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Chapter 0

Introduction

0.1 Example: groups and model categories

Consider the category Grp of groups. We have the full subcategory FreeGrp ⊆ Grp of free
groups. If we want to resolve a group by free groups, we do not have classical homological
algebra at our disposal, for Grp is not additive. As a replacement, one can simplicially resolve
a group using free groups.

Simplicial resolutions can also be applied in model categories such as the category of topological
spaces, the category of simplicial sets and the category of simplicial groups.

0.2 Reduced limits

We will work with different types of category-theoretic limits. For a functor D F−→ C, a limit of
F is given by an object L ∈ Ob C and a tuple of morphisms (L

ωX−−→ FX)X∈ObD such that for
each morphism (X

α−→ Y ) ∈ MorD we have ωX · Fα = ωY and such that this tuple is universal
with this property.

For the particular case that the category D is a finite poset it is easier to work with a slightly
modified limit, which we will call reduced limit. The reduced limit comes only with morphisms
L

ωX−−→ FX such that X is a minimal element in the poset. This facilitates explicit constructions
in some cases; cf. e.g. Example 39. The reduced limit yields the limit by defining the missing
morphisms as composites of the given ones with the morphisms that appear in the image of
the functor F .

0.3 Simplicial and semisimplicial objects

The simplex category ∆ has as objects the sets [0, n], containing the integers from 0 to n, for
n > 0 and as morphisms the monotone maps between them.

A simplicial object in C is a functor X : ∆op → C. A simplicial morphism is a transformation
between such functors. The category of simplicial objects and simplicial morphisms is written
Simp(C).
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The category ∆inj ⊆ ∆ is the subcategory containing only the injective monotone maps.

A semisimplicial object in C is a functor X : ∆op
inj → C. A semisimplicial morphism is a

transformation between such functors. The category of semisimplicial objects and simplicial
morphisms is written SemiSimp(C).

0.4 Semisimplicial resolutions

As an intermediate step towards the construction of simplicial resolutions, we construct
semisimplicial resolutions following Myles Tierney and Wolfgang Vogel [1].

Classically, one builds a projective resolution of a module by choosing a projective module
mapping onto it, taking the kernel, choosing a projective module mapping onto it, taking the
kernel, etc. To build a semisimplicial resolution of an object, the kernel is replaced by the
simplicial kernel and the projective modules are replaced by objects in a resolving subcategory,
as we shall explain now.

Given a tuple of n morphisms (X
fi−→ Y )i∈[1,n] in a category C, the simplicial kernel of this tuple

is a tuple of n + 1 morphisms (K
ki−→ X)i∈[1,n+1] satisfying kjfi = kifj−1 for 1 6 i < j 6 n + 1

and being universal with this property. We will see that simplicial kernels are just the reduced
limits of certain functors, which we will construct in the proof of Proposition 23.

Instead of using projective objects as one does for a classical projective resolution, we choose a
resolving subcategory P of C, which is a full subcategory having properties resembling those of

the subcategory of projective modules in all modules: for each X ∈ Ob C, there exists P
f−→ X

such that P ∈ ObP and such that for each Q
g−→ X with Q ∈ ObP there exists Q

u−→ P with
uf = g.

Q

g

��

u

���
�

�
�

P
f // X

For instance, in the category C := Grp of groups, we may let P := FreeGrp ⊆ Grp = C, making
use of the fact that to every group, there exists a surjective group morphism from a free group.

Or, for instance, in a model category C, we may let P be the full subcategory of cofibrant
objects, making use of the fact that to every object of C, there exists an acyclic fibration from
a cofibrant object. Cf. Remark 34.

Or, for instance, in a model category C, we may let P be the full subcategory of acyclic cofibrant
objects, making use of the fact that to every object of C, there exists a fibration from an acyclic
cofibrant object. Cf. Remark 35.

Now suppose given an object X in C, which we want to resolve semisimplicially. First, choose
P0 → X with P0 ∈ ObP as described above. Let K1 ⇒ P0 be its simplicial kernel. Choose
P1 → K1 with P1 ∈ ObP as described above. Compose to the tuple P1 ⇒ P0. Let K2 ⇒⇒ P1

be its simplicial kernel. Choose P2 → K2 with P2 ∈ ObP as described above. Compose to the
tuple P2 ⇒⇒ P1. Etc. The objects Pn for n > 0, together with the morphism tuples between
them, yield a semisimplicial object, which we define to be a semisimplicial resolution of X; cf.
Definition 36, Remark 37, Proposition 43.
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0.5 From semisimplicial to simplicial resolutions

A semisimplicial resolution of an object in C yields a semisimplicial object in C. To turn this
semisimplicial resolution into a simplicial resolution, we need to find an appropriate way to
contruct a simplicial object out of a semisimplicial object. To this end we will construct a left
adjoint functor

FC : SemiSimp(C) → Simp(C)

to the forgetful functor

VC : Simp(C) → SemiSimp(C) ,

which restricts a given simplicial object X, i.e. a functor X : ∆op → C, from ∆op to ∆op
inj .

We will first construct the functor FC in the case C = Set, because there the construction follows
the intuition of adding formal degeneracy maps and because the general case is modelled on
this particular case.

If one uses a Kan extension along the inclusion ∆op
inj → ∆op to construct FC , one usually works

with a direct limit. In the case C = Set, this amounts to working with equivalence classes.

Here, to construct FC we use the fact that there exists a unique factorization of a monotone
map into a surjective and an injective monotone map; cf. Remark 49. In this way, we avoid
equivalence classes in case C = Set, and we may use mere coproducts instead of colimits in the
general case.

So if our resolving subcategory P is closed under coproducts in C, then we can resolve X ∈ Ob C
with a semisimplicial object in P , which then yields a simplicial object in P by an application
of FC . This simplicial object is the simplicial resolution of X.

0.6 Conventions

• In case we write “for x ∈ X”, it means “for all x ∈ X”.

• Suppose given a finite set S. Then |S| is the cardinality of S.

• Suppose given a map α : X → Y . We write the image of x ∈ X under α as xα. Moreover,
Im(α) ⊆ Y denotes the image of α.

• Given a set L and subsets M,N ⊆ L, we write L = M ∪̇N if L = M ∪N and M ∩N = ∅.

• Suppose given sets I and Xi for i ∈ I. We write
⊔
i∈I
Xi = {(i, x) : x ∈ Xi} for the disjoint

union of the Xi for i ∈ I.

• Suppose given sets A,B,C,D. Suppose that A ⊆ B and C ⊆ D. Suppose given a map
f : B → D such that Im(f) ⊆ C.

We write f |CA : A → C, a 7→ af |CA := af for the restriction of f to A in the domain and
to C in the range.

If C = D, we also write f |A := f |DA . If A = B, we also write f |C := f |CB .

• For a set M we write P(M) for the power set of M .
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• Suppose given a poset (M,6M) . We call a poset (S,6S) , where S ⊆M , a full subposet
of (M,6M) , if (s1 6M s2) ⇔ (s1 6S s2) for s1, s2 ∈ S . We often write M instead of
(M,6) .

• For z1, z2 ∈ Z let [z1, z2] := {z ∈ Z : z1 6 z 6 z2} . Let Z>0 := {z ∈ Z : z > 0}. For
z ∈ Z>0 we often abbreviate [z] := [0, z].

• We write Set for the category of sets.

• All categories C under consideration are small, which means that Ob C and Mor C are sets.
If necessary, we choose a universe with respect to which the category under consideration
is small. We call a category C a finite category if Ob C and Mor C are finite sets.

• We write composition on the right. That means, given morphisms a
α−→ b and b

β−→ c , the

composite of these two morphisms is written a
α·β−−→ c or a

αβ−→ c .

We write composition of functors on the left. That means, given functors F : C → D and
G : D → E , we write G ◦ F or GF for their composite.

• Given a functor D F−→ C, we often write Fx := Fx for x ∈ ObD and Fα := Fα for
α ∈ MorD , e.g. if we consider F as a diagram with values in C.

• Suppose given a category C and objects x, y ∈ Ob C . Then C(x, y) is the set of all
morphisms of C with source x and target y .

• Suppose given a category C. Then Cop is the opposite category of C. For a morphism

(a
α−→ b) ∈ Mor C, let b

αop

−−→ a denote the corresponding morphism in Cop.

• Suppose given categories D and C. We write CD for the functor category of functors from
D to C.

• Suppose given a category C.

Suppose given integers a 6 b and morphisms (Xi−1
αi−→ Xi) in C for i ∈ [a + 1, b]. We

write
Xa∏Xb

i∈da+1 ,be

αi := αa+1 · · ·αb if a < b

and
Xa∏Xb

i∈da+1 ,be

αi := idXa if a = b .

Suppose given integers a 6 b and morphisms (Xi−1
αi←− Xi) in C for i ∈ [a + 1, b]. We

write
Xb∏Xa

i∈bb ,a+1c

αi := αb · · ·αa+1 if a < b

and
Xb∏Xa

i∈bb ,a+1c

αi := idXb if a = b .
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• Suppose given functors F, F ′ : C → D. A tuple of morphisms (FX
tX−→ F ′X)X∈Ob C in D

is called natural, if tX · F ′u = Fu · tY for all morphisms X
u−→ Y in C. If such a tuple is

natural, we call it a transformation.

• Suppose given a category C. Suppose given a set I and Xi ∈ Ob C. We write
∐
i∈I
Xi for

the coproduct of the objects Xi for i ∈ I.

• We write Grp for the category of groups and FreeGrp for the full subcategory of free
groups.

• Groups are written multiplicatively. That includes that the neutral element of a group G
is written 1G . The inverse of g ∈ G is often written g− . The trivial group is written 1.

• Suppose given a set M . We write Free(M) for the free group generated by the elements
of M . Elements of Free(M) are denotated as words in the alphabet given by the set
M ∪M−, where M− := {m− : m ∈ M}. The empty word, which is the neutral element,
is written 1Free(M).

• Suppose given a group G. Suppose given M ⊆ G. We write M :=
⋂

NPG, M⊆N
N for the

normal subgroup generated by M .

• Suppose given a group G and U P G. We write G/U for the factor group. For g ∈ G we
write gU for the image of the residue class morphism of g in G/U .

• Suppose given a set E. Let R ⊆ Free(E). Let Q := R be the normal subgroup gen-
erated by R. Then we define 〈E|R〉 := Free(E)/Q. Instead of 〈{e1, . . . , en}|{r1, . . . , rm}〉
we often write 〈e1, . . . , en|r1, . . . , rm〉.



Chapter 1

Preliminaries

1.1 Transformations

Remark 1. Suppose given functors B K // C
F
$$

G

==D
H // E and a transformation

α = (αX)X∈Ob C : F → G. Then

(i) Hα := (H(αX))X∈Ob C is a transformation from H ◦ F to H ◦G .

(ii) αK := (αKX )X∈ObB is a transformation from F ◦K to G ◦K.

Proof. Ad (i). Suppose given (X
f−→ Y ) ∈ Mor C. We have to show commutativity of the

following diagram.

(H ◦ F )X
H(αX)//

(H◦F )f
��

(H ◦G)X

(H◦G)f
��

(H ◦ F )Y
H(αY )

// (H ◦G)Y

We have

H(αX) · (H ◦G)f = H(αX) ·H(Gf ) = H(αX ·Gf )
α transformation

= H(Ff · αy) = H(Ff ) ·H(αY ) =
(H ◦G)f ·H(αY ) .

Ad (ii). Suppose given (X
f−→ Y ) ∈ MorB. We have to show commutativity of the following

diagram.

(F ◦K)X
αKX //

(F◦K)f
��

(G ◦K)X

(G◦K)f
��

(F ◦K)Y αKY
// (G ◦K)Y

We have

αKX · (G ◦K)f = αKX ·GK(f)
α transformation

= FK(f) · αKY = (F ◦K)f · αKY .

8
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1.2 Limits

Definition 2 (Limit). Suppose given categories D and C. Suppose given a functor
F : D → C. Suppose given L ∈ Ob C and a tuple of morphisms (L

ωx−→ Fx)x∈ObD in C.
Then the pair (L, (ωx)x∈ObD) is a limit of F , if the following properties (i, ii) hold.

(i) For each morphism x
α−→ y in D we have ωxFα = ωy .

Fx

Fα

��

L

ωx
88qqqqqqqqq

ωy

&&MMMMMMMMM

Fy

(ii) Suppose given (L′, (L′
ω′x−→ Fx)x∈ObD) with the property that for each morphism x

α−→ y in

D we have ω′xFα = ω′y. Then there exists a unique morphism L′
µ−→ L with µωx = ω′x for

x ∈ ObD.
Fx

L′ µ
//____

ω′x

55kkkkkkkkkkkkkkkkkkkk
L

ωx

;;vvvvvvvvvv

Remark 3. The universal property in Definition 2 (i, ii) yields uniqueness of limits up to iso-

morphism. Suppose that (L, (L
ωx−→ Fx)x∈ObD) and (L′, (L′

ω′x−→ Fx)x∈ObD) are limits of D F−→ C.
Then there exists an isomorphism µ : L→ L′ with µω′x = ωx for x ∈ ObD and µ−1ωx = ω′x for
x ∈ ObD.

Proof. Suppose that (L, (L
ωx−→ Fx)x∈ObD) and (L′, (L′

ω′x−→ Fx)x∈ObD) are limits ofD F−→ C. Then

ωxFα = ωy for (x
α−→ y) ∈ MorD. Because of the Universal Property of (L′, (L′

ω′x−→ Fx)x∈ObD),

there exists a (unique) morphism L
µ−→ L′ satisfying µω′x = ωx for x ∈ ObD. Analogously

there exists a morphism L′
ν−→ L satisfying νωx = ω′x for x ∈ ObD. It is µνωx = µω′x = ωx for

x ∈ ObD. On the other hand, we have idL ωx = ωx for x ∈ ObD. Because of the Universal
Property, which says that there exists only one such morphism with source L and target L, we
get µν = idL. Analogously, we get νµ = idL′ . Hence µ is an isomorphism and ν its inverse.

