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Chapter 0O

Introduction

0.1 Example: groups and model categories

Consider the category Grp of groups. We have the full subcategory FreeGrp C Grp of free
groups. If we want to resolve a group by free groups, we do not have classical homological
algebra at our disposal, for Grp is not additive. As a replacement, one can simplicially resolve
a group using free groups.

Simplicial resolutions can also be applied in model categories such as the category of topological
spaces, the category of simplicial sets and the category of simplicial groups.

0.2 Reduced limits

We will work with different types of category-theoretic limits. For a functor D 5Le , a limit of
F' is given by an object L € ObC and a tuple of morphisms (L 2 FX)xeobp such that for
each morphism (X % Y) € Mor D we have wx - Fa = wy and such that this tuple is universal
with this property.

For the particular case that the category D is a finite poset it is easier to work with a slightly
modified limit, which we will call reduced limit. The reduced limit comes only with morphisms
L % FX such that X is a minimal element in the poset. This facilitates explicit constructions
in some cases; cf. e.g. Example 39. The reduced limit yields the limit by defining the missing
morphisms as composites of the given ones with the morphisms that appear in the image of
the functor F.

0.3 Simplicial and semisimplicial objects

The simplex category A has as objects the sets [0, n], containing the integers from 0 to n, for
n > 0 and as morphisms the monotone maps between them.

A simplicial object in C is a functor X : A°® — C. A simplicial morphism is a transformation
between such functors. The category of simplicial objects and simplicial morphisms is written

Simp(C).



The category Ai,; € A is the subcategory containing only the injective monotone maps.

A semisimplicial object in C is a functor X : A?If]- — C. A semisimplicial morphism is a
transformation between such functors. The category of semisimplicial objects and simplicial

morphisms is written SemiSimp(C).

0.4 Semisimplicial resolutions

As an intermediate step towards the construction of simplicial resolutions, we construct
semisimplicial resolutions following Myles Tierney and Wolfgang Vogel [1].

(Classically, one builds a projective resolution of a module by choosing a projective module
mapping onto it, taking the kernel, choosing a projective module mapping onto it, taking the
kernel, etc. To build a semisimplicial resolution of an object, the kernel is replaced by the
simplicial kernel and the projective modules are replaced by objects in a resolving subcategory,
as we shall explain now.

Given a tuple of n morphisms (X EIN Y )iep1,n in a category C, the simplicial kernel of this tuple
is a tuple of n + 1 morphisms (K LN X)iepn satistying k;f; = kifjoifor 1 <i<j<n+1
and being universal with this property. We will see that simplicial kernels are just the reduced
limits of certain functors, which we will construct in the proof of Proposition 23.

Instead of using projective objects as one does for a classical projective resolution, we choose a
resolving subcategory P of C, which is a full subcategory having properties resembling those of

the subcategory of projective modules in all modules: for each X € Ob(C, there exists P ENS'e
such that P € ObP and such that for each @ % X with Q € ObP there exists Q — P with

uf =g.

Lo
i,
p-l.x

For instance, in the category C := Grp of groups, we may let P := FreeGrp C Grp = C, making
use of the fact that to every group, there exists a surjective group morphism from a free group.

Or, for instance, in a model category C, we may let P be the full subcategory of cofibrant
objects, making use of the fact that to every object of C, there exists an acyclic fibration from
a cofibrant object. Cf. Remark 34.

Or, for instance, in a model category C, we may let P be the full subcategory of acyclic cofibrant
objects, making use of the fact that to every object of C, there exists a fibration from an acyclic
cofibrant object. Cf. Remark 35.

Now suppose given an object X in C, which we want to resolve semisimplicially. First, choose
Py, — X with Py € ObP as described above. Let K7 = F, be its simplicial kernel. Choose
P, — K, with P, € ObP as described above. Compose to the tuple P, = P,. Let Ky = P,
be its simplicial kernel. Choose P, — K5 with P, € ObP as described above. Compose to the
tuple P, = P,. Etc. The objects P, for n > 0, together with the morphism tuples between
them, yield a semisimplicial object, which we define to be a semisimplicial resolution of X cf.
Definition 36, Remark 37, Proposition 43.



0.5 From semisimplicial to simplicial resolutions

A semisimplicial resolution of an object in C yields a semisimplicial object in C. To turn this
semisimplicial resolution into a simplicial resolution, we need to find an appropriate way to
contruct a simplicial object out of a semisimplicial object. To this end we will construct a left
adjoint functor

Fe : SemiSimp(C) — Simp(C)

to the forgetful functor
Ve @ Simp(C) — SemiSimp(C) ,

op

which restricts a given simplicial object X, i.e. a functor X : A% — C, from A to Aj:.

We will first construct the functor F¢ in the case C = Set, because there the construction follows
the intuition of adding formal degeneracy maps and because the general case is modelled on
this particular case.

If one uses a Kan extension along the inclusion Aﬁﬂ — A° to construct F¢, one usually works

with a direct limit. In the case C = Set, this amounts to working with equivalence classes.

Here, to construct F¢ we use the fact that there exists a unique factorization of a monotone
map into a surjective and an injective monotone map; cf. Remark 49. In this way, we avoid
equivalence classes in case C = Set, and we may use mere coproducts instead of colimits in the
general case.

So if our resolving subcategory P is closed under coproducts in C, then we can resolve X € Ob(C
with a semisimplicial object in P, which then yields a simplicial object in P by an application
of F¢. This simplicial object is the simplicial resolution of X.

0.6 Conventions

In case we write “for x € X7, it means “for all x € X”.
e Suppose given a finite set S. Then |S] is the cardinality of S.

e Suppose given a map « : X — Y. We write the image of x € X under « as xa. Moreover,
Im(a) C Y denotes the image of .

e Given a set L and subsets M, N C L, we write L=MUN if L= MUN and MNN = 0.

e Suppose given sets [ and X; for i € I. We write | | X; = {(i,z) : € X;} for the disjoint
union of the X; for i € I. i€l

e Suppose given sets A, B,C, D. Suppose that A C B and C' C D. Suppose given a map
f: B — D such that Im(f) C C.

We write f|G: A — C, a— af|S := af for the restriction of f to A in the domain and
to C' in the range.

If C = D, we also write f|4:= f|5. If A= B, we also write f| := f|%.

e For a set M we write P(M) for the power set of M.



Suppose given a poset (M, <pq). We call a poset (S, <s), where S C M, a full subposet
of (M, <), if (51 Sm $2) & (51 <s 82) for 51,50 € S. We often write M instead of
(M, <).

For z1,20 € Z let [21,20) = {2 € Z : 21 < 2 < 20}. Let Zsg:= {2 € Z: z > 0}. For
z € Z( we often abbreviate [z] := |0, z].

We write Set for the category of sets.

All categories C under consideration are small, which means that Ob C and Mor C are sets.
If necessary, we choose a universe with respect to which the category under consideration
is small. We call a category C a finite category if ObC and MorC are finite sets.

We write composition on the right. That means, given morphisms a — b and b LA c, the

composite of these two morphisms is written a —a—'i cora ﬂ c .

We write composition of functors on the left. That means, given functors F': C — D and
G :D — &, we write G o F' or GF for their composite.

Given a functor D 2> C, we often write F, := Fx for x € ObD and F, := Fa for
a € MorD, e.g. if we consider F' as a diagram with values in C.

Suppose given a category C and objects x,y € ObC. Then ¢(z,y) is the set of all
morphisms of C with source x and target y .

Suppose given a category C. Then C° is the opposite category of C. For a morphism
(a % b) € MorC, let b 2% a denote the corresponding morphism in C°P.

Suppose given categories D and C. We write CP for the functor category of functors from
D to C.
Suppose given a category C.

Suppose given integers a < b and morphisms (X;_; —% X;) in C for i € [a + 1,b]. We
write

XoyrXs )
Q= Qgy1- o ifa<b
i€la+1,b]
and
Xag X0 . .
a; =idy, if a=">.
i€[a+1,b]

Suppose given integers a < b and morphisms (X;_; <+ X;) in C for i € [a + 1,b]. We
write . x
bH “ay = ap- - Qgyq ifa<b

i€|b,a+1]

and
Xo gy Xa . .
a; :=idx, ifa=10.
i€lb,a+1]



Suppose given functors F, F’ : C — D. A tuple of morphisms (F'X I, F'X)xecobe in D
is called natural, if tx - F'u = Fu - ty for all morphisms X — Y in C. If such a tuple is
natural, we call it a transformation.

Suppose given a category C. Suppose given a set I and X; € ObC. We write [[X; for
the coproduct of the objects X; for ¢ € I. el

We write Grp for the category of groups and FreeGrp for the full subcategory of free
groups.

Groups are written multiplicatively. That includes that the neutral element of a group G
is written 15 . The inverse of g € G is often written g~ . The trivial group is written 1.

Suppose given a set M. We write Free(M) for the free group generated by the elements
of M. FElements of Free(M) are denotated as words in the alphabet given by the set
M UM~ where M~ :={m~ : m € M}. The empty word, which is the neutral element,
is written Ipee(ar)-

Suppose given a group G. Suppose given M C G. We write (M) := (1 N for the
normal subgroup generated by M. NG, MCN

Suppose given a group G and U < G. We write G/U for the factor group. For g € G we
write gU for the image of the residue class morphism of g in G/U.

Suppose given a set . Let R C Free(F). Let Q := {R) be the normal subgroup gen-
erated by R. Then we define (E|R) := Free(E)/Q. Instead of ({e,..., e {r1,...,7m})

we often write (e1,...,e,|r1,. .., m).



Chapter 1

Preliminaries

1.1 Transformations

F
P

Remark 1. Suppose given functors B-E.¢C D-.¢& and a transformation
A4

G
o = (ax)XGObc : F— G. Then

(i) Ha := (H(ax))xeobce is a transformation from H o F to Ho G .

(ii) aK := (aky)xeobs is a transformation from F' o K to G o K.

Proof. Ad (i). Suppose given (X ER Y) € MorC. We have to show commutativity of the
following diagram.
(HOF)XM(HOG)X
(HOF)fl l(HOG)f

(HoF)y 7= (HoG)y

We have
H(ax) - (HoG); = Hlax) - H(Gy) = H(ax - Gy) “ "™ """ H(Fy - a,) = H(Fy) - H(ay) =
(HoG);- Hlay).
Ad (ii). Suppose given (X EN Y) € Mor B. We have to show commutativity of the following
diagram.

(FoK)x —% (GoK)x

(FOK)fl i(GOK)f
(FoK)y 5= (GoK)y

We have

« transformation F

aKX-(GOK)f:aKX-GK(f) K(f)-OzKY:(FOK)f-a/Ky. ]



1.2 Limits

Definition 2 (Limit). Suppose given categories D and C. Suppose given a functor
F : D — C. Suppose given L € ObC and a tuple of morphisms (L <% F,).copp in C.
Then the pair (L, (w;)zconp) is a limit of F'| if the following properties (i, ii) hold.

