M. Künzer

$$
\mathrm{A}_{\infty} \text {-categories, WS 16/17 }
$$

Sheet 11

Problem 25 Let \mathcal{Z} be a grading category.
Let $A=\left(A,\left(m_{1}\right),\left(A^{\langle i\rangle}\right)_{i}\right)$ be a minimal eA_{1}-algebra over \mathcal{Z}.
Suppose that there exist shift-graded linear map $d^{\langle i\rangle}: A^{\langle i\rangle} \rightarrow A^{\langle i-1\rangle}$ of degree 1 and shift-graded linear map $e^{\langle i\rangle}: A^{\langle i\rangle} \rightarrow A^{\leqslant i-2}$ of degree 1 for $i \in \mathbf{Z}_{\geqslant 0}$ such that

$$
\iota^{\langle i\rangle} \cdot m_{1}=d^{\langle i\rangle} \cdot \iota^{\langle i-1\rangle}+e^{\langle i\rangle} \cdot \iota^{\leqslant i-2} .
$$

holds for $i \in \mathbf{Z}_{\geqslant 0}$.
(1) Express the Stasheff equation at 1 in terms of $d^{\langle i\rangle}$ and $e^{\langle i\rangle}$, where $i \in \mathbf{Z}_{\geqslant 0}$.
(2) Show that A is diagonally resolving if and only if $\operatorname{Kern}\left(d^{\langle i\rangle}\right)=\operatorname{Im}\left(d^{\langle i+1\rangle}\right)$ for $i \in \mathbf{Z}_{\geqslant 1}$.

Problem 26 Let \mathcal{Z} be a grading category.
Suppose given an eA_{∞}-algebra $\left(A,\left(m_{k}\right)_{k},\left(A^{\langle i\rangle}\right)_{i}\right)$ over \mathcal{Z}. Suppose that $A^{\langle i\rangle}=0$ for $i \in \mathbf{Z} \backslash[0, \ell]$.
For which $k \in \mathbf{Z}_{\geqslant 1}$ is the Schmid condition on m_{k} not void?
For which $k \in \mathbf{Z}_{\geqslant 1}$ is the strong Schmid condition on m_{k} not void?
(1) Consider the case $\ell=1$.
(2) Consider the case $\ell=2$.
(3) Consider the case $\ell=3$.

Problem 27 Let \mathcal{Z} be a grading category.
Suppose given an eA ∞_{∞}-algebra $\left(A,\left(m_{k}\right)_{k},\left(A^{\langle i\rangle}\right)_{i}\right)$ over \mathcal{Z}. Let $k \geqslant 1$. Let $\left(j_{1}, \ldots, j_{k}\right) \in \mathbf{Z}_{\geqslant 0}^{\times k}$.
What bound results from the Schmid condition for the image of $A^{\left\langle j_{1}\right\rangle} \otimes \ldots \otimes A^{\left\langle j_{k}\right\rangle}$ under a summand of the Stasheff equation at k ?

Problem 28 Let $X=(X, \leqslant)$ be a poset. We call X artinian if it does not contain a strictly descending chain. We call X superartinian if $X_{\leqslant \xi}$ is finite for all ξ. We call X discrete if $(\leqslant)=(=)$. We call X narrow if each discrete subposet of X is finite.
Suppose given $k \in \mathbf{Z}_{\geqslant 1}$ and posets Y_{1}, \ldots, Y_{k}.
(1) Show that X is artinian if and only if each nonempty subposet of X has a minimal element.
(2) If X is superartinian, show that X is artinian. Does the converse hold?
(3) Construct the product $\prod_{i \in[1, k]} Y_{i}$ in Poset, which is to be equipped with monotone maps $\prod_{i \in[1, k]} Y_{i} \xrightarrow{\pi_{j}} Y_{j}$ for $j \in[1, k]$ such that for each poset T and each tuple $\left(T \xrightarrow{t_{i}} Y_{i}\right)_{i}$ of monotone maps, there exists a unique monotone map $T \xrightarrow{t} \prod_{i \in[1, k]} Y_{i}$ such that $t \cdot \pi_{j}=t_{j}$ for $j \in[1, k]$.
(4) If Y_{i} is artinian for $i \in[1, k]$, show that $\prod_{i \in[1, k]} Y_{i}$ is artinian.
(5) If Y_{i} is superartinian for $i \in[1, k]$, show that $\prod_{i \in[1, k]} Y_{i}$ is superartinian.
(6) Show that $\mathbf{Z}_{\geqslant 0}^{\times k}:=\prod_{i \in[1, k]} \mathbf{Z}_{\geqslant 0}$ is superartinian and narrow.