Remark 4. The dual notion of a limit is that of a colimit. That means, given a category C, a
limit of Cop is a colimit, when viewed in C.

Remark 5. We regard a diagram in a category C as a functor from a suitable category D, which
determines the type of the diagram, to C. This allows us to speak of a limit of a diagram, which
is just a limit of the associated functor.

Remark 6. Suppose given a poset (M,6). We define a category CM as follows. Ob CM :=M.
For m1,m2 ∈ Ob CM, let

CM(m1,m2) :=

{
{(m1,m2)} if m1 6 m2

∅ if m1 � m2 .
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Composition of morphisms is given by (m1
(m1,m2)−−−−−→ m2

(m2,m3)−−−−−→ m3) := (m1
(m1,m3)−−−−−→ m3). This

is well-defined by transitivity of (6). The identity on m ∈ Ob CM is given by idm = (m,m),
which is possible by reflexivity of (6).

Usually, we write M also for the category CM by abuse of notation.

Example 7. Let C be a category. Consider the following diagram in C.

A

α
��

B
β
// X

This can be regarded as the functor from the poset ({{1}, {2}, {1, 2}},⊆) to C that maps {1}
to A, {2} to B, {1, 2} to X, ({1}, {1, 2}) to α and ({2}, {1, 2}) to β.

F{1}

F({1},{1,2})
��

F{2} F({2},{1,2})
// F{1,2}

A limit of such a diagram completes it to a pullback. It can be illustrated by adding the respec-
tive pair of an object and a tuple of morphisms to the diagram, which then is commutative.

L
ω{1} //

ω{1,2}
KKKKKK

%%KKKKω{2}

��

F{1}

F({1},{1,2})
��

F{2} F({2},{1,2})
// F{1,2}

We observe that the morphism ω{1,2} is redundant. It would be sufficient, if we only had the two
morphisms ω{1} and ω{2} together with the requirement of a universal commutative quadrangle
to have a pullback, so it looks as follows.

L
ω{1} //

ω{2}
��

A

α
��

B
β
// X

This will be made precise in Lemma 11 below.

Definition 8. Suppose given a poset (M,6). We define

M̌ := {x ∈M : {y ∈M : y 6 x} = {x}}

as the full subposet of minimal elements of M.

Definition 9 (Reduced limit). Suppose given a finite poset (M,6) and a category C. Suppose
given a functor F :M→ C. Suppose given L ∈ Ob C and a tuple of morphisms (L

ωx−→ Fx)x∈M̌ .
Then the pair (L, (ωx)x∈M̌) is a reduced limit of F , if the following conditions (ired, iired) hold.
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(ired) For x, y ∈ M̌ and z ∈M such that x 6 z and y 6 z, we have ωxF(x,z) = ωyF(y,z).

(iired) Suppose given (L′, (L′
ω′x−→ Fx)x∈M̌) with the property that for x, y ∈ M̌ and z ∈M such

that x 6 z and y 6 z, we have ω′xF(x,z) = ω′yF(y,z) . Then there exists a unique morphism

L′
µ−→ L with µωx = ω′x for x ∈ M̌. (Universal Property)

Remark 10. Suppose given a finite poset (M,6). For every m ∈ M, we can choose m̌ ∈ M̌
such that m̌ 6 m. This defines a map M→ M̌,m 7→ m̌ .

Proof. Assume there is an element m ∈ M for which there is no element n ∈ M̌ with n 6 m.
The element m is not minimal, hence there exists m1 ∈ M with and m1 < m. Also m1 is
not minimal. Again there exists an m2 ∈ M with m2 < m1. Continuing this way we can now
contruct an infinite chain of elements · · · < mi < · · · < m2 < m1 < m. Then {mi : i ∈ N} is an
infinite subset of M, which contradicts M being finite.

Lemma 11. Suppose given a finite poset (M,6) and a category C. Suppose given a functor
F :M→ C. We make use of the map M→ M̌,m 7→ m̌ from Remark 10, so that m̌ 6 m.

(1) Let (L, (ωx)x∈M) be a limit of F . Then (L, (ωx)x∈M̌) is a reduced limit.

(2) Let (L̃, (ω̃x)x∈M̌) be a reduced limit. Then (L̃, (ω̃x̌F(x̌,x))x∈M) is a limit.

Note that for x′ ∈ M̌ with x′ 6 x, we have ω̃x′F(x′,x) = ω̃x̌F(x̌,x) by Definition 9 (ired). Hence
(2) is independent of the choice made in Remark 10.

Proof.

Ad (1). We have to show conditions (ired) and (iired) of Definition 9.

Ad (ired). Let x, y ∈ M̌ and z ∈M with x 6 z and y 6 z. We get ωxF(x,z) = ωz = ωyF(y,z)

by Definition 2 (i).

Ad (iired). Suppose given (L′, (L′
ω′x−→ Fx)x∈M̌) with the property that for x, y ∈ M̌ and

z ∈M such that x 6 z and y 6 z, we have ω′xF(x,z) = ω′yF(y,z) . Then (L′, (ω′x̌F(x̌,x))x∈M)
satisfies ω′x̌F(x̌,x)F(x,y) = ω′x̌F(x̌,y) = ω′y̌F(y̌,y) for x, y ∈ M such that x 6 y. Hence there

exists a unique morphism L′
µ−→ L with µωx = ω′x̌F(x̌,x) for x ∈ M by Definition 1 (ii).

In particular, µ satisfies µωx = ω′x̌F(x̌,x) = ω′x for x ∈ M̌, since x = x̌. Suppose given
ν : L′ → L with νωx = ω′x for x ∈ M̌. Then νωx = νωx̌F(x̌,x) = ω′x̌F(x̌,x) for x ∈ M.
Hence ν = µ.

Ad (2). We have to show conditions (i) and (ii) of Definition 2.

Ad (i). Let x, y ∈ M with x 6 y. We get ω̃x̌F(x̌,x)F(x,y) = ω̃x̌F(x̌,y) = ω̃y̌F(y̌,y) by
Definition 9 (ired).

Ad (ii). Suppose given (L′, (L′
ω′x−→ Fx)x∈ObD) with the property that for x, y ∈ M such

that x 6 y, we have ω′xF(x,y) = ω′y . Let x, y ∈ M̌ and z ∈M such that x 6 z and y 6 z.

Then we get ω′xF(x,z) = ω′z = ω′yF(y,z). Hence there exists a unique morphism µ : L′ → L̃

with µω̃x = ω′x for x ∈ M̌ by Definition 9 (iired). It follows that µω̃x̌F(x̌,x) = ω′x̌F(x̌,x) = ω′x
for x ∈ M. Suppose given ν : L′ → L with νω̃x̌F(x̌,x) = ω′x for x ∈ M. Then, in
particular, we have νω̃x = ω′x for x ∈ M̌, since x = x̌. Hence ν = µ.
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Definition 12. Let C be a category.

We say that C has limits, if for every category D and every functor D F−→ C a limit of F exists.

We say that C has finite limits, if for every finite category D and every functor D F−→ C a limit
of F exists.

We say that C has colimits, if for every category D and every functor D F−→ C a colimit of F
exists.

We say that C has finite colimits, if for every finite category D and every functor D F−→ C a
colimit of F exists.

Remark 13.

(i) Suppose a category C has finite limits. Then C contains a terminal object.

(ii) Suppose a category C has finite colimits. Then C contains an initial object.

Proof.

Ad (i). Let D be the empty category, which means ObD = ∅ and MorD = ∅. Let (T, ()) be a
limit of F : D → C. Then T is a terminal object, since for X ∈ Ob C, the pair (X, ()) satisfies
the condition in (ii) in Definition 2 and so there exists a unique morphism µ : X → T satisfying
an empty condition. Hence µ is unique. So T is a terminal object.

Ad (ii). This dual to (i).

Example 14. The category of groups Grp has limits.

In fact, we can construct a limit of a functor D F−→ Grp as follows.

Let P :=
∏

x∈ObD Fx be the direct product the groups Fx, where x ∈ ObD. Let

L := {(gx)x∈ObD ∈ P : (ga)Fα = gb for (a
α−→ b) ∈ MorD} .

Then L is a subgroup of P , as we shall see now.

The neutral element (1Fx)x∈ObD is contained in L, because the image Fα of every morphism
(a

α−→ b) is a group morphism, which sends 1Fa to 1Fb .

Suppose given (gx)x∈ObD , (hx)x∈ObD ∈ L and (a
α−→ b) ∈ MorD. Then Fα is a group morphism,

so that we get ((ga)
−ha)Fα = ((ga)Fα)−(ha)Fα = (gb)

−hb. Hence ((gx)x∈ObD)−(hx)x∈ObD =
((gx)

−hx)x∈ObD ∈ L.

Given a ∈ ObD, let ωa : L → Fa, (gx)x∈ObD 7→ ga . It follows from the definition of L that
ωaFα = ωb for (a

α−→ b) ∈ MorD.

It remains to prove the universal property. Suppose given a group L′ and a tuple of group

morphisms (L′
ω′d−→ Fd)d∈ObD that satisfy ω′aFα = ω′b for (a

α−→ b) ∈ MorD. We can define the
map µ : L′ → L, l 7→ ((l)ω′d)d∈ObD . The image of µ is contained in L, because ((g)ω′a)Fα = (g)ω′b
for g ∈ L′ and (a

α−→ b) ∈ MorD, so µ is well defined. Also µ is a group morphism. We have
(l)µωd = (((l)ω′d)d∈ObD)ωx = (l)ω′x for l ∈ L′ and x ∈ ObD, for short µωx = ω′x for x ∈ ObD.
Suppose given a group morphism ν : L′ → L such that νωx = ω′x . Then (l)νωx = (l)ω′x = (l)µωx
for l ∈ L′ and x ∈ ObD, hence (l)ν = ((l)ω′x)x∈ObD = (l)µ, hence ν = µ.
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Example 15. Let M be a finite poset.

We can construct a reduced limit of a functor M F−→ Grp as follows.

Let P :=
∏

m∈M̌ Fm . Let

L := {(gm)m∈M̌ : (n1)F(n1,m) = (n2)F(n2,m) for m ∈M and n1, n2 ∈ M̌ such that n1 6 m,n2 6 m} .

Then L is a subgroup of P , as we shall see now.

The neutral element (1Fm)m∈M̌ is contained in L, because a group morphism maps the neutral
elements to neutral elements.

Suppose given (gm)m∈M̌ , (hm)m∈M̌ ∈ L, m ∈ M and n1, n2 ∈ M̌ such that n1 6 m,n2 6 m.
We then have

((gn1)
−hn1)F(n1,m) = ((gn1)F(n1,m))

−(hn1)F(n1,m) = ((gn2)F(n2,m))
−(hn2)F(n2,m) = ((gn2)

−hn2)F(n2,m) .

Hence ((gm)m∈M̌)−(hm)m∈M̌ = ((gm)−hm)m∈M̌ ∈ L.

Given n ∈ M̌, let ωn : L → Fn, (gm)m∈M̌ 7→ gn . It follows from the definition of L that
ωn1F(n1,m) = ωn2F(n2,m) for m ∈M and n1, n2 ∈ M̌ such that n1 6 m,n2 6 m.

It remains to prove the universal property.

Suppose given a group L′ and a tuple of group morphisms (L′
ω′d−→ Fd)d∈M̌ that satisfy

ω′n1
F(n1,m) = ω′n2

F(n2,m) for m ∈ M and n1, n2 ∈ M̌ such that n1 6 m,n2 6 m. We
can define the map µ : L′ → L, l 7→ ((l)ω′d)d∈M̌ . The image of µ is contained in L, be-
cause ((g)ω′n1

)F(n1,m) = ((g)ω′n2
)F(n2,m) for g ∈ L′ and m ∈ M and n1, n2 ∈ M̌ such

that n1 6 m,n2 6 m, so µ is well defined. Also µ is a group morphism. We have
(l)µωm = (((l)ω′d)d∈ObD)ωm = (l)ω′m for l ∈ L′ and m ∈ M̌, for short µωm = ω′m for m ∈ M̌.
Suppose given a group morphism ν : L′ → L such that νωm = ω′m for m ∈ M̌. Then
(l)νωm = (l)ω′m = (l)µωm for l ∈ L′ and m ∈ M̌, hence (l)ν = ((l)ω′m)m∈M̌ = (l)µ, hence
ν = µ.

Example 16. Suppose given a set M . Then M yields the discrete poset (M,6) by defining

m1 6 m2 :⇔ m1 = m2 .

So we obtain a category M̃ with Ob M̃ = M and Mor M̃ = {idm : m ∈M}.

Suppose given a category C and a tuple (Xm)m∈M of objects in C. We define the following
functor.

F : M̃ → C
m 7→ Xm for m ∈M
idm 7→ idXm for m ∈M

Then we choose a colimit of F and write it
∐
m∈M

Xm , the coproduct of the tuple (Xm)m∈M .

1.3 Free products of groups

Remark 17 (Representation of groups by generators and relations). Suppose given a group
G. Let G̃ be the set of all elements of G. Let Free(G̃) be the free group generated by G̃. The
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map idG̃ extends to a unique group morphism f : Free(G̃) → G, g 7→ g, which is surjective.
Let KG be the kernel of f . So we have the short exact sequence

KG ↪→ Free(G̃)
f−→ G .

