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Introduction

Crossed modules

A crossed module [M, G] consists of two groups M and G, an action of G on M and a
group morphism f: M — G that satisfies the conditions

(CM1) (m9)f = (mf)? and (CM2)m™=m" |

for m,n € M and g € G.

The category of groups is equivalent to the homotopy category of connected CW-spaces X
that have m(X) ~ 1 for k > 2, i.e. for which only m(X) is allowed to be nontrivial.
Similarly, the category of crossed modules has a homotopy category that is equivalent
to the category of CW-spaces X that have m(X) ~ 1 for £ > 3, i.e. for which only
m(X) and m2(X) are allowed to be nontrivial. So just as groups model homotopy types
with only 71 (X)) nontrivial, crossed modules model homotopy types with only 7 (X) and
mo(X) nontrivial; cf. [5], [1, Theorem 2.4.8].

Our goal is to transfer some elementary concepts and assertions from group theory to the
theory of crossed modules.

Simple crossed modules

A nontrivial crossed module X is called simple if its only normal crossed submodules are
1 and X; cf. Definitions 21, 34. We can sort the simple crossed modules as follows; cf.
Theorem 40.

e [G,G] with G 4, @, where G is simple and non-abelian.
e [1, K], where K is simple.

o [M,1], where M is cyclic and of prime order.

This proposition is shown using standard short exact sequences for crossed modules; cf.
Definition 32. Of course, to classify the crossed modules appearing in these three cases,
one would need to know a classification of simple groups, not necessarily finite; we do not
treat this problem.



Jordan-Holder-Schreier-Zassenhaus

The classical procedure for composition series of groups works as follows.

A group G may have no, only one or even more than one composition series. However,
the Jordan-Holder Theorem states that any two composition series of a group G are
equivalent. That is, they have the same length and the same composition factors, up to
permutation and isomorphism. Note that this theorem does not ensure the existence of
a composition series. But if G is finite, then a composition series for G exists.

This assertion is shown by using Schreier’s Refinement Theorem; it says that any two
subnormal series of a given group G can be refined to equivalent subnormal series by
inserting suitable subgroups into the series.

The Zassenhaus Lemma connects the subfactors appearing in Schreier’s refinements. This
lemma is sometimes called the “Butterfly Lemma” because the diagram that illustrates
the relations of the involved subgroups resembles a butterfly.

We show an analogous Jordan-Holder Theorem for crossed modules; cf. Theorem 53. Its
proof runs parallel to the proof of the classical version; cf. [4, p. 20-22].

Orbit Lemma
[M, G]-crossed sets

Analogous to the notion of a G-set for a group G, we define the notion of an [M,G]-
crossed set for a crossed module [M, G]. To this end, we use the semidirect product Gx M.
An [M, G]-crossed set consists of a (G x M)-set U, a G-set V and maps o,7: U — V|
t: V. — U, satisfying certain compatibilities; cf. Definition 59. Such an [M, G]-crossed
set is written [U, Vs . For example, if [V, H] < [M,G] is a crossed submodule, the
[M, G]-crossed set [N, H|\[M, G] is given by U = (H x N)\(G x M) and V = H\G; cf.
Lemma 63.

With the notion of an [M,G]-set for a crossed module [M,G], we establish an Orbit
Lemma for crossed modules, valid for certain orbits. Suppose given an [M, G]-crossed
set [U, V]set . Suppose given v € V. We form the orbit vG in V. We map the element
v via ¢ to U and form the orbit (ve)(G x M) of ve € U under (G x M). They form the
[M, G]-crossed set [(ve)(G x M), vG]set =: v[M, G], called the orbit of v under [M, GJ;
cf. Lemma 68.



We obtain an isomorphism of [M, G]-crossed sets
(C? 7]) : C[[M}Gﬂ (U)\\[[Mv G]] — U[[M7 G]] )

where C[[M,G]](U> is the centralizer of v in [M, G], cf. Lemma 69; cf. Proposition 70.

However, it turns out that the (G x M )-orbits of the elements of the form ve, where v € V|
do not cover the whole (G x M)-set U in general; cf. Example 83. As a consequence, we
cannot classify the [M, G]-sets analogously to the classification of G-sets as disjoint unions
of orbits isomorphic to G-sets of the form U\G, where U < G.

[M, G]-crossed categories

An [M,G]-crossed category is a category C, for which [Mor(C),Ob(C)]ss carries the
structure of an [M, G]-crossed set with (s,i,¢) = (o,t,7) such that the composition
satisfies certain compatibilities; cf. Definition 71. For example, a crossed module [M, G]
gives rise to a category C[M,G] with Ob (C[[M, G]]) = @, Mor (C[[M, G’]]) = G x M,
cf. [2]; cf. also [6, (5.25), (5.10)]. This category C[M,G] is in fact an [M, G]-crossed
category in two ways: via multiplication and via conjugation; cf. Remark 73.

Moreover, given a crossed submodule [N, H]] < [M, G], then a factor construction yields
an [M,G]-crossed category [N, H] C\\[[M, G]; cf. Lemma 76. For example, we have
[1, 1] \[M, G] ~ C[M, G].

Just as for [M,G]-crossed sets, we formulate an Orbit Lemma for [M, G]-crossed cate-
gories, which is an analog to the Orbit Lemma for [M, G]-crossed sets. Suppose given
v € V. The orbit v[M, G] carries the structure of an [M, G]-crossed category; cf. Lemma
81. We have an isomorphism of [M, G]-crossed categories

(¢.1)t Cpypen(®) MM, G — v[M, G,

where C[[MVG]}(U) is the centralizer of v in [M, G], cf. Lemma 69; cf. Proposition 82.
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Conventions

Sets and Mappings

Let X, Y and Z be sets.

e For a,b € Z, we write [a,b] :=={z € Z: a < z < b}.
e We write P(X) for the power set of X.

e Let (X, <) be a partially ordered set. We say that an element x € X is

maximal if Vy € X: (z <y =12 =1y),
terminal if Vy € X: (y < x),
minimal if Vy € X: (y <z = x =vy),
initial ~ if Vy € X: (z < y).

o Let f: X — Y be amap. We write maps on the right, i.e. f mapsz € X toxf €Y.

Composition of maps is written on the right, i.e. given maps X Ly % 7 , their

composition is written X 19, 7 ; cf. also Reminder 4.

Unary maps are evaluated before binary maps. E.g. for a map M L G from a set
M to a group G, we write g-mf :=g-(mf), form e M, g € G.

Let f: X — Y be amap. Let X’ C X and Y’ C Y such that X'f C Y’. The
restriction of f to X’ and Y’ is written f ;,: X =Y o —af.
IfY"=Y, we also write f|,, = f If X' = X, we also write f‘yl = f‘;:

Sometimes, we denote by X’ < X the embedding of a subset X’ in a set X.

Y
X

Groups

Let G be a group.

e The identity element of GG is denoted by 1 := 14. The trivial subgroup is denoted

by 1:= {1}.



e Suppose given a subset S C G. The subgroup generated by S is denoted by (S) < G.
If S={s}, s € G, we also denote (s) := ({s}).

e We write g~ := ¢! for the inverse element of g € G.
e We write ¢" := h~g h for h,g € G.

e For u,v € G we write [u,v] := v v uv for their commutator. For U,V < G we
write [U, V] := {[u,v]: u € U,v € V)) < G for their commutator subgroup.

e Given z € G, we write Cg(z) = {g € G: xg = ga} for the centralizer of x in G.

e Sometimes, we denote by N 5 M, the embedding of N in G and N < G.

e Let H < G be a subgroup. We denote H\G := {Hg: g € G} for the set of right
cosets of H in G.

e The symmetric group on a set X is denoted by Sx . If X = [1,n], for some n € N,
then we also denote S, := S|y ).

Reminder 1 (Conjugation map) Suppose given a group G.

(1) For any h € G we have a group isomorphism
Cp: G—G@G

g ——g"=h"gh,

where cp, Chy, = C(hyhy) and (cy)” = i~ for hy, he,h € G. We call ¢, the conjugation
map of h on G.

(2) Suppose given a normal subgroup N < G. Then we have a group morphism given

by

cy: G —— Aut (N)

h r—>ch‘x.



Reminder 2 (Exact sequence) Suppose given n € N and groups G; for i € [1,n]. Suppose
given group morphisms ¢;: G; — G, for i € [1,n — 1].

The sequence of groups and group morphisms

¥1 Gy ¥2 Pn—1

G

G

is called a exact if im ¢; = ker ;11 holds for ¢ € [1,n — 1]. An exact sequence of the form

1 o g, 2, 1

is called short exact sequence.
Reminder 3 (Orbit) A set X together with a group G and a group morphism

G — SX
g (.%l—)x*g)

is called G-set. The group morphism G — Sy is also called (right) action of G on X. For
re€ X wecall txG:={xx*xg| g€ G} the orbit of x under G. Sometimes, we denote for
short G := x x G.

Reminder 4 (Category) By a category we understand a small category (with respect to
a fixed universe). So a category C consists of a set Ob(C), a set Mor(C), maps

Mor(C) —— Ob(C)

f (source)
x-Ly) —s X
i
Mor(C) «+— Ob(C) (identity)
idX —— X
t
Mor(C) —— Ob(C) (target)



and a composition

{(f,g9) € Mor(C) x Mor(C) : ft=gs} — Mor(C)
(x Ly, v-%2) s (x g = (x 1y )

which is associative and for which idx is neutral for X € Ob(C).

1 Basics

1.1 Crossed modules

Definition 5 (Crossed module) Suppose given groups M and G. Suppose we are given
an action of G on M; namely, we have a group morphism

a : G —— Aut(M)
g — ga.

When an element g € G is applied to an element m € M, we write m9 := m(ga).

Further, let f: M — G be a group morphism that satisfies
(CM1) (m?) f = (mf)’
(CM2) m™ = m™  (Peiffer identity),

for n,m € M and g € G. Such a quadruple (M, G, «, f) is called crossed module.

Often, we abbreviate [M,G] := (M, G,a,f). If unambiguous, we denote 1 := [1,1] for
the trivial crossed module.

Remark 6 Note that our notation for conjugation and for the action of G on M coincide.
To avoid confusion we note that the axiom (CM1) should be read as (m(ga)) f = g~ (mf)g
and (CM2) should be read as n=mn = m((nf)a).

Lemma 7 Suppose given a crossed module (M7 G, a, f)

(1) We have [M,ker f] = 1. In particular, the kernel ker f is abelian.
(2) We have Mf < G.



Proof. Ad (1). Suppose given m € M, k € ker f. We have

k~mk = mF (CM2) m

It follows that m~k~mk = 1.
Ad (2). Suppose given mf € M f, g € G. We have

g - (mf)g = (mf) (m?)f e Mf.
It follows that M f < G. [

g (©MD)

1.2 Examples of crossed modules

Example 8 Suppose given a group M. Consider the group morphism
c: M —— Aut (M)
m —— (¢ x—a™).

Then we have a crossed module given by [M, Aut (M)] = (M, Aut (M), idaw (a), €), since
the map c satisfies (CM1) and (CM2):

Ad (CM1). Suppose given g € Aut (M), m € M. Note that we have
m? = (m)(g)idaw vy = mg -
Suppose given n € M. We have
(n) (m?) ¢ = (n) (mg) ¢ = (N)cmg = (mg)~ 1 (mg) = (m"g) n (mg)
= (m~g)(ng~g)(mg) = (m~(ng~)m) g = (ng~)cm g = (n)g~ (mc) g

= (n) (me)” .

Ad (CM2). Supose given m, m’ € M. We have

m’ m'c

m™ =m'"m m' = (m) (m'c) =m

Example 9 Let GG be a group and let N << G be a normal subgroup. Consider the group
morphism

cn: G —— Aut (N)

g —— (cg&: n—nd).
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Then we have a crossed module [N, G] = (N, G, CN,idg‘N)I

For g € GG, the map cgm is a group isomorphism, hence, cy is well-defined; cf. Reminder 1.
We have yet to show that the map ¢ := idg‘N satisfies (CM1) and (CM2).

Suppose given n,m € M.
Ad (CM1). We have

Ad (CM2). We have

m" =m(ney) = (m)((ne)ey)m™

Remark 10
(1) Every group G has its trivial subgroup 1 consisting of just the identity element of

G. This subgroup is always a normal subgroup. Therefore, according to Example 9,
we have the crossed module [1,G] = (1, G, ey, idgh).

(2) Every group G contains the whole group G as a normal subgroup. Therefore,
according to Example 9, we have the crossed module [G,G] = (G, G,c, idg).

Example 11 Let M be an abelian group, written multiplicatively. Consider the group
morphisms

t: 1l — Awt(M) k2 M — 1

1 —— idy m — 1.

Then have a crossed module [M, 1] = (M, 1,¢, k). We have to show that x satisfies (CM1)
and (CM2). Note that we have 1t = idy, and 1 = mk, for m € M.

Ad (CM1). For m € M we have

Ad (CM2). For m,n € M we have

m"=n"mn=mn n=m=(m)idy =m(l) = m((nk)t) =m™

11



Definition 12
(1) Let G be a group. We define Xcon:(G) := [G, G] = (G, G, ¢,idg); cf. Remark 10.(1).
(2) Let K be a group. We define X, (K) = [1, K] = (1, K, cl,idK‘l); cf. Remark 10.(2).
(3) Let M be an abelian group. We define Xy(M) := [M,1] = (M, 1,t,x); cf. Exam-

ple 11.

1.3 Crossed module morphisms

Definition 13 (Crossed module morphism) o

Suppose given crossed modules (M,G,a, f) and (M,G,d, f)

Let A\: M — M and pu: G — G be group morphisms that satisfy the following proper-
ties (i) and (ii).

