
An A∞-structure on the cohomology
ring of the symmetric group Sp

with coefficients in Fp

Bachelor thesis
in partial fullfillment of the requirement for the degree of

Bachelor of Science in Mathematics

Stephan Schmid
November 2012





Contents

Contents

0.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.3. Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.4. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1. The projective resolution of Fp over FpSp 10
1.1. A description of Z(p)Sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2. A projective resolution of Z(p) over Z(p)Sp . . . . . . . . . . . . . . . . . . 17
1.3. A projective resolution of Fp over FpSp . . . . . . . . . . . . . . . . . . . 22

2. A∞-algebras 25
2.1. General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2. The homology of Hom∗FpSp(PResFp,PResFp) . . . . . . . . . . . . . . . . 30
2.3. An A∞-structure on Ext∗FpSp(Fp,Fp) as a minimal model of Hom∗FpSp(PResFp,

PResFp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4. At the prime 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A. On the bar construction 51
A.1. The Koszul sign rule for the composition of graded maps . . . . . . . . . 51
A.2. Coalgebras and differential coalgebras . . . . . . . . . . . . . . . . . . . . 51
A.3. The bar construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.4. Applications. Kadeishvili’s algorithm and the minimality theorem. . . . . 59

0.1. Introduction

A∞-algebras Let R be a commutative ring. Let A be a Z-graded R-module. Let
m1 : A → A be a graded map of degree 1 with m2

1 = 0, i.e. a differential on A. Let
m2 : A⊗ A→ A be a graded map of degree 0 satisfying the Leibniz rule, i.e.

m1 ◦m2 = m2 ◦ (m1 ⊗ 1 + 1⊗m1).

The map m2 is in general not required to be associative. Instead, we require that for a
morphism m3 : A⊗3 → A, the following identity holds.

m2 ◦ (m2 ⊗ 1− 1⊗m2) = m1 ◦m3 +m3 ◦ (m1 ⊗ 1⊗2 + 1⊗m1 ⊗ 1 + 1⊗2 ⊗m1)

Following Stasheff, cf. [21], this can be continued in a certain way with higher multi-
plication maps to obtain a tuple of graded maps (mn : A⊗n → A)n≥1 of certain degrees
satisfying the Stasheff identities, cf. (11). The tuple (A, (mn)n≥1) is then called an
A∞-algebra.

A morphism of A∞-algebras from (A′, (m′n)n≥1) to (A, (mn)n≥1) is a tuple of graded maps
(fn : A′⊗n → A)n≥1 of certain degrees satisfying the identities (12). The first two of these
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are

(12)[1] : f1 ◦m′1 =m1 ◦ f1

(12)[2] : f1 ◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1) =m1 ◦ f2 +m2 ◦ (f1 ⊗ f1).

The specific form of the Stasheff identities and of (12) is motivated by the bar construction.
It relates the A∞-structures on a Z-graded R-module A bijectively to the coalgebra
differentials of degree 0 on the graded tensor coalgebra TA. It relates morphisms of
A∞-algebras from (A′, (m′n)n≥1) to (A, (mn)n≥1) bijectively to the morphisms of graded
differential coalgebras from TA′ to TA of degree 0.

A morphism f = (fn)n≥1 of A∞-algebras from (A′, (m′n)n≥1) to (A, (mn)n≥1) contains a
morphism of complexes f1 : (A′,m′1)→ (A,m1). We say that f is a quasi-isomorphism of
A∞-algebras if f1 is a quasi-isomorphism. Furthermore, there is a concept of homotopy
for A∞-morphisms, cf. e.g. [12, 3.7] and [16, Définition 1.2.1.7].

History The history of A∞-algebras is outlined in [12] and [13].

As already mentioned, Stasheff introduced A∞-algebras in 1963.

If R is a field, we have the following basic results on A∞-algebras, which are known since
the early 1980s.

• Each quasi-isomorphism of A∞-algebras is a homotopy equivalence, cf. [20], [10], . . .

• The minimality theorem: Each A∞-algebra (A, (mn)n≥1) is quasi-isomorphic to an
A∞-algebra (A′, {m′n}n≥1) with m′1 = 0, cf. [9], [8], [20], [5], [7], [18], . . . . The
A∞-algebra A′ is then called a minimal model of A.

Keller established a connection between A∞-algebras and representation theory in
the early 2000s, cf. [11], [12, 7.7] and also [16, §7]: Given an F-algebra B over a field F
and B-modules M1, . . . ,Mn, consider the full subcategory of B-modules given by the
B-modules which have a finite filtration such that all quotients are isomorphic to some
Mi. Set M = ⊕ni=1Mi and choose a projective resolution PResM of M . The homology of
the dg-algebra Hom∗B(PResM,PResM) is the Yoneda algebra Ext∗B(M,M). Construct
an A∞-structure on Ext∗B(M,M) such that Ext∗B(M,M) becomes a minimal model of the
dg-algebra Hom∗B(PResM,PResM). Now Ext∗B(M,M) together with its A∞-structure
is all that is necessary for reconstructing the subcategory mentioned above.

For the purpose of this introduction, we will call such an A∞-structure on Ext∗B(M,M)
the canonical A∞-structure on Ext∗B(M,M), which is unique up to isomorphisms of
A∞-algebras, cf. [12, 3.3].

This structure has been calculated or partially calculated in several cases.

Let p be a prime.

For an arbitrary field F, Madsen computed the canonical A∞-structure on Ext∗F[α]/(αn)(F,F),
where F is the trivial F[α]/(αn)-module, cf. [17, Appendix B.2]. This can be used to
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0.1. Introduction

compute the canonical A∞-structure on the group cohomology Ext∗FpCm(Fp,Fp), where
m ∈ Z≥1 and Cm is the cyclic group of order m, cf. [22, Theorem 4.3.8].

Vejdemo-Johansson developed algorithms for the computation of minimal models, cf.
[22]. He applied these algorithms to compute large enough parts of the canonical A∞-
structures of the group cohomologies Ext∗F2D8

(F2,F2) and Ext∗F2D16
(F2,F2) to distinguish

them, where D8 and D16 denote dihedral groups. He stated a conjecture on the complete
A∞-structure on Ext∗F2D8

(F2,F2). Furthermore, he computed parts of the canonical A∞-
structure on Ext∗F2Q8

(F2,F2) for the quaternion group Q8. He conjecturally stated the
minimal complexity of such a structure. Based on this work, there are now built-in
algorithms for the Magma computer algebra system. These are capable of computing
partial A∞-structures on the group cohomology of p-groups.

In [23] and [22] (note the comments at [22, p. 41]), Vejdemo-Johansson examined
the canonical A∞-structure (mn)n≥1 on the group cohomology Ext∗Fp(Ck×Cl)

(Fp,Fp) of the
abelian group Ck × Cl for k, l ≥ 4 such that k, l are multiples of p. He showed that the
multiplication maps m2, mk, ml, mk+l−2, m2(k−2)+l and m2(l−2)+k are non-zero, cf. [22,
Theorem 3.3.3].

In [14], Klamt investigated canonical A∞-structures in the context of the representation
theory of Lie-algebras. In particular, given certain direct sums M of parabolic Verma
modules, she examined the canonical A∞-structure (m′k)k≥1 on Ext∗Op(M,M). She proved
upper bounds for the maximal k ∈ Z≥1 such that m′k is non-vanishing and computed the
complete A∞-structure in certain cases.

The result For n ∈ Z≥1, we denote by Sn the symmetric group on n elements.

The group cohomology Ext∗FpSp(Fp,Fp) is well-known. For example, in [1, p. 74], it is
calculated using group cohomological methods.

In this document, we will construct the canonical A∞-structure on Ext∗FpSp(Fp,Fp).

We obtain homogeneous elements ι, χ ∈ Hom∗FpSp(PResFp,PResFp) =: A of degree
|ι| = 2(p− 1) =: l and |χ| = l− 1 such that ιj, χ ◦ ιj =: χιj are cycles for all j ∈ Z≥0 and
such that their set of homology classes {ιj | j ∈ Z≥0} t {χιj | j ∈ Z≥0} is an Fp-basis of
Ext∗FpSp(Fp,Fp) = H∗A, cf. Proposition 35.

For all primes p, the obtained A∞-structure (m′n : (H∗A)⊗n → H∗A)n≥1 on H∗A still has
a simple description. In fact, we have m′n = 0 for all n ∈ Z≥1 \ {2, p}:

On the elements χa1ιj1⊗· · ·⊗χanιjn , n ∈ Z≥1, ai ∈ {0, 1} and ji ∈ Z≥0 for i ∈ {1, . . . , n},
the maps m′n are given as follows, cf. Definition 38 and Remark 52.

If there is an i ∈ {1, . . . , n} such that ai = 0, then

m′n(χa1ιj1 ⊗ · · · ⊗ χanιjn) = 0 for n 6= 2 and

m′2(χa1ιj1 ⊗ χa2ιj2) =χa1+a1ιj1+j2 .
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If all ai equal 1, then

m′n(χιj1 ⊗ · · · ⊗ χιjn) = 0 for n 6= p and

m′p(χι
j1 ⊗ · · · ⊗ χιjp) = (−1)pιp−1+j1+...+jp .

0.2. Outline

Section 1 The goal of section 1 is to obtain a projective resolution of the trivial
FpSp-Specht module Fp. A well-known method for that is "Walking around the Brauer
tree", cf. [4]. Instead, we use locally integral methods to obtain a projective resolution in
an explicit and straightforward manner.

Over Q, the Specht modules are absolutely simple. Therefore we have a morphism
of Z(p)-algebras r : Z(p)Sp →

∏
λap EndZ(p)

SλZ(p)
=: Γ induced by the operation of the

elements of Z(p)Sp on the Specht modules Sλ for partitions λ of p, which becomes an
Wedderburn isomorphism when tensoring with Q. So Γ is a product of matrix rings over
Z(p). There is a well-known description of im r =: Λ, of which we will give an explicit
version in section 1.1.

For p ≥ 3, we use this description of Λ in section 1.2 to obtain projective Λ-modules
P̃k ⊆ Λ, k ∈ [1, p−1], and to construct the indecomposible projective resolution PResZ(p)

of the trivial Z(p)Sp-Specht module Z(p). The non-zero parts of PResZ(p) are periodic
with period length l = 2(p− 1). In section 1.3, we reduce PResZ(p) modulo p to obtain
a projective resolution PResFp of the trivial FpSp-Specht module Fp.

Section 2 and appendix A The goal of section 2 is to compute a minimal model of the
dg-algebra Hom∗FpSp(PResFp,PResFp) =: A by equipping its homology Ext∗FpSp(Fp,Fp) =
H∗A with a suitable A∞-structure and finding a quasi-isomorphism of A∞-algebras from
H∗A to A.

Towards that end, we recall the basic definitions concerning A∞-algebras and present a
formulation of the minimality theorem in section 2.1. Furthermore, in appendix A, we
present the bar construction in detail as well as a proof of the minimality theorem using
Kadeishvili’s algorithm.

While there does not seem to be a substantial difference between the cases p = 2 and
p ≥ 3, we separate them to simplify notation and argumentation. Consider the case
p ≥ 3. In section 2.2, we obtain a set of cycles {ιj | j ∈ Z≥0} ∪ {χιj | j ∈ Z≥0} in A
such that their homology classes are a graded basis of H∗A. In section 2.3, we obtain a
suitable A∞-structure on H∗A and a quasi-isomorphism of A∞-algebras from H∗A to A.
For the prime 2, both steps are combined in the short section 2.4.
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0.3. Notations and conventions

Stipulations

• For the remainder of this document, p will be a prime with p ≥ 3.

• Write l := 2(p− 1). This will give the period length of the constructed projective
resolution of Fp over FpSp, cf. e.g. (6), Theorem 14 and Lemma 18.

Miscellaneous

• Concerning "∞", we assume the set Z ∪ {∞} to be ordered in such a way that
∞ is greater than any integer, i.e. ∞ > z for all z ∈ Z, and that the integers are
ordered as usual.

• For a ∈ Z, b ∈ Z ∪ {∞}, we denote by [a, b] := {z ∈ Z | a ≤ z ≤ b} ⊆ Z the
integral interval. In particular, we have [a,∞] = {z ∈ Z | z ≥ a} ⊆ Z for a ∈ Z.

• For n ∈ Z≥0, k ∈ Z, let the binomial coefficient
(
n
k

)
be defined by the number of

subsets of the set {1, . . . , n} that have cardinality k. In particular, if k < 0 or
k > n, we have

(
n
k

)
= 0. Then the formula

(
n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
holds for all k ∈ Z.

• Rings are unital rings.

• For a commutative ring R, an R-module M and a, b ∈M , c ∈ R, we write

b ≡c a :⇐⇒ a− b ∈ cM.

Often we have M = R as module over itself.

• For a prime q, we denote by Z(q) the localization of the integers Z at the prime
ideal (q) := qZ, that is Z(q) := {z ∈ Q | ∃x ∈ Z \ qZ : xz ∈ Z} ⊆ Q, that is the
quotients of integers such that the denominator is coprime to q.

• For a prime q, let Fq denote the finite field containing q elements.

• Let R be a commutative ring. An R-algebra (A, ρ) is a ring A together with a ring
morphism ρ : R → A such that ρ(R) is a subset of the center of A. By abuse of
notation, we often just write A for (A, ρ). A is an R-module via r · a := ρ(r) · a for
r ∈ R, a ∈ A.

For R-algebras (A, ρ) and (B, τ), a morphism of R-algebras g : (A, ρ)→ (B, τ) is a
ring morphism g : A→ B such that g ◦ ρ = τ .

• Morphisms will be written on the left.

• Modules are right-modules unless otherwise specified. For a ring A, we denote by
Mod-A the category of right A-modules.

• We denote a tuple by enclosing it in parentheses. I.e. for a set M and ai ∈ M ,
i ∈ [1, n], n ≥ 0, we have the tuple (a1, a2, . . . , an) = a. In particular, () is the
empty tuple.
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For a map g : M → N from M to another set N , we define

g(a) := (g(x) : x ∈ a) := (g(a1), g(a2), . . . , g(an)).

For another set M ′, by abuse of notation, we denote by M ′ \ a the set difference
between M ′ and the set of elements of a. Similarly, we write a ⊆M ′ if each entry
of a is an element of M ′.

We will express ordered bases of finite-rank free modules as tuples of pairwise
distinct elements.

• For sets, we denote by t the disjoint union of sets. For tuples a = (a1, . . . , an) and
b = (b1, . . . , bm), we denote by t the concatenation:

a t b := (a1, a2, . . . , an, b1, b2, . . . , bm)

• | · |: For a homogeneous element x of a graded module or a graded map g between
graded modules, we denote by |x| resp. |g| their degrees (This is not unique for
x = 0 resp. g = 0). For y a real number, |y| denotes its absolute value. For
a = (a1, . . . , an) a tuple, |a| := n is the number of its entries.

Symmetric Groups Let n ∈ Z≥1.

• We write λ a n to indicate that λ is a partition of n.

• By Sn, we denote the symmetric group on n elements.

• Concerning the representations of the symmetric groups, we use the notation given
in [6] by James. In particular for λ a n, we denote the corresponding Specht
module by Sλ.

Complexes Let R be a commutative ring and B an R-algebra.

• For a complex of B-modules

· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · ,

its k-th boundaries, cycles and homology groups are defined by Bk := im dk+1,
Zk := ker dk and Hk := Zk/Bk.

For a cycle x ∈ Zk, we denote by x := x+Bk ∈ Hk its equivalence class in homology.

• For a complex of B-modules C = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 →) and z ∈ Z,
the shifted complex C[z] =: C̃ is defined by C̃k := Ck+z, d̃k := (−1)zdk+z.

• Let

C = (· · · → Ck+1
dk+1−−→ Ck

dk−→ Ck−1 → · · · )
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C ′ = (· · · → C ′k+1

d′k+1−−→ C ′k
d′k−→ C ′k−1 → · · · )

be two complexes of B-modules.

Given z ∈ Z, let

Homz
B(C,C ′) :=

∏
i∈Z

HomB(Ci+z, C
′
i).

For an additional complex C ′′ = (· · · → C ′′k+1

d′′k+1−−→ C ′′k
d′′k−→ C ′′k−1 → · · · ) and maps

h = (hi)i∈Z ∈ Homm
B (C,C ′), h′ = (h′i)i∈Z ∈ Homn

B(C ′, C ′′), m,n ∈ Z, we define the
composition by component-wise composition as

h′ ◦ h := (h′i ◦ hi+n)i∈Z ∈ Homm+n
B (C,C ′′).

We will assemble elements of Homz
B(C,C ′) as sums of their non-zero components,

which motivates the following notations regarding "extensions by zero" and sums.

For a map g : Cx → C ′y , we define bgcyx ∈ Homx−y
B (C,C ′) by

(bgcyx)i :=

{
g for i = y

0 for i ∈ Z \ {y}
.

Let k ∈ Z. Let I be a (possibly infinite) set. Let gi = (gi,j)j ∈ Homk
B(C,C ′) for

i ∈ I such that {i ∈ I | gi,j 6= 0} is finite for all j ∈ Z.
We define the sum

∑
i∈I gi ∈ Homk

B(C,C ′) by(∑
i∈I

gi

)
j

:=
∑

i∈I,gi,j 6=0

gi,j .

The graded R-module Hom∗B(C,C ′) :=
⊕

k∈Z Homk
B(C,C ′) becomes a complex via

the differential dHom∗B(C,C′), which is defined on elements g ∈ Homk
B(C,C ′), k ∈ Z

by

dHom∗B(C,C′)(g) := d′ ◦ g − (−1)kg ◦ d ∈ Homk+1
B (C,C ′),

where d := (di+1)i∈Z =
∑

i∈Zbdi+1cii+1 ∈ Hom1
B(C,C) and analogously d′ :=

(d′i+1)i∈Z =
∑

i∈Zbd′i+1cii+1 ∈ Hom1
B(C ′, C ′).

An element h ∈ Hom0
B(C,C ′) is called a complex morphism if it satisfies

dHom∗B(C,C′)(h) = 0, i.e. d′ ◦ g = g ◦ d.
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1. The projective resolution of Fp over FpSp

1. The projective resolution of Fp over FpSp

1.1. A description of Z(p)Sp

In this paragraph, we review results found e.g. in [15, Chapter 4.2]. We use the notation
of [6].

Let n ∈ Z≥1.

A partition of the form λk := (n− k + 1, 1k−1), k ∈ [1, n] is called a hook partition of n.

Suppose λ a n, i.e. λ is a partition of n.

Let Sλ be the corresponding integral Specht module, which is a right ZSn-module, cf. [6,
4.3]. Then Sλ is finitely generated free over Z, cf. [6, 8.1, proof of 8.4], having a standard
Z-basis consisting of the standard λ-polytabloids. We write nλ for the rank of Sλ.

For a tuple b = (b2, b3, . . . , bk), k ∈ [1, n], of pairwise distinct elements of [1, n], let 〈〈b〉〉
be the λk-polytabloid generated by the λk-tabloid

∗ · · · ∗
b2

b3
...
bn ,

where ∗ · · · ∗ are the elements of [1, n] \ b. Any polytabloid of Sλk can be expressed this
way.

For such a tuple b and distinct elements y1, . . . , ys ∈ [1, n] \ b, we denote by (b, y1, . . . , ys)
the tuple (b2, b3, . . . , bk, y1, . . . , ys). Recall the notations for manipulation of tuples from
section 0.3.
The λk-polytabloid 〈〈b〉〉 is standard iff 2 ≤ b2 < b3 < · · · < bk ≤ n, cf. [6, 8.1]. This
entails the following lemma.

Lemma 1. For k ∈ [1, n], the rank of Sλk is given by nλk =
(
n−1
k−1

)
.

Lemma 2 (cf. e.g. [15, Proposition 4.2.3]). Let k ∈ [1, n− 1]. We have the Z-linear box
shift morphisms for hooks

Sλ
k fk−→ Sλ

k+1

〈〈b〉〉 7−→
∑

s∈[2,n]\b〈〈(b, s)〉〉.

For x ∈ Sλk and ρ ∈ Sn, we have

fk(x · ρ) ≡n fk(x) · ρ. (1)

I.e. the composite (Sλ
k fk−→ Sλ

k+1 π−→ Sλ
k+1
/nSλ

k+1
), where π is residue class map, is

ZSn-linear.
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1.1. A description of Z(p)Sp

Lemma 3 (cf. [19, Lemma 2], [15, Proposition 4.2.4]). The following sequence of Z-linear
maps is exact.

0→ Sλ
1 f1−→ Sλ

2 f2−→ · · · fn−1−−→ Sλ
n → 0

Proof. We show that im fk ⊆ ker fk+1 for k ∈ [1, n − 2], i.e. that fk+1 ◦ fk = 0. Let
〈〈b〉〉 ∈ Sλk be a polytabloid. We obtain

fk+1fk(〈〈b〉〉) = fk+1

 ∑
s∈[2,n]\b

〈〈(b, s)〉〉

 =
∑

s,t∈[2,n]\b,
s 6=t

〈〈(b, s, t)〉〉

=
∑

s,t∈[2,n]\b,
s<t

(
〈〈(b, s, t)〉〉+ 〈〈(b, t, s)〉〉

) cf. [6, 4.3]
= 0.

Now we show the exactness of the sequence. For convenience, we set f0 : 0→ Sλ
1 and

fn : Sλ
n → 0. We define T k for k ∈ [1, n] to be the tuple of all tuples b = (b2, . . . , bk)

such that 2 ≤ b2 < b3 < . . . < bk ≤ n − 1, where T k is ordered, say, lexicographically.
Then we set Bk

b := (〈〈b〉〉 : b ∈ T k), which consists of standard λk-polytabloids. We set
B1

c := (), which is the empty tuple, and for k ∈ [2, n],

Bk
c := (fk−1(x) : x ∈ Bk−1

b )

=

 ∑
s∈[2,n]\b

〈〈(b, s)〉〉 : b ∈ T k−1

 =

〈〈(b, n)〉〉+
∑

s∈[2,n−1]\b

〈〈(b, s)〉〉 : b ∈ T k−1

 .

So Bk
c ⊆ im fk−1 and thus fk(Bk

c ) ⊆ {0} for k ∈ [1, n].

By comparing Bk
c tBk

b with the standard basis, we observe that Bk
c tBk

b is a Z-basis of
Sλ

k for k ∈ [1, n].

