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0.1. Introduction

A-algebras Let R be a commutative ring. Let A be a Z-graded R-module. Let
my : A — A be a graded map of degree 1 with m? = 0, i.e. a differential on A. Let
mo: A® A — A be a graded map of degree 0 satisfying the Leibniz rule, i.e.

mlomgzmgo(m1®l+1®m1).

The map ms is in general not required to be associative. Instead, we require that for a
morphism ms : A3 — A, the following identity holds.

Mmoo (my®@1 —1®@my) =myomg+mso(m @12 +1@m; @1+ 192 @ m,)

Following STASHEFF, cf. [21], this can be continued in a certain way with higher multi-
plication maps to obtain a tuple of graded maps (m,, : A®" — A),>; of certain degrees
satisfying the Stasheff identities, cf. (11). The tuple (A, (m,),>1) is then called an
A -algebra.

A morphism of A-algebras from (A’, (m/,)n>1) to (A, (my,)n>1) is a tuple of graded maps
(fa 1 A®™ — A),>1 of certain degrees satisfying the identities (12). The first two of these



Contents

are

(12)[1] - fromy=mjo fi
(12)[2] : fromy = fao (my @1+1@m) =myo fy+mao(fi® fr).

The specific form of the Stasheff identities and of (12) is motivated by the bar construction.
It relates the A-structures on a Z-graded R-module A bijectively to the coalgebra
differentials of degree 0 on the graded tensor coalgebra T'A. It relates morphisms of
Ao-algebras from (A, (m!])n,>1) to (A, (my,)n>1) bijectively to the morphisms of graded
differential coalgebras from T'A’ to T'A of degree 0.

A morphism f = (f,)n>1 of Ax-algebras from (A’, (m),),>1) to (A, (my)n>1) contains a
morphism of complexes f; : (A, m}) — (A, my). We say that f is a quasi-isomorphism of
A-algebras if f; is a quasi-isomorphism. Furthermore, there is a concept of homotopy
for A,-morphisms, cf. e.g. [12, 3.7] and [16, Définition 1.2.1.7].

History The history of A,-algebras is outlined in [12] and [13].
As already mentioned, STASHEFF introduced A-algebras in 1963.

If R is a field, we have the following basic results on A-algebras, which are known since
the early 1980s.

e Each quasi-isomorphism of A -algebras is a homotopy equivalence, cf. [20], [10], ...

e The minimality theorem: Each A -algebra (A, (m,),>1) is quasi-isomorphic to an
A-algebra (A',{m] },>1) with m} = 0, cf. [9], [8], [20], [5], [7], [18], ... . The
A-algebra A’ is then called a minimal model of A.

KELLER established a connection between A -algebras and representation theory in
the early 2000s, cf. [11], [12, 7.7] and also [16, §7]: Given an F-algebra B over a field F
and B-modules M, ..., M,, consider the full subcategory of B-modules given by the
B-modules which have a finite filtration such that all quotients are isomorphic to some
M;. Set M = @&} M, and choose a projective resolution PRes M of M. The homology of
the dg-algebra Hom};(PRes M, PRes M) is the Yoneda algebra Exty (M, M). Construct
an A -structure on Ext; (M, M) such that Ext}; (M, M) becomes a minimal model of the
dg-algebra Homp (PRes M, PRes M). Now Extp (M, M) together with its A -structure
is all that is necessary for reconstructing the subcategory mentioned above.

For the purpose of this introduction, we will call such an A -structure on Exty (M, M)
the canonical A..-structure on Extj (M, M), which is unique up to isomorphisms of
A-algebras, cf. [12, 3.3].

This structure has been calculated or partially calculated in several cases.
Let p be a prime.

For an arbitrary field F, MADSEN computed the canonical A-structure on Extg,) /(on) (F, F),
where F is the trivial F[a]/(a”)-module, cf. [17, Appendix B.2]. This can be used to
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compute the canonical A-structure on the group cohomology Extg ¢ (F,,F,), where
m € Z>y and C,, is the cyclic group of order m, cf. [22, Theorem 4.3.8].

VEJDEMO-JOHANSSON developed algorithms for the computation of minimal models, cf.
[22]. He applied these algorithms to compute large enough parts of the canonical A.-
structures of the group cohomologies Extyg (I, Fy) and Extp (I, o) to distinguish
them, where Dg and Dy¢ denote dihedral groups. He stated a conjecture on the complete
Ae-structure on Extpp (2, ;). Furthermore, he computed parts of the canonical A-
structure on Extg o (I, Fy) for the quaternion group Qg. He conjecturally stated the
minimal complexity of such a structure. Based on this work, there are now built-in
algorithms for the Magma computer algebra system. These are capable of computing
partial A-structures on the group cohomology of p-groups.

In 23] and [22] (note the comments at [22, p. 41]), VEJDEMO-JOHANSSON examined
the canonical A-structure (m,),>1 on the group cohomology Exty ¢, «c,) (Ep, Ey) of the
abelian group Cj x C; for k,l > 4 such that k, [ are multiples of p. He showed that the
multiplication maps ma, my, My, Miqi—2, Mak—2)11 and maog_oy 4k are non-zero, cf. 22,
Theorem 3.3.3].

In [14], KLAMT investigated canonical A-structures in the context of the representation
theory of Lie-algebras. In particular, given certain direct sums M of parabolic Verma
modules, she examined the canonical A.-structure (m},),>1 on Extg, (M, M). She proved
upper bounds for the maximal k € Z>; such that m) is non-vanishing and computed the
complete A -structure in certain cases.

The result For n € Z>,, we denote by S,, the symmetric group on n elements.

The group cohomology Extg ¢ (F,, F,) is well-known. For example, in [1, p. 74], it is
calculated using group cohomological methods.

In this document, we will construct the canonical A-structure on Exty o (I, ).

We obtain homogeneous elements ¢,y € Hom]}psp(PRes F,,PResF,) =: A of degree
L] =2(p—1) =:l and |x| =1 — 1 such that ¢/, y 0t =: x17 are cycles for all j € Zs( and
such that their set of homology classes {19 | j € Zso} U {xt7 | j € Zso} is an F,-basis of
Extg o, (B, E,) = H" A, cf. Proposition 35.

For all primes p, the obtained A.-structure (m}, : (H*A)®" — H*A),>, on H*A still has
a simple description. In fact, we have m!, = 0 for all n € Z>, \ {2, p}:

On the elements x* /1 @- - - @ in, n € Z>1, a; € {0,1} and j; € Zso fori € {1,...,n},
the maps m,, are given as follows, cf. Definition 38 and Remark 52.

If there is an i € {1,...,n} such that a; = 0, then

m’/n(Xa1Lj1®...®XanL]'n):O forn#Zand

m’2(Xa1 1T @ x2J2) = yatar it
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If all a; equal 1, then

m;L(XLJI ® “ o ® ijn)

=0 for n # p and
ml (W @ -+ @ xuIr) = (—1)Pep- T,

0.2. Outline

Section 1 The goal of section 1 is to obtain a projective resolution of the trivial
[F,Sp-Specht module F,. A well-known method for that is "Walking around the Brauer
tree", cf. [4]. Instead, we use locally integral methods to obtain a projective resolution in
an explicit and straightforward manner.

Over Q, the Specht modules are absolutely simple. Therefore we have a morphism
of Z)-algebras 1 : Zy,)S, — [[,4, Endz,, 52@) =: I' induced by the operation of the

elements of Z,S, on the Specht modules S* for partitions A of p, which becomes an
Wedderburn isomorphism when tensoring with Q. So I' is a product of matrix rings over
Zpy- There is a well-known description of imr =: A, of which we will give an explicit
version in section 1.1.

For p > 3, we use this description of A in section 1.2 to obtain projective A-modules
P, CAk € [1,p—1], and to construct the indecomposible projective resolution PRes Z )
of the trivial Z,)S,-Specht module Z,). The non-zero parts of PResZ,) are periodic
with period length [ = 2(p — 1). In section 1.3, we reduce PRes Z,) modulo p to obtain
a projective resolution PResF, of the trivial [F,S,-Specht module [F,.

Section 2 and appendix A The goal of section 2 is to compute a minimal model of the
dg-algebra Homy ¢ (PResF,, PResF,) =: A by equipping its homology Extg ¢ (F,, F,) =
H* A with a suitable A,-structure and finding a quasi-isomorphism of A -algebras from

H*A to A.

Towards that end, we recall the basic definitions concerning A -algebras and present a
formulation of the minimality theorem in section 2.1. Furthermore, in appendix A, we
present the bar construction in detail as well as a proof of the minimality theorem using
Kadeishvili’s algorithm.

While there does not seem to be a substantial difference between the cases p = 2 and
p > 3, we separate them to simplify notation and argumentation. Consider the case
p > 3. In section 2.2, we obtain a set of cycles {¢/ | j € Zso} U{xt? | j € Z>o} in A
such that their homology classes are a graded basis of H*A. In section 2.3, we obtain a
suitable A .-structure on H*A and a quasi-isomorphism of A .-algebras from H*A to A.
For the prime 2, both steps are combined in the short section 2.4.
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0.3. Notations and conventions

Notations and conventions

Stipulations

For the remainder of this document, p will be a prime with p > 3.

Write [ := 2(p — 1). This will give the period length of the constructed projective
resolution of [, over F,S,, cf. e.g. (6), Theorem 14 and Lemma 18.

Miscellaneous

Concerning "oo", we assume the set Z U {oco} to be ordered in such a way that
oo is greater than any integer, i.e. co > z for all z € Z, and that the integers are
ordered as usual.

For a € Z, b € Z U {oc}, we denote by [a,b] == {2z € Z | a < z < b} C Z the
integral interval. In particular, we have [a,00| ={2 € Z | 2 > a} C Z for a € Z.
For n € Z>y, k € Z, let the binomial coefficient (Z) be defined by the number of
subsets of the set {1,...,n} that have cardinality k. In particular, if & < 0 or
k > n, we have (Z) = 0. Then the formula (kﬁl) + (Z) = ("Zl) holds for all k£ € Z.

Rings are unital rings.

For a commutative ring R, an R-module M and a,b € M, ¢ € R, we write
b=.a <= a—becM.

Often we have M = R as module over itself.

For a prime ¢, we denote by Z, the localization of the integers Z at the prime
ideal (¢) := ¢Z, that is Zy) == {2 € Q | 3z € Z\ qZ: zz € Z} C Q, that is the
quotients of integers such that the denominator is coprime to q.

For a prime ¢, let IF, denote the finite field containing ¢ elements.

Let R be a commutative ring. An R-algebra (A, p) is a ring A together with a ring
morphism p : R — A such that p(R) is a subset of the center of A. By abuse of
notation, we often just write A for (4, p). A is an R-module via r - a := p(r) - a for
re R, ac€ A

For R-algebras (A, p) and (B, 7), a morphism of R-algebras g : (A, p) — (B,7) is a
ring morphism g : A — B such that gop =17.
Morphisms will be written on the left.

Modules are right-modules unless otherwise specified. For a ring A, we denote by
Mod-A the category of right A-modules.

We denote a tuple by enclosing it in parentheses. I.e. for a set M and a; € M,
i € [1,n], n > 0, we have the tuple (aj,as,...,a,) = a. In particular, () is the
empty tuple.



Contents

For a map g : M — N from M to another set N, we define

g(a) = (9(z): w € a) = (g(ar), g(az), .-, g(an))-

For another set M’, by abuse of notation, we denote by M’ \ a the set difference
between M’ and the set of elements of a. Similarly, we write a C M’ if each entry
of a is an element of M.

We will express ordered bases of finite-rank free modules as tuples of pairwise
distinct elements.

e For sets, we denote by U the disjoint union of sets. For tuples a = (ay,...,a,) and

b= (by,...,bn), we denote by LI the concatenation:

alb:= (al,ag,...,an,bl,bg,...,bm)

e |- |: For a homogeneous element x of a graded module or a graded map g between
graded modules, we denote by |z| resp. |g| their degrees (This is not unique for
x = 0 resp. ¢ = 0). For y a real number, |y| denotes its absolute value. For
a = (ay,...,a,) atuple, |a| := n is the number of its entries.

Symmetric Groups Let n € Z>;.
e We write A 4 n to indicate that X is a partition of n.
e By S,, we denote the symmetric group on n elements.

e Concerning the representations of the symmetric groups, we use the notation given
in [6] by JAMES. In particular for A 4 n, we denote the corresponding Specht
module by S*.

Complexes Let R be a commutative ring and B an R-algebra.

e For a complex of B-modules

d
RN A =Ny AN o A,
its k-th boundaries, cycles and homology groups are defined by B := imdj, 1,
7F .= ker dy and H* .= Z*/BF.
For a cycle x € Z*, we denote by T := x4+ B* € H its equivalence class in homology.

e For a complex of B-modules C' = (--+ — Cjy1 dk—+1> Ch, ~i’3> Cy_1 —) and z € Z,

the shifted complex C[z] =: C is defined by Cy := Crys, di = (—1)*dgs»-
o Let

C=( = Cr 20 B 0y =00
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d; d!
O =(=Chy —5C,5C_, =)
be two complexes of B-modules.

Given z € Z, let
Hom?%(C, C") HHomB iz, CY).

i€Z

For an additional complex C" = (--- = C}/,; — B — CY &%, Cy_y — ---) and maps
h = (h;)iez € Homj(C,C"), b/ = (h});cz € Hom, (", C’”) m,n € Z, we define the
composition by component-wise composition as

h' o h:= (ho hiyn)icz € Homp™(C,C").

We will assemble elements of Hom%(C, C”) as sums of their non-zero components,
which motivates the following notations regarding "extensions by zero" and sums.

For a map g : C, — Cj , we define |g]% € Homp /(C,C") by

N Y fori =1y
(Lgl%)i = {0 fori € Z\ {y}

Let k € Z. Let I be a (possibly infinite) set. Let g; = (g;;); € Hom’(C, C") for
i € I such that {i € I'| g;; # 0} is finite for all j € Z.
We define the sum 3, ; g; € Hom,(C, C") by

el iEI,giJ;éO

The graded R-module Hom3}(C, C") := @, ., Hom};(C, C’) becomes a complex via
the differential dpom,(c,cr), which is defined on elements g € Hom%(C,C"), k € Z
by

ditoms, (. (9) = d 0 g = (=1)*g o d € Hom}™ (C, C"),
where d = (diy1)icz. = Y iepldiv1]ty € Homp(C,C) and analogously d' :=
(dii1)iez = Piezldinaliva € Homj (C", C").
An element h € Hom%(C,C’) is called a complex morphism if it satisfies
dHom*B(C,C’)(h) = O, i.e. d/ cg=go d.
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1. The projective resolution of F, over F,S,

1.1. A description of Z,S,

In this paragraph, we review results found e.g. in [15, Chapter 4.2]. We use the notation
of [6].

Let n € Z>;.
A partition of the form \* := (n — k + 1,1%71) k € [1,n] is called a hook partition of n.
Suppose A - n, i.e. A is a partition of n.

Let S* be the corresponding integral Specht module, which is a right ZS,,-module, cf. [6,
4.3]. Then S* is finitely generated free over Z, cf. [6, 8.1, proof of 8.4, having a standard
Z-basis consisting of the standard A-polytabloids. We write n, for the rank of S*.

For a tuple b = (bo, b3, ..., bx), k € [1,n], of pairwise distinct elements of [1, n], let (b)
be the \¥-polytabloid generated by the A*-tabloid

*

<X

>aNa

Y

where * - - - % are the elements of [1,n] \ b. Any polytabloid of S M can be expressed this
way.

For such a tuple b and distinct elements yq,...,ys € [1,n]\ b, we denote by (b, y1,...,Ys)
the tuple (ba, b, ..., bk, y1,...,ys). Recall the notations for manipulation of tuples from
section 0.3.

The A\*-polytabloid (b) is standard iff 2 < by < b3 < -+ < by < n, cf. [6, 8.1]. This
entails the following lemma.

Lemma 1. For k € [1,n], the rank of S s given by nye = (Zj)

Lemma 2 (cf. e.g. [15, Proposition 4.2.3]). Let k € [1,n — 1]. We have the Z-linear box
shift morphisms for hooks

SN Tk Akt
() — Zcpmnp(b:9)).
Forz € S and p € S,, we have

fe(z - p) =0 fr() - p. (1)

Le. the composite (S)‘k ELN AN SAHl/nS’\kH), where 7 is residue class map, is
ZS,,-linear.

10



1.1. A description of Z)S,

Lemma 3 (cf. [19, Lemma 2|, [15, Proposition 4.2.4]). The following sequence of Z-linear
maps 1s exact.