(i) For each morphism x — y in D we have w,F, = w, .

!
w(L’

(ii) Suppose given (L', (L' =% F,)scobp) With the property that for each morphism = % y in
D we have w; Fi, = w,. Then there exists a unique morphism L' 5 L with pw, = W/, for
z € ObD.
Fx

’
wfl)
Wx

L= -~L

Remark 3. The universal property in Definition 2 (i,1i) yields uniqueness of limits up to iso-
w

morphism. Suppose that (L, (L <% F,).conp) and (L', (L' a, F,)zcobp) are limits of D 4e.
Then there exists an isomorphism u : L — L' with pw!, = w, for z € ObD and p'w, = W/, for
x € ObD.

(/Jl

Proof. Suppose that (L, (L % F,).cobp) and (L', (L' =% F,)zcobp) are limits of D L, €. Then

w

w,F, = w, for (x = y) € Mor D. Because of the Universal Property of (L', (L' =% F,.)zcobD),
there exists a (unique) morphism L % L' satisfying uw!, = w, for z € ObD. Analogously
there exists a morphism L' % L satisfying vw, = w/, for € ObD. It is pvw, = uw!, = w, for
x € ObD. On the other hand, we have id; w, = w, for z € ObD. Because of the Universal
Property, which says that there exists only one such morphism with source L and target L, we
get pv = idy. Analogously, we get vu = idy, . Hence p is an isomorphism and v its inverse. []

Remark 4. The dual notion of a limit is that of a colimit. That means, given a category C, a
limit of C°P is a colimit, when viewed in C.

Remark 5. We regard a diagram in a category C as a functor from a suitable category D, which
determines the type of the diagram, to C. This allows us to speak of a limit of a diagram, which
is just a limit of the associated functor.

Remark 6. Suppose given a poset (M, <). We define a category Cpq as follows. ObCp := M.
For my,ms € ObCyy, let

(m1,me)} if my <mgy

CM<m17m2> = { é

ifmlﬁmg.
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Composition of morphisms is given by (m4 (1 m2), Mo (ma,ma), mg) = (my {ma.ma), mg). This

is well-defined by transitivity of (<). The identity on m € ObCy, is given by id,, = (m,m),
which is possible by reflexivity of (<).

Usually, we write M also for the category Cprq by abuse of notation.
Example 7. Let C be a category. Consider the following diagram in C.

A

Jo

This can be regarded as the functor from the poset ({{1},{2},{1,2}}, <) to C that maps {1}
to A, {2} to B, {1,2} to X, ({1},{1,2}) to a and ({2},{1,2}) to S.
Fry
J/F({l},{mb

Fiay Frig

Flioy,012)

A limit of such a diagram completes it to a pullback. It can be illustrated by adding the respec-
tive pair of an object and a tuple of morphisms to the diagram, which then is commutative.

w{1}

L
AN

W2y W2} J/Fm},{l,z})
v N

Fay

Fry

F12
Fliay, 1,2 (1.2}

We observe that the morphism wy; 9y is redundant. It would be sufficient, if we only had the two
morphisms wyy and wygy together with the requirement of a universal commutative quadrangle
to have a pullback, so it looks as follows.

I w{1}

A
o
B—X

B

This will be made precise in Lemma 11 below.

Definition 8. Suppose given a poset (M, <). We define
M={zeM:{ye M:y<a}={z}}
as the full subposet of minimal elements of M.

Definition 9 (Reduced limit). Suppose given a finite poset (M, <) and a category C. Suppose
given a functor F' : M — C. Suppose given L € ObC and a tuple of morphisms (L % Fi)pert -
Then the pair (L, (wy),enq) is a reduced limit of F, if the following conditions (iyed, lireq) hold.
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(ijea) For z,y € M and z € M such that z < z and y < z, we have wy Fi, .y = wy Fly ).

(ilrea) Suppose given (I, (L' = F,),cxq) with the property that for #,y € M and z € M such
that z < 2z and y < 2, we have w; F{, .y = w, I, -) . Then there exists a unique morphism

L' % L with pw, = o/, for € M. (Universal Property)

Remark 10. Suppose given a finite poset (M, <). For every m € M, we can choose 1m € M
such that m < m. This defines a map M — M, m +> m.

Proof. Assume there is an element m € M for which there is no element n € M with n < m.
The element m is not minimal, hence there exists m; € M with and m; < m. Also my is
not minimal. Again there exists an my € M with my < m;. Continuing this way we can now
contruct an infinite chain of elements - -+ < m; < -+ < my < m; < m. Then {m; : i € N} is an
infinite subset of M, which contradicts M being finite. ]

Lemma 11. Suppose given a finite poset (M, <) and a category C. Suppose given a functor
F: M — C. We make use of the map M — M, m +— m from Remark 10, so that m < m.

(1) Let (L, (ws)zem) be a limit of F. Then (L, (wy),epq) is a reduced limit.
(2) Let (L, (@y),en7) be a reduced limit. Then (L, (@5 Flz.z))cem) is a limit.

Note that for 2/ € M with 2/ < z, we have Qg Flar 2y = @03 F(z.2) by Definition 9 (iyeq). Hence
(2) is independent of the choice made in Remark 10.

Proof.
Ad (1). We have to show conditions (i;eq) and (ii;eq) of Definition 9.

Ad (ireq). Let x,y € Mand z € M withz < zand y < z. We get WeFlzz2) = W, = wyFly 2
by Definition 2 (i).

Ad (iiyeq). Suppose given (L', (L' N F,),ex) With the property that for z,y € M and
z € M such that < z and y < z, we have W), F,.) = w, F{,..). Then (L', (Wi Flz.2))eem)
satisfies W Flz2)Flay) = Wil(ay) = wyFl(gy) for z,y € M such that z < y. Hence there
exists a unique morphism L' & L with puw, = Wy Fzz) for x € M by Definition 1 (ii).
In particular, p satisfies pw, = wjF; ) = W), for € M, since & = &. Suppose given
v: L — L with vw, = w, for z € M. Then vw, = VWi Flz2) = WoF(z.) for x € M.
Hence v = p.

Ad (2). We have to show conditions (i) and (ii) of Definition 2.

Ad (1) Let x,y € M with z < y. We get @@F(j,x)F(m’y) = @@F(j,y) = @gF(g,y) by
Definition 9 (ieq)-

Ad (ii). Suppose given (L', (L' % F.)zcobp) with the property that for z,y € M such
that = <y, we have w; Fi, ) = w;, . Let z,y € M and z € M such that < z and y < =.
Then we get w, F{,.) = W, = w, I, .). Hence there exists a unique morphism y : L' — L
with pu, = w!, for € M by Definition 9 (ii,eq). It follows that Pz Fe )y = WoFla0) = W)
for x € M. Suppose given v : L' — L with vw;Fz.) = w, for x € M. Then, in
particular, we have v@, = w!, for x € M, since x = &. Hence v = p.
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Definition 12. Let C be a category.
We say that C has limits, if for every category D and every functor D Ly € a limit of F exists.

We say that C has finite limits, if for every finite category D and every functor D L € a limit
of F' exists.

We say that C has colimits, if for every category D and every functor D Ly C a colimit of F
exists.

We say that C has finite colimits, if for every finite category D and every functor D 5H¢Ca
colimit of F' exists.

Remark 13.

(i) Suppose a category C has finite limits. Then C contains a terminal object.

(ii) Suppose a category C has finite colimits. Then C contains an initial object.

Proof.

Ad (i). Let D be the empty category, which means ObD = () and Mor D = (). Let (7, ()) be a
limit of F': D — C. Then T is a terminal object, since for X € Ob(, the pair (X, ()) satisfies
the condition in (ii) in Definition 2 and so there exists a unique morphism p : X — T satisfying
an empty condition. Hence p is unique. So 7T is a terminal object.

Ad (ii). This dual to (i). O
Example 14. The category of groups Grp has limits.

In fact, we can construct a limit of a functor D EiN Grp as follows.

Let P :=]],conp F» be the direct product the groups F,, where x € ObD. Let

L :={(9z)zeconp € P: (94)Fs = gy for (a 50 € Mor D} .
Then L is a subgroup of P, as we shall see now.

The neutral element (1g,).conp is contained in L, because the image F, of every morphism
(a = b) is a group morphism, which sends 15, to 1.

bp € L and (a = b) € MorD. Then F, is a group morphism,

Suppose given (gz)zecobd 5 (Pa)zeco
= ((9a)Fa) " (ha)Fo = (g95)"hs. Hence ((92)zeonp)” (ha)zeobp =

so that we get ((ga) ha)Fa
((92) " ha)zeobp € L.

Given a € ObD, let w, : L — F,,(gz)zcobp +> go- It follows from the definition of L that
woFy = wy for (a 2 b) € Mor D.

It remains to prove the universal property. Suppose given a group L’ and a tuple of group

morphisms (L' =% Fy)4conp that satisfy w’F, = wj for (a = b) € MorD. We can define the
map i : L' — L, — ((1)w))acobp - The image of 11 is contained in L, because ((g)w),) Fo = (g)w},
for g € L' and (a = b) € Mor D, so p is well defined. Also u is a group morphism. We have
(Dpwa = ((Hwh)acobp)ws = (Lwl, for [ € L' and = € Ob D, for short pw, = !, for x € ObD.
Suppose given a group morphism v : L' — L such that vw, = w!, . Then (I)vw, = ()w!, = (1) uw,
for 1 € L' and z € ObD, hence (I)v = ((1)w.,)zcorp = (1)1, hence v = p.
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Example 15. Let M be a finite poset.

We can construct a reduced limit of a functor M 2> Grp as follows.

Let P:=1]],,cxi Fm- Let

L= {(9m)mert: () Enym) = (n2)Flnymy for m € M and ny,ny € M such that ny < m,ny < m}.

Then L is a subgroup of P, as we shall see now.

The neutral element (1g,,),,c i contained in L, because a group morphism maps the neutral
elements to neutral elements.

Suppose given (gm)merts (Am)mext € L, m € M and nq,ny € M such that n; < m,ny < m.
We then have

((gm)_hm)F(m,m) = ((gm)F(m,m))_(hm)F(m,m) = ((gn2)F(nz,Tn))_(hm)F(m,m) = ((gm)_th)F(nz,m) .

Hence ((9m)ment)” (him)ment = ((9m) " hun)ment € L-
Given n € M, let w, : L = Fo, (gm)mert — gn - 1t follows from the definition of L that
Wiy Flngm) = Wy Flngm) for m € M and ny,ny € M such that n; < m,n, <m.

It remains to prove the universal property.