For k ∈ [1, n], we have

nkb := |Bk
b | =

(
n− 2

k − 1

)
nkc := |Bk

c | =
{
|Bk−1

b | =
(
n−2
k−2

)
for k ∈ [2, n]

0 =
(
n−2
1−2

)
for k = 1

}
=

(
n− 2

k − 2

)
.

For k ∈ [1, n− 1], the morphism fk maps 〈Bk
b〉Z bijectively to 〈Bk+1

c 〉Z and 〈Bk
c 〉Z to zero.

So ker fk = 〈Bk
c 〉Z and im fk = 〈Bk+1

c 〉Z. As B1
c = () = Bn

b , we have also im f0 = 〈B1
c 〉Z

and ker fn = 〈Bn
c 〉Z. So the sequence in question is exact.

We equip the Specht modules Sλk of hook type with the ordered Z-basis Bk
c tBk

b . We
equip all other Specht modules with the standard Z-basis with an arbitrarily chosen total
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1. The projective resolution of Fp over FpSp

order. From now on each of these bases will be referred to as the basis of the respective
Specht module. We define the Z-algebra

ΓZ :=
∏
λan

Znλ×nλ .

Let λ a n and let B = (b1, . . . , bnλ) be the basis of Sλ. For the multiplication with
matrices, we identify Sλ with Z1×nλ via B.

Then Sλ becomes a right ΓZ-module via x · ρ := x · ρλ for x ∈ Sλ and ρ ∈ ΓZ, where ρλ
is the λ-th component of ρ. I.e. ρ ∈ ΓZ operates by multiplication with the matrix ρλ on
the right with respect to the basis B.

Similarly,
⊕

λan S
λ becomes a right ΓZ-module. Each Z-endomorphism of

⊕
λan S

λ

is represented by the operation of a unique element of ΓZ. As the operation of ZSn
defines such endomorphisms (cf. [6, Corollary 8.7]), we obtain a Z-algebra morphism
rZ : ZSn → ΓZ such that y · rZ(x) = y · x for all λ a n, y ∈ Sλ, x ∈ Z Sn.

As the Specht modules give all irreducible ordinary representations of Sn, the map rZ is
injective. Because of (1), the image of rZ is contained in

ΛZ := {ρ ∈ ΓZ | fk(xρ) ≡n fk(x)ρ ∀k∈[1,n−1] ∀x∈Sλk} ⊆ ΓZ.

As the basis Bk
c tBk

b of Sλk , k ∈ [1, n], consists of two parts, we may split each ρλk for a
ρ ∈ ΓZ into four blocks corresponding to the parts Bk

c and Bk
b :

ρλ
k

=
ρλ

k

cc ρλ
k

bc

ρλ
k

cb ρλ
k

bb


 nkc

nkb

nkc nkb

(2)

Suppose given k ∈ [1, n− 1]. We represent fk by a matrix Mfk with respect to the bases
of Sλk and Sλk+1 , i.e. fk(x) = x ·Mfk for x ∈ Sλk . As fk(Bk

b) = Bk+1
c and fk(Bk

c ) ⊆ {0},
the matrix Mfk has the following block form:

Mfk =
0 0

Enkb 0

  nkc

nkb

nk+1
c nk+1

b

Here Ei is the i× i-identity matrix for i ∈ Z≥1.

So for x ∈ Sλk , ρ ∈ ΓZ we have

fk(x) · ρ =x ·Mfk · ρλ
k+1

= x ·
(

0 0
Enkb 0

)
·

(
ρλ

k+1

cc ρλ
k+1

bc

ρλ
k+1

cb ρλ
k+1

bb

)
= x ·

(
0 0

ρλ
k+1

cc ρλ
k+1

bc

)

12



1.1. A description of Z(p)Sp

fk(x · ρ) =x · ρλk ·Mfk = x ·

(
ρλ

k

cc ρλ
k

bc

ρλ
k

cb ρλ
k

bb

)
·
(

0 0
Enkb 0

)
= x ·

(
ρλ

k

bc 0

ρλ
k

bb 0

)
.

This way we have fk(x ·ρ) ≡n fk(x) ·ρ for all x ∈ Sλk if and only if ρλkbb ≡n ρλ
k+1

cc , ρλkbc ≡n 0
and ρλk+1

bc ≡n 0. So

ΛZ = {ρ ∈ ΓZ | (ρλkbb ≡n ρλ
k+1

cc for k ∈ [1, n− 1]) and (ρλ
k

bc ≡n 0 for k ∈ [1, n])}. (3)

We have (cf. e.g. [15, Corollary 4.2.6])

|ΓZ/ΛZ| = n
1
2

∑
k∈[1,n] (

n−1
k−1)

2

,

which is proven by counting the congruences in (3):

|ΓZ/ΛZ| =n
∑n−1
k=1 (nkb)2+

∑n
k=1 n

k
b·n

k
c

nnb=0
=n

∑
k∈[1,n]((n

k
b)2+nkb·n

k
c ) = n

∑
k∈[1,n] n

k
b(nkb+nkc )∑

k∈[1,n]

nkb(nkc + nkb) =
∑
k∈[1,n]

(
n−2
k−1

) ((
n−2
k−2

)
+
(
n−2
k−1

))
=

1

2

∑
k∈[1,n]

((
n−2
k−1

)(
n−2
k−2

)
+
(
n−2
k−1

)2
)

+
1

2

∑
k∈[1,n]

((
n−2
k−1

)(
n−2
k−2

)
+
(
n−2
k−2

)2
)

=
1

2

∑
k∈[1,n]

(
n−2
k−1

) ((
n−2
k−2

)
+
(
n−2
k−1

))
+
(
n−2
k−2

) ((
n−2
k−1

)
+
(
n−2
k−2

))
=

1

2

∑
k∈[1,n]

(
n−2
k−1

)(
n−1
k−1

)
+
(
n−2
k−2

)(
n−1
k−1

)
=

1

2

∑
k∈[1,n]

(
n−1
k−1

)2

Recall that p ≥ 3 is a prime. Let n = p. We have the commutative diagram of Z-modules

Z Sp� _

rZ

��

� � ιZ◦rZ // ΓZ // //

=

��

ΓZ/(ιZ ◦ rZ(Z Sp))

sZ����
ΛZ � � ιZ // ΓZ // // ΓZ/ΛZ

(4)

The map ιZ is the inclusion of ΛZ in ΓZ. The maps from ΓZ to ΓZ/(ιZ ◦ rZ(Z Sp)) and
to ΓZ/ΛZ are the residue class maps. As rZ(Z Sp) ⊆ ΛZ, we have an unique surjective
map sZ : ΓZ/(ιZ ◦ rZ(Z Sp))→ ΓZ/ΛZ such that the right rectangle is commutative. By
construction, the rows of the diagram are short exact sequences. Note that the morphisms
of the left rectangle are in fact Z-algebra morphisms.

We will need the following result on the localization of rings.

13



1. The projective resolution of Fp over FpSp

Lemma 4 (cf. [2, chap. II Localisation, §2, no 3, Théorème 1]). Let A be a commutative
ring. Let P ⊆ R a prime ideal of A. Let AP be the localization of A at P . Then AP is a
flat A-module, that is, the functor −⊗

A
A(AP )AP from the category of A-modules to the

category of AP -modules is exact.

We denote by Z(p) the localization of Z at the prime ideal (p) := pZ. We apply the
functor −⊗

Z
Z(p) to obtain a commutative diagram (4) of the following form:

Z(p)Sp� _
r

��

� � ι◦r // Γ // //

=

��

Γ/(ι ◦ r(Z(p)Sp))

s
����

Λ �
� ι // Γ // // Γ/Λ

(5)

By Lemma 4, the functor − ⊗
Z
Z(p) is exact, so the short exact sequences are mapped

to short exact sequences, monomorphisms to monomorphisms and epimorphisms to
epimorphisms. So the rows of diagram (5) are exact and we have mono-/epimorphism as
indicated by the arrows. We identify Z Sp⊗

Z
Z(p) with Z(p)Sp. We identify ΓZ ⊗

Z
Z(p) with

Γ :=
∏
λan

Znλ×nλ(p) .

The map ι realizes Λ := ΛZ ⊗
Z
Z(p) as the following subset of Γ, for which we will use

notation analogous to (2):

Λ = {ρ ∈ Γ | (ρλkbb ≡p ρλ
k+1

cc for k ∈ [1, p− 1]) and (ρλ
k

bc ≡p 0 for k ∈ [1, p])}

As the rows are exact, we identify (ΓZ/(ιZ ◦ rZ(Z Sp)))⊗
Z
Z(p) with Γ/(ι ◦ r(Z(p)Sp) and

(ΓZ/ΛZ)⊗
Z
Z(p) with Γ/Λ.

By the classification of finitely generated Z-modules, each finite Z-moduleM is isomorphic
to a finite direct sum of modules of the form Z/qaZ, where q is a prime and a ∈ Z≥0.
If q 6= p then (Z/qaZ) ⊗

Z
Z(p)

∼= (0). Otherwise (Z/paZ) ⊗
Z
Z(p)

∼= Z(p)/p
aZ(p) and

|(Z/paZ)⊗
Z
Z(p)| = pa = |Z/paZ|. For x = pap ·

∏
q prime
q 6=p

qaq ∈ Z≥1, we set

(x)p := pap .

So for finite M , we have |M ⊗
Z
Z(p)| = (|M |)p.

By the total index formula (cf. e.g. [15, Proposition 1.1.4]), we have

|ΓZ/(ιZ ◦ rZ(Z Sp))| =

√√√√ p!p!∏
λap n

n2
λ
λ

.
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1.1. A description of Z(p)Sp

By the hook formula (cf. [6, 20.1], [15, Lemma 4.2.7]), we have for λ a p

(nλ)p =

{
1 if λ is a hook-partition
p otherwise

.

So

|Γ/(i ◦ r(Z(p)Sp))| =

√√√√ p!p!∏
λap n

n2
λ
λ


p

=

√√√√ pp!∏
λap

λ not a hook
(nλ)

n2
λ
p

=

√√√√ ∏
λap p

n2
λ∏

λap
λ not a hook

pn
2
λ

=

√ ∏
k∈[1,n]

pn
2
λk = p

1
2

∑
k∈[1,n] (

p−1
k−1)

2

= |ΓZ/ΛZ| = (|ΓZ/ΛZ|)p = |Γ/Λ|.

By the pigeon-hole-principle, s is an isomorphism as it is surjective. As (5) has exact
rows, r needs to be an isomorphism as well. Note that the functor −⊗

Z
Z(p) transforms

morphisms of Z-algebras into morphisms of Z(p)-algebras. In particular, the left rectangle
in (5) consists of morphisms of Z(p)-algebras and r : Z(p)Sp → Λ is an isomorphism of
Z(p)-algebras. We have proven the

Proposition 5 (cf. e.g. [15, Corollary 4.2.8]). Recall that p ≥ 3 is a prime. Recall
Λ ⊂ Γ. We have the isomorphism of Z(p)-algebras

r : Z(p)Sp
∼−−−→ Λ.

We recall the occurring notations:

Γ :=
∏
λap

Znλ×nλ(p)

Λ := {ρ ∈ Γ | ρλkbb ≡p ρλ
k+1

cc for k ∈ [1, p− 1] and ρλ
k

bc ≡p 0 for k ∈ [1, p]}.

We have nλ := dimSλ, nkb =
(
p−2
k−1

)
, nkc =

(
p−2
k−2

)
and nkb + nkc =

(
p−1
k−1

)
= nλk . For ρ ∈ Γ,

we write (cf. (2))

ρλ
k

=
ρλ

k

cc ρλ
k

bc

ρλ
k

cb ρλ
k

bb


 nkc

nkb

nkc nkb

.

Example 6. For p = 3, the ring Z(3) S3 is isomorphic to the subring Λ of Γ = Z1×1
(3) ×

Z2×2
(3) × Z1×1

(3) described as

Z(3) }
×××

Z(3) 3Z(3)

Z(3) Z(3) 
××
×

Z(3) }
×
×
×

3

3

.
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1. The projective resolution of Fp over FpSp

An entry in this tuple of matrices indicates that an element of Λ must have its cor-

responding entry in the indicated set. A relation "
p

" between (equal sized)
subblocks indicates that these subblocks are equivalent modulo p, i.e. the difference of
corresponding entries is an element of pZ(p). The blocks are labeled with the diagrams of
the corresponding partitions. Alternatively, Λ is the Z(3)-span of(

3,

(
0 0
0 0

)
, 0

)
=: β⇐1,1,1,

(
1,

(
1 0
0 0

)
, 0

)
=: β⇔1,1,1 =: ẽ1,

(
0,

(
0 3
0 0

)
, 0

)
=: β→2,1,1,(

0,

(
0 0
1 0

)
, 0

)
=: β←2,1,1,

(
0,

(
0 0
0 1

)
, 1

)
=: β⇔2,1,1 =: ẽ2,

(
0,

(
0 0
0 3

)
, 0

)
=: β⇐2,1,1.

The names of these elements were chosen in anticipation of the definitions in section 1.2.
We have an orthogonal decomposition 1 = ẽ1 + ẽ2 into primitive idempotents. Thus we
have a decomposition Λ = P̃1 ⊕ P̃2 into indecomposable projective right modules, where

P̃1 := ẽ1Λ = 〈β⇐1,1,1, ẽ1, β
→
2,1,1〉Z(3)

, P̃2 := ẽ2Λ = 〈β←2,1,1, ẽ2, β
⇐
2,1,1〉Z(3)

.

In this case all partitions of 3 are of hook-type. Thus there appear no full matrix algebras
as direct factors of Λ.

Example 7. Z(5) S5 is isomorphic to the subring Λ of Γ = Z1×1
(5) × Z4×4

(5) × Z6×6
(5) × Z4×4

(5) ×
Z1×1

(5) × Z5×5
(5) × Z5×5

(5) described as

Z(5) }
×××××

Z(5) 5Z(5) 5Z(5) 5Z(5)

Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) 
××××
×

Z(5) Z(5) Z(5) 5Z(5) 5Z(5) 5Z(5)

Z(5) Z(5) Z(5) 5Z(5) 5Z(5) 5Z(5)

Z(5) Z(5) Z(5) 5Z(5) 5Z(5) 5Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5) Z(5) 

×××
×
×

Z(5) Z(5) Z(5) 5Z(5)

Z(5) Z(5) Z(5) 5Z(5)

Z(5) Z(5) Z(5) 5Z(5)

Z(5) Z(5) Z(5) Z(5) 
××
×
×
×

Z(5) }
×
×
×
×
×

5

5

5

5

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)
×
×
×
×
×

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)

Z(5) Z(5) Z(5) Z(5) Z(5)
××
×
×
×

.

For this tuple of matrices, we use the same conventions as in Example 6.
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1.2. A projective resolution of Z(p) over Z(p)Sp

1.2. A projective resolution of Z(p) over Z(p)Sp

Recall that p ≥ 3 is a prime.

Recall from Proposition 5 that Λ is a subring of Γ =
∏

λap Z
nλ×nλ
(p) . We shall construct

two Z(p)-bases of Λ.

For λ a p and i, j ∈ [1, nλ], we set ηλ,i,j to be the element of Γ such that (ηλ,i,j)
λ̃ = 0 for

λ̃ 6= λ and (ηλ,i,j)
λ ∈ Znλ×nλ has entry 1 at position (i, j) and zeros elsewhere. Then let

(1) B⇔ := {β⇔k,x,y | k ∈ [1, p− 1], x, y ∈ [1, nkb]}, where β⇔k,x,y := ηλk,nkc+x,nkc+y + ηλk+1,x,y.

(2) B⇐ := {β⇐k,x,y | k ∈ [1, p− 1], x, y ∈ [1, nkb]}, where β⇐k,x,y := pηλk,nkc+x,nkc+y.

(3) B⇒ := {β⇒k,x,y | k ∈ [1, p− 1], x, y ∈ [1, nkb]}, where β⇒k,x,y := pηλk+1,x,y.

(4) B← := {β←k,x,y | k ∈ [1, p], x ∈ [1, nkb], y ∈ [1, nkc ]}, where β←k,x,y := ηλk,nkc+x,y.

(5) B→ := {β→k,x,y | k ∈ [1, p], x ∈ [1, nkc ], y ∈ [1, nkb]}, where β→k,x,y := pηλk,x,nkc+y.

(6) B∗ := {ηλ,x,y | λ a p not a hook partition, x, y ∈ [1, nλ]}.

We have two Z(p)-bases B⇔ tB⇐ tB← tB→ tB∗ and B⇔ tB⇒ tB← tB→ tB∗

of Λ.

Example 8 (p = 3, continuation of Example 6). The only of the βda,b,c that are defined
above and that are not shown in Example 6 are the following elements.(

0,

(
3 0
0 0

)
, 0

)
= β⇒1,1,1,

(
0,

(
0 0
0 0

)
, 3

)
= β⇒2,1,1

B∗ is empty since all partitions are hook partitions.

Let k ∈ [1, p− 1]. We obtain the idempotent

ẽk := β⇔k,1,1 = ηλk,nkc+1,nkc+1 + ηλk+1,1,1 ∈ Λ.

We define corresponding projective right Λ-modules

P̃k := ẽkΛ for k ∈ [1, p− 1].

Once more, see Example 6 for an illustration of the case p = 3.

Let

(1) B⇔k := (β⇔k,1,y : y ∈ (1, . . . , nkb)) = (ηλk,nkc+1,nkc+y + ηλk+1,1,y : y ∈ (1, . . . , nkb))

(2) B⇐k := (β⇐k,1,y : y ∈ (1, . . . , nkb)) = (pηλk,nkc+1,nkc+y : y ∈ (1, . . . , nkb))

(3) B⇒k := (β⇒k,1,y : y ∈ (1, . . . , nkb)) = (pηλk+1,1,y : y ∈ (1, . . . , nkb))

(4) B←k := (β←k,1,y : y ∈ (1, . . . , nkc)) = (ηλk,nkc+1,y : y ∈ (1, . . . , nkc))

(5) B→k := (β→k+1,1,y : y ∈ (1, . . . , nk+1
b )) = (pηλk+1,1,nk+1

c +y : y ∈ (1, . . . , nk+1
b ))
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1. The projective resolution of Fp over FpSp

Remark 9. Similarly to the bases of Λ, the tuples B⇔k t B⇐k t B←k t B→k and
B⇔k tB⇒k tB←k tB→k are Z(p)-bases of P̃k.

Remark 10. Let k ∈ [1, p− 1]. The idempotent ẽk is actually a primitive idempotent
and thus P̃k is an indecomposable projective Λ-right module: Assume ẽk = c + c′ for
some idempotents 0 6= c, c′ ∈ Λ that are orthogonal, that is c · c′ = c′ · c = 0. Then
ẽk · c = (c+ c′)c = c2 = c = c(c+ c′) = c · ẽk. Similarly, we have ẽk · c′ = c′ = c′ · ẽk. Thus
c, c′ ∈ ẽkΛẽk. The Z(p)-algebra

ẽkΛẽk = 〈ek, β⇐k,1,1〉Z(p)
= 〈ek, β⇒k,1,1〉Z(p)

is isomorphic to the Z(p)-algebra

Z(p) Z(p)
p

J :=

consisting of elements {(a, b) ∈ Z(p) × Z(p) | a ≡p b}. The only idempotents in Z(p) × Z(p)

are (0, 0) ∈ J , (1, 1) ∈ J , (1, 0) /∈ J and (0, 1) /∈ J . Thus the identity element (1, 1) of J
cannot be decomposed into non-trivial idempotents and the same holds for ẽk.

Remark 11. Let A be an R-algebra and let e, e′ ∈ A be two idempotents. For the right
modules eA, e′A, we have the isomorphism of R-Modules

HomA(eA, e′A)
Te′,e−→
∼

e′Ae

f 7−→ Te′,e(f) := f(e)
T−1
e′,e(e

′be) := (ea 7→ e′bea) 7−→ e′be .

Thus givenm ∈ e′Ae, the morphism T−1
e′,e(m) acts on elements x ∈ eA by the multiplication

of m on the left: (T−1
e′,e(m))(x) = m · x.

Given idempotents e, e′, e′′ ∈ A, and elements f ∈ HomA(eA, e′A), g ∈ A(e′A, e′′A), we
have Te′′,e(g ◦ f) = g(f(e)) = g(e′f(e)) = g(e′) · f(e) = Te′′,e′(g) · Te′,e(f).

Definition 12. For well-definedness of the definitions below, we check n1
c = 0, n1

b = 1,
np−1+1

c = 1 , np−1+1
b = 0, and for k ∈ [1, p− 2], we check nk+1

c , nk+1
b ≥ 1.

We have β⇐1,1,1 = pηλ1,1,1 ∈ ẽ1Λẽ1, β⇒p−1,1,1 = pηλp,1,1 ∈ ẽp−1Λẽp−1. For k ∈ [1, p − 2],
we have β←k+1,1,1 = ηλk+1,nk+1

c +1,1 ∈ ẽk+1Λẽk and β→k+1,1,1 = pηλk+1,1,nk+1
c +1 ∈ ẽkΛẽk+1. For

k ∈ [1, p− 1], we have ẽk ∈ ẽkΛẽk. Then we define via Remark 11

êk := T−1
ẽk,ẽk

(ẽk) ∈ HomΛ(P̃k, P̃k) for k ∈ [1, p− 1]

ê1,1 := T−1
ẽ1,ẽ1

(pηλ1,1,1) ∈ HomΛ(P̃1, P̃1)

êp−1,p−1 := T−1
ẽp−1,ẽp−1

(pηλp,1,1) ∈ HomΛ(P̃p−1, P̃p−1)

êk+1,k := T−1
ẽk+1,ẽk

(ηλk+1,nk+1
c +1,1) ∈ HomΛ(P̃k, P̃k+1) for k ∈ [1, p− 2]

êk,k+1 := T−1
ẽk,ẽk+1

(pηλk+1,1,nk+1
c +1) ∈ HomΛ(P̃k+1, P̃k) for k ∈ [1, p− 2].

Note that êk is the identity map on P̃k for k ∈ [1, p− 1].

