Algebra für Lehramt, SoSe 20

Blatt 1

Aufgabe 1 Man zeige oder widerlege.

Sei R ein Ring. Sei $x \in R$. Wir schreiben $1 = 1_R$.

- (1) Es ist $x \cdot 0 = 0$.
- (2) Es ist $(-1) \cdot x = -x$.
- (3) Ist $x^2 = 0$, dann ist x = 0.
- (4) Ist $x^2 = 1$, dann ist $x \in \{1, -1\}$.

Aufgabe 2 Sei R ein Ring.

- (1) Sei R kommutativ. Man zeige die Eigenschaft (Ring 5) für den Polynomring R[X].
- (2) Sei $I \leq R$. Man zeige die Eigenschaft (Ring 7) für den Faktorring R/I.

Aufgabe 3

- (1) Seien R und S Ringe. Sei $f:R\to S$ ein Ringisomorphismus. Man zeige: Es ist $f^{-1}:S\to R$ ein Ringisomorphismus.
- (2) Sind $\mathbb{Z}/4\mathbb{Z}$ und $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ isomorph?
- (3) Sind $\mathbb{Z}/6\mathbb{Z}$ und $(\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ isomorph?

Aufgabe 4

- (1) Hat $X^4 + \frac{1}{2}X + 1 \in \mathbb{Q}[X]$ eine Nullstelle in \mathbb{Q} ? Zerfällt es in $\mathbb{Q}[X]$ in ein Produkt zweier normierter Faktoren von Grad 2?
- (2) Gibt es ein $f(X) \in \mathbb{Q}[X]$ ohne Nullstelle in \mathbb{Q} , das in $\mathbb{Q}[X]$ in ein Produkt zweier Faktoren von Grad ≥ 1 zerfällt?
- (3) Gibt es ein $f(X) \in \mathbb{Q}[X]$ ohne Nullstelle in \mathbb{Q} , das in $\mathbb{Q}[X]$ in ein Produkt zweier Faktoren von Grad 3 zerfällt?

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/alg20/