M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 11

Problem 25 Let \mathcal{Z} be a grading category.

Let $A = (A, (m_1), (A^{\langle i \rangle})_i)$ be a minimal eA₁-algebra over \mathcal{Z} .

Suppose that there exist shift-graded linear map $d^{\langle i \rangle} : A^{\langle i \rangle} \to A^{\langle i-1 \rangle}$ of degree 1 and shift-graded linear map $e^{\langle i \rangle} : A^{\langle i \rangle} \to A^{\leqslant i-2}$ of degree 1 for $i \in \mathbb{Z}_{\geq 0}$ such that

$$\iota^{\langle i \rangle} \cdot m_1 = d^{\langle i \rangle} \cdot \iota^{\langle i-1 \rangle} + e^{\langle i \rangle} \cdot \iota^{\leq i-2} .$$

holds for $i \in \mathbb{Z}_{\geq 0}$.

- (1) Express the Stasheff equation at 1 in terms of $d^{\langle i \rangle}$ and $e^{\langle i \rangle}$, where $i \in \mathbb{Z}_{\geq 0}$.
- (2) Show that A is diagonally resolving if and only if $\operatorname{Kern}(d^{\langle i \rangle}) = \operatorname{Im}(d^{\langle i+1 \rangle})$ for $i \in \mathbb{Z}_{\geq 1}$.

Problem 26 Let \mathcal{Z} be a grading category.

Suppose given an eA_{∞} -algebra $(A, (m_k)_k, (A^{\langle i \rangle})_i)$ over \mathcal{Z} . Suppose that $A^{\langle i \rangle} = 0$ for $i \in \mathbb{Z} \setminus [0, \ell]$. For which $k \in \mathbb{Z}_{\geq 1}$ is the Schmid condition on m_k not void?

For which $k \in \mathbb{Z}_{\geq 1}$ is the strong Schmid condition on m_k not void?

- (1) Consider the case $\ell = 1$.
- (2) Consider the case $\ell = 2$.
- (3) Consider the case $\ell = 3$.

Problem 27 Let \mathcal{Z} be a grading category.

Suppose given an eA_{∞} -algebra $(A, (m_k)_k, (A^{\langle i \rangle})_i)$ over \mathcal{Z} . Let $k \ge 1$. Let $(j_1, \ldots, j_k) \in \mathbb{Z}_{\ge 0}^{\times k}$. What bound results from the Schmid condition for the image of $A^{\langle j_1 \rangle} \otimes \ldots \otimes A^{\langle j_k \rangle}$ under a summand of the Stasheff equation at k?

Problem 28 Let $X = (X, \leq)$ be a poset. We call X artinian if it does not contain a strictly descending chain. We call X superartinian if $X_{\leq\xi}$ is finite for all ξ . We call X discrete if $(\leq) = (=)$. We call X narrow if each discrete subposet of X is finite. Suppose given $k \in \mathbb{Z}_{\geq 1}$ and posets Y_1, \ldots, Y_k .

- (1) Show that X is artinian if and only if each nonempty subposet of X has a minimal element.
- (2) If X is superartinian, show that X is artinian. Does the converse hold?
- (3) Construct the product $\prod_{i \in [1,k]} Y_i$ in Poset, which is to be equipped with monotone maps $\prod_{i \in [1,k]} Y_i \xrightarrow{\pi_j} Y_j$ for $j \in [1,k]$ such that for each poset T and each tuple $(T \xrightarrow{t_i} Y_i)_i$ of monotone maps, there exists a unique monotone map $T \xrightarrow{t} \prod_{i \in [1,k]} Y_i$ such that $t \cdot \pi_j = t_j$ for $j \in [1,k]$.
- (4) If Y_i is artinian for $i \in [1, k]$, show that $\prod_{i \in [1,k]} Y_i$ is artinian.
- (5) If Y_i is superartinian for $i \in [1, k]$, show that $\prod_{i \in [1, k]} Y_i$ is superartinian.
- (6) Show that $\mathbf{Z}_{\geq 0}^{\times k} := \prod_{i \in [1,k]} \mathbf{Z}_{\geq 0}$ is superartinian and narrow.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/