18



1.2. A projective resolution of Z(p) over Z(p)Sp

Lemma 13. We have

(a) ker êk+1,k = 〈B←k tB⇐k 〉Z(p)
, im êk+1,k = 〈B←k+1 tB⇐k+1〉Z(p)

for k ∈ [1, p− 2],

(b) ker êk,k+1 = 〈B→k+1 tB⇒k+1〉Z(p)
, im êk,k+1 = 〈B→k tB⇒k 〉Z(p)

for k ∈ [1, p− 2],

(c) ker êp−1,p−1=〈B←p−1 tB⇐p−1〉Z(p)
, im êp−1,p−1=〈B⇒p−1 tB→p−1〉Z(p)

,

(d) ker ê1,1 = 〈B⇒1 tB→1 〉Z(p)
, im ê1,1 = 〈B⇐1 tB←1 〉Z(p)

.

Proof. (a): êk+1,k(B⇔k )
R.11
= (ηλk+1,nk+1

c +1,1ηλk+1,1,y : y ∈ (1, . . . , nkb))

= (ηλk+1,nk+1
c +1,y : y ∈ (1, . . . , nk+1

c )) = B←k+1

êk+1,k(B→k )
R.11
= (ηλk+1,nk+1

c +1,1pηλk+1,1,nk+1
c +y : y ∈ (1, . . . , nk+1

b ))

= (pηλk+1,nk+1
c +1,nk+1

c +y : y ∈ (1, . . . , nk+1
b )) = B⇐k+1

êk+1,k(B←k )
R.11

⊆ {0}

êk+1,k(B⇐k )
R.11

⊆ {0}

Thus by Remark 9, assertion (a) holds.

(b): êk,k+1(B⇔k+1)
R.11
= (pηλk+1,1,nk+1

c +1ηλk+1,nk+1
c +1,nk+1

c +y : y ∈ (1, . . . , nk+1
b ))

= (pηλk+1,1,nk+1
c +y : y ∈ (1, . . . , nk+1

b )) = B→k

êk,k+1(B←k+1)
R.11
= (pηλk+1,1,nk+1

c +1ηλk+1,nk+1
c +1,y : y ∈ (1, . . . , nk+1

c ))

= (pηλk+1,1,y : y ∈ (1, . . . , nkb)) = B⇒k

êk,k+1(B→k+1)
R.11

⊆ {0}

êk,k+1(B⇒k+1)
R.11

⊆ {0}

Thus by Remark 9, assertion (b) holds.

(c): êp−1,p−1(B⇔p−1)
R.11
= (pηλp,1,1ηλ(p−1)+1,1,y : y ∈ (1, . . . , np−1

b ))

= (pηλ(p−1)+1,1,y : y ∈ (1, . . . , np−1
b )) = B⇒p−1

B→p−1 = () as npb = 0

êp−1,p−1(B←p−1)
R.11

⊆ {0}

êp−1,p−1(B⇐p−1)
R.11

⊆ {0}

Thus by Remark 9, assertion (c) holds.

(d): ê1,1(B⇔1 )
R.11
= (pηλ1,1,1ηλ1,n1

c+1,n1
c+y : y ∈ (1, . . . , n1

b))
n1
c=0
= (pηλ1,n1

c+1,n1
c+y : y ∈ (1, . . . , n1

b)) = B⇐1
B←1 = () as n1

c = 0

ê1,1(B⇒1 )
R.11

⊆ {0}

ê1,1(B→1 )
R.11

⊆ {0}

Thus by Remark 9, assertion (d) holds.
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1. The projective resolution of Fp over FpSp

The trivial Z(p)Sp-module Z(p) becomes a Λ-module via the isomorphism of Z(p)-algebras
r : Z(p)Sp → Λ described in Proposition 5. We want to construct a projective resolution
of Z(p) over Λ.

Γ is a right Λ-module as Λ is a subalgebra of Γ. The set Γλ
1

:= {ρ ∈ Γ | ρλ = 0 for λ 6= λ1}
is a right Λ-submodule of Γ. As nkc = 0 and nkb = 1, Γλ

1 is free over Z(p) with basis
{ηλ1,1,1}.

Given a partition λ a p, the operation of an element x ∈ Z(p)Sp on the Specht module
corresponding to λ is multiplication with the matrix r(x)λ with respect to a certain basis
of that Specht module, cf. the definition of rZ in the proof of Proposition 5.

As Z(p) is the Specht module corresponding to the trivial partition λ1 of p, and as Z(p)

is one-dimensional, the operation of x ∈ Z(p)Sp on Z(p) is multiplication with the scalar
r(x)λ

1 . Thus an element ρ ∈ Λ operates on Z(p) via multiplication with the scalar ρλ1

and we haven an isomorphism of right Λ-modules by

ε̂1 : Γλ
1 −→ Z(p)

ηλ1,1,1 7−→ 1.

We have the morphism of right Λ-modules

ε̂0 : P̃1 −→ Γλ
1

ẽ1x 7−→ ηλ1,1,1ẽ1x = ηλ1,1,1x for x ∈ Λ

We have ε̂0(ẽ1) = ε̂0(ηλ1,1,1 + ηλ2,1,1) = ηλ1,1,1, thus ε̂0 is surjective as {ηλ1,1,1} is a Z(p)-
basis of Γλ

1 . Given x ∈ P̃1, we have ê1,1(x) = pε̂0(x) as elements of Γ. Thus the maps
ê1,1 and ε̂0 have the same kernel. Concatenation with the isomorphism ε̂1 yields the
surjective morphism of right Λ-modules

ε̂ := ε̂1 ◦ ε̂0 : P̃1 −→ Z(p),

for which we have ker ε̂ = ker ê1,1.

With these properties of ε̂ and Lemma 13, we are able to directly formulate a projective
resolution of Z(p):

We set

P̃ri :=

{
P̃ω(i) i ≥ 0

0 i < 0
,

where the integer ω(i) is given by the following construction: Recall the stipulation
l := 2(p− 1). We have i = jl + r for some j ∈ Z and 0 ≤ r ≤ l − 1. Then

ω(i) :=

{
r + 1 for 0 ≤ r ≤ p− 2

l − r = 2(p− 1)− r for p− 1 ≤ r ≤ 2(p− 1)− 1 = l − 1
. (6)
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1.2. A projective resolution of Z(p) over Z(p)Sp

So ω(i) increases by steps of one from 1 to p− 1 as i runs from jl to jl + (p− 2) and
ω(i) decreases from p− 1 to 1 as i runs from jl + (p− 1) to jl + (l − 1). Finally we set

d̂i :=

{
êω(i−1),ω(i) : P̃ω(i) → P̃ω(i−1) i ≥ 1

0 i ≤ 0
.

Now Lemma 13 gives the projective resolution of Z(p)

· · · d̂3−→ P̃r2
d̂2−→ P̃r1

d̂1−→ P̃r0
0=d̂0−−−→ 0→ · · · , (7)

written more explicitly as

· · · →P̃2
ê1,2−−→ P̃1

ê1,1−−→ P̃1
ê2,1−−→ P̃2 → . . .→ P̃p−2

êp−1,p−2−−−−−→ P̃p−1

êp−1,p−1−−−−−→ P̃p−1
êp−2,p−1−−−−−→ P̃p−2 → . . .→ P̃2

ê1,2−−→ P̃1 → 0→ · · · .

The corresponding extended projective resolution is

· · · →P̃2
ê1,2−−→ P̃1

ê1,1−−→ P̃1
ê2,1−−→ P̃2 → . . .→ P̃p−2

êp−1,p−2−−−−−→ P̃p−1

êp−1,p−1−−−−−→ P̃p−1
êp−2,p−1−−−−−→ P̃p−2 → . . .→ P̃2

ê1,2−−→ P̃1
ε̂−→ Z(p) → 0→ · · · ,

which is an exact sequence.

We have proven the

Theorem 14. Recall that p ≥ 3 is a prime.
The sequence (7) is a projective resolution of Z(p), with augmentation P̃r0 = P̃1

ε̂−→ Z(p).

Lemma 15. Recall that p ≥ 3 is a prime. We have

ê1,1 + ê1,2 ◦ ê2,1 = pê1

êk,k−1 ◦ êk−1,k + êk,k+1 ◦ êk+1,k = pêk for k ∈ [2, p− 2]
êp−1,p−2 ◦ êp−2,p−1 + êp−1,p−1 = pêp−1

ε̂ ◦ ê1,1 = pε̂.

Proof. We have by Remark 11

Tẽ1,ẽ1(ê1,1 + ê1,2 ◦ ê2,1) = Tẽ1,ẽ1(ê1,1) + Tẽ1,ẽ2(ê1,2)Tẽ2,ẽ1(ê2,1)

= pηλ1,1,1 + pηλ2,1,n2
c+1ηλ2,n2

c+1,1 = p(ηλ1,1,1 + ηλ2,1,1) = Tẽ1,ẽ1(pê1)

Tẽk,ẽk(êk,k−1 ◦ êk−1,k + êk,k+1 ◦ êk+1,k)

= Tẽk,ẽk−1
(êk,k−1)Tẽk−1,ẽk(êk−1,k) + Tẽk,ẽk+1

(êk,k+1)Tẽk+1,ẽk(êk+1,k)

= ηλk,nkc+1,1pηλk,1,nkc+1 + pηλk+1,1,nk+1
c +1ηλk+1,nk+1

c +1,1

= p(ηλk,nkc+1,nkc+1 + ηλk+1,1,1) = Tẽk,ẽk(pêk)

Tẽp−1,ẽp−1(êp−1,p−2 ◦ êp−2,p−1 + êp−1,p−1)
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1. The projective resolution of Fp over FpSp

= Tẽp−1,ẽp−2(êp−1,p−2)Tẽp−2,ẽp−1(êp−2,p−1) + Tẽp−1,ẽp−1(êp−1,p−1)

= ηλp−1,np−1
c +1,1pηλp−1,1,np−1

c +1 + pηλp,1,1

= p(ηλp−1,np−1
c +1,np−1

c +1 + ηλp,1,1) = Tẽp−1,ẽp−1(pêp−1).

Finally for x ∈ P̃1, we have

(ε̂0 ◦ ê1,1)(x) = ηλ1,1,1 · pηλ1,1,1 · x = pηλ1,1,1 · x = pε̂0(x),

thus ε̂ ◦ ê1,1 = ε̂1 ◦ ε̂0 ◦ ê1,1 = pε̂1 ◦ ε̂0 = pε̂.

1.3. A projective resolution of Fp over FpSp

We obtain the desired projective resolution by reducing the projective resolution of Z(p)

"modulo p". Technically this will be done via a tensor product functor.

Reduction modulo I

Let R be a principal ideal domain. Let (A, ρ) be an R-algebra. Let I be an ideal of R.
We set R̄ := R/I.

As R is a principal ideal domain, ρ(I)A is an additive subset of A. As ρ(I) is a subset of
the center of A, ρ(I)A is an ideal of A and A/(ρ(I)A) =: Ā is an R̄-algebra.

We regard a right A-module MA as a right R-module MR via m · r := m ·ρ(r) for m ∈M ,
r ∈ R.

Lemma 16. The functors −⊗
A
Ā and −⊗

R
R̄ from Mod-A to Mod-R are naturally isomorphic.

The natural isomorphism −⊗
A
Ā→ −⊗

R
R̄ is given at the module MA by

MA ⊗
A
AĀ

∼−→ MR ⊗
R
RR̄

m⊗ (a+ ρ(I)A) 7−→ ma⊗ (1 + I)
m⊗ (r + ρ(I)A) 7−→ m⊗ (r + I).

Proof. By the universal property of the tensor product, the two maps given above are
well-defined and R-linear. Straightforward calculation gives that they invert each other
and that we have a natural transformation.

Lemma 17. The functor −⊗
A
AĀĀ from Mod-A to Mod-Ā maps exact sequences of right

A-modules that are free and of finite rank as R-modules to exact sequences of right
Ā-modules.

Proof. Because −⊗
A
AĀĀ is an additive functor, it maps complexes to complexes. For

considerations of exactness, we may compose our functor with the forgetful functor
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1.3. A projective resolution of Fp over FpSp

from Mod-Ā to Mod-R. This composite is −⊗
A
AĀ. By the natural isomorphism given in

Lemma 16, it suffices to show that −⊗
R
RR̄ transforms exact sequences of right A-modules

that are free and of finite rank as R-modules into exact sequences.

Let · · · di+1−−→ Mi
di−→ Mi−1

di−1−−→ · · · be an exact sequence of right A-modules that are
free and of finite rank as R-modules. Then im di is a submodule of the free R-module
Mi−1. As R is a principal ideal domain, im di is free. Hence the short exact sequence
im di+1 → Mi → im di splits. Now the additive functor −⊗

R
RR̄ maps split short exact

sequences to (split) short exact sequences and the proof is complete.

Reduction modulo p

The isomorphism Z(p)Sp → Λ from Proposition 5 induces an isomorphism of Fp-algebras
FpSp = Z(p)Sp /(pZ(p)Sp)

r̄−→ Λ/(pΛ) =: Λ̄. For the sake of simplicity in the next step, we
identify Λ̄ and FpSp along r̄.

Lemma 18. Recall that p ≥ 3 is a prime. Applying the functor −⊗
Λ

ΛΛ̄Λ̄ , we obtain

• the projective modules Pk := P̃k ⊗
Λ

ΛΛ̄Λ̄ for k ∈ [1, p− 1],

• Fp := Z(p) ⊗
Λ

ΛΛ̄Λ̄ (the FpSp-module corresponding to the trivial representation of

Sp),

• ek := êk ⊗
Λ

ΛΛ̄Λ̄ ∈ HomFp Sp(Pk, Pk) for k ∈ [1, p− 1],

e1,1 := ê1,1 ⊗
Λ

ΛΛ̄Λ̄ ∈ HomFp Sp(P1, P1),

ep−1,p−1 := êp−1,p−1 ⊗
Λ

ΛΛ̄Λ̄ ∈ HomFp Sp(Pp−1, Pp−1),

ek+1,k := êk+1,k ⊗
Λ

ΛΛ̄Λ̄ ∈ HomFp Sp(Pk, Pk+1) for k ∈ [1, p− 2],

ek,k+1 := êk,k+1 ⊗
Λ

ΛΛ̄Λ̄ ∈ HomFp Sp(Pk+1, Pk) for k ∈ [1, p− 2],

cf. Definition 12, and

• ε := ε̂⊗
Λ

ΛΛ̄Λ̄ ∈ HomFp Sp(P1,Fp), which is surjective as ε̂ is surjective.

So we obtain

PResFp := (PResZ(p))⊗
Λ

ΛΛ̄Λ̄ = (· · · d3−→ Pr2
d2−→ Pr1

d1−→ Pr0
0=d0−−−→ 0→ · · · ), (8)

Pri :=

{
Pω(i) i ≥ 0

0 i < 0
di :=

{
eω(i−1),ω(i) : Pω(i) → Pω(i−1) i ≥ 1

0 i ≤ 0,
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1. The projective resolution of Fp over FpSp

which is by Lemma 17 a projective resolution of Fp, with augmentation ε : P1 → Fp. More
explicitly, PResFp is

. . . → P2︸︷︷︸
l+1

e1,2−−→ P1︸︷︷︸
l=2(p−1)

e1,1−−→ P1︸︷︷︸
(p−2)+p−1

e2,1−−→ P2︸︷︷︸
(p−2)+p−2

→ . . .→ Pp−2︸︷︷︸
p=(p−2)+2

ep−1,p−2−−−−−→ Pp−1︸︷︷︸
(p−2)+1

ep−1,p−1−−−−−→ Pp−1︸︷︷︸
p−2

ep−2,p−1−−−−−→ Pp−2︸︷︷︸
p−3

→ . . .→ P2︸︷︷︸
1

e1,2−−→ P1︸︷︷︸
0

→ 0,

and the corresponding extended projective resolution is

. . . →P2
e1,2−−→ P1

e1,1−−→ P1
e2,1−−→ P2 → . . .→ Pp−2

ep−1,p−2−−−−−→ Pp−1

ep−1,p−1−−−−−→ Pp−1
ep−2,p−1−−−−−→ Pp−2 → . . .→ P2

e1,2−−→ P1
ε−→ Fp → 0.

Lemma 19. Recall that p ≥ 3 is a prime.

(a) We have the relations

e1,1 + e1,2 ◦ e2,1 = 0
ek,k−1 ◦ ek−1,k + ek,k+1 ◦ ek+1,k = 0 for k ∈ [2, p− 2]
ep−1,p−2 ◦ ep−2,p−1 + ep−1,p−1 = 0
ε ◦ e1,1 = 0

and ek is the identity on Pk for k ∈ [1, p− 1].

(b) Given k ∈ [2, p− 1], we have HomFpSp(Pk,Fp) = {0}.

(c) Given k, k′ ∈ [1, p− 1] such that |k − k′| > 1, we have HomFpSp(Pk, Pk′) = {0}.

(d) The set {ε} is an Fp-basis of HomFpSp(P1,Fp).

Proof. For k ∈ [1, p− 1], we denote the idempotent ẽk + pΛ ∈ Λ̄ = Λ/pΛ = FpSp by ėk
and identify Pk with ėkFpSp.

Ad (a). This results immediately from Lemma 15 and the fact that êk is the identity on
P̃k.

Ad (b). For y ∈ Z(p), we have y · ẽk = 0 as ẽλ1k = 0. Thus for x ∈ Fp, we have x · ėk = 0.
Now for g ∈ HomFpSp(Pk,Fp), we have g(ėk) = g(ėk · ėk) = g(ėk)ėk = 0. As Pk is generated
by ėk, we have g = 0.

Ad (c). The sets {λk, λk+1} and {λk′ , λk′+1} are disjoint. Thus for all y ∈ P̃k′ , we have
y · ẽk = 0, which implies x · ėk = 0 for all x ∈ Pk′ = ėk′FpSp. Now for g ∈ HomFpSp(Pk, Pk′),
we have g(ėk) = g(ėk · ėk) = g(ėk)ėk = 0. As Pk is generated by ėk, we have g = 0.

Ad (d). As P1 is Fp Sp-generated by ė1, an element f ∈ HomFpSp(P1,Fp) is deter-
mined uniquely by f(ė1). Furthermore Fp has Fp-dimension 1, thus {f} is a basis
of HomFpSp(P1,Fp) for any f ∈ HomFpSp(P1,Fp) with f(ė1) 6= 0. As ε(ė1) determines
ε, and as ε maps surjectively onto Fp, we have ε(ė1) 6= 0. So {ε} is an Fp-basis of
HomFpSp(P1,Fp).
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2. A∞-algebras

2.1. General theory

In this subsection, we review results presented in [12].

Let R be a commutative ring. We understand linear maps between R-modules to be
R-linear. Tensor products are tensor products over R.

Definition 20. A graded R-module V is a R-module of the form V = ⊕q∈ZV q. An
element vq ∈ V q, q ∈ Z is said to be of degree q. An element v ∈ V is called homogeneous
if there is an integer q ∈ Z such that v ∈ V q. For homogeneous elements v resp. graded
maps g (see below), we denote their degrees by |v| resp. |g|.

Definition 21. Let A = ⊕q∈ZAq, B = ⊕q∈ZBq be two graded R-modules. A graded map
of degree z ∈ Z is a linear map g : A→ B such that im g

∣∣
Aq
⊆ Bq+z for q ∈ Z.

Definition 22. Let A = ⊕q∈ZAq, B = ⊕q∈ZBq be two graded R-modules. We have

A⊗B =
⊕

z1,z2∈Z

Az1 ⊗Bz2 =
⊕
q∈Z

( ⊕
z1+z2=q

Az1 ⊗Bz2

)
.

As we understand the direct sums to be internal direct sums in A⊗B and understand
Az1 ⊗ Bz2 to be the linear span of the set {a⊗ b ∈ A⊗ B | a ∈ Az1 , b ∈ Az2}, we have
equations in the above, not just isomorphisms.

We then set A ⊗ B to be graded by A ⊗ B =
⊕

q∈Z(A ⊗ B)q, where (A ⊗ B)q :=⊕
z1+z2=q A

z1 ⊗Bz2 .

Moreover, we grade the direct sum

A⊕B =
⊕
q∈Z

(Aq ⊕Bq)

by (A⊕B)q := Aq ⊕Bq.

Definition 23. In the definition of the tensor product of graded maps, we implement the
Koszul sign rule: Let A1, A2, B1, B2 be graded R-modules and g : A1 → B1, h : A2 → B2

graded maps. Then we set

(g ⊗ h)(x⊗ y) := (−1)|h|·|x|g(x)⊗ h(y), (9)

where x ∈ A1, y ∈ A2 are homogeneous elements. Note that g ⊗ h has degree
|g ⊗ h| = |g|+ |h|.

Remark 24. It is known that for graded R-modules A,B,C, the map

Θ : (A⊗B)⊗ C −→ A⊗ (B ⊗ C)
(a⊗ b)⊗ c 7−→ a⊗ (b⊗ c) (10)
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is an isomorphism of R-modules. Because of the following, Θ is homogeneous of degree 0.

((A⊗B)⊗ C)q =
⊕

y+z3=q

(A⊗B)y ⊗ Cz3 =
⊕

y+z3=q

⊕
z1+z2=y

(Az1 ⊗Bz2)⊗ Cz3

=
⊕

z1+z2+z3=q

(Az1 ⊗Bz2)⊗ Cz3

(A⊗ (B ⊗ C))q =
⊕

z1+y=q

Az1 ⊗ (B ⊗ C)y =
⊕

z1+y=q

⊕
z2+z3=y

Az1 ⊗ (Bz2 ⊗ Cz3)

=
⊕

z1+z2+z3=q

Az1 ⊗ (Bz2 ⊗ Cz3)

Let A1, A2, B1, B2, C1, C2 be graded R-modules, f : A1 → A2, g : B1 → B2, h : C1 → C2

graded maps. For homogeneous elements x ∈ A1, y ∈ B1, z ∈ C1, we have

((f ⊗ g)⊗ h)((x⊗ y)⊗ z) = (−1)|x⊗y|·|h|((f ⊗ g)(x⊗ y))⊗ h(z)

= (−1)(|x|+|y|)|h|+|x|·|g|(f(x)⊗ g(y))⊗ h(z)

(f ⊗ (g ⊗ h))(x⊗ (y ⊗ z)) = (−1)|x|·|g⊗h|f(x)⊗ ((g ⊗ h)(y ⊗ z))

= (−1)|x|(|g|+|h|)+|y|·|h|f(x)⊗ (g(y)⊗ h(z))

= (−1)(|x|+|y|)|h|+|x|·|g|f(x)⊗ (g(y)⊗ h(z)).

