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Introduction

Crossed modules

A crossed module JM,GK consists of two groups M and G, an action of G on M and a
group morphism f : M → G that satisfies the conditions

(CM1) (mg)f = (mf)g and (CM2) mn = mnf ,

for m,n ∈M and g ∈ G.

The category of groups is equivalent to the homotopy category of connected CW-spaces X
that have πk(X) ' 1 for k > 2, i.e. for which only π1(X) is allowed to be nontrivial.
Similarly, the category of crossed modules has a homotopy category that is equivalent
to the category of CW-spaces X that have πk(X) ' 1 for k > 3, i.e. for which only
π1(X) and π2(X) are allowed to be nontrivial. So just as groups model homotopy types
with only π1(X) nontrivial, crossed modules model homotopy types with only π1(X) and
π2(X) nontrivial; cf. [5], [1, Theorem 2.4.8].

Our goal is to transfer some elementary concepts and assertions from group theory to the
theory of crossed modules.

Simple crossed modules

A nontrivial crossed module X is called simple if its only normal crossed submodules are
1 and X; cf. Definitions 21, 34. We can sort the simple crossed modules as follows; cf.
Theorem 40.

• JG,GK with G
id−→ G, where G is simple and non-abelian.

• J1, KK, where K is simple.

• JM, 1K, where M is cyclic and of prime order.

This proposition is shown using standard short exact sequences for crossed modules; cf.
Definition 32. Of course, to classify the crossed modules appearing in these three cases,
one would need to know a classification of simple groups, not necessarily finite; we do not
treat this problem.
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Jordan-Hölder-Schreier-Zassenhaus

The classical procedure for composition series of groups works as follows.

A group G may have no, only one or even more than one composition series. However,
the Jordan-Hölder Theorem states that any two composition series of a group G are
equivalent. That is, they have the same length and the same composition factors, up to
permutation and isomorphism. Note that this theorem does not ensure the existence of
a composition series. But if G is finite, then a composition series for G exists.

This assertion is shown by using Schreier’s Refinement Theorem; it says that any two
subnormal series of a given group G can be refined to equivalent subnormal series by
inserting suitable subgroups into the series.

The Zassenhaus Lemma connects the subfactors appearing in Schreier’s refinements. This
lemma is sometimes called the “Butterfly Lemma” because the diagram that illustrates
the relations of the involved subgroups resembles a butterfly.

We show an analogous Jordan-Hölder Theorem for crossed modules; cf. Theorem 53. Its
proof runs parallel to the proof of the classical version; cf. [4, p. 20–22].

Orbit Lemma

JM,GK-crossed sets

Analogous to the notion of a G-set for a group G, we define the notion of an JM,GK-
crossed set for a crossed module JM,GK. To this end, we use the semidirect product GnM .

An JM,GK-crossed set consists of a (G nM)-set U , a G-set V and maps σ, τ : U → V ,

ι : V → U , satisfying certain compatibilities; cf. Definition 59. Such an JM,GK-crossed

set is written JU, V Kset . For example, if JN,HK 6 JM,GK is a crossed submodule, the

JM,GK-crossed set JN,HK\\JM,GK is given by U = (H nN)\(GnM) and V = H\G; cf.
Lemma 63.

With the notion of an JM,GK-set for a crossed module JM,GK, we establish an Orbit

Lemma for crossed modules, valid for certain orbits. Suppose given an JM,GK-crossed

set JU, V Kset . Suppose given v ∈ V . We form the orbit vG in V . We map the element

v via ι to U and form the orbit (vι)(G nM) of vι ∈ U under (G nM). They form the
JM,GK-crossed set J(vι)(G nM), vGKset =: vJM,GK, called the orbit of v under JM,GK;
cf. Lemma 68.
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We obtain an isomorphism of JM,GK-crossed sets

(ζ, η) : CJM,GK(v)\\JM,GK
∼
−−−→ vJM,GK ,

where CJM,GK(v) is the centralizer of v in JM,GK, cf. Lemma 69; cf. Proposition 70.

However, it turns out that the (GnM)-orbits of the elements of the form vι, where v ∈ V ,
do not cover the whole (GnM)-set U in general; cf. Example 83. As a consequence, we
cannot classify the JM,GK-sets analogously to the classification of G-sets as disjoint unions

of orbits isomorphic to G-sets of the form U\G, where U 6 G.

JM,GK-crossed categories

An JM,GK-crossed category is a category C, for which JMor(C) ,Ob(C)Kset carries the

structure of an JM,GK-crossed set with (s , i , t ) = (σ, ι, τ) such that the composition

satisfies certain compatibilities; cf. Definition 71. For example, a crossed module JM,GK
gives rise to a category CJM,GK with Ob

(
CJM,GK

)
= G, Mor

(
CJM,GK

)
= G n M ;

cf. [2]; cf. also [6, (5.25), (5.10)]. This category CJM,GK is in fact an JM,GK-crossed
category in two ways: via multiplication and via conjugation; cf. Remark 73.

Moreover, given a crossed submodule JN,HK 6 JM,GK, then a factor construction yields

an JM,GK-crossed category JN,HK
C
\\JM,GK; cf. Lemma 76. For example, we have

J1, 1K
C
\\JM,GK ' CJM,GK.

Just as for JM,GK-crossed sets, we formulate an Orbit Lemma for JM,GK-crossed cate-

gories, which is an analog to the Orbit Lemma for JM,GK-crossed sets. Suppose given

v ∈ V . The orbit vJM,GK carries the structure of an JM,GK-crossed category; cf. Lemma

81. We have an isomorphism of JM,GK-crossed categories

(ζ, η) : CJM,GK(v)
C
\\JM,GK

∼
−−−→ vJM,GK ,

where CJM,GK(v) is the centralizer of v in JM,GK, cf. Lemma 69; cf. Proposition 82.
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Conventions

Sets and Mappings

Let X, Y and Z be sets.

• For a, b ∈ Z, we write [a, b] := {z ∈ Z : a 6 z 6 b}.

• We write P(X) for the power set of X.

• Let (X,6) be a partially ordered set. We say that an element x ∈ X is

maximal if ∀y ∈ X : (x 6 y ⇒ x = y),

terminal if ∀y ∈ X : (y 6 x),

minimal if ∀y ∈ X : (y 6 x⇒ x = y),

initial if ∀y ∈ X : (x 6 y).

• Let f : X → Y be a map. We write maps on the right, i.e. f maps x ∈ X to xf ∈ Y .

• Composition of maps is written on the right, i.e. given maps X
f→ Y

g→ Z, their

composition is written X
fg−→ Z; cf. also Reminder 4.

• Unary maps are evaluated before binary maps. E.g. for a map M
f→ G from a set

M to a group G, we write g ·mf := g · (mf), for m ∈M , g ∈ G.

• Let f : X → Y be a map. Let X ′ ⊆ X and Y ′ ⊆ Y such that X ′f ⊆ Y ′. The

restriction of f to X ′ and Y ′ is written f
∣∣Y ′
X′

: X ′ → Y ′, x′ 7→ x′f .

If Y ′ = Y , we also write f
∣∣
X′

:= f
∣∣Y
X′

. If X ′ = X, we also write f
∣∣Y ′ := f

∣∣Y ′
X

.

• Sometimes, we denote by X ′ ↪→ X the embedding of a subset X ′ in a set X.

Groups

Let G be a group.

• The identity element of G is denoted by 1 := 1G. The trivial subgroup is denoted
by 1 := {1}.
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• Suppose given a subset S ⊆ G. The subgroup generated by S is denoted by 〈S〉 6 G.
If S = {s}, s ∈ G, we also denote 〈s〉 := 〈{s}〉.

• We write g− := g−1 for the inverse element of g ∈ G.

• We write gh := h−g h for h, g ∈ G.

• For u, v ∈ G we write [u, v] := u−v−uv for their commutator. For U, V 6 G we
write [U, V ] :=

〈
[u, v] : u ∈ U, v ∈ V

〉
6 G for their commutator subgroup.

• Given x ∈ G, we write CG(x) = {g ∈ G : xg = gx} for the centralizer of x in G.

• Sometimes, we denote by N
P
↪→M , the embedding of N in G and N P G.

• Let H 6 G be a subgroup. We denote H\G := {Hg : g ∈ G} for the set of right
cosets of H in G.

• The symmetric group on a set X is denoted by SX . If X = [1, n], for some n ∈ N,
then we also denote Sn := S[1,n].

Reminder 1 (Conjugation map) Suppose given a group G.

(1) For any h ∈ G we have a group isomorphism

ch : G −−−→ G

g 7−−−→ gh := h−g h ,

where ch1ch2 = c(h1h2) and (ch)
− = ch− for h1, h2, h ∈ G. We call ch the conjugation

map of h on G.

(2) Suppose given a normal subgroup N P G. Then we have a group morphism given
by

cN : G −−−→ Aut (N)

h 7−−−→ ch
∣∣N
N
.
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Reminder 2 (Exact sequence) Suppose given n ∈ N and groupsGi for i ∈ [1, n]. Suppose
given group morphisms ϕi : Gi −→ Gi+1 for i ∈ [1, n− 1].

The sequence of groups and group morphisms

G1 G2 . . . Gn

ϕ1 ϕ2 ϕn−1

is called a exact if imϕi = kerϕi+1 holds for i ∈ [1, n− 1]. An exact sequence of the form

1 G1 G2 G3 1
ϕ1 ϕ2

is called short exact sequence.

Reminder 3 (Orbit) A set X together with a group G and a group morphism

G −−−→ SX

g 7−−−→ (x 7→ x ∗ g)

is called G-set. The group morphism G→ SX is also called (right) action of G on X. For
x ∈ X we call x ∗G := {x ∗ g | g ∈ G} the orbit of x under G. Sometimes, we denote for
short xG := x ∗G.

Reminder 4 (Category) By a category we understand a small category (with respect to
a fixed universe). So a category C consists of a set Ob(C), a set Mor(C), maps

Mor(C)
s

−−−→ Ob(C)
(source)(

X
f−→ Y

)
7−−−→ X

Mor(C)
i

←−−− Ob(C)
(identity)

idX 7−−−→ X

Mor(C)
t

−−−→ Ob(C)
(target) ,(

X
f−→ Y

)
7−−−→ Y

8



and a composition

{(f, g) ∈ Mor(C)×Mor(C) : ft = gs} −−−→ Mor(C)(
X

f−→ Y, Y
g−→ Z

)
7−−−→

(
X

f N g

−−−→ Z
)

=
(
X

fg−→ Z
)

which is associative and for which idX is neutral for X ∈ Ob(C).

1 Basics

1.1 Crossed modules

Definition 5 (Crossed module) Suppose given groups M and G. Suppose we are given
an action of G on M ; namely, we have a group morphism

α : G −−−→ Aut (M)

g 7−−−→ gα .

When an element g ∈ G is applied to an element m ∈M , we write mg := m(gα).

Further, let f : M −→ G be a group morphism that satisfies

(CM1) (mg) f = (mf)g

(CM2) mn = mnf (Peiffer identity),

for n,m ∈M and g ∈ G. Such a quadruple (M,G, α, f) is called crossed module.

Often, we abbreviate JM,GK :=
(
M,G, α, f

)
. If unambiguous, we denote 1 := J1, 1K for

the trivial crossed module.

Remark 6 Note that our notation for conjugation and for the action of G on M coincide.
To avoid confusion we note that the axiom (CM1) should be read as

(
m(gα)

)
f = g−(mf)g

and (CM2) should be read as n−mn = m
(
(nf)α

)
.

Lemma 7 Suppose given a crossed module
(
M,G, α, f

)
.

(1) We have [M, ker f ] = 1. In particular, the kernel ker f is abelian.

(2) We have Mf P G.
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Proof. Ad (1). Suppose given m ∈M , k ∈ ker f . We have

k−mk = mk (CM2)
= mkf = m1 = m .

It follows that m−k−mk = 1.

Ad (2). Suppose given mf ∈Mf , g ∈ G. We have

g−(mf)g = (mf)g
(CM1)

= (mg)f ∈Mf .

It follows that Mf P G.

1.2 Examples of crossed modules

Example 8 Suppose given a group M . Consider the group morphism

c : M −−−→ Aut (M)

m 7−−−→ (cm : x 7→ xm) .

Then we have a crossed module given by JM,Aut (M)K = (M,Aut (M), idAut (M), c), since

the map c satisfies (CM1) and (CM2):

Ad (CM1). Suppose given g ∈ Aut (M), m ∈M . Note that we have

mg = (m)(g)idAut (M) = mg .

Suppose given n ∈M . We have

(n) (mg) c = (n) (mg) c = (n)cmg = (mg)− n (mg) =
(
m−g

)
n (mg)

= (m−g)(ng−g)(mg) =
(
m−(ng−)m

)
g = (ng−)cm g = (n)g− (mc) g

= (n) (mc)g .

Ad (CM2). Supose given m, m′ ∈M . We have

mm′ = m′−m m′ = (m) (m′c) = mm′c .

Example 9 Let G be a group and let N P G be a normal subgroup. Consider the group
morphism

cN : G −−−→ Aut (N)

g 7−−−→ (cg
∣∣N
N

: n 7→ ng) .
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Then we have a crossed module JN,GK = (N,G, cN , idG
∣∣
N

):

For g ∈ G, the map cg
∣∣N
N

is a group isomorphism, hence, cN is well-defined; cf. Reminder 1.

We have yet to show that the map ι := idG
∣∣
N

satisfies (CM1) and (CM2).

Suppose given n,m ∈M .

Ad (CM1). We have

(ng) ι =
(
n(gcN)

)
ι = g−ng =

(
(n)ι

)g
.

Ad (CM2). We have

mn = m(ncN) = (m)
(
(nι)cN

)
mnι .

Remark 10

(1) Every group G has its trivial subgroup 1 consisting of just the identity element of
G. This subgroup is always a normal subgroup. Therefore, according to Example 9,
we have the crossed module J1, GK =

(
1, G, c1, idG

∣∣
1

)
.

(2) Every group G contains the whole group G as a normal subgroup. Therefore,
according to Example 9, we have the crossed module JG,GK =

(
G,G, c, idG

)
.

Example 11 Let M be an abelian group, written multiplicatively. Consider the group
morphisms

ι : 1 −−−→ Aut (M) κ : M −−−→ 1

1 7−−−→ idM m 7−−−→ 1 .

Then have a crossed module JM, 1K = (M, 1, ι, κ). We have to show that κ satisfies (CM1)

and (CM2). Note that we have 1ι = idM and 1 = mκ, for m ∈M .

Ad (CM1). For m ∈M we have

(m1)κ = 1 = (1)1 = (mκ)1 .

Ad (CM2). For m,n ∈M we have

mn = n−m n = m n−n = m = (m)idM = m(1ι) = m
(
(nκ)ι

)
= mnκ .
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Definition 12

(1) Let G be a group. We define Xcontr(G) := JG,GK =
(
G,G, c, idG

)
; cf. Remark 10.(1).

(2) Let K be a group. We define X1(K) := J1, KK =
(
1, K, c1, idK

∣∣
1

)
; cf. Remark 10.(2).

(3) Let M be an abelian group. We define X2(M) := JM, 1K =
(
M, 1, ι, κ

)
; cf. Exam-

ple 11.

1.3 Crossed module morphisms

Definition 13 (Crossed module morphism)
Suppose given crossed modules

(
M,G, α, f

)
and

(
M̃, G̃, α̃, f̃

)
.

Let λ : M −→ M̃ and µ : G −→ G̃ be group morphisms that satisfy the following proper-
ties (i) and (ii).

(i) We have λf̃ = fµ , i.e. the following diagram is commutative

M M̃

G G̃ .

f

λ

f̃

µ

(ii) For m ∈M and g ∈ G, we have

(mg)λ = (mλ)gµ .

We call (λ, µ) a morphism of crossed modules.

Lemma 14 (Identity and composition of crossed module morphisms)

(1) Let JM,GK =
(
M,G, α, f

)
be a crossed module. Then (idM , idG) is the identity

crossed module morphism of JM,GK.
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(2) Suppose given crossed modules JMi, GiK =
(
Mi, Gi, αi, fi

)
for i ∈ [1, 3].

For j ∈ [1, 2], suppose given crossed module morphisms

(λj, µj) : JMj, Gj, fjK −→ JMj+1, Gj+1K .

We have a crossed module morphism given by

(λ, µ) := (λ1, µ1)(λ2, µ2) = (λ1λ2, µ1µ2) : JM1, G1K −→ JM3, G3K .

Proof. Ad (1). We have

idMf = f = f idG .

Hence the following diagram commutes

M M

G G .

f

idM

f

idG

For m ∈M and g ∈ G we have

(mg)idM = (m idM)g idG .

Ad (2). The situation is given as follows.

M1 M2 M3

G1 G2 G3

λ1

f1

λ2

f2 f3

µ1 µ2

We have commutative squares on the left-hand side and on the right-hand side. Therefore,
we have λ1f2 = f1µ1 and λ2f3 = f2µ2.

13



It follows that

f1µ = f1µ1µ2 = λ1f2µ2 = λ1λ2f3 = λf3 .

Hence the following diagram commutes

M1 M3

G1 G3 .

f1

λ

f3

µ

For mj ∈Mj and for gj ∈ Gj where j ∈ [1, 2], we have

(mg1
1 )λ = (mg1

1 )λ1λ2 = (m1λ1︸ ︷︷ ︸
∈M2

)g1λ1λ2 = (m1λ1λ2)g1µ1µ2 = (m1λ)g1µ .

Lemma 15 Let JM,GK =
(
M,G, α, f

)
, let JL,EK =

(
L,E, γ, d

)
be crossed modules.

Suppose we have a crossed module morphism (λ, µ) : JM,GK −→ JL,EK where λ and µ
are bijective, i.e. we have

M L

G E .

f

λ
∼

d

µ
∼

Then we have a crossed module morphism from JL,EK to JM,GK given by (λ−, µ−).

Proof. We have

λd = fµ ⇔ d = λ−fµ ⇔ dµ− = λ−f .

