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Introduction

Problem

Suppose given a commutative ring R. Suppose given a finite group G.
Suppose given RG-modules X, Y, Z.
What RG-modules M have a filtration with subfactors X, Y and Z7

L.e. we ask for RG-modules M having a chain M = My O M; DO My, O M3 = 0 of
submodules such that My/M; ~ X and M;/M; ~Y and My/M; ~ Z.

M = M,

The short exact sequences of the form Z — M, — Y are controlled by Extp (Y, Z).
The short exact sequences of the form M; — M — X are controlled by Extpq (X, M)).
The latter R-module might be difficult to cope with, because we need to use M; as input.

It would be preferable to make do with Exth. (X, X), Extho(X,Y), Extha(Y, X), ...,
Extpo(Z, Z).

The Yoneda product maps e.g.
my @ Extho(X,Y) X Extpa(Y, Z) — Extpo(X,2) .

But to reconstruct modules such as M, we also need higher multiplication maps such as
e.g.

my : Exthpo(Z,X) x Extpe(X, X) X Exthe(X,Y) — Extho(Z,Y),
and similarly my, ms, ... These data form an A,-category.

The aimed-for reconstruction will be achieved with KELLER’s filt-construction.



Kadeishvili

A cohomology algebra

Given a finite group G, we can consider its cohomology algebra H(G; R) with coefficients
in a commutative ring R. (1)

This cohomology algebra can be calculated as follows. Let P be a projective resolution of
R over RG. Let P arise from P by a shift of k steps to the left, where k € Z-g, and by
multiplying each differential by (—1)*. Let P denote the graded RG-module underlying
P, forgetting the differentials. Form the graded algebra DG(G; R) having

DGk(Ga R) = RG—grad(P7 P[k]) )
where the latter stands for the R-module of morphisms in the category RG-grad of graded
RG-modules.

Remembering the differentials of P again, DG(G; R) becomes a differential graded algebra.
Its cohomology algebra is H(DG(G; R)) = H(G; R).

If R is a field: A quasiisomorphism of A_-algebras

Consider the case that R is a field. Suppose given a differential graded algebra D over the
field R, with differential d = m? : D = D®! — D and multiplication m% : D®? — D.

Then its cohomology algebra H(D) carries not only a multiplication map
my”  H(D)® — H(D)
but also higher multiplication maps
mI® . H(D)®*" — H(D) for n >3
and
mi®) = 0 . H(D)®' — H(D),

fitting together to turn H(D) into an A.-algebra. An A-algebra with m; = 0 is called
minimal.

But also D can be viewed as a A, -algebra by letting m? := 0: D" — D for n > 3.

KADEISHVILI'S Theorem states that there is a quasiisomorphism from D to H(D), i.e. a

morphism of A -algebras
D — H(D)

that induces an isomorphism on cohomology [1, Th. 1]. More precisely, it states that the
A -structure on H(D) can be chosen in such a way that such a quasiisomorphism emerges.
The resulting A -algebra is, of course, determined uniquely up to quasiisomorphism.

n the literature, H(G; R) is often written H*(G; R).



The assumption of R being a field is used in this process to ensure that every surjective
R-linear map is a retraction. This prevents us from directly generalising to R being a
discrete valuation ring, say.

In particular, KADEISHVILI’S Theorem can be applied to D = DG(G; R) and H(D) =
H(G; R) in the case of R = F,,, where p is a prime divisor of |G|, but not in the case of

R="1Zg.

Generalisation to arbitrary ground rings

To generalise to an arbitrary commutative ring R, we replace the cohomology modules
by projective resolutions over R. l.e. given a differential graded algebra D, we choose an
augmented projective resolution

. — P} — P} — P, — HY(D) — 0,
as suggested by KELLER.

ScHMID’s Theorem states, roughly put, that there exists a minimal eA -algebra structure
on @, ; P; such that there exists a quasiisomorphism to D [5, Th. 90]. Here, on the one
hand, an eA ~-algebra structure is a refinement of an A -algebra structure; on the other
hand, eA,-minimality is a weakening of A,,-minimality.

In particular, SCHMID’s Theorem can be applied to D = DG(G; R) and H(D) = H(G; R)
in the case of R = Z,) .

SCHMID’s procedure is similar to that of SAGAVE [3], one of the differences being that
Sagave resolves once more in the process, while Schmid sticks to the initially chosen
projective resolutions; cf. [3, Th. 1.1, Rem. 4.14].

Modules

From A_-algebras to A-categories

To fix ideas, we consider RG-modules again.
Note that H(G; R) = Extrg(R, R), where R is the trivial RG-module.

Suppose given RG-modules S7, ..., S,. To take these several objects into account,
we refine the notion of an A -algebra to that of an A,-category, in that we endow an
A -algebra with a categorical grading, which is, in a sense, a fixed Peirce decomposition.

If R is a field, the categorical version of KADEISHVILI's Theorem establishes the structure

of a minimal A -category on @a,ﬁe (1] Extra(Sa, Ss)-

Over arbitrary R, the categorical version of SCHMID’s Theorem establishes the structure
of a minimal eA-category on @% Belin] P, s, where P, 3 is a projective resolution of
Extra(Sa, Sp) over R.



The filt-construction

A finitely generated RG-module is called (S, ),-filtered, if it has a filtration whose sub-
factors occur in (Sy )4 , up to isomorphy, repetition allowed, ordered arbitrarily.

If R is a field, KELLER’s filt-construction recovers the full subcategory of (S, ).-filtered
modules in RG-mod in terms of the A-category €D, 5c 1, Extra(Sa, Sp); cf. [2, §7.7,
Theorem]. In particular, if the modules S, represent the isoclasses of simple modules, we
recover the whole category RG -mod.

ScHMID generalised this to arbitrary R, using the eA-category @a,ﬁe[l,n] P,ps; cf. [5,
Th. 131]. (3)

A desirable future application

We can e.g. take G = S, and R = Z, for some prime divisor of n! and let S, run
through Specht modules, or certain submodules thereof. One might ask whether, in small
examples, the shape of the indecomposable projective modules can be explained through
the said eA-category; just as for Z)Ss , the shape of certain indecomposable projective
modules can be explained as being glued from two Specht modules via an element of
Ext'; cf. [4, Ex. 7].

Organisatorial matters

We essentially follow the master thesis of STEPHAN SCHMID [5]. Responsibility for mis-
takes and obscurities in this script remains with me. 1 will be thankful for any hints on
this matter.

We presuppose Algebra and some basic knowledge from Homological Algebra, which will
be recalled in the exercises if necessary.

Sometimes we refer to exercises and solutions, so they are to be viewed as part of the
script.

Because of running modifications, it is recommended to work with the file during the
semester and to print a paper copy only afterwards.

Stuttgart, winter semester 2016/17

Matthias Kiinzer

2 Actually, conditions on R do not play a role in this assertion on the equivalence from the filt-
construction to the category of filtered modules; SCHMID gives a somewhat straightened proof and ensures
that the equivalence from the filt-construction to filtered modules can be applied to his eA . -category

@Q,BE [1,n] PanB :



Conventions

Let C be a category.

e Given a, b € Z, we write
[a,b] = {z€Z : a<z<0b}
for the integral interval.
e We stipulate that —oo < a < oo for a € Z. We write
[a,00] = {z€Z : a<z}U{c0}
[—o00,a] = {—oo}U{z€Z : 2<a}.

o XXX Z>p, Zy,

e Given a set X, “for x € X” means “for all z € X 7.

e We use the symbol U for the (interior and exterior) disjoint union of sets and for
the concatenation of tuples.

e All categories are suppose to be small (with respect to a given universe). l.e. we
have the sets Mor(C) and Ob(C).

e We have source and target maps, sc, t¢ : Mor(C) — Ob(C), respectively, mapping a
morphism X LV in C to fse = X and to fte =Y, respectively.

e For X € Ob(C), we write id = idx for the identity morphism on X. In some
contexts, we also write 1 = 1y = idy.

e Given a category C and X, Y € Ob(C), we write 4 X,Y) = {f € Mor(C)
fSC = X and ftc = Y}

e Given k > 0, we write X*F := Hie[l’k]X for the k-fold cartesian product. We
identify along X*! — X, (x) — x. Moreover, X*? = { () } is a one-element set.

e XXX tensor product §),.; M;, elementary tensors (mi)iep; if I = [a, b] interval, then

®i€[a’b] M; =M, ®@M,41 @+ @ M, and (m;)5e; = Mg @Mgs1 @ - - @ my, XXX as
far as possible just as for cartesian products

e XXX tensor product of R-modules associative via identification, additive via iden-
tification, R ® M = M via identification

e XXX concerning tensor products, we freely use [Ritter]

e XXX abbreviate 11 @ ... ® v = vﬁ’,k] XXX



XXXR-linear preadditive categoryXXX plus Example: Peirce decomposition [Rit-
ter]

XXX composition of morphisms naturally, composition of functors traditionally,
with some exceptions, e.g. for certain standard maps, for maps written in index
notation or for shift functors z — z[i] XXX

XXX Let Cat be the (1-)category of categories. Let Set be the category of set

XXX poset: partially ordered set, category of posets and monotone maps: Poset,
(full) subposet (full may be omitted), X<,

XXX category of functors [C, D1l.
XXX terminal category !

XXX inverse often f~

XXX automorphism of a category
XXX complex

XXX exact, short exact in B-Mod

XXX augmented projective resolution



Fixing the ground ring R

Let R be a commutative ring.

By a module we understand an R-module.

By a linear map we understand an R-linear map.

We write ® := %) .

By an algebra we understand an R-algebra.

By a linear category we understand an R-linear preadditive category.

By a linear additive category we understand an R-linear additive category.

By a linear functor we understand an R-linear additive functor.




Chapter 1

Kadeishvili

1.1

Gradings

1.1.1 Grading categories

Let Z be a category.

Example 1

(1)

(2)

Let G be a group. Then, by abuse of notation, G can be considered as a category
with Ob(G) = {G}, Mor(G) = G and composition given by multiplication.

We may specialise (1) to G = Z. So Ob(Z) = {Z} and Mor(Z) = Z, composition
being given by addition. E.g. we get the commutative triangle

Conversely, if | Ob(Z)| = 1 and each morphism in Z is an isomorphism, we may
consider Z as a group. More precisely, Mor(Z) is a group with multiplication given
by composition.

More generally, if | Ob(Z)| = 1, we may consider Z to be a monoid.

Let I be a set. By abuse of notation, let 1*? denote the pair category on I, having
Ob(I*?) = I and Mor(I*?) = I*2.

A morphism (4, j) € Mor(X*?) has source (4, j)s;x2 = i and target (i,7)t;x2 = j.

The composite of the morphisms
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is
So the identity on z € Ob(X*?) is id, = (z, z).

(5) Write Ob*?(Z) := (Ob(Z))*? for the pair category on the set Ob(Z).

Definition 2 A shift S on Z is a tuple of maps
S
S = (AX,Y) =5 X, Y))x, v eonz)
such that properties (1,2) hold.
(1) The map S,y is bijective for X, Y € Ob(Z2).
(2) Given X &Y % Z in Z, we have
(CL . b)SX,Z = CLSij b = a- bSyyZ .
We often write aS := aSxy for X %Y in Z.
We often write a[k] := aS* for X =Y in Z and k € Z.

Note that S is not required to be a functor.
Example 3 We have the identical shift (id ,x,v))x,ycob(z) on Z.

Definition 4 Suppose given a shift S on Z.
A degree function on (Z,5) is a map deg : Mor(Z) — Z such that properties (1,2) hold.

(1) Given X &Y % Z in Z, we have
(a-b)deg = adeg+bdeg .
(2) Given X %Y in Z, we have
(aS)deg = adeg+1 .

So (a[k]) deg = adeg +k for X Y in Z and k € Z.

Definition 5 The category Z, together with a shift S on Z and a degree function deg
on (Z,5), is called a grading category. Cf. Definitions 2 and 4.

We often abbreviate Z = (2,5, deg).
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Example 6

(1)

(2)

The category Z := Z carries the shift (Z AN Z)S = (Z SAZN Z) for i € Z, whence
ilk) =1+ k fori, k € Z.

Then (Z, S) carries the degree function deg = idz . So ideg =i for i € Z.

We generalise (1). Let C be a category. Consider the category Z :=Z x C.

The example in (1) can be considered as the particular case C =!.