(i) We have Af = fu , i.e. the following diagram is commutative

A -
M
G .

M

f

G

(ii) For m € M and g € G, we have

(M)A = (mA)o* .

We call (A, 1) a morphism of crossed modules.

Lemma 14 (Identity and composition of crossed module morphisms)

(1) Let [M,G] = (M,G,a, f) be a crossed module. Then (idy,idg) is the identity
crossed module morphism of [ M, G].

12



(2) Suppose given crossed modules [M;, G;] = (Mi,Gi,ai, fi) fori e [1,3].

For j € [1,2], suppose given crossed module morphisms
(Ajypg) = [M, Gy, f5] — [Mja, Gl -
We have a crossed module morphism given by
(A, 1) i= (A1, 1) (A, p2) = (Mido, pupin) : [My, Gi] — [Ms, Gs]
Proof. Ad (1). We have
dyf=f=[fide.
Hence the following diagram commutes

\ idps

|

M

y

idg
For m € M and g € G we have
(mg)ldM = (m ldM)g ida .
Ad (2). The situation is given as follows.

A Ao
M1 M2 - M3

L

G 251 G 2 G

We have commutative squares on the left-hand side and on the right-hand side. Therefore,
we have A1 fa = fipn and Ao fs = fopo.

13



It follows that

fip = fipape = A fapie = Midafs = Afs .

Hence the following diagram commutes

M, — 2
fl[ [f?)
Gr ——— Gs.

For m; € M; and for g; € G; where j € [1,2], we have

(X = (M) Aude = (miAy)# ™ dg = (mu A dg) 2 = (my A

€M>

Lemma 15 Let [M,G] = (M, G,a,f), let [L,E] = (L, E,%d) be crossed modules.

Suppose we have a crossed module morphism (A, p): [M,G] — [L, E] where X\ and p
are bijective, i.e. we have

A
M = L
f d
G p E .

Then we have a crossed module morphism from [L, E] to [M,G] given by (A=, u~).

Proof. We have

M=fu < d=)fu < du =Xf.

14



Suppose given p € L, e € E. Since A and p are bijective there exist m € M and g € G
such that m = pA~ and g = eu~. We have

(mHA = (mA)" < ((pA7)*"
& ((pA)™

O

Definition 16 (Crossed module isomorphism)

A crossed module morphism (A, p): [M,G] — [L, E] is called injective if A and u are
injective. It is called surjective if X and p are surjective. We call (A, u) bijective if X and
14 are bijective.

We say two crossed modules [M,G], [L, E] are isomorphic if there exists a bijective
crossed module morphism between [M,G] and [L, E].

1.4 Crossed submodules

Definition 17 (Crossed submodule) A crossed module [N, H]] = (N yH, B, k:) is called a

crossed submodule of a crossed module [M,G] = (M ,G,a, f ) if the following properties
hold.

(i) We have N < M and H < G.
(ii)) We have k = f’ﬁ , 1.e. the map k is the restriction of f to N and H.
(iii) We have n(hB) = n(ha) forn e N, h € H.

We write [N, H] < [M, G] to indicate that [N, H] is a crossed submodule of [M, G]. We
write [N, H] < [M,G] if [N, H] < [M,G] and [N, H] # [M, G].

Remark 18 Let [M,G] = (M, G, «, f) be a crossed module. Suppose given N < M,
H < G such that nf € H and n" € N, forn € N and h € H.

Let : H — Aut (N), h— (hB: n— n(nf) :=n(ha)). Let k := f|§ :
This defines a crossed module [N, H] = (N, H, 3, k). We have [N, H] < [M, G].
Note that for n € N and h € H, we have n" = n(hf) = n(ha) = n", justifying our abuse

of notation.

15



Proof. By assumption, we have nf € H for n € N. Therefore, k = f |]HV exists.

Suppose given h € H. By assumption, we have n(ha) = n" € N for n € N. Therefore
ha‘x exists. Its inverse is given by (ha‘x)_ = (h‘a)!%. So (ha)‘]]:[, is bijective. As a
restriction of the group morphism hea, also (ha)‘x is a group morphism. So therefore,
hG = ha‘x € Aut (N) is well-defined. Note that n(hfg) = n(ha) for n € N.

This defines a map 8: H — Aut(N), h +— hf. It is a group morphism, since given
h, h € H and n € N, we obtain

n((hh)B) = n((hh)a) = n(ha)(ha) = n(ha)(hB) = n(hB)(hA) .

Ad (CM1). Suppose given n € N and h € H. Then

(CM1)

(n")k = n(hB)k = n(hB)f = n(ha)f (nf)" = (nk)" .

Ad (CM2). Suppose given n, n € N. Then

i D) s — n(ifa) = n(nka) = n(ikB) = n"* .

]

Remark 19 Let [N, H] = (N,H,ﬂ,k) and [M,G] = (M,G,a,f) be crossed mo-
dules. Suppose we have [N, H] < [M,G]. Then we have a crossed module morphism
(t,k): [N, H] — [M,G], where ¢ := idM‘N and K = id(;’H , called the inclusion mor-
phism of [N, H] in [M, G].

Proof. The diagram

N

k Jf
H G

<

commutes, since, for n € N, we have

(n)(of) = nf = nk = (n)(kr) .

16



Further, for n € N, h € H, we have

(n")e = n" = (n)"
0
Remark 20 Let [M,G] = (M,G,a, f), [N,H] = (N, H,B,k), [N ﬁ]] = (N,H,5,k)
be crossed modules. Suppose we have [N, H], [N, H] < [M,G] and N C N, H C H.

Then [N, H] < [N, H].

Proof; From N < M, N<~M and NQ N we infer that N < N. From H < G, ﬁ]g G
and H C H we infer that H < H.

For i € N we have ik = if = ik € H.
For 7 € N and h € H we have #i(hj3) = f(ha) = a(hf). O
Concerning Definition 21, we shall follow [3, p. 170].

Definition 21 (Normal crossed submodule) A crossed submodule [N, H] of [M,G] is
called normal if the following assertions (i),(ii) and (iii) hold.

(i) We have N < M and H < G.
(ii) We have m™m” € N form € M, h € H.
(iii) We have n? € N forn € N, g € G.

We write [NV, H] < [M,G] to indicate that [N, H] is a normal crossed submodule of
[M, G].
Remark 22 From the property (iii) in Definition 21 it follows that N < M. Hence this

requirement could be dropped from (i) without changing the definition.

Proof. Suppose we have n9 € N forn € N, g € G. For m € M, we have mf € G, and
thus

CM2
m_nm:nm(:)nmeN.

This shows N < M. ]

17



Remark 23 A crossed module [M, G] contains the trivial crossed module [1,1] and the
whole crossed module [M, G] as normal crossed submodules.

Proof. We have 1 < M, G. In particular, we have 1 € M, G. Hence [1,1] < [M, G].

We have M < M and G < G. We have m™m9 € M and m? € M for m € M, g € G.
Hence [M,G] < [M,G]. O

Remark 24 Suppose we have [N, H] < [M,G] < [L,E] with [N,H] < [L,E]. It
follows that [N, H] < [M, G].

Proof. We have H < G < E with H < E. Thus, we have H < G.

Forn € N,he€ H, mée M and g € G, we have m™m" € N and n9 € N because of
[N, H] < [L, E]. 0

Lemma 25 (Kernel and image of crossed module morphisms) Let [M,G] = (M G, a, f)

and [L, E] = (L, E,%d) be crossed modules. Suppose given a crossed module morphism
O\ a): [M,G] = [L, E].

ker p

(1) Let k= f|, .\ be the restriction of f to ker A and ker . Consider the group mor-

phism

B: kerp —— Aut (ker \)
h ——  (n— (n)(hB) := (n)(ha)) .

We have a normal crossed submodule
[ker A, ker u]] = (ker A ker p, 3, k;) < [M,G].
We write ker (A, p) := [ker A, ker p].
(2) Let d:= d|1$f\‘ be the restriction of d toim \ and im pu. Consider the group morphism
A impu —— Aut(im\)

g (e (m)(gY) = 1m(gy)) -

18



We have a crossed submodule
[im A, im p]) = (im)\,imp,"y,d) < [L, E].
We write im (A, ) = [im A, im p].

(3) We have the following diagram.

im A\
< A
ker )\ © M m\——— L

kﬂ ) fj; e {d

ker y —— imy— F

d

Proof. Ad (1). Since A and p are group morphisms, we have ker A < M and ker u < G.
Suppose given n € ker A\, h € ker u. We have

nfp=niAd=1d=1.
Hence nf € ker . Therefore, the map k = f }:ﬁi is well-defined. We have
n"A=mAN"=1"=1.

Hence n" € ker \. Therefore, the action 3 is well-defined; cf. Remark 18.
So we have ker (A, u) < [M,G].

Now we show that ker (A, 1) is normal in [M, G].

For m € M, h € ker u we have

(m™m™"A = m~Am"\ = m~A(m\)"*
=m AmAN)' = (m mA=1\A=1.

Hence m~—m" € ker \.

For n € ker \, g € G, we have

(A = (RA)# =19 =1 .

19



Hence n? € ker \.
This shows ker (A, u) < [M, G].
Ad (2). Since A and p are group morphisms we have im A < L and impu < E.

Suppose given m € im A and ¢ € impu. We can write m = mA for some m € M, and
g = gp for some g € G.

We have
mAd =mfp €imp .
This shows that the map d=d ‘Ei is well-defined.
We have
m? = (mA\)% = (m)\ €imA .
This shows that the action * is well-defined; cf. Remark 18.
So we have im (\, p) < [L, E].

Ad (3). It suffices to show that (A[™*, p|™#): [M,G] — [im p,im A] is a crossed module
morphism; cf. Remark 19.

Suppose given m € M and g € G. We have
(M)A = (m)A™*d = (m)Ad = (m) fuu = (m) fu|™" ,
and we have

(mg))\|im>\ = (M)A = (mA\)%# = (m)\|im>\)gﬂ|im“ '

1.5 Factor crossed modules

Lemma 26 (Factor crossed module) Suppose given crossed modules [N, H]| = (N, H,p, k;)
and [M,G] = (M,G, o, f) with [N,H] < [M,G]. Let L := M/N be the factor group of
M by N, and let E := G/H be the factor group of G by H. Consider the map

d:L—-FE, mNw—mfH .
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Consider the map

v: B —— Aut(L)
gH —— (mN — (mN)((gH)7) := (m(ga))N ) ,

i.e. we have (mN)9 = (m9)N form € M and g € G.

(1) We have a crossed module [L,E] = (L, E,~,d). We say that [L, E] is the factor
crossed module of [M,G] by [N, H]. We write [M,G]/[N, H] := [L, E].

(2) We have a crossed module morphism (X, ii): [M,G] — [L, E] with
MM — L=M/N, m—mN and ji:G—FE=G/H, g~ gH .

So we have the following diagram of crossed module morphisms.

d A
Ne—— M M/N
k f kd

< ji
H—— G G/H

Proof. Ad (1). We have groups L = M /N and E = G/H, because we have N < M and
H <G,

The map ~ is independent of representatives:
Suppose given m € M, ne€ N, g€ G, h € H.
We have

(mnN) = (mn)IN =m? n? N =mIN = (mN)"" .

eEN

We have (m?)~(m9)" := fn € N, and hence, (m?)" = m9fi. Therefore, we have

(MmN = mI" N = (m9)"N = m9 AN = m?N = (mN)*" .
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The map 7 is well-defined:
Suppose given g € G and m,m € M. We have

Therefore, (gH )y is a group morphism. We have
(mN)(gH)y (g H)y = (m(ga)N) (g~ H)y = m(ga)(g”a)N = m(gg-a)N =mN .

With a similar calculation we obtain (mN)(g~H)vy (¢H)y = mN. Therefore the map
(9~ H)~ is both right inverse and left inverse of (¢H )y, and hence (gH )y is bijective. So
we have indeed (gH)y € Aut (L).

The map ~ is a group morphism:

Suppose given g,g € G, m € M. We have
(mN)(9gH )y = m((99)a) N = m(ga)(ga)N = (m(9a)N)(gH )y = (mN)(gH)(GH) -

The map d is independent of representatives:

For m € M and n € N we have

((mn)N)d = (mn)fH = (mf) (nf) H=mfH = (mN)d .
——

€H

The map d is a group morphism, since f is a group morphism.
Now we prove that d and 7 satisfy the axioms (CM1) and (CM2).
For m € M, g € G, we have

(mN)Hd = (mIN)d = (m?) f)H 20 (mf)0H

(9= (mf)-g)H =g H-(mf)H - gH = ((mf)H)""
= ((mN)d)*™" .

This shows (CM1).
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For m,m € M, we have

(mN)™ = (mN)™ - (mN) - (mN) = (m~ -m-m)N = (m

(cgm) (mmf)N — (mN)fan

— (mN>(mN)d )
This shows (CM2).
Ad (2). For m € M, we have
(m)Ad = (mN)d=mfH = (m)fii .

Hence, the following diagram is commutative.

M2 M/N
"t
G ——~G/H

Further, for m € M, g € G, we have

m?i=mIN = (mN) = (mA)9"

Lemma 27 (Kernel-image lemma)

ﬁz)N

]

Let [M,G] = (M,G,a,f) and let [L, E] = (L, E,fy,d) be crossed modules. Suppose
given a crossed module morphism (A, p): [M,G] — [L, E]. Then we have the following

commutative diagram.