Suppose given a group L' and a tuple of group morphisms (L' La, Fy)gen that satisfy
Wy, Flnym)y = Wiy Flngmy for m € M and ny,ny € M such that n; < m,ny < m. We
can define the map p : L' — L,I — (({)w))gen(- The image of p is contained in L, be-
cause ((9)wh ) Fnym = ((9)wh,)Fingm) for ¢ € L' and m € M and ny,n, € M such
that ny < m,ngy < m, so pu is well defined. Also p is a group morphism. We have
(D = ((Dwh)acobp)wm = (D!, for I € L' and m € M, for short pw,, = w’, for m € M.
Suppose given a group morphism v : L' — L such that vw,, = w/, for m € M. Then
(Dvw, = (W', = (Dpwy, for 1 € L' and m € M, hence ()v = (1)) mess = (Dp, hence
v = .

Example 16. Suppose given a set M. Then M yields the discrete poset (M, <) by defining
mp < Mo & My = My .
So we obtain a category M with Ob M = M and Mor M = {id,, : m € M}.

Suppose given a category C and a tuple (X,,)men of objects in C. We define the following
functor.

F: M — C
m +— X,, formeM
id,, — idx, forme M

Then we choose a colimit of F' and write it [[ X,,, the coproduct of the tuple (X,,)menr -
meM

1.3 Free products of groups

Remark 17 (Representation of groups by generators and relations). Suppose given a group
G. Let G be the set of all elements of G. Let Free(G) be the free group generated by G. The
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map ids extends to a unique group morphism f : Free(G) — G, g — g, which is surjective.
Let K¢ be the kernel of f. So we have the short exact sequence

Kg — Free(G) 5a.

Let K¢ be the set of elements in K. So the normal subgroup generated by K¢ is just K.
Altogether, we have G ~ Free(G)/Kg = (G|Kg).

Remark 18. Suppose given sets M, N and a map M Iy N. Then we have the following

induced group morphism.
Free(M) Treeld), Free(N)

m  —  (m)f

Definition 19 (Free product). Suppose given a set I. Suppose given a tuple of groups (G;);er.

Suppose given i € I. Let G; be the set of elements of G;. The map idgs, extends to a unique
group morphism f; : Free(G;) — Gy, = + x. Let Kg, be the kernel of f;. Let K¢, be the set of
clements in Kg,. Let 7, : Gy — | |G}, © +— (i,2) and Free(G;) 2= free(r) Free(| | G;).

jer jer

Let K := |J(Kg,)o: C Free(| |G;). Then we define

iel i€l
3Gii= <|€_]|Gi | K ),

which we call the free product of the tuple (G;);er. If I = [1, k] for some k > 1, we also write
i€l

Lemma 20. Suppose given a set I. Suppose given a tuple of groups (G;);c;. Suppose given
tuples of sets (E;);e; and (R;)ier, where R; C Free(E;) for ¢ € I, and a tuple of isomorphisms
(Bi|R;) =5 Gy)ier - Cf. e.g. Remark 17.

Let 7, : E; — || E;,  — (i,x) and Free(E;) 1= Freelni), Free(| ] E;).
jer jer

Let R := |J(R;)o; C Free(| | E;)

iel i€l
Let P := (| | Ei|R).

iel

(1) We have the group morphism
G %P

(@(Ri))oy = (z)o; (R)
for i € I, where x € Free(E;).

(2) Suppose given a group H. Suppose given a tuple of group morphisms (G; N )ier -
Then there exists a unique group morphism p : P — H satistying ¢; ppt = f; for ¢ € I.

So (P, (i p)ier) is a coproduct of (G;);er, cf. Example 16.
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(3) The pair (‘*IGi’ (i, « & )ier) is a coproduct of (G})er; cf. Definition 19 and (1).
1€ i€l

We have a group isomorphism P — ‘*IGi satistying ¢, pp = ¢, « ¢, for i € 1.
1€ el

Proof.
We will write ¢; := ¢, p for ¢ € 1.

Let g; : Free(E;) — Free(E;)/ {R;) = (Ei|R:), v — x {R;) be the residue class morphism for
1€ 1.

Let ¢ : Free(| | E;) — Free(| |E;)/{(R) = P, x — x {R) be the residue class morphism.
iel el
Ad (1). Let ¢ € I. We have (R;)o; C R. Hence R; is contained in the kernel of ¢;q, and so

is {R;). Therefore there exists a unique morphism v; : (E;|R;) — P such that the following
diagram is commutative.

Free(E;) ~4~ P

%

(Ei| R;)
We may define ¢; := a; 'v;, since for z € Free(E;) we get
(@ (Ri))w)ay 'y = (a(Ri) )y = (2)aivi = (x)oiqg = (2)oi (R) .

Ad (2).
Uniqueness.

We can write every « € P = Free(| |E;)/ {R) in the form
i€l

T = (i17ei1)€1 ’ (i27 eiz)EQ e (iTwein)En <R> ;

where n > 0 and where i, € I, ¢;, € E;, and ¢, € {—1,+1} for k € [1,n]. We can rewrite a
factor in this product as (ix,e;, ) (R) = (e;F { R, ) )eviy Ly, -

So we can write every x € P as a product x = (gi, )ti, - - - (i, )ti,,, Where n > 0 and g;; € Gy, for
j € [1,n]. Thus

(@)= ((giy )iy * -+ (G i )10 = (Gir iy o+ - (Gin Vit = (Giy) fiy + -+ (Gi) S -

FExistence.

Let H be the set of elements of H. The map d : L|E; — H, (1,€;) — (e; { R; ) ) fi extends to
iel

a unique group morphism 9§ : Free(| | F;) — H. We have 0,0 = g, f; for i € I.

icl
Suppose given x € R. We can write x = (r;)o; for some i € [ and some r; € R;. Then
()0 = (r;)o0 = (r; (Ri))aifi = (Lig,ryy )i fi = 1g . Hence R is contained in the kernel of 4,
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and so is { R)). Therefore there exists a unique morphism p : P — H such that the following
diagram is commutative.

Free(| | E;) —= P’

i€l

w/

P

For i € I and x € Free(E;) we get
((z{Ri))ew)ip = ((x)oi (R) J)p = ((®)os)qp = ((x)0:)d = ((x (Ri ) )ai) fi -

So vip = fi.
Ad (3). By (2) and by Remark 17, ( *IGi7 (ti, « G;)ier) 1s a coproduct of (G;)ier.
(S i€l

By the dual assertion to Remark 3, ¢ is an isomorphism. O]
Example 21. Suppose given a set /. Suppose given a free group G; for ¢« € I. Then the free
product ‘*IGi is a free group.

1€
We use the notation of Lemma 20.

We may let R; := 0 for i« € I. Then also R = |J(R;)o; = 0. So the group P is free. By

Lemma 20.(3), P is isomorphic to ‘*IGi' iel
S



Chapter 2

Simplicial Kernels

Definition 22 (Simplicial kernel). Let C be a category and X,Y € ObC. Suppose given
n > 0 and a tuple (X EIN Y )icjo,n) of morphisms in C. Suppose given K € ObC and a tuple of

morphisms (K LN X)icont1)- Then (K, (K LiN X)iclont1)) is a simplicial kernel or n-equalizer
of (fi)icpo,n if the following conditions (i, ii) hold.

(i) We have k;f; = k;f;—1 for i, j € [0,n + 1] such that i < j.

(ii) Suppose given (Z N X)iclont1) satisfying h;f; = hifj—1 for i,j € [0,n + 1] such that
i < 7, then there exists a unique morphism p : Z — K with pk; = h; for ¢ € [0,n + 1].

Proposition 23. Let C be a category. Suppose that C has finite limits. Suppose given a
natural number n > 0 and a tuple (X EN Y)icjo,n) of morphisms in C. Then a simplicial kernel
of (fi)iejo,n exists.

Proof. We construct a diagram, whose limit is a simplicial kernel. We define the following
poset. Let
My ={{z}:z€[0,n+1]}

and
Moy :={{i,j} :i,j € [0,n+ 1] such that i < j}

and

M = Ml U Mg .
Then (M, C) is a poset as full subposet of P([0,n + 1]). We define the functor F' : M — C by

X ime/\/h f'—l le<j
F(m) = . and F({i},{i,j}) = J L .
Y ifme M, fi ife>7 .

Let (K, (K M Fiiy)icon+1)) be a reduced limit of F', which exists by Lemma 11. We have

to show that (K, (k;)icjont1]) is a simplicial kernel of (f;)icpn) by checking (i) and (ii) in
Definition 22.

17
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Ad (ii). Suppose given (Z iy X)iclont1) satisfying h; fi = h; f;—1 for 0 < i < j <n+1. Suppose
given 4,75 € [0,n + 1].

Case i # j. Without loss of generality we can suppose that i < j. So we get
hil(giy igy) = hifi—r = hifi = hiFigy gy -
Case i = 7. Then
hil iy iy = hiltay o = hi = hy = Egon = Egnea -

Hence (h;)icjont1) satisfies (ireq) in Definition 9. Thus there exists a unique morphism Z 5K
with pk; = h; for i € [0,n]. O

Example 24. The poset defined in the proof of Proposition 23 takes the following shape on
the first two cases.

n=20:

{0,1}



Chapter 3

Semisimplicial Resolutions

3.1 Resolving subcategories

Definition 25. Suppose given a category C. Let P be a full subcategory of C. Suppose
given (X % Y) € MorC. We say that ¢ is P-epic or a P-epimorphism if for P € ObP and
(P % Y) € MorC, there exists a morphism P B X such that By = a. That means the map

c(P, X) e, c(P,Y), B — Py is a surjection for P € ObP.

Remark 26. Suppose given a category C and a full subcategory P of C.

e Let X € ObC. Then idy is a P-epimorphism, since for P € ObP and (P % X) € MorC,
we have aidy = o

e Suppose given P-epimorphisms X = Y and Y 5 7. Then the composite af is a P-

epimorphism. In fact, for P € ObP and (P - Z) € MorC, there exists P % Y such that
683 =, and then there exists P = X such that eow = §. Hence we get caf = 65 = .

Definition 27 (Resolving subcategory). Let C be a category. Suppose given a full subcategory
P of C. We call P a resolving subcategory in C if for every X € ObC, there exists an object
P € ObP and a morphism ¢ : P — X that is P-epic.

Remark 28. The class of objects contained in a resolving subcategory is referred to as a
projective class by Tierney and Vogel [1].

Example 29. Suppose given a category C. Then C is a resolving subcategory in C. In fact, for
every object X € Ob(C, we have X 4 Xasa P-epimorphism.

19
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Example 30. Suppose a category C has an initial object /. Then the full subcategory Z with
ObZ = {I} is a resolving subcategory in C, since for a given object X € ObC we have exactly
one morphism I % X. Then ¢ is Z-epic, because for o € ¢(I, X) = {¢} there exists id;, which
satisfies id; . = a = .

Remark 31. Consider the category of groups Grp. We have a full subcategory FreeGrp of free
groups. Let ¢ € Mor Grp. We have

@ is FreeGrp-epic <= ¢ is surjective.