The category Z carries the shift
(Z5Z,X5Y)S = (25527, X5Y)
for (i,a) = (Z 5 Z, X % Y) in Mor(Z) = Mor(Z) x Mor(C).
So (i,a)[k] = (i + k,a) for i, k € Z.
For (i,a), (j,b) € Mor(Z) with X %Y 2 Z in C, we obtain in fact the following.

((i,a) - (4,0))S = (i+7j,a-b)S = (i+j+1a-b)
(i,a)S - (4,0) = (i+1,a)-(5,0) = (i+j+1,a-b)

Then (Z,5) carries the degree function
Mor(2) 2% 7
(1,a) +— (i,a)deg := i.

For (i,a), (j,b) € Z x C with X 5Y 2 Z in C, we obtain in fact the following.

((1,0) - (j,b))deg = (i+j,a-b)deg = i+j = (i,a)deg+(j,b)deg
((i,a)S)deg = (i+1,a)deg = i+1 = (i,a)deg+1

Definition 7 Suppose given n € Z; .

A tuple (y;)icpi,n) € Mor(Z)*™ is called composable if yitz = y;15z for i € [1,n — 1].

We often abbreviate y = (vi)ie[1,n) -

Definition 8 Suppose given z € Mor(Z) and n € Z~; . Let

fact,(2) = { (Yi)iei,n) € Mor(Z)™™ : (Yi)iep,n) composable and 2 =y - y2 -+ Yn }

be the set of factorisations of z of length n.

Example 9
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(1) Let z € Mor(Z). Then facts(z) consists of the diagrams 2 2 % with vy -y5-y5 = a.

z

N

—_—
Y2

(2) Let z € Mor(Z). We have facty(z) = {z}.

(3) For z € Z, we have facty(2) = { (y1,y2) €EZ"* : y1 +y2 = 2 }.

1.1.2 Graded modules
Let Z = (Z,5,deg) be a grading category; cf. Definition 5.
Definition 10
(1) A Z-graded module is a map M : Mor(Z) — Ob(R-Mod), z — M?, often written
(M?).eMor(z) OF just (M?), .

(2) Suppose given a Z-graded module M. Suppose given z € Mor(Z) and m € M~.
We write
mdeg = zdeg

for the degree of m.

(3) Suppose given Z-graded modules L and M. A (Z-)graded linear map f from L to
M is a tuple of linear maps (L* AN M?) .emor 2 , Often written just (L? AN M?#), or

(f*)-- So
(L4 ) = @2 5 v,
(4) The category
Z-grad,
has the Z-graded modules as objects and the graded linear maps as morphisms.

The composite of the Z-graded linear maps L ENY VEENG RS given by
fg9 = ((f'g)z)ZEMor(Z) = (fz'gz)ZEMor(Z) .
We have the identity idas := (idas=)zemor(z) -

(5) Suppose given a set I and Z-graded modules M; for i € I. Define the (external)
direct sum of the tuple (M;);cr as the Z-graded module

@ M’L . <§ Miz)zGMor(Z) '

for z € Mor(Z).
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Example 11 Let B be a linear category. Let Z := Z x Ob**(B).
Then Mor(Z) = Z x Mor(Ob*?*(B)) and so
4{X,Y) ifi=0

({ 0 if 70 })(i,(X,Y))GZXMor(ObXQ(B))
is a (Z x Ob*?*(B))-graded module.

In particular, given an algebra B, we obtain a linear category, abusively again denoted by
B, having Ob(B) = {B} and Mor(B) = B, composition given by multiplication. Then

( { B ifi=0 })
0 iti#0J /) ,
is a Z-graded module, concentrated in degree 0.

Definition 12 Given a Z-graded module M, we let SM be the Z-graded module defined
by
(SM)? = M*®

for z € Mor(Z).
Given a Z-graded linear map LM , we let SL 2y SM be the 2- graded linear map
defined by
(5L B (smry) = (178 15 )
for z € Mor(Z).

We have a functor
Z-grad, sz grad

(L4 M) — (SL 2L s
This functor is an automorphism of Z-grad, ; cf. Problem4.(1).
We often write (L[k] I8, gt 1) = (S*L Gl == S*M) for L Iy M in Z-grad, and k € Z.
So (M2 = M= and (f¥)? = f#I* for » € Mor(Z2).

Definition 13 Suppose given Z-graded modules L, M and N.
A shift-graded linear map of degree k from L to M is a pair (f, k), where f: L — M is

a graded linear map.

So f = (L* L M) entor(2) -

Write (f, k) deg := k.

Suppose given shift-graded linear maps L YR A Y9 N Then L L5 M (k] and M[k] — KLU
N[k+/{] in Z-grad, , i.e. as graded linear maps. The composite of (f, k) and (g, ¢) is defined

by
(f.k)-(g.0) == (f-glkl,k+¢) : L — N[k+{].
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We have the identity (idys,0) on M.
We call (f, k) piecewise injective if f* is injective for z € Mor(Z).
We call (f, k) piecewise surjective if f* is surjective for z € Mor(Z).

The category
Z-grad

has the Z-graded modules as objects and the shift-graded linear maps as morphisms. Cf.
Problem 4.(2).

By abuse of notation, we let

S(fk) (51:k) IS

(SL SM) := (SL M)(Sf, k)

for L ﬂ M in Z-grad. Then S is an automorphism on Z-grad; cf. Problem 4.(3).
Accordingly, we write

(o WA Wk My = (L[t]( WG YIC)

for t € Z.

Finally, given morphisms (f, k), (g,k) € Mor(Z2-grad) of the same degree and r, s € R,
we let

r(f, k) +s(g. k) = (rf +sg,k);
cf. Problem 4.(4).

Definition.

(1) Suppose given a Z-graded module M.

Suppose given a submodule M? C M= for each z € Mor(Z). Then M =
(M )zeMor(z) is called a Z-graded submodule of M. We write M C M. We have
the shift-graded linear inclusion map of degree 0

M — M
at z € Mor(2): M* — M~
m = m.

We may form the factor module M?/M? for each z € Mor(Z2). Then M/M =
(M?/M?) .emor(z) is called the Z-graded factor module of M modulo M. We have
the shift-graded linear residue-class map of degree 0

M — M/M
at z € Mor(2): M* — M*/M*
m = m+ M.
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(2)

Suppose given Z-graded modules L and M. Suppose given a shift-graded linear
map L Iy M of degree d.

Let Kern(f) := (Kern(f?*)).emor(z) - Then Kern(f) is a Z-graded submodule of L.
Let Im(f) := (Im(f?)).emor(z) - Then Im(f) is a Z-graded submodule of M.
Let Cokern(f) := (M?/Im(f?)).emor(z) . Then Cokern(f) = M/Im(f).

Suppose given Z-graded submodules L C Land M C M. Write the inclusions
L5 Land M 2 M. Suppose that Im(i - f) € M.

1&1
There exists a unique shift graded linear map L —= M, called the restriction of f
to L in the source and M in the target, making the diagram

M

L——
T |
Lo
L—"M

commutative. In particular, f |]L” is of degree d.

We also write Lf := Im(f|;) C M.

If L = L, we also write f|M = f]]L‘Z

If M = M, we also write f|; == f|¥.

Suppose given a Z-graded module M. Suppose given a set I and Z-graded sub-

modules M; C M for i € I.

Write —I— M; = ( —I— Mf)z for the (inner) sum of the tuple (M;);cr of submod-

i€l i€l
ules, which is a graded submodule of M.

Consider the following shift-graded linear map of degree 0.

P(M;);
Do e 4w

iel iel

at z € Mor(2): €M; - 4 Mf
iel il
(Maidier = e

We say that —|— M; is a(n) (inner) direct sum of (M;)icr if (ar,),., is an isomor-

iel
phism. In this case, we also write, by abuse of notation, @ M; = —|— M; .

iel el

So the sum —|— M, is direct if and only if the sum —|— M7 is direct for z € Mor(Z2).

i€l i€l

16]
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(4) Suppose given a Z-graded module M. Suppose given a set I and Z-graded sub-
modules M; C M for i € I.

Write ﬂ M; = (ﬂ M7 )Z , which is a graded submodule of M.
i€l i€l
Remark 14 Let k € Z.

Given (f, k) € Mor(Z-grad), we often write just f instead of (f, k) if k£ is known from
context. Then fdeg = k.

In particular, we often write 0 instead of (0, k) by abuse of notation.

Given a shift-graded linear map f : L — M of degree k, given a € Mor(Z) and given
¢ € L*, we often write /f instead of ¢f°.

Example 15 We make use of Remark 14.

Suppose that Z = Z. A complex is a Z-graded module M, together with a shift-graded
linear map d : M — M of degree 1 such that d? = 0.

Removing the abusive language of Remark 14 again, we should write (d, 1) in place of d.
Sod = (M L5 M*+),eq.

Moreover, we should write (d,1)? = (d - d,2) in place of d?. So in fact, we require
di,di+1

(d-d",2) =(0,2),ie. 0 =d-dV = (M} = M™*2),cz,ie. d'-d*' =0 foric Z.

1.1.3 Tensor products

Let Z = (Z,S5,deg) be a grading category.
We will not make use of Remark 14 in this §1.1.3.

Definition 16 Suppose given n € Z; .

(1) Suppose given a Z-graded module M; for i € [1,n].
Let ®i€[1’n] M; be the Z-graded module defined by
(M) = H & M
i€[1,n] y € factn(z) i€[ln]

for z € Mor(Z).
We often write M} ® ... ® M,, := ®i€[17n] M; .

(2) Suppose given (u;)ic(1,n) 5 (Vi)icnn € Z°". Let

[(ui)is (vi)i] = (—1)21<i<g<nuw]' ]
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(3) Suppose given Z-graded modules L; and M; for i € [1,n].

Suppose given shift-graded linear maps L; M M; for i € [1,n].

Write &k := 3, , ki . Define the shift-graded linear map

® (ik)=( ® fi.k )

i€[1,n] 1€[1,n]
Q) L & M,

1€[1,n] i€[1,n]
at z € Mor(Z) by
(® ) )
® L @ ® LiJz €L @ ® Mlyz _ (® M@)Z[k] ,
i€[1,n] yefactn(z) i€([l,n] g € facty (2[k]) i€ [1,n] 1€[1,n]

mapping an elementary tensor
Yi
Diepa € Q) L
i€([1,n]
to
D2 (R £) = Lk, (edeg) ) (Gf )2,y € Q) Myt
i€[1,n] i€ Ln]

The sign [ (k;);, (¢;deg);] € {—1,+1} is called the Koszul sign; cf. (2). Note that
yideg = (i deg. Note that in fact, ya[k1] - ya[ko] - -~ yn[kn] = (41 Y2 - - yn) [F] = 2[K].

We often write (f1,k1) ®@ ... ® (fu,kn) = Qyepn(fis ki) -
(3) In Problem 7.(3), we construct a Z-graded module R such that
ReM =M =MeR
for a Z-graded module M and, more precisely,
(f; k) @ (idg,0) = (f, k) = (idg,0) @ (£ k)
for a shift-graded linear map M ﬂ N between Z-graded modules M and N.

We stipulate that ®ie[1,0] M; := R and that Q (fi, ki) = idy, in the context
i€[1,0]

= QM

i€[1,k]

of (1,2). In particular,

and

(iR = Q) (f.k)

i€[1,k]

are defined for k € Z~g, where M®° = R and (f, k)®° = id, .
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5 ki
(fi ki)

Example 17 Suppose given n € Z>; and (L; M;)ieni n) € Mor((Z-grad) ™).

(0) We have |(1,4,5),(—7,2,3)] = (—1)V2+13+43 — 1,

® 27 z
(1) Suppose n = 1. We have ®L SN ®M ERLON —— M).

1€[1,1] 1€[1,1]

Note that fact;(z) = {z} for z € Mor(Z), cf. Example 9.(2), and that the Koszul
sign is +1 if n = 1.