Let K̃G be the set of elements in KG. So the normal subgroup generated by K̃G is just KG.

Altogether, we have G ' Free(G̃)/KG = 〈G̃|K̃G〉.

Remark 18. Suppose given sets M , N and a map M
f−→ N . Then we have the following

induced group morphism.

Free(M)
Free(f)−−−−→ Free(N)

m 7−→ (m)f

Definition 19 (Free product). Suppose given a set I. Suppose given a tuple of groups (Gi)i∈I .

Suppose given i ∈ I. Let G̃i be the set of elements of Gi. The map idG̃i extends to a unique

group morphism fi : Free(G̃i)→ Gi, x 7→ x. Let KGi be the kernel of fi. Let K̃Gi be the set of

elements in KGi . Let τi : G̃i →
⊔
j∈I
G̃j, x 7→ (i, x) and Free(G̃i)

σi := Free(τi)−−−−−−−→ Free(
⊔
j∈I
G̃j).

Let K̃ :=
⋃
i∈I

(K̃Gi)σi ⊆ Free(
⊔
i∈I
G̃i). Then we define

∗
i∈I
Gi := 〈

⊔
i∈I

G̃i | K̃ 〉 ,

which we call the free product of the tuple (Gi)i∈I . If I = [1, k] for some k > 1, we also write
∗
i∈I
Gi = G1 ∗ · · · ∗Gk .

Lemma 20. Suppose given a set I. Suppose given a tuple of groups (Gi)i∈I . Suppose given
tuples of sets (Ei)i∈I and (Ri)i∈I , where Ri ⊆ Free(Ei) for i ∈ I, and a tuple of isomorphisms

(〈Ei|Ri〉
αi−→∼ Gi)i∈I . Cf. e.g. Remark 17.

Let τi : Ei →
⊔
j∈I
Ej, x 7→ (i, x) and Free(Ei)

σi := Free(τi)−−−−−−−→ Free(
⊔
j∈I
Ej).

Let R :=
⋃
i∈I

(Ri)σi ⊆ Free(
⊔
i∈I
Ei)

Let P := 〈
⊔
i∈I
Ei|R〉.

(1) We have the group morphism

Gi

ιi,P−−→ P

(x Ri )αi 7→ (x)σi R

for i ∈ I, where x ∈ Free(Ei).

(2) Suppose given a group H. Suppose given a tuple of group morphisms (Gi
fi−→ H)i∈I .

Then there exists a unique group morphism µ : P → H satisfying ιi,Pµ = fi for i ∈ I.

So (P, (ιi,P )i∈I) is a coproduct of (Gi)i∈I , cf. Example 16.
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(3) The pair ( ∗
i∈I
Gi, (ιi, ∗

i∈I
Gi)i∈I) is a coproduct of (Gi)i∈I ; cf. Definition 19 and (1).

We have a group isomorphism P
ϕ−→∼ ∗

i∈I
Gi satisfying ιi,Pϕ = ιi, ∗

i∈I
Gi for i ∈ I.

Proof.

We will write ιi := ιi,P for i ∈ I.

Let qi : Free(Ei) → Free(Ei)/ Ri = 〈Ei|Ri〉, x 7→ x Ri be the residue class morphism for
i ∈ I.

Let q : Free(
⊔
i∈I
Ei)→ Free(

⊔
i∈I
Ei)/ R = P , x 7→ x R be the residue class morphism.

Ad (1). Let i ∈ I. We have (Ri)σi ⊆ R. Hence Ri is contained in the kernel of σiq , and so
is Ri . Therefore there exists a unique morphism γi : 〈Ei|Ri〉 → P such that the following
diagram is commutative.

Free(Ei)
σiq //

qi
����

P

〈Ei|Ri〉
γi

;;wwwwwwwwww

We may define ιi := α−1
i γi, since for x ∈ Free(Ei) we get

((x Ri )αi)α
−1
i γi = (x Ri )γi = (x)qiγi = (x)σiq = (x)σi R .

Ad (2).

Uniqueness.

We can write every x ∈ P = Free(
⊔
i∈I
Ei)/ R in the form

x = (i1, ei1)
ε1 · (i2, ei2)ε2 · · · (in, ein)εn R ,

where n > 0 and where ik ∈ I, eik ∈ Eik and εk ∈ {−1,+1} for k ∈ [1, n]. We can rewrite a

factor in this product as (ik, eik)
εk R = (eεkik Rik )αikιik .

So we can write every x ∈ P as a product x = (gi1)ιi1 · · · (gin)ιin , where n > 0 and gij ∈ Gij for
j ∈ [1, n]. Thus

(x)µ = ((gi1)ιi1 · · · (gin)ιin)µ = (gi1)ιi1µ · · · (gin)ιinµ = (gi1)fi1 · · · (gin)fin .

Existence.

Let H̃ be the set of elements of H. The map d :
⊔
i∈I
Ei → H̃, (i, ei) 7→ (ei Ri )αifi extends to

a unique group morphism δ : Free(
⊔
i∈I
Ei)→ H. We have σiδ = qiαifi for i ∈ I.

Suppose given x ∈ R. We can write x = (ri)σi for some i ∈ I and some ri ∈ Ri. Then
(x)δ = (ri)σiδ = (ri Ri )αifi = (1〈Ei|Ri〉)αifi = 1H . Hence R is contained in the kernel of δ,
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and so is R . Therefore there exists a unique morphism µ : P → H such that the following
diagram is commutative.

Free(
⊔
i∈I
Ei)

δ //

q����

P ′

P

µ

::uuuuuuuuuuuu

For i ∈ I and x ∈ Free(Ei) we get

((x Ri )αi)ιiµ = ((x)σi R )µ = ((x)σi)qµ = ((x)σi)δ = ((x Ri )αi)fi .

So ιiµ = fi .

Ad (3). By (2) and by Remark 17, ( ∗
i∈I
Gi, (ιi, ∗

i∈I
Gi)i∈I) is a coproduct of (Gi)i∈I .

By the dual assertion to Remark 3, ϕ is an isomorphism.

Example 21. Suppose given a set I. Suppose given a free group Gi for i ∈ I. Then the free
product ∗

i∈I
Gi is a free group.

We use the notation of Lemma 20.

We may let Ri := ∅ for i ∈ I. Then also R =
⋃
i∈I

(Ri)σi = ∅. So the group P is free. By
Lemma 20.(3), P is isomorphic to ∗

i∈I
Gi .



Chapter 2

Simplicial Kernels

Definition 22 (Simplicial kernel). Let C be a category and X, Y ∈ Ob C. Suppose given

n > 0 and a tuple (X
fi−→ Y )i∈[0,n] of morphisms in C. Suppose given K ∈ Ob C and a tuple of

morphisms (K
ki−→ X)i∈[0,n+1]. Then (K, (K

ki−→ X)i∈[0,n+1]) is a simplicial kernel or n-equalizer
of (fi)i∈[0,n] if the following conditions (i, ii) hold.

(i) We have kjfi = kifj−1 for i, j ∈ [0, n+ 1] such that i < j.

(ii) Suppose given (Z
hi−→ X)i∈[0,n+1] satisfying hjfi = hifj−1 for i, j ∈ [0, n + 1] such that

i < j, then there exists a unique morphism µ : Z → K with µki = hi for i ∈ [0, n+ 1].

Proposition 23. Let C be a category. Suppose that C has finite limits. Suppose given a

natural number n > 0 and a tuple (X
fi−→ Y )i∈[0,n] of morphisms in C. Then a simplicial kernel

of (fi)i∈[0,n] exists.

Proof. We construct a diagram, whose limit is a simplicial kernel. We define the following
poset. Let

M1 := {{z} : z ∈ [0, n+ 1]}

and

M2 := {{i, j} : i, j ∈ [0, n+ 1] such that i < j}

and

M :=M1 ∪M2 .

Then (M,⊆) is a poset as full subposet of P([0, n+ 1]). We define the functor F :M→ C by

F (m) :=

{
X if m ∈M1

Y if m ∈M2

and F({i},{i,j}) :=

{
fj−1 if i < j

fj if i > j .

Let (K, (K
(ki)−−→ F{i})i∈[0,n+1]) be a reduced limit of F , which exists by Lemma 11. We have

to show that (K, (ki)i∈[0,n+1]) is a simplicial kernel of (fi)i∈[0,n] by checking (i) and (ii) in
Definition 22.

Ad (i). Let 0 6 i < j 6 n+ 1. Then kifj−1 = kiF({i},{i,j}) = kjF({j},{i,j}) = kjfi .

17
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Ad (ii). Suppose given (Z
hi−→ X)i∈[0,n+1] satisfying hjfi = hifj−1 for 0 6 i < j 6 n+1. Suppose

given i, j ∈ [0, n+ 1].

Case i 6= j. Without loss of generality we can suppose that i < j. So we get

hiF({i},{i,j}) = hifj−1 = hjfi = hjF({j},{i,j}) .

Case i = j. Then

hiF({i},{i,j}) = hiF({i},{i}) = hi = hj = hjF({j},{j}) = hjF({j},{i,j}) .

Hence (hi)i∈[0,n+1] satisfies (ired) in Definition 9. Thus there exists a unique morphism Z
µ−→ K

with µki = hi for i ∈ [0, n].

Example 24. The poset defined in the proof of Proposition 23 takes the following shape on
the first two cases.

n = 0:

{0, 1}

xxxxxxxx

FFFFFFFF

{0} {1}

n = 1:

{0, 1} {0, 2} {1, 2}

{0}

�����������

oooooooooooooo

ooooo

{1}

~~~~~~~~~~~~

AAAAAAAAAAAA

{2}

OOOOOOOOOOOOOO

OOOOO
===========



Chapter 3

Semisimplicial Resolutions

3.1 Resolving subcategories

Definition 25. Suppose given a category C. Let P be a full subcategory of C. Suppose
given (X

ϕ−→ Y ) ∈ Mor C. We say that ϕ is P-epic or a P-epimorphism if for P ∈ ObP and

(P
α−→ Y ) ∈ Mor C, there exists a morphism P

β−→ X such that βϕ = α. That means the map

C(P,X)
(−)ϕ−−−→ C(P, Y ), β 7→ βϕ is a surjection for P ∈ ObP .

P

α
��

β

~~~
~

~
~

X ϕ
// Y

Remark 26. Suppose given a category C and a full subcategory P of C.

• Let X ∈ Ob C. Then idX is a P-epimorphism, since for P ∈ ObP and (P
α−→ X) ∈ Mor C,

we have α idX = α.

• Suppose given P-epimorphisms X
α−→ Y and Y

β−→ Z. Then the composite αβ is a P-

epimorphism. In fact, for P ∈ ObP and (P
γ−→ Z) ∈ Mor C, there exists P

δ−→ Y such that
δβ = γ, and then there exists P

ε−→ X such that εα = δ. Hence we get εαβ = δβ = γ.

P

γ
��δ��~

~
~

~
ε

wwn n n n n n n n

X α
// Y

β
// Z

Definition 27 (Resolving subcategory). Let C be a category. Suppose given a full subcategory
P of C. We call P a resolving subcategory in C if for every X ∈ Ob C, there exists an object
P ∈ ObP and a morphism ϕ : P → X that is P-epic.

Remark 28. The class of objects contained in a resolving subcategory is referred to as a
projective class by Tierney and Vogel [1].

Example 29. Suppose given a category C. Then C is a resolving subcategory in C. In fact, for

every object X ∈ Ob C, we have X
id−→ X as a P-epimorphism.

19
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Example 30. Suppose a category C has an initial object I. Then the full subcategory I with
Ob I = {I} is a resolving subcategory in C, since for a given object X ∈ Ob C we have exactly

one morphism I
ϕ−→ X. Then ϕ is I-epic, because for α ∈ C(I,X) = {ϕ} there exists idI , which

satisfies idI α = α = ϕ.

Remark 31. Consider the category of groups Grp. We have a full subcategory FreeGrp of free
groups. Let ϕ ∈ Mor Grp. We have

ϕ is FreeGrp-epic ⇐⇒ ϕ is surjective .

Proof.

Ad ⇒. Suppose that ϕ : X → Y is FreeGrp-epic. Let Ỹ be the set of all elements of Y . Let
Free(Ỹ ) be the free group generated by Ỹ . The map idỸ extends to a unique group morphism
α : Free(Ỹ ) → Y . Since ϕ is FreeGrp-epic there exists a group morphism β : Free(Ỹ ) → X
such that βϕ = α. Since α is surjective ϕ must be surjective.

Free(Ỹ )

α

��

β

{{w
w

w
w

w

X ϕ
// Y

Ad⇐. Suppose that ϕ : X → Y is surjective. Let X̃ be set of elements in X and Ỹ be the set of
elements in Y . Choose a map X̃

c←− Ỹ such that cϕ = idỸ . Let M be a set and Free(M) be the
free group generated by M . Suppose given a qroup morphism α : Free(M) → Y . This group

morphism retracts to a map a : M → Ỹ . We define a map (M
b−→ X̃) := (M

a−→ Ỹ ) · (Ỹ c−→ X̃).
Then b extends to a unique group morphism β : Free(M)→ X. We have to show that βϕ = α.
Let m ∈M . Then ((m)β)ϕ = ((m)b)ϕ = (((m)a)c)ϕ = (m)a = (m)α.

M

a
��

b

~~}
}

}
}

X̃ Ỹcoo

Free(M)

α

��

β

zzu
u

u
u

u

X ϕ
// Y

Remark 32. The category FreeGrp is a resolving subcategory in Grp.