Thus we have the following commutative diagram (Θ1 and Θ2 are derived from (10))

(A1 ⊗B1)⊗ C1
Θ1 //

(f⊗g)⊗h
��

A1 ⊗ (B1 ⊗ C1)

f⊗(g⊗h)
��

(A2 ⊗B2)⊗ C2
Θ2 // A2 ⊗ (B2 ⊗ C2)

It is therefore valid to use Θ as an identification and to omit the brackets for the
tensorization of graded R-modules and the tensorization of graded maps.

Concerning the signs in the definition of A∞-algebras and A∞-morphisms, we follow the
variant given e.g. in [16].

Definition 25. Let n ∈ Z≥0 ∪ {∞}.

(i) Let A be a graded R-module. A pre-An-structure on A is a family of graded maps
(mk : A⊗k → A)k∈[1,n] with |mk| = 2− k for k ∈ [1, n]. The tuple (A, (mk)k∈[1,n]) is
called a pre-An-algebra.

(ii) Let A, A′ be graded R-modules. A pre-An-morphism from A′ to A is a family of
graded maps (fk : A′⊗k → A)k∈[1,n] with |fk| = 1− k for k ∈ [1, n].

Definition 26. Let n ∈ Z≥0 ∪ {∞}.
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(i) An An-algebra is a pre-An-algebra (A, (mk)k∈[1,n]) such that for k ∈ [1, n]∑
k=r+s+t,
r,t≥0,s≥1

(−1)rs+tmr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) = 0. (11)[k]

In abuse of notation, we sometimes abbreviate A = (A, (mk)k≥1) for A∞-algebras.

(ii) Let (A′, (m′k)k∈[1,n]) and (A, (mk)k∈[1,n]) be An-algebras. An An-morphism or mor-
phism of An-algebras from (A′, (m′k)k∈[1,n]) to (A, (mk)k∈[1,n]) is a pre-An-morphism
(fk)k∈[1,n] such that for k ∈ [1, n], we have∑
k=r+s+t
r,t≥0,s≥1

(−1)rs+tfr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t) =
∑

1≤r≤k
i1+...+ir=k

is≥1

(−1)vmr ◦ (fi1 ⊗ fi2 ⊗ . . .⊗ fir),

(12)[k]

where

v :=
∑

1≤t<s≤r

(1− is)it.

Example 27 (dg-algebras). Let (A, (mk)k≥1) be an A∞-algebra. If mn = 0 for n ≥ 3
then A is called a differential graded algebra or dg-algebra. In this case the equations
(11)[n] for n ≥ 4 become trivial: We have (r + 1 + t) + s = n+ 1 ⇒ (r + 1 + t) + s ≥ 5
⇒ mr+1+t = 0 or ms = 0. So all summands in (11)[n] are zero for n ≥ 4. Here are the
equations for n ∈ {1, 2, 3}:

(11)[1] : 0 =m1 ◦m1

(11)[2] : 0 =m1 ◦m2 −m2 ◦ (m1 ⊗ 1 + 1⊗m1)

(11)[3] : 0 =m1 ◦m3 +m2 ◦ (1⊗m2 −m2 ⊗ 1)

+m3 ◦ (m1 ⊗ 1⊗2 + 1⊗m1 ⊗ 1 + 1⊗2 ⊗m1)
m3=0

=m2 ◦ (1⊗m2 −m2 ⊗ 1)

So (11)[1] ensures that m1 is a differential. Moreover, (11)[3] states that m2 is an
associative binary operation, since for homogeneous x, y, z ∈ A we have 0 = m2 ◦
(1⊗m2 −m2 ⊗ 1)(x⊗ y ⊗ z) = m2(x⊗m2(y ⊗ z)−m2(x⊗ y)⊗ z), where because of
|m2| = 0 there are no additional signs caused by the Koszul sign rule. Equation (11)[2] is
the Leibniz rule which can be motivated by the product rule in the algebra of differential
forms on a smooth manifold: We set m1f := ∂f and m2(f ⊗ g) := f ∧ g and we have for
homogeneous differential forms f, g

∂(f ∧ g) = (∂f) ∧ g + (−1)|f |f ∧ (∂g).

The signs on the right side also motivate the Koszul sign rule.
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2. A∞-algebras

Example 28 (An-morphisms induce complex morphisms).
Let n ∈ Z≥1 ∪ {∞}. Let (A′, (m′k)k∈[1,n]) and (A, (mk)k∈[1,n]) be two An-algebras and let
(fk)k∈[1,n] : (A′, (m′k)k∈[1,n])→ (A, (mk)k∈[1,n]) be an An-morphism.

By (11)[1], (A′,m′1) and (A,m1) are complexes. Equation (12)[1] is

f1 ◦m′1 =m1 ◦ f1.

Thus f1 : (A′,m′1)→ (A,m1) is a complex morphism.

For n ≥ 2, we have also (12)[2]:

f1 ◦m′2 − f2 ◦ (m′1 ⊗ 1 + 1⊗m′1) =m1 ◦ f2 +m2 ◦ (f1 ⊗ f1) (13)

Recall the conventions concerning Homk
B(C,C ′).

Lemma 29. Let B be an (ordinary) R-algebra and M = ((Mi)i∈Z, (di)i∈Z) a complex of
B-modules, that is a sequence (Mi)i∈Z of B-modules and B-linear maps di : Mi →Mi−1

such that di−1 ◦ di = 0 for all i ∈ Z. Let

Homi
B(M,M) :=

∏
z∈Z

HomB(Mz+i,Mz)

= {g = (gz)z∈Z | gz ∈ HomB(Mz+i,Mz) for z ∈ Z}.

Then

A = Hom∗B(M,M) :=
⊕
i∈Z

Homi
B(M,M)

is a graded R-module. We have d := (dz+1)z∈Z =
∑

i∈Zbdi+1cii+1 ∈ Hom1
B(M,M). We

define m1 := dHom∗(M,M) : A→ A, that is for homogeneous g ∈ A we have

m1(g) = d ◦ g − (−1)|g|g ◦ d.

We define m2 : A⊗2 → A for homogeneous g, h ∈ A to be composition, i.e.

m2(g ⊗ h) := g ◦ h.

For n ≥ 3 we set mn : A⊗n → A, mn = 0. Then (mn)n≥1 is an A∞-algebra structure on
A = Hom∗B(M,M). More precisely, (A, (mn)n≥1) is a dg-algebra.

Proof. Because of |d| = 1 we have |m1| = 1 = 2 − 1. The graded map m2 has degree
0 = 2− 2. The other maps mn are zero and have therefore automatically correct degree.
As discussed in Example 27 we only need to check (11)[n] for n = 1, 2, 3. Equation (11)[1]
holds because for homogeneous g ∈ A we have

m1(m1(g)) =m1[d ◦ g − (−1)|g|g ◦ d]
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2.1. General theory

= d ◦ [d ◦ g − (−1)|g|g ◦ d]− (−1)|g|+1[d ◦ g − (−1)|g|g ◦ d] ◦ d
d2=0

= − (−1)|g|d ◦ g ◦ d− (−1)|g|+1d ◦ g ◦ d = 0.

Concerning (11)[2], we have for homogeneous g, h ∈ A

(m2 ◦ (m1 ⊗ 1+1⊗m1))(g ⊗ h) = m2(m1(g)⊗ h+ (−1)|g|g ⊗m1(h))

= (d ◦ g − (−1)|g|g ◦ d) ◦ h+ (−1)|g|g ◦ (d ◦ h− (−1)|h|h ◦ d)

= d ◦ g ◦ h− (−1)|g|+|h|g ◦ h ◦ d
= (m1 ◦m2)(g ⊗ h).

The map m2 is induced by the composition of morphisms which is associative. As
discussed in Example 27, equation (11)[3] holds.

Remark 30. In Hom∗(PResFp,PResFp) we have (cf. (8))

d =
∑
i≥0

beω(i),ω(i+1)cii+1 .

Definition 31 (Homology of A∞-algebras, quasi-isomorphisms, minimality, minimal
models). As m2

1 = 0 (cf. (11)[1]) and |m1| = 1, we have the complex

· · · → Ai−1 m1|Ai−1−−−−−→ Ai
m1|Ai−−−→ Ai+1 → · · · .

We define HkA := ker(m1|Ak)/ im(m1|Ak−1) and H∗A :=
⊕

k∈Z HkA, which gives the
homology of A the structure of a graded R-module.

A morphism of A∞-algebras (fk)k≥1 : (A′, (m′k)k≥1) → (A, (mk)k≥1) is called a quasi-
isomorphism if the morphism of complexes f1 : (A′,m′1)→ (A,m1) (cf. Example 28) is a
quasi-isomorphism.

An A∞-algebra is called minimal, if m1 = 0. If A is an A∞-algebra and A′ is a minimal
A∞-algebra quasi-isomorphic to A, then A′ is called a minimal model of A.

The existence of minimal models is assured by the following theorem.

Theorem 32. (minimality theorem, cf. [13] (history), [9], [8], [20], [5], [7], [18], . . . )
Let (A, (mk)k≥1) be an A∞-algebra such that the homology H∗A is a projective R-module.
Then there exists an A∞-algebra structure (m′k)k≥1 on H∗A and a quasi-isomorphism of
A∞-algebras (fk)k≥1 : (H∗A, (m′k)k≥1)→ (A, (mk)k≥1), such that

• m′1 = 0 and

• the complex morphism f1 : (H∗A,m′1)→ (A,m1) induces the identity in homology.
I.e. each element x ∈ H∗A, which is a homology class of (A,m1), is mapped by f1

to a representing cycle.
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2. A∞-algebras

We give a proof of Theorem 32 in appendix A.4, cf. Theorem 67.

There is a general statement concerning the computation of minimal models of dg-algebras:

Lemma 33 (cf. [24, Theorem 5]). Let R be a commutative ring and (A, (mn)n≥1) be a
dg-algebra (over R). Suppose given a graded R-module B and graded maps fn : B⊗n → A,
m′n : B⊗n → B for n ≥ 1. Suppose given k ≥ 1 such that

fi = 0 for i ≥ k

m′i = 0 for i ≥ k + 1,

and such that (12)[n] is satisfied for 1 ≤ n ≤ 2k − 2. Then (12)[n] is satisfied for all
n ≥ 1.

Proof. We need to check (12)[n] for n ≥ 2k − 1:
The left side of (12)[n] is zero: For fr+1+t ◦ (1⊗r⊗m′s⊗ 1⊗t) to be non-zero it is necessary
that r+ 1 + t ≤ k− 1 and s ≤ k, so n+ 1 = r+ s+ t+ 1 ≤ 2k− 1, which is not the case.
Thus all summands on the left side of (12)[n] are zero.
The right side of (12)[n] is zero: As A is a dg-algebra, we have mn = 0 for n ≥ 3. So all
non-zero summands on the right side have r ≤ 2. For a non-zero summand we also have
iy ≤ k − 1 for all y ∈ [1, r]. So for those we have

n =
r∑

y=1

iy
r≤2

≤ 2(k − 1) = 2k − 2.

But n ≥ 2k − 1, so all summands on the right side of (12)[n] are zero.

2.2. The homology of Hom∗FpSp(PResFp,PResFp)

We need a well-known result of homological algebra in a particular formulation:

Lemma 34. Let F be a field. Let B be an F -algebra. Let M be a B-module. Let
Q = (· · · → Q2

d2−→ Q1
d1−→ Q0 → 0 → · · · ) be a projective resolution of M with

augmentation ε : Q0 →M , i.e. the sequence · · · → Q2
d2−→ Q1

d1−→ Q0
ε−→M → 0 is exact.

Then we have maps for k ∈ Z

Ψk : Homk
B(Q,Q) −→ Homk

B(Q,M) := HomB(Qk,M)

(gi : Qi+k → Qi)i∈Z 7→ ε ◦ g0

The right side is equipped with the differentials (dualization of dk)

(dk)
∗ : HomB(Qk,M)→ HomB(Qk+1,M)

g 7→ (−1)kg ◦ dk
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2.2. The homology of Hom∗FpSp(PResFp,PResFp)

and the left side is equipped with the differential m1 of its dg-algebra structure, cf.
Lemma 29.

Then (Ψk)k∈Z becomes a complex morphism from the complex Hom∗B(Q,Q) to the complex
Hom∗B(Q,M) that induces isomorphisms Ψ̄k of F -vector spaces on the homology

Ψ̄k : Hk Hom∗B(Q,Q)
'−→ Hk Hom∗B(Q,M)

(gi : Qi+k → Qi)i∈Z 7→ ε ◦ g0

Lemma 34 is a special case of [3, §5 Proposition 4]: The complex morphism

Q =

ψ
��

(· · · // Q2
d2 //

��

Q1
d1 //

��

Q0
//

ε

��

0 //

��

· · · )

Conc(M) := (· · · // 0 // 0 //M // 0 // · · · )

is a quasi-isomorphism since Q is a projective resolution of M . Application of [3,
§5 Proposition 4] now gives that the induced homomorphism Ψ : Hom∗B(Q,Q) →
Hom∗B(Q,Conc(M)) is a quasi-isomorphism. By removing zero components of the
elements of Hom∗B(Q,Conc(M)), we readily obtain an isomorphism of complexes from
Hom∗B(Q,Conc(M)) to Hom∗B(Q,M). Now composition of these two quasi-isomorphisms
gives the quasi-isomorphism described in Lemma 34.

Proposition 35. Recall that p ≥ 3 is a prime and l = 2(p− 1).
Write A := Hom∗FpSp(PResFp,PResFp). Let

ι :=
∑
i≥0

beω(i)cii+l =
∑
i≥0

l−1∑
k=0

beω(k)cil+k(i+1)l+k ∈ A
l

χ :=
∑
i≥0

(
be1cilil+l−1 +

p−2∑
k=1

bek+1,kcil+kil+l−1+k


+bep−1cil+(p−1)

il+l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
il+l−1+(p−1)+k


)
∈ Al−1.

(a) For j ≥ 0, we have

ιj =
∑
i≥0

beω(i)cii+jl =
∑
i≥0

l−1∑
k=0

beω(k)cil+k(i+j)l+k . (14)

(b) Suppose given y ≥ 0. Let h ∈ Ay be l-periodic, that is

h =
∑
i≥0

l−1∑
k=0

bhkcil+kil+k+y .

31



2. A∞-algebras

Then for j ≥ 0, we have

h ◦ ιj = ιj ◦ h =
∑
i≥0

l−1∑
k=0

bhkcil+k(i+j)l+k+y ∈ A
y+jl.

(c) Suppose given y ∈ Z. For h ∈ Ay and j ≥ 0, we have m1(h ◦ ιj) = m1(h) ◦ ιj.

(d) For j ≥ 0, we have m1(ιj) = 0. Thus ιj is a cycle.

(e) For j ≥ 0, we have

χιj :=χ ◦ ιj = ιj ◦ χ

=
∑
i≥0

(
be1cil(i+j+1)l−1 +

p−2∑
k=1

bek+1,kcil+k(i+j+1)l−1+k


+bep−1cil+(p−1)

(i+j+1)l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
(i+j+1)l−1+(p−1)+k


)
∈ Ajl+l−1.

For convenience, we also define χ0ιj := ιj and χ1ιj := χιj = χ ◦ ιj for j ≥ 0.

(f) For j ≥ 0, we have m1(χιj) = 0. Thus χιj is a cycle.

(g) Suppose given k ∈ Z. A Fp-basis of HkA is given by

{ιj} if k = jl for some j ≥ 0

{χιj} if k = jl + l − 1 for some j ≥ 0

∅ else.

Thus the set B := {ιj | j ≥ 0} t {χιj | j ≥ 0} is an Fp-basis of H∗A =
⊕

z∈Z HzA.

Before we proceed we display ι and χ for the case p = 5 as an example:
The period is of length l = 2p− 2 = 2 · 5− 2 = 8. The terms inside circles denote the
degrees.
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2.2. The homology of Hom∗FpSp(PResFp,PResFp)

PRes(F5)[8]
ι //

=

PRes(F5)

=

··
·)

��

··
·)

��
8 P1

e1 //

e1,1
��

P1

e1,1
��

7 P1
e1 //

e2,1
��

P1

e2,1
��

6 P2
e2 //

e3,2
��

P2

e3,2
��

5 P3
e3 //

e4,3
��

P3

e4,3
��

4 P4
e4 //

e4,4
��

P4

e4,4
��

3 P4
e4 //

e3,4
��

P4

e3,4
��

2 P3
e3 //

e2,3
��

P3

e2,3
��

1 P2
e2 //

e1,2
��

P2

e1,2
��

0 P1
e1 //

e1,1
��

P1

��
−1 P1

//

e2,1
��

0

��
−2 P2

//

e3,2
��

0

��
−3 P3

//

e4,3
��

0

��
−4 P4

//

e4,4
��

0

��
−5 P4

//

e3,4
��

0

��
−6 P3

//

e2,3
��

0

��
−7 P2

//

e1,2
��

0

��
−8 P1

//

��

0

��
−9 0 //

��

0

��···)

···)

PRes(F5)[8− 1]
χ //

=

PRes(F5)

=

··
·)

��

··
·)

��
9 P1

e2,1 //

−e1,1 ��

P2

e1,2
��

8 P1
e1 //

−e2,1 ��

P1

e1,1
��

7 P2

e1,2 //

−e3,2 ��

P1

e2,1
��

6 P3

e2,3 //

−e4,3 ��

P2

e3,2
��

5 P4

e3,4 //

−e4,4 ��

P3

e4,3
��

4 P4
e4 //

−e3,4 ��

P4

e4,4
��

3 P3

e4,3 //

−e2,3 ��

P4

e3,4
��

2 P2

e3,2 //

−e1,2 ��

P3

e2,3
��

1 P1

e2,1 //

−e1,1 ��

P2

e1,2
��

0 P1
e1 //

−e2,1 ��

P1

��
−1 P2

//

−e3,2 ��

0

��
−2 P3

//

−e4,3 ��

0

��
−3 P4

//

−e4,4 ��

0

��
−4 P4

//

−e3,4 ��

0

��
−5 P3

//

−e2,3 ��

0

��
−6 P2

//

−e1,2 ��

0

��
−7 P1

//

��

0

��
−8 0 //

��

0

��···)

···)
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2. A∞-algebras

Proof of Proposition 35. The element ι is well-defined since ω(y) = ω(l + y) for y ≥ 0.
In the definition of χ we need to check that the "b∗c∗∗" are well defined. This is easily
proven by calculating the ω(y) where y is the lower respective upper index of "b∗c∗∗".

(a): As Pri = {0} for i < 0, the identity element of A is given by ι0 =
∑

i≥0beω(i)cii, which
agrees with (14) in case j = 0. So we have proven the induction basis for induction on j.
So now assume that for some j ≥ 0 the equation (14) holds. Then

ιj+1 = ι ◦ ιj =

(∑
i≥0

beω(i)cii+l

)
◦

(∑
i′≥0

beω(i′)ci
′

i′+jl

)
=
∑
i≥0

beω(i) ◦ eω(i+l)cii+l+jl =
∑
i≥0

beω(i)cii+(j+1)l .

Thus the proof by induction is complete.

(b): We have

ιj ◦ h =

(∑
i≥0

l−1∑
k=0

beω(il+k)cil+k(i+j)l+k

)
◦

(∑
i′≥0

l−1∑
k′=0

bhk′ci
′l+k′

i′l+k′+y

)
i′ i+j
k′ k=

∑
i≥0

l−1∑
k=0

bhkcil+k(i+j)l+k+y

h ◦ ιj =

(∑
i≥0

l−1∑
k=0

bhkcil+kil+k+y

)
◦

(∑
i′≥0

beω(i′)ci
′

i′+jl

)
=
∑
i≥0

l−1∑
k=0

bhkcil+k(i+j)l+k+y .

So we have proven (b).

(c): The differential d of PResFp is l-periodic (cf. Remark 30) and thus

m1(h) ◦ ιj = (d ◦ h− (−1)yh ◦ d) ◦ ιj

(b),|ιj |≡20
= d ◦ h ◦ ιj − (−1)y+|ιj |h ◦ ιj ◦ d = m1(h ◦ ιj).

(d): We have

m1(ιj)
(c)
= m1(ι0) ◦ ιj = (d ◦ ι0 − (−1)0ι0d) ◦ ιj = (d− d) ◦ ιj = 0.

(e) is implied by (b) using the fact that χ is l-periodic.

(f): Because of (c) we have m1(χιj) = m1(χ) ◦ ιj. Because |χ| = l − 1 is odd we have

m1(χ) = d ◦ χ− (−1)χ ◦ d = χ ◦ d+ d ◦ χ

R.30
=

(∑
i≥0

(
be1cilil+l−1 +

p−2∑
k=1

bek+1,kcil+kil+l−1+k

+ bep−1cil+(p−1)
il+l−1+(p−1)

+

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
il+l−1+(p−1)+k


))
◦

(∑
y≥0

beω(y),ω(y+1)cyy+1

)
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2.2. The homology of Hom∗FpSp(PResFp,PResFp)

+

(∑
y≥0

beω(y),ω(y+1)cyy+1

)
◦

(∑
i≥0

(
be1cilil+l−1 +

p−2∑
k=1

bek+1,kcil+kil+l−1+k


+bep−1cil+(p−1)

il+l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
il+l−1+(p−1)+k


))

=
∑
i≥0

(
be1 ◦ e1,1cilil+l +

p−2∑
k=1

bek+1,k ◦ ek,k+1cil+kil+l+k


+ bep−1 ◦ ep−1,p−1cil+(p−1)

il+l+(p−1) +

p−2∑
k=1

bep−k−1,p−k ◦ ep−k,p−k−1cil+(p−1)+k
il+l+(p−1)+k


)

+
∑
i≥1

be1,1 ◦ e1cil−1
il+l−1 +

∑
i≥0

(p−2∑
k=1

bek,k+1 ◦ ek+1,kcil+k−1
il+l+k−1


+ bep−1,p−1 ◦ ep−1cil−1+(p−1)

il+l−1+(p−1) +

p−2∑
k=1

bep−k,p−k−1 ◦ ep−k−1,p−kcil−1+(p−1)+k
il+l−1+(p−1)+k


)

∗
=
∑
i≥0

(
be1,1 + e1,2 ◦ e2,1cilil+l +

p−3∑
k=1

bek+1,k ◦ ek,k+1 + ek+1,k+2 ◦ ek+2,k+1cil+kil+l+k


+ bep−1,p−2 ◦ ep−2,p−1 + ep−1,p−1cil+p−2

il+l+p−2 + bep−1,p−1 + ep−1,p−2 ◦ ep−2,p−1cil+p−1
il+l+p−1

+

p−3∑
k=1

bep−k−1,p−k ◦ ep−k,p−k−1 + ep−k−1,p−k−2 ◦ ep−k−2,p−k−1cil+p−1+k
il+l+p−1+k


+ be1,2 ◦ e2,1 + e1,1c(i+1)l−1

(i+1)l+l−1

)
L.19(a)

= 0

In the step marked by "∗" we sort the summands by their targets. Note that when splitting
sums of the form

∑p−2
k=1(. . .)k into (. . .)1 +

∑p−2
k=2(. . .)k or into (. . .)p−2 +

∑p−3
k=1(. . .)k, the

existence of the summand that is split off is ensured by p ≥ 3.