(4, %) (A, 1)

ker (A, p)

[M, G

(A 1)

[L, E]

| (é, %)

(M, G]]/ker (A, 1) ———im (A )

(A, 1)
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Or, more explicitly:

ker \ M L
k [ f A ; d
ker . G 0 E

\ A
1% M/ker)\TimA K

i

G/ker im

Proof. The existence of the crossed modules ker (A, ), im (A, p) and [M, G]/ ker (A, p) is
shown in Lemma 25 and Lemma 26.(1).

By Remark 19, we have the inclusion morphism (¢, x) and (i, #). Lemma 26.(2) yield the
crossed module morphism (\, f1).

By the kernel-image lemma for groups, we have bijective group morphisms

A M/ker A —im\, mi(ker\) — m\

fg: G/kerpy —imp, gkerp) — gu .

We show that (\, fi) is a (bijective) crossed module morphism.

Let m(ker \) € M/ ker A and let g(ker u) € G/ ker u. We have
(m(ker )\))S\d = mAd =mAd =mfu = (mf(kerp))fp = (m(ker \)) fii .

We have
(m(ker X)"™ X = (m?(ker 1)) A = (m9)A = (mA)* = (m(ker )A)"*7

Therefore, every crossed module and crossed module morphism given in the diagram exist,
and hence the diagram commutes. O
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Corollary 28 Let [M,G] = (M,G,a,f) and [L, E] = (L, E,'y,d) be crossed modules.
Suppose given a surjective crossed module morphism (A, pu): [M,G] — [L, E]. Then we
have a bijective crossed module morphism given by

(g07 ¢) : HM’ G]]/ker ()\’ M) L> [[Lv EH )
with

w: M/ker X — L, m(ker \) — mA
v: G/kerp — E, glkeru) — gu .

Hence, we have the following commutative diagram.

M A L
f by ® d
G s E
[ M/ ker A 0
JT
G/ ker

Proof. We are in the situation of Lemma 27 with special case of (A, 1) being surjective.
Hence, we have imA = L and impu = E. So the inclusion morphism (i, %) becomes
(i, k) = (idp,idg). We have

o =XA=Aid, =X and ¢:=jk=pidp =/ .
Hence, the groups morphisms
o: M/ker A\ — L and ¢: G/kery — FE

are bijective, and therefore, (p, 1) is bijective. O
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1.6 Examples of crossed submodules

Concerning the notion of a centre of a crossed module, we follow [3, p. 171].

Lemma 29 (Centre) Let [M,G] = (M, G, a, f) be a crossed module.

(1) Let Z(G)={z€ G: gz=2zg forge G} be the centre of G.
Let stg(M):={g€ G: m9=m form e M} be the stabilizer of M in G.
We have Z (G) Nstg(M) < G.

(2) Let MC:={me M: m9=m forge G}. We have MC < M.

(3) We have [MY Z(G)Nstg(M)] < [M,G] and we call [MY,Z (G) Nstg(M)] the
centre of [M,G]. We write Z ([[M, G]]) = [MC,Z(G) Nstg(M)].

Proof. Ad (1). The group Z (G) Nstg(M) is a subgroup of Z (G). Since every subgroup
of the centre is normal in G it follows that Z (G) Nstg(M) < G.

Ad (2). We have 1 € M®. Let i,n € M®. Let g € G. We have

(Ain™)’ =@’ - (n9)” = fn
Hence in~ € MS. Therefore ME < M.
Now let n € MY. Let m € M. We get

CM2
n (:)nmf:n.

Hence n™ € M%, and therefore M < M.

Ad (3). First we show that [M,Z (G) Nstg(M)] is a crossed submodule of [M, G].
Let n € M¢.

Let g € G. We have

(CM1)

nf=0)f ="(nf)!=9(nf)g.
Hence nf € Z (G).
Let m € M. We have

ot (CM2) o mf (CM2)

=n mn=n mn = mmmnm=nnm=m.
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Hence nf € stg(M).
Therefore we have nf € Z (G) Nstg(M).
Let h € Z (G) Nstg(M). Let n € MS. We have

n"=ne M.

This shows [MY, Z (G) Nste(M)] < [M,G].
Now we want to show that [MY Z (G) Nstg(M)] is normal in [M, G].
For that, let m € M and let h € Z (G) Nstg(M). We have

mmt=mm=1¢e M.
Now let n € M% and let g € G. We have
nd =ne M° .
This shows [MY Z(G)Nstg(M)] < [M,G]. O

Example 30 We consider the crossed module defined in [6, §1.5.6].

Let G := (a : a* = 1) and let M := (b : b* = 1) be cyclic groups of order 4. Since
(a*)* = 1, we have a group morphism

f: M — G, b a*.

Further, we can define an action of G on M by

a:G— At (M), a —— (b—0":=0b") .
This yields a crossed module [M,G] = (M .G, a, f), because we have

() = (57)f = (bf)™ = ()™ = (bf)" |
which shows (CM1), and
=0 = (1) =) =b=bbb=1b",

which shows (CM2).
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(1) We want to determine the crossed submodules and normal crossed submodules of
[M,G]. We consider all possible candidate pairs (N, H), where N < M and H < G,
and check if they possess the required properties.

Since M and G are abelian, the conditions N < M and H < G are always satisfied.
Further, the crossed modules [(1), (1)] and [M, G] = [(b), (a)] are trivially normal
crossed submodules.

We consider the pair ((b%), (1)). We have
Vf=(bf)?=(*)?=1ec(1) and (b*)' =b*c (b?).
Thus, [(?), (1)] is a crossed submodule. It is normal as well, because we have
bb'=1€(1) and (b*)*= (") =0*c (H?).
Now consider the pair ((b), (1)). We have
bf =a® ¢ (1) .
Hence, the pair ((b), (1)) does not yield a crossed submodule of [M, G].

We proceed through all candidate pairs in the same fashion and obtain the following
list.

candidate pair | crossed submodule | normal crossed submodule

(1), (1) Vv Vv
(), (1)) v Vv

<<

<

L <
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(2) Let X := [M,G] = [(b), (a)].

We want to determine the centre Z (X) = [M% Z (G) N stg(M)]; cf. Lemma 29.
We have

= ()@ =(¢*) and
( ) Nsta(M) = Z ({a)) Nsti((0) = (a) N (a*) = (a®) .
Hence we get Z (X) = [(?), (a®)] < X.
We form the factor crossed module X/Z (X) and obtain

X/7(X) = [®)/ %), (a)/(a*)] =: [M,G]; cf. Lemma 26.

We want to determine the centre Z (X/Z (X)) = [M%,Z (G) N sta(M) .
We have M = {1(0%),b(b*)} = ( b(b*) ) and G = {1(a?),a(a®)} = ( a(a®) ).
We have

(1(?) )@ 2 100 = 1)
(b)) 2 (%) = b7 (1) = B = b(b?).

Hence we get MY = M and sta(M) = G.
We have

Z(G) Nstg(M) = (a(a®) ) N {a(a®) ) = (ala®) ) =G .
Therefore, we have Z (X/Z (X)) = [M,G] = X/ Z (X).

Example 31 We consider the crossed module [[S3, S3] = (S3, Ss3, ¢, idsg). We want to
determine its normal crossed submodules.

We proceed in a similar fashion as in Example 30 and look at all candidate pairs (N, H)
with N, H < S3 and N < H. These are given by (1,1), (1,A3), (1,S3), (As, As), (A3, S3)
and (Ss, S3).

Since for all candidate pairs (N, H), the group H acts in NV via conjugation, all candidate
pairs yield crossed submodules by Remark 18.
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We consider [As, S3]. Suppose given a € As, suppose given s,t € S3. Since the factor
group Sz / As is abelian, the commutator subgroup [Ss, S3 is contained in Az. We have

s7st=s8" -t -s5-t€[S3S3] C Az .

Furthermore, we have

a’=5s -a-s€A;z .

ThU.S, it follows that [[Ag, Sg]] S‘ [[Sg, Sg]]
We consider [Ag, As]. For a € Az, s € S3 we have
s s"=sa sac Ay and a’=sas € A;.
—
€Aj
Hence, we have [As, As] < [Ss, Ss].
We consider [[1,As]. Let b:=(2,3) € S5, a := (1,2,3) € A;. We have

b b =baba=(23)(1,3,2)(2,3)(1,2,3) =(1,3,2) £id ,

and therefore [1, Az] € [Ss,Ss]. This calculation also shows that [1,Ss] € [Ss, Ss].

Note that the crossed submodules [[1, 1] and [Ss, S3] are normal in [Ss, S5]; cf. Remark 23.
We get the following list.

candidate pair | crossed submodule | normal crossed submodule

((1), (1)) Vv Vv

X

z
] <
X
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2 Simple crossed modules

2.1 Sequences

Definition 32 (Short exact sequence for crossed modules) Suppose given crossed mo-
dules [[Mz; Gz]] = (MZ, Gi7 (670 fz) for i € []., 3]

For i € [1,2], suppose given crossed module morphisms
(Aiy i) [Mi, Gi] — [Mit1, Gid]

such that

and

1 a a2, |

are short exact sequences; cf. Reminder 2. We call

(A1, 1) (A2, o)

I — HMlaGl]] IIM27G2]] [[M37G3]] 1

a short exact sequence (of crossed modules).

Lemma 33 Let [M,G] = (M,G,a, f) be a crossed module.

(1) Let [N,H] < [M,G] and let [M,G]/[N, H] be the factor crossed module; cf.

Lemma 26.(1). We have the residue class morphisms

p: M — M/N, m—mN
qg: G—-G/H, g w— gH.
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Further, let 1 := idM|N and let Kk = idg|H be the inclusion maps.
We get a short exact sequence

(¢, K)

R ) BRGNS Tare BT

[M,G]/[N,H] —— 1.

(2) Suppose given crossed modules [N, H] = (N, H,p, k:) and [L, E] = (L,E,%d).
Suppose we have a short exact sequence

(o, ¢) (A, 1)

1 . [N,H] [M,G] [L,E] — 1.

Then, the map (@l ™, [<*#): [N, H] — ker (\, i) is an isomorphism of crossed
modules; cf. Lemma 27.(1).

Proof. Ad (1). We are given short exact sequences

1 Nt P

M/N —— 1

1 H—"L-a 1 . q/m

1.

By Remark 19 and Lemma 26.(2), (¢, k) and (p, q) are crossed module morphisms.

Ad (2). We are given short exact sequences

Therefore, we have bijective group morphisms p[***: N = ker A and o|*"#: H = ker p.
From Lemma 25.(3) we infer that (¢|*T*, 1|%T#) is a crossed module morphism. Hence,
(|ker*, 9p|k°r#) is an isomorphism of crossed modules.

[]
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2.2  Simplicity

Definition 34 (Simple crossed module) A simple crossed module [M,G] is a crossed
module that is not isomorphic to [1, 1] and that has no normal crossed submodules apart
from its trivial crossed submodule [1,1] and the crossed module [M, G] itself.

Remark 35 Let G be a group. We consider the crossed module [G, G] = (G, G,ec, idG)
from Remark 10.(2). Then, we have a crossed submodule [1,G] < [G, G].

We have [1,G] € [G, G] if and only if G is abelian.
Proof. We have [1, ] < [G, G] since

(Didg =1 and (1)gce=1"=g1g=1, forgeG.
“=” We suppose that [1,G] < [G,G]. For g,h € G, we have

gg"=1 & hg=gh.

Therefore, GG is abelian.

“«<”  Suppose that G is abelian. For g, h € G, we get g ¢g" = 1 and 19 = 1.

This shows [1,G] < [G, G]. O
Example 36 Consider the symmetric group S3. By Remark 35, [1,S3] < [Ss,Ss] is a

crossed submodule but not a normal crossed submodule, because S5 is not abelian. This
fact has already been shown in Example 31.

Lemma 37 Let [M,G] = (M, G,a,f) be a crossed module.

(1) We have a crossed module [Mf,G] = (Mf, G, ch,idg|Mf), and a surjective
crossed module morphism (f‘Mf, idg): [M,G] — [Mf,G]. Cf. Ezxample 9.

(2) We have a short exact sequence given by

L peny— 2 o Y g g L.
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Proof. Ad (1). By Lemma 7.(2), we have M f < G. Thus, [M f,G] is a crossed module;
cf. Example 9.

Write f := f|Mf and K := idg‘Mf . Form e M, g € G, we have

(m)f& = (m)f& = (m)f = (m) fidg
and

(CM1) -

(m?)f = (m?)f "="(mf)* = (mf)?.
This proves that (f ’Mf, idg) is a crossed module morphism. By construction, it is surjec-
tive; cf. Definition 16.
Ad (2). The kernel of (f|M/ idg): [M,G] — [M f,G] is given by [ker f,1].

Since [ker f,1] < [M,G] is a crossed submodule, we have the inclusion morphism
(idps idg‘l)i [ker f, 1] — [M, G]; cf. Remark 19.

Altogether, the sequence in question exists and is short exact; cf. Definition 32.

ker f 7

]

Remark 38 Suppose given a group G. Suppose given M < G. Consider the crossed
module [M, G] = (M, G, c|u,idg|u); cf. Example 9.

(1) We have a crossed module [1,G/M] = (1,G/M,ci,idg/um|1), and a surjective
crossed module morphism (k,r): [M,G] — [1,G/M], where

ki M —— 1 r G — G/M

m —— 1=1lg/m g —— gM.

(2) We have a short exact sequence given by

(r,7)

1 MYl [1,G/M]

Proof. Ad (1). We have a crossed module [1, G/M] since it carries the structure of the
crossed module given in Example 9.
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Let m € M and let g € G. We have
(m)idg‘M r=(m)r=mM = 1M = (1)idg/m|1 = (m)K idg/M‘l
and
(m9)k = 1M = 19M = (1M)*M = (mk)7" .