Proof.

Ad =-. Suppose that ¢ : X — Y is FreeGrp-epic. Let Y be the set of all elements of V. Let
Free(Y) be the free group generated by Y. The map idy extends to a unique group morphism
o : Free(Y) — Y. Since ¢ is FreeGrp-epic there exists a group morphism 3 : Free(Y) — X
such that S = a. Since « is surjective ¢ must be surjective.

Free(Y)

Ad <. Suppose that ¢ : X — Y is surJectlve Let X be set of elements in X and Y be the set of
elements in Y. Choose a map X <= Y such that cp = idy. Let M be a set and Free(M) be the
free group generated by M. Suppose given a qroup morphism « : Free(M) — Y. This group
morphism retracts to a map a : M — Y. We define a map (M LN X)=(M3Y) (Y S X).
Then b extends to a unique group morphism f : Free(M) — X. We have to show that Sy = a.
Let m € M. Then ((m)B)e = ((m)b)e = (((m)a)c)p = (m)a = (m)a.

M Free(M)
b//ia B// la
X<y x° Y

Remark 32. The category FreeGrp is a resolving subcategory in Grp.

Proof. Suppose given a group G. Let G be the set of all elements of G. Let Free(G) be the free
group generated by G. The map ids extends to a unique group morphism 7y : Free(G) — G,
which is surjective. O

Definition 33 (Model category). Suppose given a category C.
Suppose given Fib(C), Cof(C), Wke(C) € MorC.

We call C a model category if the following properties (i, ii, iii, iv, v, vi, vii, viii) hold.

(i) The category C has finite limits and finite colimits.



(i)

(iii)
(iv)

(v)

(vii)

(viii)
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Suppose given composable morphisms X = Y and Y By 7. Let v = af.
If o, 5 € Wke(C), then v € Wke(C).
If 5,7 € Wke(C), then o € Wke(C).
If a,v € Wke(C), then 5 € Wke(C).

Suppose given a € MorC. If a is an isomorphism, then a € Fib(C) N Cof(C) N Wke(C).
Suppose given morphisms X Y and YV 5 Zin Fib(C). Then af € Fib(C).
Suppose given morphisms X’ oy and Y L 2 in Cof (C). Then o/ € Cof(C) .

Suppose given a pullback in C

y 1.4

é J{a
If o € Fib(C), then § € Fib(C).

If a € Fib(C) N Wke(C), then § € Fib(C) N Wke(C) .

Suppose given a pushout in C
Yy <1-A
0 Toc

If a € Cof(C), then 6 € Cof(C).
If v € Cof(C) N Wke(C), then § € Cof(C) N Wke(C).

Suppose given a commutative quadrangle

A—2 . C
¥ B
B—° .D

in C. Suppose that v € Cof(C) and 8 € Fib(C). Suppose that {7, 5} N"Wke(C) # (. Then
there exists B £ C' € MorC such that yu = a and pf = 4.

A—2> (O
/4

5 .U// 8

B—9% .D

For each a € MorC, there exist v € Fib(C) N Wke(C) and 8 € Cof(C) such that a = (7.
For each a € Mor C, there exist 7' € Fib(C) and g’ € Cof(C) N"Wke(C) such that o = f'7'.
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Morphisms in Fib(C) are called fibrations, morphisms in Cof(C) are called cofibrations and
morphisms in Wke(C) are called weak equivalences.

Remark 34. Suppose given a model category C.

Choose an initial object I in C, cf. Remark 13.

Let Ceor be the full subcategory of C of cofibrant objects, i.e.

ObCuyt = {X €0bC: (I — X) € Cof(C)} .

(1) Morphisms in Fib(C) N Wke(C) are Cos-epic.

(2) The subcategory Ceof is a resolving subcategory of C.

Proof. Ad (1). Let (X & Y) € Fib(C) N Wke(C). Let Z € ObCeof and Z % Y € MorC. Let

I 2% Z be the unique morphism form I to Z and let I 2 X be the unique morphism form I to
X. We have a commutative quadrangle

)

I —X
e

and (I 5 Z) € Cof(C). From Definition 33 (vii) it follows that there exists a morphism Z £ X
with up = a. Hence ¢ is Ceop-epic.

Ad(2). Suppose given Y € ObC. We have a unique morphism I = Y. By Definition 33 (viii),
we have o = 7, where (X 5 Y) € Fib(C) N Wke(C) and (I LN X) € Cof(C). So X € ObC

and 7 is a Ceor-epimorphism using (1). O
Remark 35. Suppose given a model category C.

Choose an initial object I in C, cf. Remark 13.

Let Ceot,ac be the full subcategory of C of acyclic cofibrant objects, i.e.

ObCeotac := {X €O0bC: (I - X) € Cof(C) N Wke(C)} .

(1) Morphisms in Fib(C) are Ceof ac-€pic.

(2) The subcategory Ceof ac is a resolving subcategory of C.

Proof. Ad (1). Let (X ©Y) € Fib(C). Let Z € ObCepfac and Z %Y € MorC. Let I - Z be

the unique morphism form I to Z and let [ % X be the unique morphism form I to X. We

have a commutative quadrangle
5

I —X
e
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and (I & Z) € Cof(C) N Wke(C). From Definition 33 (vii) it follows that there exists a
morphism Z £ X with iy = a. Hence @ is Ceof ac-€Pic.

Ad(2). Suppose given Y € ObC. We have a unique morphism I = Y. By Definition 33 (viii),

we have o = (3, where (X = Y) € Fib(C) and (I LN X) € Cof(C)NWke(C). So X € ObCeof ac
and 7 is a Ceof ac-epimorphism using (1). O

3.2 Construction of semisimplicial resolutions

Definition 36 (Semisimplicial resolution). Suppose given a category C. Suppose given X €
ObC. Suppose that C has finite limits. Suppose given a resolving subcategory P. We can now

choose P, € ObP and a P-epimorphism F, Joo X We get the following diagram.
PO i> X

We can now choose a simplicial kernel (K7, (kg, k1)) of fo, which exists by Proposition 23. So
we get

Poi)X

Again we can choose P, € ObP and a P-epimorphism P, Ny Ky Let dy = fik} and
d} := fiki. We get the following diagram.

/“‘“”"d(l)N Jo
P1 PQHX

\ kl//
fl Ok‘%
K

We can now choose a simplicial kernel (Ko, (k3, k3, k3)) of (d}, di) by Proposition 23. We choose

P, € ObP and a P-epimorphism P, EEN Ky. Let @3 := foki and d3 := fok} and d3 := fok3 .
Our diagram then looks like this.

,'—'""'——do“-\ X

N N
\/ N\

This process can be continued. Let n > 3. Suppose we already have constructed

dn 1
(Pn 1 — P 2)z€[0n 1] -
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We choose a simplicial kernel (K,,, (kM)icjon)) of (7 )iepon—1, cf. Proposition 23. We choose
P, € ObP and a P-epimorphism P, =% K,. Let d? := f,k" for i € [0, n].

Write dj := fo and P_; := X. Note that P_; is not contained in Ob P in general. The diagram
((Pn)n=0s ((d})ic[o,n))n>1) resulting from this construction is called a semisimplicial resolution
of X. The diagram ((Pn)n>—1,((d})icjo,n])n=0) resulting from this construction is called an
augmented semisimplicial resolution of X.

Remark 37. The maps d in Definition 36 satisfy d}ld?’l = d?d?:ll forn>2and0<i<j < n.

kndn 1 Deﬁnltlon 22 ( fnkndn 1 _ — dndv 1 ) ]

Proof. By construction we have d"d" 1 = fa i 1

Example 38. Let C be a category and P a resolving subcategory in C. Let P € ObP.

Suppose given n > 0. We claim that a simplicial kernel of the tuple
i id
(x L& Y)icom) = (P —= P)icjon]

is given by the tuple
id
(K —> X)ZE[O n+l] = (P R P)ze[o n+1] -
We have k; f; = idpidp = k;f;_1 for 4,5 € [0,n + 1] such that ¢ < j. Hence (i) in Defintion 22
holds.

%
Suppose given a tuple (K" — X)icjont1) such that K f; = kif;  for 4,5 € [0,n + 1], 7 < j.
We then have kiidp = ki, idp for i € [0,n] and inductively we derive k; = k) =: &’ for

i,7 € [0,n 4+ 1]. Then K’ ¥, P is the unique morphism satisfying k'k; = k'idp = ki for
i € [0,n + 1]. Hence (i) in Defintion 22 holds.

The morphism idp is P-epic. So it follows that a semisimplicial resolution of P is given by
((Pa)nz0, (&} )ieon))nz1) = (P)nzo0, (idp)icfo,n))nz1) -

/ \ p o ——idp—— p
\id / \ldP/

P

P

Example 39. Let n > 2. We want to semisimplicially resolve the cyclic group Z/nZ by
free groups. We temporarly write groups additive. We choose the quotient group morphism
q:7Z — Z/pZ,z — z + nZ, which is surjective and hence FreeGrp-epic by Remark 31. A
simplicial kernel of Z % Z/nZ is given by a reduced limit of the following diagram.

Z/nZ
Z/ XZ

A reduced limit of such a diagram is a pullback, which we obtain by considering the subgroup
U:={(x,y) € ZXZ :2x—y € nZ}of ZxZ. Letp :2ZxZ — Z,(x,y) — x and
o 1 Z X7 — Z,(x,y) — y be the projections. Then the pullback is given by the following
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diagram.

N,

U Z/nZ
N A

We have an injective group morphism g : Z X Z — Z X Z, (z,y) — (x,x 4+ ny), whose image is
U. Hence U is isomorphic to Z x Z and we can write the pullback the following way.

Z
(-T,y)'—)/ X

717 7/nZ
(:r,y)»—m% /
Z

Up to this step we are only dealing with abelian groups. But for Z x Z is not cyclic, we have
to involve the nonabelian free group generated by two elements to continue, since we need a
surjective map from a free group to Z x Z.

Let F, := Free({a,b}) be the free group generated by the elements a and b. We define the
group morphism h : Fy — Z X Z,a — (1,0),b+ (0,1), which is FreeGrp-epic. Let f| := hgp;
and f3 := hgpy. We have

fll : F2 — 7 f21 : FQ — 7
a = 1 and — 1
b — 0 b — n

We obtain the following diagram.

fi
12 S/ 1 Z/nZ
f3
i
A simplicial kernel of F, — 7 is a reduced limit of the following diagram.
3
Z
f f3
Fy Fy
3 i
7 F Z,
71 2 13

The reduced limit can be constructed following Example 15.

Solet L= {(x,y,2) € o x Fy x Fy: (x)fi = (2)f5, )i = (@)f2. ()1 = W) fa}
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Let
L & B L & F L & B
(a,b,¢) — a  (a,bc) = b (a,bc) — ¢

be the projections, restricted to L.

