M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 5

Problem 13 Let B be an algebra.

Suppose given a diagram $X' \xrightarrow{i} X \xrightarrow{r} X''$ in C(B-Mod) such that $X'^k \xrightarrow{i^k} X^k \xrightarrow{r^k} X''^k$ is short exact for $k \in \mathbb{Z}$. Such a diagram is called a short exact sequence of complexes in B.

- (1) Suppose given $T \xrightarrow{f} X$ in C(B-Mod) such that fr = 0. Show that there exists a unique morphism $T \xrightarrow{f'} X'$ such that f'i = f.
- (2) Suppose given $X \xrightarrow{g} T$ in C(*B*-Mod) such that ig = 0. Show that there exists a unique morphism $X'' \xrightarrow{g''} T$ such that rg'' = g.
- (3) A **Z**-graded *B*-module *M* is a tuple $M = (M^z)_{z \in \mathbf{Z}}$ of *B*-modules M^z . A graded *B*-linear map $f : L \to M$ between **Z**-graded *B*-modules is a tuple $f = (f^z)_{z \in \mathbf{Z}}$ of *B*-linear maps f^z . Write *B*-**Z**-grad for the category of **Z**-graded *B*-modules and graded *B*-linear maps. Construct an additive functor $H : C(B - Mod) \to B$ -**Z**-grad having

$$(\mathrm{H}X)^k = \operatorname{Kern}(d^k) / \operatorname{Im}(d^{k-1})$$

for a complex X with differential $d = (X^k \xrightarrow{d^k} X^{k+1})_k$. For $Y \xrightarrow{f} Z$ in C(B-Mod), we often write $((HY)^k \xrightarrow{(Hf)^k} (HZ)^k) =: (H^kY \xrightarrow{H^kf} H^kZ)$.

- (4) Construct a *B*-linear map $\operatorname{H}^{k}X'' \xrightarrow{\gamma_{(i,r)}^{k}} \operatorname{H}^{k+1}X'$ for $k \in \mathbb{Z}$, called *connector* of the given short exact sequence $X' \xrightarrow{i} X \xrightarrow{r} X''$, subject to the following conditions (i, ii).
 - (i) The sequence
 - $\dots \to \operatorname{H}^{k} X' \xrightarrow{\operatorname{H}^{k} i} \operatorname{H}^{k} X \xrightarrow{\operatorname{H}^{k} r} \operatorname{H}^{k} X'' \xrightarrow{\gamma_{(i,r)}^{k}} \operatorname{H}^{k+1} X' \xrightarrow{\operatorname{H}^{k+1} i} \operatorname{H}^{k+1} X \xrightarrow{\operatorname{H}^{k+1} r} \operatorname{H}^{k+1} X'' \to \dots$ is exact at each position.
 - (ii) Given a morphism of short exact sequences, i.e. a commutative diagram

$$\begin{array}{ccc} X' \xrightarrow{i} & X \xrightarrow{r} & X'' \\ & & \downarrow f' & \downarrow f & \downarrow f'' \\ Y' \xrightarrow{j} & Y \xrightarrow{s} & Y'' \end{array}$$

in C(B-Mod) with (i, r) and (j, s) short exact, we get, for $k \in \mathbb{Z}$, the commutative quadrangle

$$\begin{array}{c} \mathrm{H}^{k}X'' \xrightarrow{\gamma_{(i,r)}^{k}} \mathrm{H}^{k+1}X' \\ \downarrow_{\mathrm{H}^{k}f''} & \downarrow_{\mathrm{H}^{k+1}f'} \\ \mathrm{H}^{k}Y'' \xrightarrow{\gamma_{(j,s)}^{k}} \mathrm{H}^{k+1}Y' \ . \end{array}$$

p.t.o.

Problem 14 Suppose given an algebra *B*. Suppose given $n \ge 1$. Suppose given $X_s \in Ob C(B \operatorname{-Mod})$ for $s \in [1, n]$. Abbreviate $\underline{X} := (X_s)_{s \in [1, n]}$. Abbreviate $\mathcal{Z} := \mathbf{Z} \times [1, n]^{\times 2}$, $\mathbf{C} := \mathbf{C}(B \operatorname{-Mod})$ and $\mathbf{K} := \mathbf{K}(B \operatorname{-Mod})$. Consider the \mathcal{Z} -graded module $\mathbf{Z} \operatorname{Hom}_B(\underline{X})$ having, for $z \in \operatorname{Mor}(\mathcal{Z})$,

$$(\operatorname{Z}\operatorname{Hom}_B(\underline{X}))^z := \operatorname{Kern}((m_1^{\operatorname{Hom}_B(\underline{X})})^z)$$

Consider the \mathcal{Z} -graded module $\operatorname{H}\operatorname{Hom}_B(\underline{X})$, having, for $z \in \operatorname{Mor}(\mathcal{Z})$,

$$(\operatorname{HHom}_B(\underline{X}))^z := \operatorname{Kern}((m_1^{\operatorname{Hom}_B(\underline{X})})^z) / \operatorname{Im}((m_1^{\operatorname{Hom}_B(\underline{X})})^{z[-1]}).$$

- (1) Show that $(\operatorname{Z}\operatorname{Hom}_B(\underline{X}))^{(j,(s,t))} = c(X_s, X_t^{[j]})$ for $(j, (s,t)) \in \operatorname{Mor}(\mathcal{Z})$.
- (2) Show that $(\operatorname{H}\operatorname{Hom}_B(\underline{X}))^{(j,(s,t))} = {}_{\mathsf{K}}(X_s, X_t^{[j]})$ for $(j, (s,t)) \in \operatorname{Mor}(\mathcal{Z})$.
- (3) Show that $m_2^{\operatorname{Hom}_B(\underline{X})}$ induces a map $m_2^{\operatorname{HHom}_B(\underline{X})}$: $\operatorname{HHom}_B(\underline{X})^{\otimes 2} \to \operatorname{HHom}_B(\underline{X})$ that maps $[f] \otimes [g]$ to $[f \cdot g]$ for each composable pair of morphisms (f, g) in C, where we use brackets to denote residue classes of morphisms of C in K.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/