M. Künzer

 A_{∞} -categories, WS 16/17

Sheet 1

Problem 1 Consider the commutative ring \mathbf{Z} . Consider the \mathbf{Z} -algebra \mathbf{Z} . Determine the isoclasses of the \mathbf{Z} -modules M that have a chain of submodules

 $M = M_0 \supseteq M_1 \supseteq M_2 \supseteq M_3 = 0$

such that

$$M_0/M_1 \simeq \mathbf{Z}/(2)$$

$$M_1/M_2 \simeq \mathbf{Z}/(4)$$

$$M_2/M_3 \simeq \mathbf{Z}/(2)$$

Problem 2

Let Cat denote the (1-)category of categories, (1-)morphisms being functors. Let Set denote the category of sets, morphisms being maps.

- (1) Given a set X, how many isoclasses does the pair category $X^{\times 2}$ have?
- (2) Construct a full and faithful functor $P : \text{Set} \to \text{Cat}$ sending X to $X^{\times 2}$.
- (3) Show that the functor $Ob : Cat \to Set has P$ as a right adjoint, i.e. $Ob \dashv P$.
- (4) Determine unit and counit of the adjunction in (3).

Problem 3 Let Poset denote the category of posets and monotone maps.

- (1) Suppose given a poset X. Show that we have a subcategory CX of the pair category $X^{\times 2}$ with Ob(CX) = X and $Mor(CX) = \{ (x, y) \in X^{\times 2} : x \leq y \}.$
- (2) Construct a functor C: Poset \longrightarrow Cat.
- (3) Given $n \in \mathbb{Z}_{\geq 0}$, we write $\Delta_n := C[0, n]$. We have the monotone map $\omega : [0, 1] \to [0, n], 0 \mapsto 0, 1 \mapsto n$. Suppose given a category \mathcal{Z} and $z \in \operatorname{Mor}(\mathcal{Z})$. Let $F_z : \Delta_1 \to \mathcal{Z}, (0, 1) \mapsto z$. Let $n \geq 1$. Show that $\operatorname{fact}_n(z)$ is in bijection to

 $\{\Delta_n \xrightarrow{G} \mathcal{Z} : G \text{ is a functor such that } G \circ (C\omega) = F_z \}.$

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/