(g): We first show that the differentials of the complex Hom∗(PResFp,Fp) (cf. Lemma 34)
are all zero: By Lemma 19, {ε} is an Fp-basis of HomFpSp(P1,Fp), and for k ∈ [2, p− 1] we
have HomFpSp(Pk,Fp) = 0. So the only non-trivial (dk)

∗ are those where Prk = Prk+1 = P1.
This is the case only when k = lj + l − 1 for some j ≥ 0. Then dk = e1,1. For

ε ∈ Hom(P1,Fp), we have (dk)
∗(ε) = (−1)kε ◦ e1,1

L.19(a)
= 0. As Hom(P1,Fp) = 〈ε〉Fp , we

have (dk)
∗ = 0.

So Hk Hom∗(PResFp,Fp) = Homk(PResFp,Fp). We use Lemma 34.

For k = jl, j ≥ 0, we have Ψ̄k(ιj)
(a)
= ε, and {ε} is a basis of Hk Hom∗(PResFp,Fp).

For k = jl+l−1, j ≥ 0, we have Ψ̄k(χιj)
(e)
= ε, and {ε} is a basis of Hk Hom∗(PResFp,Fp).

Finally, for k = jl + r for some j ≥ 0 and some r ∈ [1, l − 2] and for k < 0, we have
Hk Hom∗(PResFp,Fp) = {0}.
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2.3. An A∞-structure on Ext∗FpSp(Fp,Fp) as a minimal model of
Hom∗FpSp(PResFp,PResFp)

Recall that p ≥ 3 is a prime. Write A := Hom∗FpSp(PResFp,PResFp), which becomes an
A∞-algebra (A, (mn)n≥1) over R = Fp via Lemma 29. We implement Ext∗FpSp(Fp,Fp) as
Ext∗FpSp(Fp,Fp) := H∗A.

Our goal in this section is to construct an A∞-structure (m′n)n≥1 on H∗A and a mor-
phism of A∞-algebras f = (fn)n≥1 : (H∗A, (m′n)n≥1) → (A, (mn)n≥1) which satisfy the
statements of Theorem 32. I.e. we will construct a minimal model of A. In preparation
of the definitions of the fn and m′n, we name and examine certain elements of A:

Lemma 36. Suppose given k ∈ [2, p− 1]. We set

γk :=
∑
i≥0

(
bekck−1+li

k(l−1)+li + bep−kck−1+(p−1)+li
k(l−1)+(p−1)+li

)
∈ Ak(l−2)+1.

For j ≥ 0, we have

γkι
j := γk ◦ ιj = ιj ◦ γk =

∑
i≥0

(
bekck−1+li

k(l−1)+l(i+j) + bep−kck−1+(p−1)+li
k(l−1)+(p−1)+l(i+j)

)
∈ Ak(l−2)+1+jl

and

m1(γkι
j) =

∑
i≥0

(
bek−1,kck−2+li

k(l−1)+l(i+j) + bep−k+1,p−kck−2+(p−1)+li
k(l−1)+(p−1)+l(i+j)

+bek,k−1ck−1+li
k(l−1)+1+l(i+j) + bep−k,p−(k−1)ck−1+(p−1)+li

k(l−1)+p+l(i+j)

)
.

Proof. We need to prove that γk is well-defined. Let i ≥ 0.
We consider the first term. The complex PResFp (cf. (8), (6)) has entry Pk at position
k(l − 1) + li and at position k − 1 + li: We have k(l − 1) + li = (k − 1 + i)l + l − k. So
ω(k(l − 1) + li) = l − (l − k) = k since p− 1 ≤ l − k ≤ l − 1. We have ω(k − 1 + li) =
(k − 1) + 1 = k since 0 ≤ k − 1 ≤ p − 2. As k(l − 1) + li, k − 1 + li ≥ 0, we have
Prk(l−1)+li = Pω(k(l−1)+li) = Pk and Prk−1+li = Pω(k−1+li) = Pk. So the first term is
well-defined.
Now consider the second term. The complex PResFp has entry Pp−k at position k(l−1)+
(p−1)+li and at position k−1+(p−1)+li: We have k(l−1)+(p−1)+li = (i+k)l+(p−1)−k,
so ω(k(l − 1) + (p − 1) + li) = (p − 1) − k + 1 = p − k since 0 ≤ (p − 1) − k ≤ p − 2.
We have ω(k − 1 + (p − 1) + li) = 2(p − 1) − (k − 1) − (p − 1) = p − k since p − 1 ≤
k− 1 + (p− 1) ≤ 2(p− 1)− 1. As k(l− 1) + (p− 1) + li, k− 1 + (p− 1) + li ≥ 0, we have
Prk(l−1)+(p−1)+li = Pω(k(l−1)+(p−1)+li) = Pp−k and Prk−1+(p−1)+li = Pω(k−1+(p−1)+li) = Pp−k.
So the second term is well-defined.

The degree of the tuple of maps is computed to be (k(l − 1) + li) − (k − 1 + li) =
k(l − 2) + 1 = (k(l − 1) + (p− 1) + li)− (k − 1 + (p− 1) + li).
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The explicit formula for γkιj is an application of Proposition 35(b).

The degree |γkιj| = k(l − 2) + 1 is odd, so

m1(γkι
j)

L.29
= d ◦ γkιj + γkι

j ◦ d
R.30

=
∑
i≥0

beω(k−2),ω(k−1)ck−2+li
k−1+li ◦

∑
i≥0

bekck−1+li
k(l−1)+l(i+j)

+
∑
i≥0

beω(p−1+k−2),ω(p−1+k−1)ck−2+(p−1)+li
k−1+(p−1)+li ◦

∑
i≥0

bep−kck−1+(p−1)+li
k(l−1)+(p−1)+l(i+j)

+
∑
i≥0

bekck−1+li
k(l−1)+l(i+j) ◦

∑
i≥0

beω(l−k),ω(l−k+1)ck(l−1)+l(i+j)
k(l−1)+1+l(i+j)

+
∑
i≥0

bep−kck−1+(p−1)+li
k(l−1)+(p−1)+l(i+j) ◦

∑
i≥0

beω(p−1−k),ω(p−k)ck(l−1)+(p−1)+l(i+j)
k(l−1)+p+l(i+j)

=
∑
i≥0

bek−1,kck−2+li
k(l−1)+l(i+j) +

∑
i≥0

bep−k+1,p−kck−2+(p−1)+li
k(l−1)+(p−1)+l(i+j)

+
∑
i≥0

bek,k−1ck−1+li
k(l−1)+1+l(i+j) +

∑
i≥0

bep−k,p−(k−1)ck−1+(p−1)+li
k(l−1)+p+l(i+j)

Note that in the second line k − 2 + li ≥ 0 as i ≥ 0 and k ≥ 2.

Lemma 37. For j, j′ ≥ 0, we have

χιj ◦ χιj′ = m1(γ2ι
j+j′).

Proof. It suffices to prove that χ ◦ χ = m1(γ2) since then χιj ◦ χιj′ P.35(e)
= χ ◦ χ ◦ ιj+j′ =

m1(γ2) ◦ ιj+j′ P.35(c)
= m1(γ2ι

j+j′).
To determine when a composite is zero, we will need the following. For 0 ≤ k, k′ < l, we
examine the condition

il + l − 1 + k = i′l + k′. (15)

If k = 0 then (15) holds iff i = i′ and k′ = l − 1.
If k ≥ 1 then (15) holds iff i+ 1 = i′ and k′ = k − 1.
So

χ ◦ χ
p≥3
=

(∑
i≥0

(
be1cilil+l−1 + be2,1cil+1

il+l +

p−2∑
k=2

bek+1,kcil+kil+l−1+k


+ bep−1cil+(p−1)

il+l−1+(p−1) + bep−2,p−1cil+pil+l+p−1 +

p−2∑
k=2

bep−k−1,p−kcil+(p−1)+k
il+l−1+(p−1)+k


))

◦

(∑
i′≥0

(
be1ci

′l
i′l+l−1 +

 p−3∑
k′=1

bek′+1,k′ci
′l+k′

i′l+l−1+k′

 + bep−1,p−2ci
′l+p−2
i′l+l+p−3
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+ bep−1ci
′l+(p−1)
i′l+l−1+(p−1) +

 p−3∑
k′=1

bep−k′−1,p−k′ci
′l+(p−1)+k′

i′l+l−1+(p−1)+k′

+ be1,2ci
′l+l−1
i′l+l+2(p−2)

))

=
∑
i≥0

(
be1 ◦ e1,2cilil+l+2(p−2) + be2,1 ◦ e1cil+1

il+2l−1 +

p−2∑
k=2

bek+1,k ◦ ek,k−1cil+kil+2l−1+k−1︸ ︷︷ ︸
=0 by L.19(c)


+ bep−1 ◦ ep−1,p−2cil+(p−1)

il+2l+p−3 + bep−2,p−1 ◦ ep−1cil+pil+2l+p−2

+

p−2∑
k=2

bep−k−1,p−k ◦ ep−k,p−k+1cil+(p−1)+k
il+2l−1+p−1+k−1︸ ︷︷ ︸

=0 by L.19(c)


)

=
∑
i≥0

(
be1,2cil(i+2)l−2 + be2,1cil+1

(i+2)l−1 + bep−1,p−2cil+p−1
(i+2)l+p−3 + bep−2,p−1cil+p(i+2)l+p−2

)
L.36

=m1(γ2)

Below are the definitions which will give a minimal A∞-algebra structure on H∗A and a
quasi-isomorphism of A∞-algebras H∗A→ A.

Definition 38. Recall from Proposition 35 that B = {ιj | j ≥ 0} t {χιj | j ≥ 0} =
{χaιj | j ≥ 0, a ∈ {0, 1}} is a basis of H∗A. For n ∈ Z≥1, we set

B⊗n := {χa1ιj1 ⊗ . . .⊗ χanιjn ∈ (H∗A)⊗n | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, n]},

which is a basis of (H∗A)⊗n consisting of homogeneous elements.

For n ≥ 1, we define the Fp-linear map fn : (H∗A)⊗n → A as follows:

Case n = 1: f1 is given on B by f1(ιj) := ιj and f1(χιj) := χιj.

Case n ∈ [2, p− 1]: fn is given on elements of B⊗n by

fn(χa1ιj1 ⊗ . . .⊗ χanιjn) :=

{
0 if ∃i ∈ [1, n] : ai = 0

(−1)n−1γnι
j1+...+jn if 1 = a1 = a2 = . . . = an

Case n ≥ p: We set fn := 0.

For n ≥ 1, we define the Fp-linear map m′n : (H∗A)⊗n → H∗A by defining it on elements
χa1ιj1 ⊗ . . .⊗ χanιjn ∈ B⊗n:

Case ∃i ∈ [1, n] : ai = 0:
m′n(χa1ιj1 ⊗ . . .⊗ χanιjn) := 0 for n 6= 2 and
m′2(χa1ιj1 ⊗ χa2ιj2) := χa1+a2ιj1+j2 (Note that a1 + a2 ∈ {0, 1}).

Case a1 = a2 = . . . = an = 1:
m′n(χιj1 ⊗ . . .⊗ χιjn) := 0 for n 6= p and
m′p(χι

j1 ⊗ . . .⊗ χιjp) := (−1)pιp−1+j1+...+jp = −ιp−1+j1+...+jp .
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Note that since p ≥ 3, we have m′2(χιj1 ⊗ χιj2) = 0 for j1, j2 ≥ 0.

Theorem 39. The pair (H∗A, (m′n)n≥1) is a minimal A∞-algebra. The tuple (fn)n≥1

is an quasi-isomorphism of A∞-algebras from (H∗A, (m′n)n≥1) to (A, (mn)n≥1). More
precisely, f1 : (H∗A,m′1)→ (A,m1) induces the identity in homology.

The proof of Theorem 39 will take the remainder of section 2.3. We will use Lemma 64.

Lemma 40. The maps fn and m′n have degree |fn| = 1 − n and |m′n| = 2 − n. I.e.
(fn)n≥1 is a pre-A∞-morphism from H∗A to A, and (H∗A, (m′n)n≥1) is a pre-A∞-algebra.

Proof. We have |f1| = 0 as |ιj| = |ιj| and |χιj| = |χιj|. For n ≥ p the map fn is of
degree 1−n as fn = 0. For n ∈ [2, p−1] the statement |fn| = 1−n is proven by checking
the degrees for the elements of the basis B⊗n whose image under fn is non-zero:

|fn(χιj1 ⊗ . . .⊗ χιjn)| = |(−1)n−1γnι
j1+...+jn| L.36

= (j1 + . . .+ jn)l + n(l − 1) + 1− n

= 1− n+
n∑
x=1

|χιjx| = 1− n+ |χιj1 ⊗ . . .⊗ χιjn |

Thus |fn| = 1− n for all n and we have proven the first statement.

Now we show |m′n| = 2− n. As before, we only need check the degrees for basis elements
whose image is non-zero: For χa1ιj1 ⊗ χa2ιj2 , j1, j2 ≥ 0, a1, a2 ∈ {0, 1}, 0 ∈ {a1, a2}, we
have

|m′2(χa1ιj1 ⊗ χa2ιj2)| = |χa1+a2ιj1+j2| = (a1 + a2)(l − 1) + l(j1 + j2)

= a1(l − 1) + j1l + a2(l − 1) + j2l = |χa1ιj1 ⊗ χa2ιj2 |+ (2− 2).

For χιj1 ⊗ · · · ⊗ χιjp , jx ≥ 0 for x ∈ [1, p], we have

|m′p(χιj1 ⊗ · · · ⊗ χιjp)| = |ιp−1+j1+...+jp | = l(p− 1 + j1 + . . .+ jp)

= lp− l + l(j1 + . . .+ jp) = lp− 2p+ 2 + l(j1 + . . .+ jp)

= p(l − 1) + l(j1 + . . .+ jp) + 2− p = |χιj1 ⊗ · · · ⊗ χιjp |+ 2− p

Lemma 41. We have m′1 = 0. The equation (12)[1] holds. The complex morphism
f1 : (A′,m′1)→ (A,m1) is a quasi-isomorphism inducing the identity in homology.

Proof. The equality m′1 = 0 follows immediately from the definition. Thus m1 ◦ f1 =
0 = f1 ◦m′1. Moreover f1 is a quasi-isomorphism inducing the identity in homology by
construction, cf. Proposition 35(g).

Lemma 42. The map f1 is injective.
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Proof. The set X := {χaιj | a ∈ {0, 1}, j ∈ Z≥1} ⊆ A is linearly independent,
since it consists of nonzero elements of different summands of the direct sum A =⊕

k∈Z Homk(PResFp,PResFp). The set B, which is a basis of H∗A, is mapped bijectively
to X by f1, so f1 is injective.

Lemma 43. The equation (12)[2] holds.

Proof. As m′1 = 0, equation (12)[2] is equivalent to (cf. (13))

f1 ◦m′2 =m1 ◦ f2 +m2 ◦ (f1 ⊗ f1).

We check this equation on B⊗2: Recall Proposition 35 and Definition 38.

f1m
′
2(ιj ⊗ ιj′) = ιj+j

′
= m2(f1 ⊗ f1)(ιj ⊗ ιj′) = (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(ιj ⊗ ιj′)

f1m
′
2(ιj ⊗ χιj′) =χιj+j

′
= m2(f1 ⊗ f1)(ιj ⊗ χιj′)

= (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(ιj ⊗ χιj′)
f1m

′
2(χιj ⊗ ιj′) =χιj+j

′
= m2(f1 ⊗ f1)(χιj ⊗ ιj′)

= (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(χιj ⊗ ιj′)

f1m
′
2(χιj ⊗ χιj′) = 0

L.37
= −m1(γ2ι

j+j′) +m2(f1 ⊗ f1)(χιj ⊗ χιj′)
= (m1 ◦ f2 +m2 ◦ (f1 ⊗ f1))(χιj ⊗ χιj′)

Note that there are no additional signs due to the Koszul sign rule since |f1| = 0.

The following results directly from Definition 38.

Corollary 44. For n ≥ 2 and a1, . . . , an ∈ {0, 1}, j1, . . . , jn ≥ 0, we have

fn(χa1ιj1 ⊗ . . .⊗ χanιjn) = fn(χa1 ⊗ . . .⊗ χan) ◦ ιj1+...+jn .

If there is additionally an x ∈ [1, n] with ax = 0 then

fn(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0.

Equation (12)[n] can be reformulated as

f1 ◦m′n +
∑

n=r+s+t
r,t≥0,s≥1
s≤n−1

(−1)rs+tfr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t)

︸ ︷︷ ︸
=:Φn

= m1 ◦ fn +
∑

2≤r≤n
i1+...+ir=n

is≥1

(−1)vmr ◦ (fi1 ⊗ fi2 ⊗ . . .⊗ fir)

︸ ︷︷ ︸
=:Ξn

,
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where v =
∑

1≤t<s≤r(1− is)it.

A term of the form fr+1+t ◦ (1⊗r ⊗ m′s ⊗ 1⊗t), s ≥ 3, r + t ≥ 1, is zero because of
Corollary 44 and the definition of m′p. Also recall m′1 = 0. Thus

Φn =
∑

n=r+2+t
r,t≥0

(−1)2r+tfn−1 ◦ (1⊗r ⊗m′2 ⊗ 1⊗t) =
n−2∑
r=0

(−1)n−rfn−1 ◦ (1⊗r ⊗m′2 ⊗ 1⊗n−r−2).

(16)

Because of mk = 0 for k ≥ 3, we have

Ξn =
∑

i1+i2=n
i1,i2≥1

(−1)(1−i2)i1m2 ◦ (fi1 ⊗ fi2) =
n−1∑
i=1

(−1)nim2 ◦ (fi ⊗ fn−i). (17)

We have proven:

Lemma 45. For n ≥ 1, condition (12)[n] is equivalent to f1 ◦m′n + Φn = m1 ◦ fn + Ξn

where Φn and Ξn are as in (16) and (17).

Lemma 46. Condition (12)[n] holds for n ≥ 3 and arguments χa1ιj1 ⊗ . . . ⊗ χanιjn ∈
B⊗n = {χa1ιj1 ⊗ . . . ⊗ χanιjn ∈ (H∗A)⊗n | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, n]}
where 0 ∈ {a1, . . . , an}.

Proof. Because of Lemma 45 and Definition 38 it is sufficient to show that

Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn)

if at least one ax equals 0.

Case 1 At least two ax equal 0:
To show Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0, we show
fn−1(1⊗r ⊗m′2⊗ 1⊗n−r−2)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0 for r ∈ [0, n− 2]: In case both
components of the argument of m′2 are of the form χ0ιj, the result of m′2 is of the
form ιj′ (see Definition 38). Since 2 ≤ n− 1, Corollary 44 implies the result of fn−1

is zero. Otherwise at least one of the components of the argument of fn−1 must be
of the form ιj and the result of fn−1 is zero as well. So Φn(χa1ιj1⊗ . . .⊗χanιjn) = 0.
To show Ξn(χa1ιj1⊗. . .⊗χanιjn) = 0, we showm2(fi⊗fn−i)(χa1ιj1⊗. . .⊗χanιjn) = 0
for i ∈ [1, n− 1]:

• Suppose given i ∈ [2, n − 2]: The statements a1 = . . . = ai = 1 and ai+1 =
. . . = an = 1 cannot be true at the same time, so fi(. . .) = 0 or fn−i(. . .) = 0
and we have m2(fi ⊗ fn−i)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0.

• Suppose that i = 1. Because at least two ax equal 0 the statement a2 =
. . . = an = 1 cannot be true. Since n − 1 ≥ 2, we have fn−1(. . .) = 0 and
m2(f1 ⊗ fn−1)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0.
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• The case i = n− 1 is analogous to the case i = 1.

So we have Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0 = Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn).

Case 2a Exactly one ax equals 0, where x ∈ [2, n− 1].
We have Φn(χa1ιj1 ⊗ . . . ⊗ χanιjn) = 0: In case n ≥ p + 1, it follows from
fn−1 = 0. Let us check the case n ∈ [3, p]: Because of Definition 38, we have
fn−1(1⊗r ⊗m′2 ⊗ 1⊗n−r−2)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0 unless r ∈ {x− 2, x− 1}. So

Φn(χa1ιj1 ⊗ . . .⊗ χanιjn)

= (−1)n−x+2fn−1(1⊗x−2 ⊗m′2 ⊗ 1⊗n−x − 1⊗x−1 ⊗m′2 ⊗ 1n−x−1)

(χa1ιj1 ⊗ . . .⊗ χanιjn)

= (−1)n−xfn−1(χιj1 ⊗ . . .⊗ χιjx−2 ⊗m′2(χιjx−1 ⊗ ιjx)⊗ χιjx+1 ⊗ . . .⊗ χιjn

− χιj1 ⊗ . . .⊗ χιjx−1 ⊗m′2(ιjx ⊗ χιjx+1)⊗ χιjx+2 ⊗ . . .⊗ χιjn)

= (−1)n−xfn−1(χιj1 ⊗ . . .⊗ χιjx−2 ⊗ χιjx−1+jx ⊗ χιjx+1 ⊗ . . .⊗ χιjn

− χιj1 ⊗ . . .⊗ χιjx−1 ⊗ χιjx+jx+1 ⊗ χιjx+2 ⊗ . . .⊗ χιjn)

= (−1)n−x((−1)n−2γn−1ι
j1+...+jn − (−1)n−2γn−1ι

j1+...+jn) = 0

To show Ξn(χa1ιj1⊗. . .⊗χanιjn) = 0, we showm2(fi⊗fn−i)(χa1ιj1⊗. . .⊗χanιjn) = 0
for i ∈ [1, n− 1]: The element χaxιjx is a tensor factor of the argument of fi or of
fn−i. We write y = i or y = n − i accordingly. Then y ≥ 2 since x /∈ {1, n}, so
fy(. . .) = 0 and thus m2(fi ⊗ fn−i)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0.
So Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0 = Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn).