This proves that (k,r) is a crossed module morphism. By construction, it is surjective;
cf. Definition 16.

Ad (2). The kernel of (k,7): [M,G] — [1,G/M] is given by [M, M].

Since [M,G] < [1,G/M] is a crossed submodule, we have the inclusion morphism
(idas,idg|ar) : [M, M] — [M, G]; cf. Remark 19.

Altogether, the sequence in question exists and is short exact; cf. Definition 32. O

Lemma 39 Suppose given a group G. Suppose given M < G. Consider the crossed
module [M,G] = (M,G,CM,idg‘M); cf. Example 9.

A crossed submodule [N, H] < [M,G] is normal in [M,G] if and only if we have
N<SM, HIG and N<H N<G, [M,H <N,

i.e. we have the following diagram.

<
[M,H]( N M
A\“ \Y %A\
H ‘T G

Proof. Ad =. We assume that [N, H] < [M, G]; cf. Definition 21. Then we have N < M
and H < G.

Forn € N, g € G, we have nY = g ng € N. It follows that N < G. Since [N, H] carries
the morphism idg|M|§ , we have N < H. Altogether, we have N < H.
For m € M, h € H, we have [m,h] = m~h~mh =m~m" € N. Hence [M,H] < N.

Ad <. By assumption we have N < M and H < G. Further, forn € N, m € M
and h € H, g € G, we have m™m" € [M,H] < N, and nY € N. Hence we have
[N, H] < [M,G]; cf. Definition 21. H
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Theorem 40 (Simple crossed modules) Suppose given a simple crossed module C'. Then
C' is simple if and only if (1) or (2) or (3) holds; cf. Definition 12.

(1) We have C' >~ Xeonie(G) for some non-abelian and simple group G.
(2) We have C' ~ X;(K) for some simple group K.

(3) We have C ~ Xo(M) for some cyclic group M of prime order.

Proof. Ad <. Suppose that (1) holds. We may assume that C' = [G,G] = (G, G,ec, idg),
where GG a simple and non-abelian group. Furthermore, we may assume that G # 1, since,
by definition, the crossed module [1,1] is not simple; cf. Defintion 34.

Suppose given a normal crossed submodule [N, H] < [G,G]. Then we have N < G and
H < G. We get N, H € {1, G} because G is simple.

Suppose we have N =1 and H = G. By Remark 35, we have [1,G] € [G, G], since G is

non-abelian.

Suppose we have N = G and H = 1. By Lemma 39, we have [G,1] € [G, G], since we
do not have G < 1.

Therefore, [1,1] < [G,G] and [G, G] < [G, G] are the only normal crossed submodules
we have; cf. Remark 23.

Hence, [G, ] is simple.

Suppose that (2) holds. We may assume that C' = [1, K] = (1, K, e, idK’1)’ where K is a

simple group. Suppose given a normal crossed submodule [N, H] < [1, K]. We obtain
N <1 and H < K. It follows that N = 1, and it follows that H =1 or H = K.

Hence, [1, K] is simple.

Suppose that (3) holds. We may assume that C' = [M, 1] = (M, 1,¢, Ii). We need the
commutativity of M to define the crossed module [M, 1]; cf. Example 11. Suppose given
a normal crossed submodule [N, H] < [M,1]. We obtain N < M and H < 1. It follows
that N =1 or N = M, and it follows that H = 1.

Hence, [M, 1] is simple.
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Ad = . Suppose given a simple crossed module C = [M,G] = (M, G,a,f). Consider
the short exact sequence from Lemma 37.(2).

< }Mf
1 ker f ———— M Mf— 1
id
| 1 a9 .G |

We have [ker f,1] < [M,G]. Since [M,G] is simple, we get [ker f,1] = [1,1] or
[ker £,1] = [M,G].

We consider the case [ker f,1] = [M,G]. Lemma 7 states that ker f is abelian, and
therefore M abelian. We show that the group M is simple:

We assume that there exists a non-trivial normal subgroup 1 # N < M. As a subgroup
of the abelian group M, the group N is abelian. Therefore, we get a non-trivial normal
crossed submodule 1 # [N, 1]<1[M, 1], which is a contradiction to the simplicity of [M, 1].

Hence, M is simple and abelian. Since the simple abelian groups are exactly those groups
that are cyclic and of prime order, we obtain [M,G] = [M, 1] where M is a cyclic group
of prime order. So (3) holds.

We consider the case [ker f,1] = [1,1]. We have a trivial kernel ker f = 1. Hence, the

map f is injective. Therefore, f := f}Mf: M — Mf is bijective. Hence (f|*/,idg) is
an isomorphism. So it suffices to show that [M f, G] satisfies (1) or (2). Hence, we may
assume that M < G, a = ¢y, f =idg|um.

By Remark 38.(2), we are given a short exact sequence

id
1 My " 1 1
- }A\ “
< ,
1 M G G/M 1.

Thus, [M, M] < [M, G]. Since [M, G] is simple we get [M, M] =1 or [M, M] = [M,G].
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If [M, M] =1 then (k,r): [M,G] — [1,G/M] is an isomorphism of crossed modules and
we obtain [M, G] ~ [1, K] with K := G/M. We show that K is a simple group:

If we assume that there exists a non-trivial normal subgroup 1 # N < K, then we get
a non-trivial normal crossed submodule [1, N] < [1, K]. This is a contradiction since
[M,G] ~ [1, K] is assumed to be simple.

Therefore, we obtain [M,G] ~ [1, K] where K is a simple group. So (2) holds.
If [M, M] = [M,G] then we have yet to show that M is a non-abelian and simple group.

If we assume that M is abelian then we have a normal crossed submodule [1, M] <
[M, M]; cf. Remark 10, which is a contradiction to the simplicity of [M, M].

If we assume that M is not simple then we have a non-trivial normal subgroup N < M.
We get a normal crossed submodule [N, N] < [M, M], which is a contradiction to the
simplicity of [M, M].

Altogether, we obtain [M,G] = [M, M] where M is a non-abelian and simple group. So
(1) holds. O

3 Jordan-Holder Theorem

3.1 A preparation

Lemma 41

(1) Suppose given a group G. Let N < G be a normal subgroup. For all g € G, n € N,
there exists n* € N such that ng = gn*.

(2) Suppose given a crossed module [M,G]. Let [N, H] < [M,G] be a normal crossed
submodule. For allm € M, h € H, there exists ng € N such that m" = mny.

Proof. Ad (1). Suppose given g € G,n € N. Since N < G, we have

n:=gmngeNnN, and so ng = gg ng = gn* .
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Ad (2). Suppose given m € M, h € H. Since [N, H]| < [M, G] we have

h h

ng:=mmheN , and so m" =mm™m" =mny .

3.2 Intersection and product of crossed modules
Lemma 42 Let [M,G] = (M, G, a, f) be a crossed module. Suppose we are given crossed

submodules [N, H] = (N,H,ﬂ,k‘) < [M,G] and [N, H] = (]\N/,sz,B,l;;) < [M,G].

(1) Letl := f!HmtI be the restriction of f to NON and HN H. Consider the group

— JINnN
morphism

6: HNH —s Aut(NﬂN)
h ——  (n— (n)(hd) = (n)(ha)) .

Then we have a crossed submodule given by
[NAON,HNH]=(NNN,HNH,SI) < [M,G] .

We write [N, H] N[N, H] := [N NN, H N H].

In particular, we have [N, H] N[N, H] < [N, H] and [N, H| N[N, H] < [N, H].

(2) If[N,H] < [M,G] and [N, H] < [M,G] then we have a normal crossed submodule
[N, H] A [N, ] < [M.G].

In particular, we have [N, H] N[N, H] < [N, H] and [N, H] N[N, H] < [N, H].
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So the situation is given as follows.

[M, G

[V, H]

\[[Nﬁ]]
/

[N, H] N[N, H]

Or more explicitly:

Proof. Ad (1). We have N N N < M and HN H < G. Suppose given a € NN N and
be HNH. We have

al=af = ak = ak e HNH
—~—
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and we have

a® = a(bd) = a(ba) = a(bf) = a(bB) € HN H .
eH c€H

This shows [N NN, H 0 H] < [N, H], [N, H], [M,G].

Ad (2). Now we assume that [N, H], [N, H] < [M,G]. We have NN N < M and
HNH<LG.

Since we have [N, H], [N, H] < [M,G], we get m~m" € NN N and m¢ € NN N for
m € M, g € G. This shows [N NN, H N H] < [M,G]. By Remark 24, we also have
[NNN,HNH] <N, H], [N, HJ. O

Lemma 43 Let [M,G] = (M, G,a,f) be a crossed module.
Let [N, H] = (N, H, B, /;) < [M, G] be a normal crossed submodule.

(1) Suppose given a crossed submodule [N, H] < [M,G]. Letl := f{ﬁg be the restric-
tion of f to NN and HH. Consider the group morphism

§: HH —— Aut (NN)
h —— (n— (n)(hd) := (n)(ha)) .
Then we have a crossed submodule given by
[NN,HH] = (NN,HH,~,1) < [M,G] .

We write [N, H|[N, H] :== [NN, HH].
In particular, we have [N, H] < [NN, HH] and [N, H] < [NN, HH].

(2) If[N, H]) < [M,G] and [N, H] < [M,G] then we have a normal crossed submodule
[NN, HH] < [M,d].

In particular, we have [N, H] < [NN,HH] and [N, H] Q [NN, HH].
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So the situation is given as follows.

[M, ]

|

[N, H][N, H]

=

[N, H] [N, H]

Or more explicitly:

So we may define [ := f|§g
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Forne N,ne N and h € H, h € H, we have

This shows [NN, HH] < [M,G]. By Remark 20, we also have [N, H] < [NN, HH] and
[N, H] < [NN, HH].

Ad (2). Now we assume that [N, H] < [M,G]. Since we have N,N < M and H,H < G
we get NN <M and HH < G. Forne N, ne N, g € G we have

(ni)? = n? 7% € NN .
eN ¢eN

Form € M, h € H, h € H we have

This shows [NN, HH] < [M, G]. By Remark 24, we also have [N, H] < [NN, HH] and
[N,H] < [NN,HH].
O

3.3 Zassenhaus

Lemma 44 Let A := [A, A;], B := [B1,By], B := [By,B;] and C := [Cy,Cy] be

crossed modules. Suppose we have A < C and B < B < C, i.e. we have the following
situation.
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A = [[Al,AQ]] s [[01,02]] — C

J

[[Bh BQ]] - B
Vv
[[Bl, BQ]] - B

(1) We have ANB < AN B.

(2) If A< C, then AB < AB.

Proof. Ad (1). By Lemma 42.(1) and Remark 20, we have AN B < AN B.
For n € A; N B; and g € Ay N By, we have

nd € Ay sincen € A; and g € A,
ngeél sinceneél,geBQandéng.

It follows that n? € A, N By.
Forme AiNB; and h € Ay N BQ, we have

m™ml € A; sincem € A; and h € A, ,
m-mh e Bl since m € By, h € Bg, and B d4B.

It follows that m~m" € 4, N Bl.

Therefore, we have AN B < AN B.

Ad (2). By Lemma 43.(1), we have A < AB and B < AB. Therefore AB < AB.
Suppose given n = arby with a; € A; and by € Bl, and g := asby with ay € Ay and
by € By. We have
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= a,?2b2 . BlaQbQ
41.(1) gozbe . (f,b2)a; (a3 € Ay, Ay < Cy D by)
41.(2) aclmbz ] (51b2)(a1)0 ((Gl)o e A, Ad C)

(@8 (ag)s) - (b2) € 4By ((a)f € Ay)

Suppgse given m := a by with a; €€ A; and b; € By, and h := a21~)2 with a; € Ay and
by € By. We have

m-m" = (ayb)” <a1b1>a262
= b ap a2 e
41.(1) by ap azlzzba (bf”)‘fi (a3 € Ay, Ay < Cy 3 by)
a0 (@ e A 490)
b ay e () () ()i € A))
b (i = arat (wi < A)
@y oy ) e 4By (at € Ay, AL <Gy by)

Therefore, we have AB < AB. -

Lemma 45 (Butterfly Lemma) Let C := [C},Cs] be a crossed module.
Let A :=[A;, As], B := [[Bl,Bg]] C' be crossed submodules.

Further, let A == [A;, A;] < = [By, Bo] < B be normal crossed submodules.
C
A B
V/‘ {\V
A B
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We have normal crossed submodules
A(ANB) < A(ANB)
(ANB)B< (ANB)B,

and isomorphic factor crossed modules
A(ANB) /. . . ANnB . . (AnB)B
A(ANB) = (ANB)(ANB) = (ANB)B -

If we visualize the involved crossed submodules in a diagram, then the “butterfly” becomes

apparent:

A B

N e

A(AN B) (AN B)B

\/
\/

J

/ \
\/ \/

Proof. By assumption, we have B < B. With Lemma 44.(1), we get ANB << ANB < A,
With Lemma 44.(2), we get A(ANB) < A(ANB) < A.
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We consider the crossed module morphism

(A1, Ao AmB—>A(A“B)/A<AmB),

where, for i € [1,2], we have

Ai(A; N Bi)/~ .

As a composite of an inclusion and a reduction morphism, (A, A2) is in fact a crossed
module morphism.

The crossed module morphism (A, Ay) is surjective:
Suppose given = € A, (AlﬂBl)/fll(Alﬂél) , which can be written as x = az fll(Al N Bl),
with @ € A; and z € (A1 N By). We have

x = az (Al(Al N Bl))
L@ (A(ANBy) (@ € Ay)

z (Al(Al N B1)>
== Z/\1 .