14



Suppose given p ∈ L, e ∈ E. Since λ and µ are bijective there exist m ∈ M and g ∈ G
such that m = pλ− and g = eµ−. We have

(mg)λ = (mλ)gµ ⇔ ((pλ−)eµ
−

)λ = (pλ−λ)eµ
−µ

⇔ ((pλ−)eµ
−

)λ = pe

⇔ (pλ−)eµ
−

= (pe)λ− .

Definition 16 (Crossed module isomorphism)
A crossed module morphism (λ, µ) : JM,GK → JL,EK is called injective if λ and µ are

injective. It is called surjective if λ and µ are surjective. We call (λ, µ) bijective if λ and
µ are bijective.

We say two crossed modules JM,GK, JL,EK are isomorphic if there exists a bijective

crossed module morphism between JM,GK and JL,EK.

1.4 Crossed submodules

Definition 17 (Crossed submodule) A crossed module JN,HK =
(
N,H, β, k

)
is called a

crossed submodule of a crossed module JM,GK =
(
M,G, α, f

)
if the following properties

hold.

(i) We have N 6M and H 6 G.

(ii) We have k = f
∣∣H
N

, i.e. the map k is the restriction of f to N and H.

(iii) We have n(hβ) = n(hα) for n ∈ N, h ∈ H.

We write JN,HK 6 JM,GK to indicate that JN,HK is a crossed submodule of JM,GK. We

write JN,HK < JM,GK if JN,HK 6 JM,GK and JN,HK 6= JM,GK.

Remark 18 Let JM,GK =
(
M,G, α, f

)
be a crossed module. Suppose given N 6 M ,

H 6 G such that nf ∈ H and nh ∈ N , for n ∈ N and h ∈ H.

Let β : H → Aut (N), h 7→
(
hβ : n 7→ n(nβ) := n(hα)

)
. Let k := f

∣∣H
N

.

This defines a crossed module JN,HK =
(
N,H, β, k

)
. We have JN,HK 6 JM,GK.

Note that for n ∈ N and h ∈ H, we have nh = n(hβ) = n(hα) = nh, justifying our abuse
of notation.
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Proof. By assumption, we have nf ∈ H for n ∈ N . Therefore, k = f
∣∣H
N

exists.

Suppose given h ∈ H. By assumption, we have n(hα) = nh ∈ N for n ∈ N . Therefore

hα
∣∣N
N

exists. Its inverse is given by (hα
∣∣N
N

)− = (h−α)
∣∣N
N

. So (hα)
∣∣N
N

is bijective. As a

restriction of the group morphism hα, also (hα)
∣∣N
N

is a group morphism. So therefore,

hβ := hα
∣∣N
N
∈ Aut (N) is well-defined. Note that n(hβ) = n(hα) for n ∈ N .

This defines a map β : H → Aut (N), h 7→ hβ. It is a group morphism, since given
h, h̃ ∈ H and n ∈ N , we obtain

n
(
(hh̃)β

)
= n

(
(hh̃)α

)
= n(hα)(h̃α) = n(hα)(h̃β) = n(hβ)(h̃β) .

Ad (CM1). Suppose given n ∈ N and h ∈ H. Then

(nh)k = n(hβ)k = n(hβ)f = n(hα)f
(CM1)

= (nf)h = (nk)h .

Ad (CM2). Suppose given n, ñ ∈ N . Then

nñ
(CM2)

= nñf = n(ñfα) = n(ñkα) = n(ñkβ) = nñk .

Remark 19 Let JN,HK =
(
N,H, β, k

)
and JM,GK =

(
M,G, α, f

)
be crossed mo-

dules. Suppose we have JN,HK 6 JM,GK. Then we have a crossed module morphism

(ι, κ) : JN,HK → JM,GK, where ι := idM
∣∣
N

and κ := idG
∣∣
H

, called the inclusion mor-

phism of JN,HK in JM,GK.

Proof. The diagram

N M

H G

k

ι

κ

f

commutes, since, for n ∈ N , we have

(n)(ιf) = nf = nk = (n)(kκ) .
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Further, for n ∈ N , h ∈ H, we have

(nh)ι = nh = (nι)hκ .

Remark 20 Let JM,GK =
(
M,G, α, f

)
, JN,HK =

(
N,H, β, k

)
, JÑ , H̃K =

(
Ñ , H̃, β̃, k̃

)
be crossed modules. Suppose we have JN,HK, JÑ , H̃K 6 JM,GK and Ñ ⊆ N , H̃ ⊆ H.

Then JÑ , H̃K 6 JN,HK.

Proof. From N 6 M , Ñ 6 M and Ñ ⊆ N we infer that Ñ 6 N . From H 6 G, H̃ 6 G
and H̃ ⊆ H we infer that H̃ 6 H.

For ñ ∈ Ñ we have ñk̃ = ñf = ñk ∈ H.

For ñ ∈ Ñ and h̃ ∈ H̃ we have ñ(h̃β̃) = ñ(h̃α) = ñ(h̃β).

Concerning Definition 21, we shall follow [3, p. 170].

Definition 21 (Normal crossed submodule) A crossed submodule JN,HK of JM,GK is

called normal if the following assertions (i),(ii) and (iii) hold.

(i) We have N P M and H P G.

(ii) We have m−mh ∈ N for m ∈M, h ∈ H.

(iii) We have ng ∈ N for n ∈ N, g ∈ G.

We write JN,HK P JM,GK to indicate that JN,HK is a normal crossed submodule of

JM,GK.

Remark 22 From the property (iii) in Definition 21 it follows that N P M . Hence this
requirement could be dropped from (i) without changing the definition.

Proof. Suppose we have ng ∈ N for n ∈ N , g ∈ G. For m ∈ M , we have mf ∈ G, and
thus

m−n m = nm
(CM2)

= nmf ∈ N .

This shows N P M .
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Remark 23 A crossed module JM,GK contains the trivial crossed module J1, 1K and the

whole crossed module JM,GK as normal crossed submodules.

Proof. We have 1 P M,G. In particular, we have 1 ∈M,G. Hence J1, 1K P JM,GK.

We have M P M and G P G. We have m−mg ∈ M and mg ∈ M for m ∈ M , g ∈ G.
Hence JM,GK P JM,GK.

Remark 24 Suppose we have JN,HK 6 JM,GK 6 JL,EK with JN,HK P JL,EK. It

follows that JN,HK P JM,GK.

Proof. We have H 6 G 6 E with H P E. Thus, we have H P G.

For n ∈ N , h ∈ H, m ∈ M and g ∈ G, we have m−mh ∈ N and ng ∈ N because of
JN,HK P JL,EK.

Lemma 25 (Kernel and image of crossed module morphisms) Let JM,GK =
(
M,G, α, f

)
and JL,EK =

(
L,E, γ, d

)
be crossed modules. Suppose given a crossed module morphism

(λ, µ) : JM,GK→ JL,EK.

(1) Let k := f
∣∣kerµ

kerλ
be the restriction of f to kerλ and kerµ. Consider the group mor-

phism

β : kerµ −−−→ Aut (kerλ)

h 7−−−→
(
n 7→ (n)(hβ) := (n)(hα)

)
.

We have a normal crossed submodule

Jkerλ, kerµK =
(

kerλ, kerµ, β, k
)

P JM,GK.

We write ker (λ, µ) := Jkerλ, kerµK.

(2) Let ḋ := d
∣∣imµ

imλ
be the restriction of d to imλ and imµ. Consider the group morphism

γ̇ : imµ −−−→ Aut (imλ)

ġ 7−−−→
(
ṁ 7→ (ṁ)(ġγ̇) := ṁ(ġγ)

)
.

18



We have a crossed submodule

Jimλ, imµK =
(

imλ, imµ, γ̇, ḋ
)
6 JL,EK.

We write im (λ, µ) := Jimλ, imµK.

(3) We have the following diagram.

kerλ M imλ L

kerµ G imµ E

λ
∣∣imλ

µ
∣∣imµ

k f ḋ d

P

P

Proof. Ad (1). Since λ and µ are group morphisms, we have kerλ P M and kerµ P G.
Suppose given n ∈ kerλ, h ∈ kerµ. We have

nfµ = nλd = 1d = 1 .

Hence nf ∈ kerµ. Therefore, the map k = f
∣∣kerµ

kerλ
is well-defined. We have

nhλ = (nλ)hµ = 11 = 1 .

Hence nh ∈ kerλ. Therefore, the action β is well-defined; cf. Remark 18.

So we have ker (λ, µ) 6 JM,GK.

Now we show that ker (λ, µ) is normal in JM,GK.

For m ∈M, h ∈ kerµ we have

(m−mh)λ = m−λmhλ = m−λ(mλ)hµ

= m−λ(mλ)1 = (m−m)λ = 1λ = 1 .

Hence m−mh ∈ kerλ.

For n ∈ kerλ, g ∈ G, we have

(ng)λ = (nλ)gµ = 1gµ = 1 .
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Hence ng ∈ kerλ.

This shows ker (λ, µ) P JM,GK.

Ad (2). Since λ and µ are group morphisms we have imλ 6 L and imµ 6 E.

Suppose given ṁ ∈ imλ and ġ ∈ imµ. We can write ṁ = mλ for some m ∈ M , and
ġ = gµ for some g ∈ G.

We have

mλd = mfµ ∈ imµ .

This shows that the map ḋ = d
∣∣imµ

imλ
is well-defined.

We have

ṁġ = (mλ)gµ = (mg)λ ∈ imλ .

This shows that the action γ̇ is well-defined; cf. Remark 18.

So we have im (λ, µ) 6 JL,EK.

Ad (3). It suffices to show that
(
λ|imλ, µ|imµ

)
: JM,GK→ Jimµ, imλK is a crossed module

morphism; cf. Remark 19.

Suppose given m ∈M and g ∈ G. We have

(m)λ|imλḋ = (m)λ|imλd = (m)λd = (m)fµ = (m)fµ|imµ ,

and we have

(mg)λ|imλ = (mg)λ = (mλ)gµ =
(
mλ|imλ

)gµ|imµ

.

1.5 Factor crossed modules

Lemma 26 (Factor crossed module) Suppose given crossed modules JN,HK=
(
N,H, β, k

)
and JM,GK =

(
M,G, α, f

)
with JN,HK P JM,GK. Let L := M/N be the factor group of

M by N , and let E := G/H be the factor group of G by H. Consider the map

d : L→ E , mN 7→ mfH .
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Consider the map

γ : E −−−→ Aut (L)

gH 7−−−→
(
mN 7→ (mN)

(
(gH)γ

)
:=
(
m(gα)

)
N
)
,

i.e. we have (mN)gH = (mg)N for m ∈M and g ∈ G.

(1) We have a crossed module JL,EK =
(
L,E, γ, d

)
. We say that JL,EK is the factor

crossed module of JM,GK by JN,HK. We write JM,GK/JN,HK := JL,EK.

(2) We have a crossed module morphism (λ̄, µ̄) : JM,GK→ JL,EK with

λ̄ : M → L = M/N, m 7→ mN and µ̄ : G→ E = G/H, g 7→ gH .

So we have the following diagram of crossed module morphisms.

N M M/N

H G G/H

λ̄

k f d

µ̄

P

P

Proof. Ad (1). We have groups L = M/N and E = G/H, because we have N P M and
H P G.

The map γ is independent of representatives:

Suppose given m ∈M , n ∈ N , g ∈ G, h ∈ H.

We have

(mnN)gH = (mn)gN = mg ng︸︷︷︸
∈N

N = mgN = (mN)gH .

We have (mg)−(mg)h := ñ ∈ N , and hence, (mg)h = mg ñ. Therefore, we have

(mN)ghH = mghN = (mg)hN = mg ñN = mgN = (mN)gH .
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The map γ is well-defined:

Suppose given g ∈ G and m, m̃ ∈M . We have

(mm̃N)(gH)γ =
(
(mm̃)(gα)

)
N =

(
m(gα)m̃(gα)

)
N =

(
m(gα)N

)(
m̃(gα)N

)
= (mN)(gH)γ (m̃N)(gH)γ .

Therefore, (gH)γ is a group morphism. We have

(mN)(gH)γ (g−H)γ =
(
m(gα)N

)
(g−H)γ = m(gα)(g−α)N = m(gg−α)N = mN .

With a similar calculation we obtain (mN)(g−H)γ (gH)γ = mN . Therefore the map
(g−H)γ is both right inverse and left inverse of (gH)γ, and hence (gH)γ is bijective. So
we have indeed (gH)γ ∈ Aut (L).

The map γ is a group morphism:

Suppose given g, g̃ ∈ G, m ∈M . We have

(mN)(gg̃H)γ = m
(
(gg̃)α

)
N = m(gα)(g̃α

)
N =

(
m(gα)N

)
(g̃H)γ = (mN)(gH)γ(g̃H)γ .

The map d is independent of representatives:

For m ∈M and n ∈ N we have(
(mn)N

)
d = (mn)fH = (mf) (nf)︸︷︷︸

∈H

H = mfH = (mN)d .

The map d is a group morphism, since f is a group morphism.

Now we prove that d and γ satisfy the axioms (CM1) and (CM2).

For m ∈M , g ∈ G, we have

(mN)gHd = (mgN)d =
(
(mg)f

)
H

(CM1)
= (mf)gH

= (g− · (mf) · g)H = g−H · (mf)H · gH =
(
(mf)H

)gH
=
(
(mN)d

)gH
.

This shows (CM1).
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For m, m̃ ∈M , we have

(mN)m̃N = (m̃N)− · (mN) · (m̃N) = (m̃− ·m · m̃)N = (mm̃)N

(CM2)
= (mm̃f )N = (mN)m̃fH

= (mN)(m̃N)d .

This shows (CM2).

Ad (2). For m ∈M , we have

(m)λ̄d = (mN)d = mfH = (m)fµ̄ .

Hence, the following diagram is commutative.

M M/N

G G/H

f d

λ̄

µ̄

Further, for m ∈M , g ∈ G, we have

mgµ̄ = mgN = (mN)gH = (mλ̄)gµ̄ .

Lemma 27 (Kernel-image lemma)
Let JM,GK =

(
M,G, α, f

)
and let JL,EK =

(
L,E, γ, d

)
be crossed modules. Suppose

given a crossed module morphism (λ, µ) : JM,GK → JL,EK. Then we have the following
commutative diagram.

ker (λ, µ) JM,GK JL,EK

JM,GK/
ker (λ, µ) im (λ, µ)

(ι, κ) (λ, µ)

(λ̄, µ̄) (ι̇, κ̇)

(λ̃, µ̃)

∼
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Or, more explicitly:

kerλ M L

kerµ G E

M/ kerλ imλ

G/ kerµ imµ

ι

k

κ

λ

f

µ

d

λ̃
∼

f̄

µ̃

∼
ḋ

λ̄

µ̄

ι̇

κ̇

Proof. The existence of the crossed modules ker (λ, µ), im (λ, µ) and JM,GK/ ker (λ, µ) is

shown in Lemma 25 and Lemma 26.(1).

By Remark 19, we have the inclusion morphism (ι, κ) and (ι̇, κ̇). Lemma 26.(2) yield the
crossed module morphism (λ̄, µ̄).

By the kernel-image lemma for groups, we have bijective group morphisms

λ̃ : M/ kerλ→ imλ, m(kerλ) 7→ mλ

µ̃ : G/ kerµ→ imµ, g(kerµ) 7→ gµ .

We show that (λ̃, µ̃) is a (bijective) crossed module morphism.

Let m(kerλ) ∈M/ kerλ and let g(kerµ) ∈ G/ kerµ. We have(
m(kerλ)

)
λ̃ḋ = mλḋ = mλd = mfµ =

(
mf(kerµ)

)
µ̃ =

(
m(kerλ)

)
f̄ µ̃ .

We have(
m(kerλ)

)g(kerµ)
λ̃ =

(
mg(kerλ)

)
λ̃ = (mg)λ = (mλ)gµ =

(
m(kerλ)λ̃

)g(kerµ)µ̃
.

Therefore, every crossed module and crossed module morphism given in the diagram exist,
and hence the diagram commutes.

24



Corollary 28 Let JM,GK =
(
M,G, α, f

)
and JL,EK =

(
L,E, γ, d

)
be crossed modules.

Suppose given a surjective crossed module morphism (λ, µ) : JM,GK → JL,EK. Then we
have a bijective crossed module morphism given by

(ϕ, ψ) : JM,GK/
ker (λ, µ)

∼−→ JL,EK ,

with

ϕ : M/ kerλ→ L, m(kerλ) 7→ mλ

ψ : G/ kerµ→ E, g(kerµ) 7→ gµ .

Hence, we have the following commutative diagram.

M L

G E

M/ kerλ

G/ kerµ

f̄

µ

µ̄ ψ

d

λ

f
λ̄ ϕ

Proof. We are in the situation of Lemma 27 with special case of (λ, µ) being surjective.
Hence, we have imλ = L and imµ = E. So the inclusion morphism (ι̇, κ̇) becomes
(ι̇, κ̇) = (idL, idE). We have

ϕ := λ̃ι̇ = λ̃ idL = λ̃ and ψ := µ̃κ̇ = µ̃ idE = µ̃ .

Hence, the groups morphisms

ϕ : M/ kerλ
∼−→ L and ψ : G/ kerµ

∼−→ E

are bijective, and therefore, (ϕ, ψ) is bijective.
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1.6 Examples of crossed submodules

Concerning the notion of a centre of a crossed module, we follow [3, p. 171].

Lemma 29 (Centre) Let JM,GK =
(
M,G, α, f

)
be a crossed module.

(1) Let Z (G) = {z ∈ G : gz = zg for g ∈ G} be the centre of G.

Let stG(M) := {g ∈ G : mg = m for m ∈M} be the stabilizer of M in G.

We have Z (G) ∩ stG(M) P G.

(2) Let MG := {m ∈M : mg = m for g ∈ G}. We have MG P M .

(3) We have JMG,Z (G) ∩ stG(M)K P JM,GK and we call JMG,Z (G) ∩ stG(M)K the

centre of JM,GK. We write Z
(
JM,GK

)
:= JMG,Z (G) ∩ stG(M)K.

Proof. Ad (1). The group Z (G) ∩ stG(M) is a subgroup of Z (G). Since every subgroup
of the centre is normal in G it follows that Z (G) ∩ stG(M) P G.

