M. Künzer

$$
\mathrm{A}_{\infty} \text {-categories, WS 16/17 }
$$

Sheet 13

Problem 30 Suppose given a grading category \mathcal{Z}. Suppose given $n \in \mathbf{Z}_{\geqslant 0}$.
Suppose given a piecewise projective \mathcal{Z}-graded module M_{i} for $i \in[1, n]$.
Show that $\bigotimes_{i \in[1, n]} M_{i}$ is piecewise projective.
Problem 31 Suppose we are in the setup of $\S 2.4$.
In particular, we consider the poset \mathfrak{A} of admissible triples.
A subposet Y of a poset X is called a lower subposet if for $y \in Y$ and $x \in X$ with $x \leqslant y$, we may conclude that $x \in Y$.
(1) Suppose given a poset X and a subposet $Y \subseteq X$. Show that $Y \cap \min (X) \subseteq \min (Y)$.

If Y is a lower subposet in X, show that $Y \cap \min (X)=\min (Y)$.
(2) Show that for each totally ordered subposet T of \mathfrak{A}, there exists a unique element $s \in \mathfrak{A}$ such that $t \leqslant s$ for $t \in T$ and such that whenever given $s^{\prime} \in \mathfrak{A}$ such that $t \leqslant s^{\prime}$ for $t \in T$, then $s \leqslant s^{\prime}$. Write $s=$: $\sup T$.
(3) Using the Lemma of Zorn and Lemma 64, show that for each element $x=(L, M, Q) \in \mathfrak{A}$ there exists an element $x^{\prime}=\left(L^{\prime}, M^{\prime}, Q^{\prime}\right) \in \mathfrak{A}$ such that $x \leqslant x^{\prime}$ and such that $L^{\prime}=\mathbf{Z}_{\geqslant 0}^{\times n}$.
(4) Show the assertion of (3) again. Use Lemma 64 to do so. But do not use the Lemma of Zorn. Rather, form an ascending chain $x=x_{0} \leqslant x_{1} \leqslant \ldots$ such that, writing $x_{k}=\left(L_{k}, M_{k}, Q_{k}\right)$ for $k \in \mathbf{Z}_{\geqslant 0}$, we have $L_{k+1}=L_{k} \cup \min \left(\mathbf{Z}_{\geqslant 0} \backslash L_{k}\right)$. Then take $x^{\prime}=\sup \left\{x_{k}: k \in \mathbf{Z}_{\geqslant 0}\right\}$.
w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/

