M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 7

Problem 17 Let p > 0 be a prime.

Let $P \in Ob C(\mathbf{F}_p C_p - Mod)$ be the projective resolution of the trivial $\mathbf{F}_p C_p$ -module as found in Problem 9.(1).

Let $\underline{X} := (P)$, so that \underline{X} has P as its only tuple entry.

Let $A := \operatorname{Hom}_{\mathbf{F}_p C_p}(\underline{X})$ be the regular differential graded category, i.e. differential graded algebra over $\mathbf{Z} = \mathbf{Z} \times [1, 1]^{\times 2}$.

Recall from Problem 9 and Problem 14 that we have calculated the **Z**-graded module HA, i.e. that we know \mathbf{F}_p -linear generators for its graded pieces.

Find a minimal A₃-structure $(\tilde{m}_1, \tilde{m}_2, \tilde{m}_3)$ on HA and a quasiisomorphism $(q_1, q_2, q_3) : HA \to A$ of A₃-algebras.

Problem 18 Suppose R to be a field.

Let \mathcal{Z} be a grading category. Let $n \in [1, \infty]$. Let A be a unital A_n -algebra over \mathcal{Z} .

Consider the shift-graded linear residue class map $ZA \xrightarrow{\rho} HA$ of degree 0.

Show that there exists a shift graded linear map $ZA \leftarrow HA$ of degree 0 such that $\sigma \rho = id_{HA}$ and such that $(1_X \rho)\sigma = 1_X$ for $X \in Ob(\mathcal{Z})$.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/