Ad (2). We have 1 ∈MG. Let ñ, n ∈MG. Let g ∈ G. We have(
ñn−

)g
= ñg · (ng)− = ñn− .

Hence ñn− ∈MG. Therefore MG 6M .

Now let n ∈MG. Let m ∈M . We get

nm
(CM2)

= nmf = n .

Hence nm ∈MG, and therefore MG P M .

Ad (3). First we show that JMG,Z (G) ∩ stG(M)K is a crossed submodule of JM,GK.

Let n ∈MG.

Let g ∈ G. We have

nf = (ng)f
(CM1)

= (nf)g = g−(nf) g .

Hence nf ∈ Z (G).

Let m ∈M . We have

mnf (CM2)
= mn = n−m n = n−m nmf

(CM2)
= n−m m−n m = n−n m = m .
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Hence nf ∈ stG(M).

Therefore we have nf ∈ Z (G) ∩ stG(M).

Let h ∈ Z (G) ∩ stG(M). Let n ∈MG. We have

nh = n ∈MG .

This shows JMG,Z (G) ∩ stG(M)K 6 JM,GK.

Now we want to show that JMG,Z (G) ∩ stG(M)K is normal in JM,GK.

For that, let m ∈M and let h ∈ Z (G) ∩ stG(M). We have

m−mh = m−m = 1 ∈MG .

Now let n ∈MG and let g ∈ G. We have

ng = n ∈MG .

This shows JMG,Z (G) ∩ stG(M)K P JM,GK.

Example 30 We consider the crossed module defined in [6, §1.5.6].

Let G := 〈a : a4 = 1〉 and let M := 〈b : b4 = 1〉 be cyclic groups of order 4. Since
(a2)4 = 1, we have a group morphism

f : M → G, b 7→ a2 .

Further, we can define an action of G on M by

α : G −−−→ Aut (M) , a 7−−−→ (b 7−−→ ba := b−) .

This yields a crossed module JM,GK =
(
M,G, α, f

)
, because we have

(ba)f = (b−)f = (bf)− = (a2)− = (bf)a ,

which shows (CM1), and

bbf = b(a2) = (ba)a = (b−)a = b = b−b b = bb ,

which shows (CM2).
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(1) We want to determine the crossed submodules and normal crossed submodules of
JM,GK. We consider all possible candidate pairs (N,H), where N 6M and H 6 G,
and check if they possess the required properties.

Since M and G are abelian, the conditions N EM and H E G are always satisfied.
Further, the crossed modules J〈1〉, 〈1〉K and JM,GK = J〈b〉, 〈a〉K are trivially normal
crossed submodules.

We consider the pair (〈b2〉, 〈1〉). We have

b2f = (bf)2 = (a2)2 = 1 ∈ 〈1〉 and (b2)1 = b2 ∈ 〈b2〉 .
Thus, J〈b2〉, 〈1〉K is a crossed submodule. It is normal as well, because we have

b−b1 = 1 ∈ 〈1〉 and (b2)a = (b−)2 = b2 ∈ 〈b2〉 .
Now consider the pair (〈b〉, 〈1〉). We have

bf = a2 6∈ 〈1〉 .
Hence, the pair (〈b〉, 〈1〉) does not yield a crossed submodule of JM,GK.
We proceed through all candidate pairs in the same fashion and obtain the following
list.

candidate pair crossed submodule normal crossed submodule

(〈1〉, 〈1〉)
√ √

(〈b2〉, 〈1〉)
√ √

(〈b〉, 〈1〉) × ×

(〈1〉, 〈a2〉)
√ √

(〈b2〉, 〈a2〉)
√ √

(〈b〉, 〈a2〉)
√ √

(〈1〉, 〈a〉)
√

×

(〈b2〉, 〈a〉)
√ √

(〈b〉, 〈a〉)
√ √
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(2) Let X := JM,GK = J〈b〉, 〈a〉K.

We want to determine the centre Z (X) = JMG,Z (G) ∩ stG(M)K; cf. Lemma 29.
We have

MG = 〈b〉〈a〉 = 〈b2〉 and

Z (G) ∩ stG(M) = Z (〈a〉) ∩ st〈a〉(〈b〉) = 〈a〉 ∩ 〈a2〉 = 〈a2〉 .

Hence we get Z (X) = J〈b2〉, 〈a2〉K P X.

We form the factor crossed module X/Z (X) and obtain

X/Z (X) = J〈b〉/〈b2〉, 〈a〉/〈a2〉K =: JM̃, G̃K; cf. Lemma 26.

We want to determine the centre Z (X/Z (X)) = JM̃ G̃,Z (G̃) ∩ stG̃(M̃) K.

We have M̃ = {1〈b2〉, b〈b2〉} = 〈 b〈b2〉 〉 and G̃ = {1〈a2〉, a〈a2〉} = 〈 a〈a2〉 〉.
We have

( 1〈b2〉 )a〈a
2〉 26

= 1a〈b2〉 = 1〈b2〉

( b〈b2〉 )a〈a
2〉 26

= ba〈b2〉 = b−〈b2〉 = b3〈b2〉 = b〈b2〉 .

Hence we get M̃ G̃ = M̃ and stG̃(M̃) = G̃.

We have

Z (G̃) ∩ stG̃(M̃) = 〈 a〈a2〉 〉 ∩ 〈 a〈a2〉 〉 = 〈 a〈a2〉 〉 = G̃ .

Therefore, we have Z (X/Z (X)) = JM̃, G̃K = X/Z (X).

Example 31 We consider the crossed module JS3, S3K =
(

S3, S3, c, idS3

)
. We want to

determine its normal crossed submodules.

We proceed in a similar fashion as in Example 30 and look at all candidate pairs (N,H)
with N,H P S3 and N 6 H. These are given by (1, 1), (1,A3), (1, S3), (A3,A3), (A3, S3)
and (S3, S3).

Since for all candidate pairs (N,H), the group H acts in N via conjugation, all candidate
pairs yield crossed submodules by Remark 18.
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We consider JA3, S3K. Suppose given a ∈ A3, suppose given s, t ∈ S3. Since the factor

group S3 /A3 is abelian, the commutator subgroup [S3, S3] is contained in A3. We have

s−st = s− · t− · s · t ∈ [S3, S3] ⊆ A3 .

Furthermore, we have

as = s− · a · s ∈ A3 .

Thus, it follows that JA3, S3K P JS3, S3K.

We consider JA3,A3K. For a ∈ A3, s ∈ S3 we have

s−sa = s−a−s︸ ︷︷ ︸
∈A3

a ∈ A3 and as = s−as ∈ A3 .

Hence, we have JA3,A3K P JS3, S3K.

We consider J1,A3K. Let b := (2, 3) ∈ S3, a := (1, 2, 3) ∈ A3. We have

b−ba = b−a−b a = (2, 3)(1, 3, 2)(2, 3)(1, 2, 3) = (1, 3, 2) 6= id ,

and therefore J1,A3K 6P JS3, S3K. This calculation also shows that J1, S3K 6P JS3, S3K.

Note that the crossed submodules J1, 1K and JS3, S3K are normal in JS3, S3K; cf. Remark 23.

We get the following list.

candidate pair crossed submodule normal crossed submodule

(〈1〉, 〈1〉)
√ √

(〈1〉,A3)
√

×

(A3,A3)
√ √

(〈1〉, S3)
√

×

(A3, S3)
√ √

(S3, S3)
√ √
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2 Simple crossed modules

2.1 Sequences

Definition 32 (Short exact sequence for crossed modules) Suppose given crossed mo-
dules JMi, GiK =

(
Mi, Gi, αi, fi

)
for i ∈ [1, 3].

For i ∈ [1, 2], suppose given crossed module morphisms

(λi, µi) : JMi, GiK −→ JMi+1, Gi+1K

such that

1 M1 M2 M3 1
λ1 λ2

and

1 G1 G2 G3 1
µ1 µ2

are short exact sequences; cf. Reminder 2. We call

1 JM1, G1K JM2, G2K JM3, G3K 1
(λ1, µ1) (λ2, µ2)

a short exact sequence (of crossed modules).

Lemma 33 Let JM,GK =
(
M,G, α, f

)
be a crossed module.

(1) Let JN,HK P JM,GK and let JM,GK/JN,HK be the factor crossed module; cf.

Lemma 26.(1). We have the residue class morphisms

p : M →M/N, m 7→ mN

q : G→ G/H, g 7→ gH .
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Further, let ι := idM
∣∣
N

and let κ := idG
∣∣
H

be the inclusion maps.

We get a short exact sequence

1 JN,HK JM,GK JM,GK/JN,HK 1 .
(ι, κ) (p, q)

(2) Suppose given crossed modules JN,HK =
(
N,H, β, k

)
and JL,EK =

(
L,E, γ, d

)
.

Suppose we have a short exact sequence

1 JN,HK JM,GK JL,EK 1 .
(ϕ, ψ) (λ, µ)

Then, the map (ϕ|kerλ, ψ|kerµ) : JN,HK → ker (λ, µ) is an isomorphism of crossed

modules; cf. Lemma 27.(1).

Proof. Ad (1). We are given short exact sequences

1 N M M/N 1
ι p

1 H G G/H 1 .
κ q

By Remark 19 and Lemma 26.(2), (ι, κ) and (p, q) are crossed module morphisms.

Ad (2). We are given short exact sequences

1 N M L 1
ϕ λ

1 H G E 1 .
ψ µ

Therefore, we have bijective group morphisms ϕ|kerλ : N
∼−→ kerλ and ψ|kerµ : H

∼−→ kerµ.
From Lemma 25.(3) we infer that (ϕ|kerλ, ψ|kerµ) is a crossed module morphism. Hence,
(ϕ|kerλ, ψ|kerµ) is an isomorphism of crossed modules.

32



2.2 Simplicity

Definition 34 (Simple crossed module) A simple crossed module JM,GK is a crossed

module that is not isomorphic to J1, 1K and that has no normal crossed submodules apart

from its trivial crossed submodule J1, 1K and the crossed module JM,GK itself.

Remark 35 Let G be a group. We consider the crossed module JG,GK =
(
G,G, c, idG

)
from Remark 10.(2). Then, we have a crossed submodule J1, GK 6 JG,GK.

We have J1, GK P JG,GK if and only if G is abelian.

Proof. We have J1, GK 6 JG,GK since

(1)idG = 1 and (1)gc = 1g = g−1g = 1 , for g ∈ G.

“⇒” We suppose that J1, GK P JG,GK. For g, h ∈ G, we have

g−gh = 1 ⇔ hg = gh .

Therefore, G is abelian.

“⇐” Suppose that G is abelian. For g, h ∈ G, we get g−gh = 1 and 1g = 1.

This shows J1, GK P JG,GK.

Example 36 Consider the symmetric group S3. By Remark 35, J1, S3K 6 JS3, S3K is a
crossed submodule but not a normal crossed submodule, because S3 is not abelian. This
fact has already been shown in Example 31.

Lemma 37 Let JM,GK =
(
M,G, α, f

)
be a crossed module.

(1) We have a crossed module JMf,GK =
(
Mf,G, cMf , idG

∣∣
Mf

)
, and a surjective

crossed module morphism (f
∣∣Mf

, idG) : JM,GK→ JMf,GK. Cf. Example 9.

(2) We have a short exact sequence given by

1 Jker f, 1K JM,GK JMf,GK 1 .
P (f |Mf , idG)
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Proof. Ad (1). By Lemma 7.(2), we have Mf P G. Thus, JMf,GK is a crossed module;
cf. Example 9.

Write f̄ := f
∣∣Mf

and κ̄ := idG
∣∣
Mf

. For m ∈M , g ∈ G, we have

(m)f̄ κ̄ = (m)fκ̄ = (m)f = (m)f idG

and

(mg)f̄ = (mg)f
(CM1)

= (mf)g = (mf̄)g .

This proves that (f
∣∣Mf

, idG) is a crossed module morphism. By construction, it is surjec-
tive; cf. Definition 16.

Ad (2). The kernel of (f |Mf , idG) : JM,GK→ JMf,GK is given by Jker f, 1K.

Since Jker f, 1K 6 JM,GK is a crossed submodule, we have the inclusion morphism

(idM
∣∣
ker f

, idG
∣∣
1
) : Jker f, 1K→ JM,GK; cf. Remark 19.

Altogether, the sequence in question exists and is short exact; cf. Definition 32.

Remark 38 Suppose given a group G. Suppose given M P G. Consider the crossed
module JM,GK =

(
M,G, c|M , idG|M

)
; cf. Example 9.

(1) We have a crossed module J1, G/MK =
(
1, G/M, c1, idG/M |1

)
, and a surjective

crossed module morphism (κ, r) : JM,GK→ J1, G/MK, where

κ : M −−−→ 1 r : G −−−→ G/M

m 7−−−→ 1 = 1G/M g 7−−−→ gM .

(2) We have a short exact sequence given by

1 JM,MK JM,GK J1, G/MK 1 .
P (κ, r)

Proof. Ad (1). We have a crossed module J1, G/MK since it carries the structure of the
crossed module given in Example 9.
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Let m ∈M and let g ∈ G. We have

(m)idG
∣∣
M
r = (m)r = mM = 1M = (1)idG/M |1 = (m)κ idG/M

∣∣
1

and

(mg)κ = 1M = 1gM = (1M)gM = (mκ)gr .

This proves that (κ, r) is a crossed module morphism. By construction, it is surjective;
cf. Definition 16.

Ad (2). The kernel of (κ, r) : JM,GK→ J1, G/MK is given by JM,MK.

Since JM,GK 6 J1, G/MK is a crossed submodule, we have the inclusion morphism

(idM , idG|M) : JM,MK→ JM,GK; cf. Remark 19.

Altogether, the sequence in question exists and is short exact; cf. Definition 32.

Lemma 39 Suppose given a group G. Suppose given M P G. Consider the crossed
module JM,GK =

(
M,G, cM , idG

∣∣
M

)
; cf. Example 9.

A crossed submodule JN,HK 6 JM,GK is normal in JM,GK if and only if we have

N P M, H P G and N P H, N P G, [M,H] 6 N ,

i.e. we have the following diagram.

[M,H] N M

H G

P P

P

P

P

Proof. Ad⇒. We assume that JN,HK P JM,GK; cf. Definition 21. Then we have N P M
and H P G.

For n ∈ N , g ∈ G, we have ng = g−ng ∈ N . It follows that N P G. Since JN,HK carries

the morphism idG
∣∣
M

∣∣H
N

, we have N 6 H. Altogether, we have N P H.

For m ∈M , h ∈ H, we have [m,h] = m−h−mh = m−mh ∈ N . Hence [M,H] 6 N .

Ad ⇐. By assumption we have N P M and H P G. Further, for n ∈ N , m ∈ M
and h ∈ H, g ∈ G, we have m−mh ∈ [M,H] 6 N , and ng ∈ N . Hence we have
JN,HK P JM,GK; cf. Definition 21.
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Theorem 40 (Simple crossed modules) Suppose given a simple crossed module C. Then
C is simple if and only if (1) or (2) or (3) holds; cf. Definition 12.

(1) We have C ' Xcontr(G) for some non-abelian and simple group G.

(2) We have C ' X1(K) for some simple group K.

(3) We have C ' X2(M) for some cyclic group M of prime order.

Proof. Ad⇐ . Suppose that (1) holds. We may assume that C = JG,GK =
(
G,G, c, idG

)
,

where G a simple and non-abelian group. Furthermore, we may assume that G 6= 1, since,
by definition, the crossed module J1, 1K is not simple; cf. Defintion 34.

Suppose given a normal crossed submodule JN,HK P JG,GK. Then we have N P G and

H P G. We get N,H ∈ {1, G} because G is simple.

Suppose we have N = 1 and H = G. By Remark 35, we have J1, GK 6P JG,GK, since G is
non-abelian.

Suppose we have N = G and H = 1. By Lemma 39, we have JG, 1K 6P JG,GK, since we
do not have G P 1.

Therefore, J1, 1K P JG,GK and JG,GK P JG,GK are the only normal crossed submodules
we have; cf. Remark 23.

Hence, JG,GK is simple.

Suppose that (2) holds. We may assume that C = J1, KK =
(
1, K, c, idK

∣∣
1

)
, where K is a

simple group. Suppose given a normal crossed submodule JN,HK P J1, KK. We obtain
N P 1 and H P K. It follows that N = 1, and it follows that H = 1 or H = K.

Hence, J1, KK is simple.

Suppose that (3) holds. We may assume that C = JM, 1K =
(
M, 1, ι, κ

)
. We need the

commutativity of M to define the crossed module JM, 1K; cf. Example 11. Suppose given

a normal crossed submodule JN,HK P JM, 1K. We obtain N P M and H P 1. It follows
that N = 1 or N = M , and it follows that H = 1.

Hence, JM, 1K is simple.
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Ad ⇒ . Suppose given a simple crossed module C = JM,GK =
(
M,G, α, f

)
. Consider

the short exact sequence from Lemma 37.(2).

1 ker f M Mf 1

1 1 G G 1

P

f

f
∣∣Mf

idG

We have Jker f, 1K P JM,GK. Since JM,GK is simple, we get Jker f, 1K = J1, 1K or

Jker f, 1K = JM,GK.

We consider the case Jker f, 1K = JM,GK. Lemma 7 states that ker f is abelian, and
therefore M abelian. We show that the group M is simple:

We assume that there exists a non-trivial normal subgroup 1 6= N �M . As a subgroup
of the abelian group M , the group N is abelian. Therefore, we get a non-trivial normal
crossed submodule 1 6= JN, 1K�JM, 1K, which is a contradiction to the simplicity of JM, 1K.

Hence, M is simple and abelian. Since the simple abelian groups are exactly those groups
that are cyclic and of prime order, we obtain JM,GK = JM, 1K where M is a cyclic group

of prime order. So (3) holds.

We consider the case Jker f, 1K = J1, 1K. We have a trivial kernel ker f = 1. Hence, the

map f is injective. Therefore, f̄ := f
∣∣Mf

: M → Mf is bijective. Hence (f |Mf , idG) is
an isomorphism. So it suffices to show that JMf,GK satisfies (1) or (2). Hence, we may

assume that M P G, α = cM , f = idG|M .

