M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 6

Problem 15 Let \mathcal{Z} be a grading category.

Let L and M be \mathcal{Z} -graded modules.

Let $L \xrightarrow{f} M$ be a shift-graded linear map of degree $a \in \mathbb{Z}$.

(1) Let K be the \mathcal{Z} -graded module defined by $K^z := \operatorname{Kern}(L^z \xrightarrow{f} M^{z[a]})$ for $z \in \operatorname{Mor}(\mathcal{Z})$. Let $K \xrightarrow{i} L$ be the shift-graded linear map given by inclusion, which is of degree 0.

Suppose given a \mathcal{Z} -graded module T and a shift-graded linear map $T \xrightarrow{t} L$ of degree d such that tf = 0.

Show that there exist a unique shift-graded linear map $T \xrightarrow{\check{t}} K$ of degree d such that $\check{t}i = t$.

(2) Suppose R to be a field. Suppose f to be piecewise surjective.

Show that there exists a piecewise injective shift-graded linear map $L \xleftarrow{g} M$ of degree -a such that $gf = id_M$.

Problem 16 Let \mathcal{Z} be a grading category. Let $n \in \mathbb{Z}_{\geq 1}$. Let K_i , L_i and M_i be \mathcal{Z} -graded modules for $i \in [1, n]$. Let $K_i \xrightarrow{u_i} L_i$ be a shift-graded linear map of degree $c_i \in \mathbb{Z}$ for $i \in [1, n]$. Let $L_i \xrightarrow{f_i} M_i$ be a piecewise surjective shift-graded linear map of degree $a_i \in \mathbb{Z}$

for $i \in [1, n]$.

- (1) Show that $\bigotimes_{i \in [1,n]} f_i$ is piecewise surjective.
- (2) For $i \in [1, n]$, suppose that $K_i \xrightarrow{u_i} L_i \xrightarrow{f_i} M_i$ to be *exact at* L_i , i.e. suppose $K_i^{z[-c_i]} \xrightarrow{u_i} L_i^z \xrightarrow{f_i} M_i^{z[a_i]}$ to be exact at L_i^z for $z \in \operatorname{Mor}(\mathcal{Z})$.

Suppose given a \mathcal{Z} -graded module T and a shift-graded linear map $\bigotimes_{i \in [1,n]} L_i \xrightarrow{t} T$ of degree d.

Suppose that $(\mathrm{id}^{\otimes j-1} \otimes u_j \otimes \mathrm{id}^{\otimes n-j})t = 0$ for $j \in [1, n]$.

Show that there exists a unique shift-graded linear map $\bigotimes_{i \in [1,n]} M_i \xrightarrow{\tilde{t}} T$ of degree $d - \sum_{i \in [1,n]} a_i$ such that $(\bigotimes_{i \in [1,n]} f_i)\tilde{t} = t$.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/