M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 13

Problem 30 Suppose given a grading category \mathcal{Z} . Suppose given $n \in \mathbb{Z}_{\geq 0}$. Suppose given a piecewise projective \mathcal{Z} -graded module M_i for $i \in [1, n]$. Show that $\bigotimes_{i \in [1,n]} M_i$ is piecewise projective.

Problem 31 Suppose we are in the setup of $\S2.4$.

In particular, we consider the poset \mathfrak{A} of admissible triples.

A subposet Y of a poset X is called a *lower* subposet if for $y \in Y$ and $x \in X$ with $x \leq y$, we may conclude that $x \in Y$.

- (1) Suppose given a poset X and a subposet $Y \subseteq X$. Show that $Y \cap \min(X) \subseteq \min(Y)$. If Y is a lower subposet in X, show that $Y \cap \min(X) = \min(Y)$.
- (2) Show that for each totally ordered subposet T of \mathfrak{A} , there exists a unique element $s \in \mathfrak{A}$ such that $t \leq s$ for $t \in T$ and such that whenever given $s' \in \mathfrak{A}$ such that $t \leq s'$ for $t \in T$, then $s \leq s'$. Write $s =: \sup T$.
- (3) Using the Lemma of Zorn and Lemma 64, show that for each element $x = (L, M, Q) \in \mathfrak{A}$ there exists an element $x' = (L', M', Q') \in \mathfrak{A}$ such that $x \leq x'$ and such that $L' = \mathbb{Z}_{\geq 0}^{\times n}$.
- (4) Show the assertion of (3) again. Use Lemma 64 to do so. But do not use the Lemma of Zorn. Rather, form an ascending chain $x = x_0 \leq x_1 \leq \ldots$ such that, writing $x_k = (L_k, M_k, Q_k)$ for $k \in \mathbb{Z}_{\geq 0}$, we have $L_{k+1} = L_k \cup \min(\mathbb{Z}_{\geq 0} \setminus L_k)$. Then take $x' = \sup\{x_k : k \in \mathbb{Z}_{\geq 0}\}.$

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/