Hence, A; is surjective. In the same way we conclude that )\, is surjective. Therefore,
(A1, Ag) is surjective.
We have ker \; = (1211 NBy)(A N él):
Ad C. Suppose given k € ker A\; C (A; N By). We have

kM =1A(ANB) = keA(AND)
= ke(ANB)NA(ANB).

We can write k = az with @ € A; and 2 € (A1 N Bl). We have

a= k - 2= €B = dG(AlmBl) = k:ELZE(AlﬂleAlﬂBl).

€B1 6]31231
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Ad D. Suppose given k € (/L N B1)(A1 N Bl) - fll(Al N Bl). We have
kM =k A(A N B)) =1A (A NBy),

which shows k € ker \;.
By the same calculation we get ker Ay = (1212 N By)(As N Bg)
Hence, we have ker (A, \y) = (AN B) N (AN B).

Therefore, the conditions for Corollary 28 are met and we get the isomorphism

(A1, A2) 1AﬂB/(AmB)(AmE’);> (AQB)/A(AmB)’

where, for ¢ € [1,2], we have
3\ . AlﬂBl ~ ~ - AlAZﬂBl ~ ~
Ai / (AN B;)(A; N By) > Al >/ Ai(A; N B)

So we obtain

A0B /i mans =117 ins).

For reasons of symmetry, we also have

AQB/(AOB)(AQB):(AQB>B/(AQB)B'
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3.4 Schreier and Jordan-Holder

Definition 46 (Composition series) Suppose given a crossed module C'. A sequence of
crossed submodules

DI 0200201220521

is called subnormal series if Ciy1 < C; for i € [0, s — 1].

The factor crossed module C;/C;; is called the i-th sub-factor of this subnormal series,
where i € [0,s — 1].

We call s the length of 3.

A subnormal series whose sub-factors are all simple is called a composition series. The
sub-factors of a composition series are called its composition factors.

Definition 47 (Equivalent subnormal series) Suppose we have subnormal series of a
crossed module C'

202002012205:1
and
Z*C:D0>D1>>Dt:1

We say that ¥ is equivalent to ¥X* if there exists a bijection o: [0,s — 1] — [0, — 1] such
that, for ¢ € [0,s — 1],

/ Ciy1 — / Dis i1
holds. In particular, if ¥ is equivalent to ¥*, then we have s = t.

Definition 48 (Refinement) Let C be a crossed module. Suppose given subnormal series

Then ¥* is called refinement of 3 if there exists an injective monotone map v: [0, s] — [0, ]
such that (0)y =0, (s)y =t and C; = D;, for i € [0, s].
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Schreier’s theorem generalizes to

Theorem 49 Two subnormal series of a crossed module C' have equivalent refinements.

Proof. Let
Y 0=42A224-=1
and
1 C=Byz2B >2-->2B =1
be two subnormal series of C. For each i € [0,s — 1] and j € [0,¢] we define
A=A (AN B .

Then we have A;o = A; and A;; = A;4q for i € [0,s — 1]. A refinement of ¥ is given by

A
, 0
. C = Ao > Aoy = 0 =2 Ao
=Apt=A1
=~
= Ao > A 2 > A
=A11=A2
~ =~
P Az > Ay 2 > Agi
:A572,t:A571
—~
P A1 > A =2 0 2 A 2 Ap=1.

One should note that we have indeed normal embeddings at each position of the sequence
Y because Lemma 45 yields

Ai,j+1 == AiJrl(Ai N Bj+1> S] Ai+1(AZ‘ N B]) - Ai,j .

Similarly, for each j € [0, — 1] and ¢ € [0, s], we define

Bjﬂ' = (Az N Bj)Bj+1 .
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This gives us a refinement of >*:

By

*x/
¥ O = By > DBy = > DBos.
=Bo,s=B1
~ =~
= By >z DB = > DBis
=DB1,s=B2
~
> By > DBy = > DBags
=B _2,s=B;_1
—~ =

= Bi_1p > B 2

WV

Bi 151 =2 Bias=1.

We have a bijection
e : [0,st—1] — [0,s—1] x[0,t—1]
k = ko= (i,7),

where k = ti + j with j € [0,t — 1]. So, for k € [0, st — 1] with k¢ =: (i,7), where
i€0,s—1],j€[0,t—1], we have

(i+1,0) if ¢ divides k + 1
(i,74+1) else.

(/f+1)90:{

Let A} := Ay, for k € [0,st —1]. Let A, :==1.

If ¢ divides k + 1, we have A} | = A1) = Aig10 = Aix = A;j41. If ¢ does not divide
k+1, we have A; , = A; ;1. So we obtain

Yo C=Az2A 2 2A, A =1,

We have a bijection

" [0,st—1] — [0,t—1] x[0,s — 1]
k = ket = (1)
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where k = sj + 4 with j € [0, — 1]. So, for k € [0, st — 1] with k¢* =: (j,7), where
jel0,t—1],i€[0,s — 1], we have

|+ 1,0) if s divides k+ 1
(k+1g* = G+1,0) '
(j,i+1) else.
Let By, := By~ for k € [0,st —1]. Let B, := 1. Then
. C=B,>By>--->B., \>B,=1.
We conclude that both refinements >’ and ¥*' have the same length st.
Now consider the bijective map
T : [0,s—1] x[0,t—=1] — [0, —1] x[0,s—1]
(t,7) — (1) -

Let o := @1(¢*)~: [0, st—1] — [0, st—1]. As a composition of bijective maps, o is bijective.
Then, for k € [0, st — 1] with ky := (i, ), we obtain kop* = kot = (i,j)7 = (j,1), and so

A B _ A _ Aia(AiN By)
/A§~c+1 /A(k+1)<p /A /A1(A0 Bya)
45 (A, N Bj)Bj _ DBj;
- v /(Ai—i-l NB)Bjy1 — /By
— Bkg@* Bl{ca
/B(k‘0+1)<p* / l/€a+1 '
Hence, >’ and X* are equivalent. O

Definition 50 (Reduction) Let C' be a crossed module. Let
2:C=Cz2C2Cy =z2---2Cy=1

be a subnormal series of C.

(i) The subnormal series X is called reduced if C; > C;44 holds for all i € [0, s — 1].

(i) Let Ry :== {i € [0,s —1]: C; > Cia} U {s} C [0,s]. Let u := |Rg| — 1. Let
9 : [0,u] — Ry be the monotone bijection.

The reduction of the subnormal series ¥ is given by

Zredi02005>015>'-->Cu5>1:1.
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Lemma 51 Let X and ¥* be two equivalent subnormal series of a crossed module C'.
Then their reductions Xyeq and X34 are equivalent.

Proof. Write

As=1
B;=1.

1

E . C:A0>A
> By

o C:BO

\VARY,

VoWV

Let 6: [0,u] — Ry be the bijective monotone map. Let €: [0,v] — Ry« be the bijective
monotone map. Write A} := A for i € [0,u]. Write B} := Bj, for j € [0,v].

The reductions are given by

Yred  C=A)>A1>--->A =1
aqg + C=B(>B{>--->B =1.

Since ¥ and ¥* are equivalent we can find a bijection o: [0,s — 1] — [0, s — 1] such that

Ai/AiJrl ~ Bicr/BwH holds for all i € [0,s — 1].

For any index i € [0, s — 1] we have
1€ Ry & Ai+1<Ai <~ BZ‘J+1<BZ‘J & 10 € Ry« ,

i.e. we have (Ry)o = Ry+. With p := doe™, the situation can be depicted as follows.

0,u] —2— [0, 4]
AR 2 €
Rs Ry

Hence, for any i € [0, u — 1] we have

A{L = Ai(S ~ Bi5U = Bz{éae* = B;
/ ;4_1 o /Ai5+1 o /Bi50+1 o /Bg(sgef_H o p/Bz/’p—I—l ’
Therefore, .4 and X7, are equivalent. O
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Lemma 52 Suppose given a composition series ¥ of a crossed module C. Let ¥ be a
refinement of ¥. Then ¥ =X/ ;.

Proof. Write

X o C = Cy > Cf > Oy > > C, = 1,
E/C:D0>D1>D222Dt:1

By definition of refinement, we have an injective monotone map v: [0, s] — [0, t] such that
C; = D;, for i € [0, s]; cf. Definition 48.

Let C;/Ci11 be a composition factor of ¥, where ¢ € [0,s — 1]. We have C;/C;; =
D;y/D(i11)y . Consider the map

:Y: [075] E— [Oat]
i +—— dy:=min{j € [iv,t —1]: D;y > D; > Dj 1} .

|

Note that D5 = Dy = C; for i € [0,s]. We claim Dj54q = D(iy1)5 for i € [0,5 — 1].

We assume the contrary. Namely, there exists an index k € [y + 1, (i + 1)5 — 1] with
Diz > Dy > Diyqy5 - It follows that

Ci _ Dz“ D
/Ci+1 - ,Y/D(H_l)a > k/D(H—lW > 1

which is a contradiction to the simplicity of the composition factor C;/C;;1. This proves
Di541 = D(i+1)5 - So, for i € [0, s — 1], we have

Diz > D1 = Dispz = ... = Dggys -
Consider the reduction of >

Y  C = Doy > Dig > Doy > ... > Dys = 1,
where d: [0,u] — Ry is the monotone bijective map; cf. Definition 50. We have

{Ci:i€10,s]} ={Diz:1€[0,s]}
={D;:j€[0,t 1], D; > Dj,} U {1}
= {Dji J € RZ/} .

Hence ¥ = X! ;. O

o4



Jordan-Holder’s theorem generalizes to

Theorem 53 Two composition series of a crossed module C are equivalent.

Proof. Let ¥, ¥* be two composition series of C'.

By Theorem 49, there exist refinements ' of ¥ and ¥* of ¥* such that ¥’ and X*' are
equivalent. By Lemma 51, the reduced subnormal series ¥/ _; and X/, are still equivalent.
Then, Lemma 52 implies ¥ = X/, and X* = 3%, .

Therefore, > and ¥* are equivalent.
m

Definition 54 (Finite crossed module) A crossed module [M,G] is said to be finite if
the groups M and G are finite. The (total) order of a finite crossed module [M,G] is
given by |[[M, G]| == [M]|-|G|.

Lemma 55 Fach finite crossed module has a composition series.

Proof. Suppose given a finite crossed module C' := [M,G]. We show the assertion by
induction on the order |C|.

Let |C| = 1. Then we have |M| = |G| =1 and a composition series is given by

Cc=1.

Suppose the claim has been proven for all crossed modules C' with |C] < |C].

The set N of proper normal crossed submodules of C' is non-empty because of [1,1] =
1 < C. Tt is finite because P(M) x P(G) is finite. The set N is partially ordered via
inclusion. Therefore, N/ contains maximal elements.

Let C' be such a maximal element. We have ‘C’ ‘ < |C’ ‘ Therefore, by the induction
hypothesis, we are given a composition series of ("

C=0,>0y>C3>-->C,=1.

Further, the factor C'/C} is simple because C) is maximal in C. Therefore, C' has a
composition series given by

C=Cy> C, >Cy>--->Cy=1.
—~—

=C
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4 Actions of crossed modules

In the following, let [M,G] = (]\47 G, a, f) be a crossed module.

4.1 Preliminaries
4.1.1 Semidirect Product

We recall the notion of a semidirect product.

Definition 56 (Semidirect product) Let M and G be groups. Suppose given a group
morphism

a: G — Aut (M), g— ga,
where, for m € M, g € G, we write m(ga) = m?.

The cartesian product Gx M = {(g,m): g € G,m € M}, together with the multiplication

GxM) — GxM

(): (G x M) x (
7§7m>) — (g7m)<§>m> = (ggvmg ’)”h)

((g.m), (
is called semidirect product of M and G, which we denote by G x M.

Lemma 57 In the situation of Definition 56, the semidirect product G x M is a group.

Proof. For (g,m), (h,n),(l,k) € G x M we have

((g.m) - (h,m)) - (k,1) = (gh,m" n) - (k,1) = (ghk, (m" n)* 1) = (ghk, m"* n* )
= <g7m) ’ (hk,nk l) = (gam) ' ((h7n> ’ (k7l)) )

and therefore, (-) is associative. We have the neutral element 1g, s = (1,1). The inverse
element of (g,m) € G x M is given by (g,m)” = (¢, (m~)Y ), because of

(g:m)- (g7, (m™)" ) = (997,m (m™)? ) = (997, (mm™)? ) =(1,1) .
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4.1.2 The group morphisms s,i,t

Lemma 58 We have group morphisms

s: (GxM)—=G, (g,m) — g,
i (GxM)+G, (g,1) <« g,
t: (GxM)—G, (gym) — g-mf.

We have is = idg and it = idg.

Proof. Let (g,m),(g,m) € G x M. Let g, € G.

We have
((g;m) - (g,1m))s = (9§, m"m)s = g -G = (g,m)s - (§,m)s
We have
(99)i = (99,1) = (9,1) - (3,1) = gi - gi
We have

(g.m) - (g.m)t = ((9g,m? )t = g7 (mm)f = gg (m?)f (m)f "=" g3 (mf)? mf
g

4.2 Crossed sets
4.2.1 [M,G]-crossed sets

Concerning G-sets, cf. Reminder 3.

Definition 59 ([M, G]-crossed set) Suppose given a crossed module [M,G]. Let the
maps s,i and t be given as in Lemma 58. Suppose given a (G x M)-set U, a G-set V,
and maps

o:U—=V

LUV

T:U—=V
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such that the following axioms (CS1) and (CS2) hold.
(CS1) (i) to =idy
(ii) o =1idy

(CS2) (i) (u-(g,m))o=uo-(g9,m)s YueU, (g,m)€Gx M
(i) (u-(g,m))T =ur-(g,m)t VueU, (g,m)€Gx M
(iii) (v-g)e=wr-gi YoeV, gedG.

