Algebra für Lehramt, SoSe 22

Blatt 2

Aufgabe 5 Sei K ein Körper. Sei S ein Ring, in welchem $0_S \neq 1_S$ ist. Sei $\varphi: K \to S$ ein Ringmorphismus. Man zeige folgende Aussagen.

- (1) Es gibt in K nur die Ideale 0 und K.
 - (a) Man zeige dies ohne Verwendung einer Aussage über maximale Ideale.
 - (b) Man zeige dies unter Verwendung einer Aussage über maximale Ideale.
- (2) Es ist $Kern(\varphi) = 0$.
- (3) Es ist φ injektiv.

Aufgabe 6

(1) Man zeige: Es ist

$$\varphi: \mathbb{Z}/21\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$$
 $a+21\mathbb{Z} \mapsto (a+3\mathbb{Z}, a+7\mathbb{Z})$

ein Ringisomorphismus.

Man bestimme Urbilder von $(1+3\mathbb{Z}, 0+7\mathbb{Z})$ und von $(0+3\mathbb{Z}, 1+7\mathbb{Z})$.

Man bestimme eine Abbildungsvorschrift für die Umkehrabbildung φ^{-1} .

- (2) Man bestimme einen Ringisomorphismus φ von $\mathbb{Z}/120\mathbb{Z}$ nach $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. Man bestimme eine Abbildungsvorschrift für φ^{-1} .
- (3) Man bestimme einen Ringisomorphismus φ von $\mathbb{Q}[X]/(X^2 X)\mathbb{Q}[X]$ nach $\mathbb{Q}[X]/X\mathbb{Q}[X] \times \mathbb{Q}[X]/(X-1)\mathbb{Q}[X]$.
- (4) Man bestimme einen Ringisomorphismus ψ von $\mathbb{Q}[X]/(X^2 X)\mathbb{Q}[X]$ nach $\mathbb{Q} \times \mathbb{Q}$. Man bestimme eine Abbildungsvorschrift für ψ^{-1} .

Aufgabe 7 Man finde jeweils ein $a \in \mathbb{Z}_{\geq 0}$, für welches die Gleichung gilt (unter (3): beide Gleichungen gelten).

$$(1) 12\mathbb{Z} \cap 30\mathbb{Z} = a\mathbb{Z}$$

(3)
$$6\mathbb{Z} \cap a\mathbb{Z} = 18\mathbb{Z}$$
 und $6\mathbb{Z} + a\mathbb{Z} = 3\mathbb{Z}$

$$(2) 12\mathbb{Z} + 30\mathbb{Z} = a\mathbb{Z}$$

$$(4) 108\mathbb{Z} + (54\mathbb{Z} \cap 12\mathbb{Z}) = a\mathbb{Z}$$

Aufgabe 8 Wir betrachten den Ringmorphismus

$$\varphi: \mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$$
 $a \mapsto (a+4\mathbb{Z}, a+6\mathbb{Z})$

- (1) Man bestimme ein Element in $(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}) \setminus \varphi(\mathbb{Z})$.
- (2) Man bestimme ein $k \in \mathbb{Z}_{\geq 0}$ mit $k\mathbb{Z} = \text{Kern}(\varphi)$.
- (3) Man gebe die Charakteristik $\operatorname{char}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z})$ an.
- (4) Unter Verwendung des Homomorphiesatzes bestimme man $|\varphi(\mathbb{Z})|$, d.h. die Anzahl der Elemente im Bild von φ .

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/alg22/