(2) Suppose n = 2. The shift-graded linear map

& (fi ki)
®L 1612] ®Mz) — (L1®L2M>M1®M2)

i€[1,2] i€[1,2]

of degree k := ki + ko has at z € Mor(Z) the entry

(Ll ®L2)z _ @ Lgln ® L32J2 M @ Mlill ®M§2 _ (Ml ® MQ)Z[k] 7

y € facta(2) § € facta (2[k))
mapping an elementary tensor
(LRl € LY @ LY
to
(L@ b)(fief) = ()G @ 6f) € MY oM
Here, the Koszul sign
(kv k2) , (6 deg, fadeg)] = (—1)F (e

can be interpreted as being caused by pulling f;, of degree k; , across {5, of degree
82 deg

Consider the case Z = Z. Then z € Z. The map

f ®f z ~ ~
Lok = @ ey L0 @O MPoMP = (M o M)
y1,y2 €%, U,92€7,
yity2 =z J1+92 = z+k
maps

(LRl € LY @ LY

to
(L@ L) ([ L) = (D2 fi@hf) € MPH o M
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(3) Suppose n = 3. The shift-graded linear map

& (fi ki)
®L 16[13 ®M — L1®L2®L3MM1®M2®M3)

1€[1,3] 1€[1,3]

of degree k := ki + ko + k3 has at z € Mor(Z) the entry

(olkely= @ Welfely P28 @ Mo MP e MP = (M Mo My)™,
y € facts(2) g € facts(2[k])
mapping an elementary tensor

€1®€2®€3 c L%@L?@L?

to

(L@ )([L® fa® f3)7 = (—1)k(E2deatlsder)thobades) (p) (11 @ 0, f3* @ L5 f5°)
c M%’l[kl] ® Mén[/m] ® M??’JB[k‘s]

Here, the Koszul sign
L(lﬁ, ko, kg) ’ (gl deg, 0o deg, (5 deg)J _ (_1)k1~(fz deg +£3 deg)+k2-(£3 deg)

can be interpreted as being caused by pulling f;, of degree k;, across {5 ® f3, of
degree (5 deg +/3deg, and f,, of degree ks, across /3, of degree (3 deg.

Consider the case Z = Z. Then z € Z. The map

(LheLel) = @ Welperp L @y MPoMPoMP = (Mo Mo M)
Y1,Y2,Y3 €4, Y1,Y2,Y3 €Z,
Y1+y2+ys ==z J1+g2+73 = 2+k
maps

LR € LV LY QLY

to

(51 ®€2®€3)(]ﬂ1 ®f2®f3)z — (_1)k1‘(y2+y3)+k2~y3 (flfl ®€2f2®€3f3) c M{/l""kl ®M§/2+k2 ®M§/3+k3 )

Example 18 We consider the tensor product of two complexes; cf. Example 15.
Let M be a complex with differential (d,1). Let M be a complex with differential (d, 1).
Then the Z-graded module M ® M has at position z € Z the entry

@ M@ M .

i,jEZ, i+j=z
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The entry at i + j of the graded linear map (D, 1) := (d,1) ® (id,0) + (id,0) ® (d, 1) of
degree 1 maps the elementary tensor

m®em € M'® M
to . . . ~.
(mem)D = (=1)"md @ mid+(-1)"mid @mnmd’
(=1)imd’ @ i +m @ md’ .
So entry at i + j of the graded linear map (D, 1)? = (D - DI1],2) of degree 2 maps it to
((m ® m)D)DM
= ((=1)md' @ m + m @ md’) D]
= (=1 Hmdd™ @ m+ (—1)md' @ md + (—1) T 'md' @ md’ +m @ md d'
= 04 (=1Ymd' @ md(1—1)+0
= 0.

So (D,1)? = 0. Hence M ® M, with differential (D, 1), is a complex.

This would not have been the case without inserting a sign such as the Koszul sign.

1.2 A -algebras and A, -categories

Let Z = (2,5, deg) be a grading category; cf. Definition 5.

’Henceforth, we make use of Remark 14. ‘

Definition 19 Suppose given n € [0, o).

(1) Suppose given a Z-graded module A.
Suppose given a shift-graded linear map mg = (m}, 2 — k) : A®¥ — A of degree
2—Fkforke[l,nNZ.
Then A = (A, (mf)keu,n]nz) is a pre-A,-algebra (over Z).
A pre-A,-algebra A = (A, (m?)ke[l,n}ﬂz) is an A, -algebra (over Z) if the Stasheff
equation

0 = Z (_1>T+St(id®r ®m;4 ® id@t) ) mf+1+t

(T’,S,t)EZ20XZ21 XZ;O
r+st+t=k

holds for k € [1,n| N Z.

Note that each summand of the right-hand side is a shift-graded linear map from
A®F to A of degree 3 — k.



22

We often abbreviate A = (A, (my)1) = (A, (mi)x) :== (4, (m?)ke[m]mz)-

Sometimes, the tuple (my); is referred to as an A, -structure on the Z-graded
module A. An entry my of this tuple is sometimes referred to as kth shift-graded
linear multiplication map.

We often abbreviate the condition (r, s,t) € Zsg X Zx1 X Zx( on the indexing triples
to (r,s,t) > (0,1,0).
(2) Suppose given Z-graded modules A and A.

Suppose given a shift-graded linear map fr = (fi, 1 —k) : A% — A of degree 1 —k
for k € [1,n] N Z.

Then f = (fi)kepnnz : A — Ais a pre-A,-morphism (over Z).
Suppose given A,-algebras A = (fl, (mf)keu,n]mz) and A = (A, (mf)keu,n]mz).

A pre-A,-morphism f = (fi)repnnz : A — Ais an A, -morphism or a morphism of
A, -algebras (over Z) if the Stasheff equation for morphisms

S )T @ml @id®)  fa = Y. > LA=i) ) () f) m
(T»Svt)eriiii%ilxz?o re([1,k] (ij)je[l,r] € Z;; JEL,r]
B Zje[l,r]ij:k

holds for k € [1,n] N Z.

Note that each summand of the left- and of the right-hand side is a shift-graded
linear map from A®* to A of degree 2 — k.

We often abbreviate (fi)r = (fi)repnnz -

We often abbreviate the condition (7, s,t) € Z=o X Z>1 X Z> on the indexing triples
to (r,s,t) > (0,1,0) and the condition (i;)jcn,y € ZZ] on the indexing tuples to
(i5); = (1); -

Remark 20 Suppose given 1 </ < n < oo.

(1) Given an A,-algebra (A, (mf)ke[l,n]mz), we get an Ag-algebra (A, (mf)ke[wmz).
(2) Given an A,-morphism (fy)kcpnnz from an A,-algebra (121, (mé)ke[l,n]ﬁz) to

an A,-algebra (A, (m?)ke[l’n]mz), we get an Ag-morphism  (fi)rep,gnz from

(Aa (mé)ke[l,e]mz) to (A, (mf)ke[l,f]mz) .

Example 21

We consider the Stasheff equation from Definition 19.(1) for an A,-algebra A =
(A, (mMy) = (A, (mg)y) for k € [1,3], supposing n > k.

A

T
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(1) For k = 1, the Stasheff equation reads
0 = my-my.
So in case Z = Z, the graded module A is a complex with differential m .
(2) For k = 2, the Stasheff equation reads
0 = —(id®mq) - ms — (M1 ®1d) - ma + Mg - my .
In case Z = Z, we obtain for a, b € A°
((a®@b)ma)m; = (a ® bmy)msy + (amq @ b)ms .

Interpreting my as differential and msy as multiplication, this is a product rule for
the differential, often called the Leibniz rule.

(3) For k = 3, the Stasheff equation reads
0 = (m1 ®1d®2) -ms + (ld XMy ®1d) -Mms + (id®2 ®m1) -Mms + (mg ®1d) Mo — (ld ®m2) Mo +M3-MmMq .
In case Z = Z, we obtain for a, b, ¢ € A°

(a® (b®c)ma)ms — ((a ® b)ms @ ¢) - my
= (am; ®b® c)mz + (a ® bmy @ c)mz + (a ® b ® cmy)ms + ((a ® b ® ¢)mz)my

Interpreting ms as multiplication, we observe that this multiplication is associative
if mg =0 or if m; = 0.

We do not claim that associativity of my entails ms = 0.

Example 22

We consider the Stasheff equation for morphisms from Definition 19.(2) for a morphism
f=(f)r: A— Aof A,-algebras for k € [1, 3], supposing n > k.

We consider the conditions of Definition 19.(2) for k£ € [1, 3], supposing n > k.

(1) For k =1, we obtain the condition

miA'fl = f1'm‘f‘-

In case Z = Z, we obtain that f; is a morphism of complexes from A, having
differential m?', to A, having differential mz' .

(2) For k = 2, we obtain the condition

—(id®@mi) - fo — (mil ®id) - fo +mg - fi
= formi+(fi® fi) -mi.
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(3) For k = 3, we obtain the condition

(mf ®id®?) - f3 + ([d@mf @id) - f5 + ([d®2@md) - f3 + (md @id) - fo — ([d@md) - fo + md - fy
= fs'mf+(f1®f2)'m‘QA—(f2®f1)'m§4+(f1®f1®f1)'m§4-

Definition 23 Let n € [2,00]. Suppose given an A,-algebra A = (A, (m{)rep.nnz)-

Then A is called unital, if for X € Ob Z, there exists a neutral element 14 x = 1x € Aldx
such that (1,2) hold.

(1) We have (a ® 1x)m§ = a for 2 € Mor(Z) with ztz = X and a € A

(2) We have (1x ® b)ms' = b for w € Mor(Z) with wsz = X and b € A¥.

Then 1x is uniquely determined, for given an element ¢ € A% having properties (1,2),
then 1x = (1x ® c)m{ = c.

Note that (1x®1x)m2Am’14 1: 1Xm‘14 2: (lxmf®lx)m‘24+(lx®lxmf‘)m2‘4 = 1Xm‘14+1Xm‘14
for X € Ob Z, whence 1ym{ = 0; cf. Example 21.(2).

Definition 24 Let n € [2,o0].
Suppose given unital A,-algebras A and A.

Suppose given an A,-morphism A ER A, so [ = (fi)repmnz -
Then f is called unital, if for X € Ob Z, we have 1A,Xf1 =1lax.

Example 25 Suppose given n € [3, 00| .
Suppose given a unital A,-algebra A = (A, (my)x).
Suppose that A* =0 for z € Mor(Z) with deg z € Z ~\ {0}.
Then my, = 0 for k € [1,n] \ {2}. In fact, the shift-graded linear map my = (my,2 — k)
actually maps from A®* to A®~M. So given 2z € Mor(Z) and y € facty(z) and
1 ®...Q0a, € A®...Q A%

its image is

(1 ®...® ap)m, € AR

In order that this image be nonzero, we need that on the one hand, a; is nonzero for
i € [1, k], so necessarily y; deg = 0 for i € [1,k]. On the other hand, we must necessarily
have z[2 — k] deg = 0. But

0 = 22— kldeg = zdeg+2—k = (Y y)+2-k = 2—k,

1€[1,k]
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so k= 2.
In particular, interpreting ms as multiplication, it is associative; cf. Example 21.(3).
Case Z = 7. Then A°, together with the multiplication
A @ A — AY
a ® b +— a-b = (a®@bms

is an algebra. The element 1z € A9z = AY is neutral with respect to multiplication ; cf.
Definition 23.

Case Z =7 x I*? for a set I ; cf. Ezample 1.(4). Then we have a linear category A° with
Ob(A%) =T and (i, j) = A®ED) for 4, j € I. Tts composition is given by

A0GD)  AOGR) s AO,GR)
a ® b = a-b = (a®b)my
for i, j, k € I. Given (Z,i) € {Z} x I = Ob(Z x I*?), the element 1(z; € Az =
ALG) §5 neutral with respect to composition ; cf. Definition 23.
Example 26 Suppose given n € [3, o0].
Suppose given unital A,-algebras A and A.

Suppose given a unital A,-morphism A EN A, so [ = (fi)repnnz -

Suppose that A7 = 0 and A* = 0 for z € Mor(Z) with degz € Z ~ {0}. So m& = 0 and
mit =0 for k € [1,n] \ {2} ; cf. Example 25.

Moreover, f, = 0 for k € [1,n] \ {1}. In fact, the shift-graded linear map fi = (fi, 1 — k)
actually maps from A®* to A'7*. So given z € Mor(Z) and y € fact;(z) and

\®...Qa, € AV ®...® A%,
its image is
(a1®...®ak)fk € Az[lik].

In order that this image be nonzero, we need that on the one hand, a; is nonzero for
i € [1, k], so necessarily y; deg = 0 for i € [1,k]. On the other hand, we must necessarily
have z[1 — k] deg = 0. But

0 = z[1—kldeg = zdeg+1—k = (Y y)+1—k = 1—k,
1€[1,k]
so k=1.
Now A L& A satisfies mi - fi = (f1 ® f1) - mi; of. Example 22.(2).