Proof. Suppose given a group G. Let G̃ be the set of all elements of G. Let Free(G̃) be the free
group generated by G̃. The map idG̃ extends to a unique group morphism γ : Free(G̃) → G,
which is surjective.

Definition 33 (Model category). Suppose given a category C.

Suppose given Fib(C),Cof(C),Wke(C) ⊆ Mor C.

We call C a model category if the following properties (i, ii, iii, iv, v, vi, vii, viii) hold.

(i) The category C has finite limits and finite colimits.
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(ii) Suppose given composable morphisms X
α−→ Y and Y

β−→ Z. Let γ := αβ.

If α, β ∈Wke(C), then γ ∈Wke(C).
If β, γ ∈Wke(C), then α ∈Wke(C).
If α, γ ∈Wke(C), then β ∈Wke(C).

(iii) Suppose given α ∈ Mor C. If α is an isomorphism, then α ∈ Fib(C) ∩ Cof(C) ∩Wke(C).

(iv) Suppose given morphisms X
α−→ Y and Y

β−→ Z in Fib(C). Then αβ ∈ Fib(C) .

Suppose given morphisms X ′
α′−→ Y ′ and Y ′

β′−→ Z ′ in Cof(C). Then α′β′ ∈ Cof(C) .

(v) Suppose given a pullback in C
Y

γ //

δ
��

A

α
��

B
β
// X .

If α ∈ Fib(C) , then δ ∈ Fib(C) .

If α ∈ Fib(C) ∩Wke(C) , then δ ∈ Fib(C) ∩Wke(C) .

(vi) Suppose given a pushout in C
Y A

γoo

B

δ

OO

X .

α

OO

β
oo

If α ∈ Cof(C), then δ ∈ Cof(C).
If α ∈ Cof(C) ∩Wke(C), then δ ∈ Cof(C) ∩Wke(C).

(vii) Suppose given a commutative quadrangle

A α //

γ

��

C

β

��
B

δ // D

in C. Suppose that γ ∈ Cof(C) and β ∈ Fib(C). Suppose that {γ, β}∩Wke(C) 6= ∅. Then

there exists B
µ−→ C ∈ Mor C such that γµ = α and µβ = δ.

A
α //

γ

��

C

β

��
B

δ //

µ

??~
~

~
~

~
~

D

(viii) For each α ∈ Mor C, there exist γ ∈ Fib(C) ∩Wke(C) and β ∈ Cof(C) such that α = βγ.

For each α ∈ Mor C, there exist γ′ ∈ Fib(C) and β′ ∈ Cof(C)∩Wke(C) such that α = β′γ′.
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Morphisms in Fib(C) are called fibrations, morphisms in Cof(C) are called cofibrations and
morphisms in Wke(C) are called weak equivalences.

Remark 34. Suppose given a model category C.

Choose an initial object I in C, cf. Remark 13.

Let Ccof be the full subcategory of C of cofibrant objects, i.e.

Ob Ccof := {X ∈ Ob C : (I → X) ∈ Cof(C)} .

(1) Morphisms in Fib(C) ∩Wke(C) are Ccof-epic.

(2) The subcategory Ccof is a resolving subcategory of C.

Proof. Ad (1). Let (X
ϕ−→ Y ) ∈ Fib(C) ∩Wke(C). Let Z ∈ Ob Ccof and Z

α−→ Y ∈ Mor C. Let

I
γ−→ Z be the unique morphism form I to Z and let I

δ−→ X be the unique morphism form I to
X. We have a commutative quadrangle

I δ //

γ
��

X

ϕ
��

Z α
// Y

and (I
γ−→ Z) ∈ Cof(C). From Definition 33 (vii) it follows that there exists a morphism Z

µ−→ X
with µϕ = α. Hence ϕ is Ccof-epic.

Ad(2). Suppose given Y ∈ Ob C. We have a unique morphism I
α−→ Y . By Definition 33 (viii),

we have α = βγ, where (X
γ−→ Y ) ∈ Fib(C) ∩Wke(C) and (I

β−→ X) ∈ Cof(C). So X ∈ Ob Ccof

and γ is a Ccof-epimorphism using (1).

Remark 35. Suppose given a model category C.

Choose an initial object I in C, cf. Remark 13.

Let Ccof,ac be the full subcategory of C of acyclic cofibrant objects, i.e.

Ob Ccof,ac := {X ∈ Ob C : (I → X) ∈ Cof(C) ∩Wke(C)} .

(1) Morphisms in Fib(C) are Ccof,ac-epic.

(2) The subcategory Ccof,ac is a resolving subcategory of C.

Proof. Ad (1). Let (X
ϕ−→ Y ) ∈ Fib(C). Let Z ∈ Ob Ccof,ac and Z

α−→ Y ∈ Mor C. Let I
γ−→ Z be

the unique morphism form I to Z and let I
δ−→ X be the unique morphism form I to X. We

have a commutative quadrangle

I
δ //

γ
��

X

ϕ
��

Z α
// Y



23

and (I
γ−→ Z) ∈ Cof(C) ∩ Wke(C). From Definition 33 (vii) it follows that there exists a

morphism Z
µ−→ X with µϕ = α. Hence ϕ is Ccof,ac-epic.

Ad(2). Suppose given Y ∈ Ob C. We have a unique morphism I
α−→ Y . By Definition 33 (viii),

we have α = βγ, where (X
γ−→ Y ) ∈ Fib(C) and (I

β−→ X) ∈ Cof(C)∩Wke(C). So X ∈ Ob Ccof,ac

and γ is a Ccof,ac-epimorphism using (1).

3.2 Construction of semisimplicial resolutions

Definition 36 (Semisimplicial resolution). Suppose given a category C. Suppose given X ∈
Ob C. Suppose that C has finite limits. Suppose given a resolving subcategory P . We can now

choose P1 ∈ ObP and a P-epimorphism P0
f0−→ X. We get the following diagram.

P0
f0 // X

We can now choose a simplicial kernel (K1, (k
1
0, k

1
1)) of f0, which exists by Proposition 23. So

we get

P0
f0 // X

K1

k10

77

k11

EE

Again we can choose P1 ∈ ObP and a P-epimorphism P1
f1−→ K1 . Let d1

0 := f1k
1
0 and

d1
1 := f1k

1
1 . We get the following diagram.

P1

f1

99999

��9999

d10 ,,
d11

22 P0
f0 // X

K1

k10

<<

k11

HH

We can now choose a simplicial kernel (K2, (k
2
0, k

2
1, k

2
2)) of (d1

0, d
1
1) by Proposition 23. We choose

P2 ∈ ObP and a P-epimorphism P2
f2−→ K2 . Let d2

0 := f2k
2
0 and d2

1 := f2k
2
1 and d2

2 := f2k
2
2 .

Our diagram then looks like this.

P2

f2

///////////

��/
//////////

d20 ))

d22

55d21
// P1

f1

///////////

��/
//////////

d10 ,,
d11

22 P0
f0 // X

K2

k20

??

k22

MM

k21����������

GG����������

K1

k10

CC

k11

JJ

This process can be continued. Let n > 3. Suppose we already have constructed

(Pn−1

dn−1
i−−−→ Pn−2)i∈[0,n−1] .
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We choose a simplicial kernel (Kn, (k
n
i )i∈[0,n]) of (dn−1

i )i∈[0,n−1] , cf. Proposition 23. We choose

Pn ∈ ObP and a P-epimorphism Pn
fn−1−−→ Kn. Let dni := fnk

n
i for i ∈ [0, n].

Write d0
0 := f0 and P−1 := X. Note that P−1 is not contained in ObP in general. The diagram

((Pn)n>0, ((d
n
i )i∈[0,n])n>1) resulting from this construction is called a semisimplicial resolution

of X. The diagram ((Pn)n>−1, ((d
n
i )i∈[0,n])n>0) resulting from this construction is called an

augmented semisimplicial resolution of X.

Remark 37. The maps dni in Definition 36 satisfy dnj d
n−1
i = dni d

n−1
j−1 for n > 2 and 0 6 i < j 6 n.

Proof. By construction we have dnj d
n−1
i = fnk

n
j d

n−1
i

Definition 22 (i)
= fnk

n
i d

n−1
j−1 = dni d

n−1
j−1 .

Example 38. Let C be a category and P a resolving subcategory in C. Let P ∈ ObP .

Suppose given n > 0. We claim that a simplicial kernel of the tuple

(X
fi−→ Y )i∈[0,n] = (P

idP−−→ P )i∈[0,n]

is given by the tuple

(K
ki−→ X)i∈[0,n+1] = (P

idP−−→ P )i∈[0,n+1] .

We have kjfi = idP idP = kifj−1 for i, j ∈ [0, n + 1] such that i < j. Hence (i) in Defintion 22
holds.

Suppose given a tuple (K ′
k′i−→ X)i∈[0,n+1] such that k′jfi = k′ifj−1 for i, j ∈ [0, n + 1], i < j.

We then have k′i idP = k′i+1 idP for i ∈ [0, n] and inductively we derive k′i = k′j =: k′ for

i, j ∈ [0, n + 1]. Then K ′
k′−→ P is the unique morphism satisfying k′ki = k′ idP = k′i for

i ∈ [0, n+ 1]. Hence (i) in Defintion 22 holds.

The morphism idP is P-epic. So it follows that a semisimplicial resolution of P is given by
((Pn)n>0, ((d

n
i )i∈[0,n])n>1) = ((P )n>0, ((idP )i∈[0,n])n>1) .

· · · P
idP ((

idP

66idP // P
idP ,,
idP

22 P
idP // P

Example 39. Let n > 2. We want to semisimplicially resolve the cyclic group Z/nZ by
free groups. We temporarly write groups additive. We choose the quotient group morphism
q : Z → Z/pZ, z 7→ z + nZ, which is surjective and hence FreeGrp-epic by Remark 31. A

simplicial kernel of Z q−→ Z/nZ is given by a reduced limit of the following diagram.

Z/nZ

Z

q
<<zzzzzzzzz

Z

q
bbEEEEEEEE

A reduced limit of such a diagram is a pullback, which we obtain by considering the subgroup
U := {(x, y) ∈ Z × Z : x − y ∈ nZ} of Z × Z. Let p1 : Z × Z → Z, (x, y) 7→ x and
p2 : Z × Z → Z, (x, y) 7→ y be the projections. Then the pullback is given by the following
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diagram.
Z

q

""EEEEEEEE

U

p1

@@��������

p2
��>>>>>>>> Z/nZ

Z
q

<<zzzzzzzzz

We have an injective group morphism g : Z× Z→ Z× Z, (x, y) 7→ (x, x+ ny), whose image is
U . Hence U is isomorphic to Z× Z and we can write the pullback the following way.

Z
q

""EEEEEEEE

Z× Z

(x,y) 7→x
<<yyyyyyyyy

(x,y)7→x+ny ""EEEEEEEEE Z/nZ

Z
q

<<zzzzzzzzz

Up to this step we are only dealing with abelian groups. But for Z × Z is not cyclic, we have
to involve the nonabelian free group generated by two elements to continue, since we need a
surjective map from a free group to Z× Z.

Let F2 := Free({a, b}) be the free group generated by the elements a and b. We define the
group morphism h : F2 → Z× Z, a 7→ (1, 0), b 7→ (0, 1), which is FreeGrp-epic. Let f 1

1 := hgp1

and f 1
2 := hgp2 . We have

f 1
1 : F2 → Z

a 7→ 1

b 7→ 0

and

f 1
2 : F2 → Z

a 7→ 1

b 7→ n

.

We obtain the following diagram.

F2

f11
,,

f12

22 Z q // Z/nZ

A simplicial kernel of F2

f11
))

f12

55 Z is a reduced limit of the following diagram.

Z

F2
f12

����������

f11

>>}}}}}}}}
F2

f11

��????????

f12

``AAAAAAAA

Z F2
f11

oo
f12

// Z

The reduced limit can be constructed following Example 15.

So let L := {(x, y, z) ∈ F2 × F2 × F2 : (x)f 1
1 = (z)f 1

2 , (y)f 1
1 = (x)f 1

2 , (z)f 1
1 = (y)f 1

2} .
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Let
L

t1−→ F2

(a, b, c) 7→ a
,

L
t2−→ F2

(a, b, c) 7→ b
,

L
t3−→ F2

(a, b, c) 7→ c

be the projections, restricted to L.

Let Free(L)
j−→ L be a surjective group morphism, where Free(L) is the free group on the

underlying set of L.

Let f 2
1 := jt1, f 2

2 := jt2 and f 2
3 := jt3. So we observe that from the first three steps in resolving

Z/nZ, we obtain the following diagram.

Free(L)
f21 ((

f23

66f22
// F2

f11
++

f12

33 Z q // Z/nZ



Chapter 4

Semisimplicial and Simplicial Objects

Definition 40.

(i) We define the category ∆ as subcategory of Set as follows. Let

Ob ∆ := {[i] : i ∈ Z>0}

For [a], [b] ∈ Ob ∆, let

∆([a], [b]) := {f ∈ Set([a], [b]) : x > y ⇒ xf > yf for x, y ∈ [a]}

be the set of all monotone maps from [a] to [b].

(ii) We define the category ∆inj as subcategory of ∆ by setting

Ob ∆inj := Ob ∆

and

∆inj
([a], [b]) := {f ∈ ∆([a], [b]) : f is injective } .

(iii) We define the category ∆surj as subcategory of ∆ by setting

Ob ∆surj := Ob ∆

and

∆surj
([a], [b]) := {f ∈ ∆([a], [b]) : f is surjective } .

We often abreviate surj := Mor ∆surj.