0— SN g By o g

Proof. We show that im f, C ker fy1 for k € [1,n — 2], i.e. that fry1 0 fr = 0. Let
(b) € S be a polytabloid. We obtain

s€[2,n]\b

Jer1 fe((D)) = fra Z (b Z ((b,s,1))
75

B Z (<<(b s, t)) 4+ {(b,t )>>) of. 16, 43]

s,t€[2,n]\b,
s<t

Now we show the exactness of the sequence. For convenience, we set fo: 0 — S and
fn: SM — 0. We define T* for k € [1,n] to be the tuple of all tuples b = (by, ..., by)
such that 2 < by < b3 < ... < by < n — 1, where T* is ordered, say, lexicographically.
Then we set Bff := ({(b): b € T*), which consists of standard A\f-polytabloids. We set
B! := (), which is the empty tuple, and for k € [2,n],

=(fe_1(z): x € B’g_l)

= D (@o):veT | = [{bn)+ Y ((b9): beT
s€(2,n]\b s€[2,n—1]\b
So B* Cim fy_; and thus fi(B*) C {0} for k € [1,n].

By comparing B U BF with the standard basis, we observe that B¥ LU Bl is a Z-basis of
SN for k € [1,n).

For k € [1,n], we have

n—2
=15t = ()

nk = | B¥| :{ BE = (325) for k€ [2,n] }: (n—z)‘

0= (1" for k=1 k—2

For k € [1,n — 1], the morphism f; maps (Bf)z bijectively to (B5t!)z and (BF) to zero.
So ker f, = (B¥)z and im fy = (Bft1);. As B! = () = B, we have also im fo = (Bl)z
and ker f,, = (B")z. So the sequence in question is exact. O

We equip the Specht modules S A of hook type with the ordered Z-basis B* L Bf. We
equip all other Specht modules with the standard Z-basis with an arbitrarily chosen total

11



1. The projective resolution of F, over F,S,

order. From now on each of these bases will be referred to as the basis of the respective
Specht module. We define the Z-algebra

=]z .

An

Let A <4 n and let B = (by,...,b,,) be the basis of S*. For the multiplication with
matrices, we identify S* with Z*™ via B.

Then S* becomes a right I'“-module via x - p := x - p* for z € S* and p € I'?, where p*
is the A-th component of p. Le. p € I'” operates by multiplication with the matrix p* on
the right with respect to the basis B.

Similarly, €0,,,, S* becomes a right I'“-module. Each Z-endomorphism of ,_, S*
is represented by the operation of a unique element of I'2. As the operation of ZS,

defines such endomorphisms (cf. [6, Corollary 8.7]), we obtain a Z-algebra morphism
r% .78, — I'? such that y - r%(z) =y -z forall A\ 4 n, y € S, x € ZS,,.

As the Specht modules give all irreducible ordinary representations of S,,, the map 7% is
injective. Because of (1), the image of rZ is contained in

A= {p e T"| filzp) = fil@)pVrepn1 Y, g} ST

As the basis B* LI BF of S)‘k, k € [1,n], consists of two parts, we may split each p’\k for a
p € T'Z into four blocks corresponding to the parts B* and Bf:

Suppose given k € [1,n — 1]. We represent fj, by a matrix M, with respect to the bases
of 2 and SN e, fr(z) = - My, for x € SN, As fi(BF) = B! and fi(B¥) C {0},
the matrix My, has the following block form:

it bl
00 nk
M= 15 1o ‘
ny ny,

Here Ej; is the ¢ X ¢-identity matrix for ¢ € Z>.

So for # € S, p € I'Z we have

k+1 Ak+1
- 0 |0 pa | o 0 | 0
frlz)-p=a- My -p*" =u- ( E.r |0 ) . ( Pl =& AL | AR+

ny cb Pbb cc be

12



1.1. A description of Z)S,

Ak Ak Ak
pcc pbc O O pbc 0
fk<x.p):x.p>\k.Mf :x. .( ):Z‘.
* Pé{; Pbb E”'ﬁ 0 Pbb 0

/\kJrl )\k

This way we have fi(z-p) =, fu(z)-p for all z € S*" if and only if pbb =, Poe s Phe =n 0
and p). "' =, 0. So

={peT%| (o), =0 pi " for k€ [1,n—1]) and (g, =, 0 for k € [L,n])}.  (3)
We have (cf. e.g. [15, Corollary 4.2.6])
T%/A%) = d Trenn (i)
which is proven by counting the congruences in (3):

|FZ/AZ| = nZZ;} (nk)24 30, nkonk

n_q .
[~ nzke[l,n](("ﬁ)Q"‘”ﬁ'”’g) — nzke[l,n] nf (nf+ng)

2. mé+nt) = > (2 (G2) + (G2)

ke(ln] ke[l n|
n—2\2 1 n— n— n—2\2
= X (EHED D) 5 X (6D + D)
kE[ln ke[l,n]
1 n— n— n— n—
9 Z k— 1 + (kj)) + (kfg) ((kj) + (kj))
ke([l,n]
1 n—2y (n— 1 n—1\2
5 Z (k—§> (k—}) 9 Z (k—i)
el kell,n]

Recall that p > 3 is a prime. Let n = p. We have the commutative diagram of Z-modules

7.8, Iz TZ2/(.% 0 12(ZS,))
E | E (4)
AZC [ 14 FZ/AZ

The map % is the inclusion of A% in T'”. The maps from I'” to I'2/(1% o r%(ZS,)) and
to I'Z/A” are the residue class maps. As r%(ZS,) C A%, we have an unique surjective
map s : T%/(1% o r%(ZS,)) — I'?/A% such that the right rectangle is commutative. By
construction, the rows of the diagram are short exact sequences. Note that the morphisms
of the left rectangle are in fact Z-algebra morphisms.

We will need the following result on the localization of rings.

13



1. The projective resolution of F, over F,S,

Lemma 4 (cf. |2, chap. II Localisation, §2, n°® 3, Théoréme 1|). Let A be a commutative

ring. Let P C R a prime ideal of A. Let Ap be the localization of A at P. Then Ap is a

flat A-module, that is, the functor — @ ,(Ap)a, from the category of A-modules to the
A

category of Ap-modules is exact.

We denote by Z, the localization of Z at the prime ideal (p) := pZ. We apply the
functor — ® Zy) to obtain a commutative diagram (4) of the following form:
zZ

Z(p)sp( - I F/(L © T(Z(p)sp»
& ! i (5)
AC L r r'/A

By Lemma 4, the functor — ® Z,) is exact, so the short exact sequences are mapped
Z

to short exact sequences, monomorphisms to monomorphisms and epimorphisms to

epimorphisms. So the rows of diagram (5) are exact and we have mono-/epimorphism as

indicated by the arrows. We identify Z S, ®Z,y with Z,S,. We identify I'Z® Zpy with
Z Z

r.= H R
A-n

The map ¢ realizes A := A* ® Z, as the following subset of I, for which we will use
Z

notation analogous to (2):
A={peTl|(py, =pps forke[l,p—1])and (py. =, 0 for k € [1,p])}

As the rows are exact, we identify (I'”/(1* o r%(ZS,))) ® Z,) with T'/(v o r(Z,)S,) and
z
(FZ/AZ) ® Zp) with I'/A.
z

By the classification of finitely generated Z-modules, each finite Z-module M is isomorphic
to a finite direct sum of modules of the form Z/q°Z, where ¢ is a prime and a € Z>o.
If ¢ # p then (Z/q°Z) %) Zpy = (0). Otherwise (Z/p*Z) %) Lpy = Ly /DLy and

(2/5°2) © 2| = v = [2/p°]. For & = Tayone 4° € Loy, we set

(2)p = p™.
So for finite M, we have |M @ Zg,)| = (|M]),.
z

By the total index formula (cf. e.g. [15, Proposition 1.1.4]), we have

0%/ (% 0 r®(Z8,))| =

14



1.1. A description of Z)S,

By the hook formula (cf. [6, 20.1], [15, Lemma 4.2.7]), we have for A 4 p

1 if X\ is a hook-partition
(na)p = . .
p  otherwise

So

pP

n3
Ap (n,\)p
P A not a hook

2
n3 2
2 -1
= Hpr - = H 'k = p% e (321)
Ve
A A
H A not aphook p kE[l,n]

= T%/A%| = (|T%/A%)), = [T/A.

By the pigeon-hole-principle, s is an isomorphism as it is surjective. As (5) has exact
rows, 7 needs to be an isomorphism as well. Note that the functor — ® Z,) transforms
Z

/(@07 (Z)Sp))]

morphisms of Z-algebras into morphisms of Z,)-algebras. In particular, the left rectangle
in (5) consists of morphisms of Z,-algebras and r : Z)S, — A is an isomorphism of
Zp)-algebras. We have proven the

Proposition 5 (cf. e.g. [15, Corollary 4.2.8]). Recall that p > 3 is a prime. Recall
A CT'. We have the isomorphism of Zy)-algebras

T Z(p)Sp — A
We recall the occurring notations:
L nyxXn
r=]1zem
Ap

A:={peTl| péz =, pg\CkH fork e[l,p—1] and pﬁ’; =, 0 for k € [1,pl|}.

We have ny = dim S*, nf = (?22), nF = (!22) and nf +n* = (?_}) = nye. Forp €T,

k—1 k—1

we write (cf. (2))

Example 6. For p = 3, the ring Zs) S3 is isomorphic to the subring A of I = ZLxt

3)
Z%;f X Z%?’X)l described as

15



1. The projective resolution of F, over F,S,

An entry in this tuple of matrices indicates that an element of A must have its cor-

n

responding entry in the indicated set. A relation " between (equal sized)
subblocks indicates that these subblocks are equivalent modulo p, i.e. the difference of
corresponding entries is an element of pZ,). The blocks are labeled with the diagrams of
the corresponding partitions. Alternatively, A is the Zs)-span of

0 0 10 - 0 3

(37 (0 0) 70) = 55:,1717 <].7 (0 O) 70> = 6?171 = €1, (0, (0 O) ,0) = B;l,l’
0 0 0 0 - 0 0

(07 (1 0) 70) = 6;71717 <07 (0 1) 7]_> = 63:},171 = €9, (0, (0 3> ,0) = /857:1’1_

The names of these elements were chosen in anticipation of the definitions in section 1.2.
We have an orthogonal decomposition 1 = é; + €3 into primitive idempotents. Thus we
have a decomposition A = P; @ P, into indecomposable projective right modules, where

Pri=eih = (071,60 0501020, Py =N = (051,82, 0511)z-

In this case all partitions of 3 are of hook-type. Thus there appear no full matrix algebras
as direct factors of A.

Example 7. Z) S5 is isomorphic to the subring A of I' = Z%E)X)l X Z?;)‘l X Z?5X)6 X Z?sx)‘l X

Zé;)l X Z?5X)5 X Z?E)Xf described as

L5y Lsy Ls)| L5y sy SZis)
Lis)|525) OLs) DLy (L) Ls)y Lz)|DLs) Sy SLs)  |Ls) L) Ls)|5Zs)
Ly Ly Zesy Zs)| ] sy Lsy Lis)| 52s) SLsy 5Lsy [ Ls) Lis) Ls)| L)

Zo) . L)
Lesy | L) Ly L) Ls) L) Lesy L) Ly Les)| | Ls) Lis) L) DLy s ==
XXX XX Lsy \lsy Lsy L) Lsy Lsy Lsy Ly Lsy Ly Ly Lsy Lsy | Logs) 2
N 4 N -~ - X
L) L) Loy (L) Les) L) N "
X N J/ X
XXX i

Ls) Ls) Lsy Lis) Ls)y  Lsy L) Ls) Lisy Logs)
Ls) Ls) Ls) Lis) Ls)y  Lisy L) Ls) Lis)y Logs)
Lis) Ls) Ls) Lis) Ls)y  Lisy Lis) Ls) Lis) Logs)
Lis) Ls) Ls) Ls) Ls)  Lis) Ls) Ls) Lis)y Logs)
Ls) Ls) Ls) Ls) Ls)  Lis) Ls) Ls) Lis) Logs)

N N S/

XX XXX
XX XX
X

For this tuple of matrices, we use the same conventions as in Example 6.

16



1.2. A projective resolution of Zy,) over Z)S,

1.2. A projective resolution of Z, over Z,S,

Recall that p > 3 is a prime.

Recall from Proposition 5 that A is a subring of I' = [, 4 Z"AX"A We shall construct
two Zy)-bases of A.

For A 4 p and 7,5 € [1,n,], we set 7, ; to be the element of I" such that (m”) =0 for
A # Xand (ny:,)" € Z™*™ has entry 1 at position (i,7) and zeros elsewhere. Then let

(1) % =B, | kelip—1],2,y € [1,nF]}, where Bilen = TNk k4o mbty T T+ -
( ) [ P ] Yy € [1vnll§]} where /Bk:py = PNk nktamnk+y-

(3) B~ = {Bin, | k€ lp—1],z,y € [I,nf]}, where 77, = piwss 5.

(4) B = {Bi,, | kellpl,x € l,ng],y € [1,nk]}, where Bi, = Mk nh oy

(5) B~ = {Bihy | k€ [Lpl,x e [l,nf],y € [1,nf]}, where B, , := Dlixk g b4y

(6) #B* :=={nrxy | A 1 p not a hook partition, z,y € [1,n,]}.

We have two Z)-bases 7 U B~ UAB"UH~ LA and B~ UHB~ UBT UHB” UHB"
of A.

Example 8 (p = 3, continuation of Example 6). The only of the ﬁfl{b’c that are defined
above and that are not shown in Example 6 are the following elements.

G GG

P is empty since all partitions are hook partitions.

Let k € [1,p — 1]. We obtain the idempotent
€k 1= 51?1,1 = Mk nk+1mk+1 T Tkt111 € A.
We define corresponding projective right A-modules
P, :=é,A for k € [1,p —1].

Once more, see Example 6 for an illustration of the case p = 3.

Let

(1) 27 = (B, v € (L. ,nb) = (s pimbry + Mriyt Y € (L, )
(2) B = (@fly y € (1, ”l’;)) = (p77>\k,n5+1,n’g+y3 ye(l,... 771{;))

(3) B = By y € (L. ong)) = (Paesr v € (L. mp))

(4) B = (B, v € (L nd)) = Mgyt y € (1,...,nd))

(5) B = (Bla 1y" Y€ (L kH)) (pn)\k+1717n§+1+y: ye(,... anﬁﬂ))

17



1. The projective resolution of F, over F,S,

Remark 9. Similarly to the bases of A, the tuples % U By U %y U B, and
B U BT U By U, are Ly-bases of P,.

Remark 10. Let k € [1,p — 1]. The idempotent é; is actually a primitive idempotent
and thus P, is an indecomposable projective A-right module: Assume é;, = ¢ + ¢ for
some idempotents 0 # ¢, € A that are orthogonal, that is ¢- ¢ = ¢ - ¢ = 0. Then
ér-c=(c+td)c=c*=c=c(c+)=c-é. Similarly, we have é, - ¢ = ¢ = ¢ - é,. Thus
¢, € ég\éy. The Z,-algebra

ék’Aék‘ = <€k75]:7:171>2<p) = <ek‘7/31:7>171>2(p)

is isomorphic to the Z,-algebra

J = Ly )

consisting of elements {(a,b) € Z,) X Z¢,) | a =, b}. The only idempotents in Zgy x Zy,)
are (0,0) € J, (1,1) € J, (1,0) ¢ J and (O 1) ¢ J. Thus the identity element (1,1) of J
cannot be decomposed into non-trivial idempotents and the same holds for €.

Remark 11. Let A be an R-algebra and let e,e’ € A be two idempotents. For the right
modules €A, /A, we have the isomorphism of R-Modules

T,

Homa(eA,e’A) — ¢'Ae

-
f — Te’,e(f) = f(@)
T, (e'be) := (ea > e'bea) «+— €'be

Thus given m € €’ Ae, the morphism T67’1e(m) acts on elements = € eA by the multiplication
of m on the left: (T;i(m))(m) =m-z.

Given idempotents e, €/, ¢” € A, and elements f € Homy(eA,e'A), g € A(€'A,e"A), we
have Tore(g o f) = g(f(e)) = g(e'f(e)) = g(€') - f(e) = Tere(g) - Tere(f)-

Definition 12. For well-definedness of the definitions below, we check n! =0, n{ = 1,
np~ Il =1 nﬁ_Hl =0, and for k € [1,p — 2], we check nf*! nf™ > 1.

We have 877, = pmaig € @1Aéy, 87111 = Pl € €106, 1. For k € [1,p — 2],
we have 87,1, = Mkt gl g1 € €rr1\é and B0 = Plyks1 g phttyg € exAég 1. For
k€ [1,p — 1], we have é, € é,Aé. Then we define via Remark 11

éx = T (ér) € HomA(f’ Py) for k € [1,p — 1]
€11 = Té_l,lél VZ/INRRY € Homy (P, P))

Ep-1p-1 = Te;11 ép NOZVERY S HomA(}?p L jjp 1)

i1k = Te_kL o (Mywst i1y 1) € HomA(l?k, ’“Tl) for k € [1,p — 2]
€k o+ = Te_klekﬂ(pn)\k+1 1 nk+1+1) € Homp (Pyy1, Pr) for k € [1,p —2].