Case Z = Z. Then A° and A° are algebras; cf. Example 25. Using the multiplication
notation from there, we obtain

@ b)fi = (@2b)(my-fi) = (@H)(H®fi) -my = afy-bf
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for a, b € A°. Moreover, we have
lizhi = laz.

So f; is a morphism of algebras from A° to A°.

Case Z =7 x I*? for a set I ; cf. Ezample 1.(4). Then A and A° are linear categories;
cf. Example 25. Using the composition notation from there, we obtain

@ bfi = @ab)my - fi) = @@H)(Hef) m = af-bh
for i, j, k € I, for a € A6 and ¢ € A© . Moreover, we have
1ifi = 14

So f; is a linear functor from A° to A°.

Exceptionally, fi is written on the right, i.e. naturally.
Definition 27 Recall that Z is a grading category.

(1) An A-algebra over Z is called a classical A -algebra.

(2) Suppose given a set 1.

A unital A.-algebra A over Z x I*? is called an A -category with set of objects
Ob(A) = I; cf. Example 1.(4).

(3) A unital A-algebra A = (A, (my)rez.,) over Z with my, = 0 for k > 3 is called a
differential graded algebra (over Z). Cf. Problem 11.

(4) A unital A-algebra A = (A, (mg)rez.,) over Z with my = 0 for k > 3 is called a

classical differential graded algebra.

(5) Suppose given a set 1.

A unital A-algebra A = (A, (mg)rez.,) over Z x I** with my, = 0 for k > 3 is
called a differential graded category with set of objects I ; cf. Example 1.(4).

(6) A unital A-algebra A = (A, (mg)rez.,) over Z with m; = 0 is called minimal.

1.3 The regular differential graded category for com-
plexes

Suppose given an algebra B.
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Suppose given N € Z-, . Suppose given complexes X € Ob(C(B-Mod)) for s € [1, N],

where X carries the differential d, = (X! %X o) Write X i= (Xo)seq, v -
Let Z :=Z x [1, N]*2.
Write

Hom’y (X, X)) := { (fiez : X° ER X% is a B-linear map for i € Z}
for s,t € [1,N] and j € Z.

In general, the inclusion ¢(p-moa)f(Xs,Xt) C Hom% (X, , X;) is strict. The definition of
Hom’; (X, X¢) does not involve the differentials of X, and of X .

We shall construct the regular differential graded algebra Homp(X) of X over Z on the

set of objects [1, N].

As a Z-graded module, define Hompg(X) by letting
Homp(X)UEY) .= Hom (X, , X;)

for (7, (s,t)) € Mor(Z2).

Let
mHomB(g)
Homp(X) ——— Homp(X)
be defined at (j, (s,t)) € Mor(Z) by
. oy Hom () .
Hom)(X,,X;) ———— Hom’} '(X,,X;)
(f")i > (fid;™ = (=1)difi+1); .
Xs - Xt+J
déi idi+j
XH—I f X1+J+1
Let
HomB(X)
Homp(X)®? 2 Homp(X)

be defined at (7, (s,t)) € Mor(Z), on the summand belonging to

((ka (Svu))a (67 (uvt))) € faCtQ ((]7 (87t>)) )
ie. k+/¢=jandue€ [1,N], by

Hom g (X)

Hom’(X,,X,) ® Hom4(X,,X,) —2—— Hom’(X,,X,)
(f) ® (Qi)z’ > (fig™™); .

X XZ+/<: gt XerkJrZ
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Lemma 28 Recall that Z =7 x [1, N]*?. Recall that X, € C(B-Mod).
Consider the Z-graded module Homp(X) and the shift-graded morphisms

Homp (X)

Homp(X) ——— Homp(X)

of degree 1 and

mHomB(i()
Homp(X)®?* —2—— Homp(X)

of degree 0 constructed above Let mHomB( = 0, as a shift-graded linear map of degree

2 —k from Homp(X)®* to Homp(X ) fork €Z-3.

Then (Hompg(X), (mlk{omB(X))kez?l) is a differential graded category on the set of objects
[1, N]; cf. Definition 27.(5).

Proof. We have to show the Stasheff equation for k € [1,3] and the existence of neutral

elements; cf. Problem 11. Write my, := m?omB for k € Z~, .

Case k = 1. We have to show that my - my = 0; cf. Example 21.(1).

Given (j, (s,t)) € Mor(Z) and (f;); € Hom’ (X, , X;), we obtain

((f2)i)(ma - )

((fid,™ = (1) dif*h)i)m

= ((fidy"7 = (1P f )7 — (1P (T = (<1 ),
(PP = (P — ()R (1) (- ),
(0): -

Case k = 2. We have to show that ms ® my . (id®mq) - my + (my ® id) - my; cf.
Example 21.(2).

Given (4, (s,t)) € Mor(Z) and ((k, (s,u)), (¢, (u,t))) € facts ((4, (s,1))), i.e. k+ ¢ = j and

u € [1, N], and (f); € Hom’(X,, X, 7) and (g'); € Hom% (X, , X;), we obtain
((f)i ® (9")i)(ma @ my)
= ((f'g"™)i)m
(P4 — (-1 fg o)
and
(f)i @ (¢")a)((id@mq) - mg + (my ®@id) - my)
Koszul

(
(f)i ® (g'di™* — (= 1) g™ )i)ma + (=1 ((Fidy ™ — (—1)FdLf )i @ (g)i)me
Z+kdi+k+é ( 1) fzdz+k z+k+1) +( l)e(fidf':rkg”k“ _ (_1)k+£difi+1gi+k+1)i

((f)i®

()i @ ((g"))ma)ma + (=D (((f)e)m1 @ (g)i)ma
= ((fi®

(’L

(f

z+kdi+k+f ( 1)k+€dzfz+l H—k—H)z ’
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which is the same.
Case k = 3. We have to show that (ms ®id) - my = (id ®mg) - my ; cf. Example 21.(3).
)

Given (7, (s,t)) € Mor(Z) and ((k,(s,y)),(& (u, ), (p, (v,1))) € facts ((J, (s,1))), i.e
k+0+p=jandu, v € [1,N], and (f%); € Hom%(X,, X,) and (¢'); € Homg(X,,, X, )
and (h'); € Hom%(X, , X;), we obtain

()i ® (9)s © (h);)((mg @ id) - my)
S (1 @ (g)i)me @ (hY);)mo
= ((fig™) @ (h)))ms

(f

zgz+k hz-&—k—i—é)i

and
(f)i @ (g")i @ (h"):)((id @mz) - ma)
(/1) ® ((¢")i @ (h')i)ma)ma
(f)i @ (g"h™*)i)mq

z z+khz+k+£)

(
Koszul (
(
(f

'L )
which is the same.

We have to show the existence of neutral elements, i.e. that Homp(X) is unital; cf.
Definition 23. Given (Z,s) € Ob(Z2), let

L= 1z = (idxi)i -
Given (4, (s,t)) € Mor(Z) and (f;); € Hom%(X, , X;), we obtain (j, (s,t))tz = (Z,t) and
((fi)i @ Lzp)me = (fi-idymi)i = (fi)i,
and we obtain (j, (s,t))sz = (Z, s) and

(Lzs @ (fi)i)me = (idxi-f): = ()i -

1.4 Cohomology
Let Z be a grading category.
Definition 29 Let n € [1, o0].

(1) Suppose given an A,,-algebra A over Z.
Let ZA := Kern(m,) be the Z-graded module of cycles.
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Let BA := Im(m,) be the Z-graded module of boundaries.

Note that BA C ZA since m? = 0; cf. Example 21.(1).

Let HA := (ZA)/(BA) be the Z-graded cohomology module of A.
Specifically, we have, at z € Mor(Z),

mA
(ZA)* = Kern(A4? — A1)

mA
(BA)? = Im(A*FU 5 A4%) .

Note that (BA)* C (ZA)?; cf. Example 21.(1).

(2) Suppose given a morphism ALy Aof A, -algebras. We shall define a shift-graded
linear map

HA 2L HA
of degree 0. At z € Mor(Z2), it is given by

mA: I (gA)

a+ (BA? —  afi + (BA)?

This is a welldefined linear map, since f; maps (BA)* to (BA)* as well as (ZA)* to
(ZA)?, because given o’ € A%~ we get

dmif, = dfim? € (BA)

cf. Example 22.(1).

Sometimes, we also write Hf; := Hf.

(3) A morphism A Iy Aof A, -algebras is called a quasiisomorphism if Hf is an isomor-
phism.

Since we do not know yet how to compose A,-morphisms, we do not have a category of
A, -algebras at our disposal. Hence, at this point, we cannot decide whether H is a functor
from the category of A,-algebras over Z to Z-grad. Cf. Problem 23.(7) below.

Our aim is to show the Theorem of Kadeishvili, Theorem 50 below, which, in case R is
a field, will establish the existence of a minimal A,-structure on A and at the same time
a quasiisomorphism from HA to A. This theorem seems to be hard to obtain by a direct
calculation, though. We will make a detour, reinterpret Stasheff equations as a codifferential
condition on a tensor coalgebra, in order to obtain an understandable proof. In the following
Remark 30, we illustrate the first two steps towards Kadeishvili.

Remark 30 Let n € [1,00]. Suppose given an A,-algebra A over Z.

Denote by BA £ 7ZA % A the inclusion morphisms.
Denote by ZA % HA the residue class morphism. Note that BA = Kern(p).
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In particular, given a morphism A Iy Aof A,-algebras, we get the following commutative
diagram.

A A
LT~ ZA TL
A% g4

P lp
HA =0 g

If R is a field, we may choose a shift-graded linear map ZA < HA of degree 0 such that
op = idya ; cf. Problem 15.(2).

If R is a field, we may choose a shift-graded linear map A <~ BA of degree —1 such that
7(mq|B4) = idy ; cf. Problem 15.(2).

Since (idza —p-0)p = p—p-op = p—p = 0, there exists a unique shift-graded linear map
ZA = BA of degree 0 such that 7 - i = idza —p - 0; cf. Problem 15.(1). Write v := i7.
So

veomy = v-1-(m|PY To0 = 070 = (idga—p-o)p.
A
mi
m1|BA - P
BA——7ZA— HA

Here the existence of the shift graded linear maps written with dotted arrows is only
ensured if R is a field.

Remark 31 Suppose R to be a field.
Suppose given an Ag-algebra A over Z.

We will construct a minimal As-structure (my, ms, m3) on HA and a quasiisomorphism
(q1, g2, q3) of As-algebras from HA to A.

Step 1. For this step, we will only need A as an Aj-algebra.
Let m; =0. Let ¢ :=0 - ¢.
We have

my-my = 0.

Hence the Stasheff equation at k£ = 1 holds; cf. Example 21.(1).
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We have
my-q =0 =q-m.
Hence the Stasheff equation for morphisms at k£ = 1 holds; cf. Example 22.(1).

Since we have the commutative diagram

HA-2 - A

j

ZHA—"—=7A

lp

HHA ——HA |

we have Hg; = idga, which is an isomorphism. So ¢ = (¢1, g2, q3), once constructed as a
morphism of As-algebras, will be a quasiisomorphism; cf. Definition 29.(2, 3).

Step 2. For this step, we will only need A as an As-algebra.
By Example 21.(2), we get

192 my-my = 1%%(my @ id +id @m,)
= (b1 ® L+ 1®umy)
= 0.

Thus by Problem 15.(1), we get a unique shift-graded linear map s : (ZA)®? — ZA of
degree 0 such that the following quadrangle commutes.

A®2 T2 4
L®2T L
(ZA)®2 274

We claim that ((m|?4) @ idga) - sy - p = 0 and that (idza ®@(my]?4)) -1y - p = 0.

We prove the first equation. The second then follows by an analogous reasoning.

Given z € Mor(Z) and (u,v) € facty(z[—1]) and a € A" and a € (ZA)", we have
a®a € (A®2)%-1 and obtain

(a® a)((m|**) @idza)ms - p (e @ a)(my ®id)m, + (BA)*

( )<1d ®m1)m2 -+ ( X )mg my + (BA)
(a®amy)+ (a®a)ms - my + (BA)?
(a ® a)mg)ml + (BA)?

Ex.21.(2)

I
O/—\



33

This proves the claim. So by Problem 16.(2), we obtain a unique shift-graded linear map
sy : (HA)®? — HA of degree 0 such that the following quadrangle commutes.

(2A)®* "2 7.4

(HA)®2 -T2, HA

The shift-graded linear map ms can be obtained in a second way still. We will call the
one resulting from the second construction msy , with the aim of showing sy L Moy .