(iv) For n > 0 and i ∈ [n+ 1], let

∂n+1
i : [n] −→ [n+ 1]

x 7−→

{
x for x < i

x+ 1 for x > i .

Remark 41. The maps ∂n+1
i in Definition 40 (iv) satisfy ∂n+1

i ∂n+2
j = ∂n+1

j−1 ∂
n+2
i for

0 6 i < j 6 n+ 2 and n > 0.

27
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Proof. Suppose given x ∈ [n].

Case x ∈ [0, i− 1]. Then

(x)∂n+1
i ∂n+2

j

(x<i)
= (x)∂n+2

j

(x<i<j)
= x and

(x)∂n+1
j−1 ∂

n+2
i

(x6i−1<j−1)
= (x)∂n+2

i

(x<i)
= x .

Case x ∈ [i, j − 2]. Then

(x)∂n+1
i ∂n+2

j

(x>i)
= (x+ 1)∂n+2

j

(x+1<j)
= x+ 1 and

(x)∂n+1
j−1 ∂

n+2
i

(x<j−1)
= (x)∂n+2

i

(x>i)
= x+ 1 .

Case x ∈ [j − 1, n]. Then

(x)∂n+1
i ∂n+2

j

(x>j−1>i)
= (x+ 1)∂n+2

j

(x+1>j)
= x+ 2 and

(x)∂n+1
j−1 ∂

n+2
i

(x>j−1)
= (x+ 1)∂n+2

i

(x+1>j>i)
= x+ 2 .

So in every case we find (x)∂n+1
i ∂n+2

j = (x)∂n+1
j−1 ∂

n+2
i . Hence ∂n+1

i ∂n+2
j and ∂n+1

j−1 ∂
n+2
i are

equal.

Lemma 42. Suppose given m > n > 0 and an injective monotone map f : [n] → [m].
Let k1< . . . < km−n denote the elements of [m] that do not appear in the image of f . So
[m] = ([n])f ∪̇ {k1, . . . , km−n}.

Then f = ∂n+1
k1
· · · ∂mkm−n ; cf. Definition 40 (iv).

Note that in the case m = n, we set idm to be the empty composite.

Proof. The map f is injective and monotone. The map ∂n+1
k1
· · · ∂mkm−n is injective and monotone

as a composite of injective monotone maps. Hence it is sufficient to show that their images are

equal, i.e. ([n])f
!

= ([n])∂n+1
k1
· · · ∂mkm−n .

We have to show that {k1, . . . , km−n}
!

= [m] \ ([n])∂n+1
k1
· · · ∂mkm−n .

We only have to prove {k1, . . . , km−n}
!

⊆ [m] \ ([n])∂n+1
k1
· · · ∂mkm−n , because ∂n+1

k1
· · · ∂mkm−n is

injective.

For i ∈ [1,m−n] consider ki . We claim that ki is not contained in the image of ∂n+i
ki
· · · ∂n+j

kj
for

j ∈ [i,m−n]. This we do by induction over j. For the base clause, we get from Definition 40 (iv)
that ki is not contained in the image of ∂n+i

ki
. Now suppose that we already have proved the

claim for a certain j > i and now we want to prove it for j + 1. We observe that ∂n+j+1
kj+1

maps only the element ki to ki since kj+1 > ki , cf. Definition 40 (iv). By induction hypothesis
ki does not appear in the image of ∂n+i

ki
· · · ∂n+j

kj
, hence it does not appear in the image of

∂n+i
ki
· · · ∂n+j+1

kj+1
. This proves the claim.

Hence ki does not appear in the image of ∂n+1
k1
· · · ∂mkm−n for i ∈ [1,m− n].

So {k1, . . . , km−n} ⊆ [m] \ ([n])∂n+1
k1
· · · ∂mkm−n as required.
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Proposition 43. Let C be a category. Suppose given Un ∈ Ob C for n ∈ Z>0 . Suppose for

n > 1 and i ∈ [0, n] we have morphisms Un
dni−→ Un−1. Suppose we have

dnj d
n−1
i = dni d

n−1
j−1 for n > 2 and 0 6 i < j 6 n . (∗)

Then there exists exactly one functor X : ∆op
inj → C such that X[n] = Un for n ∈ Z>0 and

X((∂ni )op) = dni for n ∈ Z>1 and i ∈ [0, n].

Proof.

Uniqueness. Suppose given a functor X̃ : ∆op
inj → C with X̃[n] = Un for n ∈ Z>0 and X̃(∂ni )op =

dni for n ∈ Z>1 and i ∈ [0, n]. Then we have X̃[n] = Un = X[n] for [n] ∈ Ob ∆op
inj .

For ([n]
f−→ [m]) ∈ Mor ∆inj we have f =

[n]∏[m]

i∈d1 ,m−ne

∂n+i
ki

with k1< . . . < km−n by Lemma 42 and

thus f op =
[m]∏[n]

i∈bm−n ,1c

(∂n+i
ki

)op.

Therefore X̃f op = X̃(
[m]∏[n]

i∈bm−n ,1c

(∂n+i
ki

)op) =
Um∏Un

i∈bm−n ,1c

X̃((∂n+i
ki

)op) =
Um∏Un

i∈bm−n ,1c

dn+i
ki

=

Um∏Un

i∈bm−n ,1c

(X(∂n+i
ki

)op) = X(
[m]∏[n]

i∈bm−n ,1c

(∂n+i
ki

)op) = Xf op .

Hence X̃ = X.

Existence. For a morphism (f op : [m] → [n]) ∈ Mor ∆op
inj we have f op =

[m]∏[n]

i∈bm−n ,1c

(∂n+i
ki

)op with

0 6 k1< . . . < km−n 6 m and {k1, . . . , km−n} = [m] \ ([n])f , cf. Lemma 42. We want to define
a functor

X : ∆op
inj −→ C

[n] 7−→ Un for [n] ∈ Ob ∆op
inj

f op =
[m]∏[n]

i∈bm−n ,1c

(∂n+i
ki

)op 7−→
Um∏Un

i∈bm−n ,1c

dn+i
ki

for (f op : [m]→ [n]) ∈ Mor ∆op
inj .

We have to show that X is a functor. We remark that X maps identities to identities.

So suppose given composable morphisms (f op : [m] → [n]), (gop : [n] → [p]) ∈ Mor ∆op
inj . We

have to show that X(f op · gop)
!

= Xf op ·Xgop .

Let l1< . . . < ln−p denote the elements of [n] that do not appear in the image of g.

Let k1< . . . < km−n denote the elements of [m] that do not appear in the image of f .

We have g =
[p]∏[n]

i∈d1 ,n−pe

∂p+ili
and f =

[n]∏[m]

i∈d1 ,m−ne

∂n+i
ki

, cf. Lemma 42.

Hence we get gop =
[n]∏[p]

i∈bn−p ,1c

(∂p+ili
)op and f op =

[m]∏[n]

i∈bm−n ,1c

(∂n+i
ki

)op.
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Let h1< . . . <hm−p denote the elements of [m] that do not appear in the image of gf .

We have gf =
[p]∏[m]

i∈d1 ,m−pe

∂p+ihi
, cf. Lemma 42.

Hence we get f opgop =
[m]∏[p]

i∈bm−p ,1c

(∂p+ihi
)op .

So Xf op ·Xgop = (
Um∏Un

i∈bm−n ,1c

dn+i
ki

) · (
Un∏Up

i∈bn−p ,1c

dp+ili
) and X(f opgop) =

Um∏Up

i∈bm−p ,1c

dp+ihi
.

So we have to show that (
Um∏Un

i∈bm−n ,1c

dn+i
ki

) · (
Un∏Up

i∈bn−p ,1c

dp+ili
)

!
=

Um∏Up

i∈bm−p ,1c

dp+ihi
.

This we do by induction over n− p.

Base of the induction. Suppose that n− p = 0.

In this case we have g = id[n] and therefore ki = hi for i ∈ [0,m− n]. Hence

(
Um∏Un

i∈bm−n ,1c

dn+i
ki

) · idUn =
Um∏Up

i∈bm−p ,1c

dp+ihi
.

Induction step. Suppose that n− p > 1.

Let g̃ :=
[p+1]∏[n]

i∈d2 ,n−pe

∂p+ili
, so we have g = ∂p+1

l1
· g̃ . Let h̃2< . . . < h̃m−p denote the elements of

[m] that do not appear in the image of g̃f . So g̃f =
[p+1]∏[m]

i∈d2 ,m−pe

∂
[p+i]

h̃i
.

Hence gf = ∂p+1
l1
· (

[p+1]∏[m]

i∈d2 ,m−pe

∂
[p+i]

h̃i
)

By induction hypothesis we have

(
Um∏Un

i∈bm−n ,1c

dn+i
ki

) · (
Un∏Up+1

i∈bn−p ,2c

dp+ili
) =

Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

.

So we have to show that

(
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) · dp+1
l1

!
=

Um∏Up

i∈bm−p ,1c

dp+ihi
.

Let A := {i ∈ [1,m − p − 1] : h̃i+1 − i + 1 6 l1} ∪ {0} . Let a := maxA ∈ [0,m − p − 1] . So
A = [0, a].

We claim to have

(
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) · dp+1
l1

!
= (

Um∏Up+b+1

i∈bm−p ,b+2c

dp+i
h̃i

) · dp+b+1
l1+b · (

Up+b∏Up

i∈bb ,1c

dp+i
h̃i+1

)

for b ∈ [0, a] . We prove this by induction over b.

Base of the induction. Suppose that b = 0.
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Then

(
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) ·dp+1
l1

= (
Um∏Up+0+1

i∈bm−p ,0+2c

dp+i
h̃i

) ·dp+0+1
l1+0 = (

Um∏Up+b+1

i∈bm−p ,b+2c

dp+i
h̃i

) ·dp+b+1
l1+b ·(

Up+b∏Up

i∈bb ,1c

dp+i
h̃i+1

) ,

since
Up+b∏Up

i∈bb ,1c

dp+i
h̃i+1

= idUp .

Step of the induction. Suppose that b > 1.

By induction hypothesis we have

(
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) · dp+1
l1

= (
Um∏Up+b

i∈bm−p ,b+1c

dp+i
h̃i

) · dp+bl1+b−1 · (
Up+b−1

∏Up

i∈bb−1 ,1c

dp+i
h̃i+1

) .

Since b 6 a, we have b ∈ A \ {0}, hence h̃b+1 6 l1 + b− 1.

Hence we can use (∗) to get dp+b+1

h̃b+1
dp+bl1+b−1 = dp+b+1

l1+b dp+b
h̃b+1

.

Hence we have

(
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) · dp+1
l1

= (
Um∏Up+b+1

i∈bm−p ,b+2c

dp+i
h̃i

) · dp+b+1

h̃b+1
· dp+bl1+b−1 · (

Up+b−1
∏Up

i∈bb−1 ,1c

dp+i
h̃i+1

)

= (
Um∏Up+b+1

i∈bm−p ,b+2c

dp+i
h̃i

) · dp+b+1
l1+b · d

p+b

h̃b+1
· (

Up+b−1
∏Up

i∈bb−1 ,1c

dp+i
h̃i+1

)

= (
Um∏Up+b+1

i∈bm−p ,b+2c

dp+i
h̃i

) · dp+b+1
l1+b · (

Up+b∏Up

i∈bb ,1c

dp+i
h̃i+1

) .

This proves the claim.

Hence we have (
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) · dp+1
l1

= (
Um∏Ua+b+1

i∈bm−p ,a+2c

dp+i
h̃i

) · dp+a+1
l1+a · (

Up+b∏Up

i∈ba ,1c

dp+i
h̃i+1

) .

We claim that

∂p+1
l1
· (

[p+1]∏[m]

i∈d2 ,m−pe

∂p+i
h̃i

)
!

= (
[p]∏[p+b]

i∈d1 ,be

∂p+i
h̃i+1

) · ∂p+b+1
l1+b · (

[p+b+1]∏[m]

i∈db+2 ,m−pe

∂p+i
h̃i

)

for b ∈ [0, a] . We prove this by induction over b.

Base of the induction. Suppose that b = 0.

Then

∂p+1
l1
·(

[p+1]∏[m]

i∈d2 ,m−pe

∂p+i
h̃i

) = ∂p+0+1
l1+0 ·(

[p+0+1]∏[m]

i∈d0+2 ,m−pe

∂p+i
h̃i

) = (
[p]∏[p+b]

i∈d1 ,be

∂p+i
h̃i+1

)·∂p+b+1
l1+b ·(

[p+b+1]∏[m]

i∈db+2 ,m−pe

∂p+i
h̃i

) ,

since (
[p]∏[p+b]

i∈d1 ,be

∂p+i
h̃i+1

) = id[p] .

Step of the induction. Suppose that b > 1.

By induction hypothesis we have

∂p+1
l1
· (

[p+1]∏[m]

i∈d2 ,m−pe

∂p+i
h̃i

) = (
[p]∏[p+b−1]

i∈d1 ,b−1e

∂p+i
h̃i+1

) · ∂p+bl1+b−1 · (
[p+b]∏[m]

i∈db+1 ,m−pe

∂p+i
h̃i

) .
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Since b 6 a, we have b ∈ A \ {0}, hence h̃b+1 6 l1 + b− 1.

Hence we can use Remark 41 to get ∂p+bl1+b−1∂
p+b+1

h̃b+1
= ∂p+b

h̃b+1
∂p+b+1
l1+b .