Note that ¢, is the identity map on P, for k € [1,p—1].

18



1.2. A projective resolution of Zy,) over Z)S,

Lemma 13. We have

(a) kerépiix = (% U %,fﬂz(p), imépy1 e = (HBry U %’ﬁﬁz(m forke[l,p—2],
(b)  keréppir = (B U Bz, Mérr = (B, UB )z, forkel[lp-2]
(c) keréy 1, 1=(By s UB 1)z, Mép1p1=(B, 1 UB, 1)z,

(d) keréy = (BT USB )z, iméyy = (B USB )z,

. R.11
Proof. (a): e k(BY) = by ¥ € (L., nf))
= (77)\%—1 k+1+1,y: Yy € (]-a R k+1)) ;;’1
. R.11
Errti(B) = (s it Pt ity Y € (1,0 ng ™)
R:H (p77>\k+1 pEHLL kT Yy < (1 nlbf-l-l)) _ Ii—l
ern(B) < {0}
R.11
e n(Z) S {0}
Thus by Remark 9, assertion (a) holds.
R R.11
(b): Erpit(BE) 5 (P g b a1 i1 9 € (Lo, nft)
» 4, sMe k+21J
= Pk g gy, Y € (1 “b ) = By
. R.11
i1 (Biin) = (Dlesr gttt a0 Y € (L )
= (oo y € (L. ny)) = By
R.11
Crer1(Bia) Q {0}
erir1(Bii1) i< {0}
Thus by Remark 9, assertion (b) holds.
R R.11 _
(c): ep_Lp_l(,@ﬁl) = (P aame-n+,: Y € (1, 47”@ 1))
= (oo, y €0, my ) = 27,
B, = ()asnp =0
R.11
ép-1p-1(%51) S {0}
R | Rl
ep—l,p—l(%p_l) g {0}
Thus by Remark 9, assertion (c) holds.
R R.11
(d): e11(B7) = (Maamnisinisy: ¥ € (1 ,np))
nl=0
= (pn)\l,n%-l—l,n%-l-y: Y€ (17 s ’n%))) = f:
B = (Jasnl=0
R.11
aa(#y) < {0}
R R.11
ea(#) < {0}
Thus by Remark 9, assertion (d) holds O
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1. The projective resolution of F, over F,S,

The trivial Z,)S,-module Z,) becomes a A-module via the isomorphism of Z,)-algebras
r: ZpySp — A described in Proposition 5. We want to construct a projective resolution
of Z, over A.

I'is a right A-module as A is a subalgebra of I'. Theset T := {p € T'| p* = 0 for X\ # \'}
is a right A-submodule of I'. As nf = 0 and nf = 1, T is free over Zpy with basis

{mraa}-
Given a partition A - p, the operation of an element x € Z,S, on the Specht module

corresponding to A is multiplication with the matrix r(z)* with respect to a certain basis
of that Specht module, cf. the definition of rZ in the proof of Proposition 5.

As Z,) is the Specht module corresponding to the trivial partition A! of p, and as Z,)
is one-dimensional, the operation of x € Z,)S, on Z, is multiplication with the scalar
7“(:1:)’\1. Thus an element p € A operates on Z, via multiplication with the scalar p’\1
and we haven an isomorphism of right A-modules by

R 1
61 : F)‘ — Z(p)
?7)\17171 — 1.

We have the morphism of right A-modules

N ~ 1
80 : P1 — F)\
eix — N6 r =g forx € A

We have €°(&1) = %(nai11 + ma211) = Maaa, thus €0 is surjective as {11} is a Z,)-
basis of "', Given z € P;, we have é;1(x) = pé°(z) as elements of I'. Thus the maps
€11 and €% have the same kernel. Concatenation with the isomorphism &' yields the
surjective morphism of right A-modules

for which we have ker é = kereé, ;.

With these properties of ¢ and Lemma 13, we are able to directly formulate a projective
resolution of Z,):

We set

. Py i>
PI'Z'I: w(z) 2_0,
0 1 <0

where the integer w(7) is given by the following construction: Recall the stipulation
[:=2(p—1). We have i = jl + r for some j € Z and 0 <r <[ — 1. Then

1 fi <r<p-2
w(i)__{r—l— or0<r<p (6)

B l—r=2p—1)—r forp—1<r<2(p—1)—-1=1-1
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1.2. A projective resolution of Zy,) over Z)S,

So w(i) increases by steps of one from 1 to p — 1 as ¢ runs from jl to jl + (p — 2) and
w(i) decreases from p — 1 to 1 as i runs from 5l + (p — 1) to jl + (I — 1). Finally we set

d; == Culi-1)w(i)  Pup = Pogmy 121 '
0 i<0

Now Lemma 13 gives the projective resolution of Z,

day Py Py By Py g (7)
written more explicitly as
N N Ny - R N RN P, Srotez, P,
€p—1,p—1 Pp—l ép—2,p—1, ~p_2 ... P 6_12_> Pl—0—--.

The corresponding extended projective resolution is

é11 & €21

~ él,g ~ s R ~ é71,72 -
—>P2 \Pl P1 >P2—>...—>PP,QL>PP,1

ép—1p—1 ép—2,p—1 12 ~ &
s Pyt 5 Pya . Po =5 Py Ly = 0 e

ek

which is an exact sequence.

We have proven the

Theorem 14. Recall that p > 3 is a prime.

The sequence (7) is a projective resolution of Zyy, with augmentation Pro = P LN L.

Lemma 15. Recall that p > 3 is a prime. We have

€11+ €120€91 = pé1

€kk—19€k_1k t €CLkt1 OCkyr1k = PEg fork e [2,p—2]
€p-1p209€p2p 1+ € 1p1 = PEp

£0¢€11 = pe.

Proof. We have by Remark 11

To e (€11 +e1p0601) =Ty 6 (611) + Toy6,(€12)Tey 6, (€2,1)
= P11t P21 2417202411 = pmaias +me11) = Ts, 6 (PE1)
Tz, &0 (Ek k10 €1k + €k t1 © €1 k)
=T en s (Crp—1)To 10 (Cho1k) + Toprer (Crhr1) Top 1 o0 (Chyin)
= Tk nk+1,1PTINF 1,0k +1 "’pT],\k+1,1,n/g+1+177,\k+17n§+1+1,1
= Pk bt 1k 1 + ki 11) = To, 6, (DER)

R (Ep-1p20€p2p1+Ep1p1)
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1. The projective resolution of F, over F,S,

=T, 16y 2 (Ep1p2)T5, 06,1 (Ep2p1) + 15, 16, 1 (Ep1p1)
= Map—1 02141 1P =112~ 41 T PTAp,11
= P(Myp-1 =141 =141+ w11) = To, 16, 1 (PEp—1)-

Finally for 2 € P;, we have

(éo © é1,1)($) =M1 P11 T =P T = péo(x)u

thus éoé;; = gloglo €11 = pél 0 &% = pé. O

1.3. A projective resolution of F, over F,S,

We obtain the desired projective resolution by reducing the projective resolution of Z,
"modulo p". Technically this will be done via a tensor product functor.

Reduction modulo I

Let R be a principal ideal domain. Let (4, p) be an R-algebra. Let I be an ideal of R.
We set R := R/I.

As R is a principal ideal domain, p(I)A is an additive subset of A. As p(I) is a subset of
the center of A, p(I)A is an ideal of A and A/(p(I)A) =: A is an R-algebra.

We regard a right A-module My as a right R-module My via m-r :=m-p(r) for m € M,
r € R.
Lemma 16. The functors —®A and —®R from Mod-A toMod-R are naturally isomorphic.
A R
The natural isomorphism —® A — — ® R is given at the module M, by
A R
M4 (% Azzl = MR (%) RR

m® (a+ p(I)A) — ma® (1+1)
m® (r+p(l)A) «— me (r+1).

Proof. By the universal property of the tensor product, the two maps given above are

well-defined and R-linear. Straightforward calculation gives that they invert each other

and that we have a natural transformation. O]

Lemma 17. The functor — @ 4 Az from Mod-A to Mod-A maps exact sequences of right
A

A-modules that are free and of finite rank as R-modules to exact sequences of right
A-modules.

Proof. Because — ® 4Aj is an additive functor, it maps complexes to complexes. For
A

considerations of exactness, we may compose our functor with the forgetful functor
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1.3. A projective resolution of [, over F,S,

from Mod-A to Mod-R. This composite is — ® 4A. By the natural isomorphism given in
A

Lemma 16, it suffices to show that —® gz R transforms exact sequences of right A-modules
R
that are free and of finite rank as R-modules into exact sequences.

d; .
Let --- —2% M, LN M;_4 —> - be an exact sequence of right A-modules that are

free and of finite rank as R—modules. Then im d; is a submodule of the free R-module

M;_1. As R is a principal ideal domain, im d; is free. Hence the short exact sequence

imd;,, — M; — imd; splits. Now the additive functor — ® g R maps split short exact
R

sequences to (split) short exact sequences and the proof is complete. O

Reduction modulo p

The isomorphism Z,)S, — A from Proposition 5 induces an isomorphism of F,-algebras

F,S, = Zp)Sp | (0Z1)Sp) Z A/(pA) =: A. For the sake of simplicity in the next step, we
identify A and F,S, along 7.

Lemma 18. Recall that p > 3 is a prime. Applying the functor — ® aAz , we obtain
A
e the projective modules Py, :== P, ® AN for ke [l,p—1],
A

o [, := Z QE) AM; (the E,S,-module corresponding to the trivial representation of

S,),
o ¢ = & Q/%) ANz € Homg, g, (P, Pr) forke[l,p—1],
€11 = é11 (ii) A3 € Homg, g, (P1, P1),
Cp—1p-1 ‘= €p_1p-1 <§A§ AAx € Homg, s, (Pp—1, Ppo1),
Ckt1k = Crhiik % AAx € Homg, s, (P, Pk+1) forke[l,p—2],
Ckkil = Chril (}E) AAx € Homg, s, (Prtr, Pr) forke[l,p—2],

cf. Definition 12, and

o e =E®\A; € Homg, s, (P1,F,), which is surjective as € is surjective.
A
So we obtain

PResE, := (PResZ) ® alz — (- Bpry Bpr B P, B0 ), (8)

Pr, = 10 % >0 g = ) Celine Po@y = Po-1y 121
0 1 <0
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1. The projective resolution of F, over F,S,

which is by Lemma 17 a projective resolution of F,, with augmentation € : P, — F,. More
explicitly, PRes [, s

€1,2 €1,1 €2,1

ep—1.p—
.—>P2 >P1 ’>P1 P2 %...-)prgwppfl
I+1 1=2(p—1) (p—2)+p—1 (p—2)+p—2 p=(p—2)+2 (p—2)+1
€p—1,p—1 €p—2,p—1 €1,2
ol Pp—l PP p—2 "7 ... 7 P —= P —>0,
S~~~ S~~~ ~ ~
p—2 p—3 1 0

and the corresponding extended projective resolution is

€1,2

€1,1 €2,1 €p—1,p—2
—>P2 >P1 P1 PQ%...%PP_Q%Pp_l
€p—1,p—1 €p—2,p—1 €1,2

> I'p—1 > p_g—)...—>P2——>P1i>]Fp—>0.

Lemma 19. Recall that p > 3 is a prime.

(a) We have the relations

€11 +e120€21 =
€kk—1C€k_1k t €kkt1 OCpr1k =
€p—1p—20Cp2p-1 1T Ep1p-1
£0e€11 =

for k€ [2,p—2]

o O O O

and ey, is the identity on Py for k € [1,p —1].
(b) Given k € [2,p — 1], we have Homg,g, (Fy,[F,) = {0}.
(c) Given k, k" € [1,p — 1] such that |k — k'| > 1, we have Homg,g, (P, Pir) = {0}.
(d) The set {e} is an Fy-basis of Homg,s, (P, F,).

Proof. For k € [1,p — 1], we denote the idempotent & +pA € A = A/pA =T,S, by ¢
and identify Py, with €;[F,S,.

Ad (a). This results immediately from Lemma 15 and the fact that é; is the identity on
Py.

Ad (b). For y € Z,), we have y - &, = 0 as &, = 0. Thus for 2 € F,, we have z - ¢, = 0.
Now for g € Homg,g, (P, F,), we have g(é) = g(éx-éx) = g(éx)éx = 0. As P is generated
by ér, we have g = 0.

Ad (c). The sets {\*, A**1} and {\¥, \F+1} are disjoint. Thus for all y € Py, we have
y-€r = 0, which implies z- ¢, = 0 for all # € Py = ép/F,S,. Now for g € Homg,s, (Px, P ),
we have g(ég) = g(éy - éx) = g(éx)éx = 0. As Py is generated by é;, we have g = 0.

Ad (d). As P is E,S,-generated by ¢é;, an element f € Homgg, (P, F,) is deter-
mined uniquely by f(é;). Furthermore F, has F,-dimension 1, thus {f} is a basis
of Homgg, (P1,F,) for any f € Homgs, (P, F,) with f(é1) # 0. As €(é;) determines
e, and as ¢ maps surjectively onto F,, we have €(é;) # 0. So {e} is an F,-basis of
Homg,s, (P, F,). O
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2. Ay -algebras

2.1. General theory

In this subsection, we review results presented in [12].

Let R be a commutative ring. We understand linear maps between R-modules to be
R-linear. Tensor products are tensor products over R.

Definition 20. A graded R-module V is a R-module of the form V = @©,czV9. An
element v, € V9, ¢ € Z is said to be of degree ¢q. An element v € V is called homogeneous
if there is an integer ¢ € Z such that v € V9. For homogeneous elements v resp. graded
maps g (see below), we denote their degrees by |v| resp. |g|.

Definition 21. Let A = ®,czA9, B = @,z B be two graded R-modules. A graded map
of degree z € 7 is a linear map g : A — B such that img|Aq C B for q € Z.

Definition 22. Let A = ®,czA%, B = @yezB? be two graded R-modules. We have

A® B = @ A21®BZQZGB< GB A21®B22>.

21,22€7Z q€Z \z1t+z2=q

As we understand the direct sums to be internal direct sums in A ® B and understand
A* ® B* to be the linear span of the set {a ®be A® B |a € A*,b € A*}, we have
equations in the above, not just isomorphisms.

We then set A ® B to be graded by A ® B = P
D., .,y A" © B>

Moreover, we grade the direct sum

(A ® B)4, where (A ® B)? :=

qEZ

A® B =P A e B

qEZ
by (A® B)?:= A’ B9,

Definition 23. In the definition of the tensor product of graded maps, we implement the
Koszul sign rule: Let Ay, As, By, By be graded R-modules and g : Ay — By, h: Ay — By
graded maps. Then we set

(9@ h)(z®@y) = (=1)"Fg(z) @ h(y), (9)

where x € A,y € A; are homogeneous elements. Note that ¢ ® h has degree
lg ®h| =g + |hl.

Remark 24. It is known that for graded R-modules A, B, C', the map

0: (A®B)®C — A®(B®C)

(a®b)®c +— a®(b®c) (10)
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2. A-algebras

is an isomorphism of R-modules. Because of the following, © is homogeneous of degree 0.

y+z3=q Y+z3=q z1+22=y

= P o B=) 0 0=

z1tz2+23=q

(Ao BeO) ' =PA"eBeC)Y=FH P A" (B>2C)

z1+y=q z1+y=q z2+23=y
— P A" (B> 0 C%)
z1+22+23=¢q

Let Ay, Ay, By, By, C1, Cs be graded R-modules, f: A; — Ay, g: B1 — By, h: C7 — ()
graded maps. For homogeneous elements x € Ay, y € By, z € (1, we have

(=D)F=H((f @ g) (@ @ y)) @ h(z)
(=) WD () © g(y)) @ h(2)
(—D)FeEf () @ (9@ h)(y ® 2)

(— 1)\w| lgl-+[RD+1yl- Ihlf(x) (

= (—1)Uel*lwDIrI+zHel £ (1)

(fegoh)((zey)®z)

~—

(fegeoh)(re(yo =)

(9(y) @ h(z))
) ®

® (9(y) ®

Thus we have the following commutative diagram (0; and O, are derived from (10))

(A1 ® B) ® Cy —> A, @ (B, ® Cy)
l(f@g)@h lf@(g@h)
(AQ & Bg) & Cg &)A2 & (BQ ® CZ)

It is therefore valid to use © as an identification and to omit the brackets for the
tensorization of graded R-modules and the tensorization of graded maps.

Concerning the signs in the definition of A .-algebras and A, .-morphisms, we follow the
variant given e.g. in [16].
Definition 25. Let n € Z>q U {o0}.