Let Free(L) 2 L be a surjective group morphism, where Free(L) is the free group on the
underlying set of L.

Let f%:= jti, f7 := jty and f3 := jt3. So we observe that from the first three steps in resolving
Z/nZ, we obtain the following diagram.

Free(L) —f——=F =7 T > 7/nZ

3 b



Chapter 4
Semisimplicial and Simplicial Objects

Definition 40.

(i) We define the category A as subcategory of Set as follows. Let
Ob A :={[i] :i € Z=o}
For [al, [b] € Ob A, let
allal, [b]) == {f € seellal, [b]) s 2 >y = 2f > yf for z,y € [a]}
be the set of all monotone maps from [a] to [b].

(ii) We define the category Ay, as subcategory of A by setting
Ob Ainj =0bA

and

A (la], [0]) :={f € a([a], [b]) : [ is injective } .
(iii) We define the category Ay as subcategory of A by setting
Ob Agyj :== ObA

and
Avuy ([a]; [0]) == {f € a(la], [b]) : f is surjective } .

We often abreviate surj := Mor Ayy;.

(iv) For n > 0 and i € [n+ 1], let

ot o [n] — [n+1]
x for x <
r —
{ rz+1 forx>1.
Remark 41. The maps 0] in Definition 40 (iv) satisfy opT'0/** = 974 9" for

0<i<j<n+2andn >0.

27
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Proof. Suppose given x € [n].
Case x € [0,7 — 1]. Then

(x)an+1an+2 (xfi) ( )an+2 (1’<é<j) T and

(I>8n+1an+2 (z<i— 1<J 1) (x)aZnJrQ (Iéz) z.

Case x € [i,j — 2]. Then

(@) 2 e+ Do T2 41 and
(w)artor T (ot 20 gy

Case x € [j — 1,n]. Then

(x2j—129) 9 (z4+1>7)

(z)o+ton+? (z+ 1)o7 r+2 and

(I)an—i-lan—m (x>é*1) (l’ + 1)87+2 (I+ZJ>Z) 492,
So in every case we find (2)0"'07*? = (2)07H 0. Hence 9710 and 9710 are
equal. O

Lemma 42. Suppose given m > n > 0 and an injective monotone map f : [n] — [m].
Let ky <...<kpy—y, denote the elements of [m] that do not appear in the image of f. So

Then f =0t -0 cf. Definition 40 (iv).

Note that in the case m = n, we set id,, to be the empty composite.

Proof. The map f is injective and monotone. The map 8,2?1 -+ _isinjective and monotone
as a composite of injective monotone maps. Hence it is sufficient to show that their images are

equal, i.c. ([n])f = ([n))dptt--- o

mn

We have to show that {k1,...,kn_n} = [m]\ ([n])op"--- o

km—'n :

|
We only have to prove {ki,...,kn_n}t C [m]\ ([n)Op" -+ O, because 9pt' - gr s
injective.
For i € [1,m—n] consider k; . We claim that k; is not contained in the image of 9" - - 8"” for
J € [i, m—n]. This we do by induction over j. For the base clause, we get from Definition 40 (iv)
that k; is not contained in the image of 8”:”. Now suppose that we already have proved the
claim for a certain j > ¢ and now we want to prove it for j + 1. We observe that E)ZJZH

maps only the element k; to k; since k41 > k;, cf. Definition 40 (iv). By induction hypothesis

k; does not appear in the image of 8,?1_” = -82:” , hence it does not appear in the image of

. D .
ot 8,??1 "1 This proves the claim.
i j

Hence k; does not appear in the image of 8,:}1“ o fori e [1,m—n).

So {k1, .. km—n} C [m]\ ([n))Op"--- 85" as required. O
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Proposition 43. Let C be a category. Suppose given U,, € ObC for n € Z~o. Suppose for
dr
n > 1 and i € [0,n] we have morphisms U,, — U,,_;. Suppose we have

djd;™ ! = d;d;” L forn>2and 0<i<ji<n. (%)
Then there exists exactly one functor X : A?® — C such that X[n] = U, for n € Z-o and

inj

X((OM°P) =d for n € Z>;y and i € [0, n].

Proof.
Uniqueness. Suppose given a functor X : A% — C with X[n] = U, for n € Z>q and X (91")° =

inj

d? for n € Z=y and i € [0,n]. Then we have X[n] = U, = X|[n] for [n] € Ob AP .

inj -

For ([n] EN [m]) € Mor A,y we have f = MH[m] O with ki <...<kmy—, by Lemma 42 and

1€[1,m—n]

[m]y (] :
thus fop — H (alrczi-&-z)op

i€|lm—n,l1|

~ ~ [m] [n] Um Un ~ Um Upn .
Therefore X f* = X( H (Oprer) = H ((Opt)r) = H it =

i€|m—n,1] i€|m—n,1] €lm—n,l1|
U Un [m]y—n]
17 ) = x("TT @) = x o,

i€|lm—n,l| i€|lm—n,1]
Hence X = X.
Egistence. For a morphism (f°P : [m] — [n]) € Mor A{% we have [P = " ]H (0j+")°P with

i€lm—n,l|
0< ki <...<kmpn <mand {ky,....Ekn_n} =[m]\ ([n])f, cf. Lemma 42. We want to define
a functor

X : Ay — C
] — U, for [n] € Ob A
op [m] [n] n-Fi\op Um Un n41 op . op
f = H (akl ) — H dkl for (f : [ ] [ ]) € Mor Amj
i€|lm—n,1] i€|lm—n,1]

We have to show that X is a functor. We remark that X maps identities to identities.
So suppose given composable morphisms (f° : [m] — [n]), (¢°® : [n] — [p]) € Mor A7) We
|
have to show that X (f°P . ¢°?) = X fP . Xg°P.
Let 1 <...<l,—, denote the elements of [n] that do not appear in the image of g.
Let k1 <...<k,_, denote the elements of [m] that do not appear in the image of f.
Pl )i (] lm] -
We have g = H GZ“ and f = H I, cf. Lemma 42.

1€[1,n—p] i€[1,m—n]

[n]ylp] ; [m]y—r[n] ~
Hence we get ¢°P = Hp (07™)°P and foP = H (O h)ep

i€|n—p,1] i€lm—n,1]
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Let hy <...<hy—, denote the elements of [m] that do not appear in the image of gf.

[Py [m] ;
We have gf = P H 8£:”, cf. Lemma 42.

i€[1,m—p)]

Hence we get foPg°P = [m]H[p] (85:”)010

i€lm—p,1|
Um Un U Up i
So X for- Xg® = ( "T[ "dit)- H ") and X (forgr) = Tt
i€lm—n, lj i€n—p,1] i€|m—p,1]
Un U, . Unm U, .
So we have to show that ( H Aty - ( H N = H Tt
i€|m—n,l] i€|n—p,1] i€|lm—p,1]

This we do by induction over n — p.

Base of the induction. Suppose that n — p = 0.

In this case we have g = id|,; and therefore k; = h; for ¢ € [0, m — n]. Hence
Up v Un : Unm U, ,

C"TL dnt -ido, = I T

i€lm—n,1] i€|lm—p,1]

Induction step. Suppose that n —p > 1.

~ [p+1] [n] i ~ ~ ~
Let g := 8 H 8Z_+ , S0 we have g = 8ﬁ+1 -g. Let hy <...<hy_, denote the elements of

1€[2,n—p]
+1 m .
[m] that do not appear in the image of gf. So gf = v }H[ ]8}%”_”.
i€[2,m—p]
LS S
Hencegf:af'fr - ( 8}%3 ])
1€[2,m—p]

By induction hypothesis we have
U 1 Un o Unr Uit Un U+t pii
O I AU RO | AV E S |
i€|lm—n,1] i€|n—p,2] i€|lm—p,2]
So we have to show that

(UmHUerldzz—i-z dp—H 1 Um HUP dp-i-z
h;

i€|lm—p,2] i€|lm—p,l1|

Let A:={ic[l,m—p—1]:hyy1 —i+1<5L}U{0}. Let a :== maxA € [0,m —p—1]. So
A =10,al.

We claim to have

G eyt LT et (U
h; 1 hq

litd hit1
i€|lm—p,2] 1€|m—p,b+2] i€|b,1]

for b € [0,a]. We prove this by induction over b.
Base of the induction. Suppose that b = 0.



Then
Tyt = T -t =
hi T hi L+0
i€|m—p,2| i€|m—p,0+2]
. Up+b Up ; .
since H & =idy .
hit1 P

i€|b,1]
Step of the induction. Suppose that b > 1
By induction hypothesis we have

p+b+1
p+z p+b+1
d )-dy Ly

i

1€|m—p,b+2]

(Um Up“dp-&-i) Pt = Um Upto dp—i—z dp+b (UP“*1 Ur P )
iLi A l1+b—1 Bi+1 :
i€|lm—p,2] 1€|m—p,b+1] i€|b—1,1]
Since b < a, we have b € A\ {0}, hence hy 1 <l +b— 1.
p+b+1 jp+b p+b+-1 p+b
Hence we can use (x) to get dﬁb+1 di' oy =dp 'y s
Hence we have
UmH p+1 p+z p+1 UmH p+b+1 p-H p+b+1 p+b ‘ (Up+b71 HUpdp—H )
i hb+1 11+b—1 ;Li+1
i€|m—p,2] i€|m—p,b+2] i€|b—1,1]
%H+MW”W%JW%-+HH%WZ
l1+b hb+1 1+1
i€|m—p,b+2] zEI_b 1,1]
_ (U’" Up+”+1dp+1> JrrotL (UP+” i ax )
- ilz l1+b I~7/i+1 ’
i€|m—p,b+2| i€(b,1]

This proves the claim.

’”bH

€lb,1

Uy » +Z
'L+1
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I

U U, Um Ua U U, ,
Hence we have ( H p“d%“ de H erﬂdpH dfﬁajl ( p+bH pdg:l).
i€|m—p,2] i€|m—p,a+2] i€la,1]
We claim that
L ae) n COp P+ po1 L plm) L
ID+ H ap-i— Z H 8})—1— ) ﬁ—:_b-l- . ( H aiz:j- )
i€[2,m—p] 1€[1,b] 1€[b+2 ,m—p]
for b € [0,a]. We prove this by induction over b.
Base of the induction. Suppose that b = 0.
Then
[p+1] [P0+ g™l )0y [Pl y [p+0] p+o+1]yylml )0
+1 iy _ g0+l +i +i +b+1 +i
o (T ey = o T ey = T e e o+,
i€[2,m—p] 1€[04+2 ,m—p] i€[1,b] i€[b+2 ,m—p]
[p] [p+0] Y
since ( H o7 2+1 =idp, .
i€[1,b]
Step of the induction. Suppose that b > 1
By induction hypothesis we have
o+ Uyplml s [Pl yp [p+0—1] [p+b] g [m] ;
+1 —+1 7 b —+1
o - e = CTLT et UL e

i€[2,m—p)| 1€[1,b—1]
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Since b < a, we have b € A\ {0}, hence hyyy <1y +b— 1.

p+b p+b+1 +b ap+b+1
Hence we can use Remark 41 to get 9;; 18 AN

Hence we have

1, e yplm] i [Pl ylp+b—1] i b b1 [P+b+1} [m] i
ot (T ey =TI ey o et (U e

hit1 hpt1
1€[2,m—p] [pZ]E 1 ,ZEP—J’_l; . [p+bif1]—]b+2 ,Evz]—p-\

_ p+i p+b  apt+b+l ™ Ap+i
= H o z+1) aﬁ,,+1 O ( H ‘3 )

i€l ,b—1 i€[b+2 ,m—

P : [p—i_bﬂap—&-i grrb+l (PO [m]’—ap+i 7
= ( H ﬁm) li+b ( H B ).