By Remark 38.(2), we are given a short exact sequence

1 M M 1 1

1 M G G/M 1 .

idM

P
idM

P

κ

r

Thus, JM,MK P JM,GK. Since JM,GK is simple we get JM,MK = 1 or JM,MK = JM,GK.
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If JM,MK = 1 then (κ, r) : JM,GK→ J1, G/MK is an isomorphism of crossed modules and

we obtain JM,GK ' J1, KK with K := G/M . We show that K is a simple group:

If we assume that there exists a non-trivial normal subgroup 1 6= N � K, then we get
a non-trivial normal crossed submodule J1, NK � J1, KK. This is a contradiction since

JM,GK ' J1, KK is assumed to be simple.

Therefore, we obtain JM,GK ' J1, KK where K is a simple group. So (2) holds.

If JM,MK = JM,GK then we have yet to show that M is a non-abelian and simple group.

If we assume that M is abelian then we have a normal crossed submodule J1,MK P
JM,MK; cf. Remark 10, which is a contradiction to the simplicity of JM,MK.

If we assume that M is not simple then we have a non-trivial normal subgroup N �M .
We get a normal crossed submodule JN,NK � JM,MK, which is a contradiction to the

simplicity of JM,MK.

Altogether, we obtain JM,GK = JM,MK where M is a non-abelian and simple group. So

(1) holds.

3 Jordan-Hölder Theorem

3.1 A preparation

Lemma 41

(1) Suppose given a group G. Let N P G be a normal subgroup. For all g ∈ G, n ∈ N ,
there exists n∗ ∈ N such that ng = gn∗.

(2) Suppose given a crossed module JM,GK. Let JN,HK P JM,GK be a normal crossed

submodule. For all m ∈M , h ∈ H, there exists n0 ∈ N such that mh = mn0.

Proof. Ad (1). Suppose given g ∈ G, n ∈ N . Since N P G, we have

n∗ := g−n g ∈ N , and so ng = gg−ng = gn∗ .
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Ad (2). Suppose given m ∈M , h ∈ H. Since JN,HK P JM,GK we have

n0 := m−mh ∈ N , and so mh = mm−mh = mn0 .

3.2 Intersection and product of crossed modules

Lemma 42 Let JM,GK =
(
M,G, α, f

)
be a crossed module. Suppose we are given crossed

submodules JN,HK =
(
N,H, β, k

)
6 JM,GK and JÑ , H̃K =

(
Ñ , H̃, β̃, k̃

)
6 JM,GK.

(1) Let l := f
∣∣H∩H̃
N∩Ñ be the restriction of f to N ∩ Ñ and H ∩ H̃. Consider the group

morphism

δ : H ∩ H̃ −−−→ Aut
(
N ∩ Ñ

)
h 7−−−→

(
n 7→ (n)(hδ) := (n)(hα)

)
.

Then we have a crossed submodule given by

JN ∩ Ñ ,H ∩ H̃K =
(
N ∩ Ñ ,H ∩ H̃, δ, l

)
6 JM,GK .

We write JN,HK ∩ JÑ , H̃K := JN ∩ Ñ ,H ∩ H̃K.

In particular, we have JN,HK ∩ JÑ , H̃K 6 JN,HK and JN,HK ∩ JÑ , H̃K 6 JÑ , H̃K.

(2) If JN,HK P JM,GK and JÑ , H̃K P JM,GK then we have a normal crossed submodule

JN,HK ∩ JÑ , H̃K P JM,GK.

In particular, we have JN,HK ∩ JÑ , H̃K P JN,HK and JN,HK ∩ JÑ , H̃K P JÑ , H̃K.
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So the situation is given as follows.

JM,GK

JN,HK JÑ , H̃K

JN,HK ∩ JÑ , H̃K

Or more explicitly:

N M Ñ

H G H̃

N ∩ Ñ

H ∩ H̃

k f k̃

l

Proof. Ad (1). We have N ∩ Ñ 6 M and H ∩ H̃ 6 G. Suppose given a ∈ N ∩ Ñ and
b ∈ H ∩ H̃. We have

al = af = ak︸︷︷︸
∈H

= ak̃︸︷︷︸
∈H̃

∈ H ∩ H̃ ,
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and we have

ab = a(bδ) = a(bα) = a(bβ)︸ ︷︷ ︸
∈H

= a(bβ̃)︸ ︷︷ ︸
∈H̃

∈ H ∩ H̃ .

This shows JN ∩ Ñ ,H ∩ H̃K 6 JN,HK, JÑ , H̃K, JM,GK.

Ad (2). Now we assume that JN,HK, JÑ , H̃K P JM,GK. We have N ∩ Ñ P M and

H ∩ H̃ P G.

Since we have JN,HK, JÑ , H̃K P JM,GK, we get m−mh ∈ N ∩ Ñ and mg ∈ N ∩ Ñ for

m ∈ M , g ∈ G. This shows JN ∩ Ñ ,H ∩ H̃K P JM,GK. By Remark 24, we also have

JN ∩ Ñ ,H ∩ H̃K P JN,HK, JÑ , H̃K.

Lemma 43 Let JM,GK =
(
M,G, α, f

)
be a crossed module.

Let JÑ , H̃K =
(
Ñ , H̃, β̃, k̃

)
P JM,GK be a normal crossed submodule.

(1) Suppose given a crossed submodule JN,HK 6 JM,GK. Let l := f
∣∣HH̃
NÑ

be the restric-

tion of f to NÑ and HH̃. Consider the group morphism

δ : HH̃ −−−→ Aut
(
NÑ

)
h 7−−−→

(
n 7→ (n)(hδ) := (n)(hα)

)
.

Then we have a crossed submodule given by

JNÑ,HH̃K =
(
NÑ,HH̃, γ, l

)
6 JM,GK .

We write JN,HKJÑ , H̃K := JNÑ,HH̃K.

In particular, we have JN,HK 6 JNÑ,HH̃K and JÑ , H̃K 6 JNÑ,HH̃K.

(2) If JN,HK P JM,GK and JÑ , H̃K P JM,GK then we have a normal crossed submodule

JNÑ,HH̃K P JM,GK.

In particular, we have JN,HK P JNÑ,HH̃K and JÑ , H̃K P JNÑ,HH̃K.
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So the situation is given as follows.

JM,GK

JN,HKJÑ , H̃K

JN,HK JÑ , H̃K

Or more explicitly:

M

G

N NÑ Ñ

H HH̃ H̃

f

k l k̃

Proof. Ad (1). We have NÑ 6M and HH̃ 6 G. Suppose given n ∈ N, ñ ∈ Ñ . We have

(nñ)f = nf · ñf = nk︸︷︷︸
∈H

· ñk̃︸︷︷︸
∈H̃

∈ HH̃ .

So we may define l := f
∣∣HH̃
NÑ

.
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For n ∈ N , ñ ∈ Ñ and h ∈ H, h̃ ∈ H, we have

(nñ)hh̃ = nhh̃ ñhh̃

41.(2)
= nh︸︷︷︸

∈N

ñ0 ñ
hh̃︸ ︷︷ ︸

∈Ñ

∈ NÑ (ñ0 ∈ N).

This shows JNÑ,HH̃K 6 JM,GK. By Remark 20, we also have JN,HK 6 JNÑ,HH̃K and

JÑ , H̃K 6 JNÑ,HH̃K.

Ad (2). Now we assume that JN,HK P JM,GK. Since we have N, Ñ P M and H, H̃ P G

we get NÑ P M and HH̃ P G. For n ∈ N, ñ ∈ Ñ , g ∈ G we have

(nñ)g = ng︸︷︷︸
∈N

ñg︸︷︷︸
∈Ñ

∈ NÑ .

For m ∈M, h ∈ H, h̃ ∈ H̃ we have

m−mhh̃ = m−(mh)h̃ = m−mh︸ ︷︷ ︸
∈N

(mh)−(mh)h̃︸ ︷︷ ︸
∈Ñ

∈ NÑ .

This shows JNÑ,HH̃K P JM,GK. By Remark 24, we also have JN,HK P JNÑ,HH̃K and

JÑ , H̃K P JNÑ,HH̃K.

3.3 Zassenhaus

Lemma 44 Let A := JA1, A2K, B̃ := JB̃1, B̃2K, B := JB1, B2K and C := JC1, C2K be

crossed modules. Suppose we have A 6 C and B̃ P B 6 C, i.e. we have the following
situation.
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A = JA1, A2K JC1, C2K = C

JB1, B2K = B

JB̃1, B̃2K = B̃

P

(1) We have A ∩ B̃ P A ∩B.

(2) If A P C, then AB̃ P AB.

Proof. Ad (1). By Lemma 42.(1) and Remark 20, we have A ∩ B̃ 6 A ∩B.

For n ∈ A1 ∩ B̃1 and g ∈ A2 ∩B2, we have

ng ∈ A1 since n ∈ A1 and g ∈ A2,

ng ∈ B̃1 since n ∈ B̃1, g ∈ B2 and B̃ P B .

It follows that ng ∈ A1 ∩ B̃1.

For m ∈ A1 ∩B1 and h ∈ A2 ∩ B̃2, we have

m−mh ∈ A1 since m ∈ A1 and h ∈ A2 ,

m−mh ∈ B̃1 since m ∈ B1, h ∈ B̃2, and B̃ P B .

It follows that m−mh ∈ A1 ∩ B̃1.

Therefore, we have A ∩ B̃ P A ∩B.

Ad (2). By Lemma 43.(1), we have A 6 AB and B̃ 6 AB. Therefore AB̃ 6 AB.

Suppose given n := a1b̃1 with a1 ∈ A1 and b̃1 ∈ B̃1, and g := a2b2 with a2 ∈ A2 and
b2 ∈ B2. We have

44



ng = (a1b̃1)a2b2

= aa2b21 · b̃ a2b2
1

41.(1)
= aa2b21 · (b̃ b2

1 )a
∗
2 (a∗2 ∈ A2, A2 P C2 3 b2)

41.(2)
= aa2b21 · (b̃ b2

1 )(a1)0

(
(a1)0 ∈ A1, A P C

)
41.(1)
=

(
aa2b21 (a1)∗0

)
· (b̃ b2

1 ) ∈ A1B̃1

(
(a1)∗0 ∈ A1

)
.

Suppose given m := a1b2 with a1 ∈∈ A1 and b1 ∈ B1, and h := a2b̃2 with a2 ∈ A2 and
b2 ∈ B̃2. We have

m−mh = (a1b1)−(a1b1)a2b̃2

= b−1 a−1 aa2b̃21 ba2b̃21

41.(1)
= b−1 a−1 aa2b̃21 (b b̃2

1 )a
∗
2 (a∗2 ∈ A2, A2 P C2 3 b̃2)

41.(2)
= b−1 a−1 aa2b̃21 (b b̃2

1 )(a1)0

(
(a1)0 ∈ A1, A P C

)
41.(1)
= b−1 a−1 aa2b̃21 (a1)∗0 (b b̃2

1 )
(
(a1)∗0 ∈ A1

)
= b−1 â1 b

b̃2
1

(
â1 := a−1 a

a2b̃2
1 (a1)∗0 ∈ A1

)
41.(1)
= (â∗1) · (b−1 bb̃21 ) ∈ A1B̃1 (â∗1 ∈ A1, A1 P C1 3 b−1 ) .

Therefore, we have AB̃ P AB.

Lemma 45 (Butterfly Lemma) Let C := JC1, C2K be a crossed module.

Let A := JA1, A2K, B := JB1, B2K 6 C be crossed submodules.

Further, let Ã := JÃ1, Ã2K P A, B̃ := JB̃1, B̃2K P B be normal crossed submodules.

C

A B

Ã B̃

P P
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We have normal crossed submodules

Ã(A ∩ B̃) P Ã(A ∩B)

(Ã ∩B)B̃ P (A ∩B)B̃ ,

and isomorphic factor crossed modules

Ã(A ∩B)
/
Ã(A ∩ B̃) '

A ∩B
/

(Ã ∩B)(A ∩ B̃) '
(A ∩B)B̃

/
(Ã ∩B)B̃ .

If we visualize the involved crossed submodules in a diagram, then the “butterfly” becomes
apparent:

A B

Ã(A ∩B) (A ∩B)B̃

A ∩B

Ã(A ∩ B̃) (Ã ∩B)B̃

Ã (Ã ∩B)(A ∩ B̃) B̃

Ã ∩B A ∩ B̃

Proof. By assumption, we have B̃ P B. With Lemma 44.(1), we get A∩ B̃ P A∩B 6 A.
With Lemma 44.(2), we get Ã(A ∩ B̃) P Ã(A ∩B) 6 A.
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We consider the crossed module morphism

(λ1, λ2) : A ∩B −→ Ã(A ∩B)/
Ã(A ∩ B̃) ,

where, for i ∈ [1, 2], we have

λi : Ai ∩Bi −−−→ Ãi(Ai ∩Bi)
/
Ãi(Ai ∩ B̃i)

xi 7−−−→ xi
(
Ãi(Ai ∩ B̃i)

)
.

As a composite of an inclusion and a reduction morphism, (λ1, λ2) is in fact a crossed
module morphism.

The crossed module morphism (λ1, λ2) is surjective:

Suppose given x ∈ Ã1(A1∩B1)/Ã1(A1∩B̃1) , which can be written as x = ãz Ã1(A1 ∩ B̃1),

with ã ∈ Ã1 and z ∈ (A1 ∩B1). We have

x = ãz
(
Ã1(A1 ∩ B̃1)

)
41.(1)
= z ã∗

(
Ã1(A1 ∩ B̃1)

)
(ã∗ ∈ Ã1)

= z
(
Ã1(A1 ∩ B̃1)

)
= zλ1 .

Hence, λ1 is surjective. In the same way we conclude that λ2 is surjective. Therefore,
(λ1, λ2) is surjective.

We have kerλ1 = (Ã1 ∩B1)(A1 ∩ B̃1):

Ad ⊆. Suppose given k ∈ kerλ1 ⊆ (A1 ∩B1). We have

kλ1 = 1 Ã1(A1 ∩ B̃1) ⇒ k ∈ Ã1(A1 ∩ B̃1)

⇒ k ∈ (A1 ∩B1) ∩ Ã1(A1 ∩ B̃1) .

We can write k = ãz with ã ∈ Ã1 and z ∈ (A1 ∩ B̃1). We have

ã = k︸︷︷︸
∈B1

· z−︸︷︷︸
∈B̃1⊆B1

∈ B1 ⇒ ã ∈ (Ã1 ∩B1) ⇒ k = ãz ∈ (Ã1 ∩B1)(A1 ∩ B̃1) .
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Ad ⊇. Suppose given k ∈ (Ã1 ∩B1)(A1 ∩ B̃1) ⊆ Ã1(A1 ∩ B̃1). We have

kλ1 = k Ã1(A1 ∩ B̃1) = 1 Ã1(A1 ∩ B̃1) ,

which shows k ∈ kerλ1.

By the same calculation we get kerλ2 = (Ã2 ∩B2)(A2 ∩ B̃2).

Hence, we have ker (λ1, λ2) = (Ã ∩B) ∩ (A ∩ B̃).

Therefore, the conditions for Corollary 28 are met and we get the isomorphism

(λ̄1, λ̄2) : A ∩B
/

(Ã ∩B)(A ∩ B̃)

∼
−−−→ Ã(A ∩B)

/
Ã(A ∩ B̃) ,

where, for i ∈ [1, 2], we have

λ̄i : Ai ∩Bi

/
(Ãi ∩Bi)(Ai ∩ B̃i)

∼
−−−→ Ãi(Ai ∩Bi)

/
Ãi(Ai ∩ B̃i)

xi(Ãi ∩Bi)(Ai ∩ B̃i) 7−−−→ xiÃi(Ai ∩ B̃i) .

So we obtain

A ∩B
/

(Ã ∩B)(A ∩ B̃) '
Ã(A ∩B)

/
Ã(A ∩ B̃) .

For reasons of symmetry, we also have

A ∩B
/

(Ã ∩B)(A ∩ B̃) '
(A ∩B)B̃

/
(A ∩ B̃)B̃ .
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3.4 Schreier and Jordan-Hölder

Definition 46 (Composition series) Suppose given a crossed module C. A sequence of
crossed submodules

Σ : C = C0 > C1 > · · · > Cs = 1

is called subnormal series if Ci+1 P Ci for i ∈ [0, s− 1].

The factor crossed module Ci/Ci+1 is called the i-th sub-factor of this subnormal series,
where i ∈ [0, s− 1].

We call s the length of Σ.

A subnormal series whose sub-factors are all simple is called a composition series. The
sub-factors of a composition series are called its composition factors.

Definition 47 (Equivalent subnormal series) Suppose we have subnormal series of a
crossed module C

Σ : C = C0 > C1 > · · · > Cs = 1

and

Σ∗ : C = D0 > D1 > · · · > Dt = 1 .

We say that Σ is equivalent to Σ∗ if there exists a bijection σ : [0, s− 1]→ [0, t− 1] such
that, for i ∈ [0, s− 1],

Ci
/
Ci+1

' Diσ
/
Diσ+1

holds. In particular, if Σ is equivalent to Σ∗, then we have s = t.

Definition 48 (Refinement) Let C be a crossed module. Suppose given subnormal series

Σ : C = C0 > C1 > · · · > Cs = 1 ,

Σ∗ : C = D0 > D1 > · · · > Dt = 1 .

Then Σ∗ is called refinement of Σ if there exists an injective monotone map γ : [0, s]→ [0, t]
such that (0)γ = 0, (s)γ = t and Ci = Diγ for i ∈ [0, s].
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Schreier’s theorem generalizes to

Theorem 49 Two subnormal series of a crossed module C have equivalent refinements.

Proof. Let

Σ : C = A0 > A1 > · · · > As = 1

and

Σ∗ : C = B0 > B1 > · · · > Bt = 1

be two subnormal series of C. For each i ∈ [0, s− 1] and j ∈ [0, t] we define

Ai,j := Ai+1 (Ai ∩Bj) .