Case 2b Only a1 = 0, all other ax equal 1.
We have fn−1(1⊗r ⊗m′2 ⊗ 1⊗n−r−2)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0 unless r = 0. So

Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = (−1)nfn−1(1⊗0 ⊗m′2 ⊗ 1⊗n−2)(χa1ιj1 ⊗ . . .⊗ χanιjn)

= (−1)nfn−1(m′2(ιj1 ⊗ χιj2)⊗ χιj3 ⊗ . . .⊗ χιjn)

= (−1)nfn−1(χιj1+j2 ⊗ χιj3 ⊗ . . .⊗ χιjn)

=

{
γn−1ι

j1+...+jn 3 ≤ n ≤ p

0 n ≥ p+ 1

We have (fi ⊗ fn−1)(χa1ιj1 ⊗ . . .⊗ χanιjn) = 0 if i ≥ 2. So

Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn) = (−1)1·nm2(f1 ⊗ fn−1)(χa1ιj1 ⊗ . . .⊗ χanιjn)

(9)
= (−1)nm2

(
(−1)n·|ι

j1 |f1(ιj1)⊗ fn−1(χιj2 ⊗ . . .⊗ χιjn)
)

= (−1)nm2

(
ιj1 ⊗ fn−1(χιj2 ⊗ . . .⊗ χιjn)

)
=

{
(−1)nm2(ιj1 ⊗ (−1)n−2γn−1ι

j2+...+jn) 3 ≤ n ≤ p

0 n ≥ p+ 1
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=

{
γn−1ι

j1+...+jn 3 ≤ n ≤ p

0 n ≥ p+ 1

So Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn).

Case 2c Only an = 0, all other ax equal 1.
Argumentation analogous to case 2b gives

Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = (−1)2fn−1(1⊗n−2 ⊗m′2 ⊗ 1⊗0)(χa1ιj1 ⊗ . . .⊗ χanιjn)

|m′2|=0
= fn−1(χιj1 ⊗ . . .⊗ χιjn−2 ⊗m′2(χιjn−1 ⊗ ιjn))

=

{
(−1)n−2γn−1ι

j1+...+jn 3 ≤ n ≤ p

0 n ≥ p+ 1

and

Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn) = (−1)n(n−1)m2(fn−1 ⊗ f1)(χa1ιj1 ⊗ . . .⊗ χanιjn)

|f1|=0
=m2

(
fn−1(χιj1 ⊗ . . .⊗ χιjn−1)⊗ f1(ιjn)

)
=

{
(−1)n−2γn−1ι

j1+...+jn 3 ≤ n ≤ p

0 n ≥ p+ 1

So Φn(χa1ιj1 ⊗ . . .⊗ χanιjn) = Ξn(χa1ιj1 ⊗ . . .⊗ χanιjn).

Now we examine the cases where a1 = . . . = an = 1:

Lemma 47. For n ≥ 3, we have Φn(χιj1⊗ . . .⊗χιjn) = 0 for χιj1⊗ . . .⊗χιjn ∈ B⊗n =
{χa1ιj1 ⊗ . . .⊗ χanιjn ∈ (H∗A)⊗n | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, n]}.

Proof. We have Φn(χιj1 ⊗ . . . ⊗ χιjn) = 0 since Φn =
∑n−2

r=0 (−1)n−rfn−1(1
⊗r ⊗ m′2 ⊗

1⊗n−r−2) and the argument of m′2 is always of the form χιx ⊗ χιy, whence its result is
zero.

Lemma 48. Condition (12)[n] holds for n ∈ [3, p− 1] and arguments χιj1 ⊗ . . .⊗χιjn ∈
B⊗n = {χa1ιj1 ⊗ . . .⊗ χanιjn ∈ (H∗A)⊗n | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, n]}.

Proof. For computing Ξn, we first show that m2(fk ⊗ fn−k)(χιj1 ⊗ . . . ⊗ χιjn) = 0 for
k ∈ [2, n− 2]. We will need the following congruence.

(k(l − 1) + l(i+ x))︸ ︷︷ ︸
≡p−1k(l−1)+(p−1)+l(i+x)

− (n− k − 1 + li′)︸ ︷︷ ︸
≡p−1n−k−1+(p−1)+li′

≡p−1 −k + k − n+ 1 = −(n− 1)

6≡p−1 0 (18)
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The last statement results from 2 ≤ n ≤ p − 1. We set "±" as a symbol for the (a
posteriori irrelevant) signs in the following calculation. For k ∈ [2, n− 2], we have

m2(fk ⊗ fn−k)(χιj1 ⊗ . . .⊗ χιjn)

= ±m2((−1)k−1γkι
j1+...+jk ⊗ (−1)n−k−1γn−kι

jk+1+...+jn)
j1+...+jk=:x,
jk+1+...+jn=:y

= ± γkιx ◦ γn−kιy

= ±

(∑
i≥0

bekck−1+li
k(l−1)+l(i+x) +

∑
i≥0

bep−kck−1+(p−1)+li
k(l−1)+(p−1)+l(i+x)

)

◦

(∑
i′≥0

ben−kcn−k−1+li′

(n−k)(l−1)+l(i′+y) +
∑
i′≥0

bep−n+kcn−k−1+(p−1)+li′

(n−k)(l−1)+(p−1)+l(i′+y)

)
(18)
= 0.

So

Ξn(χιj1 ⊗ . . .⊗ χιjn)

=m2((−1)nf1 ⊗ fn−1 + (−1)n(n−1)fn−1 ⊗ f1)(χιj1 ⊗ . . .⊗ χιjn)

=m2((−1)n+n|χιj1 |f1(χιj1)⊗ fn−1(χιj2 ⊗ . . .⊗ χιjn)

+ fn−1(χιj1 ⊗ . . .⊗ χιjn−1)⊗ f1(χιjn))

=m2(χιj1 ⊗ (−1)n−2γn−1ι
j2+...+jn + (−1)n−2γn−1ι

j1+...+jn−1 ⊗ χιjn)

= (−1)n(χιj1 ◦ γn−1ι
j2+...+jn + γn−1ι

j1+...+jn−1 ◦ χιjn)

P.35(e),L.36
= (−1)n(χ ◦ γn−1 + γn−1 ◦ χ) ◦ ιj1+...+jn

χ ◦ γn−1 =

(∑
i≥0

(
be1cil(i+1)l−1 +

p−2∑
k=1

bek+1,kcil+k(i+1)l−1+k


+bep−1cil+(p−1)

(i+1)l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
(i+1)l−1+(p−1)+k


))

◦

(∑
i′≥0

ben−1cn−2+li′

(n−1)(l−1)+li′ +
∑
i′≥0

bep−n+1cn−2+(p−1)+li′

(n−1)(l−1)+(p−1)+li′

)
3≤n≤p−1

=
k n−1
i′ i+1

∑
i≥0

ben,n−1 ◦ en−1cil+n−1
(n−1)(l−1)+l(i+1)

+
∑
i≥0

bep−n,p−n+1 ◦ ep−n+1cil+p−1+n−1
(n−1)(l−1)+(p−1)+l(i+1)

=
∑
i≥0

(
ben,n−1cil+n−1

n(l−1)+1+li + bep−n,p−n+1cil+p−1+n−1
n(l−1)+p+li

)
γn−1 ◦ χ =

(∑
i′≥0

ben−1cn−2+li′

(n−1+i′−1)l+2(p−1)−(n−1) +
∑
i′≥0

bep−n+1cn−2+(p−1)+li′

(n−1+i′)l−n+p

)
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◦

(∑
i≥0

(
be1cil(i+1)l−1 +

p−2∑
k=1

bek+1,kcil+k(i+1)l−1+k


+bep−1cil+(p−1)

(i+1)l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
(i+1)l−1+(p−1)+k


))

k p−n
=
∑
i′≥0

ben−1 ◦ en−1,ncn−2+li′

(n−1+i′)l−1+(p−1)+(p−n)

+
∑
i′≥0

bep−n+1 ◦ ep−n+1,p−ncn−2+(p−1)+li′

(n+i′)l−1+p−n

=
∑
i′≥0

ben−1,ncn−2+li′

n(l−1)+i′l +
∑
i′≥0

bep−n+1,p−ncn−2+(p−1)+li′

n(l−1)+(p−1)+i′l

So χ ◦ γn−1 + γn−1 ◦ χ = m1(γn) by Lemma 36. Therefore

Ξn(χιj1 ⊗ . . .⊗ χιjn) = (−1)nm1(γn) ◦ ιj1+...+jn P.35(c)
= (−1)nm1(γnι

j1+...+jn)

= −m1((−1)n−1γnι
j1+...+jn)

= −m1 ◦ fn(χιj1 ⊗ . . .⊗ χιjn).

We conclude using Lemma 45 by

(f1 ◦m′n + Φn)(χιj1 ⊗ . . .⊗ χιjn)
L.47,D.38

= 0 = (m1 ◦ fn + Ξn)(χιj1 ⊗ . . .⊗ χιjn).

Lemma 49. Condition (12)[p] holds for arguments χιj1 ⊗ . . . ⊗ χιjp ∈ B⊗p =
{χa1ιj1 ⊗ . . .⊗ χapιjp ∈ (H∗A)⊗p | ai ∈ {0, 1} and ji ∈ Z≥0 for all i ∈ [1, p]}.

Proof. Recall that |ι| = l = 2(p − 1) is even, |χ| = l − 1 is odd and |fi| = 1 − i by
Lemma 40. We have

Ξp(χιj1 ⊗ . . .⊗ χιjp) =

p−1∑
i=1

(−1)pim2(fi ⊗ fp−i)(χιj1 ⊗ . . .⊗ χιjp)

=

p−1∑
i=1

(−1)pi+i(1−(p−i))m2(fi(χιj1 ⊗ . . .⊗ χιji)⊗ fp−i(χιji+1 ⊗ . . .⊗ χιjp))

=

p−1∑
i=1

fi(χιj1 ⊗ . . .⊗ χιji) ◦ fp−i(χιji+1 ⊗ . . .⊗ χιjp)

p≥3
=χιj1 ◦ (−1)p−2γp−1ι

j2+...+jp + (−1)p−2γp−1ι
j1+...+jp−1 ◦ χιjp

+

p−2∑
i=2

(−1)i−1γiι
j1+...+ji ◦ (−1)p−i−1γp−iι

ji+1+...+jp
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P.35(b)
= (−1)p

(
χ ◦ γp−1 + γp−1 ◦ χ+

p−2∑
k=2

γk ◦ γp−k

)
◦ ιj1+...+jp

χ ◦ γp−1 =

(∑
i≥0

(
be1cil(i+1)l−1 +

p−2∑
k=1

bek+1,kcil+k(i+1)l−1+k


+bep−1cil+(p−1)

(i+1)l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
(i+1)l−1+(p−1)+k


))

◦

(∑
i′≥0

bep−1c(p−1)−1+li′

(p−1)(l−1)+li′ +
∑
i′≥0

be1c−1+2(p−1)+li′

(p−1)(l−1)+(p−1)+li′

)
=
∑
i≥0

bep−1cil+(p−1)
(p−1)(l−1)+l(i+1) +

∑
i≥0

be1cil(p−1)(l−1)+(p−1)+li

=
∑
i≥0

bep−1cil+(p−1)
(p+i−1)l+(p−1) +

∑
i≥0

be1cil(p+i−1)l

γp−1 ◦ χ =

(∑
i′≥0

bep−1c(p−1)−1+li′

(p+i′−2)l+(p−1) +
∑
i′≥0

be1c−1+2(p−1)+li′

(p+i′−1)l

)

◦

(∑
i≥0

(
be1cil(i+1)l−1 +

p−2∑
k=1

bek+1,kcil+k(i+1)l−1+k


+bep−1cil+(p−1)

(i+1)l−1+(p−1) +

p−2∑
k=1

bep−k−1,p−kcil+(p−1)+k
(i+1)l−1+(p−1)+k


))

=
∑
i′≥0

bep−1c(p−1)−1+li′

(p+i′−1)l−1+(p−1) +
∑
i′≥0

be1c−1+2(p−1)+li′

(p+i′)l−1

=
∑
i′≥0

bep−1cp−2+i′l
(p+i′−1)l+p−2 +

∑
i′≥0

be1ci
′l+l−1

(p+i′−1)l+l−1

γk ◦ γp−k =

(∑
i≥0

bekck−1+li
(i+k−1)l+l−k +

∑
i≥0

bep−kck−1+(p−1)+li
(i+k)l+(p−1)−k

)

◦

(∑
i′≥0

bep−kcp−k−1+li′

(p−k)(l−1)+li′ +
∑
i′≥0

bekc−k+2(p−1)+li′

(p−k)(l−1)+(p−1)+li′

)
=
∑
i≥0

bekck−1+li
(p−k)(l−1)+(p−1)+l(i+k−1) +

∑
i≥0

bep−kck−1+(p−1)+li
(p−k)(l−1)+l(i+k)

=
∑
i≥0

bekck−1+li
(p−k+i+k−1)l−(p−k)+(p−1) +

∑
i≥0

bep−kck−1+(p−1)+li
(p−k+i+k)l−(p−k)
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=
∑
i≥0

bekck−1+li
(p+i−1)l+k−1 +

∑
i≥0

bep−kck−1+(p−1)+li
(p+i−1)l+k−1+(p−1) .

Thus

χ ◦ γp−1+γp−1 ◦ χ+

p−2∑
k=2

γk ◦ γp−k

=
∑
i≥0

p−2∑
k=0

(
bek+1ck+li

(p+i−1)l+k + bep−k−1ck+(p−1)+li
(p+i−1)l+k+(p−1)

)
=
∑
i≥0

l−1∑
k′=0

beω(k′)ck
′+li

(p−1+i)l+k′
P.35(a)

= ιp−1

and

Ξp(χιj1 ⊗ . . .⊗ χιjp) = (−1)pιp−1+j1+...+jp .

So we conclude using Lemma 45 by

(f1 ◦m′p + Φp)(χιj1 ⊗ . . .⊗ χιjp)
L.47,D.38

= (−1)pιp−1+j1+...+jp

D.38
= (m1 ◦ fp + Ξp)(χιj1 ⊗ . . .⊗ χιjp).

Lemma 50. Condition (12)[n] holds for n ∈ [p+ 1, 2(p− 1)] and arguments
χιj1 ⊗ . . .⊗ χιjn ∈ B⊗n = {χa1ιj1 ⊗ . . . ⊗ χanιjn ∈ (H∗A)⊗n | ai ∈ {0, 1} and ji ∈
Z≥0 for all i ∈ [1, n]}.

Proof. As fk = 0 for k ≥ p, we have

Ξn(χιj1 ⊗ . . .⊗ χιjn) =

p−1∑
k=n−p+1

(−1)nkm2(fk ⊗ fn−k)(χιj1 ⊗ . . .⊗ χιjn)

The right side is a linear combination of terms of the form γk◦γn−k for k ∈ [n−p−1, p−1].
We have

γk ◦ γn−k =

(∑
i≥0

bekck−1+li
k(l−1)+li +

∑
i≥0

bep−kck−1+(p−1)+li
k(l−1)+(p−1)+li

)

◦

(∑
i′≥0

ben−kcn−k−1+li′

(n−k)(l−1)+li′ +
∑
i′≥0

bep−n+kcn−k−1+(p−1)+li′

(n−k)(l−1)+(p−1)+li′

)

A necessary condition for that term to be non-zero is k(l−1) ≡p−1 n−k−1 as l = 2(p−1).
We have

k(l − 1)− (n− k − 1) ≡p−1 − k − n+ k + 1 = 1− n 6≡p−1 0,
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since p ≤ n − 1 ≤ 2(p − 1) − 1. So γk ◦ γn−k = 0 and Ξn(χιj1 ⊗ . . . ⊗ χιjn) = 0. We
conclude using Lemma 45 by

(f1 ◦m′n + Φn)(χιj1 ⊗ . . .⊗ χιjn)
L.47,D.38

= 0
D.38
= (m1 ◦ fn + Ξn)(χιj1 ⊗ . . .⊗ χιjn).

One could formulate a lemma similar to Lemma 50 for the case n > 2(p− 1) as then the
sum

∑p−1
k=n−p+1(−1)nkm2(fk ⊗ fn−k)(χιj1 ⊗ . . .⊗ χιjn) is in fact empty. Instead we use

Lemma 33 to prove (12)[n] for n > 2p− 2:

Proof of Theorem 39. Lemmas 41, 43, 46 and 48 to 50 ensure that (12)[n] holds for
n ∈ [1, 2p− 2]. Then Lemma 33 with k = p proves that (12)[n] holds for all n ∈ [1,∞],
cf. also Definition 38. By Lemma 42, f1 is injective. By Lemma 40, the degrees are
as required in Lemma 64. Lemma 64 proves that (H∗A, (m′n)n≥1) is an A∞-algebra
and (fn)n≥1 is an A∞-morphism from (H∗A, (m′n)n≥1) to (A, (mn)n≥1). By Lemma 41,
we have m′1 = 0. Thus (H∗A, (m′n)n≥1) is a minimal A∞-algebra. By Lemma 41, the
complex morphism f1 : (H∗A,m′1)→ (A,m1) is a quasi-isomorphism which induces the
identity in homology. So the A∞-morphism (fn)n≥1 : (H∗A, (m′n)n≥1)→ (A, (mn)n≥1) is
a quasi-isomorphism and the proof of Theorem 39 is complete.

2.4. At the prime 2

We examine the case at the prime 2. We use a direct approach. Note that S2 is a cyclic
group so the theory of cyclic groups applies as well.

We have F2 S2 = {0, (id), (1, 2), (id) + (1, 2)}. We have maps given by

ε : F2 S2 −→ F2

a(id) + b(1, 2) 7−→ a+ b
D : F2 S2 −→ F2 S2

a(id) + b(1, 2) 7−→ (a+ b) ((id) + (1, 2)) .

We see that ε is surjective and ker ε = kerD = imD = {0, (id) + (1, 2)}. The maps
ε and D are F2 S2-linear, where F2 is the F2 S2-module that corresponds to the trivial
representation of S2. So we have a projective resolution of F2 by

PResF2 := (· · · D−→ F2 S2︸︷︷︸
1

D−→ F2 S2︸︷︷︸
0

→ 0︸︷︷︸
−1

→ · · · ),

where the degrees are written below. We have the corresponding extended projective
resolution

· · · D−→ F2 S2
D−→ F2 S2

ε−→ F2 → 0→ · · ·
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We set e1 to be the identity on F2 S2.

Let A := Hom∗F2 S2
(PResF2,PResF2) and let the A∞-structure on A be (mn)n≥1 (cf.

Lemma 29). Recall the conventions concerning Homk
B(C,C ′) for complexes C,C ′ and

k ∈ Z.

Lemma 51. An F2-basis of H∗A is given by {ξj | j ≥ 0} where

ξ :=
∑
i≥0

be1cii+1 ∈ A.

Proof. Straightforward induction yields, for j ≥ 0,

ξj =
∑
i≥0

be1cii+j .

We have

m1(ξj) = d ◦ ξj − (−1)jξj ◦ d = d ◦ ξj + ξj ◦ d

=

(∑
i≥0

bDcii+1

)
◦

(∑
i≥0

be1cii+j

)
+

(∑
i≥0

be1cii+j

)
◦

(∑
i≥0

bDcii+1

)
=
∑
i≥0

bDcii+j+1 +
∑
i≥0

bDcii+j+1 = 0,

so ξj is a cycle. As HomF2 S2(F2 S2,F2) = {0, ε} and ε ◦ D = 0, the differen-
tials of Hom∗(PResF2,F2) (cf. Lemma 34) are all zero. So {ε} is an F2-basis of
Hk Hom∗(PResF2,F2) for k ≥ 0. Since in the notion of Lemma 34, Ψ̄k(ξk) = ε, the
set {ξk} is an F2-basis of Hk Hom∗(PResF2,PResF2) for k ≥ 0. For k < 0 we have
Hk Hom∗(PResF2,PResF2) ∼= Hk Hom∗(PResF2,F2) = 0. So {ξj | j ≥ 0} is an F2-basis
of H∗A.

We define families of maps (fn : (H∗A)⊗n → A)n≥1 and (m′n : (H∗A)⊗n → H∗A)n≥1 as
follows. f1 and m′2 are given on a basis by

f1(ξj) := ξj for j ≥ 0

m′2(ξj ⊗ ξk) := ξj+k for j, k ≥ 0.

All other maps are set to zero.

It is straightforward to check that (H∗A, (m′n)n≥1) is a pre-A∞-algebra and (fn)n≥1 is a
pre-A∞-morphism from H∗A to A. As m′2 is associative, (H∗A, (m′n)n≥1) is a dg-algebra,
so in particular an A∞-algebra. As fk = 0 for k 6= 1, (12)[n] simplifies to

f1 ◦m′n =mn ◦ (f1 ⊗ · · · ⊗ f1︸ ︷︷ ︸
n factors

).
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As m′n = 0 and mn = 0 for n ≥ 3, (12)[n] is satisfied for all n ≥ 3. For n ∈ {1, 2}, we
have

f1 ◦m′1 =m1 ◦ f1

f1 ◦m′2 =m2(f1 ⊗ f1).

The second equation follows immediately from the definition of m′2 and f1. The first
equation holds as m′1 = 0 and the images of f1 are all cycles. So (12)[n] holds for all n and
(fn)n≥1 is an A∞-morphism from (H∗A, (m′n)n≥1) to (A, (mn)n≥1). By the construction
of f1, it induces the identity on homology. Thus (H∗A, (m′n)n≥1) is a minimal model of
(A, (mn)n≥1).