(i) Let A be a graded R-module. A pre-A, -structure on A is a family of graded maps
(my + A%% — A)gep g with |my| =2 — k for k € [1,n]. The tuple (A, (mk)kep,n) s
called a pre-A,-algebra.

(ii)) Let A, A’ be graded R-modules. A pre-A,,-morphism from A’ to A is a family of
graded maps (fy, : A% — A)pep o with |fi| =1 —k for k € [1,n].

Definition 26. Let n € Z>q U {o0}.
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2.1. General theory

(i) An A,-algebra is a pre-A,-algebra (A, (my)rep,n)) such that for k € [1,n]

Z (=) ' mypy1 0 (197 @ my ® 19°) = 0. (11)[%]

k=r+s+t,
r,t>0,s>1

In abuse of notation, we sometimes abbreviate A = (A, (mg)r>1) for A-algebras.

(ii) Let (A', (my)kepn) and (A, (my)repn)) be Ay-algebras. An A, -morphism or mor-
phism of Ay-algebras from (A’, (m},)kepng) to (A, (Mr)rep,n)) is a pre-A,-morphism
(fr)kei,n such that for k € [1,n], we have

DD o (1% @ml @ 19) = (=1)'m, 0 (f;, @ f, ® ... & f,),

k=r—+s+t 1<r<k
rt>0,s>1 i1+...+i-=k
is>1
(12)[k]
where

vi= Z (1 — iy )iy

1<t<s<r

Example 27 (dg-algebras). Let (A, (my)r>1) be an A-algebra. If m, =0 for n > 3
then A is called a differential graded algebra or dg-algebra. In this case the equations
(11)[n] for n > 4 become trivial: We have (r+1+t)+s=n+1= (r+1+¢t)+s>5
= Myy114 = 0 or mgy = 0. So all summands in (11)[n] are zero for n > 4. Here are the
equations for n € {1,2,3}:

(1D

—_

]: 0=myomy

(11)[2] - 0=mjomy—mao(m ®1+1Qm)
(11)[3] 0:m10m3+m20(1®m2—m2®1)
+mzo(m @1 +10m @1+ 192 @m,)
ms3=0

=mgo(1®@my—ms®1)

So (11)[1] ensures that m, is a differential. Moreover, (11)[3| states that mgy is an
associative binary operation, since for homogeneous z,y,z € A we have 0 = my o
(1@my—ma®1)(zRY®z) =me(r @ ma(y ® z) —mo(r ® y) ® z), where because of
|ms| = 0 there are no additional signs caused by the Koszul sign rule. Equation (11)2] is
the Leibniz rule which can be motivated by the product rule in the algebra of differential
forms on a smooth manifold: We set myf := df and mq(f ® g) := f A g and we have for
homogeneous differential forms f, g

O(f Ag) = (0f) Ng+ (—=D)VIf A (Dg).

The signs on the right side also motivate the Koszul sign rule.
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2. A-algebras

Example 28 (A,-morphisms induce complex morphisms).
Let n € Z>1 U {oo}. Let (A, (m},)ken,n) and (A, (Mmr)repn)) be two A,-algebras and let
(fi)eepm) @ (A (M) kepm) = (A, (Mk)kep,n)) be an A, -morphism.

By (11)[1], (A’,m}) and (A, m,) are complexes. Equation (12)[1] is
fl o m’l =My O fl-
Thus f; : (A, m}) — (A, my) is a complex morphism.

For n > 2, we have also (12)[2]:

fiomy — fao(mi@1+1@my) =mio fo+mao(fi® fi) (13)

Recall the conventions concerning Hom’(C, C").

Lemma 29. Let B be an (ordinary) R-algebra and M = ((M,;)icz, (d;)icz) a complex of
B-modules, that is a sequence (M;);ez, of B-modules and B-linear maps d; - M; — M;_4
such that d;_1od; =0 for all 1 € Z. Let

Hom{ (M, M) = | [ Homp (M., M.)
2EZ

={9 =(9.)zez | 9. € Homp(M,;, M) for z € Z}.
Then

A = Homj(M, M) := @D Homi (M, M)

1€EZ

is a graded R-module. We have d := (d.11)sez = Y 1cpldis1]i, € Homp (M, M). We
define my := dygom*(m,m) 1 A — A, that is for homogeneous g € A we have

mi(g) =dog—(=1)"god.
We define my : A% — A for homogeneous g, h € A to be composition, i.e.
ma(g ® h) := goh.

Forn > 3 we set m,, : A" — A, m, = 0. Then (my)n>1 is an Ay-algebra structure on
A = Homp (M, M). More precisely, (A, (m,)n>1) is a dg-algebra.

Proof. Because of |d| = 1 we have |m;| =1 = 2 — 1. The graded map my has degree
0 = 2 — 2. The other maps m,, are zero and have therefore automatically correct degree.
As discussed in Example 27 we only need to check (11)[|n] for n = 1,2, 3. Equation (11)[1]
holds because for homogeneous g € A we have

my(mi(g)) =mifdog— (—1)¥god]
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2.1. General theory

=doldog— (~=1)flgod) - (-1)"![dog—(~1)lgod]od
= (~D)M¥ldogod—(~1)9*'dogod=0.
Concerning (11)[2], we have for homogeneous g, h € A

(ma o (m1 ® 141 ®@m1))(g ® h) = ma(ma(g) @ h+ (=1)Yg @ my(h))
=(dog—(-1)god)oh+ (-1)go(doh—(-1)"hod)
=dogoh— (—1)|9|+|h|g ohod
= (m1oms)(g ® h).

The map ms is induced by the composition of morphisms which is associative. As
discussed in Example 27, equation (11)[3] holds. O

Remark 30. In Hom*(PResF,, PResF,) we have (cf. (8))

d = ZLew(i),w(i+1)Jé+l :

i>0

Definition 31 (Homology of A -algebras, quasi-isomorphisms, minimality, minimal
models). As m? =0 (cf. (11)[1]) and |m;| = 1, we have the complex

ml‘Ai

o omalgie1 .
..._>A21 A s A AZ‘H_)...

We define H"A := ker(m|4¢)/im(my|4e1) and H*A = @, ., H*A, which gives the
homology of A the structure of a graded R-module.

A morphism of A-algebras (fi)i>1 @ (A, (m))r>1) = (A, (my)r>1) is called a quasi-
isomorphism if the morphism of complexes fi : (A’,m}) — (A, my) (cf. Example 28) is a
quasi-isomorphism.

An A -algebra is called minimal, if m; = 0. If A is an A -algebra and A’ is a minimal
A-algebra quasi-isomorphic to A, then A’ is called a minimal model of A.

The existence of minimal models is assured by the following theorem.

Theorem 32. (minimality theorem, cf. [13] (history), [9], [8], [20], [5], [7], [18], ... )
Let (A, (mg)k>1) be an Ay -algebra such that the homology H* A is a projective R-module.
Then there exists an Ao -algebra structure (my)g>1 on H*A and a quasi-isomorphism of
Ao-algebras (fi)p>1 : (H*A, (m))r>1) = (A, (mg)k>1), such that

e m) =0 and

e the complex morphism f1 : (H*A,m}) — (A, mq) induces the identity in homology.
Le. each element x € H*A, which is a homology class of (A, my), is mapped by fi
to a representing cycle.
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2. A-algebras

We give a proof of Theorem 32 in appendix A.4, cf. Theorem 67.
There is a general statement concerning the computation of minimal models of dg-algebras:
Lemma 33 (cf. [24, Theorem 5]). Let R be a commutative ring and (A, (mp)n>1) be a
dg-algebra (over R). Suppose given a graded R-module B and graded maps f, : B®" — A,
m., : B¥" — B for n > 1. Suppose given k > 1 such that

Ji=0 fori>k

m; =0 fori>k+1,

and such that (12)[n] is satisfied for 1 < n < 2k — 2. Then (12)[n] is satisfied for all
n>1.

Proof. We need to check (12)[n] for n > 2k — 1:

The left side of (12)[n] is zero: For f,1 140 (19" @ m/, ® 1%") to be non-zero it is necessary
that r+14+¢t<k—1lands<k,son+1=r+s+t+1<2k—1, which is not the case.
Thus all summands on the left side of (12)[n]| are zero.

The right side of (12)[n] is zero: As A is a dg-algebra, we have m,, = 0 for n > 3. So all
non-zero summands on the right side have r < 2. For a non-zero summand we also have
iy < k—1forally €[1,r]. So for those we have

T

r<2
n=>Y i, < 2k—1)=2k-2.
y=1
But n > 2k — 1, so all summands on the right side of (12)[n] are zero. O

2.2. The homology of Homg ¢ (PRes[F,, PResE,)

We need a well-known result of homological algebra in a particular formulation:

Lemma 34. Let F be a field. Let B be an F-algebra. Let M be a B-module. Let
Q=(—= Q LN Q1 LN Qo — 0 — --+) be a projective resolution of M with

augmentation € : Qo — M, i.e. the sequence - - — (o &, Q1 4, Qo = M — 0 is exact.
Then we have maps for k € 7

v, - Hom%(@, Q) — Hom%(Q7M) := Homp(Qg, M)

(9 Qivk = Qi)iez = €0 go
The right side is equipped with the differentials (dualization of dy,)

(dy)* : Homp(Qg, M) — Homp(Qxs1, M)
g (=1)'gody
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2.2. The homology of Homg ¢ (PRes[F,, PResT,)

and the left side is equipped with the differential mq of its dg-algebra structure, cf.
Lemma 29.

Then (Vg )rez becomes a complex morphism from the compler Homp(Q, Q) to the complex
Hom%(Q, M) that induces isomorphisms Wy, of F-vector spaces on the homology

0y, : H* Hom(Q, Q) = H* Hom’;(Q, M)

(9 : Qixr = Qi)icz — €0 Go

Lemma 34 is a special case of [3, §5 Proposition 4|: The complex morphism

Q = (- Qy —2- 0, -1~ Q, 0 )
| -
Conc(M)i= (- ——0 0o M) m )

is a quasi-isomorphism since @) is a projective resolution of M. Application of [3,
§5 Proposition 4| now gives that the induced homomorphism ¥ : Homj(Q,Q) —
Hom%(Q, Conc(M)) is a quasi-isomorphism. By removing zero components of the
elements of Homp(Q, Conc(M)), we readily obtain an isomorphism of complexes from
Hom%(Q, Conc(M)) to Homp(Q, M). Now composition of these two quasi-isomorphisms
gives the quasi-isomorphism described in Lemma 34.

Proposition 35. Recall that p > 3 is a prime and | = 2(p — 1).
Write A := Homg g (PResF,, PResF,). Let

L= ZL%@)J?H ZZ Cu(k leﬁ 1k € Al

i>0 i>0 k=
p—2
il+k
§ L€1J2l+l 1+ [§ Lek‘-i-l,kjil-l-l—l-i-k]
i>0 k=1

p—2
il+(p—1) il+(p—1)+k
+lep-1)ig 1+p y T [E : Cp—k—1p—k i1 (p1)
=1

) e AL

V= Ztew(i)J§+jl Z ZL% Zl:; I+k * (14)

>0 >0 k=0

(a) For j >0, we have

(b) Suppose given y > 0. Let h € AY be l-periodic, that is

-1

1>0 k=0
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2. A-algebras

Then for 7 > 0, we have

N
I
—

hou =t/ oh= Z Zthkf&ﬁ?)um € AV
i>0 k=0
(c) Suppose given y € Z. For h € AY and j > 0, we have my(hot?) = my(h) o 7.
(d) For j >0, we have my(17) = 0. Thus 7 is a cycle.

(e) For j >0, we have

xt!i=xoil =1l oy

p—2
= Z < 61 (z+]+1l 1T [Z ek+1k (z+J+1)l 1+k:]

>0 k=1

) c Ajl“*l.

For convenience, we also define X°t7 := 17 and x't/ := x17/ = x o1 for j > 0.

il+(p—1) il+(p—1)+k
+[ep- 1J (i+j+1)l—1+(p—1) [E :Lep k—1,p— kJ (i+j+1)l—1+(p—1)+k

(f) For 7 >0, we have my(xt?) = 0. Thus xt’ is a cycle.
(g) Suppose given k € Z. A F,-basis of H*A is given by
{03} if k = jl for some j >0
{xt7} if k= jl4+1—1 for some j >0
0 else.

Thus the set B := {13 | j > 0} U {xti | j > 0} is an F,-basis of H*A = D, HA

Before we proceed we display ¢ and x for the case p =5 as an example:
The period is of length [ = 2p — 2 =2 -5 — 2 = 8. The terms inside circles denote the

degrees.
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2. A-algebras

Proof of Proposition 35. The element ¢ is well-defined since w(y) = w(l 4 y) for y > 0.
In the definition of x we need to check that the "[x]:" are well defined. This is easily

* 1

proven by calculating the w(y) where y is the lower respective upper index of "|x|*

(a): As Pr; = {0} for i < 0, the identity element of A is given by 1” = >~ (| €w(i)];, which
agrees with (14) in case j = 0. So we have proven the induction basis for induction on j.
So now assume that for some j > 0 the equation (14) holds. Then

P =100 = (Z Lew(i)ﬂjtl) © (Z Le“’(i/)ﬂ::ﬂl)

i>0 >0
= Ztew(i) © ew(z‘+l)J§+l+jz = Ztew(i)ﬂﬂjﬂ)l .
i>0 i>0

Thus the proof by induction is complete.

(b): We have
-1 i it -1

Joh= g | IHE E E i1+k Wk Z il+k

v oh= Z ZLew(lHk (i+5)l+k Lhwe ] ’l+k’+y - [P (i+7)l+k+y
i>0 k=0 />(] k! = ,Lzo k=0

I = itk E ( zl+k

ho (Z ZLthzHHy) ( Lewiin i +Jl> E , E :Lhk (i+5)l+k+y *

120 k=0 i'>0 i>0 k=0

So we have proven (b).

(c): The differential d of PResE, is [-periodic (cf. Remark 30) and thus
my(h)ot’ =(doh — (—1)"hod) o’

OHI=20 G o o ud — (=1)"* b o od = my(hod).

(d): We have
mi(e9) L my(:0) 09 = (d o1 — (~1)°%°d) 0.t = (d —d) ot = 0.

(e) is implied by (b) using the fact that x is [-periodic.

(f): Because of (c) we have my(xt?) = my(x) o t?. Because |x| =1 — 1 is odd we have

mi(x) =dox —(=1)xod=xod+dox

p—2
R.30 i+ 1
= <Z <L61le+l 1 + Zl_ek-‘rl szH—l 1+k] + |.6P 1le+l(p1+)p 1)
>0 k=1
i+ (p—1)+k
Ztep k—1,p— szl+lpl+p 1)+ ])) (ZLGW w(y+1) y+1>
y>0
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2.2. The homology of Homg ¢ (PRes[F,, PResT,)

p—2
+ (Ztew(y)M(yH)Jzﬂ) ( ( €1J%+l—1 + [Ztekﬂ,kmjuk]
>0

y>0 k=1

il+(p—1) il+(p—1)+k
+Lep 1le+lp1+(p 1) + [ Lep—k—l,P—kJil+lz—)1+(p—1)+k] > )
k=1

p—2
_ il il+k
= E <L61 oei)iy + [ leks+1k © 6k,k+1Ju+z+k]

>0 k=1

( p—2
p
il+(p—1) il+(p—1)+k
+ [ep-10€p1p- 1le+l+(p T E Lep—k-1p-r0 eP*k,p*k*1Ji1+l+(p—1)+k:
\ k=1

( p—2
il—1 il+k—1
+ E lerioen]iy + E ( E ka1 0 rp k) iilin 1]

i>1 1>0 \ k=1

il—1+(p—1) il—1+(p—1)+k
+ [ep-1p-19 €1y, 1+(p-1) T [ l€p—kp—k-10© ep*kflyp*kJil+l71+(p71)+k

>_A

* il+k
= E <L61,1 t €120 62,1Jiz+z + [ E |€kt1,k O €hjot1 + €hy1kt2 O ek+2,k+1Jil+l+k]
>0 k=1

il4+p—2 il+p—1
+ lep-1p-20€p2p1+ ep—l,p—ljz‘l+l+p—2 + [ep-1p-1+ €p-1p-20 ep—27p—1Jil+l+p—1

p—3
il+p—1+k
+ § :Lep—k—l,p—k O €pkp—k-11 ECpk-1p—k-20° ep—k—2,p—k—1Jil+l+p—1+k

k=1

i — L.19(a
+ L6172 ORI + 6171J Elighrlll) :( ) 0

ll n

In the step marked by "+" we sort the summands by their targets. Note that when splitting
sums of the form S7P%(..)g into (...)1 4+ D0 _2(.. ) or into (...)p_ o + SP73(.. )y, the
existence of the summand that is split off is ensured by p > 3.