Then we have Ai,0 = Ai and Ai,t = Ai+1 for i ∈ [0, s− 1]. A refinement of Σ is given by

Σ′ : C =

A0︷︸︸︷
A0,0 > A0,1 > · · · > A0,t−1

>

=A0,t=A1︷︸︸︷
A1,0 > A1,1 > · · · > A1,t−1

>

=A1,t=A2︷︸︸︷
A2,0 > A2,1 > · · · > A2,t−1

...

>

=As−2,t=As−1︷ ︸︸ ︷
As−1,0 > As−1,1 > · · · > As−1,t−1 > As−1,t = 1 .

One should note that we have indeed normal embeddings at each position of the sequence
Σ′ because Lemma 45 yields

Ai,j+1 = Ai+1(Ai ∩Bj+1) P Ai+1(Ai ∩Bj) = Ai,j .

Similarly, for each j ∈ [0, t− 1] and i ∈ [0, s], we define

Bj,i := (Ai ∩Bj)Bj+1 .
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This gives us a refinement of Σ∗:

Σ∗′ : C =

B0︷︸︸︷
B0,0 > B0,1 > · · · > B0,s−1

>

=B0,s=B1︷︸︸︷
B1,0 > B1,1 > · · · > B1,s−1

>

=B1,s=B2︷︸︸︷
B2,0 > B2,1 > · · · > B2,s−1

...

>

=Bt−2,s=Bt−1︷ ︸︸ ︷
Bt−1,0 > Bt−1,1 > · · · > Bt−1,s−1 > Bt−1,s = 1 .

We have a bijection

ϕ : [0, st− 1] → [0, s− 1]× [0, t− 1]

k 7→ kϕ := (i, j) ,

where k = ti + j with j ∈ [0, t − 1]. So, for k ∈ [0, st − 1] with kϕ =: (i, j), where
i ∈ [0, s− 1], j ∈ [0, t− 1], we have

(k + 1)ϕ =

{
(i+ 1, 0) if t divides k + 1

(i, j + 1) else .

Let A′k := Akϕ for k ∈ [0, st− 1]. Let A′st := 1.

If t divides k + 1, we have A′k+1 = A(k+1)ϕ = Ai+1,0 = Ai,t = Ai,j+1. If t does not divide
k + 1, we have A′k+1 = Ai,j+1. So we obtain

Σ′ : C = A′0 > A′1 > · · · > A′st−1 > A′st = 1 .

We have a bijection

ϕ∗ : [0, st− 1] → [0, t− 1]× [0, s− 1]

k 7→ kϕ∗ := (j, i) ,
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where k = sj + i with j ∈ [0, t − 1]. So, for k ∈ [0, st − 1] with kϕ∗ =: (j, i), where
j ∈ [0, t− 1], i ∈ [0, s− 1], we have

(k + 1)ϕ∗ =

{
(j + 1, 0) if s divides k + 1

(j, i+ 1) else .

Let B′k := Bkϕ∗ for k ∈ [0, st− 1]. Let B′st := 1. Then

Σ∗′ : C = B′0 > B′1 > · · · > B′st−1 > B′st = 1 .

We conclude that both refinements Σ′ and Σ∗′ have the same length st.

Now consider the bijective map

τ : [0, s− 1]× [0, t− 1] → [0, t− 1]× [0, s− 1]

(i, j) 7→ (j, i) .

Let σ := ϕτ(ϕ∗)− : [0, st−1]→ [0, st−1]. As a composition of bijective maps, σ is bijective.
Then, for k ∈ [0, st− 1] with kϕ := (i, j), we obtain kσϕ∗ = kϕτ = (i, j)τ = (j, i), and so

A′k
/
A′k+1

= Akϕ
/
A(k+1)ϕ

= Ai,j
/
Ai,j+1

= Ai+1(Ai ∩Bj)
/
Ai+1(Ai ∩Bj+1)

45' (Ai ∩Bj)Bj+1
/
(Ai+1 ∩Bj)Bj+1

= Bj,i
/
Bj,i+1

= Bkσϕ∗
/
B(kσ+1)ϕ∗

= B′kσ
/
B′kσ+1

.

Hence, Σ′ and Σ∗′ are equivalent.

Definition 50 (Reduction) Let C be a crossed module. Let

Σ: C = C0 > C1 > C2 > · · · > Cs = 1

be a subnormal series of C.

(i) The subnormal series Σ is called reduced if Ci � Ci+1 holds for all i ∈ [0, s− 1].

(ii) Let RΣ := {i ∈ [0, s − 1] : Ci > Ci+1} ∪ {s} ⊆ [0, s]. Let u := |RΣ| − 1. Let
δ : [0, u]→ RΣ be the monotone bijection.

The reduction of the subnormal series Σ is given by

Σred : C = C0δ > C1δ > · · · > Cuδ > 1 = 1 .
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Lemma 51 Let Σ and Σ∗ be two equivalent subnormal series of a crossed module C.
Then their reductions Σred and Σ∗red are equivalent.

Proof. Write

Σ : C = A0 > A1 > · · · > As = 1

Σ∗ : C = B0 > B1 > · · · > Bs = 1 .

Let δ : [0, u] → RΣ be the bijective monotone map. Let ε : [0, v] → RΣ∗ be the bijective
monotone map. Write A′i := Aiδ for i ∈ [0, u]. Write B′j := Bjε for j ∈ [0, v].

The reductions are given by

Σred : C = A′0 > A′1 > · · · > A′u = 1

Σ∗red : C = B′0 > B′1 > · · · > B′v = 1 .

Since Σ and Σ∗ are equivalent we can find a bijection σ : [0, s− 1]→ [0, s− 1] such that
Ai
/
Ai+1

' Biσ
/
Biσ+1

holds for all i ∈ [0, s− 1].

For any index i ∈ [0, s− 1] we have

i ∈ RΣ ⇔ Ai+1 < Ai ⇔ Biσ+1 < Biσ ⇔ iσ ∈ RΣ∗ ,

i.e. we have (RΣ)σ = RΣ∗ . With ρ := δσε−, the situation can be depicted as follows.

[0, u] [0, v]

RΣ RΣ∗

ρ
∼

δ ∼

∼
σ

ε∼

Hence, for any i ∈ [0, u− 1] we have

A′i
/
A′i+1

= Aiδ
/
Aiδ+1

' Biδσ
/
Biδσ+1

= B′iδσε−
/
B′iδσε−+1

= B′iρ
/
B′iρ+1

.

Therefore, Σred and Σ∗red are equivalent.
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Lemma 52 Suppose given a composition series Σ of a crossed module C. Let Σ′ be a
refinement of Σ. Then Σ = Σ′red.

Proof. Write

Σ : C = C0 > C1 > C2 > . . . > Cs = 1 ,

Σ′ : C = D0 > D1 > D2 > . . . > Dt = 1 .

By definition of refinement, we have an injective monotone map γ : [0, s]→ [0, t] such that
Ci = Diγ for i ∈ [0, s]; cf. Definition 48.

Let Ci/Ci+1 be a composition factor of Σ, where i ∈ [0, s − 1]. We have Ci/Ci+1 =
Diγ/D(i+1)γ . Consider the map

γ̃ : [0, s] −−−→ [0, t]

i 7−−−→ iγ̃ := min {j ∈ [iγ, t− 1] : Diγ > Dj > Dj+1} .

Note that Diγ̃ = Diγ = Ci for i ∈ [0, s]. We claim Diγ̃+1
!

= D(i+1)γ̃ for i ∈ [0, s− 1].

We assume the contrary. Namely, there exists an index k ∈ [iγ̃ + 1, (i + 1)γ̃ − 1] with
Diγ̃ . Dk . D(i+1)γ̃ . It follows that

Ci
/
Ci+1

= Diγ̃
/
D(i+1)γ̃

. Dk
/
D(i+1)γ̃

> 1 ,

which is a contradiction to the simplicity of the composition factor Ci/Ci+1. This proves
Diγ̃+1 = D(i+1)γ̃ . So, for i ∈ [0, s− 1], we have

Diγ̃ > Diγ̃+1 = Diγ̃+2 = . . . = D(i+1)γ̃ .

Consider the reduction of Σ′:

Σ′red : C = D0δ > D1δ > D2δ > . . . > Duδ = 1 ,

where δ : [0, u]→ RΣ′ is the monotone bijective map; cf. Definition 50. We have

{Ci : i ∈ [0, s]} = {Diγ̃ : i ∈ [0, s]}
= {Dj : j ∈ [0, t− 1], Dj > Dj+1} ∪ {1}
= {Dj : j ∈ RΣ′} .

Hence Σ = Σ′red.
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Jordan-Hölder’s theorem generalizes to

Theorem 53 Two composition series of a crossed module C are equivalent.

Proof. Let Σ, Σ∗ be two composition series of C.

By Theorem 49, there exist refinements Σ′ of Σ and Σ∗′ of Σ∗ such that Σ′ and Σ∗′ are
equivalent. By Lemma 51, the reduced subnormal series Σ′red and Σ∗′red are still equivalent.
Then, Lemma 52 implies Σ = Σ′red and Σ∗ = Σ∗′red .

Therefore, Σ and Σ∗ are equivalent.

Definition 54 (Finite crossed module) A crossed module JM,GK is said to be finite if

the groups M and G are finite. The (total) order of a finite crossed module JM,GK is

given by
∣∣JM,GK

∣∣ := |M | · |G|.
Lemma 55 Each finite crossed module has a composition series.

Proof. Suppose given a finite crossed module C := JM,GK. We show the assertion by

induction on the order |C|.

Let |C| = 1. Then we have |M | = |G| = 1 and a composition series is given by

C = 1 .

Suppose the claim has been proven for all crossed modules C̃ with |C̃| < |C|.

The set N of proper normal crossed submodules of C is non-empty because of J1, 1K =

1 6 C. It is finite because P(M) × P(G) is finite. The set N is partially ordered via
inclusion. Therefore, N contains maximal elements.

Let C̃ be such a maximal element. We have
∣∣C̃∣∣ < ∣∣C∣∣. Therefore, by the induction

hypothesis, we are given a composition series of C̃:

C̃ = C1 > C2 > C3 > · · · > Cs = 1 .

Further, the factor C/C1 is simple because C1 is maximal in C. Therefore, C has a
composition series given by

C = C0 > C1︸︷︷︸
=C̃

> C2 > · · · > Cs = 1 .
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4 Actions of crossed modules

In the following, let JM,GK =
(
M,G, α, f

)
be a crossed module.

4.1 Preliminaries

4.1.1 Semidirect Product

We recall the notion of a semidirect product.

Definition 56 (Semidirect product) Let M and G be groups. Suppose given a group
morphism

α : G→ Aut (M), g 7→ gα ,

where, for m ∈M , g ∈ G, we write m(gα) = mg.

The cartesian product G×M = {(g,m) : g ∈ G,m ∈M}, together with the multiplication

(·) : (G×M)× (G×M) −−−→ G×M(
(g,m), (g̃, m̃)

)
7−−−→ (g,m) · (g̃, m̃) := (gg̃,mg̃ m̃)

is called semidirect product of M and G, which we denote by GnM .

Lemma 57 In the situation of Definition 56, the semidirect product GnM is a group.

Proof. For (g,m), (h, n), (l, k) ∈ GnM we have(
(g,m) · (h, n)

)
· (k, l) = (gh,mh n) · (k, l) = (ghk, (mh n)k l) = (ghk,mhk nk l)

= (g,m) · (hk, nk l) = (g,m) ·
(
(h, n) · (k, l)

)
,

and therefore, (·) is associative. We have the neutral element 1GnM = (1, 1). The inverse
element of (g,m) ∈ GnM is given by (g,m)− = (g−, (m−)g

−
), because of

(g,m) ·
(
g−, (m−)g

−)
=
(
gg−,mg−(m−)g

−)
=
(
gg−, (mm−)g

−)
= (1, 1) .
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4.1.2 The group morphisms s, i, t

Lemma 58 We have group morphisms

s : (GnM)→ G , (g,m) 7→ g ,
i : (GnM)← G , (g, 1) ←[ g ,
t : (GnM)→ G , (g,m) 7→ g ·mf .

We have is = idG and it = idG.

Proof. Let (g,m), (g̃, m̃) ∈ GnM . Let g, g̃ ∈ G.

We have (
(g,m) · (g̃, m̃)

)
s = (gg̃,mg̃ m̃)s = g · g̃ = (g,m)s · (g̃, m̃)s .

We have

(gg̃)i = (gg̃, 1) = (g, 1) · (g̃, 1) = gi · g̃i .

We have

(g,m) · (g̃, m̃)t =
(
(gg̃,mg̃ m̃)

)
t = gg̃ (mg̃m̃)f = gg̃ (mg̃)f (m̃)f

(CM1)
= gg̃ (mf)g̃ m̃f

= gg̃ g̃−(mf)g̃ m̃f = g(mf) g̃(m̃f)

= (g,m)t (g̃, m̃)t .

4.2 Crossed sets

4.2.1 JM,GK-crossed sets

Concerning G-sets, cf. Reminder 3.

Definition 59 (JM,GK-crossed set) Suppose given a crossed module JM,GK. Let the

maps s, i and t be given as in Lemma 58. Suppose given a (G nM)-set U , a G-set V ,
and maps

σ : U → V

ι : U ← V

τ : U → V
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such that the following axioms (CS1) and (CS2) hold.

(CS1) (i) ισ = idV

(ii) ιτ = idV

(CS2) (i)
(
u · (g,m)

)
σ = uσ · (g,m)s ∀u ∈ U , (g,m) ∈ GnM

(ii)
(
u · (g,m)

)
τ = uτ · (g,m)t ∀u ∈ U , (g,m) ∈ GnM

(iii) (v · g)ι = vι · gi ∀v ∈ V , g ∈ G.

We call JU, V Kset :=
(
U, V, (σ, ι, τ)

)
an JM,GK-crossed set.

Remark 60 Let U := GnM , V := G and (σ, ι, τ) := (s, i, t).

(1) If we choose the multiplication (·), cf. Definition 56, as the action of G n M on
GnM , respectively of G on G, we obtain an JM,GK-crossed set.

(2) We have conjugation actions

(∗) : (GnM)× (GnM) −−−→ GnM(
(g,m), (g̃, m̃)

)
7−−−→ (g,m) ∗ (g̃, m̃) := (g,m)(g̃,m̃)

= (g̃−, (m̃−)g̃
−

) · (g,m) · (g̃, m̃) ,

and

(∗) : G×G −−−→ G

(g, g̃) 7−−−→ g ∗ g̃ := gg̃ = g̃− · g · g̃ .

If we choose (∗) as the action of GnM on GnM , respectively of G on G, we obtain
an JM,GK-crossed set.

Proof. Ad (1). The required properties in (CS1) are given by Lemma 58. Since s, i and t
are group morphisms the properties given in (CS2) are satisfied.

Ad (2). Since the maps s, i and t are group morphisms they are compatible with conju-
gation. Therefore, the identities that are to be verified in (CS2) hold.
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Definition 61 (JM,GK-crossed subset) Suppose we are given JM,GK-crossed sets

JU, V Kset =
(
U, V, (σ, ι, τ)

)
and JX, Y Kset =

(
X, Y, (σ

¯
, ι

¯
, τ

¯
)
)
.

We say that JX, Y Kset is a JM,GK-crossed subset of JU, V Kset , written JX, Y Kset 6 JU, V Kset ,
if the following properties hold.

(i) X ⊆ U and Y ⊆ V are subsets.

(ii) We have σ
¯

= σ
∣∣Y
X

, τ
¯

= τ
∣∣Y
X

and ι
¯

= ι
∣∣X
Y

.

(iii) For (g,m) ∈ GnM , the multiplication map U → U, u 7→ u·(g,m) given by JU, V Kset

restricts to the multiplication map X → X, x 7→ x · (g,m) given by JX, Y Kset.

For g ∈ G, the multiplication map V → V, v 7→ v · g given by JU, V Kset restricts to

the multiplication map Y → Y, y 7→ y · g given by JX, Y Kset.

Remark 62 Let JU, V Kset =
(
U, V, (σ, ι, τ)

)
be an JM,GK-crossed set.

Suppose given subsets X ⊆ U , Y ⊆ V such that x · (G nM) ⊆ X and y · G ⊆ Y holds
for all x ∈ X, y ∈ Y . Suppose that we have Xσ,Xτ ⊆ Y and X ⊇ Y ι.

Thus, X is a (GnM)-subset of U and Y is a G-subset of V.

We can choose σ
¯

:= σ
∣∣Y
X

, ι
¯

:= ι
∣∣X
Y

and τ
¯

:= τ
∣∣Y
X

to obtain an JM,GK-crossed subset

JX, Y Kset =
(
X, Y, (σ

¯
, ι

¯
, τ

¯
)
)
.

Proof. Since (CS1) holds for JU, V Kset , it holds for
(
X, Y, (σ

¯
, ι

¯
, τ

¯
)
)
. Since (CS2) holds for

JU, V Kset , it holds for
(
X, Y, (σ

¯
, ι

¯
, τ

¯
)
)
.

Lemma 63 (JM,GK-crossed right factor set) Let JN,HK 6 JM,GK be a crossed submod-

ule. Let X := (H n N)\(G n M), regarded as a (G n M) − set, and let Y := H\G,
regarded as a G-set. Consider the maps s, i and t from Lemma 58. Let s̄, ī, t̄ be the coset
maps induced by s, i, t, i.e. we have

s̄ : X → Y , (H nN)(g,m) 7→ Hg ,

ī : X ← Y , (H nN)(g, 1) ←[ Hg ,
t̄ : X → Y , (H nN)(g,m) 7→ Hg(mf) .
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We have an JM,GK-crossed set given by JX, Y Kset = (X, Y, (s̄, ī, t̄)).

We denote JN,HK\\JM,GK := JX, Y Kset and we say that JN,HK\\JM,GK is the JM,GK-
crossed right factor set of JM,GK modulo JN,HK.

Proof. We show that the maps s̄ and t̄ are well-defined.

Suppose given (g,m), (g̃, m̃) ∈ (GnM) with

(H nN)(g,m) = (H nN)(g̃, m̃) .