Hence we have

∂p+1
l1
· (

[p+1]∏[m]

i∈d2 ,m−pe

∂p+i
h̃i

) = (
[p]∏[p+b−1]

i∈d1 ,b−1e

∂p+i
h̃i+1

) · ∂p+bl1+b−1 · ∂
p+b+1

h̃b+1
· (

[p+b+1]∏[m]

i∈db+2 ,m−pe

∂p+i
h̃i

)

= (
[p]∏[p+b−1]

i∈d1 ,b−1e

∂p+i
h̃i+1

) · ∂p+b
h̃b+1
· ∂p+b+1

l1+b · (
[p+b+1]∏[m]

i∈db+2 ,m−pe

∂p+i
h̃i

)

= (
[p]∏[p+b]

i∈d1 ,be

∂p+i
h̃i+1

) · ∂p+b+1
l1+b · (

[p+b+1]∏[m]

i∈db+2 ,m−pe

∂p+i
h̃i

) .

This proves the claim.

Hence we have gf = ∂p+1
l1
· (

[p+1]∏[m]

i∈d2 ,m−pe

∂p+i
h̃i

) = (
[p]∏[p+a]

i∈d1 ,ae

∂p+i
h̃i+1

) · ∂p+a+1
l1+a · (

[p+a+1]∏[m]

i∈da+2 ,m−pe

∂p+i
h̃i

) .

We have h̃2< . . . <h̃a+1 < l1 + a < h̃a+2< . . . < h̃m−p , which do not appear in the image of gf .

So we find that h̃i = hi for i ∈ [a+ 2,m− p] and l1 + a = ha+1 and h̃i+1 = hi for i ∈ [1, a] .

Therefore we have

(
Um∏Up+a+1

i∈bm−p ,a+2c

dp+i
h̃i

) · dp+a+1
l1+a · (

Up+a∏Up

i∈ba ,1c

dp+i
h̃i+1

) =
Um∏Up

i∈bm−p ,1c

dp+ihi

and hence

(
Um∏Up+1

i∈bm−p ,2c

dp+i
h̃i

) · dp+1
l1

=
Um∏Up

i∈bm−p ,1c

dp+ihi
,

which we had to show.

Definition 44 (Simplicial Object). Suppose given a category C.

A simplicial object in C is a functor X : ∆op → C.

A semisimplicial object in C is a functor X : ∆op
inj → C.

We write
X[n] =: Xn

and
X∂n+1

i =: dX,n+1
i or short X∂n+1

i =: di .

For a morphism f : [m]→ [n] we often write Xf op =: Xf .

Remark 45. Historically, simplicial sets were first called “complete semi-simplicial complexes”
by Eilenberg and Zilber [2, p. 508]. Later, this has been abbreviated to “simplicial sets” and
generalized to “simplicial objects” by May [3, Def. 2.1]. We allow ourselves to reuse the word
“semisimplicial” with a different meaning.

Definition 46.

(i) Suppose given simplicial objects X : ∆op → C, Y : ∆op → C and Z : ∆op → C. Suppose
given a tuple α = (αn)n>0 of morphisms (Xn

αn−→ Yn) ∈ Mor C. We call α a simplicial
morphism from X to Y if

Xf · αm = αn · Yf for ([m]
fop−−→ [n]) ∈ Mor ∆op .
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This means that a simplicial morphism is a transformation between simplicial objects.

Composition of simplicial morphisms X
α−→ Y and Y

β−→ Z is given by α ·β := (αn ·βn)n>0

and the identity morphism is given by idX = (idXn)n>0.

(ii) Suppose given semisimplicial objects X : ∆op
inj → C, Y : ∆op

inj → C and Z : ∆op
inj → C.

Suppose given a tuple α = (αn)n>0 of morphisms (Xn
αn−→ Yn) ∈ Mor C. We call α a

semisimplicial morphism from X to Y if

Xf · αm = αn · Yf for ([m]
fop−−→ [n]) ∈ Mor ∆op

inj .

This means that a semisimplicial morphism is a transformation between semisimplicial

objects. Composition of semisimplicial morphisms X
α−→ Y and Y

β−→ Z is given by
α · β := (αn · βn)n>0 and the identity morphism is given by idX = (idXn)n>0.

Definition 47. Suppose given a category C.

(1) Let Simp(C) := C∆op
be the category of simplicial objects and simplicial morphisms in C.

(2) Let SemiSimp(C) := C∆op
inj be the category of semisimplicial objects and semisimplicial

morphisms in C.



Chapter 5

From Semisimplicial to Simplicial
Objects

5.1 The forgetful functor from Simp(C) to SemiSimp(C)

The category ∆op
inj is a subcategory of ∆op with Ob ∆op = Ob ∆op

inj = {[n] : n ∈ Z>0}.

Let
I : ∆op

inj −→ ∆op

([m]
f−→ [n]) 7−→ ([m]

f−→ [n])

be the inclusion functor.

Suppose given a category C and a simplicial object X : ∆→ C in C. Then X ◦ I : ∆op
inj → C is

a semisimplicial object in C. Hence every simplicial object gives us a semisimplicial object by
restriction along I.

Definition 48. Suppose given a category C. We define a forgetful functor

VC : Simp(C) −→ SemiSimp(C)
X 7−→ X ◦ I for X ∈ Ob Simp(C)
α 7−→ α for α ∈ Mor Simp(C) .

Our goal in this chapter is to find a left adjoint functor to VC , provided C has finite coproducts.

5.2 The adjoint in case C = Set

Remark 49. Suppose given (g : [n]→ [m]) ∈ Mor ∆. Then there exist unique monotone maps
ḡ : [n] → [l] and ġ : [l] → [m] such that ḡġ = g , such that ḡ is surjective and such that ġ is
injective.

[l] $$
ġ

$$HHHHHHHHHH

[n]

ḡ
;; ;;vvvvvvvvvv

g
// [m]

34
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In particular, we have l = | Im(g)| − 1 . Alternatively, we write ġ = g•.

Lemma 50 (Construction of a simplicial set out of a semisimplicial set). Suppose given a
semisimplicial set

X : ∆op
inj → Set .

We want to construct a simplicial set, i.e. a functor

X̃ : ∆op → Set .

(i) (Construction of X̃n). Let n > 0. We define

X̃n := {(x, f) : there exists k ∈ [0, n] such that x ∈ Xk, (f : [n]→ [k]) ∈ Mor ∆ is surjective} .

(ii) (Construction of X̃g).

Let ([m]
gop−−→ [n]) ∈ Mor ∆op.

We define
X̃g : X̃m −→ X̃n

(x, ([m]
f−→ [k])) 7−→ ((x)X(gf)• , gf) .

Note that for [n]
g−→ [m]

f−→ [k] with l = | Im(gf)| − 1, we have the injective monotone
map (gf)• : [l]→ [k], so that X(gf)• is defined. We have (x)X(gf)• ∈ Xl and gf : [n]→ [l]

is surjective. Hence X̃g is welldefined.

The assignment

[n] 7→ X̃n for [n] ∈ Ob ∆op

gop 7→ X̃g for gop ∈ Mor ∆op

defines a simplicial set X̃.

Proof. We have to show that X̃ : ∆op → Set is a functor.

Note that if ([n]
f−→ [k]) ∈ Mor ∆ is surjective, we have ḟ = id[k] and f̄ = f . Hence we get

((x, f))X̃id[n]
= ((x)Xid[k]

, f) = ((x) idXk , f) = (x, f) for n > 0 and (x, ([n]
f−→ [k])) ∈ X̃n .

Hence X̃id[n]
= idX̃n for [n] ∈ Ob ∆op.

Now suppose given ([p]
h−→ [n]), ([n]

g−→ [m]) ∈ Mor ∆. We have to show X̃hg = X̃gX̃h.

So let (x, ([m]
f−→ [k])) ∈ X̃m .

Then

((x, f))X̃g · X̃h = (((x)X(gf)• , gf))X̃h = (((x)X(gf)•)X(h·gf)• , h · gf) = ((x)X(h·gf)•·(gf)• , h · gf)

and

((x, f))X̃hg = ((x)X(hgf)• , hgf) .

So we have to show that X(h·gf)•·(gf)•
!

= X(hgf)• and h · gf !
= hgf .
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Consider the following commutative diagram.

[l2]
!!

(h·gf)•

!!BBBBBBBBB

[l1]
  

(gf)•

  AAAAAAAAA

[p]

h·gf

GG GG������������������

hgf     AAAAAAAAA
h // [n]

gf
== ==||||||||||

g // [m]
f // [k]

[l3]
66

(hgf)•

66nnnnnnnnnnnnnnnnnnn

We get

hgf = h · gf · (gf)• = h · gf · (h · gf)• · (gf)•

We also have

hgf = hgf · (hgf)•

Since h · gf is surjective and (h · gf)• · (gf)• is injective, we find that l2 = l3 and h · gf = hgf
and (h · gf)• · (gf)• = (hgf)• .

Hence X(h·gf)•·(gf)• = X(hgf)• and h · gf = hgf , which we had to show.

Remark 51. For n > 0 we have an injective map ιX,n : Xn → X̃n , x 7→ (x, idn) . The tuple
ιX := (ιX,n)n>0 is a semisimplicial morphism from X to VSetX̃.

Proof. Suppose given ([n]
g−→ [m]) ∈ Mor ∆inj. We have to show that the following diagram is

commutative.

Xm

ιX,m //

Xg

��

X̃m

X̃g
��

Xn ιX,n
// X̃n

Note that we have X̃n = VSetX̃n, X̃m = VSetX̃m and X̃g = VSetX̃g.

So let x ∈ Xm.

We have (x)ιX,m · X̃g = (x, id[m])X̃g = ((x)X̃(g id[m])
• , g id[m]) = ((x)Xg, id[n]) = (x)Xg · ιX,n .

Lemma 52 (Construction of a simplicial map out of a semisimplicial map). Suppose given a
semisimplicial morphism α = (αn)n>0 : X → Y . For n > 0 we define

α̃n : X̃n −→ Ỹn

(x, ([n]
f−→ [k])) 7−→ ((x)αk , ([n]

f−→ [k])) .

Then α̃ = (α̃n)n>0 is a simplicial morphism from X̃ to Ỹ .
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Proof. Suppose given ([n]
g−→ [m]) ∈ Mor ∆. We have to show commutativity of the following

diagram.

X̃m
α̃m //

X̃g
��

Ỹm

Ỹg
��

X̃n
α̃n // Ỹn

Let (x, ([m]
f−→ [k])) ∈ X̃m.

We have ((x, f))(α̃m · Ỹg) = ((x)αk, f)Ỹg = (((x)αk)Y(gf)• , gf) = ((x)(αk · Y(gf)•), gf) .

We have ((x, f))(X̃g · α̃n) = (((x)X(gf)• , gf))α̃n = (((x)X(gf)•)αl, gf) = ((x)(X(gf)• · αl), gf) .

Since the diagram

Xk

X(gf)•

��

αk // Yk

Y(gf)•

��
Xl

αl // Yl

is commutative, we find that (x)αk · Y(gf)• = (x)X(gf)• · αl .

Hence α̃m · Ỹg = X̃g · α̃n.

Lemma 53. The assignment

FSet : SemiSimp(Set) −→ Simp(Set)

X 7−→ X̃ for X ∈ Ob SemiSimp(Set)

α 7−→ α̃ for α ∈ Mor SemiSimp(Set)

defines a functor.

Proof. Suppose given X ∈ Ob SemiSimp(Set). We have idX = (idXn)n>0. Let n > 0. Let

(x, ([n]
f−→ [k])) ∈ X̃k. Then ((x, f))ĩdXn = ((x) idk, f) = (x, f). Thus ĩdX = idX̃ . So FSet maps

identities to identities.

Suppose given (X
α−→ Y ), (Y

β−→ Z) ∈ Mor SemiSimp(Set). Let (x, ([n]
f−→ [k])) ∈ X̃k.

Then (x, f)(α̃ · β)n = ((x)(α · β)k, f) = ((x)αk · βk, f) = (((x)αk, f))β̃n = (((x, f))α̃n)β̃n

= (x, f)(α̃ · β̃)n . So α̃ · β̃ = (̃α · β).

Hence FSet is a functor.

Remark 54. The tuple ι := (ιX)X∈Ob SemiSimp(Set) , cf. Remark 51, is a transformation from
idSemiSimp(Set) to VSetFSet .

Proof. Suppose given X, Y : ∆op
inj → Set and (X

α−→ Y ) ∈ Mor SemiSimp(Set). We have to show
commutativity of the following diagram.

X
ιX //

α

��

VSetFSetX

VSetFSetα

��
Y ιY

// VSetFSetY
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This means that we have to show commutatity of the diagram

Xn

ιX,n //

αn

��

(VSetFSetX)n

(VSetFSetα)n

��
Y ιY,n

// (VSetFSetY )n

for n > 0.

So suppose given x ∈ Xn .

Then we have

(x)(ιX,n · (VSetFSetα)n) = ((x, idn))(VSetFSetα)n = ((x)αn, idn) = ((x)αn)ιY,n = (x)αn · ιY,n .

Remark 55. Suppose given X ∈ Simp(Set). For n > 0 we define a map

ηX,n : (FSetVSetX)n → Xn

(x, f : [n]→ [k]) 7→ (x)Xf .

Then ηX := (ηX,n)n>0 is a simplicial map from FSetVSetX to X.

Proof. Suppose given ([n]
g−→ [m]) ∈ Mor ∆ . We have to show commutativity of the following

diagram.

(FSetVSetX)m
ηX,m //

(FSetVSetX)g

��

Xm

Xg

��
(FSetVSetX)n ηX,n

// Xn

So let (x, f : [m]→ [k]) ∈ (FSetVSetX)n.

We have ((x, f))((FSetVSetX)g ·ηX,n) = (((x)X(gf)• , gf))ηX,n = ((x)X(gf)•)Xgf = (x)Xgf ·(gf)• =
(x)Xgf = ((x)Xf )Xg = ((x, f))(ηX,n ·Xg) .

