M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 8

Problem 19 Let \mathcal{Z} be a grading category.

(1) Let $\tilde{V} = (\tilde{V}, \tilde{\Delta})$ and $V = (V, \Delta)$ be coalgebras over \mathcal{Z} . Let $\tilde{V} \xrightarrow{f} V$ be a morphism of coalgebras.

Suppose that f is piecewise bijective.

Show that f is an *isomorphism* of coalgebras, i.e. that there exists a morphism of coalgebras $\tilde{V} \xleftarrow{g} V$ such that $fg = \mathrm{id}_{\tilde{V}}$ and $gf = \mathrm{id}_{V}$.

Then g is uniquely determined and written $f^- := g$.

(2) Let $\tilde{V} = (\tilde{V}, \tilde{\Delta}, \tilde{\delta})$ and $V = (V, \Delta, \delta)$ be coalgebras with differential over \mathcal{Z} . Let $\tilde{V} \xrightarrow{f} V$ be a morphism of coalgebras with differential.

Suppose that f is piecewise bijective.

Show that f is an *isomorphism* of coalgebras with codifferential, i.e. that there exists a morphism of coalgebras with codifferential $\tilde{V} \xleftarrow{g} V$ such that $fg = \mathrm{id}_{\tilde{V}}$ and $gf = \mathrm{id}_{V}$. Then g is uniquely determined and written $f^{-} := g$.

- (3) Let $\tilde{V} = (\tilde{V}, \tilde{\Delta})$ and $V = (V, \Delta)$ be coalgebras over \mathcal{Z} . Let $\tilde{V} \xrightarrow{f} V$ be an isomorphism of coalgebras. Suppose given a codifferential δ on V. Show that $f\delta f^-$ is a codifferential on \tilde{V} .
- (4) Let V = (V, Δ) be a coalgebra over Z. Let λ : V → R be a shift-graded linear map of degree 1; cf. Problem 7.(3). Recall that R ⊗ V = V = V ⊗ R by identification. Let δ_λ := Δ(id ⊗λ) − Δ(λ ⊗ id). Show that δ_λ is a coderivation. Coderivations of this form are called *inner*.

Problem 20 Let \mathcal{Z} be a grading category.

Let *I* be a finite set. Let V_i be a \mathcal{Z} -graded module for $i \in I$. Recall that the \mathcal{Z} -graded module $\bigoplus_{i \in I} V_i$ is defined by letting $(\bigoplus_{i \in I} V_i)^z = \bigoplus_{i \in I} V_i^z$ for $z \in Mor(\mathcal{Z})$.

- (1) Given $j \in I$, construct a shift-graded linear *inclusion* map $\iota_j : V_j \to \bigoplus_{i \in I} V_i$ of degree 0 and a shift-graded linear *projection* map $\pi_j : \bigoplus_{i \in I} V_i \to V_j$ of degree 0.
- (2) Suppose given a \mathbb{Z} -graded module S. Suppose given $d \in \mathbb{Z}$. Suppose given a shift-graded linear map $s_j : S \to V_j$ of degree d for $j \in I$. Show that there exists a unique shift-graded linear map $s : S \to \bigoplus_{i \in I} V_i$ of degree d such that $s\pi_j = s_j$ for $j \in I$.
- (3) Suppose given a \mathcal{Z} -graded module T. Suppose given $d \in \mathbb{Z}$. Suppose given shift-graded linear maps $t_j : V_j \to T$ of degree d for $j \in I$.

Show that there exists a unique shift-graded linear map $t : \bigoplus_{i \in I} V_i \to T$ of degree d such that $\iota_j t = t_j$ for $j \in I$.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/