Then there exists (n, h) ∈ (H nN) such that

(g̃, m̃) = (h, n) · (g,m) = (hg, ng m) .

We have

g̃ · g− = hg · g− = h ∈ H .

It follows that Hg̃ = Hg. Hence, s̄ is well-defined.

We have

g̃ · m̃f · (g ·mf)− = hg · (ng m)f · (mf)− · g−

= hg · (ng)f ·mf · (mf)− · g−
(CM1)

= hg · (nf)g · g−

= hg · g− (nf) g · g−

= h · nf︸︷︷︸
∈H

∈ H .

It follows that H(g̃ · m̃f) = H(g ·mf). Hence, t̄ is well-defined.

We show that ī is well-defined. Suppose given g, g̃ ∈ G with Hg = Hg̃. Then there exists
h ∈ H such that g̃ = h · g. We have

(g̃, 1) · (g, 1)− = (hg, 1) · (g−, 1) = (hg · g−, 1) = (h, 1) ∈ (H nN) .

It follows that (H nN)(g̃, 1) = (H nN)(g, 1). Hence, ī is well-defined.
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With the following actions, X is a (GnM)-set and Y is a G-set:(
(H nN)(g̃, m̃)

)
· (g,m) = (H nN)(g̃g, m̃g m) for g, g̃ ∈ G, m, m̃ ∈M,

(Hg̃) · g = Hg̃g for g, g̃ ∈ G .

We show that all properties required in Definition 59 hold.

Ad (CS1). For Hg ∈ Y we have

(Hg)̄is̄ = Hgīs̄ = Hg = (Hg)idY ,

and we have

(Hg)̄it̄ = (H nN)(g, 1)t̄ = Hg(1f) = Hg = (Hg)idY .

Ad (CS2). For (H nN)(g̃, m̃) ∈ X, (g,m) ∈ GnM we have(
(H nN)(g̃, m̃) · (g,m)

)
s̄ =

(
(H nN)(g̃g, m̃g m)

)
s̄

= Hg̃g = Hg̃ · g
=
(
(H nN)(g̃, m̃)

)
s̄ · (g,m)s ,

and we have (
(H nN)(g̃, m̃) · (g,m)

)
t̄ =

(
(H nN)(g̃g, m̃gm)

)
t̄

= Hg̃g(m̃g m)f

= Hg̃g (m̃f)g mf

= Hg̃ · m̃f · g ·mf
= (Hg̃ · m̃f) · (g ·mf)

=
(
(H nN)(g̃, m̃)

)
t̄ · (g,m)t .

For Hg̃ ∈ Y , g ∈ G, we have

(Hg̃ · g)̄i = (Hg̃g)̄i = (H nN)(g̃g, 1) = (H nN)(g̃, 1) · (g, 1) = (Hg̃)̄i · gi .
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4.2.2 JM,GK-crossed set morphisms

Definition 64 (JM,GK-crossed set morphism) Let JU, V Kset =
(
U, V, (σ, ι, τ)

)
and let

JX, Y Kset =
(
X, Y, (σ̃, ι̃, τ̃)

)
be JM,GK-crossed sets. Suppose given maps ζ : U → X,

η : V → Y such that in

U X

V Y

σ ι τ σ̃ ι̃ τ̃

ζ

η

the pair (ζ, η) is a morphism of diagrams from (σ, ι, τ) to (σ̃, ι̃, τ̃). That is, the following
equations hold true

(i) σ η = ζ σ̃

(ii) ι ζ = η ι̃

(iii) τ η = ζ τ̃ .

Further, suppose that the following properties are satisfied

(iv) For u ∈ U , (g,m) ∈ GnM , we have
(
u · (g,m)

)
ζ = uζ · (g,m) .

(v) For v ∈ V , g ∈ G, we have (v · g)η = (vη) · g .

Then the pair of maps (ζ, η) is called a morphism of JM,GK-crossed sets.

Remark 65 We do not claim that the diagram given in Definition 64 is commutative.
For example, for an u ∈ U it is not always true that (u)σι = u.
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Lemma 66 (Identity and composition of JM,GK-crossed set morphisms)

(1) Let JU, V Kset =
(
U, V, (σ, ι, τ)

)
be an JM,GK-crossed set. Then (idU , idV ) is the

identity JM,GK-crossed morphism of JU, V Kset.

(2) Let JUi, ViKset =
(
Ui, Vi, (σi, ιi, τi)

)
be JM,GK-crossed sets for i ∈ [1, 3].

For j ∈ [1, 2], suppose given JM,GK-crossed set morphisms

(ζj, ηj) : JUj, VjKset → JUj+1, Vj+1Kset .

We have a crossed set morphism

(ζ, η) := (ζ1, η1)(ζ2, η2) := (ζ1ζ2, η1η2) : JU1, V1Kset → JU3, V3Kset .

This composition is associative.

Proof. Ad (1). We have

σ idV = σ = idU σ

ι idU = ι = idV ι

τ idV = τ = idU τ .

Hence we get the following morphism of diagrams.

U U

V V

σ ι τ σ ι τ

idU

idV

Let u ∈ U , let (g,m) ∈ GnM . We have(
u · (g,m)

)
idU = u · (g,m) =

(
(u)idU

)
· (g,m) .

Let v ∈ V , let g ∈ G. We have

(v · g)idV = v · g =
(
(v)idV

)
· g .
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Ad (2). The situation is given as follows.

U1 U2 U3

V1 V2 V3

σ1 ι1 τ1 σ2 ι2 τ2 σ3 ι3 τ3

ζ1

η1

ζ2

η2

Therefore we have

σ1 · η = σ1 · η1η2 = ζ1σ2 · η2 = ζ1ζ2 · σ3 = ζ · σ3

ι1 · ζ = ι1 · ζ1ζ2 = η1ι2 · ζ2 = η1η2 · ι3 = η · ι3
τ1 · η = τ1 · η1η2 = ζ1τ2 · η2 = ζ1ζ2 · τ3 = ζ · τ3 .

Hence we get the following diagram of morphisms

U1 U3

V1 V3 .

σ1 ι1 τ1 σ3 ι3 τ3

ζ

η

Let u ∈ U1, let (g,m) ∈ GnM . We have(
u · (g,m)

)
ζ =

(
u · (g,m)

)
ζ1 ζ2 =

(
uζ1 · (g,m)

)
ζ2 = uζ1ζ2 · (g,m) = uζ · (g,m) .

Let v ∈ V1, let g ∈ G. We have

(v · g)η = (v · g)η1 η2 = (vη1 · g)η2 = vη1η2 · g = vη · g .
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Lemma 67 (JM,GK-crossed set isomorphism) Let JU, V Kset =
(
U, V, (σ, ι, τ)

)
and let

JŨ , Ṽ Kset =
(
Ũ , Ṽ , (σ̃, ι̃, τ̃)

)
be JM,GK-crossed sets. Suppose given a crossed set morphism

(ζ, η) : JU, V Kset → JŨ , Ṽ Kset, where ζ and η are both bijective.

Then we have an JM,GK-crossed set morphism given by (ζ−, η−) : JŨ , Ṽ Kset → JU, V Kset .

We say that (ζ, η) is an JM,GK-crossed set isomorphism, and we say that JU, V Kset and

JŨ , Ṽ Kset are isomorphic.

Proof. We have

ση = ζσ̃ ⇔ ζ−ση = σ̃ ⇔ ζ−σ = σ̃η−

ιζ = ηι̃ ⇔ η−ιζ = ι̃ ⇔ η−ι = ι̃ζ−

τη = ζτ̃ ⇔ ζ−τη = τ̃ ⇔ ζ−τ = τ̃ η− .

Hence we have the following morphism of diagrams

Ũ U

Ṽ V

σ̃ ι̃ τ̃ σ ι τ

ζ−

η−
.

Let ũ ∈ Ũ , let (g,m) ∈ GnM . Then there exists u ∈ U such that ũ = uζ or, equivalently,
u = ũζ−. We have(

ũ · (g,m)
)
ζ− =

(
uζ · (g,m)

)
ζ− =

(
u · (g,m)

)
ζ ζ− = u · (g,m) = ũζ− · (g,m) .

Let ṽ ∈ Ṽ , let g ∈ G. Then there exists v ∈ V such that ṽ = vη or, equivalently, v = ṽη−.
We have

(ṽ · g)η− = (vη · g)η− = (v · g)η η− = v · g = ṽη− · g .
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4.2.3 Orbit Lemma for JM,GK-crossed sets

Lemma 68 (Orbit) Let JU, V Kset =
(
U, V, (σ, ι, τ)

)
be an JM,GK-crossed set.

Suppose given v ∈ V . Let vG be the orbit of v under G, let (vι)(G nM) be the orbit of
vι under GnM ; cf. Reminder 3.

Then J(vι)(GnM), vGKset is an JM,GK-crossed subset of JU, V Kset.

We write v · JM,GK := J(vι)(GnM), vGKset and we say that v · JM,GK is the orbit of v

under JM,GK. Sometimes, we abbreviate vJM,GK := v · JM,GK.

Proof. We have vG ⊆ V and (vι)(GnM) ⊆ U .

Let (g,m) ∈ GnM . We have(
vι · (g,m)

)
τ = vιτ · (g,m)s = v · g(mf) ∈ vG .

This shows
(
(vι)(GnM)

)
τ ⊆ vG.

With a similiar calculation, we get
(
(vι)(GnM)

)
σ ⊆ vG.

Let g ∈ G. We have

(vg)ι = vι · gi = vι · (g, 1) ∈ (vι)(GnM) .

This shows (vG)ι ⊆ (vι)(GnM).

Let (vι) · (g̃, m̃) ∈ (vι)(GnM), let (g,m) ∈ GnM . We have(
(vι) · (g̃, m̃)

)
· (g,m) = (vι) · (g̃, m̃) · (g,m) = (vι) · (g̃g, m̃g m)︸ ︷︷ ︸

∈GnM

∈ (vι)(GnM) .

Let v · g̃ ∈ vG, let g ∈ G. We have

(v · g̃) · g = v · g̃g︸︷︷︸
∈G

∈ vG .

Hence the subsets (vι)(G nM) and vG are closed under the actions of G nM and G
respectively.

This shows vJM,GK = J(vι)(GnM), vGKset 6 JU, V Kset ; cf. Remark 62.
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Lemma 69 (Centralizer) Let JU, V Kset =
(
U, V, (σ, ι, τ)

)
be an JM,GK-crossed set. Let

v ∈ V . Let

CGnM(vι) = {(g,m) ∈ GnM : (vι) · (g,m) = vι}

be the centralizer of vι in GnM . Let

CG(v) = {g ∈ G : v · g = v}

be the centralizer of v in G.

(1) We are given restricted maps

s
¯

:= s
∣∣CG(v)

CGnM (vι)
: CGnM(vι)→ CG(v) , (g,m) 7→ g ,

i
¯

:= i
∣∣CGnM (vι)

CG(v)
: CGnM(vι)← CG(v) , (g, 1)← [ g ,

t
¯

:= t
∣∣CG(v)

CGnM (vι)
: CGnM(vι)→ CG(v) , (g,m) 7→ g ·mf .

(2) Let NC(v) := {m ∈ M : (1,m) ∈ CGnM(vι)} = {m ∈ M : (vι)(1,m) = vι}. Let
HC(v) := CG(v).

We have a crossed submodule CJM,GK(v) := JCC(v),CC(v)K 6 JM,GK. We call

CJM,GK(v) the centralizer of v in JM,GK.

(3) We have CGnM(vι) = HC(v) nNC(v).

Proof. Ad (1). For (g,m) ∈ CGnM(vι), we have

(vισ) · (g,m)s =
(
(vι) · (g,m)

)
σ = (vι)σ = v .

This shows (g,m)s ∈ CGnM(vι). With a similar calculation we get (g,m)t ∈ CGnM(vι).
Hence, the restricted maps s

¯
and t

¯
exist. For g ∈ CG(v), we have

(vι) · (gi) = (v · g)ι = vι = v .

This shows gi ∈ CG(v). Hence, the restricted map i
¯

exist.
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Ad (2). We have NC(v) 6M and HC(v) 6 G. For n ∈ NC(v), we have

nf = 1 · nf = (1, n)t = (1, n)t
¯

(1)
∈ CG(v) = HC(v) .

For n ∈ NC(v) and h ∈ HC(v), we have

(vι) · (1, nh) = (vι) · (h− · h, nh · 1) = (vι) · (h−, n) · (h, 1)

= (vι) · (h−, 1) · (1, n) · (h, 1) = (vι) · (h−i) · (1, n) · (hi)
= (vh−)ι · (1, n) · (hi) = (vι) · (1, n) · (hi)
= (vι) · (hi) = (vh)ι

= vι .

Hence (1, nh) ∈ CGnM(vι), and therefore nh ∈ NC(v).

This shows CJM,GK(v) = JNC(v), HC(v)K 6 JM,GK; cf. Remark 18.

Ad (3). Ad ⊆. Suppose given (g,m) ∈ CGnM(vι). We have to show g
!
∈ CG(v) and

(1,m)
!
∈ CGnM(vι). We have

v · g = (vι)σ · (g,m)s =
(
vι · (g,m)

)
σ = (vι)σ = v .

Hence g ∈ CG(v) = HC(v). Further, we obtain

vι = (v · g)ι = (vι) · gi = (vι) · (g, 1) ⇔ (vι) · (g, 1)− = vι ,

which implies (g, 1)− ∈ CGnM(vι). We have

(vι) · (1,m) = (vι) · (g−, 1) · (g,m) = (vι) · (g,m) = vι .

Therefore we have (1,m) ∈ CGnM(vι), and hence m ∈ NC(v).

Ad ⊇. Suppose given n ∈ NC(v) and h ∈ HC(v). We have

(vι) · (h, n) = (vι) · (h, 1) · (1, n) = (vι) · (hi) · (1, n) = (vh)ι · (1, n) = vι · (1, n) = vι .

Hence, we have (h, n) ∈ CGnM(vι).
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Proposition 70 (Orbit Lemma for JM,GK-crossed sets)

Suppose given an JM,GK-crossed set JU, V Kset =
(
U, V, (σ, ι, τ)

)
. Suppose given v ∈ V .

Recall that theorbit vJM,GK=J(vι)(GnM), vGKset is anJM,GK-crossed set; cf. Lemma 68.

Consider the centralizer CJM,GK(v) = JNC(v), HC(v)K, where we have

NC(v) = {m ∈M : (vι) · (1,m) = vι} and HC(v) = CG(v); cf. Lemma 69.(2).

Recall that CGnM(vi ) = HC(v) nNC(v) and that CG(v) = HC(v); cf. Lemma 69.(2,3).

Recall that we may form the JM,GK-crossed set

CJM,GK(vι)\\JM,GK = JCGnM(vι)\(GnM) , CG(v)\G Kset ;

cf. Lemma 63 and Lemma 69.(3). Then we have an isomorphism of JM,GK-crossed sets
given by

(ζ, η) : CJM,GK(vι)\\JM,GK −−−→ vJM,GK ,

where

ζ : CGnM(vι)\(GnM) −−−→ (vι)(GnM)(
CGnM(vι)

)
(g,m) 7−−−→ (vι)(g,m)

and

η : CG(v)\G −−−→ vG(
CG(v)

)
g 7−−−→ vg .

Proof. By the Orbit Lemma for groups, ζ and η are bijective. We have yet to show that
(ζ, η) is a morphism of JM,GK-crossed sets.

Recall that CGnM(vι) = HC(v) nNC(v); cf. Lemma 69.(3).

In the following, we write N := NC(v) and H := HC(v) = CG(v).
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For u :=
(
H nN

)
(g,m) ∈

(
H nN

)
(GnM) we have

(u)s̄ η =
(
(H nN)(g,m)

)
s̄η = (Hg)η = v · g = vισ · (g,m)s

=
(
(vι) · (g,m)

)
σ =

(
(vι) · (g,m)

)
σ
¯

=
(
(H nN)(g,m)

)
ζσ

¯

= (u)ζ σ
¯
,

and we have

(u)t̄ η =
(
(H nN)(g,m)

)
s̄η =

(
Hg(mf)

)
η = v · g(mf) = vιτ · (g,m)t

=
(
(vι) · (g,m)

)
τ =

(
(vι) · (g,m)

)
τ
¯

=
(
(H nN)(g,m)

)
ζτ

¯

= (u)ζ τ
¯
.

This shows s̄ η = ζ σ
¯

and t̄ η = ζ τ
¯
.

For Hg ∈ H\G we have

(Hg)̄i ζ =
(
(H nN)(g, 1)

)
ζ = (vι) · (g, 1) = vι · gi = (vg)ι = (vg)ι

¯

= (Hg)η ι
¯
.

This shows ī ζ = η ι
¯
.

Let u :=
(
H nN

)
(g̃, m̃) ∈ (H nN)\(GnM), let (g,m) ∈ GnM . We have(

u · (g,m)
)
ζ =

(((
H nN

)
(g̃, m̃)

)
· (g,m)

)
ζ

=
((
H nN

)(
(g̃, m̃) · (g,m)

))
ζ = (vι)

(
(g̃, m̃) · (g,m)

)
=
(

(vι)(g̃, m̃)
)
· (g,m) =

(
(H nN)(g̃, m̃)

)
ζ · (g,m)

= uζ · (g,m) .

Let Hg ∈ H\G, let g̃ ∈ G. We have(
(Hg̃) · g

)
η = (Hg̃g)η = vg̃g = (vg̃) · g = (Hg̃)η · g .

This shows that (ζ, η) is an JM,GK-crossed set morphism.
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4.3 Crossed categories

4.3.1 JM,GK-crossed categories

Concerning categories, cf. Reminder 4.

Definition 71 (JM,GK-crossed category) Let JM,GK be a crossed module.

Let C =
(

Mor(C) ,Ob(C) , (s , i , t ), ( N )
)

be a category together with the structure of an
JM,GK-crossed set on

JMor(C) ,Ob(C)Kset =
(

Mor(C) ,Ob(C) , (s , i , t )
)
.

We call C a JM,GK-crossed category if (CC1) and (CC2) hold.

