M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 3

Problem 7 Let $\mathcal{Z} = (\mathcal{Z}, S, \text{deg})$ be a grading category. Suppose given $1 \leq \ell \leq n$ and \mathcal{Z} -shift-graded linear maps $L_i \xrightarrow{(f_i, k_i)} M_i$ for $i \in [1, n]$. Suppose given \mathcal{Z} -shift-graded linear maps $L \xrightarrow{(f,k)} M$ and $\tilde{L} \xrightarrow{(\tilde{f},\tilde{k})} \tilde{M}$.

(1) Show that

$$(M_1 \otimes \ldots \otimes M_\ell) \otimes (M_{\ell+1} \otimes \ldots \otimes M_n) = M_1 \otimes \ldots \otimes M_n$$

(2) Show that

$$((f_1,k_1)\otimes\ldots\otimes(f_\ell,k_\ell))\otimes((f_{\ell+1},k_{\ell+1})\otimes\ldots\otimes(f_n,k_n)) = (f_1,k_1)\otimes\ldots\otimes(f_n,k_n).$$

- (3) Construct a \mathbb{Z} -graded module \dot{R} such that $(f,k) \otimes (\mathrm{id}_{\dot{R}},0) = (f,k)$ and $(\mathrm{id}_{\dot{R}},0) \otimes (f,k) = (f,k)$.
- (4) Construct an isomorphism $L \otimes \tilde{L} \xrightarrow{\tau_{L,\tilde{L}}} \tilde{L} \otimes L$ in \mathcal{Z} -grad, and likewise $\tau_{M,\tilde{M}}$, such that the following quadrangle commutes.

$$\begin{array}{c|c} L \otimes \tilde{L} & \stackrel{\tau_{L,\tilde{L}}}{\longrightarrow} \tilde{L} \otimes L \\ (f,k) \otimes (\tilde{f},\tilde{k}) & & & \\ M \otimes \tilde{M} & \stackrel{\tau_{M,\tilde{M}}}{\longrightarrow} \tilde{M} \otimes M \end{array}$$

Problem 8 Let B be an algebra.

(1) Let \mathcal{A} be a linear additive category. Let $\mathcal{N} \subseteq \mathcal{A}$ be a full additive subcategory. Write

 $\operatorname{Null}_{\mathcal{A},\mathcal{N}}(X,Y) := \{X \xrightarrow{f} Y : \text{ there exists } N \in \operatorname{Ob}(\mathcal{N}) \text{ and morphisms } X \xrightarrow{u} N \xrightarrow{v} Y \text{ such that } f = uv \}.$

Let \mathcal{A}/\mathcal{N} be the category that has

$$\begin{aligned} \operatorname{Ob}(\mathcal{A}/\mathcal{N}) &:= \operatorname{Ob}(\mathcal{A}) \\ _{\mathcal{A}/\mathcal{N}}(X,Y) &:= _{\mathcal{A}}(X,Y)/\operatorname{Null}_{\mathcal{A},\mathcal{N}}(X,Y) \quad \text{for } X, Y \in \operatorname{Ob}(\mathcal{A}/\mathcal{N}) \end{aligned}$$

For $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} , we define composition of the respective residue classes in \mathcal{A}/\mathcal{N} by $(f + \operatorname{Null}_{\mathcal{A}\mathcal{N}}(X, Y)) \cdot (g + \operatorname{Null}_{\mathcal{A}\mathcal{N}}(Y, Z)) = f \cdot g + \operatorname{Null}_{\mathcal{A}\mathcal{N}}(X, Z)$. Show that \mathcal{A}/\mathcal{N} is a linear additive category. Show that $\mathcal{A} \xrightarrow{R} \mathcal{A}/\mathcal{N}$ is a linear functor with $RN \simeq 0$ for $N \in Ob(\mathcal{N})$.

We often write $\overline{f} := f + \operatorname{Null}_{\mathcal{A},\mathcal{N}}(X,Y).$

Given a linear additive category \mathcal{B} and a linear functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ with $FN \simeq 0$ for $N \in Ob(\mathcal{N})$, show that there exists a unique linear functor $\mathcal{A}/\mathcal{N} \xrightarrow{\bar{F}} \mathcal{B}$ such that $F = \bar{F} \circ R$.

(2) Let $\mathcal{A} := \mathcal{C}(B\operatorname{-Mod})$ be the category of complexes of $B\operatorname{-modules}$. Let the differential of a complex $X \in \operatorname{Ob}(\mathcal{A})$ be denoted by $d = d_X$. Let $\mathcal{N} \subseteq \mathcal{A}$ be the full additive subcategory of split acyclic complexes, i.e. those isomorphic to a complex of the form $\cdots \to U^{i-1} \oplus U^i \xrightarrow{\binom{0 \ 0}{10}} U^i \oplus U^{i+1} \to \cdots$, where $U^i \in \operatorname{Ob} \mathcal{A}$ for $i \in \mathbb{Z}$.

Show that $\operatorname{Null}_{\mathcal{A},\mathcal{N}}(X,Y)$ consists of those morphisms of complexes $X \xrightarrow{f} Y$ for which there exists a tuple of morphisms $(X^i \xrightarrow{h^i} Y^{i-1})_{i \in \mathbb{Z}}$ such that

$$f^i = h^i d_Y^{i-1} + d_X^i h^{i+1} \qquad \text{for } i \in \mathbf{Z}.$$

Define $K(B-Mod) := \mathcal{A}/\mathcal{N}$ to be the homotopy category of complexes of B-modules. Write shorthand $_{K}(X,Y) := _{K(B-Mod)}(X,Y)$ for $X, Y \in Ob(K(B-Mod)) = Ob(C(B-Mod))$.

(3) Let M be a B-module. Let P be a projective resolution of M with augmentation $\varepsilon: P_0 \to M$. Let $\operatorname{Conc}(M) \in \operatorname{Ob}(\operatorname{C}(B\operatorname{-Mod}))$ have M at position 0, and 0 elsewhere. Let $\hat{\varepsilon}: P \to \operatorname{Conc}(M)$ be the morphism of complexes having entry ε at position 0.

Let Q be a complex consisting of projective *B*-modules, bounded above. Show that $_{\mathrm{K}}(Q, \overline{\hat{\varepsilon}}) : _{\mathrm{K}}(Q, P) \to _{\mathrm{K}}(Q, \operatorname{Conc}(M))$ is an isomorphism.

(4) Using the universal property from (1), construct a shift functor S on K(B-Mod) such that $(SX)^i = X^{i+1}$ and such that $d_{SX}^i = -d_X^{i+1}$ for $i \in \mathbb{Z}$. Show that S is an automorphism. We also write $S^k =: (-)^{[k]}$ for $k \in \mathbb{Z}$.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/