Remark 52 (Comparison with primes p ≥ 3). At a prime p ≥ 3, we have constructed a
projective resolution with period length l = 2(p− 1) in (7). If one constructs a projective
resolution of Z(2) analogous to the case p ≥ 3, we have a sequence of the form

· · · → Z(2) S2

ê∗2,2−−→ Z(2) S2
ê2,2−−→ Z(2) S2

ê∗2,2−−→ Z(2) S2
ê2,2−−→ Z(2) S2 → 0→ · · ·

with a period length of 2, where

ê2,2 : (id) 7−→ (id)− (1, 2)

ê∗2,2 : (id) 7−→ (id) + (1, 2).

However, modulo 2 the differentials ê2,2 and ê∗2,2 reduce to the same map D : F2 S2 → F2 S2,
so we obtain a period length of 1.

The maps ι resp. χ from Proposition 35 may be identified with ξ2 resp. ξ. This way, the
definition of m′2 at the prime 2 is readily compatible with Definition 38.
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We reuse the conventions given at the beginning of section 2.1.

A.1. The Koszul sign rule for the composition of graded maps

Lemma 53. Let Ai, Bi, i ∈ {1, 2, 3} be graded R-modules and f : A1 → A2, g : B1 → B2,
h : A2 → A3, i : B2 → B3 graded maps. Then

(h⊗ i) ◦ (f ⊗ g) = (−1)|f |·|i|(h ◦ f)⊗ (i ◦ g) (19)

Proof. Let a ∈ A1, b ∈ B1 be homogeneous elements. Then

((h⊗ i) ◦ (f ⊗ g))(a⊗ b) = (−1)|a|·|g|(h⊗ i)(f(a)⊗ g(b))

= (−1)|a|·|g|+|f(a)|·|i|(h ◦ f)(a)⊗ (i ◦ g)(b)

= (−1)|a|(|g|+|i|)+|f |·|i|(h ◦ f)(a)⊗ (i ◦ g)(b)

= (−1)|f |·|i|((h ◦ f)⊗ (i ◦ g))(a⊗ b).

Multiple application of Lemma 53 yields the following

Corollary 54. Let n ≥ 1. Given graded R-modules Vi, Wi, Ui and graded maps
fi : Vi → Wi, gi : Wi → Ui for i ∈ [1, n], we have

(g1 ⊗ · · · ⊗ gn) ◦ (f1 ⊗ · · · ⊗ fn) = (−1)s(g1 ◦ f1)⊗ · · · ⊗ (gn ◦ fn),

where s =
∑

2≤i≤n |gi| ·
(∑

1≤j<i |fj|
)

=
∑

1≤j<i≤n |gi| · |fj|.

A.2. Coalgebras and differential coalgebras

Definition 55.

(i) A R-coalgebra (B,∆) is an R-module B equipped with a linear and coassocia-
tive comultiplication ∆ : B → B ⊗B. Coassociativity means that (1⊗∆) ◦∆ =
(∆⊗ 1) ◦∆. We will denote R-coalgebras simply as "coalgebras".

(ii) A coderivation of a coalgebra (B,∆) is a linear map b : B → B such that
∆ ◦ b = (b⊗ 1 + 1⊗ b) ◦∆.

(iii) A codifferential of a coalgebra (B,∆) is a coderivation b : B → B satisfying b2 = 0.

(iv) A coalgebra morphism F : (B′,∆′)→ (B,∆) between coalgebras (B′,∆′), (B,∆) is
a linear map F : B′ → B such that ∆ ◦ F = (F ⊗ F ) ◦∆′.
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(v) A differential coalgebra (B,∆, b) is a coalgebra (B,∆) with a codifferential b on
(B,∆).

(vi) A morphism of differential coalgebras F : (B′,∆′, b′) → (B,∆, b) is a coalge-
bra morphism F : (B′,∆′) → (B,∆) that commutes with the differentials, i.e.
b ◦ F = F ◦ b′.

Lemma 56.

(a) A morphism of coalgebras is an isomorphism if and only if it is bijective.

(b) A morphism of differential coalgebras is an isomorphism if and only if it is bijective.

Proof. Each isomorphism of (differential) coalgebras is bijective as it is also an isomor-
phism in the category of sets.

Now let F : (B′,∆′)→ (B,∆) be a bijective morphism of coalgebras. Then we have an
R-linear inverse F ′. We have

∆′ ◦ F ′ = (F ′ ⊗ F ′) ◦ (F ⊗ F ) ◦∆′ ◦ F ′ = (F ′ ⊗ F ′) ◦∆ ◦ F ◦ F ′ = (F ′ ⊗ F ′) ◦∆

so F ′ is a morphism of coalgebras and F an isomorphism of coalgebras.

For a bijective morphism of differential coalgebras F : (B′,∆′, b′)→ (B,∆, b), we need
to check that its inverse coalgebra morphism F ′ commutes with the differentials. In fact,

F ′ ◦ b = F ′ ◦ b ◦ F ◦ F ′ = F ′ ◦ F ◦ b ◦ F ′ = b ◦ F ′.

So F is an isomorphism of differential coalgebras.

A.3. The bar construction

The following may be found e.g. in [16, 1.2.2].

Definition/Remark 57. Let V be a graded R-module. We shall define the structure of
a (graded) coalgebra on the graded module TV :=

⊕
k≥1 V

⊗k which then will be called
the tensor coalgebra of V . The grading on TV is given by the grading of tensor products
and sums of graded R-modules, i.e. |v1⊗· · ·⊗vk| =

∑
i∈[1,k] |vi| for homogeneous elements

v1, . . . , vk. The coalgebra structure is given by the comultiplication ∆ : TV → TV ⊗ TV
defined for elements v1 ⊗ · · · ⊗ vk ∈ V ⊗k by

∆(v1 ⊗ · · · ⊗ vk) :=
∑

1≤i≤k−1

(v1 ⊗ · · · ⊗ vi) ⊗ (vi+1 ⊗ · · · ⊗ vk)

=
∑

i1+i2=k
i1,i2≥1

(v1 ⊗ · · · ⊗ vi1) ⊗ (vi1+1 ⊗ · · · ⊗ vi1+i2)

∆ is coassociative, as for v1 ⊗ · · · ⊗ vk ∈ V ⊗k we have

((∆⊗ 1) ◦∆)(v1⊗ · · · ⊗ vk)
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=
∑

i1+i2+i3=k
i1,i2,i3≥1

(v1 ⊗ · · · ⊗ vi1) ⊗ (vi1+1 ⊗ · · · ⊗ vi1+i2) ⊗ (vi1+i2+1 ⊗ · · · ⊗ vk)

= ((1⊗∆) ◦∆)(v1 ⊗ · · · ⊗ vk)

So (TV,∆) is indeed a coalgebra. The map ∆ is graded of degree 0.

We have the canonical inclusions and projections for k ≥ 1:

ιk : V ⊗k −→ TV
πk : TV −→ V ⊗k

If we have several graded R-modules V , V ′, we will usually distinguish the comultiplica-
tions, inclusions and projections on TV resp. TV ′ by ∆ resp. ∆′, ιk resp. ι ′k and πk resp.
π′k.

We will prove ∆x = 0 ⇔ x ∈ V for x ∈ TV , i.e.

ker ∆ = V (20)

We have readily V ⊆ ker ∆. To prove equality we first compose ∆ with the projection
π1 ⊗ id : TV ⊗ TV → V ⊗ TV which maps TV ⊗ TV =

⊕
k≥1(V

⊗k ⊗ TV ) onto
its first component. Secondly we compose with the multiplication µ : V ⊗ TV →
TV, v1 ⊗ (v2 ⊗ · · · ⊗ vk) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vk. Application to v1 ⊗ · · · ⊗ vk ∈ V ⊗k, k ≥ 2,
gives

TV
∆−→ TV ⊗ TV

v1 ⊗ · · · ⊗ vk 7→
∑

i1+i2=k
i1,i2≥1

(v1 ⊗ · · · ⊗ vi1)⊗(vi1+1 ⊗ · · · ⊗ vi1+i2)

π1⊗id−→ V ⊗ TV µ−→ TV
7−→ v1 ⊗ (v2 ⊗ · · · ⊗ vk) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vk

So ∆ is injective on
⊕

k≥2 V
⊗k and zero on V , which proves (20).

For n ∈ Z≥0 ∪ {∞}, we set

TV≤n :=
⊕
k∈[1,n]

V ⊗k ⊆ TV.

In particular TV≤∞ = TV .

Note that for k ∈ Z≥1

im
(
∆
∣∣
V ⊗k

)
⊆ TV≤k−1 ⊗ TV≤k−1 ⊆ TV≤k ⊗ TV≤k (21)

so
(
TV≤n,∆

∣∣
TV≤n

)
is a subcoalgebra of (TV,∆).

53



A. On the bar construction

Lemma 58 (Lifting to coderivations). Let V be a graded R-module. Let n∈Z≥1∪{∞}.
Then the map from the set of graded coderivations of TV≤n of degree 1 to the set of
families of graded maps (bk : V ⊗k → V )k∈[1,n] with |bk| = 1 for k ∈ [1, n] that is given by

b 7−→ (π1 ◦ b
∣∣
V ⊗k

)k∈[1,n]

is bijective. Its inverse is given by (bk)k∈[1,n] 7→ b, where b is defined by

b
∣∣
V ⊗k

:=
∑

r+s+t=k
r,t≥0, s≥1

1⊗r ⊗ bs ⊗ 1⊗t (22)

Proof. To show that b 7→ (bk)k∈[1,n] is surjective, let (bk : V ⊗k → V )k∈[1,n] be a family
of graded maps with |bk| = 1 and construct b as given in (22). The properties |b| = 1,
im b ⊆ TV≤n and π1 ◦ b

∣∣
V ⊗k

= bk follow immediately. We show that b is a coderivation:

∆ ◦ b|V ⊗k = ∆ ◦
∑

r+s+t=k
r,t≥0,s≥1

1⊗r ⊗ bs ⊗ 1⊗t

=
∑

r1+r2+s+t=k
r2,t≥0
r1,s≥1

1⊗r1 ⊗ (1⊗r2 ⊗ bs ⊗ 1⊗t) +
∑

r+s+t1+t2=k
r,t1≥0
t2,s≥1

(1⊗r ⊗ bs ⊗ 1⊗t1) ⊗ 1⊗t2

=
∑

r1+t2=k
r1,t2≥1

 ∑
r2+s+t=t2
r2,t≥0,s≥1

1⊗r1 ⊗ (1⊗r2 ⊗ bs ⊗ 1⊗t) +
∑

r+s+t1=r1
r,t1≥0,s≥1

(1⊗r ⊗ bs ⊗ 1⊗t1) ⊗ 1⊗t2


= (1⊗ b+ b⊗ 1) ◦∆

So b 7→ (bk)k∈[1,n] is surjective and we find a preimage as indicated by (22). For injectivity,
we use the fact that set of graded coderivations of degree 1 is closed under addition, i.e.
it is a R-module. So we only need to check that the kernel of b 7→ (bk)k∈[1,n] is zero:
Let b : TV≤n → TV≤n be a graded coderivation of degree 1 such that π1 ◦ b

∣∣
V ⊗k

= 0

for all k ∈ [1, n]. We prove by induction on k ≥ 0 that b
∣∣
TV≤k

= 0 thus b = 0: For
k = 0 there is nothing to prove. So suppose for the induction step that b

∣∣
TV≤k

= 0 and

k + 1 ∈ [1, n]. Then ∆ ◦ b ◦ ιk+1 = (1⊗ b+ b⊗ 1) ◦∆ ◦ ιk+1
(21),ind.hyp.

= 0. So by (20), we
have b ◦ ιk+1 = ι1 ◦ (π1 ◦ b ◦ ιk+1) = 0 and we have proven b

∣∣
TV≤k+1

= 0.
Thus the map b 7→ (bk)k∈[1,n] is bijective and its inverse images are given by (22).

Lemma 59 (Lifting to coalgebra maps).
Let V, V ′ be graded R-modules. Let n ∈ Z≥1 ∪ {∞}.
The map from the set of graded coalgebra morphisms F : TV ′≤n → TV≤n of degree 0 to the
set of families of graded maps (Fk : V ′⊗k → V )k∈[1,n] with |Fk| = 0 for k ∈ [1, n] given by

F 7→ (π1 ◦ F
∣∣
V ′⊗k

)k∈[1,n]
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is bijective. Its inverse is given by (Fk)k∈[1,n] 7→ F , where F is defined by

F
∣∣
V ′⊗k

:=
∑

i1+...+is=k
ij≥1

Fi1 ⊗ · · · ⊗ Fis (23)

Proof. To show that F 7→ (Fk)k∈[1,n] is surjective, let (Fk : V ′⊗k → V )k∈[1,n] be a family
of graded maps with |Fk| = 0 for all k ∈ [1, n] and construct F be as in (23). The
properties π1 ◦F |V ′⊗k = Fk, imF ⊆ TV≤n and |F | = 0 follow immediately. We show that
F is a coalgebra morphism:

∆ ◦ F |V ′⊗k =
∑

i1+...+is+s′=k

s,s′,ij≥1

(Fi1 ⊗ · · · ⊗ Fis) ⊗ (Fis+1 ⊗ · · · ⊗ Fis+s′ )

=
∑

y1+y2=k
y1,y2≥1

∑
i1+...+is=y1

is+1+...+is+s′=y2
ij≥1

(Fi1 ⊗ · · · ⊗ Fis) ⊗ (Fis+1 ⊗ · · · ⊗ Fis+s′ )

= (F ⊗ F ) ◦∆′

So F 7→ (Fk)k∈[1,n] is surjective and we obtain a preimage as indicated by (23). To prove
that F 7→ (Fk)k∈[1,n] is injective, let (Fk)k∈[1,n] be as before and let F, F ′ : TV ′≤n → TV≤n
be coalgebra maps of degree 1 satisfying π1 ◦ F

∣∣
V ′⊗k

= π1 ◦ F ′
∣∣
V ′⊗k

= Fk for all k ∈ [1, n].
We prove by induction on k ≥ 0 that F

∣∣
TV ′≤k

= F ′
∣∣
TV ′≤k

so F = F ′. For k = 0 there is

nothing to prove. So suppose F
∣∣
TV ′≤k

= F ′
∣∣
TV ′≤k

and k + 1 ∈ [1, n] for the induction step.
We have

∆ ◦ (F − F ′)
∣∣
V ′⊗k+1 = (F ⊗ F − F ′ ⊗ F ′) ◦∆′

∣∣
V ′⊗k+1

= (F ⊗ (F − F ′)− (F ′ − F )⊗ F ′) ◦∆′
∣∣
V ′⊗k+1 = 0

as im
(
∆′
∣∣
V ′⊗k+1

)
⊆ TV ′≤k ⊗ TV ′≤k. As ker ∆ = V , we have

(F − F ′)
∣∣
V ′⊗k+1 = ι1 ◦ π1 ◦ (F − F ′)

∣∣
V ′⊗k+1 = ι1 ◦ (Fk+1 − Fk+1) = 0.

Thus we have F
∣∣
TV ′≤k+1

= F ′
∣∣
TV ′≤k+1

and the induction is complete. We have F = F ′ so
F 7→ (Fk)k∈[1,n] is bijective and its inverse images are given by (23).

Lemma 60. Let n ∈ Z≥1 ∪ {∞}. Let k ∈ [0, n] such that k + 1 ∈ [1, n].

(i) Let V be a graded R-module and b : TV≤n → TV≤n be a graded coderivation with
|b| = 1. Then b2

∣∣
TV≤k

= 0 implies im(b2 ◦ ιk+1) ⊆ V .

(ii) Let V , V ′ be graded R-modules and b : TV≤n→TV≤n, b′ : TV ′≤n→TV ′≤n be graded
coderivations. Let F : TV ′≤n → TV≤n be a graded coalgebra map with |F | = 0.
Then (b ◦ F − F ◦ b′)

∣∣
TV ′≤k

= 0 implies im
(
(b ◦ F − F ◦ b′) ◦ ι ′k+1

)
⊆ V .
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Proof. At the steps marked by "∗" in the following, we use (21), and b2
∣∣
TV≤k

= 0

respectively (F ◦ b′ − b ◦ F )
∣∣
TV ′≤k

= 0.

∆ ◦ b2 ◦ ιk+1 = (1⊗ b+ b⊗ 1) ◦ (1⊗ b+ b⊗ 1) ◦∆ ◦ ιk+1

(19),|b|=1
= [1⊗ b2 − b⊗ b+ b⊗ b+ b2 ⊗ 1] ◦∆ ◦ ιk+1

= [1⊗ b2 + b2 ⊗ 1] ◦∆ ◦ ιk+1
∗
= 0

∆ ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′k+1 = [(F ⊗ F ) ◦∆′ ◦ b′ − (1⊗ b+ b⊗ 1) ◦∆ ◦ F ] ◦ ι ′k+1

= [(F ⊗ F ) ◦ (1⊗ b′ + b′ ⊗ 1)− (1⊗ b+ b⊗ 1) ◦ (F ⊗ F )] ◦∆′ ◦ ι ′k+1

(19),|F |=0
= [F ⊗ (F ◦ b′ − b ◦ F ) + (F ◦ b′ − b ◦ F )⊗ F ] ◦∆′ ◦ ι ′k+1

∗
= 0

The lemma now follows from ker ∆ = V .

Definition/Remark 61. For a graded R-module A, we define the R-module SA with
shifted grading by SA = A and (SA)q := Aq+1. We have the graded map ω : SA→ A,
ω(x) = x with |ω| = 1. We write SA⊗k := (SA)⊗k for k ≥ 1.

Let n ∈ Z≥0 ∪ {∞}. A corresponding pre-An-triple on A is defined as a triple
((mk)k∈[1,n], (bk)k∈[1,n], b) consisting of

(i) a pre-An-structure (mk)k∈[1,n] on A,

(ii) a family of graded maps (bk : SA⊗k → SA)k∈[1,n] satisfying |bk| = 1 and

(iii) a graded coalgebra map b : TSA≤n → TSA≤n of degree 1

such that bk = ω−1 ◦mk ◦ ω⊗k for k ∈ [1, n] and π1 ◦ b
∣∣
SA⊗k

= bk for k ∈ [1, n].
Given a pre-An-structure (mk)k∈[1,n] on A, a family of graded maps (bk : SA⊗k →
SA)k∈[1,n] satisfying |bk| = 1 or a graded coalgebra map b : TSA≤n → TSA≤n of degree 1,
i.e. a datum of type (i), (ii) or (iii), it can be uniquely extended to a corresponding
pre-An-triple on A: The condition bk = ω−1 ◦mk ◦ ω⊗k for k ∈ [1, n] induces a bijection
between data of type (i) and of type (ii). Similarly, Lemma 58 gives a bijection between
data of types (ii) and (iii).

Let n ∈ Z≥0 ∪ {∞}. Let A, A′ be graded R-modules. A corresponding pre-An-morphism
triple from A′ to A is defined as a triple ((fk)k∈[1,n], (Fk)k∈[1,n], F ) consisting of

(i) a pre-An-morphism (fk)k∈[1,n] from A′ to A,

(ii) a family of graded maps (Fk : SA′⊗k → SA)k∈[1,n], |Fk| = 0 for k ∈ [1, n] and

(iii) a graded coalgebra morphism F : TSA′≤n → TSA≤n with |F | = 0

such that Fk = ω−1◦fk◦ω′⊗k for k ∈ [1, n] and π1◦F
∣∣
SA′⊗k

= Fk for k ∈ [1, n]. Analogous
to corresponding pre-An-triples, given a datum of type (i), (ii) or (iii), it can be uniquely
extended to a corresponding pre-An-morphism triple via Lemma 59 and the bijection
induced by Fk = ω−1 ◦ fk ◦ ω′⊗k.
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Theorem 62 (Stasheff [21]). Let A be a graded R-module. Let ñ ∈ Z≥0 ∪ {∞}. Let
((mk)k∈[1,ñ], (bk)k∈[1,ñ], b) be a corresponding pre-Añ-triple on A.
Let n ∈ Z≥0 ∪ {∞}, n ≤ ñ. The following are equivalent:

(a) Equation (11)[k] holds for k ∈ [1, n], i.e. (mk)k∈[1,n] is an An-structure on A.

(b) For all k ∈ [1, n], we have∑
k=r+s+t,
r,t≥0, s≥1

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t) = 0. (24)[k]

(c) b2
∣∣
TSA≤n

= 0, i.e. b
∣∣
TSA≤n

is a coalgebra differential on TSA≤n.

Proof. We prove (a) ⇔ (b): We have∑
k=r+s+t,
r,t≥0, s≥1

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

=
∑

k=r+s+t,
r,t≥0, s≥1

ω−1 ◦mr+1+t ◦ (ω⊗r ⊗ ω ⊗ ω⊗t) ◦ (1⊗r ⊗ bs ⊗ 1⊗t)

C.54
=ω−1 ◦

∑
k=r+s+t,
r,t≥0, s≥1

(−1)|ω
⊗t|·|bs|mr+1+t ◦ (ω⊗r ⊗ (ω ◦ bs)⊗ ω⊗t)

=ω−1 ◦
∑

k=r+s+t,
r,t≥0, s≥1

(−1)tmr+1+t ◦ (ω⊗r ⊗ (ms ◦ ω⊗s)⊗ ω⊗t)

C.54
=ω−1 ◦

∑
k=r+s+t,
r,t≥0, s≥1

(−1)t(−1)r(2−s)mr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) ◦ (ω⊗r ⊗ ω⊗s ⊗ ω⊗t)

=ω−1 ◦
∑

k=r+s+t,
r,t≥0, s≥1

(−1)rs+tmr+1+t ◦ (1⊗r ⊗ms ⊗ 1⊗t) ◦ ω⊗k.

So (11)[k] ⇔ (24)[k], whence (a) ⇔ (b).

We prove (b)⇔ (c): We first prove for finite n that ((24)[k] for k ∈ [1, n])⇔ b2|TSA≤n = 0.
We proceed by induction on n ≥ 0.
For n = 0 we have [1, n] = ∅ and TSA≤n = {0}, so there is nothing to prove. So now
assume for induction that b2|TSA≤n = 0 ⇔ (24)[k] for k ∈ [1, n]. We have to show that
b2|TSA≤n+1

= 0 ⇔ (24)[k] for k ∈ [1, n+ 1]. It is sufficient to prove under the assumption
b2|TSA≤n = 0 the equivalence b2|SA⊗n+1 = 0 ⇔ (24)[n + 1]. So we assume b2|TSA≤n = 0.
By Lemma 60(i), we have

b2|SA⊗n+1 = ι1 ◦ π1 ◦ b2|SA⊗n+1
(22)
=

∑
n+1=r+s+t,
r,t≥0, s≥1

br+1+t ◦ (1⊗r ⊗ bs ⊗ 1⊗t).