(CC1) For X
a−→ Y

b−→ Z in C and g ∈ G, we have

(a N b) · (g, 1) =
(
a · (g, 1)

)
N

(
b · (g, 1)

)
.

(CC2) For X
a−→ Y

b−→ Z in C and m ∈M, we have

(a N b) · (1,m) = a N

(
b · (1,m)

)
.

Remark 72 So altogether, as data for an JM,GK-crossed category C, we need

• sets Mor(C), Ob(C) ,

• maps s , t : Mor(C)→ Ob(C), i : Ob(C)→ Mor(C) ,

• a map ( N ) : {(a, b) ∈ Mor(C)×Mor(C) : at = bs} → Mor(C) ,

• a map G→ SOb(C) ,

• a map GnM → SMor(C) .
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Remark 73 Let JM,GK be a crossed module.

(0) We shall define a category CJM,GK . Let

Ob
(
CJM,GK

)
:= G

Mor
(
CJM,GK

)
:= GnM .

Let source, identity and target map be given by

GnM
s
−−−→ G

(source)
(g,m) 7−−−→ g

GnM
i

←−−− G
(identity)

(g, 1) 7−−−→ g

GnM
t

−−−→ G
(target) .

(g,m) 7−−−→ g ·mf

Note that is = idG and it = idG; cf. Lemma 58.

Given (g,m), (g̃, m̃) ∈ Mor
(
CJM,GK

)
= G nM , we have (g,m)t = (g̃, m̃)s if and

only if g ·mf = g̃.

For (g,m), (g ·mf, m̃) ∈ Mor
(
CJM,GK

)
, composition is defined by

(g,m) N (g ·mf, m̃) := (g,mm̃) .

Suppose we are given

g
(g,m)

−−−→ g ·mf
(g·mf,m̃)

−−−→ g · (mm̃)f
(g·(mm̃)f,m̂)

−−−→ g · (mm̃m̂)f .

The composition is associative since(
(g,m) N (g ·mf, m̃)

)
N

(
g · (mm̃)f, m̂

)
= (g,mm̃) N

(
g · (mm̃)f, m̂

)
= (g,mm̃m̂)

= (g,m) N (g ·mf, m̃m̂)

= (g,m) N

(
(g ·mf, m̃) N

(
g · (mm̃)f, m̂

))
.
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For (g,m) ∈ Mor
(
CJM,GK

)
, we have

(g,m) N (g,m)ti = (g,m) N (g(mf), 1) = (g,m · 1) = (g,m)

(g,m)si N (g,m) = (g, 1) N (g,m) = (g, 1 ·m) = (g,m) .

This shows that CJM,GK is a category.

(1) We consider the structure of an JM,GK-crossed set on
(
G n M,G, (s, i, t)

)
given

in Remark 60.(1), i.e. by right multiplication of G nM on G nM and by right
multiplication of G on G.

We claim that the category CJM,GK , equipped with this structure of an JM,GK-
crossed set, is an JM,GK-crossed category.

Suppose given

g̃
(g̃,m̃)

−−−→ g̃(m̃f)
(g̃(m̃f),m̂)

−−−→ g̃(m̃m̂)f .

Ad (CC1). For (g, 1) ∈ Mor
(
CJM,GK

)
, we have

(
(g̃, m̃) N (g̃ · m̃f, m̂)

)
· (g, 1) = (g̃, m̃m̂) · (g, 1)

=
(
g̃g, (m̃m̂)g

)
=

(
g̃g, m̃g m̂g

)
= (g̃g, m̃g) N

(
g̃g · (m̃g)f, m̂g

)
=

(
(g̃, m̃) · (g, 1)

)
N

(
g̃g · (m̃g)f, m̂g

)
(CM1)

=
(
(g̃, m̃) · (g, 1)

)
N

(
g̃g · (m̃f)g, m̂g

)
=

(
(g̃, m̃) · (g, 1)

)
N

(
g̃gg− (m̃f) g, m̂g

)
=

(
(g̃, m̃) · (g, 1)

)
N

(
g̃ (m̃f) g, m̂g

)
=

(
(g̃, m̃) · (g, 1)

)
N

(
(g̃ · m̃f, m̂) · (g, 1)

)
.
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Ad (CC2). For (1,m) ∈ Mor
(
CJM,GK

)
, we have

(
(g̃, m̃) N (g̃ · m̃f, m̂)

)
· (1,m) = (g̃, m̃m̂) · (1,m)

= (g̃, m̃m̂m)

= (g̃, m̃) N

(
g̃ · m̃f, m̂m

)
= (g̃, m̃) N

(
(g̃ · m̃f, m̂) · (1,m)

)
.

This shows the claim.

(2) We consider the structure of an JM,GK-crossed set on (G n M,G) given in Re-

mark 60.(2), i.e. by conjugation of G nM on G nM and by conjugation of G on
G.

We claim that the category CJM,GK, equipped with the structure of an JM,GK-
crossed set, is an JM,GK-crossed category.

Recall that for (g̃, m̃) ∈ Mor
(
CJM,GK

)
and g ∈ G, we have

(g̃, m̃) ∗ (g, 1) = (g−, 1) · (g̃, m̃) · (g, 1) = (g− g̃ g, m̃g) = (g̃g, m̃g) .

Suppose given

g̃
(g̃,m̃)

−−−→ g̃(m̃f)
(g̃(m̃f),m̂)

−−−→ g̃(m̃m̂)f .

Ad (CC1). For (g, 1) ∈ Mor
(
CJM,GK

)
we have

(
(g̃, m̃) N (g̃ · m̃f, m̂)

)
∗ (g, 1) = (g̃, m̃m̂) ∗ (g, 1)

=
(
g̃g, (m̃m̂)g

)
=

(
g̃g, m̃g m̂g

)
= (g̃g, m̃g) N

(
g̃g · (m̃g)f, m̂g

)
(CM1)

= (g̃g, m̃g) N

(
g̃g · (m̃f)g, m̂g

)
=

(
(g̃, m̃) ∗ (g, 1)

)
N

(
(g̃ · m̃f, m̂) ∗ (g, 1)

)
.
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Ad (CC2). For (1,m) ∈ Mor
(
CJM,GK

)
, we have

(
(g̃, m̃) N (g̃ · m̃f, m̂)

)
∗ (1,m) = (g̃, m̃m̂) ∗ (1,m)

= (1,m−) · (g̃, m̃m̂) · (1,m)

=
(
g̃, (mg̃)− m̃m̂ m

)
=

(
g̃, (m−)g̃ m̃m̂ m

)
=

(
g̃, m̃ m̃−(m−)g̃ m̃m̂ m

)
=

(
g̃, m̃

(
(m−)g̃

)m̃
m̂ m

)
(CM2)

=
(
g̃, m̃

(
(m−)g̃

)m̃f
m̂ m

)
=

(
g̃, m̃(m−)g̃(m̃f) m̂ m

)
= (g̃, m̃) N

(
g̃ · m̃f, (m−)g̃(m̃f) m̂ m

)
= (g̃, m̃) N

(
(1,m−) · (g̃ · m̃f, m̂) · (1,m)

)
= (g̃, m̃) N

(
(g̃ · m̃f, m̂) ∗ (1,m)

)
.

This shows the claim.

Definition 74 (JM,GK-crossed subcategory) Let C, D be JM,GK-crossed categories; cf.

Definition 71. So we have categories C, D, and JM,GK-crossed sets

JMor(C) ,Ob(C)Kset =
(

Mor(C) ,Ob(C) , (s , i , t )
)

JMor(D) ,Ob(D)Kset =
(

Mor(D) ,Ob(D) , (s̄ , ī , t̄ )
)
.

We say that D is an JM,GK-crossed subcategory of C if the properties (i) and (ii) hold.

(i) We have JMor(D) ,Ob(D)Kset 6 JMor(C) ,Ob(C)Kset , i.e. JMor(D) ,Ob(D)Kset is an

JM,GK-crossed subset of JMor(C) ,Ob(C)Kset; cf. Definition 61.

(ii) The category D is a subcategory of C.

We write D 6 C to denote that D is an JM,GK-crossed subcategory of C.
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Remark 75 Let C be an JM,GK-crossed category, so that we have an JM,GK-crossed set

JMor(C) ,Ob(C)Kset =
(

Mor(C) ,Ob(C) , (s , i , t )
)
.

Suppose we are given an JM,GK-crossed subset JX, Y Kset 6 JMor(C) ,Ob(C)Kset such that
a N b ∈ X holds, for a, b ∈ X with at = bs .

Then we have an JM,GK-crossed subcategory D 6 C with

Mor(D) = X, Ob(D) = Y, (s̄ , ī , t̄ ) =
(
s
∣∣Y
X
, i
∣∣X
Y
, t
∣∣Y
X

)
,

and where the composition ( N ) in C restricts to the composition in D. In fact, (CC1) and
(CC2) for D are inherited from C.

Lemma 76 Let JN,HK 6 JM,GK be a crossed submodule. Then H nN 6 GnM .

Consider the JM,GK-crossed right factor set JN,HK\\JM,GK =
(
X, Y, (s̄, ī, t̄)

)
, with

X = (H nN)\(GnM), Y = H\G, given in Lemma 63.

We have an JM,GK-crossed category JN,HK
C
\\JM,GK with

Ob
(
JN,HK

C
\\JM,GK

)
= H\G

Mor
(
JN,HK

C
\\JM,GK

)
= (H nN)\(GnM) ,

maps

(H nN)\(GnM)
s̄
−−−→ H\G

(source)
(H nN)(g,m) 7−−−→ Hg

(H nN)\(GnM)
ī
←−−− H\G

(identity)
(H nN)(g, 1) 7−−−→ Hg

(H nN)\(GnM)
t̄
−−−→ H\G

(target) ,
(H nN)(g,m) 7−−−→ H(g ·mf)
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and a composition given by

(H nN)(g,m) N (H nN)(g̃, m̃) = (H nN)(g,m) N (H nN)(g ·mf, m̃)

:= (H nN)(g,mm̃) ,

for (H nN)(g,m), (H nN)(g̃, m̃) ∈ Mor(D) such that(
(H nN)(g,m)

)
t =

(
(H nN)(g̃, m̃)

)
s .

Proof. We abbreviate χ := JN,HK\\JM,GK.

Suppose given (H nN)(g,m), (H nN)(g̃, m̃) ∈ Mor
(
Cχ
)

with(
(H nN)(g,m)

)
t̄ =

(
(H nN)(g̃, m̃)

)
s̄.

Then we obtain H(g ·mf) = Hg̃ by definition of the maps t̄ and s̄.

Suppose we are given m ∈M , g ∈ G with H(g ·mf) = Hg̃. Then we have

(H nN)(g̃, m̃) = (H nN)(g ·mf, m̃), since

(g ·mf, m̃)(g̃, m̃)− = (g ·mf, m̃)(g̃−(m̃−)g̃
−

= (g ·mf · g̃−, m̃g̃.(m̃−)g̃
−

)

= (g ·mf · g̃−, 1) ∈ H nN .

So, for g, g̃ ∈ G, m, m̃ ∈M , we have(
(H nN)(g,m)

)
t̄ =

(
(H nN)(g̃, m̃)

)
s̄ if and only if H(g ·mf) = Hg̃.

The composition is well-defined:

Given (g,m), (g̃, m̃) and (g′,m′), (g̃′, m̃′) ∈ GnM such that the following compatibilities
hold.

H(g ·mf) = Hg̃ , (H nN)(g,m) = (H nN)(g′,m′)

H(g′ ·m′f) = Hg̃′ , (H nN)(g̃, m̃) = (H nN)(g̃′, m̃′)

Then there exist ĥ, ĥ′ ∈ H such that

g̃ = ĥ · g ·mf
g̃′ = ĥ′ · g′ ·m′f .
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There exist (h, n), (h̃, ñ) ∈ (H nN) such that

(g′,m′) = (h, n) · (g,m) = (h · g, ng ·m)

(g̃′, m̃′) = (h̃, ñ) · (g̃, m̃) = (h̃ · g̃, ñg̃ · m̃) .

Hence

g′ = h · g
g̃′ = h̃ · g̃
m′ = ng ·m
m̃′ = ñg̃ · m̃ .

We have to show that

(H nN)(g,mm̃)
!

= (H nN)(g′,m′m̃′) .

We have

(g′,m′m̃′) · (g,mm̃)− = (h g, ng m ñg̃ m̃) ·
(
g−, (m̃−)g

−
(m−)g

−)
=

(
h g g−, ngg

−
mg− ñg̃g

−
m̃g− (m̃−)g

−
(m−)g

−
)

=
(
h, n mg− ñg̃g

−
(m−)g

−)
=

(
h, n mg− ñ(ĥ·g·mf)g− (m−)g

−)
=

(
h, n mg− (ñĥ)(mf)g

−
(m−)g

−)
(CM1)

=
(
h, n mg− (ñĥ)(mg

−
)f (m−)g

−)
(CM2)

=
(
h, n mg− (ñĥ)(mg

−
) (m−)g

−)
=

(
h, n mg− (mg−)− ñĥ mg− (m−)g

−)
=

(
h, n ñĥ

)
∈ (H nN) .
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The composition is associative and has identity elements:

Suppose given

Hg
(HnN)(g,m)

−−−→ H(g ·mf)
(HnN)(g·mf,m̃)

−−−→

H
(
g · (mm̃)f

) (HnN)(g·(mm̃)f,m̂)

−−−→ H
(
g · (mm̃m̂)f

)
.

We have

(
(H nN)(g,m) N (H nN)(g ·mf, m̃)

)
N (H nN)(g · (mm̃)f, m̂)

= (H nN)
((

(g,m) N (g ·mf, m̃)
)

N (g · (mm̃)f, m̂)
)

73.(0)
= (H nN)

(
(g,m) N

(
(g ·mf, m̃) N (g · (mm̃)f, m̂)

))
= (H nN)(g,m) N

(
(H nN)(g ·mf, m̃) N (H nN)(g · (mm̃)f, m̂)

)
.

For (H nN)(g,m) ∈ Mor
(
Cχ
)
, we have

(
(H nN)(g,m)

)
N

(
(H nN)(g,m)

)
t̄ ī =

(
(H nN)(g,m)

)
N

(
(H nN)(g ·mf, 1)

)
= (H nN)(g,m · 1)

= (H nN)(g,m) ,

(
(H nN)(g,m)

)
s̄ ī N

(
(H nN)(g,m)

)
=

(
(H nN)(g, 1)

)
N

(
(H nN)(g,m)

)
= (H nN)(g, 1 ·m)

= (H nN)(g,m) .

This shows that Cχ is a category.

Suppose given

Hg̃
(HnN)(g̃,m̃)

−−−→ H(g̃ · m̃f)
(HnN)(g̃·m̃f,m̂)

−−−→ H
(
g̃ · (m̃m̂)f

)
.

79



Ad (CC1). For (g, 1) ∈ (GnM), we have(
(H nN)(g̃, m̃) N (H nN)(g̃ · m̃f, m̂)

)
· (g, 1)

=
(

(H nN)
(
(g̃, m̃) N (g̃ · m̃f, m̂)

))
· (g, 1)

= (H nN)
((

(g̃, m̃) N (g̃ · m̃f, m̂)
)
· (g, 1)

)
73.(1)
= (H nN)

((
(g̃, m̃) · (g, 1)

)
N

(
(g̃ · m̃f, m̂) · (g, 1)

))
= (H nN)

(
(g̃, m̃) · (g, 1)

)
N (H nN)

(
(g̃ · m̃f, m̂) · (g, 1)

)
=

(
(H nN)(g̃, m̃)

)
· (g, 1) N

(
(H nN)(g̃ · m̃f, m̂)

)
· (g, 1) .

Ad (CC2). For (1,m) ∈ (GnM), we have(
(H nN)(g̃, m̃) N (H nN)(g̃ · m̃f, m̂)

)
· (1,m)

=
(

(H nN)
(
(g̃, m̃) N (g̃ · m̃f, m̂)

))
· (1,m)

= (H nN)
((

(g̃, m̃) N (g̃ · m̃f, m̂)
)
· (1,m)

)
73.(2)
= (H nN)

(
(g̃, m̃) N

(
(g̃ · m̃f, m̂) · (1,m)

))
= (H nN)(g̃, m̃) N (H nN)

(
(g̃ · m̃f, m̂) · (1,m)

)
= (H nN)(g̃, m̃) N

(
(H nN)(g̃ · m̃f, m̂)

)
· (1,m) .

This shows that Cχ is an JM,GK-crossed category.

4.3.2 JM,GK-crossed category morphisms

Definition 77 (JM,GK-crossed category morphism) Let C and D be JM,GK-crossed
categories. Let

(ζ, η) :
(

Mor(C) ,Ob(C) , (s , i , t )
)
→
(

Mor(D) ,Ob(D) , (s̄ , ī , t̄ )
)

be an JM,GK-crossed set morphism; cf. Definition 64.
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For X
a→ Y

b→ Z in C, suppose that

(a N b)ζ = aζ N bζ

holds true.

Then (ζ, η) is called JM,GK-crossed category morphism.

Remark 78 An JM,GK-crossed category morphism (ζ, η) : C → D yields a functor from
C to D.

Lemma 79 (Identity and composition of JM,GK-crossed category morphisms)

(1) Let C be an JM,GK-crossed category. The mapping (idMor(C), idOb(C)) is an JM,GK-

crossed category morphism, called the identity of
(

Mor(C) ,Ob(C) , (s , i , t )
)
.

(2) Let Ci be JM,GK-crossed categories for i ∈ [1, 3]. We have JM,GK-crossed sets

JMor
(
Ci
)
,Ob

(
Ci
)
Kset =

(
Mor

(
Ci
)
,Ob

(
Ci
)
, (s i, i i, t i)

)
for i ∈ [1, 3]; cf. Definition 71.

For j ∈ [1, 2], suppose given JM,GK-crossed category morphisms

(ζj, ηj) : JMor
(
Cj
)
,Ob

(
Cj
)
Kset → JMor

(
Cj+1

)
,Mor

(
Cj+1

)
Kset .

