Scheinklausur	Algebra für Lehramt	Montag 25.07.2022
Aufgabe 9 (2 Punkte)		
Man gebe bis auf Isomorphi	e alle abelschen Gruppen der Ordnung 1	125 an:
Aufgabe 10 (3 Punkte)		
Wir betrachten die Elemente	$e 6 - 3i$ und $3 + i$ in $\mathbb{Z}[i]$.	
(a) Man bestimme $q, r \in$	$\mathbb{Z}[i]$ mit $6 - 3i = (3 + i) \cdot q + r$ und mit	$ r ^2 < 3 + i ^2$.
q =	r =	
1		
(b) Man bestimme einen g	größten gemeinsamen Teiler g von $6-3i$	und $3 + i$ in $\mathbb{Z}[i]$.
g =		
Aufgabe 11 (4 Punkte)		
Sei $U := \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} : a \in \mathbb{F}_3 \} \subseteq$	$\operatorname{GL}_2(\mathbb{F}_3) =: G.$	
(*)		
(a) Es ist $ G =$		
(b) Für $a, b \in \mathbb{F}_3$ ist $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$	$(1b)^{-1}$	h jot $U < C$
(b) Full $a, b \in \mathbb{F}_3$ list $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$	$\left(\begin{array}{c} 0 \end{array}\right) \cdot \left(\begin{array}{c} 0 \end{array}\right) = \left[\begin{array}{c} 0 \end{array}\right]$	h ist $U \leqslant G$.
(c) Es ist $ U =$		
(d) Cai W < C it W = 3	One or hand Cily as aire and Commit all I	/2 D 1 C:-
(d) Set $V \leqslant G$ mit $ V = 3$	3 gegeben. Gibt es ein $g \in G$ mit $gU = V$	Begrunden Sie.

Künzer, Truong	Montag 25.07.202
Runzer, muong	Wiontag 25.01.202

	1	
Name,	Matrikel-	
Vorname:	Nummer:	
	•	

Aufgabe	1	2	3	4	5	6	7	8	9	10	11	Summe	Note
Punkte	/3	/3	/2	/2	/2	/3	/4	/2	/2	/3	/4	/ 30	

Algebra für Lehramt

Scheinklausur

Beachten Sie die folgenden Hinweise:

• Bearbeitungszeit: 90 Minuten

- Erlaubte Hilfsmittel: Vier eigenhändig handbeschriebene Seiten DIN A4.
- Wer den Klausurraum vor Ende der Bearbeitungszeit endgültig verlässt, hat damit zu rechnen, dass seine Klausur als nicht bestanden gewertet wird.
- $\bullet\,$ Eintragungen mit Bleistift oder Rotstift sind unerwünscht.
- Die Ergebnisse sind in die vorgesehenen Kästen einzutragen.
 Begründungen sind nur anzugeben, falls in der Aufgabe verlangt.
 Nebenrechnungen werden nicht gewertet und daher auch nicht eingesammelt.

Viel Erfolg!

Aufgabe 1 (3 Punkte)

(a) Man bestimme ein $x \in \mathbb{Z}/9\mathbb{Z}$ mit $x \neq 1$ und $x^3 =$	(a)	Man	bestimme	$e \sin x$	$\in \mathbb{Z}/9\mathbb{Z}$	$mit x \neq 1$	$1 \text{ und } x^3$	= 1
--	-----	-----	----------	------------	------------------------------	----------------	----------------------	-----

$$x =$$

(b) Man berechne:
$$v_3(36) =$$

(c) Man bestimme ein $a \in \mathbb{Z}$ mit $4\mathbb{Z} \cap a\mathbb{Z} = 12\mathbb{Z}$ und $4\mathbb{Z} + a\mathbb{Z} = \mathbb{Z}$.

$$a =$$

Aufgabe 2 (3 Punkte)

Man bestimme $a, b, c \in \mathbb{F}_3$ mit

$$\frac{1}{X^3 - X} = \frac{a}{X} + \frac{b}{X - 1} + \frac{c}{X + 1} \in \mathbb{F}_3(X) .$$

$$a =$$

$$b =$$

$$c =$$

Aufgabe 3 (2 Punkte)

Wir betrachten das Ideal $I := (X^2 - Y, X - Y^2) \subseteq \mathbb{Q}[X, Y].$

Ist $X^3 - Y^3 \in I$? Man begründe:

Aufgabe 4 (2 Punkte)

Sei $A = \binom{2\,1}{0\,4} \in \mathbb{Z}^{2\times 2}$. Man bestimme eine Matrix $D \in \mathbb{Z}^{2\times 2}$ in Elementarteilerform, für welche es $S, T \in \mathrm{GL}_2(\mathbb{Z})$ gibt mit SAT = D.

$$D =$$

Aufgabe 5 (2 Punkte)

(a) Man gebe einen Hauptidealbereich R an, der kein Körper ist.

$$R =$$

(b) Man gebe einen Integritätsbereich S an, der kein Hauptidealbereich ist.

$$S =$$

Aufgabe 6 (3 Punkte)

Scheinklausur

(a) Sei $f := (1, 2, 3, 4) \in S_4$.

Man bestimme die Untergruppe $U:=\langle\ f\ \rangle\leqslant \mathcal{S}_4$ durch Angabe ihrer Elemente.

$$U = \left\{ \begin{array}{c} \\ \end{array} \right.$$

(b) Man bestimme ein Element $g \in S_4$ mit ${}^g f = f^3$.

$$g =$$

Aufgabe 7 (4 Punkte)

Man zeige oder widerlege die angegebene Aussage.

(a) Sei G eine Gruppe. Sei $N \leq G$. Sei N zyklisch. Sei G/N zyklisch. Dann ist G zyklisch.

(b) Sei G eine Gruppe. Seien $a, b \in \mathbb{Z}_{\geqslant 1}$. Sei $g \in G$ ein Element mit $|\langle g \rangle| = ab$. Dann ist $|\langle g^a \rangle| = b$.

Aufgabe 8 (2 Punkte)

Sei G eine Gruppe mit |G| = 72.

Dann ist $|\operatorname{Syl}_3(G)| =$ oder $|\operatorname{Syl}_3(G)| =$