(g): We first show that the differentials of the complex Hom*(PResE,, F,) (cf. Lemma 34)
are all zero: By Lemma 19, {¢} is an F,-basis of Homg,s, (P, F,), and for & € [2,p—1] we
have Homg,g, (P, F,) = 0. So the only non-trivial (dj)* are those where Pr;, = Pryyy = P;.
This is the case only when & = [j +1 — 1 for some j > 0. Then d, = e;;. For

e € Hom(P,, E,), we have (dg)*(c) = (—1)*coe;, FEW g As Hom(P;,F,) = (¢)g,, we
have (di)* = 0.

So H* Hom*(PResF,, E,) = Hom"(PResF,,F,). We use Lemma 34.

For k = jl, j > 0, we have U*(,9) @ e, and {¢} is a basis of H* Hom*(PResT,,T,).

For k = jl4+1—1, j > 0, we have U*(x4) © e, and {e} is a basis of H* Hom*(PResF,, ).

Finally, for k = jl + r for some j > 0 and some 7 € [1,] — 2] and for k& < 0, we have
H* Hom*(PResF,, F,) = {0}. O
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2. A-algebras

2.3. An A-structure on Extg g (F,,F,) as a minimal model of
Homy g (PRes[,, PRes[F,)

Recall that p > 3 is a prime. Write A := Homg ¢ (PRes[F,, PResF,), which becomes an
Ac-algebra (A, (my),>1) over R = F, via Lemma 29. We implement Exty ¢ (F,, F,) as
Exty g (B, F,) == H"A.

Our goal in this section is to construct an A-structure (m! ),>; on H'A and a mor-
phism of A-algebras f = (f)n>1 1 (H*A, (m))n>1) = (A, (my)n>1) which satisfy the
statements of Theorem 32. I.e. we will construct a minimal model of A. In preparation
of the definitions of the f,, and m/, we name and examine certain elements of A:

Lemma 36. Suppose given k € [2,p — 1|. We set

- k—1+1i k—1+(p—1)+li k(1—2)+1
M=) (Leﬂk(z—?)m + Lep—k) k1)1 (oo 1)+lz) € AMI-2+
i>0

For j >0, we have

o i, J _ k—1+1i k—14+(p—1)+1i E(1—2)+1441
/Ykl/] =Tk © V=10 Ve = Z <L€ka(l D +1(i+7) + Lep kjkl 1 p(p 1)+l(i+j)> €A (=2) 7

i>0
and

1y — +1i k—2+(p—1)+li
ma(ykt’) = Z (Lek 1ka(l D+(itg) T Lep—r+1.0-r]s k(1— 1)i(p 1)+1(i+5)
i>0

1+1s k—14+(p—1)+1i
_'_Lekk 1Jk(l 1)+1+l(z+])+ Lep k.p—(k— 1)Jkl 1)+p+l(z+])>

Proof. We need to prove that ~; is well-defined. Let ¢ > 0.

We consider the first term. The complex PResF, (cf. (8), (6)) has entry Py at position
k(l — 1) + li and at position k — 1 + li: We have k(I —1)+li=(k—144d)l+1—k. So
wk(l=1)+li)=1—(1—k)=ksincep—1<I1—k<Il—1. We have w(k —1+1i) =
(k—1)+1=ksince 0 <k—1<p—2 Ask(l—1)+1li,k—1+1i > 0, we have
Prk(l_l)ﬂi = Pw(k(l—1)+li) = Pk and Prk_1+lz» = Fyk—140) = Pk. So the first term is
well-defined.

Now consider the second term. The complex PResF, has entry P,_ at position k(I —1)+
(p—1)+1i and at position k—1+(p—1)+li: We have k(I—1)+(p—1)+li = (i+k)l+(p—1)—k,
sowk(l—-=1)+@p-1)+l)=(p-1)—k+1=p—Fksince0< (p—1)—k<p-—2.
We have w(k—1+(p—1)+l)=2(p—1)—(k—=1)—(p—1)=p—ksincep—1<
E—1+(p—-1)<2p—-1)—1. Ask(l-1)+(p—1)+li,k—=1+(p—1)+1i >0, we have
Prig—1)+p-1+t = Por-1)+p-1)+1i) = Pp—r and Pry_1 1)1 = Pog—14(p—1)+15) = Pp—i-
So the second term is well-defined.

The degree of the tuple of maps is computed to be (k(I — 1) + i) — (k — 1+ i) =
El-=2)+1=FkI-1)+ (-1 +l)—(k—1+(p—1)+1i).
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2.3. An A-structure on Exty ¢ (F,, ) as a minimal model of Homg, ¢ (PRes F,,PResF,)

The explicit formula for 4.7 is an application of Proposition 35(b).

The degree |yx7| = k(I —2) + 1 is odd, so

m () B d oy + pe? o d

R.30 k—2+1i k—1+1d
= [€w(k—2)w(E-1)] k—1iz§ © Z Lex] k(ljl_)irl(iJrj)
i>0 i>0
k—2+(p—1)+1i k1+p 1)+
+ ZLew(p—l-l—k—Q),w(p—l-l—k—l)Jk 14+(p—1)+li ZLGP k +(p—1)+1(i+7)
i>0 i>0
k 11 E(I1—1)+1(z+5)
+ Z erly k(-1 Z+l (i+7) Z Lew(l*k)»w(l*k+1)Jk(l71)+1+l(i+j)
>0 i>0
k—1+(p—1)+li E(l=1)+(p—1)+1(i+5)
+ Z Ep— ka 1—1)+(p—1)+1(i+j) ° Z LeW(P—l—k)’W(P—k)Jk(l—1)+p+l(i+j)
i>0 i>0
k 2-+1i k 2+(p—1)+l
= Z ek—1k |21 i) T ZL% E Lok K1)+ (1) 11 4)
>0 i>0
k—1+14 k 1+(p—1)+1i
+ Z €k k— 1Jk - 1)Z+1+l (i+7) + ZL% k,p—(k— 1 k(1—1)+p+1(i+j)
>0 >0
Note that in the second line K — 2+t > 0as¢ > 0 and k£ > 2. O

Lemma 37. For j,5' > 0, we have
xt? o xt? = my ().

. .+ P.35(e Y
Proof. 1t suffices to prove that x o x = m(72) since then ¢’ o x¢’ B xoyxouwtl =

P.35(c) L
my(vy) o L9 ¢ ma (207",
To determine when a composite is zero, we will need the following. For 0 < k, k" < [, we
examine the condition

il+1l—-1+k=dl+FK. (15)

If £ =0 then (15) holds iff i = ¢ and &' =1 — 1.
If £ > 1 then (15) holds iff i +1 =4¢ and ¥ =k — 1.
So

p—2
p=3 i i [
Xox= ( E (LelJi§+l—1 + LGQJJiéill + [ E :Lekﬂﬂiéﬁprk]

120 k=2

il+(p—1) zl+ zl-‘,—( —1)+k
+ Lep- 1le+lp1+(p y T lep—2,-1] iltlap—1 1 [Zlep k—1,p—k zl+z]il+(p—1)+k] ))

p—3
i'l i1k i'l4+p—2
© (E <L61Jm+l—1 + [ E Lek'+1,k’Ji’l+ll+k’] + Lep_lvp_2ji/l+l+p73

>0 k'=1
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2. A-algebras

p—3
i'l4+(p—1) il+(p—1)+K il4+1—1
+ Lep—ljz'/m]iu(pq) + [ZLep_kl_17p_k/Ji’l+lpl+(p1)+k’] + |ex, 2J S H+2(p— 2)))
k=1

p—2

_ il il+1 il+k

= E <L€1 °© 61,2Ju+l+2(p—2) + [ez10€1]ig 1+ [ E lek+1 0 ek,liz‘l+2l—1+k—1]
k=2

= —0 by L.19(c)

il+(p—1) il+p
+ lep-10€p 1 2le+21+p 3+ [epap10€ 1le+2l+p72

p—2
il+(p—1)+k
+ E lep—k—1p-k © eP*k»P*kJFlJil+2[—1+p—1+k—1

k=2 >

TV
=0 by L.19(c)

il il il+p—1 il+
- Z <L61,2J(,;+2)l_2 + LGQJJ(:&-;l 1 T Lep Lp— 2 z+§ lp-3 T Lep_va_lJ(i-i-g)l-i-p—Q)
i>0
L.36
=m1(y2)
O
Below are the definitions which will give a minimal A -algebra structure on H*A and a

quasi-isomorphism of A_-algebras H*A — A.

Definition 38. Recall from Proposition 35 that B8 = {17 | j >0} U {xi |j >0} =
{x* |j>0,a€{0,1}} is a basis of H*A. For n € Z>,, we set

BO =y @ ... @y € (H*A)®" | a; € {0,1} and j; € Zs for all i € [1,n]},
which is a basis of (H*A)®" consisting of homogeneous elements.
For n > 1, we define the F,-linear map f,, : (H*A)®" — A as follows:
Case n = 1: f is given on B by fi(17) := 7/ and fi(xt7) = xi7.
Case n € [2,p — 1]: f, is given on elements of BE™ by

LT . @ o) 0 ifdie(l,n:a;,=0
(YL C @ XOndn) = A o
X X (1) ly ttetin ifl=ay =ay=...=a,

Case n > p: Weset f, :=0.
For n > 1, we define the F,-linear map m), : (H*A)®™ — H*A by defining it on elements
XL ® ... Q xnin € BE:
Case Ji € [1,n]:a; =0:
m, (Xt @ ... @ xnin) =0 for n # 2 and
mhy(x@ i @ x®2192) := ymtez iitiz (Note that ay + ap € {0,1}).

Casea;=ay=...=a, =1:
m/n(Xle ®®XL]TL) O Orn#pand
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2.3. An A-structure on Exty ¢ (F,, ) as a minimal model of Homg, ¢ (PRes F,,PResF,)

Note that since p > 3, we have m,(xt* @ xt92) = 0 for ji, jo > 0.

Theorem 39. The pair (H*A, (m!]),>1) is a minimal A-algebra. The tuple (f,)n>1
is an quasi-isomorphism of Ax-algebras from (H*A, (m!]),>1) to (A, (my)n>1). More
precisely, f1: (H*A,m}) — (A, mq) induces the identity in homology.

The proof of Theorem 39 will take the remainder of section 2.3. We will use Lemma 64.

Lemma 40. The maps f, and m) have degree |f,] =1 —n and |m!| =2 —n. Le.
(fr)n>1 is a pre-Aoo-morphism from H*A to A, and (H*A, (m])),>1) is a pre-As-algebra.

Proof. We have |f1| = 0 as |¢| = |¢7] and |x¢| = |x¢/|. For n > p the map f, is of
degree 1 —n as f,, = 0. For n € [2,p— 1] the statement |f,,| = 1 —n is proven by checking
the degrees for the elements of the basis B®" whose image under f,, is non-zero:

e @ .. @ xoi)| = (=)™ et | B Gy i)+l = 1) +1—n
:1—n+Z|XLjI| =1l—n+|x®...Q x|
=1
Thus |f,| = 1 — n for all n and we have proven the first statement.

Now we show |m),| =2 —n. As before, we only need check the degrees for basis elements
whose image is non-zero: For x@1uJt ® x%2092, j1,jo > 0, ay,as € {0,1}, 0 € {a1,a2}, we
have

my (X1t @ xo202)| =[x ez it | = (ag 4+ az)(l — 1) + (1 + jo)
:CL1<Z — 1) +]1l —+ CLQ(Z — 1) +jzl = |Xalbj1 X Xa2bj2| + (2 — 2)

For xt7' @ - -+ ® xtr, j, > 0 for x € [1, p], we have

(7 © -+ @ )| =[P T = U(p— 14 i+ 4 Gy)
=lp—1+Ilh+...+jp)=lp—2p+2+1j+...+Jp)
=pl =D +I(i+...+jp)+2—p=[xt"® - @x/r[+2—p

]

Lemma 41. We have m| = 0. The equation (12)[1] holds. The complex morphism
fi: (A, my) — (A,mq) is a quasi-isomorphism inducing the identity in homology.

Proof. The equality m} = 0 follows immediately from the definition. Thus m; o f; =

0 = f1 om). Moreover f; is a quasi-isomorphism inducing the identity in homology by
construction, cf. Proposition 35(g). O

Lemma 42. The map fi is injective.
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2. A-algebras

Proof. The set X = {x%’ | a € {0,1},7 € Z>;} C A is linearly independent,
since it consists of nonzero elements of different summands of the direct sum A =
D.cr Hom*(PResTF,, PResF,). The set 9B, which is a basis of H* A, is mapped bijectively
to X by fi, so fi is injective. O]

Lemma 43. The equation (12)[2] holds.
Proof. As m) = 0, equation (12)[2] is equivalent to (cf. (13))
fiomy=mio fo+moo(fi® f1).
We check this equation on B%2: Recall Proposition 35 and Definition 38.
fimy(19 @) = = my(fr @ /1) @ 07) = (myo fa+mao (fi @ fr) (1 @)
fimhy (17 @ x13') =x " = my(fi @ f1) (10 @ xuI)
=(m1o fa+mao (fi® fi))(1 ©xud)
Fimy(xtd ©17) =x7t = my(fr @ fi)(xed @ 17)
=(myo fo+myo (fi® f1))(xt) ®17)
Fmy (e @ xo7') =02 —my (1207") + ma(f1 ® 1) (x? @ X7
=(myo fa+mao(fi® f1))(xd @ xi7)

Note that there are no additional signs due to the Koszul sign rule since |f;| = 0. 0

The following results directly from Definition 38.

Corollary 44. Forn > 2 and aq,...,a, € {0,1}, j1,...,jn > 0, we have

(X @ .. @ xoin) = [u(XT® ... @ X™) o LT,

If there is additionally an x € [1,n] with a, = 0 then

falx®it @ ... ® xendn) = 0.
Equation (12)[n] can be reformulated as

fromy + § (=D frprpe 0 (17 @ m @ 1%)
n=r+s+t
r,t>0,s>1
s<n—1

~
=P,

:mlofn+ E (_1)Um7‘o(fi1®fi2®"'®fir)7
2<r<n
i1+...+i=n
ie>1

N J/

i<
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2.3. An A-structure on Exty ¢ (F,, ) as a minimal model of Homg, ¢ (PRes F,,PResF,)

where v = 3 o, (1 — i)

A term of the form f. 11,0 (1% @ m, ® 19), s > 3, r +t > 1, is zero because of
Corollary 44 and the definition of m;,. Also recall m} = 0. Thus

N

n—

D= D (1 a0 (17 @M, @17 = Y (<)) o0 (17 @ my ©1977772),
n=r+2+t —0
r,t>0
(16)

Because of m; = 0 for k > 3, we have

En = Z (D)2 my 0 (f;, ® fiy) = Z(—l)me o (fi @ fa—i)- (17)
i1+i2=n i=1

11,0221
We have proven:

Lemma 45. Forn > 1, condition (12)[n] is equivalent to f, om! + ®, =mjo f, + =,
where ®,, and =, are as in (16) and (17).

Lemma 46. Condition (12)[n]| holds for n > 3 and arguments x*1' @ ... ® x™iin €
PO = [y @ ... Q xuin € (HA)®™ | a; € {0,1} and j; € Zxo for alli € [1,n]}
where 0 € {ay,...,a,}.

Proof. Because of Lemma 45 and Definition 38 it is sufficient to show that

Q)n(Xalel ® . ® Xanbj") — En(Xa1Lj1 ® . ® Xa"Ljn)

if at least one a, equals 0.

Case 1 At least two a, equal 0:

To show &, (x*1t/' ® ... ® x%in) = 0, we show

Joo1 (187" @mh @ 1977 =2) (x40t @ ... @ % iin) = 0 for r € [0,n — 2]: In case both
components of the argument of m/, are of the form x%:J, the result of m) is of the
form .7’ (see Definition 38). Since 2 < n — 1, Corollary 44 implies the result of f,,_;
is zero. Otherwise at least one of the components of the argument of f,,_; must be
of the form +7 and the result of f,_; is zero as well. So ®,, (x4 ®...® x1in) = 0.
To show =, (x*1 71 ®. .. @x%In) = 0, we show ma(fi® fr—i) (X1 ®. . . Q) iIn) =0
fori e [l,n—1]:

e Suppose given i € [2,n — 2|: The statements a; = ... = a; = 1 and a;11 =
... =a, = 1 cannot be true at the same time, so fi(...) =0or f,—;(...) =0
and we have mo(f; ® frn_i)(x® /' @ ... & x*uin) = 0.

e Suppose that ¢ = 1. Because at least two a, equal 0 the statement ay, =
... = a, = 1 cannot be true. Since n — 1 > 2, we have f, 1(...) = 0 and
ma(f1 @ fo1)(x*1 @ ... @ x*iin) = 0.
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2. A-algebras

e The case 1 = n — 1 is analogous to the case i = 1.