We call [U, V]set := (U, V, (0,¢,7)) an [M, G]-crossed set.

Remark 60 Let U:=Gx M,V :=G and (o,t,7) := (s,1,1).

(1) If we choose the multiplication (-), cf. Definition 56, as the action of G x M on
G x M, respectively of G on G, we obtain an [M, G]-crossed set.

(2) We have conjugation actions

Gx M) — Gx M

(x): (Gx M) x(
) §,ﬁ1)) — (g,m) * (%,fh) = (g, m)@m™)

((g,m), (

and
(¥): GxG — G
(9.9) —— g*xg=¢"=G -9-7.

If we choose (x) as the action of G x M on G x M, respectively of G on G, we obtain
an [M, G]-crossed set.

Proof. Ad (1). The required properties in (CS1) are given by Lemma 58. Since s, and ¢
are group morphisms the properties given in (CS2) are satisfied.

Ad (2). Since the maps s,i and t are group morphisms they are compatible with conju-
gation. Therefore, the identities that are to be verified in (CS2) hold. O
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Definition 61 ([M,G]-crossed subset) Suppose we are given [M,G]-crossed sets
[[U> V]]set = (U7 V7 (07 2 7—)) and [[X7 Y]]set = (Xa Ya (qa Ly 7_—))

We say that [ X, Y ]set is a [M, G]-crossed subset of [U, V]t , written [ X, Y Jset < [U, V]set ,
if the following properties hold.

(i) X CU and Y CV are subsets.

X

(i) We haveq:a|§ ,T:T‘Y v

cand =1

(iii) For (g, m) € G x M, the multiplication map U — U, u +— u-(g,m) given by [U, V]t
restricts to the multiplication map X — X, x — x - (g, m) given by [X, Y-

For g € G, the multiplication map V' — V, v+ v - g given by [U, V] restricts to
the multiplication map Y — Y, y — y - g given by [X, Y ]ses.

Remark 62 Let [U, V]t = (U, V. (o,, ’/')) be an [M, G]-crossed set.
Suppose given subsets X C U, Y C V such that z- (G x M) C X and y- G C Y holds
for all z € X, y € Y. Suppose that we have Xo, X7 CY and X D Y.

Thus, X is a (G x M)-subset of U and Y is a G-subset of V.

We can choose o = 0|§, L= [,Kf and 7 = T‘; to obtain an [M, G]-crossed subset
[[Xay]]set = (X7Y7 (,7977:))‘

Proof. Since (CS1) holds for [U, V], it holds for (X,Y,(c,¢,7)). Since (CS2) holds for
[U, V]set , it holds for (X, Y, (o,, 7:))

]

Lemma 63 ([M, G]-crossed right factor set) Let [N, H] < [M,G] be a crossed submod-
ule. Let X := (H x N)\(G x M), regarded as a (G x M) — set, and let Y = H\G,
regarded as a G-set. Consider the maps s,i and t from Lemma 58. Let 5,1,t be the coset
maps induced by s,i,t, 1.e. we have

X =Y, (HxN)(g,m)— Hg ,
X «Y, (HxN)(g,1) <+ Hg,
X =Y, (HxN)(g,m)— Hg(mf) .

&+ = Oy
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We have an [M, G]-crossed set given by [X,Y s = (X, Y, (5,1,1)).

We denote [N, HI\[M, G] := [X,Y]st and we say that [N, H]\[M, G] is the [M,G]-
crossed right factor set of [M, G] modulo [N, H].

Proof. We show that the maps § and ¢ are well-defined.
Suppose given (g, m), (g,m) € (G x M) with
(H x N)(g,m) = (H x N)(g,7m) .
Then there exists (n,h) € (H x N) such that
(g,7m) = (h,n) - (g,m) = (hg,n? m) .
We have
g-g =hg-g =heH.

It follows that Hg = Hg. Hence, § is well-defined.
We have

~(g-mf)” = hg-mIm)f-(mf)"-g”

s
=
~

It follows that H(g-mf) = H(g-mf). Hence, t is well-defined.

We show that i is well-defined. Suppose given g, § € G with Hg = H§. Then there exists
h € H such that g = h - g. We have

(f],l) ’ (gal)_ = (hgal) ’ (g_71) = (hgg_a1> = (hvl) S (H X N) :
It follows that (H x N)(g,1) = (H x N)(g,1). Hence, i is well-defined.
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With the following actions, X is a (G x M)-set and Y is a G-set:

((HKN)(Q,Th))-(g,m) = (H x N)(gg,m? m) forg,ge€ G, m,me M,
(Hg)-g = Hgg for g,g € G .

We show that all properties required in Definition 59 hold.
Ad (CS1). For Hg € Y we have

(Hg)is = Hgis = Hg = (Hg)idy ,
and we have
(Hg)it = (H x N)(g,1)t = Hg(1f) = Hg = (Hg)idy .
Ad (CS2). For (H x N)(g,m) € X, (g,m) € G x M we have

((H X N)(g7m) ’ (gvm))g

((H % N)(Gg. m® m))3
=Hgg=Hg-g
((H X N)(g,ﬁl))g (g7m)s )

and we have

((H % N)(g,m) - (g,m))t = ((H x N)(gg, m?m))t
= Hgg(m? m)f
= Hgg (mf)* mf

For HgeY, g € G, we have

(Hg - g)i=(Hgg)i = (H x N)(gg,1) = (H x N)(g,1) - (9, 1) = (Hg)i- gi .
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4.2.2 [M,G]-crossed set morphisms

Definition 64 ([M,G]-crossed set morphism) Let [U, V] = (U, V, (O’,L,T)) and let
[X,Y]set = (X,Y, (7,7, %)) be [M,G]-crossed sets. Suppose given maps (: U — X,
n: V — Y such that in

the pair (¢,n) is a morphism of diagrams from (o, ¢, 7) to (7,7, 7). That is, the following
equations hold true

(i) on=Ca
(i) e ¢=nt
(iii) 7Tn=(7T .

Further, suppose that the following properties are satisfied

(iv) Foru e U, (g,m) € G x M, we have (u~(g,m))§=u(-(g,m) )

(v) ForveV, g€ G, we have (v-g)n=(vn)-g .

Then the pair of maps ((,n) is called a morphism of [M, G]-crossed sets.

Remark 65 We do not claim that the diagram given in Definition 64 is commutative.
For example, for an u € U it is not always true that (u)or = u.
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Lemma 66 (Identity and composition of [M, G]-crossed set morphisms)
(1) Let [U,V]set = (U, V., (0,t,7)) be an [M,G]-crossed set. Then (idy,idy) is the
identity [M, G]-crossed morphism of [U, V]set-
(2) Let [U;, Vi]set = (Ui, Vi, (ai,ai,n)) be [M, G]-crossed sets fori € [1,3].
For j € [1,2], suppose given [M,G]-crossed set morphisms
(Cj7 77j)3 [[Uja V}']]set — [[Uj+17 V}—&-l]]set .
We have a crossed set morphism

(gﬁn) = (Clvnl)(C%T/Q) = (C1C27771772): [[Uh‘/l]]set — [[Ug, ‘/3]]set .

This composition is associative.

Proof. Ad (1). We have
cidy =0 =1idy o
vidg =¢ =idy ¢

Tidy =7=1idy 7.
Hence we get the following morphism of diagrams.

id
U v U

V Vv
idy

Let u € U, let (g,m) € G x M. We have
(u- (g,m))idy = u- (g, m) = ((w)idy) - (g,m) .
Let v € V, let g € G. We have
(v-g)idy =v-g=((v)idy) - g .
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Ad (2). The situation is given as follows.

! G2

U, U, Us
o1l kT O9 | L2]| T2 O3 | L3| T3
Vi Vo V3
T 72

Therefore we have

o1-N=01 MmN = (02N = (1C2-03=(-03
t-C=11-CC=mnt2-Ca=mN2-tz =10"1l3
TN =Ti MmN =CTe N2 =CC T3=C("T3.

Hence we get the following diagram of morphisms

¢
U1 U3
o1 Lt Ty O3 | 3| T3
V; Vs .
1 n 3

Let u € Uy, let (g,m) € G x M. We have
(U ) (gam))C = (U : (gam)>C1 G = (UCl : (g,m))Cz =uCiCe - (g,m) = u - (g,m) .
Let v € V7, let ¢ € G. We have

(v-gm=(-gym = (v -g)pe=vmn-g=vn-g .
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Lemma 67 ([M,G]-crossed set isomorphism) Let [U, V] = (U,V,(0,:,7)) and let
[U, V]set = (f], V. (5,1, %)) be [ M, G]-crossed sets. Suppose given a crossed set morphism
(¢, n): [U,V]set = [U,V]set, where ¢ and 1 are both bijective.

Then we have an [M, G]-crossed set morphism given by (¢, 07 ): [U, Vet = [U, Vet -

We say that (¢,n) is an [M,G]-crossed set isomorphism, and we say that [U, Vst and
[[f] , f/]]set are isomorphic.

Proof. We have

on=(c & (on=0 & (o=0
W=t & niu=1t < n 1=
m=(T & (m=7T & (T1=7Tn"
Hence we have the following morphism of diagrams
- ¢
U U
ol T olL|T
1% - 1%
n

Let @ € U, let (g, m) € Gx M. Then there exists u € U such that @& = u( or, equivalently,
u = u¢~. We have

(a ’ <g7m>)<_ - (U’C ’ (gvm))(_ - (U ’ (gam))C C_ =u- (gam> - ag— ’ (g7m) :

Let v € V, let g € G. Then there exists v € V such that v = vn or, equivalently, v = vn~.
We have
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4.2.3 Orbit Lemma for [M, G]-crossed sets

Lemma 68 (Orbit) Let [U, V] = (U, V, (0,0, 7)) be an [M, G]-crossed set.

Suppose given v € V. Let vG be the orbit of v under G, let (vt)(G x M) be the orbit of
vt under G x M; cf. Reminder 3.

Then [(ve)(G x M), vG]set is an [M,G]-crossed subset of [U, V]set-

We write v - [M,G] := [(ve)(G x M), vG]set and we say that v - [M,G] is the orbit of v
under [M,G]. Sometimes, we abbreviate v[M,G] :=v - [M,G].

Proof. We have vG C V and (vt)(G x M) C U.
Let (g,m) € G x M. We have

(v (g,m))T =wver - (g,m)s = v- g(mf) € vG .

This shows ((ve)(G x M))T C vG.
With a similiar calculation, we get ((v.)(G x M))o C vG.
Let g € G. We have
(vg)e=wve-gi=wvr-(g,1) € (v)(G x M) .

This shows (vG)t C (ve)(G x M).
Let (ve) - (g,m) € (ve)(G x M), let (g,m) € G x M. We have

((ve) - (g.11)) - (g,m) = (vi) - (g, ) - (9. m) = (ve) - (§g, 1! m) € (v0)(G x M) .
eGxM

Let v-g € vG, let g € G. We have

(v-g)-g=v- gg €vG.
~
eG

Hence the subsets (vt)(G x M) and vG are closed under the actions of G x M and G
respectively.

This shows v[M, G| = [(ve)(G x M), vG]set < [U, V]set ; cf. Remark 62. O
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Lemma 69 (Centralizer) Let [U,V]sw = (U,V,(0,0,7)) be an [M,G]-crossed set. Let
veV. Let

Cownm(ve) ={(g,m) € Gx M: (vi) - (g,m) = v}
be the centralizer of vi in G x M. Let
Cov)={9€G:v-g=nv}

be the centralizer of v in G.

(1) We are given restricted maps

Ca(v)

$i=5S Cawnm (ve) : CGIXM(UL) - CG(U) ) <g’m) =9,
. 1 Caxm (v
1= Cz(;\;[( ) CGKM('UL) — CG(U) ) (ga 1) 9,
Ca(v)
ti=tleenw ¢ Coxar(ve) = Calv) . (g.m) = g-mif .

(2) Let No(v) == {m € M: (1,m) € Cgup(vt)} = {m € M: (ve)(1,m) = vi}. Let
HC(U) = Cg<1)).
We have a crossed submodule C[[M,G]}(v) = [Cc(v),Ce(v)] < [M,G]. We call
Coray (v) the centralizer of v in [M,G].

(3) We have Caunr(vt) = Ho(v) X Ne(v).
Proof. Ad (1). For (g,m) € Caxar(ve), we have

(veo) - (g,m)s = ((ve) - (g,m))o = (vi)o = .

This shows (g,m)s € Cauar(ve). With a similar calculation we get (g, m)t € Cgaypr(ve).
Hence, the restricted maps s and ¢ exist. For g € Cg(v), we have

(ve)-(gi) =(v-ght=ve="0.

This shows gi € Cg(v). Hence, the restricted map ¢ exist.
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Ad (2). We have N¢(v) < M and He(v) < G. For n € Ng(v), we have

nf=1-nf=(1,n)t=(1,n) %) Ce(v) = He(v) .

For n € N¢(v) and h € Hc(v), we have

(ve) - (h=,1) - (L,n) - (h,1) = (ve) - (h73) - (1,n) - (hi)
= (vh™)e- (L,n) - (hi) = (ve) - (1,n) - (hi)
= (ve) - (hi) = (vh)e

Hence (1,n") € Cguar(vt), and therefore n" € Ng(v).

This shows Cp,/ (v) = [Ne(v), Ho(v)] < [M, G]; cf. Remark 18.