Remark 56. The tuple η := (ηX)X∈Ob Simp(Set) is a transformation from FSetVSet to idSimp(Set) .

Proof. Suppose given X, Y : ∆op → Set and (X
α−→ Y ) ∈ Mor Simp(Set). We have to show

commutativity of the following diagram.

FSetVSetX
ηX //

FSetVSetα

��

X

α

��
FSetVSetY ηY

// Y
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This means that we have to show commutatity of the diagram

(FSetVSetX)n
ηX,n //

(FSetVSetα)n

��

Xn

αn

��
(FSetVSetY )n ηY,n

// Yn

for n > 0.

So suppose given (x, f : [n]→ [k]) ∈ (FSetVSetX)n .

Then we have

((x, f))((FSetVSetα)n · ηY,n) = (((x)αk, f))ηY,n = ((x)αk)Yf = (x)(αk · Yf )

and

((x, f))(ηX,n · αn) = ((x)Xf )αn = (x)(Xf · αn) .

Since α is a simplicial morphism we find that Xf · αn = αk · Yf . So the diagram above is
commutative.

Proposition 57. The functor

FSet : SemiSimp(Set)→ Simp(Set)

is left adjoint to the functor

VSet : Simp(Set)→ SemiSimp(Set) ,

i.e. FSet a VSet. The transformation η : FSetVSet → idSimp(Set) is a counit and the transformation
ι : idSemiSimp(Set) → VSetFSet is a unit of this adjunction.

Proof. We write F := FSet and V := VSet. We have to show commutativity of the following
diagrams.

F

idF
""DDDDDDDDDDDDD

Fι // FVF

ηF

��

V ιV //

idV
!!DDDDDDDDDDDDD VFV

Vη

��
F V

At first we show commutativity of the left diagram. This means that we have to show commu-
tativity of the diagram

FX

idFX
$$HHHHHHHHHHHHHH

FιX // FVFX

ηFX

��
FX

for X ∈ Ob SemiSimp(Set).

This means that we have to show commutativity of the diagram
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(FX)n

id(FX)n

%%KKKKKKKKKKKKKKK

(FιX)n // (FVFX)n

ηFX,n

��
(FX)n

for X ∈ Ob SemiSimp(Set) and n > 0.

So let (x, f : [n]→ [k]) ∈ (FX)n.

We have ((x, f))((FιX)n · ηFX,n) = (((x, id[k]), f))ηFX,n = ((x, id[k]))(FX)f =

((x)X(f id[k])
• , f id[k]) = ((x)Xid[k]

, f) = (x, f) = ((x, f)) id(FX)n .

Hence the left diagram is commutative.

Now we show that the right diagram is commutative. As in the previous case this means that
we have to show commutativity of the diagram

(VX)n
ιVX,n //

id(VX)n

%%JJJJJJJJJJJJJJJ
(VFVX)n

(VηX)n

��
(VX)n

for X ∈ Ob Simp(Set) and n > 0.

So let x ∈ (VX)n.

We have (x)(ιVX,n ·(VηX)n) = ((x, id[n]))(VηX)n = ((x, id[n]))ηX,n = (x)Xid[n]
= x = (x) id(VX)n .

Hence the right diagram is commutative.

5.3 The adjoint for general C

In the previous section 5.2 we had

FSet(Xn) =
⊔

(f :[n]→[k])∈surj

Xk

for n > 0 and X ∈ Ob SemiSimp(Set). This can be generalized by using coproducts, cf.
Example 16.

Suppose given a category C that has finite coproducts.

Lemma 58 (Construction of a simplicial object out of a semisimplicial object). Suppose given
a semisimplicial object

X : ∆op
inj → C

in C. We want to construct a simplicial object, i.e. a functor

X̃ : ∆op → C .
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(i) (Construction of X̃n). Let n > 0.

We define X̃n :=
∐

([n]
f−→[k])∈surj

Xk .

Then for ([n]
g−→ [j]) ∈ surj we have morphisms iX,n,g : Xj → X̃n =

∐
([n]

f−→[k])∈surj

Xk such

that the following universal property holds.

Given C ∈ Ob C and morphisms (Xk

µf−→ C)(f :[n]→[k])∈surj there exists a unique morphism

X̃n =
∐

([n]
f−→[k])∈surj

Xk
µ−→ C such that for ([n]

g−→ [j]) ∈ surj the diagram

X̃n =
∐

([n]
f−→[k])∈surj

Xk
µ //____ C

Xj

iX,n,g

OO
µg

::uuuuuuuuuuuuuuuuuuu

commutes.

(ii) (Construction of X̃g).

Let ([m]
gop−−→ [n]) ∈ Mor ∆op. Let ([m]

f−→ [k]) ∈ surj.

We have ([n]
gf−→ [k]) = ([n]

gf−→ [l])·([l] (gf)•−−−→ [k]), where [l] = | Im(gf)−1|, cf. Remark 49.

Then we have a unique morphism X̃g : X̃m → X̃n that makes the following diagram

commute for ([m]
f−→ [k]) ∈ surj.

X̃m
X̃g //______ X̃n

Xk

X(gf)• //

iX,m,f

OO

Xl

iX,n,gf

OO

The assignment

[n] 7→ X̃n for [n] ∈ Ob ∆op

gop 7→ X̃g for gop ∈ Mor ∆op

defines a simplicial object X̃ in C.

Proof. We have to show that X̃ : ∆op → C is a functor.

Consider the case g = id[n]. For ([n]
f−→ [k]) ∈ surj we have (id[n] ·f)• = id[k] and id[n] ·f = f .

Hence we have X(id[n] ·f)• = Xid[k]
= idXk and iX,n,id[n] ·f = iX,n,f . The following diagram

commutes.

X̃n

idX̃n //____ X̃n

Xk

idXk //

iX,n,f

OO

Xk

iX,n,f

OO
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Using the universal property of the coproduct we find that X̃id[n]
= idX̃n for [n] ∈ Ob ∆op.

Now suppose given ([p]
h−→ [n]), ([n]

g−→ [m]) ∈ Mor ∆. We have to show X̃hg = X̃gX̃h.

For an arbitrary morphism ([m]
f−→ [k]) ∈ surj we have commutativity of the following diagram.

[l2]
!!

(h·gf)•

!!BBBBBBBBB

[l1]
  

(gf)•

  AAAAAAAAA

[p]

h·gf

GG GG������������������

hgf     AAAAAAAAA
h // [n]

gf
== ==||||||||||

g // [m]
f // [k]

[l3]
66

(hgf)•

66nnnnnnnnnnnnnnnnnnn

So we get X(gf)• ·X(h·gf)• = X(h·gf)•·(gf)• = X(hgf)• and h · gf = hgf .

Also the diagram

X̃m
X̃g // X̃n

X̃h // X̃p

Xk X(gf)•
//

iX,m,f

OO

Xl1

iX,n,gf

OO

X(h·gf)•
// Xl2

i
X,p,h·gf

OO

is commutative.

So we find that the following diagrams are both commutative.

X̃m
X̃g ·X̃h // X̃p X̃m

X̃hg // X̃p

Xk X(hgf)•
//

iX,m,f

OO

Xl3

iX,p,hgf

OO

Xk X(hgf)•
//

iX,m,f

OO

Xl3

iX,p,hgf

OO

Using the universal property of the coproduct we find that X̃hg = X̃g · X̃h .

Lemma 59 (Construction of a simplicial morphism out of a semisimplicial morphism).
Suppose given a semisimplicial morphism α = (αn)n>0 : X → Y . Let n > 0. We de-
fine α̃n,f := αk · in,f . There exists a unique morphism α̃n : X̃n → Ỹn such that for
(f : [n]→ [k]) ∈ surj the following diagram is commutative.

X̃n
α̃n // Ỹn

Xk

iX,n,f

OO

αk
// Yk

iY,n,f

OO



43

We define α̃ := (α̃n)n>0. Then α̃ is a simplicial morphism from X̃ to Ỹ .

Proof. Suppose given ([n]
g−→ [m]) ∈ Mor ∆. We have to show commutativity of the following

diagram.

X̃m
α̃m //

X̃g
��

Ỹm

Ỹg
��

X̃n
α̃n // Ỹn

Let ([m]
f−→ [k]) ∈ surj. We have ([n]

gf−→ [k]) = ([n]
gf−→ [l]) · ([l] (gf)•−−−→ [k]).

Except for X̃m
α̃m //

X̃g
��

Ỹm

Ỹg
��

X̃n
α̃n // Ỹn

, we have commutativity of every quadrangle in the following diagram

Ỹm
Ỹg // Ỹn

X̃m

α̃m

>>}}}}}}}}}}}}}}
X̃g // X̃n

α̃n

??~~~~~~~~~~~~~~

Yk
Y(gf)• //

iY,m,f

OO

Yl

iY,n,gf

OO

Xk

αk

>>||||||||||||||

X(gf)•
//

iX,m,f

OO

Xl

αl

>>}}}}}}}}}}}}}}

iX,n,gf

OO

So we get iX,m,f · α̃m · Ỹg = iX,m,f · X̃g · α̃n.

So the diagrams

X̃m
α̃m·Ỹg // Ỹn X̃m

X̃g ·α̃n // Ỹn

Xk

iX,m,f ·α̃m·Ỹg

88qqqqqqqqqqqqq

iX,m,f

OO

Xk

iX,m,f ·α̃m·Ỹg

88qqqqqqqqqqqqq

iX,m,f

OO

are both commutative for ([m]
f−→ [k]) ∈ surj.

Using the universal property of the coproduct we get α̃m · Ỹg = X̃g · α̃n.

Lemma 60. The assignment

FC : SemiSimp(C) −→ Simp(C)
X 7−→ X̃ for X ∈ Ob SemiSimp(C)
α 7−→ α̃ for α ∈ Mor SemiSimp(C)
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defines a functor.

Proof. Suppose given X ∈ Ob SemiSimp(C). We have idX = (idXn)n>0. Let n > 0. The
diagram

X̃n

idX̃n // X̃n

Xk idXk

//

iX,n,f

OO

Xk

iX,n,f

OO

is commutative for ([n]
f−→ [k]) ∈ surj. Thus ĩdX = idX̃ . So FC maps identities to identities.

Suppose given (X
α−→ Y ), (Y

β−→ Z) ∈ Mor SemiSimp(C).

We have commutativity of the following diagrams for ([n]
f−→ [k]) ∈ surj.

X̃n
α̃n // Ỹn

β̃n // Z̃n X̃n

(̃α·β)n // Z̃n

Xk αk
//

iX,n,f

OO

Yk

iY,n,f

OO

βk
// Zk

iZ,n,f

OO

Xk αk·βk
//

iX,n,f

OO

Zk

iZ,n,f

OO

Using the universal property of the coproduct we find that α̃n · β̃n = (̃α · β)n. So altogether

α̃ · β̃ = (̃α · β).

Hence FC is a functor.

Remark 61. Suppose given X ∈ Ob Simp(C). Let ιX,n := iX,n,id[n]
: Xn → X̃n = (VCFCX)n

for n > 0. The tuple ιX := (ιX,n,)n>0 is a semisimplicial morphism from X to VCFCX.

Proof. Suppose given ([n]
g−→ [m]) ∈ Mor ∆inj. Note that we have X̃n = (VCFCX)n , X̃m =

(VCFCX)m and X̃g = (VCFCX)g. We have to show that the following diagram is commutative.

Xm

ιX,m //

Xg

��

X̃m

X̃g
��

Xn ιX,n
// X̃n

But by Lemma 58 (ii), we have commutativity of the diagram

Xm

iX,m,id[m] //

X(g·id[m])
•

��

X̃m

X̃g
��

Xn iX,n,g·id[m]

// X̃n

and we have g · id[m] = id[n] and (g · id[m])
• = g and ιX,m = iX,m,id[m]

and ιX,n = iX,n,id[n]
.

Remark 62. The tuple ι := (ιX)X∈Ob SemiSimp(C) is a transformation from idSemiSimp(C) to VCFC .
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Proof. Suppose given functors X, Y : ∆op
inj → C and (X

α−→ Y ) ∈ Mor SemiSimp(C). We have to
show commutativity of the following diagram.

X
ιX //

α

��

VCFCX

VCFCα

��
Y ιY

// VCFCY

This means that we have to show commutatity of the diagram

Xn

ιX,n //

αn

��

(VCFCX)n

(VCFCα)n

��
Yn ιY,n

// (VCFCY )n

for n > 0.

Since id[n] is surjective, Lemma 58 gives the commutativity of the diagram

Xn

iX,n,id[n] //

αn

��

X̃n

α̃n

��

Yn iY,n,id[n]

// Ỹn

and also we have (VCFCX)n = X̃n , (VCFCY )n = Ỹn , ιX,n = iX,n,id[n]
and ιY,n = iY,n,id[n]

.

Remark 63. Suppose given X ∈ Ob Simp(C). For n > 0 there exists a unique morphism
ηX,n : (FCVCX)n → Xn that makes the diagram

(FCVCX)n
ηX,n // Xn

Xk

iVCX,n,f

OO

Xf

;;wwwwwwwwwwwwwwwwww

commutative for ([n]
f−→ [k]) ∈ surj, cf. Lemma 58 (i). Note that we used that (VCX)k = Xk .

Then ηX := (ηX,n)n>0 is a simplicial map from FCVCX to X.

Proof. Suppose given ([n]
g−→ [m]) ∈ Mor ∆ . We have to show commutativity of the following
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diagram.

