M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 2

Problem 4 Let $\mathcal{Z} = (\mathcal{Z}, S, \text{deg})$ be a grading category. Show.

- (1) The shift S is an automorphism of \mathcal{Z} -grad₀.
- (2) \mathcal{Z} -grad is a category.
- (3) By S(f,k) := (Sf,k) for $(f,k) \in Mor(\mathcal{Z}-grad)$, an automorphism S on \mathcal{Z} -grad is defined.
- (4) \mathcal{Z} -grad₀ is additive.
- (5) Z-grad₀ is isomorphic to a subcategory of Z-grad.
 Is this subcategory full? Does Z-grad have a zero object?

Problem 5 Let $\mathcal{Z} = (\mathcal{Z}, S, \text{deg})$ and $\tilde{\mathcal{Z}} = (\tilde{\mathcal{Z}}, \tilde{S}, \text{deg})$ be grading categories. A (1-)morphism of grading categories from \mathcal{Z} to $\tilde{\mathcal{Z}}$ is a functor $F : \mathcal{Z} \to \tilde{\mathcal{Z}}$ such that

$$F(zS) = (Fz)\tilde{S}$$

(z) deg = (Fz)deg

for $z \in Mor(\mathcal{Z})$.

- (1) Show that grading categories, together with morphisms of such, form a category Grad.
- (2) Show that $(\mathcal{Z}, S^-, -\deg)$ is a grading category, where $(S^-)_{X,Y} := (S_{X,Y})^-$ for $X, Y \in Ob(\mathcal{Z})$ and $z(-\deg) := -(z\deg)$ for $z \in Mor(\mathcal{Z})$. Construct an automorphism of order 2 on the category of grading categories.
- (3) Show that $(\operatorname{id}_X) \operatorname{deg} = 0$ for $X \in \operatorname{Ob}(\mathcal{Z})$.
- (4) Show that there exists exactly one morphism of grading categories from \mathcal{Z} to \mathbf{Z} , i.e. that \mathbf{Z} is the terminal grading category.
- (5) Show that there is a bijection from the set of morphisms of grading categories from \mathbf{Z} to \mathcal{Z} to the set of endomorphisms of \mathcal{Z} of degree 0.
- (6) Suppose given a morphism of grading categories $\mathcal{Z} \xrightarrow{F} \tilde{\mathcal{Z}}$. Show that there exist functors

$$\mathcal{Z}\operatorname{-grad} \xrightarrow[F^{\&}]{i} \tilde{\mathcal{Z}}\operatorname{-grad}$$
having $(F^{\&} \tilde{M})^{z} = \tilde{M}^{Fz}$ for $\tilde{M} \in \operatorname{Ob}(\tilde{\mathcal{Z}}\operatorname{-grad})$ and $z \in \operatorname{Mor}(\mathcal{Z})$, having
 $(F_{\&}M)^{\tilde{z}} = \bigoplus_{\substack{z \in \operatorname{Mor}(\mathcal{Z})\\Fz = \tilde{z}}} M^{z}$ for $M \in \operatorname{Ob}(\mathcal{Z}\operatorname{-grad})$ and $\tilde{z} \in \operatorname{Mor}(\tilde{\mathcal{Z}})$ and having $F_{\&} \dashv F^{\&}$.

Problem 6 Let $\mathcal{Z} = (\mathcal{Z}, S, \text{deg})$ be a grading category. Define a category $(\mathcal{Z}\text{-grad})^{\times n,\pm}$ such that we have a functor

$$(\mathcal{Z}\operatorname{-grad})^{\times n,\pm} \xrightarrow{\bigotimes_{i \in [1,n]}} \mathcal{Z}\operatorname{-grad}$$
$$(L_i \xrightarrow{(f_i,k_i)} M_i)_{i \in [1,n]} \longmapsto (\bigotimes_{i \in [1,n]} L_i \xrightarrow{\bigotimes_{i \in [1,n]} (f_i,k_i)} \bigotimes_{i \in [1,n]} M_i)$$

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/