Writing
Uy = (1 ®q1) -ma,
taking under consideration that m; = 0, the Stasheff equation for morphisms the shift-
graded linear maps ms and ¢y are to satisfy reads
- !
Mo qr—qa-mp = Yy
cf. Example 22.(2).

We claim that ¥, factors over ¢ as Wy = Wy - .. We have to show that Uy - my = 0; cf.
Problem 15.(1). In fact,

Ex.21.(2)

(@@) me-mi =" (@1®q) (mi®id) -mo+ (@1 ® q1) - (1[d@my) - mo
= (@11 ®q1) - ma + (1 ® qimy) - My
—— ——
=0 =0
== 0.
This proves the claim.
Letting i
qQ2 = —‘{’2 "V
ﬁ”LQ = \IIQ P,
we obtain 3 . 5
Mo g1 —¢g2-M1 = ‘?2‘p’Q1+\p2v'V'm1
= Uy-po-t+Vy-(id=p-0)-1
‘112 <L
= \112 )
as required.
It remains to show '
mQ = ThQ .
It suffices to show that p®%m, = p®my, since p®2 is piecewise surjective; cf. Prob-

lem 16.(1). So we have to show that p®*WU,p = map. It suffices to find a shift-graded
linear map & : (ZA)®? — A of degree —1 such that

!

X . A
p®2‘112—m2 = fml‘z )
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i.e. such that

But

(p* Wy — 1)
= p®2Wy — Mgt
P®2\112 _ L®2m2

P (@1 ® q1)my — 15y
(pro-1t@p-o-1—1R1)my
((t—=vmy) ® (L —vmy) — L® L)m
(—vmy ® L — 1t @ vmy + vmy @ vmy)my
—(v® 1) (maemy —id@my) — (t @ v)(mamy — (my ® id)ms) + (vmy ® v)(mamy — my ® id)
= (—(r®u)me — (L @v)ma + (vmy @ v)mg)my

since tmq = 0.
An associativity. We claim
(s ® id — id @)y = 0.

It suffices to show that p®3(1my @ id — id @M )My = 0, since p®3 is piecewise surjective;
cf. Problem 16.(1). Now

My ® p — p @ p©Pimg )iy

p3 (g @ id —id @mg)my = (p®
(Mep @ p — p®mew
(7
(7

o @ id — id @iy p®21m
e ® id — id @1y )megp .

So it suffices to find a shift-graded linear map 1 : (ZA)®3 — A of degree —1 such that
(1hy ® id — id @17 )17y < nm4|%4, i.e. such that (1, ® id — id @7y ) gL L nma|“4 = nmy.
We obtain

(mg X id —id ®m2)m2 A

(mg (24 id —id ®m2)b®2m2
(
(

Mo L ®L— L QMg L)My

19?my @ 1 — 1t @ 1¥%my)my
193 (my ® id — id ®@mg)meo
123 (—(my ®id®?) - m3 — (id®@my @id) - m3 — (1d®? @m,) - m3 — ms - my)
= —1®3  mg - my

since tm; = 0.

Step 3. Write

Uy = (—me@id+id®@mae)ge + (1 @ q2) - ma — (2@ q1) - ma+ (1 @1 @ q1) - M3
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We have to find m3 and ¢3 such that

~ !
ms-q1—qs-my = Vs ;

cf. Example 22.(3).

Provided we can show that W3 -my = 0, then we can write U3 = W3¢ ; cf. Problem 15.(1).
Then letting

43 = —%’3'7/
msz = WY3-p,
we obtain 5 5
mg-qu—qz-mi = VYg-p-q+¥3-v-my
Ugep-o-1+V3-(id—p-0)-1¢
= Ug-p-0-1+Ts-(id=p-0) -1
= \i/g'L
= VU3,

as required.

So it remains to show W3 - my 0. Plugging in ¢ - my = ma - ¢1 — (1 ® q1)ms from
Example 22.(2) and ms - my = (my ® id +id ®m;)msy from Example 21.(2) and mgm; =
—(m1 ®id®?) - ms — (id @m; ®id) - ms — (id®* @m,) - ms — (M @ id) - may + (id @my) - My
from Example 21.(3), using ¢; -my = o-¢-mq = 0 as well as associativity of ms , we obtain

U3 - my

= —(mg & ld)QQ T + (ld ®Th2)q2 cmq
H@r @ @) -ma-mi— (@q) -ma-mi+ (1 Q¢ ®qr) - mg-my

= —(Mm2 ®@id)ma - ¢ + (M2 ®1d)(q1 @ q1)m2
(id @m2)me - 1 — (1d @me)(q1 ® q1)ma

(1 ® q2)(my ®id)ms + (1 ® g2)(id @my)me
—(2 @ 1) (my ® id)ma — (g2 ® ¢1)(id ®@my )mo
—(@ ® @ ® q)(m1 ®id*?) - mg
—(1 @ 1 @ @) (id @y ®id) - m
—(q1 ® @1 ® q1)(id®* @my) - mg
)
)

+ +

—(1 ® 1 ® q1)(me ®id) - my
+r @ @1 ® 1) (id @my) - moy

(M2 - q1 — q2-m1 — (@1 @ q1)m2) ® q1)my
G @ (—ma-q1+q2-m1+ (1 ® ¢1)ma))my

I
o A/~
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Note that the only nontrivial Stasheff equation for (13, ms,m) takes place at k = 2,
where it reads (mg ® id —id ®my) - My = 0, whose validity we have verified.

To directly proceed in this way, i.e. to construct ¥,, analogously for n > 4 and to prove

W, -my < 0 directly, seems to be involved. We will take a conceptual detour to prove the
Theorem of Kadeishvili; c¢f. Theorem 50 below.

1.5 Getting rid of signs by conjugation

Let Z be a grading category.

Definition 35 Let A be a Z-graded module. Recall that Al is the Z-graded module
having

(A[l])z — A7l
for z € Mor(Z); cf. Definition 12.
Define the shift-graded linear map

w=wy : Al 5 4

at z € Mor(Z) by
(Al)z 2 A=l

Lemma 36 Let n € [0, 0.
Let (A, (my)e) be a pre-A, -algebra over Z.
Given £ € [1,n] NZ, we write

“me = W my-w” o (A Al

called the w-conjugate of m,. Note that “my is of degree 1, independent of £.
Suppose given k € [1,n] N Z.
Given (r,s,t) > (0,1,0) with r + s +t = k, we have

(id®r ®wms ® id@t) . me_H_t — w®k((_1)r+st(id®r QM @ id®t) . mr+1+t)w_ ]

In particular, the Stasheff equation at k, viz.

0= Z <_1)T+St (id@r ®ms @ id@t) CMrt1+t

(7‘7S7t)>(07170)
r+s+t==~k
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holds if and only if

O = Z (id®r ® wms ® id®t) . me_H_t

(T7S7t)2 (07170)
r+s+t==k

holds.

Proof. Given (r,s,t) > (0,1,0) with r + s + t = k, we have

(1d®" @ “mg ® id®") - “myy14y

— (id®r ®wm5 ® id®t) . w®r+1+t Myt W

= (—1)"(w® @ (w® - ms) @ W) - Mypp14y - W™
W (1) (1d®" @my, @ 1d®) - M) w™

So
0= > (d”®@“m,®@id™) “my414

(T7S7t)>(07170)
r+s+t==k

holds if and only if

0 = CL)®k( Z (_1)r+st<id®r Qm, ® id®t) . mr+1+t)w7
(r,s,t)>(0,1,0)

r+s+t=~k
holds, i.e. if and only if
0 = Z (_1)r+st(id®r Rm, ® id(g)t) Myt
(r,s,¢)=(0,1,0)
r+s+t==k
holds. ]

Lemma 37 Let n € [0, 00].

Let A = (A, (1)) and A = (A, (myg)e) be pre-A,-algebras over Z.
Let f = (fo)¢ be a pre-A,-morphism from A to A.

Given £ € [1,n] NZ, we write

“fp = W fpewm o (AMEE A

called the w-conjugate of f,. Note that “f, is of degree 0, independent of (.
Suppose given k € [1,n] N Z.
Given (r,s,t) > (0,1,0) with r + s +t = k, we have

(id®r ®wm8 ® id®t> . U.}f,r+1+t — w®k((_1)r+st(id®r ®ms ® id®t) . fr+1+t)wi .
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Given r € [1,k] and (i;) ;e = 0, we have

( ® “fiy) - “me = w1 =1y);, (iy); ® fi;) - my)w

jE[l,T] je[l’l”

In particular, the Stasheff equation for morphisms at k, viz.

> ()T @i @) - fraase =Y Yoo L= @) () fiy) -me

(r,s,t)}(O,l,O) Te[lvk] (Z])]G[ln]}(l)] je[l,r]
r+s+t=~k i =k

holds if and only if

Z (id®" @ “m, @ id®") - “frp10 = Z Z ( ® “fiy) -
(r,5,8)>(0, 1k0) re€[LE] (i) jen,n>1); GE[Lr]
r4s+t Z’L] =k

holds.

Proof. Given (r,s,t) > (0,1,0) with r + s + ¢ = k, we have
(id®r ® wms ® id@t) : wfr+1+t
= (id@r ®“m, ® id®t) cwETHI L wT
= (=)W @ (W 1) @ W)« frpnpe - w”
w®k((_1)r+st<id®r ®ms ® id@t) . fr—l—l—l—t)w_ )
Given r € [1,k] and (Z;)jep,q = 0, we have
<®je[17r] wfij) - “m,
Jj€ll,r] wflj) ®T My - W
= ®]€[1 . fZJ ) My - W™

®]€[1r]w fl)'mT'w_

= (LT = i)y (i) (@ i) - )i

So
> (@ @id®) e = 3 3 (@) ) m
(T7S7t)2(0771k7;0) r€[1,k] (ij)je[l,r]>(1)j Je[Lr]
r+s+t = k:Zj ii=k

holds if and only if

WS (1A @i @i fre)w (Y ST La=i; ) (R fiy)me)w

(T787t)>(0’170) T‘G[l k] (lj)]e[l r]/(l) je[lﬂ’}
r+s+t=~k Z i=k

holds, i.e. if and only if

Z (=)' (1d®" @ms ® id®) - fryree = Z Z L(L—=45);, (25); ® fi;) - o

(r757t)>(07170) 7"6[1,]6] (ij)je[l,r]>(1)j .76 1 T
r+s+t=k S ij=k

holds. o
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1.6 A tensor coalgebra interpretation

Let Z be a grading category.

Given a Z-graded module V and a, b € Z-;, we often abbreviate an elementary tensor
as follows. Given v; € V for i € [a,b], we write

® ._
Viap = Ya R U1 @ ... Up—1 @ Uy .

Definition 38

(1)

A coalgebra over Z is a Z-graded module T', equipped with a shift-graded linear
map A : T — T ® T of degree 0, called comultiplication, that is coassociative, i.e.
that satisfies

AA®id) = A(Id®A) .

TRT 42 ToTQT

N faos

T A TRT

Often, we just write T'= (T, A).

Suppose given coalgebras T = (T,A) and T = (T,A) over Z. A morphism of
coalgebras, also called coalgebra morphism, (over Z) from T to T is a shift-graded
linear map 1 : T'— T of degree 0 such that

YA = A ®1p).

TeT—2 .TeT
AT TA
T i T

Suppose given a coalgebra T'= (T, A) over Z. A coderivation on T is a shift-graded
linear map T’ 5T of degree 1 such that the co-Leibniz-rule

SA = A(d®6 + 6 ®id)

holds.

Note that both sides are linear in §, so that a linear combination of coderivations
on T is again a coderivation on 7.

A coderivation d on T is called a codifferential if 5% = 0.
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(4) A coalgebra with codifferential over Z is a coalgebra T over Z, equipped with a
codifferential 6 on 7.

Often, we just write T'= (T, A, 0).

(5) Suppose given coalgebras T' = (T, A,8) and T = (T, A, ) over Z. A morphism of
coalgebras with codifferential (over Z) is a coalgebra morphism T ¥, T such that

WS = 5.

Lemma 39 (and Definition) Let V' be a Z-graded module. Let n, 7 € [0, o0].
Consider the Z-graded module
T (V) = f ver.
ke[l,n)NZ

In particular, we often write

Moreover, we identify

V = Tgl(V) .

(1) Let the shift-graded linear map A = A,y : T, (V) = T (V) @ T, (V) of degree 0
be defined at z € Mor(Z) on the summand for k£ € [1,n] NZ, viz.