Ad (3). Ad C. Suppose given (g,m) € Cguar(ve). We have to show g é Ce(v) and
!
(1,m) € Cgua(ve). We have

v-g=(v)o-(g,m)s = (vi-(g,m))o = (v)o =v.
Hence g € Ce(v) = Ho(v). Further, we obtain
ve=(v-gh=(v) gi=(v) (9:1) &= (v)-(g,1)" =wve,
which implies (g,1)~ € Caur(v2). We have
(ve) - (1,m) = (ve) - (g7, 1) - (g,m) = (ve) - (g,m) =i .

Therefore we have (1,m) € Cgxas(ve), and hence m € Ng(v).
Ad D. Suppose given n € N¢(v) and h € He(v). We have

(ve)  (hyn) = (ve) - (h,1) - (1,n) = (ve) - (hi) - (1,n) = (vh)e- (I,n) =wve- (1,n) = ve .

Hence, we have (h,n) € Cauar(ve). O
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Proposition 70 (Orbit Lemma for [M, G]-crossed sets)
Suppose given an [M, G]-crossed set [U,V]set = (U, V., (o, I,,T)). Suppose given v € V.

Recall that the orbit v[M, G] =[(ve)(Gx M), vG]set is an[M, G]-crossed set; cf. Lemma 68.

Consider the centralizer C (v) = [Nc(v), Ho(v)], where we have

[M.G]
Ne(w)={m e M: (v)-(1,m) = v} and Hc(v) = Cq(v); cf. Lemma 69.(2).

Recall that Cgyp(vi) = Ho(v) X No(v) and that Cq(v) = He(v); ¢f. Lemma 69.(2,3).
Recall that we may form the [M, G]-crossed set

C[[M,G]] (UL)\\[[M7 G]] = IICG'XM(UL)\<G X M) ) CG(”)\G]]set ;

cf. Lemma 63 and Lemma 69.(3). Then we have an isomorphism of [M, G]-crossed sets
given by

G Cpp@\IM.C] —  o[M.G],

where
¢ @ Cowm(W\(GX M) — (v)(Gx M)
(Cawm(ve))(g,m) +—— (vi)(g,m)
and

n : Cg(v)\G —— vG

(CG(U))Q — vg.

Proof. By the Orbit Lemma for groups, ¢ and n are bijective. We have yet to show that
(¢,n) is a morphism of [M, G]-crossed sets.

Recall that Cguxar(ve) = He(v) X Ne(v); cf. Lemma 69.(3).
In the following, we write N := N¢(v) and H := H¢(v) = Ci(v).
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For u:= (H x N)(g,m) € (H x N)(G x M) we have

(u)sn = ((Hx N)(g,m))sn=(Hgyp=v-g=uvo-(g,m)s
= ((ve) - (g,m))o = ((ve) - (9,m))o = ((H x N)(g,m))Ca
= (u)¢ o

(u)t n = ((H x N)(g,m))sn = (Hg(mf))n=wv-g(lmf)=wver-(g,m)t
= ((ve) - (g, m))7 = ((v) - (g, m))T = ((H % N)(g,m))¢T
=(u)C T

This shows 5= ¢ o and £ = C 7.
For Hg € H\G we have
(Hg)i ¢ = ((H x N)(g,1))¢ = (v) - (9,1) = ve - gi = (vg)r = (vg)t
= (Hg)n v .

This shows i ( =7 ¢.

Let u:= (H x N)(g,m) € (H x N)\(G x M), let (9,m) € G x M. We have

Let Hg € H\G, let g € G. We have
((Hg) - g)n = (Hgg)n = vgg = (vg) - g = (Hg)n g .

This shows that (¢, n) is an [M, G]-crossed set morphism.
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4.3 Crossed categories
4.3.1 [M,G]-crossed categories
Concerning categories, cf. Reminder 4.

Definition 71 ([M, G]-crossed category) Let [M,G] be a crossed module.

Let C = (Mor(C),0b(C), (s,i,t),(a)) be a category together with the structure of an
[M, G]-crossed set on

[Mor(C) , Ob(C)]eer = (Mor(C), 0b(C) , (s, i, t)) .

We call C a [M, G]-crossed category if (CC1) and (CC2) hold.

(CC1) For X %Y %y ZinC and g € G, we have
(CLAb)(Q,].): (a(ga:l))‘(b(gvl)) :
(CC2) For X %Y s Zin C and m € M, we have

(aab)-(1,m)=aa(b-(1,m)) .

Remark 72 So altogether, as data for an [M, G]-crossed category C, we need

sets Mor(C), Ob(C) ,
e maps s, t: Mor(C) — Ob(C), i: Ob(C) — Mor(C) ,

e amap (4): {(a,b) € Mor(C) x Mor(C) : at = bs} — Mor(C) ,

a map G — SOb(C) ,

e amap G X M — Syio(c) -
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Remark 73 Let [M,G] be a crossed module.

(0) We shall define a category C[M,G] . Let

Ob (C[M,G]) =G
Mor (C[M,G]) := G x M .

Let source, identity and target map be given by

Gx M — G

(g, m) g (source)
1
G; % ];4 G (identity)
g:1) —— g
t
G x M (target) .

Note that is = idg and it = idg; cf. Lemma 58.

Given (g,m), (§,m) € Mor (C[M,G]) = G x M, we have (g,m)t = (g, m)s if and
only if g-mf = g.
For (g, m), (g - mf,m) € Mor (C[[M, G]]), composition is defined by

(g,m)A(g-mf,ﬁ”L) = (gamm> :

Suppose we are given

(9:m) (g-mfm) (g-(man) f,77) i
g — g-mf —— g-(mm)f — g - (mmm)f .

The composition is associative since



For (g,m) € Mor (C[M, G]), we have

(g,m)a(g,m)ti = (g,m)a(g(mf),1) = (g,m-1) = (g,m)
(gvm)Si‘(gvm> = (gvl ‘(gam) = (gvlm) = (g7m)

This shows that C[M, G] is a category.

We consider the structure of an [M, G]-crossed set on (G X M,G, (s,i,t)) given
in Remark 60.(1), i.e. by right multiplication of G x M on G x M and by right
multiplication of G on G.

We claim that the category C[M,G] , equipped with this structure of an [M, G]-
crossed set, is an [M, G]-crossed category.

Suppose given

Ad (CC1). For (g,1) € Mor (C[M, G]), we have
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Ad (CC2). For (1,m) € Mor (C[M, G]), we have

This shows the claim.

We consider the structure of an [M, G]-crossed set on (G x M,G) given in Re-

mark 60.(2), i.e. by conjugation of G x M on G x M and by conjugation of G on
G.

We claim that the category C[M,G], equipped with the structure of an [M,G]-
crossed set, is an [M, G]-crossed category.

Recall that for (§,m) € Mor (C[M,G]) and g € G, we have

(g,m)*(g,1) =(g7,1)-(g,m) - (g,1) = (g~ g g,m?) = (g7, m9) .

Suppose given

Ad (CC1). For (g,1) € Mor (C[M,G]) we have
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Ad (CC2). For (1,m) € Mor (C[M, G]), we have

This shows the claim.

Definition 74 ([M, G]-crossed subcategory) Let C, D be [M, G]-crossed categories; cf.
Definition 71. So we have categories C, D, and [M, G]-crossed sets

[Mor(C),0b(C)]set = (Mor(C),Ob(C),(s,1,t))
[Mot(D), Ob(D)fus = (Mor(D),0b(D), (s, 1))
We say that D is an [M, G]-crossed subcategory of C if the properties (i) and (ii) hold.

(i) We have [Mor(D),Ob(D)]set < [Mor(C),Ob(C)]set , i.e. [Mor(D),Ob(D)]ses is an
[M, G]-crossed subset of [Mor(C), Ob(C)]set; cf. Definition 61.

(ii)) The category D is a subcategory of C.

We write D < C to denote that D is an [M, G]-crossed subcategory of C.
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Remark 75 Let C be an [M, G]-crossed category, so that we have an [M, G]-crossed set
[Mor(C) ,Ob(C)]set = (Mor(C),Ob(C), (s,1,t)).

Suppose we are given an [M, G]-crossed subset [ X, Y]t < [Mor(C),Ob(C)]set such that
aab € X holds, for a,b € X with at = bs.

Then we have an [M, G]-crossed subcategory D < C with

Mor(D) = X, Ob(D) =Y, (s,i,t) = (s|y, il3, t]%),

and where the composition (a ) in C restricts to the composition in D. In fact, (CC1) and
(CC2) for D are inherited from C.

Lemma 76 Let [N, H] < [M,G] be a crossed submodule. Then H x N < G x M.
Consider the [M,G]-crossed right factor set [N, HI\\[M,G] = (X,Y,(5,4,1)), with
X =(Hx N\(Gx M), Y =H\G, given in Lemma 65.

We have an [M,G]-crossed category [N, H] C\\[[M, G] with

Ob ([N, H] \[M, G]) = H\G
Mor ([N, H] \[M. G]) = (H x N)\(G x M) .

maps

(Hx N)\(Gx M) —§> H\G
(source)
(Hx N)g,m) +—  Hg
(Hx N\(Gx M) «— | H\G identity)
(H x N)(g,1) - Hg
t
(Hx N\(Gx M) ——  H\G (target)

(Hx N)(g,m) +—— H(g -mf)

76



and a composition given by

(Hx N)(g,m) « (Hx N)(g,m)=(HxN)(g,m) s (HxN)(g-mf,m)
= (H x N)(g,mm) ,

for (H x N)(g,m), (H x N)(g,m) € Mor(D) such that
((H x N)(g,m))t = ((H x N)(g,1m))s.
Proof. We abbreviate x := [N, H]\[M, G].
Suppose given (H x N)(g,m), (H x N)(g,m) € Mor (Cx) with
((H x N)(g,m))t = ((H x N)(g,m))s5.

Then we obtain H(g-mf) = Hg by definition of the maps ¢ and 3.
Suppose we are given m € M, g € G with H(g-mf) = Hg. Then we have

(Hx N)(g,m)=(Hx N)(g-mf,m), since

(g-mfm)(g,m)” = (g-mfm)(g (m")7 =(g-mf-g~,m" ("))
=(g-mf-g,1)e HXx N .
So, for g, € G, m,m € M, we have
((H x N)(g,m))t = ((H x N)(g,7m))§ if and only if H(g-mf) = Hg.
The composition is well-defined:

Given (g, m), (g,m) and (¢, m’), (¢',m') € G x M such that the following compatibilities
hold.

H(g-mf)=Hg , (HxN)(gm)=(HxN)g, m)
H(g"-m'f)=Hg , (HxN)(gm)=(HxN)g, m)

Then there exist h, i’ € H such that

h-g-mf
g -m'f .

Q@
1
<
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There exist (h,n), (h,7) € (H x N) such that

(gam) = (han)(gam) = (h’97 ng'm)
(g/’m/) = (h,ﬁ)(g,ﬁ’b) = (hga ﬁgﬁ’b)
Hence
g = h-yg
i = hg
m/ nd-m
m = Ad-m

We have to show that
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The composition is associative and has identity elements:

Suppose given

(H[XN)(QJTL) (Hl><N)(gmf,7ﬁ)
Hg —_— H(g-mf) —_—

~ (HxN)(g-(mim) 1) o
H(g - (mm)f) — H(g - (mmm)f) .
We have

((H % N)(g,m) « (H % N)(g - mf, 7)) « (H & N)(g - (i) f, )
o(g-mfim)) a (g - (mim)f,m))

(g mf. ) s (g - (m) £,77)) )
= (HxN)gm)s ((HxN)(g mf i) (H x N)(g - (min) f,17))

= (HxN)

(s
= e (g

: H><N

For (H x N)(g,m) € Mor (Cx), we have

((H X N)(g,m))A((H X N)(g,m))f% = ((H X N)(g,m))A((H X N)(g-mf,l))

((H x N)(g.m))5 i & (H = N)(g,m)) = ((HxN)(g.1)a((H xN)(g,m))

= (H x N)(g,m)
This shows that Cx is a category.
Suppose given
_ (HxN)(gm) o (HxN)(g-mf,m) o
Hg - H(g-mf) — H(g- (mm)f) .
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Ad (CC1). For (g,1) € (G x M), we have

= (= N (3 7) 4 (G- 0f. 7)) - (9.1)

= HxN)((@m)a (G- mf.m) - (g.1)
1) N (@) (9.D) 4 (G- ) - (9,1))

= (HxN)(@m)(9.1)) « (Hx N)((5-mf,m) - (9,1))
= ((HxN)Gm)(9,1) « ((Hx N)(G-mf,m) - (g,1)

This shows that Cy is an [M, G]-crossed category.

4.3.2 [M,G]-crossed category morphisms

Definition 77 ([M,G]-crossed category morphism) Let C and D be [M,G]-crossed
categories. Let

(<7 77) : (MOI‘(C) ) Ob(C) ) (‘57 ia t)) - (MOI‘(D) ) Ob<D) ) (‘57 i? t))
be an [M, G]-crossed set morphism; cf. Definition 64.
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For X %Y % Zin C, suppose that

((lAb)C = (l(AbC
holds true.
Then ((,n) is called [M, G]-crossed category morphism.

Remark 78 An [M, G]-crossed category morphism ((,7n): C — D yields a functor from
C to D.

Lemma 79 (Identity and composition of [M, G]-crossed category morphisms)

(1) Let C be an [M,G]-crossed category. The mapping (idwo(c), idone)) s an [M,G]-
crossed category morphism, called the identity of (Mor(C),O0b(C), (s, 1, t)).