So we have @, (x*1/1 @ ... @ x%iin) =0 =Z,(x @ ... @ x™in).

Case 2a Exactly one a, equals 0, where z € [2,n — 1].

We have &, (x*/t ® ... ® x%/») = 0: In case n > p + 1, it follows from
fn—1 = 0. Let us check the case n € [3,p|: Because of Definition 38, we have
Jno1 (18" @ mb @ 1977 772) (x40t @ ... @ x%In) = 0 unless r € {x — 2,2 — 1}. So

O, (Y1 ® ... @ xInLIn)
(—1)" 2 f, (1952 @ i, @ 187 — 1951 @, @ 172 1)
(XM @ ... @ xniin)
(=) f (0 ® ... @ xtIo—2 @ mly(xtIe—1 @ o) @ Y1+ @ ... ® yuin
— XU @ . ® LI @ mh (1 @ yuder) @ Y ® L. ® xuin)
= (=) f (Yt ® ... @ xtIe—2 @ yIa-1Hie @ yiditt @ ... @ yuIn
— XU ® . @ xtIet @ xdr et @ xude @ L. ® xdn)
= (=1)" (1) P — (1) ) = 0

To show Z,(x1 11 ®. . .®@x%1in) = 0, we show ma(f;®@ fr_s) (X111 ®. . . @) 1in) =0
for i € [1,n — 1]: The element y% 7= is a tensor factor of the argument of f; or of
fn—i- We write y =i or y = n — ¢ accordingly. Then y > 2 since = ¢ {1,n}, so
fy(-..) =0 and thus ma(f; ® fr—i) (Xt ® ... ® x4in) = 0.
So @, (xMh @ ... @ x¥iin) =0=Z,(x"I ®...Q x™iin).

Case 2b Only a; = 0, all other a, equal 1.

42

We have f,, 1(1%" @ mhy ® 1977772)(y9111 ® ... ® xi») = 0 unless r = 0. So

O (X1 @ . @ xIn) = (=1)" fua (1% @M @ 19772 (x 1 @ ... @ xoned)
(=)™ facr (mh (13T @ X072) @ 1B @ ... @ XxuIn)
(=D)"fara(xe" T2 @ x5 ® ... @ x1In)
{vn_wl+~~+fn 3<n<p

0

n>p+1

We have (f; ® fr_1)(x®t ®@ ... @ x®uin) =01if i > 2. So

S ®...® XanLjn) = (—1) "Ma(fi @ fr1) (XU ® ... @ xnLin)
( n le‘f LJl) X fn 1()([/]2 XR...x X[’Jn>)
= 1 ( g ® f L]2 ® ® XL]n))

(—=1)"my (L' @ (—1)"’2%_1#2*'““") 3<n<p
0 n>p+1

H\_,
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2.3. An A-structure on Exty ¢ (F,, ) as a minimal model of Homg, ¢ (PRes F,,PResF,)

f)/nfll/‘jl-i_"'—’—jn 3 S n S P
0 n>p+1

So @, (x i @ ... ® X¥uIr) = E (X @ ... @ Xrudn).

Case 2c Only a,, = 0, all other a, equal 1.
Argumentation analogous to case 2b gives

®,(F @ . ) = (~1)2 e (19772 iy 190) (T @ . @ )
[y =0

= nfl(X[/jl XR...x X[/J'n—Z X mIQ(XLj"—l X E))
_ {(—1)“%_1w+~-+jn 3<n<p

0 n>p+1

and

En(x 1t © @ xmdn) = (=1)"" Vmy(fr @ A)(XT @ @ xOnudn)

M2, (fa 0T @ @ X T) @ fi())

B (_1)n—2,yn_1Lj1+...+jn 3 S n S P
0 n>p+1

—_

So @, (XM @ ... @ XM un) = Z, (X ®@ ... ® xniin).

Now we examine the cases where a; = ... =a,, = 1:

Lemma 47. Forn > 3, we have ®,(xt"' @ ... @ xtin) =0 for xt' @ ... Q@ ytin € B =
{x®h @ ... @ x®un € (H'A)®" | a; € {0,1} and j; € Z>q for alli € [1,n]}.

Proof. We have ®,(xt9* @ ... ® yuin) = 0 since &, = S 2(=1)" 7" f, 1(1%" @ m}) ®
19777=2) and the argument of m/, is always of the form Y¢* ® X¢¥, whence its result is
Z€ero. O

Lemma 48. Condition (12)[n] holds for n € [3,p — 1] and arguments x1/' ® ... ® yLi» €
PO = {x1 @ ... Q xuin € (H'A)®" | a; € {0,1} and j; € Z>q for alli € [1,n]}.

Proof. For computing =, we first show that ma(f, ® for)(xt" @ ... ® xtin) = 0 for
k € [2,n — 2]. We will need the following congruence.

J/ J/

-~

p—1k(I—1)+(p—1)+l(i+z) =p_1n—k—1+(p—1)+1’

10 (18)

Sk:(l—l)—i—l(i—i—x))— n—k—=1+40U) =1 —k+k—n+1=—-(n—-1)
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2. A-algebras

The last statement results from 2 < n < p — 1. We set "+" as a symbol for the (a
posteriori irrelevant) signs in the following calculation. For k € [2,n — 2], we have

my(fo @ frk) (X @ ... & xuIn)
=t g (= )P Btttk @ (—1)n R Ly, kettin)

Jit...tjr=:x,
Je+1+- +Jn—
:i:f)/kb O Yn— kLy
_ k—1+1i k—1+(p—1)+li
== (E :LekJ E(1—1)+1(i4z) + E :Lep kal 1)+ (p—1)+i(i+z)
i>0 i>0
n—k—1-+1i’ Z n—k—1+(p—1)+1i’ (18)
© (ZLenkJ(n E)(I=1)+I(i"+y) + €p— ”JrkJ (n=k)(I-1)+(p=D)+I@"+y) | — 0.
>0 i’>0
So

=, (T @ ... @ xuIn)
=mo((=1)"f1 @ foo1 + (=)™ Vf 1@ f))O @ ... ® xuIn)
= my((— 1) (i) @ fua (2 @ @ xoin)
+ foa Ot © @ xeIt) @ fi(xeIn))
=mo(xt”' ® (—1)” b2 I (1) 2y, eIt @)y I

= (=1)" (7t 0PIy eI o I

P.35(e),L.36

= (_1)"(X 0 Y1+ Yn_10 X) o Lj1+...+jn

p—2
X© Vn-1= (Z <L€1Jl(é+1)l—1 + [Ztekﬂ,ky(liﬁ)zuk]

>0 k=1

ZLe zl+(p 1)+k

p—k—1,p— k (E+D)I-1+(p—1)+k
n—2 h n 24+ (p—1)+li’

(Zten 1J + 1)+13 ""Z Cp—n+1 (n—l)(f—l)—l—(p—l)—i—li’)

il+(p—1)
+[ep- J(H—lpl 1+(p—1)

>0 i'>0
3<n<p—1 il+n—1
oon 1 l€nn—10€n— lJ (n—1)(1—1)+1(i+1)
i'itl >0
il+p—14+n—1
+ E :Lep—n,p—nJrl © ep—n+1J(nf1)(171)+(p71)+l(¢+1)
>0
Zl+n 1 il+p—14+n—1
- E :( €n,n— 1 n(l— 1)+1+l2+ Lep n,p— n+1Jn(l 1)—|—p+lz>
>0
_ n—2-+13’ n— 2+p 1)1
Tn—-1°X = (2 :Len lJ (n—14i—-1)l14+2(p—1)—(n—1) +§ :Lep n+1J (n—1+4")l—n+p
i'>0 i'>0
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( p—2
° (Z (L€1J%2+1)1—1 + ZLeHl,szlz‘ﬁ)zuk]

>0 \ k=1
( p—2
il+(p—1) il+(p—1)+k
+le Ep— 1J (i+1)l—14+(p—1) + E :Lep k—=1,p— kJ(H—l)l 1+(p—1)+k
\ k=1
k“’“’p _n n 2-+14’
E lén—10€n—1,n (n—1+i")l—14(p—1)+(p—n)
/>0
n—2+(p—1)+1i’
+ E :Lep—nﬂ S —— (n+i')l—14+p—n
i'>0
n—2+1i’ n 2+(p 1)+
= E :Len Ll 1) T E :Lep ntLp—nn( 1)1 (p-1) 441
i/ >0 i’ >0

SO0 X © Vi1 + Yn-1 0 X = m1(y,) by Lemma 36. Therefore

E.(x @@ xun) = (=1)"my(y,) o LJrttin P.35(c) (_1)nml(,_yn[/j1+...+jn)
= —ma((=1)" )

= —myo fu(xt' ®...® xI").

We conclude using Lemma 45 by

(fromly+®,)(xth © ... @ xoin) "0 = (my o f +Z,) (I © ... @ xuIn).

O

Lemma 49. Condition (12)[p] holds for arguments x1* ® ... ® xibr € B =
{x®h @...®@ xwiir € (H*'A)®P | a; € {0,1} and j; € Z>¢ for alli € [1,p]}.

Proof. Recall that |¢| =1 =2(p—1) is even, |x| =1 —11is odd and |f;] = 1 — i by
Lemma 40. We have

p—1

EP<XLj1 ®"'®XLJP Z m2 fz®fp z)( L ®"'®XLjp)

=1

=) ()P Dy (fi(dt @ @ X)) ® fomi(xti ® L. @ i)

1=1
p—1
= fi(XLJl ® ® XL]L) fp_i(XLji+1 ® . ® XLjp)
=1
p23 Ji p—2 ot ti p—2 Ji4Fip_1 j
=xt" o (—1)P "0 P (—1)P Py, e P16y I
p—2
+ Z(_l)z‘—1%Lj1+...+ji o (_1)p—i—1,yp_ibji+1+...+jp
=2
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2. A-algebras

46

p—2
P.35(b ' '
(:) (—1)1” (X °OYp—1+ Yp-10X + Z i © 'Vp—k) o (it tip
k=2

p—2
X©°Mp-1= (Z <L61 (i+1)1-1 T [Z €k+1,le(i~ﬁ)l_1+k]

p—2
il+(p—1) il+(p—1)+k
+L6P*1J(i+lz;l—1+(p—1) + Lep—k—1- kJ (i+1)l—1+(p— 1)+k] >>

k=1
—1+13 142(p—1)+17’
© <§ Lep— 1J N 1)+lz’+§ :L€1J (p—1)(I— 1)+p 1)+h)
>0 i'>0
. il+(p—1)
= E Lep— 1J(p 1)(1—1)+1(i+1) + E :LelJ (p—D{I=D+(p—1)+l
>0 >0
o il+(p—1)
= E Lep—lJ(erz 1)i+(p—1) +§ :Lel p+z 11
120 >0

14l —142(p—1) 41!
Tp-1°X = (Ztel’ 1J p—H’ 2)I+(p—1) + Z Le1) (p+i’ ]1 >

>0 />0
( p—2
il il+k
° ( E (LGIJ(¢+1)1_1 + E Lerr1) i1y 14k
i>0 \ k=1
( p—2
il+(p—1) il4-(p—1)+k
+LeP*1J(i+l)l—1+(p—1) + Ztep k—1,p— kJ (i+ D=1+ (p—1)+k
\ k=1
o (p—1)—1+1’ 1+2p 1 +U!
= E Lep— 1J(p+z/ 1)l—14(p—1) "’E :LelJ (p+i)
>0 >0
o p—2-+i'l zl—l—l 1
= ZLQP 1J(p+z’ Di4+p—2 +Z €1 (p+i'—1)I+1—1
>0 i'>0

i k—1+(p—1)+li
Ve © Vp—k = (ZLQH kz+1k+l1 ik T Ztel’ k] z+k)lf(p - k:)

>0 >0
p— k 1413/ —k+2(p—1)+ld’
o ZLGP kJ Y(I—1)+1d’ +§ : ek (p—Fk)(1— l)+(p 1)-+ia!
/>O I>0

o ]C 1415 k—14+(p—1)+li
= E :Lek (p—k)(1=1)+(p—1)+1(i+k—1) +§ :Lep kJ (p—k)(I—-1)+I(i+k)

i>0 >0
— k=141 k 1+(p—1)+1z
= E :LekJ(p—k—f—i—&-kz—l)l (p—k)+(p—1) +Z ep K] (p—k+i+k)l—(p—k)

i>0 i>0



2.3. An A-structure on Exty ¢ (F,, ) as a minimal model of Homg, ¢ (PRes F,,PResF,)

k—1+1i k—14(p—1)+li
= E : ekJ (p+im1)i+k—1 T E :Lep kJ (p+i—1)l+k—1+(p—1) °

>0 >0
Thus
p—2
X © /yp—1+7p—1 oX + § Yk © Vp—k
k=2
k+(p—1)+1i
= E E <L€k+1 p+’L 1l+k+ Lep—k- 1J (p+i—1)l+k+(p— 1))
>0 k=0
_ kl+l’t PSE(G’) p—l
§ :z : Cu( k, (p—1+0)l+k" L
>0 k'=
and

E(xtit @ ... @ xudr) = (=1)P Pt

So we conclude using Lemma 45 by

(from, +®,)(xt/t @...® xlr) L.47,D.38 (= 1)pup—Lh

D38 (mio fp+Z,)(xt" @...® xte).

Lemma 50. Condition (12)[n] holds forn € [p+1,2(p — 1)] and arguments
X R ... Qxtin € B = {yon @ ... ® xin € (HA)® | a; € {0,1} and j; €
Zxq for alli € [1,n]}.

Proof. As f, =0 for k > p, we have

p—1

(0 @ @) = Y (=)™ ma(fi @ fok) (T @ .. @ i)
k=n—p+1

The right side is a linear combination of terms of the form ~; 0, for k € [n—p—1,p—1].
We have

- k—1+14 k‘ 1+(p—1)+1i
Yk © Yn—k = (Z ekal 1)+1i +Z €p—k) k(l—1 i(p 1)+lz>

>0 >0

n k 1+lz n k 1+(p—1)+l’
(E :Len k 1)+l +§ : €p—n-tk] Y(I=1)+(p—1)+1i’

>0 />0

A necessary condition for that term to be non-zerois k(I—1) =,y n—k—1asl=2(p—1).
We have

kl—1)—(n—k—-1)=p1 —k—n+k+1=1—n=#, 0,
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2. A-algebras

sincep <n—-1<2(p—1)—1. So %0V =0and Z,(xt" ®@...® xt/n) = 0. We
conclude using Lemma 45 by

(fiom +®,)(xt"' @ ...® xtin) ALDES o B2 (M1 o fr+Zn) (e ® ... @ xuin).

]

One could formulate a lemma similar to Lemma 50 for the case n > 2(p — 1) as then the
sum Zi;}%pﬂ(—l)”kmg(fk ® fok) (Xt ® ... ® xIn) is in fact empty. Instead we use
Lemma 33 to prove (12)|n] for n > 2p — 2:

Proof of Theorem 39. Lemmas 41, 43, 46 and 48 to 50 ensure that (12)[n| holds for
n € [1,2p — 2]. Then Lemma 33 with k& = p proves that (12)[n] holds for all n € [1, 0],
cf. also Definition 38. By Lemma 42, f; is injective. By Lemma 40, the degrees are
as required in Lemma 64. Lemma 64 proves that (H"A, (m!),>1) is an A-algebra
and (f,)n>1 is an A-morphism from (H*A, (m],)n>1) to (A, (my,)n>1). By Lemma 41,
we have m) = 0. Thus (H*A, (m/]),>1) is a minimal A -algebra. By Lemma 41, the
complex morphism f; : (H*A,m}) — (A, m;) is a quasi-isomorphism which induces the
identity in homology. So the A,-morphism (f,)n>1: (H*A, (m))n>1) — (A, (my)n>1) is
a quasi-isomorphism and the proof of Theorem 39 is complete. O]

2.4. At the prime 2

We examine the case at the prime 2. We use a direct approach. Note that S, is a cyclic
group so the theory of cyclic groups applies as well.

We have I, So = {0, (id), (1,2), (id) + (1,2)}. We have maps given by

g IFQ SQ — ]FQ
a(id) +b(1,2) — a+Db
D FoS; — Sy

a(id) +b(1,2) — (a+0b)((id) + (1,2)).

We see that ¢ is surjective and kere = ker D = im D = {0, (id) + (1,2)}. The maps
e and D are [, So-linear, where I, is the % So-module that corresponds to the trivial
representation of Sy. So we have a projective resolution of I, by

D D
PRGSFQ = (-.u—}FleQ—)FQOSQ—) E)l _))’

where the degrees are written below. We have the corresponding extended projective
resolution

gFQSQ%FQSQ%FQ—)O%
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2.4. At the prime 2

We set e; to be the identity on I S,.