(V®k)z — @ ® Vyl
(Y1,.--yk) Efacty (z) i€[1,k]

by defining it on its summand at (y1,...,yx) € facty(z) by
Qicpy VY = (T<n(V) @ Ten(V))*

® _ _ ® ®
U[l,k} = 1M1X...0V Z U1®...®’Ui®'l}i+1®...®’l}i+j = Z U[l,i]®v[i+1,i+j]'
(4,)€EZx1 X Zxy (1,§)€EZx1 X Zxy
i+j=k i+j=k

Here the boldfaced tensor product symbol ® merely indicates the summand the
term is mapped to, that is 11 ®@ ... @ 1; @ V11 ® ... @ vy; € (V' @ V)2,

Note that
U[@f,k]A S (Tgnfl(‘/) & Tgn,l(V))Z .
So also the restricted shift-graded linear map A|T<n-1(V)®T<n—1(V) of degree 0 exists.

Then T<,(V) = (T<n(V),Apnyv) is a coalgebra, called the tensor coalgebra of V
bounded by n.

If n = oo, we usually omit to mention that T(V") is bounded by oo.

Recall that for k € [1,n] N Z, we have shift-graded inclusion and projection maps
Vel 2 T, (V) 5 VO of degree 0; cf. Problem 20.(1).
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(2) Suppose given k € [1,n| NZ. The image of A : VO — T (V) @ Te,(V) s
contained in Tep_1(V) @ Tep—1 (V).

(3) Let the shift-graded linear map

of degree 0 be defined at z € Mor(Z) for (u, @) € facts(2), i.e. z = ua, by

Ten(V)* @ Ten(V)® 220 T a(V)™

X

which in turn on
(V®k)u ® (V®12:)a Hon, 72,V (V®k+l%)ua

for k € [1,n] and k € [1,7] is defined on the summand belonging to

(Y1, yk) € facty(u)

(yl, . ,gj,;) - fact,;(&)

by
(V.. eVH) ® (Vhie. @V 20 yokd
® ~® ® ~®
i ® U[l,l%] — U[l,k]®v[1j€]'

(4) We have Kern A = V.

Proof.

Ad (1). We have to show coassociativity of A. Let z € Mor(Z). Let k € [1,n| N Z.
Let (y1,...,yx) € facty(z). Let v; € V¥ for i € [1,k]. Recall that we may abbreviate
U‘ﬁ”k] =0 ...U.

On the one hand, we obtain

vpAld®A) = ( >, ® vg’fﬂ,iﬂ]) (id ®A)

(4,5)>(1,1)

itj=k
_ ® ® ®
= Z U ® ( Z Viit1,idu) @ U[i+u+1,i+u+w]>
(11> (1) (wa)>(1L)
i+j=k utw =7j

_ ® ® ®
= § : Vit O Vi titu] @ Viiguttitutu] -
(i’u7w)>(17171)
itutw==k
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On the other hand, we obtain

U, k]A(A ®id) = < Z U(ﬁ)ﬂ-] X vf‘fﬂﬂ.ﬂ.}) (A ®id)

(4,9)=(1,1)
itj=k

= ® ® ®
- Z < Z Ul ® U[u+1,u+w]> ® Yli41,i44)

(6,5)2(1,1) (u,w)=(1,1)
i+j=k utw =1

_ o8 ® ®
- Z [1 u] ® U[u+1,u+w] ® U[u+w+1,u+w+j} ’

(ww,)>(1,1,1)
utw—+j =k

So both results coincide. Hence A(id ®A) = A(A ®id).

Ad (4). We have to show that (Kern A)? =V forz € Mor(Z).

Ad O. Suppose given v; € V*. Then v;A = vﬁ)’l]A = Z v(ﬁ”i] X U%I’Hﬂ =0 as an
empty sum. (1,4)>(1,1)

i+j=1
Ad C. Write A’ 1= A|Ten1V)&T<na(V) - of (1), We have to show that (Kern A’)?
Note that we have the shift-graded linear projection map Te,_(V) = V& =
Problem 20.(1). So we have

|
cVv
Vv f
Tén(v) il) Tén—l(V)@Tgn_l(V) Lg)ld> V®T<n l(v) H1n—1,V v

Let k € [1,n]NZ. Let (y,...,yx) € factg(z). Let v; € V¥ for i € [1,k]. If k > 2, then
we obtain

vf‘f’k]A’(m ®id)pp_1,y = ( Z Uﬁ)ﬂ-] & U%—i-l,i-i-j]) (m ®1d) 1 ne1,v
(4,)>(1,1)

itj=k
(v1 ® v )11V (using k > 2)
U%,k} .

So given &, € (V%) for k € [1,n] N Z, with support {k € [1,n]NZ : k P} being finite,
we let & := (£ )req,nnz and obtain

EAN'(m @1d) -1y = (&)repnnzd (11 @ id) -1,y = (0) U (&)kepmnz -
So if £ € (Kern A)?, we obtain & = 0 for k € [2,n] N Z, i.e. £ € V7. n

Corollary 41 Letn € [1,00].
Suppose given a Z-graded module V.

Suppose given a Z-graded module U, an integer d € Z and a shift-graded linear map
UL Ten(V) of degree d.

T

Recall that we have shift-graded inclusion and projection maps V = V& 2 T (V) —
VOl =V of degree 0; cf. Problem 20.(1).

Ifu-A=0, thenu=u-m -1t1.
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X

Proof. By Lemma 39.(4), now V 5 T, (V) is the shift-graded linear inclusion map of
the kernel in the sense of Problem 15.(1). Moreover, ¢; - m; = idy .

If uA = 0, then there exists a shift-graded linear map U &V oof degree d such that
u =1u-t1 by loc. cit. Therefore u-m -ty =U-t1 -7 -1t1 =U-t; = U. o

Proposition 42 (Lifting to coderivations)

Letn € [1,00]. Let V' be a Z-graded module.

Let
Coder, (V) = {Tc, (V) 2 T<n(V) : 6 is a coderivation }
Coder® (V) == {(VE* 55 V)icnmpz © . is a shift-graded linear map of degree 1 for k € [1,n] }

So Coder, (V) is a submodule of the module of all shift-graded linear map maps of degree 1
from T, (V) to T, (V). And Coder™ (V) is a module with linear combinations being
formed entrywise.

We have the mutually inverse module morphisms

~

Coder, (V) Coder™ (V)

Q& = QCoder,n,V
d (Lk -0 - Wl)ke[m}mz

ﬁ = BCoder,n,V

up3 1= (1 )keqnnz -
where pfB is determined by
- (uB) = > (1A% @ps @ 1d®) - bygrpy : VO = T (V).
(T,S,t)EZ>0XZ>1XZ;O
r4+s+t==k

for k€ [1,n|NZ.

Proof.

Welldefinedness of 5. Suppose given pn = (), € Coder™* (V). First, uf is a shift-graded
linear map of degree 1.

We need to show that pf is a coderivation. Suppose given k € [1,n] N Z. Suppose
given z € Mor(Z2) and (y1,...,yx) € facty(z). Write y;deg =: d; for ¢ € [1,k]. Write
d}[f’b} =2 iclap @i for a, b € [1,k]. Suppose given v; € V¥ for i € [1,k]. We have to show
that

v g (B)A = v Y AGd@(pB) + (1) @ id) .
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In

fact, we obtain

U[Qf,k] (1B)A

Uf?k] ( Z (1" @p @id™") - Lr+1+t)A

(rﬁs?t)>(071’0)
r+s+t==~k

Al s+1,r+5 @ ® @
( )z(: (=1)%rtestrssttd v L @V 4 ghs ® U[r+s+1,r+s+t}>A
r,s,t)>(0,1,0)

r4+s+t==k
[ r— ) ® ® ® ®
— [r!+r!+s4+1,7 47! +541]
§ ( 1) U[l,r’] ® U[r’+1,r’+r”] ® U[r’-&-r”—i—l,r’—i—r”-‘rs}us ® U[r’—l—r”—i—s—i—l,r’—i—r”—ﬁ—s—i—t}
(r',r",s,t)>(1,0,1,0)
r'+r'+s+t=k
d 1o g1 ® ® ® ®
— [r+s+1,7+s+t" 4]
E (-1) Vi) @ Vgt pgs] s © Vppis i pgestt] ® Ulptspt/+1,r+s+t/+1]
(r,s,t',t"")>(0,1,0,1)
rs+t’+t" =k

2 : 2 : d ® ® ® ®
— [p+r+s+1, p+r+s+t]
( (=1) Y1, p) ® Upt1,p4r] © Vlptrt1, prrts]Hs © Vpptrist1, partstd

(p:a)>(1,1)  (r,5,6)>(0,1,0)
p+q=k r+s+t=q

E d ® ® ® ®
— [r+s+1,r+s+t+q]
+ ( ]') U[l,r] ® v[r—i—l,r—}-s}us ® v[r—i—s—i—l,r—i—s—&-t] ® v[r+s+t+1,r+s+t+q]>
(T7s7t)>(07170)
r+s+t=p

® d R ® ® ®
— [p+r+s+1, p+r+s+t]
> <”[1,p1 ® < >, 1 P U1 p] D Vgt prtsiits © “[p+r+s+1,p+r+s+t1>

(p.g)=(1,1) (r,5,6)>(0,1,0)
ptrq=k r+s+t=q

— d s — dr s+1,7+s ® ® ® ®
+(—1) U140 < Z (= D)resttrssta o @ Ui L gHs @ U[r+s+1,r+s+t]> ® U[p+1,p+q]>
(r,s,¢)>(0,1,0)

r+s+t=p
® ®
Z <U[1,p] ® <v[p+1,p+q] (Hﬁ))
(p,g)>(1,1)
prq=Fk

+(_1)d[p+1,p+q] <v[§)’p] (uﬂ)) X U§+1’p+q])

(v ® Ey g ) (A2 (B) + (uB) @ i)
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Composite 3 - o = id. Suppose given i = (1) € Coder™ (V). We obtain
pha = (- (uf) - m1)k
- ( ST (107 Opy @) g m)k

(r,s,t)>(0,1,0)
r+s+t=~k

— (id®° @u ® id®0),
= u.
Injectivity of a. Suppose given o € Coder, V such that da = 0. We have to show that
§=0.
By induction, we show that d|r_, ) Z0for (€ [0,n] N Z.
Base of the induction. We have To(V') = 0, whence 6|1,y = 0.
Step of the induction. Suppose given £ € [0,n — 1] N Z. Suppose that &|r_,vy = 0. We

have to show that ¢y -0 0.

Since t¢41- A restricts to T, (V) @ T, (V') in the target and since (id ®9)|r_ ()1, (v) = 0
and (6 ® id)|r_, ()@ (v) = 0, we have

Lr1-0-A = - A-(ld®i+6®id) = 0.
By Corollary 41, we conclude that
L£+1'5 = lg1-0-m -1 = 0,
the latter since oo = (1 - d - 1) = 0.
This concludes the induction.
If n € Z>,, then letting ¢ = n, this shows § = 0.
If n =00, then ¢,-0 =0 for ¢ € Z-,, whence ¢ = 0. o

Proposition 43 (Lifting to coalgebra morphisms)

Letn € [1,00]. Let V and V be Z-graded modules.

Let
Coalg,(V,V) = {T(V) N Te,(V) : 9 is a coalgebra morphism }
Coalg™(V,V) = {(V& 2 V)kepmnz © ¢k is a shift-graded linear map of degree 0 for k € [1,n] }

So Coalg, (V,V) and Coalg™(V, V) are sets.

n

We have the mutually inverse bijections

~

Coalg, V — Coalg®?

n

¢ OézOéCoalg,'n,(/,V
—_

(Lk; - 7T1)ke[1,n]mz

/6 = 500a1g,n,\7,v

B Y= (SOk)keu,n]mz )
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where pf is determined by

Z Z ( ® 9%) s VIR o T (V).

re[LK] (ij)jen,nezs] JEMLT]

el =k

for ke [l,n|NZ.

Proof.

Welldefinedness of 3. Suppose given ¢ = (@), € Coalg™ (V, V). First, ¢ is a shift-
graded linear map of degree 0.

