial_{j,j''} \Big(\partial_{i,i''} + k \partial_{i,m} \{i'' \in [m+1,r]\} + k \partial_{i,l} \{i'' \in [l+1,m]\} + k \partial_{i,l} \{i'' \in [m+1,r]\} \Big) \\ &= \partial_{j,j''} \Big(\partial_{i,i''} + k \partial_{i,l} \{i'' \in [l+1,r]\} \Big) \,. \end{split}$$

Given $l, m \in [1, n]$ with l < m, we let $P_{l,m} := \bigoplus_{i \in [1, l]} \bigoplus_{j \in [m+1, n+1]} K_{i,j}$. The pro-

jection $P_l \longrightarrow P_{l,m}$ is split epimorphic. The morphism $P_{l,m} \longrightarrow P_m$ given by the matrix $p|_{P_{l,m}} = (p_{(i,j),(i',j')})_{(i,j),(i',j')}$ is split monomorphic, for it has the projection $P_m \longrightarrow P_{l,m}$ as a retraction. Now since our morphism factors as $(P_l \xrightarrow{p} P_m) = (P_l \longrightarrow P_{l,m} \longrightarrow P_m)$, it is split. We conclude that $P \in Ob \mathcal{C}^{\text{split}}(\dot{\Delta}_n)$.

Given $l \in [1, n]$, we let $P_l \xrightarrow{\pi} K_{l,n+1} = X_l$ be the morphism given by the column vector $\pi = (\pi_{(i,j)})_{(i,j)}$ with

$$\pi_{(i,j)} = \partial_{i,l}k \; .$$

So $P_l \xrightarrow{\pi} K_{l,n+1} = X_l$ is split epimorphic, for it has the inclusion of $K_{l,n+1}$ into P_l as a coretraction.

We claim that these morphisms furnish a pointwise split epimorphism $P \xrightarrow{\pi} X$. Suppose given $l, m \in [1, n]$ with l < m. We have to show that

$$(P_l \xrightarrow{\pi} K_{l,n+1} \xrightarrow{k} K_{m,n+1}) \stackrel{!}{=} (P_l \xrightarrow{p} P_m \xrightarrow{\pi} K_{m,n+1})$$

Suppose given $i \in [1, l]$ and $j \in [l+1, n]$. At position (i, j), the right hand side composition has the entry

$$\sum_{i' \in [1,m]} \sum_{j' \in [m+1,n+1]} \partial_{j,j'} \left(\partial_{i,i'} + k \partial_{i,l} \{ i' \in [l+1,m] \} \right) \partial_{i',m} k$$

= $\{ j \in [m+1,n+1] \} \partial_{i,l} k$
= $\pi_{(i,j)} k$,

being the entry and so does the left hand side composition. We conclude that $\pi k = p\pi$.

We claim that $P \xrightarrow{\pi} X$ is $\mathcal{C}^{\text{split}}(\dot{\Delta}_n)$ -purely epimorphic. By Lemma 5, it suffices to show that for $l, m \in [1, n]$ with l < m, for the quadrangle (P_l, P_m, X_l, X_m) , the induced morphism from the kernel of $P_l \xrightarrow{p} P_m$ in $\hat{\mathcal{C}}$ to the kernel of $X_l \xrightarrow{x} X_m$ in $\hat{\mathcal{C}}$ is epimorphic. Since by [3, Rem. A.27], the induced map from the weak kernel $K_{l,m}$ to the kernel of $X_l \xrightarrow{x} X_m$ is epimorphic, it suffices to find an epimorphic induced morphism from the kernel of $P_l \xrightarrow{p} P_m$ to $K_{l,m}$.

The kernel of $P_l \xrightarrow{p} P_m$ is given by $\bigoplus_{i \in [1,l]} \bigoplus_{j \in [l+1,m]} K_{i,j}$, together with the inclusion into P_l .

As induced morphism $\bigoplus_{i \in [1,l]} \bigoplus_{j \in [l+1,m]} K_{i,j} \longrightarrow K_{l,m}$, we take the column vector $(\partial_{i,l}k)_{(i,j)}$.

This induced morphism is split epimorphic, for it has the inclusion of $K_{l,m}$ into that kernel as a coretraction. This proves the claim on $P \xrightarrow{\pi} X$.

Example 7 We display the matrix of the morphism $P_3 \xrightarrow{p} P_5$ in the case n = 7 (in the notation of the proof of Proposition 6). We have

$$P_{3} = (K_{1,4} \oplus K_{1,5} \oplus K_{1,6} \oplus K_{1,7} \oplus K_{1,8}) \oplus (K_{2,4} \oplus K_{2,5} \oplus K_{2,6} \oplus K_{2,7} \oplus K_{2,8}) \oplus (K_{3,4} \oplus K_{3,5} \oplus K_{3,6} \oplus K_{3,7} \oplus K_{3,8})$$

$$P_{5} = (K_{1,6} \oplus K_{1,7} \oplus K_{1,8}) \oplus (K_{2,6} \oplus K_{2,7} \oplus K_{2,8}) \oplus (K_{3,6} \oplus K_{3,7} \oplus K_{3,8}) \oplus (K_{4,6} \oplus K_{4,7} \oplus K_{4,8}) \oplus (K_{5,6} \oplus K_{5,7} \oplus K_{5,8})$$

and the morphism $P_3 \xrightarrow{p} P_5$ is given by the matrix

$\left(\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	$\left(\begin{array}{c}0\\0\\0\\0\\0\end{array}\right)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0 0
$\left(\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$

References

- [1] BELIGIANNIS, A., On the Freyd categories of an additive category, Homol. Homot. Appl., 2 (11), p. 147-185, 2000.
- [2] FREYD, P., Stable Homotopy, Proc. Conf. Categorical Algebra, La Jolla, p. 121–172, Springer, 1965.
- [3] KÜNZER, M., Heller triangulated categories, preprint, math.CT/0508565, 2005.
- [4] KÜNZER, M., A remark on the axioms for exact categories: (Ex 2) is redundant, www.math.rwth-aachen.de/~kuenzer/manuscripts.html.

Matthias Künzer Lehrstuhl D für Mathematik RWTH Aachen Templergraben 64 D-52062 Aachen kuenzer@math.rwth-aachen.de www.math.rwth-aachen.de/~kuenzer