M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 4

Problem 9 Let $q \in \mathbb{Z}_{\geq 1}$. Consider the cyclic group $C_q = \langle c : c^q \rangle$. Abbreviate $K := K(RC_q \operatorname{-Mod})$.

- (1) Construct a projective resolution P of the trivial RC_q -module R that is periodic of period length 2.
- (2) Calculate $_{\mathrm{K}}(P, \operatorname{Conc}(R)^{[i]})$ for $i \in \mathbb{Z}$.
- (3) Calculate $_{\mathrm{K}}(P, P^{[i]})$ for $i \in \mathbf{Z}$.
- (4) Calculate the composition map

$$_{\rm K}(P, P^{[i]}) \otimes _{\rm K}(P^{[i]}, P^{[i+j]}) \rightarrow _{\rm K}(P, P^{[i+j]})$$

for $i, j \in \mathbf{Z}$.

Problem 10 Let \mathcal{Z} and $\tilde{\mathcal{Z}}$ be grading categories.

Let $\mathcal{Z} \xrightarrow{F} \tilde{\mathcal{Z}}$ be a morphism of grading categories; cf. Problem 5.

- (1) Construct an isomorphism $F_{\&}(\bigotimes_{i \in [1,n]} M_i) \xrightarrow{\sigma_M} \bigotimes_{i \in [1,n]} F_{\&} M_i$ in $\tilde{\mathcal{Z}}$ -grad.
- (2) Show that the following quadrangle commutes.

Problem 11 Let \mathcal{Z} be a grading category.

Let A be a \mathcal{Z} -graded module.

Suppose given shift-graded maps $m_1 : A \to A$ of degree 1 and $m_2 : A^{\otimes 2} \to A$ of degree 0. For $n \in \mathbb{Z}_{\geq 3}$, we let $m_n := 0$, as shift-graded linear map from $A^{\otimes n}$ to A of degree 2 - n.

Suppose that $(m_n)_{n \in \mathbb{Z}_{\geq 1}}$ satisfies the Stasheff equations for $k \in [1,3]$.

Suppose that for each $X \in Ob(\mathcal{Z})$, there exists an element $1_X \in A^{\operatorname{id}_X}$ such that for $z, w \in \operatorname{Mor}(\mathcal{Z})$ such that $zt_{\mathcal{Z}} = X = ws_{\mathcal{Z}}$ and for $a \in A^z$ and $b \in A^w$, we have $(a \otimes 1_X)m_2 = a$ and $(1_X \otimes b)m_2 = b$.

Show that $(A, (m_n)_{n \in \mathbb{Z}_{\geq 1}})$ is a differential graded algebra over \mathcal{Z} .

Problem 12 Suppose given a grading category \mathcal{Z} .

Suppose given A_{∞} -algebras \tilde{A} and A.

Suppose given a shift-graded linear map $f_1: \tilde{A} \to A$ of degree 0.

Suppose that $f_1^{\otimes k} \cdot m_k^A = m_k^{\tilde{A}} \cdot f_1$ for $k \in \mathbb{Z}_{\geq 1}$.

Let $f_k = 0$ for $k \in \mathbb{Z}_{\geq 2}$, as shift-graded linear map from $\tilde{A}^{\otimes k}$ to A of degree 1 - k. Show that $(f_k)_{k \in \mathbb{Z}_{\geq 1}}$ is a morphism of A_{∞} -algebras from \tilde{A} to A.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/