1€[1,b] 1€[b+2 ,m—p]

This proves the claim.

+1 m . +a +a+1 m ,
Hence we have gf = oF*"- ([p }H[ ](9?“) = ([ H[p ]8”2) optott ([p ]H[ ]8?“).

hi lita hi
i€[2,m—p] €1 ,a] i€la+2 ,m—p)|

We have iLQ <... <l~za+1 <lh+a< ﬁa+2 <. < Bm_p, which do not appear in the image of gf.
So we find that h; = h; for i € l[a+2,m —p|and l; + a = hyy1 and hiy1 = h; for i € 1, al.
Therefore we have

( UmHUp+“+1d1?+z dp+a+1 Up+“HUp derz U’"HUP dp+z
hi z+1

l1+a
i€|m—p,a+2] i€la,l] i€|lm—p,1]
and hence U U U .
m 1 . m .
( H p+ d;;;j—z) . dlp1+1 _ H szj—z’
i€|m—p,2| i€|lm—p,1]
which we had to show. O

Definition 44 (Simplicial Object). Suppose given a category C.
A simplicial object in C is a functor X : A% — C.

A semisimplicial object in C is a functor X : A% — C.

inj

We write

and
Xt = X" or short XMt =: d;.

For a morphism f : [m] — [n] we often write X f° =: X;.

Remark 45. Historically, simplicial sets were first called “complete semi-simplicial complexes”
by Eilenberg and Zilber [2, p. 508]. Later, this has been abbreviated to “simplicial sets” and
generalized to “simplicial objects” by May [3, Def. 2.1]. We allow ourselves to reuse the word
“semisimplicial” with a different meaning.

Definition 46.

(i) Suppose given simplicial objects X : A°® — C, Y : A°®® — C and Z : A°® — C. Suppose
given a tuple @ = (v, )n>0 of morphisms (X,, =% Y,) € MorC. We call a a simplicial
morphism from X to Y if

(¢}

Xi-om=ay,- Yy for ([m] EAN [n]) € Mor AP
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This means that a simplicial morphism is a transformation between simplicial objects.
Composition of simplicial morphisms X < Y and YV 5 7 given by a5 := (ay, - Bn)nz0
and the identity morphism is given by idx = (idx, )n>0-

—C, Y : A — Cand Z : AP — C.

inj inj

(ii) Suppose given semisimplicial objects X : A{}

Suppose given a tuple & = (ay,)n=0 of morphisms (X,, % Y,) € MorC. We call a a
semastmplicial morphism from X to Y if

(o)

Xf-om=ay,-Yy for ([m] LN [n]) € Mor A

inj *

This means that a semisimplicial morphism is a transformation between semisimplicial

objects. Composition of semisimplicial morphisms X = Y and Y B 7 s given by
a- B := (ay - Bn)nso and the identity morphism is given by idx = (idy, )n>o-

Definition 47. Suppose given a category C.
(1) Let Simp(C) := C2" be the category of simplicial objects and simplicial morphisms in C.

(2) Let SemiSimp(C) := C2ii be the category of semisimplicial objects and semisimplicial
morphisms in C.



Chapter 5

From Semisimplicial to Simplicial
Objects

5.1 The forgetful functor from Simp(C) to SemiSimp(C)

The category Ay} is a subcategory of A% with Ob A% = Ob AR = {[n] : n € Z}.

inj
Let

I: AP — AP

(m] & ) — (m] & )
be the inclusion functor.

Suppose given a category C and a simplicial object X : A — C in C. Then X o [ : A?rg — C is

a semisimplicial object in C. Hence every simplicial object gives us a semisimplicial object by
restriction along I.

Definition 48. Suppose given a category C. We define a forgetful functor
Ve : Simp(C) — SemiSimp(C)
X +— Xol for X € ObSimp(C)
a — o« for  « € Mor Simp(C).

Our goal in this chapter is to find a left adjoint functor to V¢, provided C has finite coproducts.

5.2 The adjoint in case C = Set

Remark 49. Suppose given (g : [n] — [m]) € Mor A. Then there exist unique monotone maps
g :[n] = [l] and g : [I]] — [m] such that gg = ¢, such that g is surjective and such that ¢ is
injective.




35

In particular, we have [ = |Im(g)| — 1. Alternatively, we write § = ¢°.

Lemma 50 (Construction of a simplicial set out of a semisimplicial set). Suppose given a
semisimplicial set
X : AP — Set .

inj

We want to construct a simplicial set, i.e. a functor

X : AP s Set .

(i) (Construction of X,,). Let n > 0. We define

X, = {(z, f) : there exists k € [0,n] such that z € Xy, (f : [n] — [k]) € Mor A is surjective} .

(i) (Construction of X,).

Let ([m] <5 [n]) € Mor A%.
We define

)N(g: Xm — X,
(z, ([m] = [K])) — ((2)Xpe, 9f)-

Note that for [n] £ [m)] ER [k] with [ = |Im(gf)| — 1, we have the injective monotone

map (gf)* : [I] — [k], so that X ,p)e is defined. We have (z) X, € X; and gf : [n] — []
is surjective. Hence Xg is welldefined.

The assignment

[n]

g°r

for [n] € Ob AP

= X,
> Xg for g°? € Mor A°P

defines a simplicial set X.

Proof. We have to show that X : A° — Set is a functor.

Note that if ([n] ERN [k]) € Mor A is surjective, we have f = idy; and f = f. Hence we get

(2, £) Xy = () Xiayy £) = (@) idx,. f) = (2, f) forn > 0 and (z, ([n] & [k]) € X,
Hence Xiq,, = idg, for [n] € Ob A%P.

Now suppose given ([p] 2 [n]), ([n] % [m]) € Mor A. We have to show X, = X,X),.

So let (z, ([m] & [K])) € X, .

Then

(2, DXy Xn = ()Xo, 6F) X = (@) Xigpp2) X ugprer B - 9F) = (@) X gon(oyer P - 9)

and
((z, ) Xng = ((2) X(ngpye » hgf) -

So we have to show that Xhap)e(af)* = X(hgsye and h - qf = hgf.
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Consider the following commutative diagram.

\hjf
R

\/

We get

hgf =h-gf - (gf)*=h-gf-(h-gf)*-(9f)°
We also have

hgf =hgf - (hgf)®

Since h i_f is surjective and (h - gf)® - (gf)* is injective, we find that I, = I and h - gf = hgf
and (h-gf)*-(gf)* = (hgf)*.

Hence X, 7pe.(gp)e = X(ngp)e and h - gf = hgf, which we had to show. n

Remark 51. For n > 0 we have an injective map tx,, : Xn — Xn ,x +— (x,id,). The tuple
tx = (txn)n>0 is a semisimplicial morphism from X to Vs, X.

Proof. Suppose given ([n] % [m]) € Mor A;,;. We have to show that the following diagram is

commutative.
LX m gt

X —= X

Xgl if(

X, — X,

n LXn

Note that we have Xn = VsetXn, Xm = VSetXm and X'g = Vsetf(g‘

So let x € X,,.

We have (2)txm - Xy = (a;,id[m])f(g = ((x)X(gid[m]).,gT[m]) = ((2)Xg,1dp) = () Xy - txn. O
Lemma 52 (Construction of a simplicial map out of a semisimplicial map). Suppose given a
semisimplicial morphism a = (v, )n=0 : X — Y. For n > 0 we define

ay, X, — Y,
(@, (0] L 1) — ((@)aw, (0] 5 k).

Then & = (@,)nso is a simplicial morphism from X to Y.
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Proof. Suppose given ([n] £ [m]) € Mor A. We have to show commutativity of the following
diagram.

Let (x, ([m ]L[k])) Xm.
We have ((z, /) (@ - V) = (@)ax, )Yy = (2)ar)Yigne, 9F) = () (ar - Yigpe). 97)
We have ((z, /))(Xy - an) = ((2)X(gpe, 9))dn = ((2) Xgppe)ar, gf) = (2)(X(gpye - ), 9) -

Since the diagram

is commutative, we find that (x)oy, - Y{gp)e = (2)X(gp)e - .

Hence a,, - Y, = X, - . ]

Lemma 53. The assignment

Fset © SemiSimp(Set) — Simp(Set)
X — X for X € Ob SemiSimp(Set)
a — Q for a € Mor SemiSimp(Set)

defines a functor.

Proof. Suppose given X € Ob SemiSimp(Set). We have idx = (idx, )ns0. Let n > 0. Let
(z, ([n] L [K])) € Xi. Then ((z, f))idx, = ((z)ide, f) = (z, f). Thus idy = idg. So Fse maps
identities to identities.

Suppose given (X % Y),(Y LN Z) € Mor SemiSimp(Set). Let (z,([n] ERN (k])) € X;.
Then (z, f)(a-B)n = ((z)(a - B f) = (@ B, f) = (@)aw, )Ba = (2, f))n)Bn
= (2, /)(@-B)n. So -5 = (a-p).

Hence Fg. is a functor. O

Remark 54. The tuple ¢ := (tx)xecobSemisimp(set) » ¢f. Remark 51, is a transformation from
idSemiSimp(Set) to VSet-FSet .

Proof. Suppose given X, Y : A{Y — Set and (X = Y) € Mor SemiSimp(Set). We have to show
commutativity of the following diagram.

X VSet fSetX
a Vset Fset
Y VSet fSet Y
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This means that we have to show commutatity of the diagram

LXmn

Xn (VSetFSetX)n
Qn (VSet]:Seta)n
Y tyin (VSethetY)n

for n > 0.
So suppose given x € X, .

Then we have
() (txn - VsetFset@)n) = ((x,1d,)) Vst Fset@)n = ((2)n, id,) = ((2)an)tyn = (2)an - by, . O

Remark 55. Suppose given X € Simp(Set). For n > 0 we define a map

Nxmn - (fSetVSetX)n — Xn
(@, f:[n] = [K]) — ()X,

Then nx := (Nx.n)n>0 is a simplicial map from Fget Vet X to X.