Let A := Homg, g, (PResF,, PResF;) and let the A -structure on A be (my)p>1 (cf.
Lemma 29). Recall the conventions concerning Hom's(C, C”) for complexes C,C’ and
k e Z.

Lemma 51. An Fy-basis of H* A is given by {&7 | j > 0} where

5 = ZI_€1J§+1 € A.

>0

Proof. Straightforward induction yields, for 7 > 0,
g = ZLelﬁﬂ‘ :
i>0

We have

mi(€) =do gl — (~1Y€ od=do& +¢ od

= <ZLDJ1+1) © <Z €1 z+g> (ZLGl H-]) © (ZLDJzH)
= ZLDJ§+j+1 + ZLDEHH =0

>0 >0

so & is a cycle. As Homg,g, (> Sy, ) = {0,e} and € o D = 0, the differen-
tials of Hom"(PRes[F,,I;) (cf. Lemma 34) are all zero. So {c} is an F,-basis of
H* Hom*(PResFy, F,) for k > 0. Since in the notion of Lemma 34, U, (£F) = ¢, the
set {€F} is an F,-basis of H* Hom*(PResFy, PRes,) for & > 0. For k < 0 we have
H* Hom*(PRes Fy, PRes ;) = H* Hom*(PRes Fy, F,) = 0. So {&7 | j > 0} is an Fy-basis
of H*A. O

We define families of maps (f, : (H"A)®" — A),>1 and (m/, : (H*'A)®" — H*A),>1 as
follows. f; and m/, are given on a basis by
h(g) =¢ for j > 0
(fJ ® gk) = itk for j,k > 0.
All other maps are set to zero.

It is straightforward to check that (H*A, (m!),>1) is a pre-A —algebra and (f)n>1 18 a
pre-Ao-morphism from H*A to A. As m), is associative, (H*A, (m],),>1) is a dg-algebra,
so in particular an A-algebra. As fi, =0 for k # 1, (12)[n] simplifies to

fiom, =muo(fi®@---® f1).
N e’

n factors
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2. A-algebras

As m! =0 and m,, = 0 for n > 3, (12)|n] is satisfied for all n > 3. For n € {1,2}, we
have

fiomy=m;o fi

fromy =ms(fi ® fr).
The second equation follows immediately from the definition of m/, and f;. The first
equation holds as m} = 0 and the images of f; are all cycles. So (12)|n] holds for all n and
(fa)n>1 is an Ao-morphism from (H*A, (m!),>1) to (A, (my)n>1). By the construction

of fi, it induces the identity on homology. Thus (H*A, (m/,),>1) is a minimal model of
(A, (Mmp)n>1)-

Remark 52 (Comparison with primes p > 3). At a prime p > 3, we have constructed a
projective resolution with period length [ = 2(p — 1) in (7). If one constructs a projective
resolution of Z) analogous to the case p > 3, we have a sequence of the form

€59 €2,2 €3 9 €22
—>Z(2)SQ ———>Z(2)SQ ———>Z(2)Sg ———>Z(2)Sg ———>Z(2)Sg —-0—=---
with a period length of 2, where

é29: (id) — (id) — (1,2)

€50 (id) — (id) 4 (1,2)
However, modulo 2 the differentials é; 5 and é§,2 reduce to the same map D : 5 Sg — 5 S,
so we obtain a period length of 1.

The maps ¢ resp. x from Proposition 35 may be identified with &2 resp. £. This way, the
definition of m) at the prime 2 is readily compatible with Definition 38.
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A. On the bar construction

We reuse the conventions given at the beginning of section 2.1.

A.1l. The Koszul sign rule for the composition of graded maps

Lemma 53. Let A;, B;, i € {1,2,3} be graded R-modules and f : Ay — Ay, g : By — B,
h: Ay — Az, i: By — Bs graded maps. Then

(hei)o(f®g)= (=) (hof)@(iog) (19)
Proof. Let a € Ay, b € B; be homogeneous elements. Then

(h@i)o(f®g)a®b) =" (hai)(fa)®g

)
Dlal s+ @Ml (h o £(a
1)lallgl+ID+ITi (o f

) (d

1 Ifll\(( fl®

b))

® (i0g)(b)
(a) ® (i 0 g)(b)
))(a ®Db).

(
)

a

(=
= (-
(=
= (=

f)
iog

Multiple application of Lemma 53 yields the following

Corollary 54. Let n > 1. Given graded R-modules V;, W;, U; and graded maps
fi:Vi=> W, g;: W; = U, fori € [1,n], we have

(1 ©--@gn)o (L@ @ fn) =(=1)"(g10 /1) @ @ (gno fn),

where s = Yo i, |91 (Zrgea 1il) = Sicyicnloil - 15l

A.2. Coalgebras and differential coalgebras

Definition 55.

(i) A R-coalgebra (B,A) is an R-module B equipped with a linear and coassocia-
tive comultiplication A : B — B ® B. Coassociativity means that (1 ® A)o A =
(A®1)oA. We will denote R-coalgebras simply as "coalgebras".

(ii) A coderivation of a coalgebra (B,A) is a linear map b : B — B such that
Aob=(b®1+1®Db)oA.

(iii) A codifferential of a coalgebra (B, A) is a coderivation b : B — B satisfying b? = 0.

(iv) A coalgebra morphism F : (B', A’) — (B, A) between coalgebras (B, A'), (B, A) is
a linear map F': B’ — B such that Ao F' = (F® F)o A
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A. On the bar construction

(v) A differential coalgebra (B,A,b) is a coalgebra (B, A) with a codifferential b on
(B, A).

(vi) A morphism of differential coalgebras F : (B, A’,b') — (B,A,b) is a coalge-
bra morphism F' : (B',A’) — (B, A) that commutes with the differentials, i.e.
boF =Folb.

Lemma 56.
(a) A morphism of coalgebras is an isomorphism if and only if it is bijective.

(b) A morphism of differential coalgebras is an isomorphism if and only if it is bijective.

Proof. Each isomorphism of (differential) coalgebras is bijective as it is also an isomor-
phism in the category of sets.

Now let F': (B',A’) — (B, A) be a bijective morphism of coalgebras. Then we have an
R-linear inverse F’. We have

ANoF =(FFF)o(FRF)oA'oF =(FF®@F)oAoFoF =(FF®F)oA
so I’ is a morphism of coalgebras and F' an isomorphism of coalgebras.

For a bijective morphism of differential coalgebras F': (B, A’ V') — (B, A,b), we need
to check that its inverse coalgebra morphism F’ commutes with the differentials. In fact,

Flob=FoboFoF =F oFoboF =bolF.

So F'is an isomorphism of differential coalgebras. O

A.3. The bar construction

The following may be found e.g. in [16, 1.2.2].

Definition/Remark 57. Let V' be a graded R-module. We shall define the structure of
a (graded) coalgebra on the graded module TV := @, ., V" which then will be called
the tensor coalgebra of V. The grading on T'V is given by the grading of tensor products
and sums of graded R-modules, i.e. [v1®- - ®@vg| = >,y  [vi] for homogeneous elements
vy, ...,vx. The coalgebra structure is given by the comultiplication A : TV — TV TV
defined for elements v, ® --- ® v, € V¥ by

A ®@-@u)= > 0@ @)@ Vg1 ®- @ vy)

1<i<k—1

= D) (® @) ® (Vi1 @ D Vi)
i1+ia=k
10221

A is coassociative, as for v; ® - - - ®@ v, € VO we have

(A1) oA) (1@ - @uv)

o2



A.3. The bar construction

= Z(Ul - ® Uil) X (Uz‘1+1 Q- Uz‘1+z'2) ® (Uz'1+i2+1 Q- Q& Uk)

i1+io+iz=k
11,i2,13>1

=(1®A) o A) (v ® - ® vy)

So (TV,A) is indeed a coalgebra. The map A is graded of degree 0.

We have the canonical inclusions and projections for k£ > 1:

Lt VO — TV
m i TV —s Vo

If we have several graded R-modules V', V', we will usually distinguish the comultiplica-

tions, inclusions and projections on TV resp. TV’ by A resp. A', 1), resp. ¢}, and 7 resp.
/

7rk:;

We will prove A =0« x €V forz € TV, ie.
ker A=V (20)

We have readily V' C ker A. To prove equality we first compose A with the projection
m®id : TV®TV — V @ TV which maps TV @ TV = @,.,(V®* @ TV) onto
its first component. Secondly we compose with the multiplication ¢ : V @ TV —
TV, 0, (12 @+ @vg) = v @V @ -+ ® 1. Application to vy ® ---®@wvy, € VO k> 2,
gives

TV 2, TV @ TV
MR @ > (1@ @)@ (Vg1 @ ® Vi,
Z11‘11—;'112222116
meid VTV LN TV
— U1 ® (Vg ® -+ R vy) = U QU Q- QU

So A is injective on @), V®* and zero on V', which proves (20).

For n € Z>o U {o0}, we set

TVen = @ VEF CTV.

kell,n]

In particular TV<,, =TV.
Note that for k € Z>,

im (A] o) € TVap @ TVapoy €TV @ TV (21)

S0 (TVgn, A‘T‘@n) is a subcoalgebra of (T'V, A).
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A. On the bar construction

Lemma 58 (Lifting to coderivations). Let V' be a graded R-module. Let n€Z~,U{oco}.
Then the map from the set of graded coderivations of TV<, of degree 1 to the set of
families of graded maps (by : V% = V)yep,n with |by| =1 for k € [1,n] that is given by

br— (m o b‘y@k)ke[l,n]

is bijective. Its inverse is given by (b )kepn — b, where b is defined by

Bor = Y, 19 @b ®1% (22)

r+s+t=~k
rt>0, s>1

Proof. To show that b — (by)rep,n is surjective, let (b, : Vok V)kenn be a family

of graded maps with |bg| = 1 and construct b as given in (22). The properties |b] = 1,
imb C TV, and m o b}vm = by, follow immediately. We show that b is a coderivation:

Aoblyer =Ao Z 19" @ by, @ 1%

r4+s+t=~k
r,t>0,s>1
i t t
— E 1®T1®(1®T2®b5®1®)+ E (1®T’®b8®1® 1)®1®2
ri+ro+s+t=k r+s+t1+to=k
r2,t>0 r,t1>0
r1,s>1 to,s>1

— Z Z 1®7"1 ® <1®T2 ® bs ® 1®t> + Z (1®7" ® bs ® 1®t1> ® 1®t2

ri+to=k \ T2+s+t=t2 r+s+t1=r1
ri,ta>1 ro,t>0,s>1 r,it1>0,5s>1

=(1®b+b®1)oA

S0 b+ (by)kep,n) is surjective and we find a preimage as indicated by (22). For injectivity,
we use the fact that set of graded coderivations of degree 1 is closed under addition, i.e.
it is a R-module. So we only need to check that the kernel of b — (bi)ke[1,n) is zero:

Let b : TV, — TV, be a graded coderivation of degree 1 such that m o b‘v@k =0
for all £ € [1,n]. We prove by induction on k > 0 that b‘TV<k = 0 thus b = 0: For

k = 0 there is nothing to prove. So suppose for the induction step that b! TV, = 0 and

k+1€[l,n). Then Aobo i =(1@b+b®1) oMo — ™0, So by (20), we

have bo 1 =t10(m oboigyy) =0 and we have proven b‘TV =
<k+1

Thus the map b+ (by)rep1,n) is bijective and its inverse images are given by (22). O

Lemma 59 (Lifting to coalgebra maps).

Let V, V' be graded R-modules. Let n € Zxy U {oo}.

The map from the set of graded coalgebra morphisms F : TV, — TV, of degree O to the
set of families of graded maps (Fy, : V' — V)pcnm with |Ex| =0 for k € [1,n] given by

F|—>(7TlOF

V’@k )ke[lvn]
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A.3. The bar construction

is bijective. Its inverse is given by (Fi)repn — F, where F is defined by

F

o= Y. F®-®F, (23)
i1+...tis=k
1>

Proof. To show that F + (F})keqi,n) Is surjective, let (Fj : V'®% — V)ep, be a family
of graded maps with |Fi| = 0 for all £ € [1,n] and construct F' be as in (23). The
properties m; o Flyer = Fy, im F' C T'V.,, and |F| = 0 follow immediately. We show that
F'is a coalgebra morphism:

Ao Flyer = Z (E1®"'®Fis)®(Fis+1®"'®Fis+5/)
i1+...+is+slik
s,8"i5>1
- > Y, (F®-0F)Q(F,, 0 ®F,)

y1+y2=k ) i1+.,_+'1's:y1
y1,y2>1 g1t i o=Y2
i;>1

=(F®F)oA

So F = (Fi)ken,n) is surjective and we obtain a preimage as indicated by (23). To prove

that [+ (Fi)re1,n) s injective, let (Fi)reqi,n be as before and let F, F': TV, — TV,

pren = I for all k € [1,n].

‘TV, so ' = I, For k = 0 there is
<k

and k + 1 € [1,n] for the induction step.

be coalgebra maps of degree 1 satisfying m o F' |V/®k =m ol
We prove by induction on £ > 0 that F' | v = F !
<k

nothing to prove. So suppose F' }TV, =F /‘T_V/
<k <k

We have
AO(F_F,)|V/®k+1 :(F®F_F,®F,)OA/ V/®k+1
—(F®(F—F)—(F =F) @ F') o | yurss =0
as im (A’|V/®k+l) CTV,, @TV,,. Asker A =V, we have
(F—F') yreksr — L1 O T O (£ — F/)}V/®k+l =110 (Fls1 — F1) = 0.
Thus we have F’ ‘ TV, T F’ } v, and the induction is complete. We have F' = F’ so
F = (Fy)kepn is bijective and its inverse images are given by (23). O

Lemma 60. Let n € Z>y U{oo}. Let k € [0,n] such that k+ 1 € [1,n].

(i) Let V be a graded R-module and b: TV<,, — TV, be a graded coderivation with

bl = 1. Then b? = 0 implies im(b? o 1j41) C V.
TV<y,

(ii) Let V., V' be graded R-modules and b: TV<,—TVey, b': TV. =TV, be graded
coderivations. Let F: TV, — TV<, be a graded coalgebra map with |F| = 0.

Then (boF—Fob’)|TV, = 0 implies im ((bo F — Fob)ou} ) CV.
<k
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A. On the bar construction

Proof. At the steps marked by "x" in the following, we use (21), and b TV, = 0
—0. _

respectively (F ol —bo F) ‘TV,
<k

Aob* ot =(10b+b®1)o(1@b+b®1)0 Aoty

PN 0@ bobrbob+ @1 oMo

=1+ @1 oAoci; =0

Ao(Fobl —boF)ou 1 =[(FF)oA ol —(1®b+b®1)oAoF|o),,
=[(FRF)o(1®V+0®1)—(1®b+b®1)o (F®F) oA ou)
(19)"F‘::O[F®(Fob’—boF)+(FOb’—bOF)®F]OA'OL;H;0
The lemma now follows from ker A = V. ]

Definition/Remark 61. For a graded R-module A, we define the R-module SA with
shifted grading by SA = A and (SA)? := A", We have the graded map w : SA — A,
w(r) = z with |w| = 1. We write SA®* := (SA)®* for k > 1.
Let n € Zso U {oo}. A corresponding pre-A,-triple on A is defined as a triple
((mua)kepngs (Ok)kep,n), b) consisting of

(i) a pre-A,-structure (my)rei,n on A,

(ii) a family of graded maps (b : SA®* — SA)ep n satistying |b,| = 1 and

(iii) a graded coalgebra map b: T'SA<, — T'SA<, of degree 1
such that b, = w™! omy o w®* for k € [1,n] and 7 o b|SA®k = by, for k € [1,n].
Given a pre-A,-structure (my)repn on A, a family of graded maps (b : SA®k
SA)gep,n satisfying |by| = 1 or a graded coalgebra map b : T'SA<,, = T'SA<, of degree 1,
i.e. a datum of type (i), (ii) or (iii), it can be uniquely extended to a corresponding
pre-A,-triple on A: The condition by = w™! o my o w®* for k € [1,n] induces a bijection
between data of type (i) and of type (ii). Similarly, Lemma 58 gives a bijection between
data of types (ii) and (iii).

