M. Künzer

A_{∞}-categories, WS 16/17

Sheet 5

Problem 13 Let B be an algebra.
Suppose given a diagram $X^{\prime} \xrightarrow{i} X \xrightarrow{r} X^{\prime \prime}$ in $\mathrm{C}(B-\mathrm{Mod})$ such that $X^{\prime k} \xrightarrow{i^{k}} X^{k} \xrightarrow{r^{k}} X^{\prime \prime k}$ is short exact for $k \in \mathbf{Z}$. Such a diagram is called a short exact sequence of complexes in B.
(1) Suppose given $T \xrightarrow{f} X$ in $\mathrm{C}(B-\operatorname{Mod})$ such that $f r=0$. Show that there exists a unique morphism $T \xrightarrow{f^{\prime}} X^{\prime}$ such that $f^{\prime} i=f$.
(2) Suppose given $X \xrightarrow{g} T$ in $\mathrm{C}(B-\mathrm{Mod})$ such that $i g=0$. Show that there exists a unique morphism $X^{\prime \prime} \xrightarrow{g^{\prime \prime}} T$ such that $r g^{\prime \prime}=g$.
(3) A Z-graded B-module M is a tuple $M=\left(M^{z}\right)_{z \in \mathbf{Z}}$ of B-modules M^{z}. A graded B-linear map $f: L \rightarrow M$ between Z-graded B-modules is a tuple $f=\left(f^{z}\right)_{z \in \mathbf{Z}}$ of B-linear maps f^{z}. Write B-Z-grad for the category of \mathbf{Z}-graded B-modules and graded B-linear maps. Construct an additive functor $\mathrm{H}: \mathrm{C}(B-\mathrm{Mod}) \rightarrow B$-Z-grad having

$$
(\mathrm{H} X)^{k}=\operatorname{Kern}\left(d^{k}\right) / \operatorname{Im}\left(d^{k-1}\right)
$$

for a complex X with differential $d=\left(X^{k} \xrightarrow{d^{k}} X^{k+1}\right)_{k}$.
For $Y \xrightarrow{f} Z$ in $\mathrm{C}\left(B\right.$-Mod), we often write $\left((\mathrm{H} Y)^{k} \xrightarrow{(\mathrm{H} f)^{k}}(\mathrm{H} Z)^{k}\right)=:\left(\mathrm{H}^{k} Y \xrightarrow{\mathrm{H}^{k} f} \mathrm{H}^{k} Z\right)$.
(4) Construct a B-linear map $\mathrm{H}^{k} X^{\prime \prime} \xrightarrow{\gamma_{(i, r)}^{k}} \mathrm{H}^{k+1} X^{\prime}$ for $k \in \mathbf{Z}$, called connector of the given short exact sequence $X^{\prime} \xrightarrow{i} X \xrightarrow{r} X^{\prime \prime}$, subject to the following conditions (i, ii).
(i) The sequence

$$
\ldots \rightarrow \mathrm{H}^{k} X^{\prime} \xrightarrow{\mathrm{H}^{k} i} \mathrm{H}^{k} X \xrightarrow{\mathrm{H}^{k} r} \mathrm{H}^{k} X^{\prime \prime} \xrightarrow{\gamma_{(i, r)}^{k}} \mathrm{H}^{k+1} X^{\prime} \xrightarrow{\mathrm{H}^{k+1} i} \mathrm{H}^{k+1} X \xrightarrow{\mathrm{H}^{k+1} r} \mathrm{H}^{k+1} X^{\prime \prime} \rightarrow \ldots
$$

is exact at each position.
(ii) Given a morphism of short exact sequences, i.e. a commutative diagram

in $\mathrm{C}(B$-Mod) with (i, r) and (j, s) short exact, we get, for $k \in \mathbf{Z}$, the commutative quadrangle
p.t.o.

Problem 14 Suppose given an algebra B. Suppose given $n \geqslant 1$.
Suppose given $X_{s} \in \mathrm{ObC}(B-\operatorname{Mod})$ for $s \in[1, n]$. Abbreviate $\underline{X}:=\left(X_{s}\right)_{s \in[1, n]}$. Abbreviate $\mathcal{Z}:=\mathbf{Z} \times[1, n]^{\times 2}, \mathrm{C}:=\mathrm{C}(B-\operatorname{Mod})$ and $\mathrm{K}:=\mathrm{K}(B-\mathrm{Mod})$.
Consider the \mathcal{Z}-graded module $\mathrm{ZHom}_{B}(\underline{X})$ having, for $z \in \operatorname{Mor}(\mathcal{Z})$,

$$
\left(\mathrm{ZHom}_{B}(\underline{X})\right)^{z}:=\operatorname{Kern}\left(\left(m_{1}^{\operatorname{Hom}_{B}(\underline{X})}\right)^{z}\right) .
$$

$$
\left(\operatorname{HHom}_{B}(\underline{X})\right)^{z}:=\operatorname{Kern}\left(\left(m_{1}^{\operatorname{Hom}_{B}(\underline{X})}\right)^{z}\right) / \operatorname{Im}\left(\left(m_{1}^{\operatorname{Hom}_{B}(\underline{X})}\right)^{z[-1]}\right) .
$$

(1) Show that $\left(\mathrm{Z} \mathrm{Hom}_{B}(\underline{X})\right)^{(j,(s, t))}=\mathrm{d}\left(X_{s}, X_{t}^{[j]}\right)$ for $(j,(s, t)) \in \operatorname{Mor}(\mathcal{Z})$.
(2) Show that $\left(\operatorname{H~Hom}_{B}(\underline{X})\right)^{(j,(s, t))}={ }_{\mathrm{K}}\left(X_{s}, X_{t}^{[j]}\right)$ for $(j,(s, t)) \in \operatorname{Mor}(\mathcal{Z})$.
(3) Show that $m_{2}^{\operatorname{Hom}_{B}(\underline{X})}$ induces a map $m_{2}^{\left.\operatorname{HHom}_{B}(\underline{X})\right)}: \operatorname{HHom}_{B}(\underline{X})^{\otimes 2} \rightarrow \operatorname{HHom}_{B}(\underline{X})$ that maps $[f] \otimes[g]$ to $[f \cdot g]$ for each composable pair of morphisms (f, g) in C, where we use brackets to denote residue classes of morphisms of C in K .
w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/