Proof. Suppose given ([n] & [m]) € Mor A. We have to show commutativity of the following
diagram.

(Fset Voer X )n — > X,
(-FSCtVSctX)g Xg
(«FSetVSetX)n Xn Xn

So let (x, f : [m] — [k]) € (Fset Vset X )n-

We have ((z, f))((FsetVoer X)g nxn) = ((2)X(gpye » 9))xn = ((2)X(gp)e) Xg7 = (2) X750 =
(2)Xgp = ((2)X5) Xy = (2, ) (130 - X) - O

Remark 56. The tuple 1 := (7x) xcob Simp(Set) 15 a transformation from FgetVset t0 idgimp(set) -

Proof. Suppose given X,Y : A® — Set and (X = Y) € Mor Simp(Set). We have to show
commutativity of the following diagram.

FsetVset X — = X

FSet Vset o

F Set VSet Y Y

ny
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This means that we have to show commutatity of the diagram

nX,n
(FSetVSetX)n a Xn
(]:SetVSeta)n Qn
(FSetVSetY>n Yom Yn

for n > 0.
So suppose given (z, [ : [n] = [k]) € (Fset Vet X )n -
Then we have

(2, ) (FsetVser)n - nym) = (), [))vin = (@) )Yy = () (c - V)

and

(2, 1) (nxn - an) = (2) Xp)an = (2)( Xy - an) .

Since « is a simplicial morphism we find that X; - o, = a; - Y;. So the diagram above is
commutative. [

Proposition 57. The functor

Fset : SemiSimp(Set) — Simp(Set)
is left adjoint to the functor

Vset © Simp(Set) — SemiSimp(Set) ,

i.e. Fget 1 Vser- The transformation 7 : FsetVser — idgimp(set) is @ counit and the transformation
L idsemiSimp(Set) = VsetFset 18 @ unit of this adjunction.

Proof. We write F := Fget and V := Vsor. We have to show commutativity of the following
diagrams.

F-I S FVF y Yo yFEy
idr n idy, ‘/Vn

At first we show commutativity of the left diagram. This means that we have to show commu-

tativity of the diagram
Fuix

FX FVFX
nrx
FX

for X € Ob SemiSimp(Set).

This means that we have to show commutativity of the diagram
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(FX), T (FVFX),
(FX)n
for X € Ob SemiSimp(Set) and n >
So let (z, f : [n] = [k]) € (FX)n.

We have ((z, [))(Fex)n - nrxn) = (((z,1dp), ))ann = ((zidw)(FX); =
(@)X (piagpe fidw) = () Xiayy, ) = (2, f) = ((z, [)) idzx),

Hence the left diagram is commutative.

Now we show that the right diagram is commutative. As in the previous case this means that
we have to show commutativity of the diagram

LyX,n

(VX), (VFVX),

(VX)n

Vnx)n

for X € Ob Simp(Set) and n > 0.
So let x € (VX),.
We have (&) (v (Vix)a) = (@, 1)) (Vii)n = (@, idg) e = (2) Xia, = 7 = () idooy,

Hence the right diagram is commutative. O]

5.3 The adjoint for general C

In the previous section 5.2 we had

FealXo)= || X

(£:[n]—[k])€surj
for n > 0 and X € ObSemiSimp(Set). This can be generalized by using coproducts, cf.
Example 16.
Suppose given a category C that has finite coproducts.
Lemma 58 (Construction of a simplicial object out of a semisimplicial object). Suppose given
a semisimplicial object
XA —C

in C. We want to construct a simplicial object, i.e. a functor

X AP (.
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(i) (Construction of X,). Let n > 0.
We define X, := I X .
(in) = K] susj
Then for ([n] % [j]) € surj we have morphisms ix ., @ X; — X, = [T Xk such

([n]iﬂk])Esurj
that the following universal property holds.

Given C' € ObC and morphisms (X i, C)(f:ln)]—[K])esurj there exists a unique morphism

X, = [T Xi2 C such that for ([n] 2 [j]) € surj the diagram
()5 () esuri
X,= I X.--"-=>C
() k] surj
iX,n.g Hg
X

J

commutes.
(ii) (Construction of X,).

Let ([m] < [n]) € Mor A, Let ([m] L [k]) € suj.

We have ([n] 25 [k]) = ([n] L [10)- (1] 925 [K]), where [I] = |Im(gf) —1], cf. Remark 49.

Then we have a unique morphism Xg . X,, — X, that makes the following diagram

commute for ([m] EN [k]) € surj.

The assignment
[n] — X, for[n] € ObA°P
g%P )E'g for ¢g°? € Mor A°P

defines a simplicial object X in C.

Proof. We have to show that X : A°®» — C is a functor.

Consider the case g = idp,. For ([n] ER [k]) € surj we have (idp, -f)® = idy; and idp, -f = f.
Hence we have X(id[n] e = Xidyy = idx, and anm = ixn,y. The following diagram
commutes.

L idg -

Xn - = >)(n

iX,n,f/|
dx,

p— X

X, f
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Using the universal property of the coproduct we find that Xid[n] =idg for [n] € Ob AP,
Now suppose given ([p] LN [n]), ([n] 2 [m]) € Mor A. We have to show X, = X, X.

For an arbitrary morphism ([m] ERN [k]) € surj we have commutativity of the following diagram.

(1]

hgf (hgf)®

So we get X(gf)o ] X(hﬁ)' = X(hfﬁ)"(gf)' = X(hgf)‘ and h - ﬁ = W
Also the diagram

X X, Xp

)11, n,gf X,p,h-gf
Xk X X
X(gp)e b Xgne ’

1s commutative.

So we find that the following diagrams are both commutative.

~ X, X ~ ~ X ~
X, — X, X, —
iX,m, f X p g f iX,m,f X pRgF
X X X X
5T X s BT X e s
Using the universal property of the coproduct we find that X hg = Xg - X, . O
Lemma 59 (Construction of a simplicial morphism out of a semisimplicial morphism).
Suppose given a semisimplicial morphism o = (a)ps0 @ X — Y. Let n =2 0. We de-
fine &,y = g - ips. There exists a unique morphism &, : X, — Y, such that for

(f : [n] — [k]) € surj the following diagram is commutative.

£<z

X, 2o

n
iX,n,fT
(675

Xk4>

Yon,f

~_

k
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We define & := (Gin)ns0. Then @ is a simplicial morphism from X to Y.

Proof. Suppose given ([n] % [m]) € Mor A. We have to show commutativity of the following
diagram.

~ & ~
m = Ym
S
~ a ~
n . Yn

Let ([m] 25 [k]) € surj. We have ([n] 25 [k]) = ([n] 25 1)) - (1] 925 (k).

Except for = x _Gm Y,, »we have commutativity of every quadrangle in the following diagram

o

X, Lffn

Vi Y,
Am G,
~ X ~ ,
Xm J Xn 7’Y,n,ﬁ
iY,m,f
Y, p)e
iXom.f Yk (9f) i - Y2
X,n,gf
g (&%)
X X
g Xgne :
So we get tx . f Oy - }79 = 1 X,m.f - Xg - Q.
So the diagrams
. GV, . - Ko -
m L n Xm 2 n
iX’m’fT / ) iX'm’fT / -
7;X,m,f'dm‘yvg iX,'m,f‘dm'Yg
Xk Xk
are both commutative for ([m)] ER [k]) € surj.
Using the universal property of the coproduct we get a,, - f/g =X g Qi O]
Lemma 60. The assignment
Fe: SemiSimp(C) Simp(C)

for X € Ob SemiSimp(C)
for a € Mor SemiSimp(C)

o

—
—
—

Qv <y
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defines a functor.

Proof. Suppose given X € ObSemiSimp(C). We have idxy = (idx, )n>0. Let n > 0. The

diagram
X,
n
— X

is commutative for ([n] ER [k]) € surj. Thus idy = id ;. So F¢ maps identities to identities.

Zan

H

1ka

Suppose given (X 5 Y), (Y LA Z) € Mor SemiSimp(C).

We have commutativity of the following diagrams for (|n] ERN [k]) € surj.

' %

=Y, —=Z, Zn
iX,n fT iYn, f iZ,n,f iX,n fT Tiz,n,f
X i Bk Z o ﬁk i Lk

Using the universal property of the coproduct we find that &, - B, = (a-B),. So altogether
a-f=(ap)

Hence F¢ is a functor. O

Remark 61. Suppose given X € ObSimp(C). Let vx,, = X nidpy @ Xn = X, = VeFeX)n
for n > 0. The tuple tx := (tx 5, )n>0 is a semisimplicial morphism from X to VeFeX

Proof. Suppose given ([n] 2y [m]) € Mor Ay,j. Note that we have X, = (VeFeX)n, Xm =
(VeFeX)m and X, = (VeFeX),. We have to show that the following diagram is commutative.

LX m

X, - X,

o T

n LX n XTZ

But by Lemma 58 (ii), we have commutativity of the diagram

and we have g - id,) = idp,) and (g - idp,))* = g and tx,, = X mid g and tx,, = §X g - O

Remark 62. The tuple ¢ := (tx) xcobSemisimp(c) 18 a transformation from idgemisimp(c) t0 VeFe -
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Proof. Suppose given functors X,Y : A?> — C and (X = Y) € Mor SemiSimp(C). We have to

inj

show commutativity of the following diagram.

) — VeFeX

o VeFea

Y VeFeY

Ly

This means that we have to show commutatity of the diagram

LXn

Xn (VCFCX)n
an VeFea)n
Yy ———— (VeFeY)n

for n > 0.

Since idy, is surjective, Lemma 58 gives the commutativity of the diagram

iX,n,id[n] -

X, X,
Qn Qn
Y, — Y,
1Yn,idp,
and also we have (Ve FeX), = X, . VeFeY), = Y,, LXn = IX midy, 0 Ly = iy nidy, - O

Remark 63. Suppose given X € ObSimp(C). For n > 0 there exists a unique morphism
Nxn : (FeVeX)n, = X, that makes the diagram

(FeVeX)n B X,
ZVCX,TL,f Xf
X

commutative for ([n] ER [k]) € surj, cf. Lemma 58 (i). Note that we used that (Ve X), = X .

Then nx := (Nx.n)n>0 is a simplicial map from FeVe X to X.

Proof. Suppose given ([n] & [m]) € Mor A. We have to show commutativity of the following
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diagram.
(FeVeX )y — "> X,
(FCVCX)g Xg
(FeVeX)n — i Xn

Suppose given ([m] % []) € surj. We have ([n] 2> [K]) = ([n] 2> 1)) - (1] 2 [&]) for some

[ >0.

The following diagrams are commutative, cf. Lemma 58 (ii).