(FCVCX)m
ηX,m //

(FCVCX)g

��

Xm

Xg

��
(FCVCX)n ηX,n

// Xn

Suppose given ([m]
f−→ [k]) ∈ surj. We have ([n]

gf−→ [k]) = ([n]
gf−→ [l]) · ([l] (gf)•−−−→ [k]) for some

l > 0.

The following diagrams are commutative, cf. Lemma 58 (ii).

(FCVCX)m
(FCVCX)g // (FCVCX)n

ηX,n // Xn (FCVCX)m
ηX,m // Xm

Xk

iVCX,m,f

OO

X(gf)•
// Xl

iVCX,n,gf

OO

Xgf

;;wwwwwwwwwwwwwwwwwww
Xk

iVCX,m,f

OO

Xf

;;vvvvvvvvvvvvvvvvvvv

So we have

iVCX,m,f · (FCVCX)g · ηX,n = X(gf)• ·Xgf = Xgf ·(gf)• = Xgf = Xf ·Xg = iVCX,m,f · ηX,m ·Xg

for ([m]
f−→ [k]) ∈ surj.

So the diagrams

(FCVCX)m
(FCVCX)g ·ηX,n // Xn

Xk

Xgf

88qqqqqqqqqqqqqqqqqqqqqqqq

iVCX,m,f

OO
(FCVCX)m

ηX,m·Xg // Xn

Xk

Xgf

99ttttttttttttttttttttt

iVCX,m,f

OO

are both commutative for ([m]
f−→ [k]) ∈ surj.

Using the universal property of the coproduct we find that (FCVCX)g · ηX,n = ηX,m ·Xg .

Remark 64. The tuple η := (ηX)X∈Ob Simp(C) is a transformation from FCVC to idSimp(C) .

Proof. Suppose given functors X, Y : ∆op → C and (X
α−→ Y ) ∈ Mor Simp(C). We have to show

commutativity of the following diagram.

FCVCX
ηX //

FCVCα

��

X

α

��
FCVCY ηY

// Y
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This means that we have to show commutatity of the diagram

(FCVCX)n
ηX,n //

(FCVCα)n

��

Xn

αn

��
(FCVCY )n ηY,n

// Yn

for n > 0.

The following diagram commutes for ([n]
f−→ [k]) ∈ surj, cf. Remark 63, Lemma 59.

(FCVCX)n

(FCVCα)n

��

ηX,n // Xn

αn

��

Xk

iVCX,n,f

ccGGGGGGGGGGGGGGGGGG

Xf

>>}}}}}}}}}}}}}}}}

αk

��
Yk

iVCY,n,f

{{wwwwwwwwwwwwwwwwww

Yf

  AAAAAAAAAAAAAAAA

(FCVCY )n ηY,n
// Yn

So we get iVCX,n,f · (FCVCα)n · ηY,n = αk · Yf = iVCX,n,f · ηX,n · αn for ([n]
f−→ [k]) ∈ surj.

So the diagrams

(FCVCX)n
(FCVCα)n·ηY,n // Yn

Xk

αk·Yf

88rrrrrrrrrrrrrrrrrrrrrrrr

iVCX,n,f

OO
(FCVCX)n

ηX,n·αn // Yn

Xk

αk·Yf

88rrrrrrrrrrrrrrrrrrrrrrrr

iVCX,n,f

OO

are both commutative for ([m]
f−→ [k]) ∈ surj.

Using the universal property of the coproduct we find that (FCVCα)n · ηY,n = ηX,n · αn .

Proposition 65. The functor

FC : SemiSimp(C)→ Simp(C)

is left adjoint to the functor

VC : Simp(C)→ SemiSimp(C) ,
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i.e. FC a VC. The transformation η : FCVC → idSimp(C) is a counit and the transformation
ι : idSemiSimp(C) → VCFC is a unit of this adjunction.

Proof. We write F := FC and V := VC. We have to show commutativity of the following
diagrams.

F

idF
""DDDDDDDDDDDDD

Fι // FVF

ηF

��

V ιV //

idV
!!DDDDDDDDDDDDD VFV

Vη

��
F V

At first we show commutativity of the left diagram. This means that we have to show commu-
tativity of the diagram

FX

idFX
$$HHHHHHHHHHHHHH

FιX // FVFX

ηFX

��
FX

for X ∈ Ob SemiSimp(C).

This means that we have to show commutativity of the diagram

(FX)n

id(FX)n

%%KKKKKKKKKKKKKKK

(FιX)n // (FVFX)n

ηFX,n

��
(FX)n

for X ∈ Ob SemiSimp(C) and n > 0.

We have commutativity of the following diagram for ([n]
f−→ [k]) ∈ surj.

Xk

iX,n,f

zzuuuuuuuuuuuuuuuuuuuu

X(f ·id[k])
•

//

iX,k,id[k]

��

Xk

iX,n,f ·id[k]

��
(FX)n

(FιX)n

$$IIIIIIIIIIIIIIIIIII
(VFX)k

(FX)f //

iVFX,n,f

��

(FX)n

(FVFX)n

ηFX,n

::uuuuuuuuuuuuuuuuuuu

Therefore we have iX,n,f · (FιX)n · ηFX,n = X(f ·id[k])
• · iX,n,f ·id[k]

= Xid[k]
· iX,n,f = idXk ·iX,n,f for

([n]
f−→ [k]) ∈ surj.



49

So we find that the diagrams

(FX)n
(FιX)n·ηFX,n// (FX)n

Xk

iX,n,f

OO

idXk

// Xk

iX,n,f

OO
(FX)n

id(FX)n // (FX)n

Xk

iX,n,f

OO

idXk

// Xk

iX,n,f

OO

are both commutative for ([n]
f−→ [k]) ∈ surj.

Using the universal property of the coproduct we find that (FιX)n · ηFX,n = id(FX)n .

Hence the left diagram is commutative.

Now we show that the right diagram is commutative. As in the previous case this means that
we have to show commutativity of the diagram

(VX)n
ιVX,n //

id(VX)n

%%JJJJJJJJJJJJJJJ
(VFVX)n

(VηX)n

��
(VX)n

for X ∈ Ob Simp(C) and n > 0.

But we have commutativity of the following diagram.

Xn

iVX,n,id[n] //

Xid[n]
##GGGGGGGGGGGGGG (FVX)n

ηX,n

��
Xn

Since ιVX,n = iVX,n,id[n]
, Xid[n]

= idXn = id(VX)n and ηX,n = (VηX)n we find that id(VX)n =
ιVX,n · (VηX)n .

Hence the right diagram is commutative.



Chapter 6

Simplicial Resolutions

Suppose given a category C that has finite limits and finite coproducts. Suppose given a
resolving subcategory P in C, closed under finite coproducts.

Definition 66. Let X ∈ Ob C.

Let ((Pn)n>0, ((d
n
i )i∈[0,n])n>1) be a semisimplicial resolution of X, cf. Definition 36.

We have dnj d
n−1
i = dni d

n−1
j−1 for n > 2 and 0 6 i < j 6 n, cf. Remark 37.

Thus there exists a unique functor
R : ∆op

inj → C

such that R[n] = Pn for n ∈ Z>0 and R((∂ni )op) = dni for n ∈ Z>1 and i ∈ [0, n], cf. Proposi-
tion 43. So

R ∈ SemiSimp(C),

i.e. R is a semisimplicial object in C.

We apply the functor
FC : SemiSimp(C)→ Simp(C),

cf. Lemma 60. We call
FCR ∈ Simp(C)

a simplicial resolution of X.

Example 67. Let P ∈ ObP . A semisimplicial resolution of P is given by

((Pn)n>0, ((d
n
i )i∈[0,n])n>1) = ((P )n>0, ((idP )i∈[0,n])n>1),

cf. Example 38. So the semisimplicial resolution yields in this case the constant functor

X : ∆op
inj → C

[n] 7→ P for [n] ∈ Ob ∆op
inj

f 7→ idP for f ∈ Mor ∆op
inj

as semisimplicial object, i.e. X ∈ Ob SemiSimp(C). Let X̃ := FCX ∈ Ob Simp(C).

Then for [n] ∈ Ob ∆op we have X̃n =
∐

([n]
f−→[k])∈surj

P , cf. Lemma 58 (i).

50
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Claim. For n > 0 there are exactly 2n morphisms in surj having source [n]. This we can show
by induction over n.

Base of the induction. Suppose that n = 0. The only surjective morphism in ∆ with source [0]
is id[0].

Step of the induction. Suppose that n > 1.

Let S[n] be the set of all morphisms in ∆ starting in [n]. Let S ′[n] := {f ∈ S[n] : (n−1)f = (n)f}
and S ′′[n] := {f ∈ S[n] : (n− 1)f = (n)f − 1} .

Then S[n] = S ′[n]∪̇S ′′[n].

We have the following bijections.

S ′[n] −→ S[n−1]

f 7→ f |[n−1]{
i 7→ (i)g for i ∈ [n− 1]

n 7→ (n− 1)g
←[ g

S ′′[n] −→ S[n−1]

f 7→ f |[| Im(f)|−2]
[n−1]{

i 7→ (i)g for i ∈ [n− 1]

n 7→ (n− 1)g + 1
← [ g

So we find that |S[n]| = |S ′[n]|+ |S ′′[n]| = 2|S[n−1]|
ind. hyp.

= 2 · 2n−1 = 2n. This proves the claim.

So we have X̃n =
∐

i∈[1,2n]

P for n > 0.

Example 68. Consider the case C = Grp and P = FreeGrp ; cf. Remark 32. The subcategory
P is closed under finite coproducts in C ; cf. Example 21.

Recall that in Example 39 we regarded the first steps in the semisimplicial resolution of the
group Z/nZ. We got a functor X : ∆op

inj → Grp with X0 = Z, X1 = F2 and X2 = Free(L).

Let X̃ := FGrpX, which is a simplicial resolution of Z/nZ; cf. Definition 66.

We want to calculate X̃0, X̃1 and X̃2 up to isomorphism. We remark that by Lemma 20 the
coproduct in the category of groups is the free product, written (∗).

X0: The only surjective morphism in ∆ starting in [0] is id[0]. So we get X̃0 = Z.

X1: We have the surjective morphisms c1 : [1]→ [0] and id[1]. So we get X̃1 = Z ∗ F2, which is
isomorphic to the free group generated by three elements.

X2: We have the surjective morphisms c2 : [2]→ [0], s0 : [2]→ [1], 1 7→ 0, s1 : [2]→ [1], 1 7→ 1
and id[2]. So we get X̃2 = Z ∗ F2 ∗ F2 ∗ Free(L).

Example 69. We may let C be a model category and P := Ccof ; cf. Definition 33, Remark 34.

In fact, given X, Y ∈ ObP , the pushout

I //

��

X

��
Y // X t Y
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shows that the coproduct X t Y is a cofibrant object.

So P is closed under finite coproducts in C.

In conclusion, each object of C has a simplicial object in P = Ccof as simplicial resolution; cf.
Definition 66.

Example 70. We may let C be a model category and P := Cac,cof ; cf. Definition 33, Remark 35.

In fact, given X, Y ∈ ObP , the pushout

I //

��

X

��
Y // X t Y

shows that the coproduct X t Y is an acyclic cofibrant object.

So P is closed under finite coproducts in C.

In conclusion, each object of C has a simplicial object in P = Cac,cof as simplicial resolution; cf.
Definition 66.
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Zusammenfassung

Sei C eine Kategorie mit

(1) endlichen Limiten und

(2) einer auflösenden Unterkategorie P .

Dabei ist eine auflösende Unterkategorie eine volle Teilkategorie, deren Objekte Eigenschaften
haben, die die Eigenschaften der projektiven Moduln in einer Modulkategorie verallgemeinern.

Beispiele für P ⊆ C sind die freien Gruppen in den Gruppen und kofasernde Objekte in Modell-
kategorien.

Wir zeigen, dass aufgrund von (1) in C simpliziale Kerne existieren, d.h. zu einem Tupel von

Morphismen (X
fi−→ Y )i∈[0,n] existiert ein universelles Tupel (K

ki−→ X)i∈[0,n+1] so, dass für
0 6 i < j 6 n+ 1 gilt:

(3) kjfi = kifj−1

Wir können ein Objekt X ∈ Ob C semisimplizial auflösen durch schrittweise Konstruktion
eines Diagramms der Form

. . . P2

f2

55555555

��55555555

d20 ))

d22

55d21
// P1

f1

55555555

��55555555

d10 ,,
d11

22 P0
f0 // X

K2

k20

;;

k22

LL

k21								

DD								

K1

k10

??

k11

HH ,

wobei Pi
fi−→ Ki eine Auflösung ist und wobei Ki ein simplizialer Kern des Diagramms aus Pi,

Pi−1 und den zwischenliegenden Morphismen ist.

Sei nun ∆ die Simplexkategorie, die als Objekte endliche Intervalle und als Morphismen mono-
tone Abbildungen hat. Sei darin ∆inj die Teilkategorie aus injektiven monotonen Abbildungen.
Ein kontravarianter Funktor von ∆inj nach C heißt dann semisimpliziales Objekt in C. Ein
kontravarianter Funktor von ∆ nach C heißt dann simpliziales Objekt in C.

Die Relation (3) führt dazu, dass wir aus dem konstruierten Diagramm ein semisimpliziales
Objekt erhalten, eine semisimpliziale Auflösung von X.

Um daraus ein simpliziales Objekt zu erhalten, konstruieren wir den zum Vergissfunktor
linksadjungierten Funktor, der aus einem semisimplizialen ein simpliziales Objekt macht.

Anwendung dieses Funktors auf diese semisimpliziale Auflösung von X liefert eine simpliziale
Auflösung von X wie gesucht.
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