We need to show that f3 is a coalgebra morphism. Suppose given k € [1,n]NZ. Suppose
given z € Mor(Z) and (y1,...,yx) € facty(z). Suppose given v; € V¥ for i € [1,k]. We
have to show that

- .
U (@A = 77 yA((0B) @ (uB)) -
Given r € [1,k] and (2;)jeq1,1 = (1); such that >, i; = k and given s € [1,r], we write
lis] == [1—1— Z i, Z ’Lji|
j€[1,5—1] j€[L,s]

We obtain
5%,1@} (¢B)A

ﬁﬁak ( Z Z <®j6[1,r] <Pz‘j> 'Lr)A

7‘6[1 k] (ZJ)jE[l r] >(1)
1=k

( Y. D, Ten®...® fjf?r]go“)A

re[Lk] (i5)jem,m>(1);

2=k
Z Z Z [11](’011 - ® 17%%5 ® ?7([2/?9+1]90i3+1 ®...0 {)F?sﬂ}%sﬂ
re(l,k] (zj)]e[l T]>(1)] (s,t)=(
ijk s+t= r
~®
Y (XY e i) oY Y o0k
(P:9)=(1,1) s€[l,p] (i5)jen, s]/() te[l,q] (i) ep,9>(1);
ptg=k >iii=p >t =4

Z 6%717](905) ® 6§+1’p+q](¢5)>

(p,@)=(1,1)
p+qg=Fk

> T ® e ) (98 © (98))
(pvq)>£1 1)

[1k: A((pB) ® (uB)) -
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Composite B - a = id. Suppose given ¢ = (¢r)r € Coalg™(V, V). We obtain
pha = (- (#B) - )

(g
- (X (®scnnen) trm),

re[LE] (45)jen,m>(1);
>t 7Ic

= <®je[1,1] P )k

Injectivity of a. Suppose given ¢, ¢/ € Coalg, (V,V) such that 1ha = 1'a. We have to
show that 1 = 1.

By induction, we show that ¥|;_, = V'l () for £ € [0,n] N Z.

Base of the induction. We have T<o(V) = 0, whence Ul oy =0 =90y

Step of the induction. Suppose given £ € [0,n—1]NZ. Suppose that ¢|T<e(\7) = ¢’|T<[(‘~/) )

We have to show that tp1 - (¢ — ¢) = 0. Note that 1 — 1) is only a shift-graded linear
map of degree 0.

We have

b (=) A = Y A=y YA
= A (YP® )_L£+1 AW @y
= w1 AR W—¢)+ W -¢)®Y)
= 0,

since t¢41 - A restricts in the target to T<o(V) ® T<(V) and since ¢ — 9’ vanishes on
T<,(V). By Corollary 41, we conclude that

Lz+1'(¢—¢,) = L£+1'(¢—1//)'7T1'L1 =0,
the latter since (¢ -0 - m)p = Ya =V = (1 - Y - 1)k .
This concludes the induction.

If n € Z>, then letting ¢ = n, this shows ¢» = 1)/
If n = oo, then 1y -9 =1, -9 for £ € Z~, , whence ¢ = /. o

Corollary 44 Letn € [1,00]. Let V and V be Z-graded modules.
Suppose given k € [1,n].

(1) Let 6 : Te,,(V) = Te,(V) be a coderivation. Then 5@25“2 erists.
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(2) Let ¢ : T, (V) = Te,(V) be a coalgebra morphism. Then w] - exists.

Proof.
Ad (1). We have § = daf3, and

- (0apB) = > (1d®" @(1g - 6 - 1) @ id®Y) - i1 e
(T,s,t)€Z>0 ><Z>1 XZ;O
r4+s+t==~

maps to Tex(V) for ¢ € [1,k] N'Z; cf. Proposition 42.
Ad (2). We have ¥ = ¥af3, and

war) = Y Y (@)

relLR] (i5)jen, ezl JElbr]
236[1 7] ZJ =1

maps to Tex(V) for ¢ € [1,k] NZ; cf. Proposition 43.

Lemma 45 Let n € [1,00]. Let V and V be Z-graded modules.
Suppose given k € [0,n — 1] N Z.

(1) Suppose given a coderivation T, (V) 2 Ten(V).

Suppose that 52|T<k(v) =0.

Then tyi1 - 02 = L1 - 0% -7 - 11 .

(2) Suppose given coderivations Tgn(f/) 5 T(V) a
Suppose given a coalgebra morphism T<n( ) LN Ten(V).
Suppose that (6 -1 — ) - 0|ty = 0.
Then ey - (610 — 1) 0) = tgpr - (- — - 8) -7y - 11

Proof.
Ad (1). By Corollary 41, we need to show that ¢4 - 6% - A 20. In fact, we get

et 02 A = g 6-6-A

= - A ((d®6+ 6 ®id) - (id®6 + 6 @ id)
= 1 A (Jd®PZ—IR0+0® 5+ 62 ®id)
Lk+1 A(1(3‘[(2)52—|—(52(§§1d)7
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cf. Problem 6. Now ¢41 - A restricts in the target to Tex(V) ® Tep(V), so that we may
conclude from 0%|r_, () = 0 that 1441 - 6% - A = 0.

Ad (2). By Corollary 41, we need to show that 41 (61— -6)- A 20. In fact, we get

b-6)-A
AN P R AN
A-(Yp @) =g - - A (Id®6 + 6 ®id)
(id
(X
(v

®6+5®@)(w®¢)—%H-A«¢®¢OmM®6+5®M)
0+ V)@Y -y ([W-8)— (¥ 5)®¢)
©@0- =98+ (- —y-8)®¢.

Now tx11 - A restricts in the target to Tex(V) @ Ter(V
(5 ' ¢ - ¢ ' 5)|T<k(V) = 0 that li+1 - ( 'QZ) @D ) =

(NN
-0 -
TE

= lpg1- A

= “A -

= 1 A

), so that we may conclude from

0. g

Proposition 46 Let n € [1,00].

Suppose given a pre-A,-algebra (A, (my)e) over Z. Write

m = ((wmf)e)BCoder,n,A[lla

which is a coderivation on T, (AN ; cf. Proposition 42.

The following assertions (1) and (2) are equivalent.

(1) The tuple (my), satisfies the Stasheff equation at k € [1,n]NZ ; cf. Definition 19.(1).

(2) The coderivation m is a codifferential, i.e. m* = 0.

Proof. Suppose given u € [0,n|NZ. We claim equivalence of the following assertions (1)
and (2,).

(1,) We have Z (1d®" @“m, ®id®") - “m, 14 = 0 for k € [1,u].

(r,s,t)>(0,1,0)
r+s+t==k

(24) We have m?|y_ 4n1) = 0.

We proceed by induction on u. For u = 0, both assertions (1y) and (2) hold.

Suppose given u € [0,n — 1] NZ. By induction, we suppose that the assertions (1,_1) and
(2,_1) are equivalent.

Consider the following assertions (i) and (ii).
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(i) We have Z (1d®" ® “m, ® id®") - “m,4 144 = 0.

(r7s7t)2(07170)
r+s+t=u+1

(i) We have 1,41 - m? = 0.

We have to show that (2,) A (i) & (24) A (ii), for then

(lurr) & (1) A1) & ((2) A1) & (22 A0) < 2ur) -

We have
L.45.(1
by+1 - M = by+1 - M7 =71 - Uy
P.42 . . t
= E (1d¥" @ “my ® id®") « tpyiqy M- T - 1
(r757t)>(07170)
r+s+t=~k

P.42

= Z (1d®" @“m, ®id®") - “myy14g -0

(T7S7t)>(0’170)
r+s+t=~k

The needed equivalence now follows from ¢ being piecewise injective. This concludes the
induction.

This proves the claim.

Case n € Z. Letting u = n, the assertion of the Proposition follows by Lemma 36.

Case n = 0o. We conclude as follows.

The tuple (my), satisfies the Stasheff equation at k € [1,00] NZ.

< The tuple (my), satisfies the Stasheff equation at k € [1,u] for u € [0, 00] N Z.

"2 We have Z (1d®" @ “m, ® id®") - “m,4 144 = 0 for k € [1,u].

(r,5,£)2(0,1,0)
r+s+t=~k

& We have m?|q_ qmy = 0 for u € Zz.
& We have 1y -m? =0 for £ € Z;.
& We have m? = 0.

Proposition 47 Let n € [1, 00].
Suppose given pre-A,-algebras A = (A, (1y)s) and A = (A, (mg),) over Z.
Suppose given a pre-A,,-morphism f = (fi)e¢ from Ato A.

Write R
m = ((wmw@)ﬂCoder,n,Am

m = ((wmg)f)/BCoder,n,A[l]a
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which are coderwations on Te,(AM) resp. on T<,(AM) ; ¢f. Proposition 42.

Write
f o= ((“fo)e) Booatgm, i an »
which, is a coalgebra morphism from Te (AN to T<,(AM) ; ¢f. Proposition 43.

The following assertions (1) and (2) are equivalent.

(1) The tuple (fe)e satisfies the Stasheff equation for morphisms at k € [1,n|NZ; cf.
Definition 19.(1).

(2) The coalgebra morphism § satisfies m-§=f-m.

If A and A are A,-algebras, (1) means that f is an A,-morphism, whereas (2) means,
using Proposition 46, that | is a morphism of coalgebras with codifferential.

Proof. Suppose given u € [0,n|NZ. We claim equivalence of the following assertions (1)
and (2,).

(1,) We have

Z (id®r®wm5®id®t)'wfr+1+t - Z Z (“f0,®...@%f5,) “Mypy114

(T,S,t)}(O,l,O) T’E[l,k’} (ij)ie[l,r]>(1)j
r+stt=k >ti=k
for k € [1,u].

(2,) We have (m-f—f- m)|T<u(A[1]) = 0.

We proceed by induction on u. For u = 0, both assertions (1y) and (2y) hold.

Suppose given u € [0,n — 1] NZ. By induction, we suppose that the assertions (1,_1) and
(2,_1) are equivalent.

Consider the following assertions (i) and (ii).

(i) We have

Z (id*" @ “m, ®id®")- “f, 111 = Z Z (“fu®...@%fi.) “m, .

(T,s:t)>(0’1:0) TG[LU—{-I] (ij)ie[l,r]>(1)]'
r4+s+t=u+1 ZJ_ ij=u+l

(ii)) We have ¢yq1 - (m-f—f-m) =0.
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We have to show that (2,) A (i) & (24) A (ii), for then

(lurr) & (1) A1) & ((2) A1) & (22 A(0) < 2ur) -

We have
tur - (M- f — - m)
L.45.(2 -
SOy (R fem) T
P.42 P. . r W . w w
i Z (id®" @ “rms @ id™) - tpyaps - F- w101 — Z Z (“fiy ®...Q“fi,) tp-m-my -1
(T,S,t)Z(O,l,O) Te[lvu"’_l] (ij)iE[l,r]>(1)j
r+s+t=k 20515 =ut1
P.42, P. BT oW o w w w “
= < Z (1d®" @ “m, ® id®") - “f, 14 — Z Z (“fu®...® ) mr>'L1'
(ry5,)>(0,1,0) re[lLu+1] (i5)ie,n=(1);
rstt=Fk 2 i =utl

The needed equivalence now follows from ¢ being piecewise injective. This concludes the
induction.

This proves the claim.
Case n € Z. Letting u = n, the assertion of the Proposition follows by Lemma 37.
Case n = co. We conclude as follows.

The tuple (f;), satisfies the Stasheff equation for morphisms at k € [1,00] N Z

< The tuple (f;), satisfies the Stasheff equation for morphisms at k € [1, u] for u € [0,00] NZ
L, 36

& We have
Z (id*" @<, ®1d™) - “frirpe = Z Z (“fi, @ ... ® “fi) - “Mpy1py
(7,5,t)=(0,1,0) ’I'E[l,k] (ij)ie[l,r]>(1)j
rstt=k >,ij=k
for k € [1,u].

3

We have (m - f —f-m)|y_ qu) =0 for u € Z
We have ¢y - (m-f—f-m) =0 for £ € Z,
We havem - f=f-m.

T3

1.7 Kadeishvili’s theorem

With the coalgebra reinterpretation of §1.6 at hand, we can complete the task tentatively
begun in Remark 30, which is to prove Kadeishvili’s theorem.

Let Z be a grading category.
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Lemma 48 Letn € [1, 00].
Let A = (A, (1)) be a pre-A,-algebra over Z.
Let A = (A, (my)e) be an A, -algebra over Z.

Let f = (fo)e be a pre-A,,-morphisms from A to A that satisfies the Stasheff equation for
morphisms at k € [1,n] N Z.

Suppose that fi is piecewise injective.

Then A is an A,-algebra. So then f: A — A is a morphism of A,-algebras.