Let n € Zso U {oo}. Let A, A’ be graded R-modules. A corresponding pre-A,,-morphism
triple from A’ to A is defined as a triple ((fx)rep,n)s (Fk)rep,n), £) consisting of

(i) a pre-A,-morphism (f)repn from A’ to A,
(ii) a family of graded maps (Fy : SA™®* — SA)epin), |Fi| =0 for k € [1,n] and
(iii) a graded coalgebra morphism F': TSAL, — T'SA<, with |F| =0

such that Fj, = w™to frow®* for k € [1,n] and 7T10F‘SA/®k = [}, for k € [1,n]. Analogous
to corresponding pre-A,-triples, given a datum of type (i), (ii) or (iii), it can be uniquely
extended to a corresponding pre-A,,-morphism triple via Lemma 59 and the bijection
induced by F, = w™ ! o f; o w®k,
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Theorem 62 (Stasheff [21]). Let A be a graded R-module. Let n € Z>o U {oo}. Let
(M) kepa)> (bk)kep,a), b) be a corresponding pre-Az-triple on A.
Let n € Z>oU{oo}, n <n. The following are equivalent:

(a) Equation (11)[k] holds for k € [1,n], i.e. (my)repn) s an Ayp-structure on A.
(b) For all k € [1,n], we have

> b o (1% @b, ® 19) = 0. (24)[k]

k=r+4s+t,
r,t>0, s>1

(c) b2‘TSA< =0, i.e. b‘TSA< is a coalgebra differential on T'SA<,.
Proof. We prove (a) < (b): We have

Z bry14e0 (17 @ by ® 1%7)

k=r+s+t,
r,t>0, s>1

- Z w om0 (W W W) o (1% @b, ®1%)

k=r+s+t,
r,t>0, s>1

C.E’:le—l o Z (—1)‘w®t"|bs‘mr+1+t o (W®T ® (w o bs) ® w®t)

k=r+s+t,
r,t>0, s>1

=w o Z (=110 0 (W7 ® (M 0 W) @ W)

k=r+s+t,
r,t>0, s>1

wlo Z (—1)t(_1)r(278)mr+1+t o (1®r QM ® 1®t> o (w®r ® w® ® w@t)

k=r+4s+t,
r,t>0, s>1

=wlo Z (=) "m0 (19" @m, ® 1% o w®k,

k=r+s+t,
r,t>0, s>1

So (11)[k] < (24)|k|, whence (a) < (b).

We prove (b) < (c¢): We first prove for finite n that ((24)[k] for k € [1,n]) < b*|rsa., = 0.
We proceed by induction on n > 0. -

For n = 0 we have [1,n] = 0 and T'SA<, = {0}, so there is nothing to prove. So now
assume for induction that b%|pg4_. = 0 < (24)|k] for k € [1,n]. We have to show that
V|rsa.,,, =0 < (24)[k] for k € [1,n+ 1]. It is sufficient to prove under the assumption
b?|rsa., = 0 the equivalence b?|gqen1 = 0 < (24)[n + 1]. So we assume b?|rsa_, = 0.
By Lemma 60(i), we have )

C.54

b2’SA®n+1 =11 07 O b2’SA®n+l (2) Z br+1+t o (1®T X bs ® 1®t>-

n4+l=r+s+t,
r,t>0, s>1

So b?|ggent1 = 0 < (24)[n + 1] and the induction step is complete.
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The case n = oo follows by
Vk € Z>q : (24)[k] & Yk € ZsoVE € [1,k] : (24)[F]
& Vk e ZZO : bQITSASk =0 & b =0.
m

Lemma 63. Let A, A’ be graded R-modules. Let i € Z>o U {o0}.

Let ((mp)rep,as (bk)kem],b) resp. ((my)kep,a), (03 kep,a); V') be corresponding pre-Aj-
triples on A resp. A'. Let ((fi)repn), (Fi)rep,a), F') be a corresponding pre-Az-morphism
triple from A’ to A.

Let n € ZsoU{oo} be such that n < n. The following are equivalent:

(a) Assertion (12)[k] holds for k € [1,n].
(b) For k € [1,n], we have

Z FT+1+tO T®b;®1®t) - Z bro(ﬂl ®E2®®F’Lr) (25)[k]

k=r+s+t 1<r<k
rt>0, s>1 i1+...+ir=k
io>1
c) Fo b" =bo F‘
(c) TSAL, TSAL,

Note that we only require conditions on the grading of (m,,),>; and (m! ),>;. We do not
require them to be A,,- resp. A -algebra structures on A and A’.

Proof. We prove (a) < (b): Analogously to the proof of (a) < (b) of Theorem 62 we
obtain for the left side of (25)[k]

/ t -1 t ! t IRk

g Foi1i0(1® @0, ®1%) =w'o E (=) fri1e 0 (197 @ m) @ 19%) 0 W@,
k=r+s+t k=r+s+t
rt>0, s>1 r,t>0, s>1

It remains to examine the right side:

E bro(Fi1®"‘®Fir): E w_lomrow®ro(ﬂl®"‘®Fir)
1<r<k 1<r<k
i1+...tir=k i1+...+tir=k
is>1 is>1
“Bolo Y (-1)'myo(woF,)® - ® (Wwo k)

1<r<k
11+ +7fr—k

e S e oW ) 66 (5, o)
1<r<k
i1+....+ir=k

is>1

=w o Z (=1)’my o (f;, @@ f;,) o w®F
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A.4. Applications. Kadeishvili’s algorithm and the minimality theorem.

In the last step, Corollary 54 gives the exponent

v=s§: (lfis > |w’®“|> = <<1—i5>2%> = Y (=i

1<t<s 2<s<r 1<t<s 1<t<s<r
So we have (12)[k] < (25)|k|, whence (a) < (b).

We prove (b) < (c).
We first prove (b) < (c) for finite n. We proceed by induction on n € [0,7n]: For n =0
we have [1,n] = () and TSA’, = {0}, so there is nothing to prove. Now suppose given n.

lrsar, =00 Flyga & ((25)[K]
for k € [1,n]) holds. For the induction step we need to prove that F ot/
bo F|TSA, < ((25)[k] for k € [1,n+ 1]). Suppose that F ol
<n+1

suffices to show the equivalence F o b'|¢ onis = b0 F o < (25)[n+ 1].

By Lemma 60(ii), we have (Fob' —bo F)ou, y =t10[mo(Fol —boF)ou, ]. Now
mo(Fob —boF)ou  is exactly the difference of the sides of (25)[n+ 1|, cf. (22),(23).
So F o b’|SA,®n+1 =bo F|SA,®n+1 & (25)[n + 1] and the induction step is complete.

As induction hypothesis, suppose the equivalence F ot/

‘TSA’SnH

‘TSA’QL =bo F‘TSA’SH' It

The case n = oo follows by

Vk € Z>y : (25)[k] & Vk € ZsoVE € [1,k]: (25)[K]

& VkeZZO:Fob"TSAQk:boFTSA%k & Foll=boF.

A.4. Applications. Kadeishvili’s algorithm and the minimality
theorem.

In this subsection we will discuss the construction of minimal models of A,-algebras.
Firstly, Lemma 64 states that certain pre-A,-structures and pre-A,-morphisms that arise
in the construction of minimal models are actually A, -structures and A,-morphisms.
Secondly, we give a proof of Theorem 32. We will review KADEISHVILI’s original proof
of 9] as it gives a an algorithm for constructing minimal models which can be used
for the direct calculation of examples. Note that LEFEVRE-HASEGAWA has given a
generalization of the minimality theorem, see [16, Théoréme 1.4.1.1], which we will not
cover.

Lemma 64. Let n € Z>y U {oo}. Let (A',(m})repnn) be a pre-Ay-algebra. Let
(A, (mp)kepn)) be an Ap-algebra. Let (fi)repn be a pre-A,-morphism from A’ to A such
that (12)[k] holds for k € [1,n]. Suppose fi to be injective.

Then (A’ (m},)kepn) s an An-algebra and (fi)repn is a morphism of Ay-algebras from
(A, (i) kerrmy) to (A, (Mm)repn))-
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A. On the bar construction

Proof. We have the corresponding pre-A,-triple ((m})rein, (03 kepn); V'), the corre-
sponding pre-A,,-triple ((mu)keq1,n), (bk)kein, ) and the corresponding pre-A,-morphism
triple ((fi)reptn)s (Fr)kepn), F). It suffices to prove by induction on k € [0,7n] that
(b’)Q‘TSA,Q =0, cf. Theorem 62.

For k = 0, there is nothing to prove. For the induction step, suppose that ¢/ 2‘ roa =0
<k

Then by Lemma 60(i), we have im(b'? o ¢} ;) € SA. Thus 0 = b* o F o1}, =

Folb'?ouj,, =F ob?ou,,. Astheinjectivity of f; implies the injectivity of F, we

have b2 0}, =0 and thus b'?|, .,  =0. L
<k+1

The following two lemmas give the incremental step in Kadeishvili’s algorithm. By a
quasi-monomorphism of complexes we will denote a complex morphism that induces
monomorphisms on homology.

Lemma 65. Letn € Z>y. Let A, A" be graded R-modules.

Let ((m})kepn+1]s (O)kepns1), V) be a corresponding pre-Ayy1-triple on A’

Let ((mg)g>1, (bg)k>1,0) be a corresponding pre-A-triple on A.

Let ((fe)repnt1s (Fr)kepng), F) be a corresponding pre-A,1-morphism triple from A’
to A.

Suppose that the following hold.

(i) We have b’2|TSA,§n =0,0°=0and Fo b/‘TSA’Sn =bo F‘TSA’Sn'

(i) We have by =0 and F is a quasi-monomorphism from the complex (SA’, 1)) to the
complex (SA,by).

We set h: SA®"+L 5 G A

h:= Z Fr+1+to(1®r®b;®1®t) _ Z bro(ﬂl®ﬂ2®...®ﬂ).
n+l=r+s+t re[2mn+1]
rt20,5€[2,m] i1 dip=n+1
is>1
Then

(a) V2 =0, ie. (A, (m})repnni1)) is an A, 4-algebral.
(b) bioh = 0.
(c) Foll =boF & Fiol, , —bioF, 1 +h=0.

Proof. By Lemma 63, we have F'ob' =bo F < (25)[n + 1]. The difference of the sides
of (25)[n + 1] is given by

mo(Fob —boF)ou,

'Note that (11)[n + 1| does not depend on m/, ., or fn41, as mj = w' o b} o ()1 = 0.
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22),(23 r
PN R (el e1®) - Y bho(F,0F,0--0F)
n+l=r+s+t 1<r<n+1
rt>0,s>1 i1+...+ir=n+1
is>1
b=0

=Fiob, ,—bioF,.1+h
Thus we have proven (c). We have
byoh=bomo(Foll—boF)ou —boFiob,  +(b)oF,
—blowlo(Fob'—boF)OLn+1 Frol ol
=bjomo(Fob —boF)ou,
horomo(Fobl —boF)ol,,,
L@y, o(Foll —boF)ou,
1)boFob/oLnJrl

As b) = 0, we obtain im(b' 01),,,) C TSAL,, cf. (22). By bo F| ., =Fol we

conclude

rosc.

L.60(i)
/2 / /2 ! /2 /
bjoh=Fob~ o, , = Foiromob o, =Fomob o,

For z € SA®" 1 (6?0l ,)(x) L.806) (miob' 2o )(z) is a cycle as b} = 0. Now
(Fiomolb' 2o, )(x) = (b oh)(x) is a boundary. As Fj is a quasi-monomorphism,
(b/?0dl,.1)(x) is a boundary. As by = 0, this implies

(V20 tp1)(z) =0 (26)
So v'? = 0, whence (mj})kef,nt1) is an A, i-structure on A’ as claimed in (a). Thus,
byoh=Fiomolb 2?0, =0 asclaimed in (b). O

Lemma 66. Let n € Z>;. Let (A, (my)i>1) be an Ax-algebra. Let (A', (m})kenn)) be
an Ay-algebra. Let (fi)kepn be an Ay,-morphism from (A’, (M} )kepn)) to (A, (Mu)kepin)-
Suppose the following hold.

(i) We have m| =0 and f, is a quasi-isomorphism from the complex (A',m}) to the
complex (A, my).

(i) A" is a projective R-module.

Then there exist f,i1 and m),_ ., such that (A (M) kepnt)) s an A, q-algebra and
(fk)ke[l,n+1] is an Ayq1-morphism from (Ala ( )ke[l,n+1 ) (A, (mk)ke 1 n+1])

Note that (A")* = H*(A, m,) for k € Z.

Proof. We have the corresponding triples ((m)i>1, (bk)r>1,0), ((M)kepns (0 ) ke, 0)
and ((fe)repn)s (Fr)repn), ). Note that the term h of Lemma 65 does not depend on
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A. On the bar construction

b i1 OF Fipp, s0 h can be unambiguously defined even when m;,, and F,1; are not yet
defined and we have b; o h = 0. Motivated by Lemma 65(c), we seek (properly graded)
morphisms b, : SA®" — SA" and F,yy 0 SA®" T — SA such that the following
holds.

h:blan+1—F10b;1+1 (27)

We will construct b),,, and F,1; on each (SA®" 1)1, ¢ € Z individually. As SA’ = A
as R-modules, SA’ is projective. As a tensor product of projective modules, SA®"+1
is projective. (SA'®"*1)7 is projective as a direct summand of SA®"1. There exists
a free R-module G together with a surjective morphism g : G — (SA®"1)7 (e.g. set
G to be the free R-module over the set (SA®"1)?). By the universal property of the
projective module (SA'®"*1)4 there exists a morphism g* : (SA®"™1)? — G such that
gog" =id(saeniye. Let Z be a basis of G. We will define b, G — (SA)*! and
Foi1: G — (SA)? such that

hOg:b10Fn+1—Flol~7;1+1. (28)

We define ¥/, and F,,; by giving them on basis elements v € : As by o h = 0, h(g(v))
is a cycle. As by (i), F} is a quasi-isomorphism from (SA’, b)) to (SA,b) and b} = 0, F}
is in fact a quasi-isomorphism from the homology of SA to SA, i.e. each homology class
of SA contains exactly one element of im F;. Thus there is an unique element y € S A’
such that h(g(v)) and Fi(y) are in the same homology class. As |h| =1 and |F;| = 0,
we have |y| = |g(v)| +1 = ¢+ 1. Thus h(g(v)) — Fi(y) is a boundary and homogeneous
of degree ¢ + 1. Thus as |b;| = 1, we can select an element z € SA, |z| = ¢ such that
h(g(v))—Fi(y) = b1(z). Now set b;erl( v) := —y and F,1(v) := z. By the grading of y and
2, we obtain morphisms ¥, : G — (SA)** and F,; : G — (SA)?. These maps satisfy
by construction (28). We set b b
Then

— 1 * T %
n+1’(SA/®n+1)q = b4 09" and Fn+1|(SA,®n+1)q = F,y109%

* (28) r- 7 %
h|(SA/®n+1)q :hogog = (blan+1—F10b/+1)Og
=bio Fn+1‘(SA’®"+1) —Iio bn+1|(SA/®n+1)q

Thus we obtain morphisms b,,, ; and F,,;; such that (27) holds. Asim (b’ C

n+1|(5,4/®n+1)q>
(A and im (F C (SA)7, we have |b,,,| = 1 and |F, | = 0. Us-

n+1|(5A/®n+1)q> =
ing ¥/, ., and F, 1, we extend the corresponding triples ((1m},)refin], (0))kel1n]s b’) and
((fe)kerml, (Fi)kepm), £7) to corresponding  triples ((mp)ketns1); (0 ke, wt1), V) and
((fk)ke[l nt1]s (Fr)kepnt1), ). Recall Theorem 62 and Lemma 63. Via Lemma 65,
(A", (m))kepnt1)) is an A, iq-algebra and Fol = boF. So we have proven that
(fk)ke 141 - (A (M) kepnt1)) = (A, (Mi) ke nt1)) is a morphism of A, -algebras. [

Concerning Lemma 66, we may now also construct m/, ., and f,, 41 directly: We construct

(properly graded) maps m), ., and fy4; such that (12)[m + 1| holds. Such m/,,, and
fma1 exist by Lemma 66. Then Lemma 64 ensures that all other requirements are met.
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Theorem 67 (Kadeishvili’s algorithm for the minimality theorem). Let (A, (my)g>1) be
an A -algebra. Let H*A be its homology. Suppose H* A is a projective R-module. Then
we construct a minimal model as follows:

Forq e Z, HIA = ker(ml‘Aq)/im(mﬂAqq) is projective as a direct summand of H*A.
The residue class map Py : ker(ml‘Aq) — H?A is surjective. By the universal property of
the projective module HYA, there exists Py H?A — ker(ml}Aq) such that Pyo Py = idgaa.
Thus Py maps each homology class ¥ in H?A to a representing cycle v with |z| = q = |Z|.

Then f; : H'A — A defined by f;
cycle and | f1| = 0.

‘HqA = P; maps each homology class to a representing

We set m} : H'A — H"A, m| = 0. We have f; om] fESa) my o f1, so
fi: (H'A,m)) — (A,my) is a quasi-isomorphism and also a morphism of Ai-algebras.
By construction, fi : (H*A,m}) — (A, my) induces the identity in homology.

im f1 Cker my

We then use Lemma 66 to inductively construct an A-structure (m})r>1 on H*A and a
quasi-isomorphism (fi)g>1 of Aco-algebras from (H*A, (m})k>1) to (A, (my)r>1)-
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