(2) Let C; be [M,G]-crossed categories for i € [1,3]. We have [M,G]-crossed sets
[[MOI" (Cl), Ob (Ci)]]set = (MOI" (CZ) s Ob (Cz), (Si, ii, tl))

fori € [1,3]; ¢f. Definition 71.
For j € [1,2], suppose given [M,G]-crossed category morphisms

(¢omj): [Mor (C;),0b (C;)Jset — [Mor (Cjs1), Mor (Cjg1) Jset -
We have an [M,G]-crossed category morphism

(¢,n) = (C1¢2,mme) : [Mor (Cl),Ob (Cl)]]set — [Mor (Cg), Ob (Cg)ﬂset :

Proof. Both (idmor(c), idon(ey) and (¢, n) are [M, G]-crossed set morphisms; cf. Lemma 66.
We have yet to show the property stated in Definition 77.

Ad (1). For X %Y 2 Z in C we have

(a A b)idMor(C) = (a A b) = ((a)idMor(c) A (b)idMor(C)) .

Ad (2). For X %Y % Z in C; we have

(aab)¢ = (aab)Cila = (a1 abl1)C = (ali1C2 4 b1¢2) = (al 2 bC) -
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Lemma 80 ([M, G]-crossed category isomorphism) Let C and let D be [M,G]-crossed
categories.  We write [Mor(C),0b(C)Jset = (Mor(C),Ob(C),(s,i,t)) and we write
[Mor(D) , Ob(D)]ser = (Mor(D),Ob(D), (5,1, t)).

Given a crossed category morphism (¢,n): [Mor(C),Ob(C)]set — [Mor(D), Ob(D)]ses ,
where ¢ and n are both bijective.

Then we have a crossed category morphism given by

(€,n7): [Mor(D), Ob(D)]ser = [Mor(C) , Ob(C)]ser. -

We say that ((,n) is an [M,G]-crossed category isomorphism, and we say that
[Mor(C) , Ob(C)]set and [Mor(D), Ob(D)]ses are isomorphic.

Proof. By Lemma 67, ((~,n7): [Mor(D),Ob(D)]set — [Mor(C), Ob(C)]set is an [M, G]-
crossed set morphism.

Given X %Y % Z in D. We have to show (ea f)C™ = eCafC .

Since ( is bijective there exist a,b € Mor(C) such that e = a( and f = b(. Equivalently,
we have a = e(~ and b = f(~. Then

at =e( t=etn = fsn = f(Cs=0bs.
We have
(ea f)¢™ = (aCabQ)¢ = (aad)C ¢~ =(aab) =eC s fC .

4.3.3 Orbit Lemma for [M, G]-crossed categories

Lemma 81 (Orbit) Let C be an [M, G]-crossed category; cf. Definition 71. In particular,
we have an [M,G]-crossed set

[Mor(C) , Ob(C)]eet = (Mor(C), Ob(C) , (5,4, t)) .

Suppose given v € Ob(C).
Let v[M,G] = [(vi)(G x M), vG]ses be the orbit of v under [M,G]; cf. Lemma 68.
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We have an [M, G]-crossed subcategory D < C with

Mor(D) = (vi)(G x M), Ob(D) =G,
and a composition given by

(vi)(g,m) & (vi)(g,m) = ( £)(g,mm) ,

for (vi)(g,m), (vi)(g,m) € Mor(D) such that (( ) ( )

By abuse of notation, we also denote by v - [M, G]] = U[[M, G] the [[M, G]-crossed sub-
category D, called the orbit of v under [M,G].

Proof. The orbit v[M,G] is an [M, G]-crossed subset of [Mor(C), Ob(C)]set; cf. Lem-
ma 68. We shall verify that D is an [M, G]-crossed subcategory using Remark 75.
Suppose given a := vi - (g,m),b =vi-(g,m) € (vi)(G x M) with at = bs. We have

at = (vi m))t =vit-(g,m)t =v-(g-mf),

bs = (vi m))s = vis - ( m)s:v-g.

It follows that v - (¢ - mf) = v - g. We have

Hence, we get

asb = (vi-(g,m)) 2 (vi-(g,m))
= (vi-(g;m)) a ((vi-(g,m))ti (1,m)>
=Y € Ob(D)

= wi-(g,m)-(1,m)
= wi-(g,mm) € (vi)(Gx M) .
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Proposition 82 (Orbit Lemma for [M, G]-crossed categories)
Suppose given an [M, G]-crossed category C. Suppose given v € Ob(C).

Recall that the orbit v[M,G] = [(ve)(G x M), vG] is an [M, G]-crossed subcategory of C;
cf. Lemma 81.

Consider the centralizer C[[M,G]}(U) = [Nc(v), He(v)], where we have

Ne(v) ={m e M: (vi)-(1,m) = (vi)} and Hc(v) ={g € G: v-g =v}, Lemma 69.

Recall that Cgyar(vi) = He(v) X Ne(v) and that Cq(v) = He(v); ¢f. Lemma 69.(2,3).
Recall that we may form the [M, G]-crossed category Coay (U)C\\[[M, G]; cf. Lemma 76.

Then we have an isomorphism of [M, G]-crossed categories given by

€m: CpWNM.Gl ——  v[M,G],
where

¢ (Caum())\(Gx M) —— (vi)(G x M)

(Cawnm(v))(g.m)  —— (vi)-(g,m)
and
n : Celw\G —— G
(Ca(v)g —— wv-g.

Proof. In the following, we write N := No(v) and H := Ho(v) = Ca(v).
Let a == (H x N)(g.m), b := (H x N)(§,7m) € (H x N)\(G x M) with at = bs, i.e.

H(g-mf)= Hg. We have to show (aAb)C; aC . bC.

Since (¢,n) is a morphism of [M, G]-crossed sets by Proposition 70, a{ and b( are com-
posable, for we have

(aQ)t = (at)n = (bs)n = (b()s .
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We have
(Cl A b)C =

4.4 Example

Example 83 We consider the crossed module ((b), (a), «, f) from Example 30. We have

a: — Aut ((b)) , a— (b—b":=b")
frb) = {a), b a®.
We have group morphisms
s ({a) x (b)) = (a) , (a/,0") = o
it ((a) X (b)) <= (a) , (/1) < d
t: ({a) x (b)) — {a) , (a’,b%) > @ - () f = a2 where j,k € [0,3].

Then we have a [(a), (b)]-crossed set given by [{(a) x (b}, (a)]set = ({a) x (b, (a), (s,1,1))
via conjugation of (a) X (b) on (a) x (b) and via conjugation of (a) on (a) (which is trivial);
cf. Remark 60.(2). This [(a), (b)]-crossed set then becomes a [(a), (b)]-crossed category

by Remark 73.(2).

(1) We want to determine the orbits v * [(b), (a)] = [(vi) * ({a) x (b)), v * (a)]set for all
v € (a).
Let j € [0,3]. Let v :=a’ € (a). Note that we have vi = (v,1) = (a?,1). Note that
we have v * (a) = {v} since (a) is abelian.
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We have

(a?,b) % (a,1) = (a7, 0F) @Y = (a=,1) - (a7, 0%) - (a,1) = (a1, 0F) - (a, 1)

(aj?b ) ?

and

(%) % (1,b) = (af,b") D) = (1,b) - (a7, bF) - (1,b) = (a?, 0% - B*) - (1,D)

= (a?, b 0" = (af bV R

_ (aj’ b(—l)f+1+k+1) ‘

For j =1, we get

(a,1) % (a,1) = (a, 1)
(a,1) % (1,b) = (a, bV = (g, 1?) |
(a,b®) * (a,1) = (a,b"?) = (a, b?)
(a,b%) % (1,b) = (a, b7+ = (a,bY) = (a, 1) .
We obtain:
(a,1)
*(a, 1)
(a,

\
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We proceed similarly for v € {1,a? a*} and obtain:

(1,1) (a*1)
x(a, 1) *(a, 1)
(1,1) (a®,1)
*(1,0) x(1,b)
(1,1) (a®1)
(a®,1)
*(a, 1)
(a®,1) (a®,0%)
*(a, 1)
*(1,0)
(a®,0%)
x(1,b)
(a* 1)

We obtain orbits

L), (@] = @D} {1} e

a *[(0), ()] = [{(a,1),(a,0*)} {a}ser
a®x[(0), ()] = [{(a®, D}, {a"} et
a®x[(b), ()] = [{(a’,1),(a®,0")}, {0’ et -
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(2) Recall that the centralizer for a v € (a) in [(b), (a)] is given by
Cr i (v) = [Ne(v), He(v)] ,

with Ng(v) := {m € (b): (vi) x (1,m) = (vi)} and Hc(v) := {g € (a): vx g = v};

cf. Lemma 69.

We consider v = a. Then ai = (a,1). We have

(a,1)%(1,1) = (a,1)
(a,1) * (1,0) = (a,b?)
(a,1) % (1,b%) (a,1)
(a,1) * (1,0%) = (a,b?)

We get Ng(a) = (b?).
Since (a) is abelian, we have H¢(a) = (a).

We proceed similarly for v € {1,a? a®} and obtain centralizers

Cropa) = [0 (a)]
Crppan(@ = 109, (@]
Crpan(@) = [0), (@]
C (@) = [(0*).(a)] -

[(6),(a)]

(3) We want to apply the Orbit Lemma for crossed modules to our example; cf. Propo-
sition 70. We form the [(b), (a)]-crossed set

Cria @), {@)] = [(Ce(v) x No(w)\({a) x (b)), He(v)\(a)]ser -

For v = a we obtain

Crmp @ NP, (@)] = [((a) x (B*))\(a) x (b)), (a)\(@)]ser
= [{ ({a) o (0%)) (1, 1), ({a) > (%)) (1,0) }.{ (@)1 }ser
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The maps ¢ and 7 yield

n o {1} — ax(a)
(@)1 +—— axl = a.

So we obtain an isomorphism (¢, n) from Cu<b>7<a>](a)\\[[<b>, (a)] to ax [(b), (a)], the

latter as calculated in (1).

(4) By Lemma 76, Crm (aﬂ](a) A(b), (@)] is an [M, G]-crossed category.

Let ({) % (17))(1,8) € Mor (Cyyy (@ NI, (0)]) = ({a) x FI\((a) x (B))

={ ({a) x (*))(1,1), ((a) x (0*))(1,0) }.
We have

((ta) = ) (1,))5 = (@) (1,b)s = (a1
((ta) = 6)(1,8))7 = {a)(1,b)t = {a)a® = ()1 ,
and thus, ((a) x (6%))(1,b) is composable with itself. We have
((@) = (4%) (1,0) » ({a) x (B2)) (1,6) = ({a) x (b)) (1,6%) = ({a) x (83))(1,1) .

Write z := ({a) x (b?))(1,b). By Proposition 82, we must have (z12)¢ = zax(.
In fact, we have

(z22)¢ = (((a> x (%)) (1, 1))¢ D (a,1) = (a,0% - 1?) " (a0, 02) a (0, 0%) L 2¢ aC .
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Zusammenfassung

Seien M und G Gruppen. Sei f: M — G ein Gruppenmorphismus. Sei ov: G — Aut (M)
eine Operation von G auf M so, dass fiir m,n € M und g € G die Bedingungen

(CM1) (m9)f = (mf)? und (CM2) m" =m™

erfiillt sind. Dann nennen wir das Quadrupel [M, G] := (M G a, f ) einen verschriankten
Modul.

Ein nichttrivialer verschrankter Modul X heifit einfach, falls er nur 1 und X als normale
verschrankte Untermoduln enthalt. Ein einfacher verschrankter Modul ist stets von einer
der drei folgenden Formen.

e [G,G], mit G 4, @, und G einfach und nichtabelsch.
e [1, K], mit K einfach.

e [M,1], mit M zyklisch von Primordnung.

Ahnlich wie fiir Gruppen lassen sich Kompositionsreihen fiir verschrankte Moduln defi-
nieren. Das Jordan-Holder-Theorem sagt aus, dass die Kompositionsreihe einer Gruppe
bis auf Reihenfolge und Isomorphie der Kompositionsfaktoren eindeutig bestimmt ist.
Dieses Theorem lasst sich auf verschrankte Moduln verallgemeinern, und wir erhalten
eine analoge Aussage: Die Kompositionsreihe eines verschrankten Moduls ist eindeutig
bis auf Reihenfolge und Isomorphie der Kompositionsfaktoren.

Wir definieren analog zum Begriff einer G-Menge einer Gruppe G den Begriff einer
[M, G]-verschrénkten Menge eines verschrénkten Moduls [M,G]. Eine solche besteht

aus einer (G x M)-Menge U, einer G-Menge V und gewissen Abbildungen. Fiir ein
v € V definieren wir die Bahn v[M, G] von v unter [M, G]. Wir bilden den Zentralisator
C[[M,G]](U> von v in [M, G] sowie dessen verschrinkte Faktormenge Crarap (v)\[M, G] und

erhalten einen Isomorphismus von [M, G]-verschrankten Mengen.

(1)t Cpg g NIM. G —— o[, G
Anders als im Fall des klassischen Bahnenlemmas aus der Gruppentheorie wird auf diese
Weise im Allgemeinen die gesamte verschriankte [M, G]-Menge nicht durch disjunkte Bah-

nen uUberdeckt.
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Auf einer Kategorie C kénnen wir die Struktur einer solchen [M, G]-verschrénkten Menge
definieren, indem wir Mor(C) als (G x M)-Menge, und Ob(C) als G-Menge auffassen;
wir erhalten eine [M, G]-verschrinkte Kategorie. Analog zu den [M, G]-verschrankten

Mengen haben wir fiir ein v € Ob(C) einen Isomorphismus von [M, G]-verschriankten
Kategorien.

()¢ Cpppey() NIM, G] — v[M, G]
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