M. Künzer
A_{∞}-categories, WS 16/17

Sheet 3

Problem 7 Let $\mathcal{Z}=(\mathcal{Z}, S$, deg $)$ be a grading category.
Suppose given $1 \leqslant \ell \leqslant n$ and \mathcal{Z}-shift-graded linear maps $L_{i} \xrightarrow{\left(f_{i}, k_{i}\right)} M_{i}$ for $i \in[1, n]$.
Suppose given \mathcal{Z}-shift-graded linear maps $L \xrightarrow{(f, k)} M$ and $\tilde{L} \xrightarrow{(\tilde{f}, \tilde{k})} \tilde{M}$.
(1) Show that

$$
\left(M_{1} \otimes \ldots \otimes M_{\ell}\right) \otimes\left(M_{\ell+1} \otimes \ldots \otimes M_{n}\right)=M_{1} \otimes \ldots \otimes M_{n} .
$$

(2) Show that

$$
\left(\left(f_{1}, k_{1}\right) \otimes \ldots \otimes\left(f_{\ell}, k_{\ell}\right)\right) \otimes\left(\left(f_{\ell+1}, k_{\ell+1}\right) \otimes \ldots \otimes\left(f_{n}, k_{n}\right)\right)=\left(f_{1}, k_{1}\right) \otimes \ldots \otimes\left(f_{n}, k_{n}\right)
$$

(3) Construct a \mathcal{Z}-graded module \dot{R} such that $(f, k) \otimes\left(\operatorname{id}_{\dot{R}}, 0\right)=(f, k)$ and $\left(\mathrm{id}_{\dot{R}}, 0\right) \otimes(f, k)=(f, k)$.
(4) Construct an isomorphism $L \otimes \tilde{L} \xrightarrow[\sim]{\tau_{L, \tilde{L}}} \tilde{L} \otimes L$ in \mathcal{Z}-grad, and likewise $\tau_{M, \tilde{M}}$, such that the following quadrangle commutes.

Problem 8 Let B be an algebra.
(1) Let \mathcal{A} be a linear additive category. Let $\mathcal{N} \subseteq \mathcal{A}$ be a full additive subcategory. Write $\operatorname{Null}_{\mathcal{A}, \mathcal{N}}(X, Y)$
$:=\{X \xrightarrow{f} Y:$ there exists $N \in \mathrm{Ob}(\mathcal{N})$ and morphisms $X \xrightarrow{u} N \xrightarrow{v} Y$ such that $f=u v\}$. Let $\mathcal{A} / \mathcal{N}$ be the category that has

$$
\begin{aligned}
\operatorname{Ob}(\mathcal{A} / \mathcal{N}) & :=\operatorname{Ob}(\mathcal{A}) \\
\mathcal{A} / \mathcal{N}(X, Y) & :=\mathcal{A}(X, Y) / \operatorname{Null}_{\mathcal{A}, \mathcal{N}}(X, Y) \text { for } X, Y \in \operatorname{Ob}(\mathcal{A} / \mathcal{N}) .
\end{aligned}
$$

For $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A}, we define composition of the respective residue classes in $\mathcal{A} / \mathcal{N}$ by

$$
\left(f+\operatorname{Null}_{\mathcal{A}, \mathcal{N}}(X, Y)\right) \cdot\left(g+\operatorname{Null}_{\mathcal{A}, \mathcal{N}}(Y, Z)\right)=f \cdot g+\operatorname{Null}_{\mathcal{A}, \mathcal{N}}(X, Z)
$$

Show that $\mathcal{A} / \mathcal{N}$ is a linear additive category. Show that $\mathcal{A} \xrightarrow{R} \mathcal{A} / \mathcal{N}$ is a linear functor with $R N \simeq 0$ for $N \in \operatorname{Ob}(\mathcal{N})$.
We often write $\bar{f}:=f+\operatorname{Null}_{\mathcal{A}, \mathcal{N}}(X, Y)$.
Given a linear additive category \mathcal{B} and a linear functor $\mathcal{A} \xrightarrow{F} \mathcal{B}$ with $F N \simeq 0$ for $N \in$ $\operatorname{Ob}(\mathcal{N})$, show that there exists a unique linear functor $\mathcal{A} / \mathcal{N} \xrightarrow{\bar{F}} \mathcal{B}$ such that $F=\bar{F} \circ R$.
(2) Let $\mathcal{A}:=\mathrm{C}(B-\operatorname{Mod})$ be the category of complexes of B-modules. Let the differential of a complex $X \in \operatorname{Ob}(\mathcal{A})$ be denoted by $d=d_{X}$. Let $\mathcal{N} \subseteq \mathcal{A}$ be the full additive subcategory of split acyclic complexes, i.e. those isomorphic to a complex of the form $\cdots \rightarrow U^{i-1} \oplus U^{i} \xrightarrow{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)} U^{i} \oplus U^{i+1} \rightarrow \ldots$, where $U^{i} \in \operatorname{Ob} \mathcal{A}$ for $i \in \mathbf{Z}$.
Show that $\operatorname{Null}_{\mathcal{A}, \mathcal{N}}(X, Y)$ consists of those morphisms of complexes $X \xrightarrow{f} Y$ for which there exists a tuple of morphisms $\left(X^{i} \xrightarrow{h^{i}} Y^{i-1}\right)_{i \in \mathbf{Z}}$ such that

$$
f^{i}=h^{i} d_{Y}^{i-1}+d_{X}^{i} h^{i+1} \quad \text { for } i \in \mathbf{Z}
$$

Define $\mathrm{K}(B-\mathrm{Mod}):=\mathcal{A} / \mathcal{N}$ to be the homotopy category of complexes of B-modules. Write shorthand ${ }_{\mathrm{K}}(X, Y):={ }_{\mathrm{K}(B-\mathrm{Mod})}(X, Y)$ for $X, Y \in \mathrm{Ob}(\mathrm{K}(B-\mathrm{Mod}))=\mathrm{Ob}(\mathrm{C}(B-\operatorname{Mod}))$.
(3) Let M be a B-module. Let P be a projective resolution of M with augmentation $\varepsilon: P_{0} \rightarrow M$. Let $\operatorname{Conc}(M) \in \mathrm{Ob}(\mathrm{C}(B-\operatorname{Mod}))$ have M at position 0 , and 0 elsewhere. Let $\hat{\varepsilon}: P \rightarrow \operatorname{Conc}(M)$ be the morphism of complexes having entry ε at position 0 .

Let Q be a complex consisting of projective B-modules, bounded above. Show that ${ }_{\mathrm{K}}(Q, \overline{\hat{\varepsilon}}):{ }_{\mathrm{K}}(Q, P) \rightarrow{ }_{\mathrm{K}}(Q, \operatorname{Conc}(M))$ is an isomorphism.
(4) Using the universal property from (1), construct a shift functor S on $\mathrm{K}(B$-Mod) such that $(S X)^{i}=X^{i+1}$ and such that $d_{S X}^{i}=-d_{X}^{i+1}$ for $i \in \mathbf{Z}$. Show that S is an automorphism. We also write $S^{k}=:(-)^{[k]}$ for $k \in \mathbf{Z}$.
w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/