FeVeX n m
(FeVeX)m —2e_(FoVeX), — 2" X, (FVeX ) —2" o X,
W X,m,f e X,n.gf g e X,m,f X;
X X X
k X(gne : k
So we have

exm,f+ (FeVeX)g xn = Xgpe  Xg7 = Xgfope = Xop = Xy - Xg = ivexms  Nxm - Xy

for ([m] ER [k]) € surj.

So the diagrams

(]:CVCX)Q'WX,n 77)(,m')(g
(]:CVCX)m Xn (]:CVCX)m Xn
Ve X,m, f WeXm,f
Xgf Xgy
Xk Xk

are both commutative for ([m)] 7, [k]) € surj.

Using the universal property of the coproduct we find that (FeVeX), - xn = Nxm - Xy. O

Remark 64. The tuple 7 := (1x)xcobsimp(c) is a transformation from FeVe to idgimp(c) -

Proof. Suppose given functors X,Y : A — C and (X = Y) € Mor Simp(C). We have to show
commutativity of the following diagram.

FeVeX LS ¢

FeVea «

]:chY

ny



This means that we have to show commutatity of the diagram

NX,n

(]:C VCX)n Xn
(FeVea)n an
(FeVeY ) —Ya

for n > 0.

The following diagram commutes for ([n] EN [k]) € surj, cf. Remark 63, Lemma 59.

Nnx,n

(FeVeY)n

(FeVeX)n
WeX,n,f Xy
Xk
(FeVea)n ag
Y
Yy
ch Y,n,f
) ny,n

So we get iy xn.f - (FeVe®)n - My = Q- Y5 = lyoxnf - Nxm - O for (0] ER [k]) € surj.

So the diagrams

X5

Qn

Yy

(FeVea)nny,n NX,n-0n
(FeVeX)n Y, (FeVeX)n
WeX,n,f “ v WeX,n,f “
X X,

are both commutative for ([m] ER [k]) € surj.

Using the universal property of the coproduct we find that (FeVea), - Ny = Nxn - O -

Proposition 65. The functor
Fe = SemiSimp(C) — Simp(C)
is left adjoint to the functor

Ve : Simp(C) — SemiSimp(C)

47
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i.e. F¢ -1 Ve. The transformation 1 : FeVe — idgimp(c) is a counit and the transformation
¢+ idgemisimp(c) — VeFc is a unit of this adjunction.

Proof. We write F := F¢ and V = V. We have to show commutativity of the following
diagrams.

F- I S FvF VY _VFY

F 1%
n idy ‘/77

At first we show commutativity of the left diagram. This means that we have to show commu-
tativity of the diagram

FXIX _FVFX
idrx
FX

for X € Ob SemiSimp(C).

This means that we have to show commutativity of the diagram

(_Fbx)n

(FX)n (FVFX),
N km’"
(FX)n

for X € Ob SemiSimp(C) and n > 0.

We have commutativity of the following diagram for (|n] ER [k]) € surj.

X(pdppe
X X
IXn, f iX kid gy in"’f'id[k]
(Fx), (VFX)e 2 (FX),
o WFX,n,f NFX.m

(FVFX),

Therefore we have ix , ¢+ (Fix)n - Nrxn = X(pidyy)e - iX%m = Xiay, “ixns = idx, “ixny for

([n] L [K]) € surj.
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So we find that the diagrams

Fu n n id n
(FX), T2 pxy - (FX), — T (FX),
iX,n,f X n,f X n,f X n,f
Xk idx, X X idx, X

are both commutative for ([n] EN [k]) € surj.

Using the universal property of the coproduct we find that (Fix), - nrxn = id(rx), -
Hence the left diagram is commutative.

Now we show that the right diagram is commutative. As in the previous case this means that
we have to show commutativity of the diagram

(VX), —% (VFVX),
idx), Vi
(VX)n
for X € ObSimp(C) and n > 0.
But we have commutativity of the following diagram.
WX nid ),
Xn (FVX),
NX,n
Xid[,,)
X

Since LVX,n = iVX,n,id[n]u Xid[n] = idX" = ld(yx)n and nX,n = (an)n we ﬁnd that ld(yx)n =
byxm - (Vﬂx)n .

Hence the right diagram is commutative. O



Chapter 6

Simplicial Resolutions

Suppose given a category C that has finite limits and finite coproducts. Suppose given a
resolving subcategory P in C, closed under finite coproducts.

Definition 66. Let X € Ob(.
Let ((Pn)n0, ((d)icfo,n))n>1) be a semisimplicial resolution of X, cf. Definition 36.

(2

We have d?d;‘_l = d?d?:ll forn > 2 and 0 <17 < j <n, cf. Remark 37.

Thus there exists a unique functor
R:AP —C

inj

such that R[n] = P, for n € Z, and R((0}")°?) = d} for n € Z>; and ¢ € [0,n], cf. Proposi-
tion 43. So
R € SemiSimp(C),

i.e. R is a semisimplicial object in C.

We apply the functor
Fe : SemiSimp(C) — Simp(C),

cf. Lemma 60. We call
FeR € Simp(C)

a simplicial resolution of X.

Example 67. Let P € ObP. A semisimplicial resolution of P is given by

((Pn)nz0, ((d})icfo.n))n=1) = ((P)nz0, ((idp)icjomn))nz1),

cf. Example 38. So the semisimplicial resolution yields in this case the constant functor

X: A® = C

inj

] — P for[n] € ObA®

inj

f — idp for f € Mor A"

inj

as semisimplicial object, i.e. X € Ob SemiSimp(C). Let X :=F:X €0b Simp(C).
Then for [n] € Ob A we have X,, = [I P, cf. Lemma 58 (i).

([n]iﬂk])Esurj

50
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Claim. For n > 0 there are exactly 2" morphisms in surj having source [n|. This we can show
by induction over n.

Base of the induction. Suppose that n = 0. The only surjective morphism in A with source [0]
is id[o].

Step of the induction. Suppose that n > 1.

Let S be the set of all morphisms in A starting in [n]. Let Sp; := {f € S : (n—1)f = (n)f}
and Sf) = {f € S : (n—1)f = (n)f —1}.

Then Sp,) = an]US”

We have the following bijections.

S[In] — S[nfl]
f = flp-1
: Vo for i 1
i — (i)g forie[n—1] g
n — (n—1)g
S[/;] — Snll] )
f = f|‘nm1] I
: : for i 1
i — (i)g ori e [n—1] oy
n — (n—1)g+1
ind. hyp.

So we find that [Sp,| = [S[,[ + [Sp,| = 2[Sp-1] 2-2n=1 = 2n This proves the claim.

So we have X, = [T Pforn>0.

i€[1,27]

Example 68. Consider the case C = Grp and P = FreeGrp; cf. Remark 32. The subcategory
P is closed under finite coproducts in C; cf. Example 21.

Recall that in Example 39 we regarded the first steps in the semisimplicial resolution of the
group Z/nZ. We got a functor X : Ajs — Grp with X, = Z, X, = I, and X, = Free(L).

Let X := FerpX, which is a simplicial resolution of Z/nZ; ct. Definition 66.

We want to calculate XO, X 1 and Xg up to isomorphism. We remark that by Lemma 20 the
coproduct in the category of groups is the free product, written (x).

Xo: The only surjective morphism in A starting in [0] is idjj. So we get Xo=2Z.

X1: We have the surjective morphisms ¢; : [1] — [0] and idpy;. So we get X; = Z % Fy, which is
isomorphic to the free group generated by three elements.

X3 We have the surjective morphisms ¢y : [2] — [0], 5o : [2] = [1], 1+ 0, 51 : [2] = [1], 11
and idpy. So we get Xy = Z x F * F, * Free(L).

Example 69. We may let C be a model category and P := C, ; cf. Definition 33, Remark 34.
In fact, given X, Y € ObP, the pushout
I——X

)

Y —XUY
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shows that the coproduct X 'Y is a cofibrant object.
So P is closed under finite coproducts in C.

In conclusion, each object of C has a simplicial object in P = C.or as simplicial resolution; cf.
Definition 66.

Example 70. We may let C be a model category and P := Cyc ot ; cf. Definition 33, Remark 35.
In fact, given X, Y € ObP, the pushout

I ——X

)

Y —XUY

shows that the coproduct X UY is an acyclic cofibrant object.
So P is closed under finite coproducts in C.

In conclusion, each object of C has a simplicial object in P = Cyc cor as simplicial resolution; cf.
Definition 66.



Bibliography

[1] TIERNEY, M.; VOGEL, W., Simplicial Resolutions and Derived Functors, Math. Z. 111,
p. 1-14, 1969.

[2] EILENBERG, S.; ZILBER, J. A., Semi-Simplicial Complezes and Singular Homology, An-
nals Of Mathematics Vol. 51, No. 3, p. 499-513, 1950.

[3] MAy, P., Simplicial Objects in Algebraic Topology, The University of Chicago Press, 1967.

53



o4

Zusammenfassung

Sei C eine Kategorie mit

(1) endlichen Limiten und

(2) einer auflésenden Unterkategorie P.

Dabei ist eine auflosende Unterkategorie eine volle Teilkategorie, deren Objekte Eigenschaften
haben, die die Eigenschaften der projektiven Moduln in einer Modulkategorie verallgemeinern.

Beispiele fiir P C C sind die freien Gruppen in den Gruppen und kofasernde Objekte in Modell-
kategorien.

Wir zeigen, dass aufgrund von (1) in C simpliziale Kerne existieren, d.h. zu einem Tupel von

Morphismen (X EIN Y )icjo,n) existiert ein universelles Tupel (K ko x Jiclon+1] SO, dass fiir
0<i<j<n+1agit:

(3) kifi=kifj—1

Wir konnen ein Objekt X € ObC semusimplizial auflosen durch schrittweise Konstruktion
eines Diagramms der Form

7AW/

k‘2
Ok f

N\

Ky

wobei P; £> K; eine Auflésung ist und wobei K; ein simplizialer Kern des Diagramms aus P;,
P;_1 und den zwischenliegenden Morphismen ist.

Sei nun A die Simplexkategorie, die als Objekte endliche Intervalle und als Morphismen mono-
tone Abbildungen hat. Sei darin A;,; die Teilkategorie aus injektiven monotonen Abbildungen.
Ein kontravarianter Funktor von A;,; nach C heifit dann semisimpliziales Objekt in C. Ein
kontravarianter Funktor von A nach C heifit dann simpliziales Objekt in C.

Die Relation (3) fiihrt dazu, dass wir aus dem konstruierten Diagramm ein semisimpliziales
Objekt erhalten, eine semisimpliziale Aufiosung von X.

Um daraus ein simpliziales Objekt zu erhalten, konstruieren wir den zum Vergissfunktor
linksadjungierten Funktor, der aus einem semisimplizialen ein simpliziales Objekt macht.

Anwendung dieses Funktors auf diese semisimpliziale Auflosung von X liefert eine simpliziale
Auflésung von X wie gesucht.
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