So b2|SA⊗n+1 = 0 ⇔ (24)[n+ 1] and the induction step is complete.
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The case n =∞ follows by

∀k ∈ Z≥1 : (24)[k] ⇔ ∀k ∈ Z≥0 ∀k′ ∈ [1, k] : (24)[k′]
⇔ ∀k ∈ Z≥0 : b2|TSA≤k = 0 ⇔ b2 = 0.

Lemma 63. Let A,A′ be graded R-modules. Let ñ ∈ Z≥0 ∪ {∞}.
Let ((mk)k∈[1,ñ], (bk)k∈[1,ñ], b) resp. ((m′k)k∈[1,ñ], (b

′
k)k∈[1,ñ], b

′) be corresponding pre-Añ-
triples on A resp. A′. Let ((fk)k∈[1,ñ], (Fk)k∈[1,ñ], F ) be a corresponding pre-Añ-morphism
triple from A′ to A.
Let n ∈ Z≥0 ∪ {∞} be such that n ≤ ñ. The following are equivalent:

(a) Assertion (12)[k] holds for k ∈ [1, n].

(b) For k ∈ [1, n], we have∑
k=r+s+t
r,t≥0, s≥1

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) =
∑

1≤r≤k
i1+...+ir=k

is≥1

br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir). (25)[k]

(c) F ◦ b′
∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

Note that we only require conditions on the grading of (mn)n≥1 and (m′n)n≥1. We do not
require them to be An- resp. A∞-algebra structures on A and A′.

Proof. We prove (a) ⇔ (b): Analogously to the proof of (a) ⇔ (b) of Theorem 62 we
obtain for the left side of (25)[k]∑
k=r+s+t
r,t≥0, s≥1

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) = ω−1◦
∑

k=r+s+t
r,t≥0, s≥1

(−1)rs+tfr+1+t ◦ (1⊗r ⊗m′s ⊗ 1⊗t) ◦ ω′⊗k.

It remains to examine the right side:∑
1≤r≤k

i1+...+ir=k
is≥1

br ◦ (Fi1 ⊗ · · · ⊗ Fir) =
∑

1≤r≤k
i1+...+ir=k

is≥1

ω−1 ◦mr ◦ ω⊗r ◦ (Fi1 ⊗ · · · ⊗ Fir)

C.54
=ω−1 ◦

∑
1≤r≤k

i1+...+ir=k
is≥1

(−1)0mr ◦ ((ω ◦ Fi1)⊗ · · · ⊗ (ω ◦ Fir))

=ω−1 ◦
∑

1≤r≤k
i1+...+ir=k

is≥1

mr ◦ ((fi1 ◦ ω′⊗i1)⊗ · · · ⊗ (fir ◦ ω′⊗ir))

=ω−1 ◦
∑

1≤r≤k
i1+...+ir=k

is≥1

(−1)vmr ◦ (fi1 ⊗ · · · ⊗ fir) ◦ ω′⊗k
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In the last step, Corollary 54 gives the exponent

v =
r∑
s=2

(
|fis|

∑
1≤t<s

|ω′⊗it |

)
=
∑

2≤s≤r

(
(1− is)

∑
1≤t<s

it

)
=

∑
1≤t<s≤r

(1− is)it

So we have (12)[k] ⇔ (25)[k], whence (a) ⇔ (b).

We prove (b) ⇔ (c).
We first prove (b) ⇔ (c) for finite n. We proceed by induction on n ∈ [0, ñ]: For n = 0
we have [1, n] = ∅ and TSA′≤n = {0}, so there is nothing to prove. Now suppose given n.
As induction hypothesis, suppose the equivalence F ◦ b′

∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

⇔ ((25)[k]

for k ∈ [1, n]) holds. For the induction step we need to prove that F ◦ b′
∣∣
TSA′≤n+1

=

b ◦ F
∣∣
TSA′≤n+1

⇔ ((25)[k] for k ∈ [1, n+ 1]). Suppose that F ◦ b′
∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

. It

suffices to show the equivalence F ◦ b′
∣∣
SA′⊗n+1 = b ◦ F

∣∣
SA′⊗n+1 ⇔ (25)[n+ 1].

By Lemma 60(ii), we have (F ◦ b′ − b ◦ F ) ◦ ι ′n+1 = ι1 ◦ [π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1]. Now
π1 ◦ (F ◦ b′− b ◦F ) ◦ ι ′n+1 is exactly the difference of the sides of (25)[n+ 1], cf. (22),(23).
So F ◦ b′

∣∣
SA′⊗n+1 = b ◦ F

∣∣
SA′⊗n+1 ⇔ (25)[n+ 1] and the induction step is complete.

The case n =∞ follows by

∀k ∈ Z≥1 : (25)[k] ⇔ ∀k ∈ Z≥0 ∀k′ ∈ [1, k] : (25)[k′]
⇔ ∀k ∈ Z≥0 : F ◦ b′

∣∣
TSA′≤k

= b ◦ F
∣∣
TSA′≤k

⇔ F ◦ b′ = b ◦ F.

A.4. Applications. Kadeishvili’s algorithm and the minimality
theorem.

In this subsection we will discuss the construction of minimal models of A∞-algebras.
Firstly, Lemma 64 states that certain pre-An-structures and pre-An-morphisms that arise
in the construction of minimal models are actually An-structures and An-morphisms.
Secondly, we give a proof of Theorem 32. We will review Kadeishvili’s original proof
of [9] as it gives a an algorithm for constructing minimal models which can be used
for the direct calculation of examples. Note that Lefèvre-Hasegawa has given a
generalization of the minimality theorem, see [16, Théorème 1.4.1.1], which we will not
cover.

Lemma 64. Let n ∈ Z≥1 ∪ {∞}. Let (A′, (m′k)k∈[1,n]) be a pre-An-algebra. Let
(A, (mk)k∈[1,n]) be an An-algebra. Let (fk)k∈[1,n] be a pre-An-morphism from A′ to A such
that (12)[k] holds for k ∈ [1, n]. Suppose f1 to be injective.
Then (A′, (m′k)k∈[1,n]) is an An-algebra and (fk)k∈[1,n] is a morphism of An-algebras from
(A′, (m′k)k∈[1,n]) to (A, (mk)k∈[1,n]).
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Proof. We have the corresponding pre-An-triple ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′), the corre-
sponding pre-An-triple ((mk)k∈[1,n], (bk)k∈[1,n], b) and the corresponding pre-An-morphism
triple ((fk)k∈[1,n], (Fk)k∈[1,n], F ). It suffices to prove by induction on k ∈ [0, n] that
(b′)2

∣∣
TSA′≤k

= 0, cf. Theorem 62.

For k = 0, there is nothing to prove. For the induction step, suppose that b′ 2
∣∣
TSA′≤k

= 0.

Then by Lemma 60(i), we have im(b′ 2 ◦ ι ′k+1) ⊆ SA. Thus 0 = b2 ◦ F ◦ ι ′k+1
L.63
=

F ◦ b′ 2 ◦ ι ′k+1 = F1 ◦ b′ 2 ◦ ι ′k+1. As the injectivity of f1 implies the injectivity of F1, we
have b′ 2 ◦ ι ′k+1 = 0 and thus b′ 2

∣∣
TSA′≤k+1

= 0.

The following two lemmas give the incremental step in Kadeishvili’s algorithm. By a
quasi-monomorphism of complexes we will denote a complex morphism that induces
monomorphisms on homology.

Lemma 65. Let n ∈ Z≥1. Let A, A′ be graded R-modules.
Let ((m′k)k∈[1,n+1], (b′k)k∈[1,n+1], b

′) be a corresponding pre-An+1-triple on A′.
Let ((mk)k≥1, (bk)k≥1, b) be a corresponding pre-A∞-triple on A.
Let ((fk)k∈[1,n+1], (Fk)k∈[1,n+1], F ) be a corresponding pre-An+1-morphism triple from A′

to A.
Suppose that the following hold.

(i) We have b′ 2
∣∣
TSA′≤n

= 0, b2 = 0 and F ◦ b′
∣∣
TSA′≤n

= b ◦ F
∣∣
TSA′≤n

.

(ii) We have b′1 = 0 and F1 is a quasi-monomorphism from the complex (SA′, b′1) to the
complex (SA, b1).

We set h : SA′⊗n+1 → SA,

h :=
∑

n+1=r+s+t
r,t≥0,s∈[2,n]

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) −
∑

r∈[2,n+1]
i1+...+ir=n+1

is≥1

br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir).

Then

(a) b′ 2 = 0, i.e. (A′, (m′k)k∈[1,n+1]) is an An+1-algebra1.

(b) b1 ◦ h = 0.

(c) F ◦ b′ = b ◦ F ⇔ F1 ◦ b′n+1 − b1 ◦ Fn+1 + h = 0.

Proof. By Lemma 63, we have F ◦ b′ = b ◦ F ⇔ (25)[n+ 1]. The difference of the sides
of (25)[n+ 1] is given by

π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

1Note that (11)[n+ 1] does not depend on m′n+1 or fn+1, as m′1 = ω′ ◦ b′1 ◦ (ω′)−1 = 0.
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(22),(23)
=

∑
n+1=r+s+t
r,t≥0,s≥1

Fr+1+t ◦ (1⊗r ⊗ b′s ⊗ 1⊗t) −
∑

1≤r≤n+1
i1+...+ir=n+1

is≥1

br ◦ (Fi1 ⊗ Fi2 ⊗ · · · ⊗ Fir)

b′1=0
=F1 ◦ b′n+1 − b1 ◦ Fn+1 + h

Thus we have proven (c). We have

b1 ◦ h = b1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1 − b1 ◦ F1 ◦ b′n+1 + (b1)2 ◦ Fn+1

(i)
= b1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1 − F1 ◦ b′1 ◦ b′n+1

= b1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

(22)
= b ◦ ι1 ◦ π1 ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

L.60(ii)
= b ◦ (F ◦ b′ − b ◦ F ) ◦ ι ′n+1

(i)
= b ◦ F ◦ b′ ◦ ι ′n+1

As b′1 = 0, we obtain im(b′ ◦ ι ′n+1) ⊆ TSA′≤n, cf. (22). By b ◦F
∣∣
TSA′≤n

= F ◦ b′
∣∣
TSA′≤n

, we
conclude

b1 ◦ h =F ◦ b′ 2 ◦ ι ′n+1

L.60(i)
= F ◦ ι1 ◦ π1 ◦ b′ 2 ◦ ι ′n+1 = F1 ◦ π1 ◦ b′ 2 ◦ ι ′n+1

For x ∈ SA′⊗n+1, (b′ 2 ◦ ι ′n+1)(x)
L.60(i)

= (π1 ◦ b′ 2 ◦ ι ′n+1)(x) is a cycle as b′1 = 0. Now
(F1 ◦ π1 ◦ b′ 2 ◦ ι ′n+1)(x) = (b1 ◦ h)(x) is a boundary. As F1 is a quasi-monomorphism,
(b′ 2 ◦ ι ′n+1)(x) is a boundary. As b′1 = 0, this implies

(b′ 2 ◦ ι ′n+1)(x) = 0 (26)

So b′ 2 = 0, whence (m′k)k∈[1,n+1] is an An+1-structure on A′ as claimed in (a). Thus,
b1 ◦ h = F1 ◦ π1 ◦ b′ 2 ◦ ι ′n+1 = 0 as claimed in (b).

Lemma 66. Let n ∈ Z≥1. Let (A, (mk)k≥1) be an A∞-algebra. Let (A′, (m′k)k∈[1,n]) be
an An-algebra. Let (fk)k∈[1,n] be an An-morphism from (A′, (m′k)k∈[1,n]) to (A, (mk)k∈[1,n]).
Suppose the following hold.

(i) We have m′1 = 0 and f1 is a quasi-isomorphism from the complex (A′,m′1) to the
complex (A,m1).

(ii) A′ is a projective R-module.

Then there exist fn+1 and m′n+1 such that (A′, (m′k)k∈[1,n+1]) is an An+1-algebra and
(fk)k∈[1,n+1] is an An+1-morphism from (A′, (m′k)k∈[1,n+1]) to (A, (mk)k∈[1,n+1]).

Note that (A′)k ∼= Hk(A,m1) for k ∈ Z.

Proof. We have the corresponding triples ((mk)k≥1, (bk)k≥1, b), ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′)
and ((fk)k∈[1,n], (Fk)k∈[1,n], F ). Note that the term h of Lemma 65 does not depend on
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b′n+1 or Fn+1, so h can be unambiguously defined even when m′n+1 and Fn+1 are not yet
defined and we have b1 ◦ h = 0. Motivated by Lemma 65(c), we seek (properly graded)
morphisms b′n+1 : SA′⊗n+1 → SA′ and Fn+1 : SA′⊗n+1 → SA such that the following
holds.

h = b1 ◦ Fn+1 − F1 ◦ b′n+1 (27)

We will construct b′n+1 and Fn+1 on each (SA′⊗n+1)q, q ∈ Z individually. As SA′ ∼= A
as R-modules, SA′ is projective. As a tensor product of projective modules, SA′⊗n+1

is projective. (SA′⊗n+1)q is projective as a direct summand of SA′⊗n+1. There exists
a free R-module G together with a surjective morphism g : G → (SA′⊗n+1)q (e.g. set
G to be the free R-module over the set (SA′⊗n+1)q). By the universal property of the
projective module (SA′⊗n+1)q, there exists a morphism g∗ : (SA′⊗n+1)q → G such that
g ◦ g∗ = id(SA′⊗n+1)q . Let B be a basis of G. We will define b̃′n+1 : G → (SA′)q+1 and
F̃n+1 : G→ (SA)q such that

h ◦ g = b1 ◦ F̃n+1 − F1 ◦ b̃′n+1. (28)

We define b̃′n+1 and F̃n+1 by giving them on basis elements v ∈ B: As b1 ◦ h = 0, h(g(v))
is a cycle. As by (i), F1 is a quasi-isomorphism from (SA′, b′1) to (SA, b1) and b′1 = 0, F1

is in fact a quasi-isomorphism from the homology of SA to SA, i.e. each homology class
of SA contains exactly one element of imF1. Thus there is an unique element y ∈ SA′
such that h(g(v)) and F1(y) are in the same homology class. As |h| = 1 and |F1| = 0,
we have |y| = |g(v)|+ 1 = q + 1. Thus h(g(v))− F1(y) is a boundary and homogeneous
of degree q + 1. Thus as |b1| = 1, we can select an element z ∈ SA, |z| = q such that
h(g(v))−F1(y) = b1(z). Now set b̃′n+1(v) := −y and Fn+1(v) := z. By the grading of y and
z, we obtain morphisms b̃′n+1 : G→ (SA′)q+1 and F̃n+1 : G→ (SA)q. These maps satisfy
by construction (28). We set b′n+1

∣∣
(SA′⊗n+1)q

= b̃′n+1 ◦ g∗ and Fn+1

∣∣
(SA′⊗n+1)q

= F̃n+1 ◦ g∗.
Then

h
∣∣
(SA′⊗n+1)q

=h ◦ g ◦ g∗ (28)
= (b1 ◦ F̃n+1 − F1 ◦ b̃′n+1) ◦ g∗

= b1 ◦ Fn+1

∣∣
(SA′⊗n+1)q

− F1 ◦ b′n+1

∣∣
(SA′⊗n+1)q

Thus we obtain morphisms b′n+1 and Fn+1 such that (27) holds. As im
(
b′n+1

∣∣
(SA′⊗n+1)q

)
⊆

(SA′)q+1 and im
(
Fn+1

∣∣
(SA′⊗n+1)q

)
⊆ (SA)q, we have |b′n+1| = 1 and |Fn+1| = 0. Us-

ing b′n+1 and Fn+1, we extend the corresponding triples ((m′k)k∈[1,n], (b
′
k)k∈[1,n], b

′) and
((fk)k∈[1,n], (Fk)k∈[1,n], F ) to corresponding triples ((m′k)k∈[1,n+1], (b

′
k)k∈[1,n+1], b̂

′) and
((fk)k∈[1,n+1], (Fk)k∈[1,n+1], F̂ ). Recall Theorem 62 and Lemma 63. Via Lemma 65,
(A′, (m′k)k∈[1,n+1]) is an An+1-algebra and F̂ ◦ b̂′ = b ◦ F̂ . So we have proven that
(fk)k∈[1,n+1] : (A′, (m′k)k∈[1,n+1])→ (A, (mk)k∈[1,n+1]) is a morphism of An+1-algebras.

Concerning Lemma 66, we may now also construct m′m+1 and fm+1 directly: We construct
(properly graded) maps m′m+1 and fm+1 such that (12)[m + 1] holds. Such m′m+1 and
fm+1 exist by Lemma 66. Then Lemma 64 ensures that all other requirements are met.
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Theorem 67 (Kadeishvili’s algorithm for the minimality theorem). Let (A, (mk)k≥1) be
an A∞-algebra. Let H∗A be its homology. Suppose H∗A is a projective R-module. Then
we construct a minimal model as follows:

For q ∈ Z, HqA = ker(m1

∣∣
Aq

)/ im(m1

∣∣
Aq−1) is projective as a direct summand of H∗A.

The residue class map Pq : ker(m1

∣∣
Aq

)→ HqA is surjective. By the universal property of
the projective module HqA, there exists P ∗q : HqA→ ker(m1

∣∣
Aq

) such that Pq ◦P ∗q = idHqA.
Thus P ∗q maps each homology class x̄ in HqA to a representing cycle x with |x| = q = |x̄|.
Then f1 : H∗A→ A defined by f1

∣∣
HqA

= P ∗q maps each homology class to a representing
cycle and |f1| = 0.

We set m′1 : H∗A → H∗A, m′1 = 0. We have f1 ◦ m′1
m′1=0

= 0
im f1⊆kerm1

= m1 ◦ f1, so
f1 : (H∗A,m′1)→ (A,m1) is a quasi-isomorphism and also a morphism of A1-algebras.
By construction, f1 : (H∗A,m′1)→ (A,m1) induces the identity in homology.

We then use Lemma 66 to inductively construct an A∞-structure (m′k)k≥1 on H∗A and a
quasi-isomorphism (fk)k≥1 of A∞-algebras from (H∗A, (m′k)k≥1) to (A, (mk)k≥1).

63



References

References

[1] Benson, D.J. Representations and cohomology I: Basic representation theory of
finite groups and associative algebras, Cambridge Univ. Press, 1998

[2] Bourbaki, N. Éléments de mathématique. - Fasc. 27 : Algèbre commutative, 1961

[3] Bourbaki, N. Éléments de mathématique - Algèbre - Chapitre 10: Algèbre ho-
mologique, 1980

[4] Green, J.A. Walking around the Brauer tree, Journal of the Australian Mathemat-
ical Society, Volume 17, Issue 2, p. 197-213, 1974

[5] Gugenheim, V.K.A.M., Lambe, L.A., and Stasheff, J.D., Perturbation theory
in differential homological algebra II, Illinois J. Math. 35, p. 357-373, 1991

[6] James, G.D., The Representation Theory of the Symmetric Groups, Lecture Notes
in Mathematics 682, Springer-Verlag, 1978

[7] Johansson, L., and Lambe, L.Transferring Algebra Structures Up to Homology
Equivalence, Math. Scand. 89, p. 181-200, 2001

[8] Kadeishvili, T.V., On the homology theory of fiber spaces, Russian Math. Surveys,
35:3, p. 231-238, 1980

[9] Kadeishvili, T.V., Algebraic Structure in the Homologies of an A(∞)-Algebra
(Russian), Bulletin of the Academy of Sciences of the Georgian SSR 108 No 2, p.
249-252, 1982

[10] Kadeishvili, T.V., The functor D for a category of A(∞)-algebras (Russian),
Bulletin of the Academy of Sciences of the Georgian SSR 125, p. 273-276, 1987

[11] Keller, B., A-infinity algebras in representation theory, Contribution to the
Proceedings of ICRA IX, Beijing, 2000

[12] Keller, B., Introduction to A-infinity algebras and modules, Homology, Homotopy
and Applications vol. 3(1), 2001

[13] Keller, B., Addendum to ’Introduction to A-infinity algebras and modules’, 2002

[14] Klamt, A., A∞-structures on the algebra of extension of Verma modules in the
parabolic category O, Diplomarbeit, 2010

[15] Künzer, M., Ties for the integral group ring of the symmetric group, Thesis, 1999

[16] Lefèvre-Hasegawa, K., Sur les A∞-catégories, Thesis, 2003

[17] Madsen, D.,Homological aspects in representation theory, Thesis, 2002

[18] Merkulov, S.A., Strong homotopy algebras of a Kähler manifold, Int. Math. Res.
Notices, Vol. 1999, p. 153-164, 1999

[19] Peel, M.H., Hook representations of the symmetric groups, Glasgow Mathematical
Journal, 1971

64



References

[20] Prouté, A., Algèbres différentielles fortement homotopiquement associatives, Thèse
d’Etat, Université Paris VII, 1984

[21] Stasheff, J.D., Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc.
108, p. 293-312, 1963

[22] Vejdemo-Johansson, M., Computation of A∞-algebras in group cohomology,
Thesis, 2008

[23] Vejdemo-Johansson, M., A partial A∞-structure on the cohomology of Cm × Cn,
Journal of Homotopy and Related Structures, vol. 3(1), p. 1-11, 2008

[24] Vejdemo-Johansson, M., Blackbox computation of A∞-algebras, Georgian Math-
ematical Journal Volume 17 Issue 2, p. 391-404, 2010

65


	Introduction
	Outline
	Notations and conventions
	Acknowledgements
	The projective resolution of Fp over FpSp
	A description of ZpSp
	A projective resolution of Zp over ZpSp
	A projective resolution of Fp over FpSp

	A(oo)-algebras
	General theory
	The homology of Hom*(FpSp)(PResFp,PResFp)
	An A(oo)-structure on Ext*(FpSp)(Fp,Fp) as a minimal model of Hom*(FpSp)(PResFp,)PresFp
	At the prime 2

	On the bar construction
	The Koszul sign rule for the composition of graded maps
	Coalgebras and differential coalgebras
	The bar construction
	Applications. Kadeishvili's algorithm and the minimality theorem.