We have an JM,GK-crossed category morphism

(ζ, η) := (ζ1ζ2, η1η2) : JMor
(
C1

)
,Ob

(
C1

)
Kset → JMor

(
C3

)
,Ob

(
C3

)
Kset .

Proof. Both (idMor(C), idOb(C)) and (ζ, η) are JM,GK-crossed set morphisms; cf. Lemma 66.
We have yet to show the property stated in Definition 77.

Ad (1). For X
a→ Y

b→ Z in C we have

(a N b)idMor(C) = (a N b) =
(
(a)idMor(C) N (b)idMor(C)

)
.

Ad (2). For X
a→ Y

b→ Z in C1 we have

(a N b)ζ = (a N b)ζ1ζ2 = (aζ1 N bζ1)ζ2 = (aζ1ζ2 N bζ1ζ2) = (aζ N bζ) .
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Lemma 80 (JM,GK-crossed category isomorphism) Let C and let D be JM,GK-crossed

categories. We write JMor(C) ,Ob(C)Kset =
(

Mor(C) ,Ob(C) , (s , i , t )
)

and we write

JMor(D) ,Ob(D)Kset =
(

Mor(D) ,Ob(D) , (s̄ , ī , t̄ )
)
.

Given a crossed category morphism (ζ, η) : JMor(C) ,Ob(C)Kset → JMor(D) ,Ob(D)Kset ,
where ζ and η are both bijective.

Then we have a crossed category morphism given by

(ζ−, η−) : JMor(D) ,Ob(D)Kset → JMor(C) ,Ob(C)Kset .

We say that (ζ, η) is an JM,GK-crossed category isomorphism, and we say that

JMor(C) ,Ob(C)Kset and JMor(D) ,Ob(D)Kset are isomorphic.

Proof. By Lemma 67, (ζ−, η−) : JMor(D) ,Ob(D)Kset → JMor(C) ,Ob(C)Kset is an JM,GK-
crossed set morphism.

Given X̃
e→ Ỹ

b→ Z̃ in D. We have to show (e N f)ζ−
!

= eζ− N fζ−.

Since ζ is bijective there exist a, b ∈ Mor(C) such that e = aζ and f = bζ. Equivalently,
we have a = eζ− and b = fζ−. Then

at = eζ−t = et̄η− = f s̄η− = fζ−s = bs .

We have

(e N f)ζ− = (aζ N bζ)ζ− = (a N b)ζ ζ− = (a N b) = eζ− N fζ− .

4.3.3 Orbit Lemma for JM,GK-crossed categories

Lemma 81 (Orbit) Let C be an JM,GK-crossed category; cf. Definition 71. In particular,

we have an JM,GK-crossed set

JMor(C) ,Ob(C)Kset =
(

Mor(C) ,Ob(C) , (s , i , t )
)
.

Suppose given v ∈ Ob(C).

Let vJM,GK = J(vi )(GnM), vGKset be the orbit of v under JM,GK; cf. Lemma 68.
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We have an JM,GK-crossed subcategory D 6 C with

Mor(D) = (vi )(GnM), Ob(D) = vG ,

and a composition given by

(vi )(g,m) N (vi )(g̃, m̃) = (vi )(g,mm̃) ,

for (vi )(g,m), (vi )(g̃, m̃) ∈ Mor(D) such that
(
(vi )(g,m)

)
t =

(
(vi )(g̃, m̃)

)
s .

By abuse of notation, we also denote by v · JM,GK = vJM,GK the JM,GK-crossed sub-

category D, called the orbit of v under JM,GK.

Proof. The orbit vJM,GK is an JM,GK-crossed subset of JMor(C) ,Ob(C)Kset; cf. Lem-

ma 68. We shall verify that D is an JM,GK-crossed subcategory using Remark 75.

Suppose given a := vi · (g,m), b := vi · (g̃, m̃) ∈ (vi )(GnM) with at = bs . We have

at =
(
vi · (g,m)

)
t = vi t · (g,m)t = v · (g ·mf) ,

bs =
(
vi · (g̃, m̃)

)
s = vi s · (g̃, m̃)s = v · g̃ .

It follows that v · (g ·mf) = v · g̃. We have

b = vi · (g̃, m̃) = vi · (g̃, 1) · (1, m̃) = vi · g̃i · (1, m̃) = (v · g̃)i · (1, m̃)

=
(
v · (g ·mf)

)
i · (1, m̃) =

(
vi t · (g,m)t

)
i · (1, m̃)

=
(
vi · (g,m)

)
t i · (1, m̃) .

Hence, we get

a N b =
(
vi · (g,m)

)
N

(
vi · (g̃, m̃)

)
=

(
vi · (g,m)

)
N

( (
vi · (g,m)

)
t︸ ︷︷ ︸

=:Y ∈Ob(D)

i · (1, m̃)
)

=
(
vi · (g,m)

)
N

(
Y i · (1, m̃)

)
=

(
vi · (g,m)

)
N

(
idY · (1, m̃)

)
(CC2)

=
(
vi · (g,m) N idY

)
· (1, m̃)

= vi · (g,m) · (1, m̃)

= vi · (g,mm̃) ∈ (vi )(GnM) .
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Proposition 82 (Orbit Lemma for JM,GK-crossed categories)

Suppose given an JM,GK-crossed category C. Suppose given v ∈ Ob(C).

Recall that the orbit vJM,GK = J(vι)(GnM), vGK is an JM,GK-crossed subcategory of C;
cf. Lemma 81.

Consider the centralizer CJM,GK(v) = JNC(v), HC(v)K, where we have

NC(v) = {m ∈M : (vi ) · (1,m) = (vi )} and HC(v) = {g ∈ G : v · g = v}, Lemma 69.

Recall that CGnM(vi ) = HC(v) nNC(v) and that CG(v) = HC(v); cf. Lemma 69.(2,3).

Recall that we may form the JM,GK-crossed category CJM,GK(v)
C
\\JM,GK; cf. Lemma 76.

Then we have an isomorphism of JM,GK-crossed categories given by

(ζ, η) : CJM,GK(v)
C
\\JM,GK −−−→ vJM,GK ,

where

ζ :
(

CGnM(vι)
)
\(GnM) −−−→ (vi )(GnM)(

CGnM(vι)
)
(g,m) 7−−−→ (vi ) · (g,m)

and

η : CG(v)\G −−−→ vG(
CG(v)

)
g 7−−−→ v · g .

Proof. In the following, we write N := NC(v) and H := HC(v) = CG(v).

Let a := (H n N)(g,m), b := (H n N)(g̃, m̃) ∈ (H n N)\(G nM) with at = bs , i.e.

H(g ·mf) = Hg̃. We have to show (a N b)ζ
!

= aζ N bζ.

Since (ζ, η) is a morphism of JM,GK-crossed sets by Proposition 70, aζ and bζ are com-
posable, for we have

(aζ)t = (at )η = (bs)η = (bζ)s .
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We have

(a N b)ζ =
(
(H nN)(g,m) N (H nN)(g̃, m̃)

)
ζ

76
=

(
(H nN)(g,mm̃)

)
ζ

= (vi )(g,mm̃)
81
= (vi )(g,m) N (vi )(g̃, m̃)

=
(
(H nN)(g,m)

)
ζ N

(
(H nN)(g̃, m̃)

)
ζ

= aζ N bζ .

4.4 Example

Example 83 We consider the crossed module
(
〈b〉, 〈a〉, α, f

)
from Example 30. We have

〈b〉 := 〈b : b4 = 1〉
〈a〉 := 〈a : a4 = 1〉
α : 〈a〉 → Aut (〈b〉) , a 7→ (b 7→ ba := b−)

f : 〈b〉 → 〈a〉 , b 7→ a2 .

We have group morphisms

s : (〈a〉n 〈b〉)→ 〈a〉 , (aj, bk) 7→ aj ,

i : (〈a〉n 〈b〉)← 〈a〉 , (aj, 1) ←[ aj ,
t : (〈a〉n 〈b〉)→ 〈a〉 , (aj, bk) 7→ aj · (bk)f = aj+2k, where j, k ∈ [0, 3].

Then we have a J〈a〉, 〈b〉K-crossed set given by J〈a〉n 〈b〉, 〈a〉Kset =
(
〈a〉n 〈b〉, 〈a〉, (s, i, t)

)
via conjugation of 〈a〉n〈b〉 on 〈a〉n〈b〉 and via conjugation of 〈a〉 on 〈a〉 (which is trivial);
cf. Remark 60.(2). This J〈a〉, 〈b〉K-crossed set then becomes a J〈a〉, 〈b〉K-crossed category

by Remark 73.(2).

(1) We want to determine the orbits v ∗ J〈b〉, 〈a〉K = J(vi) ∗ (〈a〉n 〈b〉), v ∗ 〈a〉Kset for all

v ∈ 〈a〉.
Let j ∈ [0, 3]. Let v := aj ∈ 〈a〉. Note that we have vi = (v, 1) = (aj, 1). Note that
we have v ∗ 〈a〉 = {v} since 〈a〉 is abelian.
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We have

(aj, bk) ∗ (a, 1) = (aj, bk)(a,1) = (a−, 1) · (aj, bk) · (a, 1) = (aj−1, bk) · (a, 1)

= (aj, b−k) ,

and

(aj, bk) ∗ (1, b) = (aj, bk)(1,b) = (1, b) · (aj, bk) · (1, b) = (aj, ba
j · bk) · (1, b)

= (aj, ba
j · bk+1) = (aj, b(−1)j+1 · bk+1)

= (aj, b(−1)j+1+k+1) .

For j = 1, we get

(a, 1) ∗ (a, 1) = (a, 1)

(a, 1) ∗ (1, b) = (a, b(−1)1+1+0+1) = (a, b2) ,

(a, b2) ∗ (a, 1) = (a, b−2) = (a, b2)

(a, b2) ∗ (1, b) = (a, b(−1)1+1+2+1) = (a, b4) = (a, 1) .

We obtain:

(a, 1)

(a, 1) (a, b2)

(a, b2)

(a, 1)

∗(a, 1)

∗(1, b)
∗(a, 1)

∗(1, b)

.

86



We proceed similarly for v ∈ {1, a2, a3} and obtain:

(1, 1)

(1, 1)

(1, 1)

∗(a, 1)

∗(1, b)

(a2, 1)

(a2, 1)

(a2, 1)

∗(a, 1)

∗(1, b)

.

(a3, 1)

(a3, 1) (a3, b2)

(a3, b2)

(a3, 1)

∗(a, 1)

∗(1, b)
∗(a, 1)

∗(1, b)

.

We obtain orbits

1 ∗ J〈b〉, 〈a〉K = J{(1, 1)}, {1}Kset

a ∗ J〈b〉, 〈a〉K = J{(a, 1), (a, b2)}, {a}Kset

a2 ∗ J〈b〉, 〈a〉K = J{(a2, 1)}, {a2}Kset

a3 ∗ J〈b〉, 〈a〉K = J{(a3, 1), (a3, b2)}, {a3}Kset .
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(2) Recall that the centralizer for a v ∈ 〈a〉 in J〈b〉, 〈a〉K is given by

CJ〈b〉,〈a〉K(v) = JNC(v), HC(v)K ,

with NC(v) := {m ∈ 〈b〉 : (vi) ∗ (1,m) = (vi)} and HC(v) := {g ∈ 〈a〉 : v ∗ g = v};
cf. Lemma 69.

We consider v = a. Then ai = (a, 1). We have

(a, 1) ∗ (1, 1) = (a, 1)

(a, 1) ∗ (1, b) = (a, b2)

(a, 1) ∗ (1, b2) = (a, 1)

(a, 1) ∗ (1, b3) = (a, b2) .

We get NC(a) = 〈b2〉.
Since 〈a〉 is abelian, we have HC(a) = 〈a〉.
We proceed similarly for v ∈ {1, a2, a3} and obtain centralizers

CJ〈b〉,〈a〉K(1) = J〈b〉, 〈a〉K

CJ〈b〉,〈a〉K(a) = J〈b2〉, 〈a〉K

CJ〈b〉,〈a〉K(a
2) = J〈b〉, 〈a〉K

CJ〈b〉,〈a〉K(a
3) = J〈b2〉, 〈a〉K .

(3) We want to apply the Orbit Lemma for crossed modules to our example; cf. Propo-
sition 70. We form the J〈b〉, 〈a〉K-crossed set

CJ〈b〉,〈a〉K(v)\\J〈b〉, 〈a〉K = J
(
CC(v) nNC(v)

)
\(〈a〉n 〈b〉), HC(v)\〈a〉Kset .

For v = a we obtain

CJ〈b〉,〈a〉K(a)\\J〈b〉, 〈a〉K = J(〈a〉n 〈b2〉)\(〈a〉n 〈b〉), 〈a〉\〈a〉Kset

= J{
(
〈a〉n 〈b2〉

)
(1, 1),

(
〈a〉n 〈b2〉

)
(1, b) }, { 〈a〉1 }Kset .
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The maps ζ and η yield

ζ : {
(
〈a〉n 〈b2〉

)
(1, 1),

(
〈a〉n 〈b2〉

)
(1, b) }

∼
−−−→ (a, 1) ∗ (〈a〉n 〈b〉)(

〈a〉n 〈b2〉
)
(1, 1) 7−−−→ (a, 1) ∗ (1, 1) = (a, 1)(

〈a〉n 〈b2〉
)
(1, b) 7−−−→ (a, 1) ∗ (1, b) = (a, b2) ,

η : { 〈a〉1 }
∼
−−−→ a ∗ 〈a〉

〈a〉1 7−−−→ a ∗ 1 = a .

So we obtain an isomorphism (ζ, η) from CJ〈b〉,〈a〉K(a)\\J〈b〉, 〈a〉K to a ∗ J〈b〉, 〈a〉K, the

latter as calculated in (1).

(4) By Lemma 76, CJ〈b〉,〈a〉K(a)
C
\\J〈b〉, 〈a〉K is an JM,GK-crossed category.

Let
(
〈a〉 n 〈b2〉

)
(1, b) ∈ Mor

(
CJ〈b〉,〈a〉K(a)

C
\\J〈b〉, 〈a〉K

)
= (〈a〉 n 〈b2〉)\(〈a〉 n 〈b〉)

= {
(
〈a〉n 〈b2〉

)
(1, 1),

(
〈a〉n 〈b2〉

)
(1, b) }.

We have ((
〈a〉n 〈b2〉

)
(1, b)

)
s̄ = 〈a〉(1, b)s = 〈a〉1((

〈a〉n 〈b2〉
)
(1, b)

)
t̄ = 〈a〉(1, b)t = 〈a〉a2 = 〈a〉1 ,

and thus,
(
〈a〉n 〈b2〉

)
(1, b) is composable with itself. We have(

〈a〉n 〈b2〉
)
(1, b) N

(
〈a〉n 〈b2〉

)
(1, b)

76
=
(
〈a〉n 〈b2〉

)
(1, b2) =

(
〈a〉n 〈b2〉

)
(1, 1) .

Write x :=
(
〈a〉 n 〈b2〉

)
(1, b). By Proposition 82, we must have (x N x)ζ = xζ N xζ.

In fact, we have

(x N x)ζ =
((
〈a〉n 〈b2〉

)
(1, 1)

)
ζ

(3)
= (a, 1) = (a, b2 · b2)

73.(0)
= (a, b2) N (a, b2)

(3)
= xζ N xζ .
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Zusammenfassung

Seien M und G Gruppen. Sei f : M → G ein Gruppenmorphismus. Sei α : G→ Aut (M)
eine Operation von G auf M so, dass für m,n ∈M und g ∈ G die Bedingungen

(CM1) (mg)f = (mf)g und (CM2) mn = mnf

erfüllt sind. Dann nennen wir das Quadrupel JM,GK :=
(
M,G, α, f

)
einen verschränkten

Modul.

Ein nichttrivialer verschränkter Modul X heißt einfach, falls er nur 1 und X als normale
verschränkte Untermoduln enthält. Ein einfacher verschränkter Modul ist stets von einer
der drei folgenden Formen.

• JG,GK, mit G
id−→ G, und G einfach und nichtabelsch.

• J1, KK, mit K einfach.

• JM, 1K, mit M zyklisch von Primordnung.

Ähnlich wie für Gruppen lassen sich Kompositionsreihen für verschränkte Moduln defi-
nieren. Das Jordan-Hölder-Theorem sagt aus, dass die Kompositionsreihe einer Gruppe
bis auf Reihenfolge und Isomorphie der Kompositionsfaktoren eindeutig bestimmt ist.
Dieses Theorem lässt sich auf verschränkte Moduln verallgemeinern, und wir erhalten
eine analoge Aussage: Die Kompositionsreihe eines verschränkten Moduls ist eindeutig
bis auf Reihenfolge und Isomorphie der Kompositionsfaktoren.

Wir definieren analog zum Begriff einer G-Menge einer Gruppe G den Begriff einer
JM,GK-verschränkten Menge eines verschränkten Moduls JM,GK. Eine solche besteht

aus einer (G n M)-Menge U , einer G-Menge V und gewissen Abbildungen. Für ein
v ∈ V definieren wir die Bahn vJM,GK von v unter JM,GK. Wir bilden den Zentralisator

CJM,GK(v) von v in JM,GK sowie dessen verschränkte Faktormenge CJM,GK(v)\\JM,GK und

erhalten einen Isomorphismus von JM,GK-verschränkten Mengen.

(ζ, η) : CJM,GK(v)\\JM,GK
∼
−−−→ vJM,GK

Anders als im Fall des klassischen Bahnenlemmas aus der Gruppentheorie wird auf diese
Weise im Allgemeinen die gesamte verschränkte JM,GK-Menge nicht durch disjunkte Bah-
nen überdeckt.
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Auf einer Kategorie C können wir die Struktur einer solchen JM,GK-verschränkten Menge

definieren, indem wir Mor(C) als (G n M)-Menge, und Ob(C) als G-Menge auffassen;
wir erhalten eine JM,GK-verschränkte Kategorie. Analog zu den JM,GK-verschränkten

Mengen haben wir für ein v ∈ Ob(C) einen Isomorphismus von JM,GK-verschränkten
Kategorien.

(ζ, η) : CJM,GK(v)
C
\\JM,GK

∼
−−−→ vJM,GK
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