Proof. Using Propositions 42 and 43, we write

= ((“7)e) Booderm.anl  (coderivation on Ten(AM))
= ((“me)

= ((wf[)[)ﬁcoalg’n’lg[l]’A[l] (coalgebra morphism from T@(A[l]) to Tgn(fl[l])) )

y g)ﬁcoder’n’A[l] (coderivation on Tgn(A[l}) )

- 2 2

We have to show that @2 = 0; cf. Proposition 46.

: - !
We claim that m®|y_ qumy = 0 for k € [0,n] N Z.
We proceed by induction on k. For k = 0, we get Tgo(zzl[l}), whence the assertion.
Suppose given k € [0,n — 1]NZ. By induction, we have ﬁl2‘T<k(A[1]) = 0. We need to show
that IﬁQngk+1(A[1]) = 0. It suffices to show that Lpg1 - T = 0.

By Lemma 45.(1), we have ¢z - m? -7 - ;. Hence

-4 2

0 = Lpr-f-m”-m
= Lk+1'm‘f’m'ﬂ'1
-4 =2
= L1 - M .f.ﬂ-l
-4 )
= [’k+1'm'ﬂ-1‘[/1.f'ﬂ-l
-4 =2
=" g1 oMo “fy

Since f; is piecewise injective, so is “f;. Hence ¢y - m? - m; = 0. Thus

2 2
L1 M = L -m™ - = 0.

This proves the claim.
If n € Z>;, then letting k = n, the claim gives m? = 0.

If n = oo, then ¢ - m? =0 for k € Z>;, whence m? = 0. o

Lemma 49 Letn € Z>; .
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Let A= (A, (Me)ecpnr) and A= (A, (me)ecpinsn)) be pre-A,11-algebras over 2.
Let f = (fe)ecnnt) be a pre-Ay1-morphism from Ato A.
Suppose that the following assertions (i,1ii,ii) hold.
(i) (121, (Me)ecnn)) s an Ay-algebra, (A, (m[)ée[l’n_t'_l]) is an A, 1-algebra
and (fe)ecpn s an A,-morphism from (A, (Me)ecpn)) to (A, (Me)ecnn)-
(ii) 77, = 0.

(iii) f1 is a quasiisomorphism.

Write
Vot = — >0 (—L) AT @, ©1d) - i
(r,s,¢)>(0,2,0)
r+s+t=n+1
(r,£)>(0,0)
+ Z Z L(L —45);, ()] (fs @ ... ® fi,) -y .
re2,n+1] (i5)jen,m=(1);
S i =ntl
Then
\Pn+1 cmy = 0.
Proof. Write
Wy = WO, w0
L.37 BT o o s w
=0 _ Z (1d®" @ “ms @1d®") - “f, 1144
(r,s,t)>(0,2,0)
r+s+t=n+1
(r,t)>(0,0)

* Z Z (wfi1®---®wfiT)'me.

T€[2,TL+1] (ij)je[l,r]>(1)j
Zj ij =n-+1

Using Propositions 42 and 43, we write

m = (( wmé)ée[lvn"‘l])ﬁCoder,nqu,fl[l] (coderivation on TénJrl(A[l]) )
m ((“me) eef1,n+1]) Booder,ns1,410 (coderivation on Te,11(AM))
fo= ((wff)ée[l,n—&—l])ﬁCoalg,n—l—l,A[l],A[l] (coalgebra morphism from T<n+1(A[l]> to T<n+1(A[l]) ) -

By Problem 22, we have

Ten(A - o ~
|T;§A = (( mé)ﬁe[l,n])5coder,n+1,;u1] (coderivation on Te,(AM))
T, (Al w . .

m|T§nEA[”; = ((“mu)ecn) Boodernt 1,40 (coderivation on Tc,(AM))

’Tgn(A[l])

oAl ((wfg)ge[l,n})500&1&,1“714[1]714[1] (coalgebra morphism from Tgn(A[l]) to Tgn(A[l])) )



So by (i), we have

~ 92 5
m ‘Tgn(AU]) =0
m?2 = 0

(ﬁ"'f_f'm”T@(A[ll) = 0;

cf. Propositions 46 and 47.
Note that

Ln+1 . Tﬁ = Z (id®r ® wms ® id®t> . LT+1+t

(r,s,¢)>(0,1,0)
r+s+t=n+1

Y (T @9m, ®id%)

(T7s7t)>(0’270)
r4+s+t=n+1

In particular, (tn4 - @) "< (™) exists.

We obtain

g1 (M- f—F-m)-m
= b1 Moy — by f-m-m

P.42,P. 43 IR ~ - 1t
= E (id*" @ “ms @ 1d®") « tpy14e - f- ™

(r,s,t)=(0,2,0)
r+s+t=n+1

N Z Z (wfi1®"‘®wfir)'br'm'ﬂ'1

Te[lvn+1] (ZJ)JE[I,T]E(l)]

Zj ij =n+1

P.42,P.43 Z (1d®" @ “ms @ 1d®") - “f, 144

(T7S7t)>(07270)
r+s+t=n+1

YOS hee m

T€[17n+1] (1’])]6[1,7‘]2(1)]

Zj ’ij =n+1

= - it Y (Y @9m, @1d®) -

(r,s,t)>(0,2,0)
r4+s+t=n-+1
(rt)>0

—fpgr Uy — Y Yo (“fa®. %)

re€2,n+1] (i5)5en,n=(1);

zj ij = 1"L+1

_ w W a5 w w w,
= — W1+ “Mpgr - “ft = “fpgr - “ma

my

95
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Thus
_W\Ijn+1. wml
= ln+1 - (ﬁ‘lf_fm) cmy s Ymy — wmn+1 : wfl - “my + wfn-ﬁ-l - Ymy - Yy
() ~ - -
= Ln+1'(m'f—f m)'ﬁ'wml—wmn+1'wm1wf1+wfn+1'0
(i1) ~
= Ln+1‘(m f—f m)'ﬂl'wml
P.42 ~
= Ln+1'(m'f—f m)-m-bl-m-m
L.45.(2) -
= ar - (R = f - m) me
m2=0 ~
= Ln—i—l'm'f'm'ﬂ-l
> T<H<A[1]) B B
(tnt1 m:| it mmf .y
L.45.(1) N
= Ln+1'm2'ﬂ'1 L1 f"ﬂ'l
P.43 ~
= Ln+1'm2'7T1'wf1-

Therefore, we obtain

Wpgr-my = —w (W0 “my) - w

w®n L. ln41 -m? - T Y1 w

_ (w®"+1.bn+1.ﬁ12.7rl.w> e

Hence it suffices to show the following claim.

Claim. Suppose given Z-graded module T', an element d € Z, a shift-graded linear map
T 5 Aof degree d — 1 and a shift-graded linear map T % A of degree d such that

§-my = - fi1.

Then n=0and £ -my =0.
It suffices to show n = 0. We use the notation of Remark 30.

We have f;-m; =my - fi i 0. By Problem 15.(1), this yields the commutative diagram

A#A

j

7A T
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So we get the following commutative diagram.

T ! A =0 A
fi \Hf1
'3 i fi 1
BA—>74—" HA
/muBA \
A — A — A

We have

EomfP i = Eom = fu= - fiou
by pointwise injectivity of ¢ thus

f'ml\BA‘Z =n-fi.

So
n-Hfi = U'fl'p = f'ml‘BA‘Z'ﬂ = 0.

Since Hf; is an isomorphism by (iii), we conclude that n = 0. This proves the claim. o

In Lemma 49, it would have been sufficient to require Hf; to be pointwise injective, for this
suffices to prove the Claim.

Theorem 50 (Kadeishvili) Suppose that R is a field.

Let n € [1,00]. Recall that Z is a grading category.

Let A = (A, (my)e) be an A, -algebra over Z.

There exist tuples of shift-graded linear maps (my)e and (qe)e such that

HA = (HA, (my)e)
1s a minimal A,-algebra over Z and such that
q = (@) : HA — A

is a quasiisomorphism. Cf. Definitions 27.(6) and 29.(3).

If A is unital and n > 2, then (HA, (my)s) and ¢ = (q¢)e can be chosen to be unital; cf.
Definitions 23 and 24.

When writing (m}4), instead of ()¢, no uniqueness is implied of this structure of an
A, -algebra on A with said properties.
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Proof. We use the notation of Remark 30. Where necessary, we shall briefly recall
arguments of Remark 31.

First, we do not suppose A to be unital.
We proceed by induction on n.

Base. Suppose n = 1. Let my := 0. Let
g ‘= O0-L.

Note that ¢; is piecewise injective since o and ¢ are.

Then my-q¢u =0=0"-1t-my = g - my; i.e. the Stasheff equation for morphisms holds
at 1; cf. Example 22.(1).

We have m? = 0% = 0; i.e. the Stasheff equation for HA holds at 1; cf. also Lemma 48.

Since we have the commutative diagram

HA-2 - A

j

ZHA—"—=7A

lﬂ

HHA —HA ,

we have Hq; = idgx, which is an isomorphism.

Step. Suppose the assertion to be known for n € Z-;. We have to show the assertion for
n + 1. We have to show that there exists a shift-graded linear map ¢, 1 : (HA)®"*1 — A
of degree —n and a shift-graded linear map 1 : (HA)®*" ™ — HA of degree 1 —n
such that (1¢)ecp nt1) satisfies the Stasheff equation at n 4 1 and such that (ge)ecp i)
satisfies the Stasheff equation for morphisms at n + 1, with respect to (¢)ecp ns1) and
(mz)ée[l,nﬂ} .

Since ¢ is piecewise injective, it suffices, by Lemma 48, to show the Stasheff equation for
morphisms for (q¢)ecpnt1) at n + 1.

As in Lemma 49, we write

U == — Y (=1)"(1d® @m, @ 1d™) - grir
(r,s,t)>(0,2,0)

r4+s+t=n-+1
(r,£)>(0,0)

+ ) S 10—y ()il ® .. @ q,) - m,

r€[2,n+1] (i5)5em,r=(1);
Zj ij =n+1

which is a shift-graded linear map from (HA)®" ! to A of degree 1 — n.
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In this defining expression for W, , in fact m; and ¢; are involved only for ¢ € [1, n].

By Lemma 49, letting for the moment m,, 1 and ¢, be arbitrary, e.g. zero, we have
an—l—l cmyp = 0.

So

an—‘rl = \Ijn-‘,-l 2

where U, is a shift-graded linear map from (HA)®"*! to ZA of degree 1 — n; cf. Prob-
lem 15.(1).

Taking into account that m; = 0, the Stasheff equation for morphisms at n + 1, which we
have to show, writes

o
Vi1 = Mgt @1 — Gng1 - M -
Let 3
n+1 = _\Ijn-‘rl v
mn—H = \Ijn—i—l P
Then . .
Mpt1 Q1 = Gny1 M1 = Yopri-p-o-t+Vy-v-my
R. 30

= Wy po-t+ V- (idga—p-0) -1
v

Second, we suppose A to be unital and n > 2.

As in Remark 31, we obtain the following commutative diagram.

A®2 T2 A

(ZA)®2 22 74

(HA)®2 -T2, HA

Moreover, we get Wz = (q1 ® ¢1) ® ma . Letting, as before, ¥y = Uy v and g = -y - v
and my := Wy - p, we have

My = Ma;

cf. Remark 31.

For X € Ob(Z), we have 14 x € ZA; cf. Definition 23.

Sofor X &Y % Zin Z, for a € (ZA)* and b € (ZA)Y, we get

(Layp@bp)mg = (lay ®D)p®*my = (lay @ b)igp =bp,
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since
(lay @by = (lay @b)mar = (lay @b)®?my = (lay @b)my = b.
Likewise, we get
(ap @ Layp)ig = ap.
So the element 14y p € (HA)Y is neutral, i.e. lgay = layp.
Hence the A,,-algebra HA = (HA, (1),) is unital.

By Problem 18, the choice of ¢ made in Remark 30 can be made in such a way that
1HA,XU = 1A,X,OU = 1A,X for X € Ob(Z), whence

lhaxqr = luaxor = laxt=1ax .

Therefore the A,,-morphism ¢ = (q,), is unital. 0

In the induction step of Theorem 50, we could have used an arbitrary shift-graded linear
map V¥, 41 from (HA)®" ! to A of degree 1 — n that satisfies ¥,, .1 - m; = 0 and define
Qnt1 = _\Iln+1 -v and My4q 1= \i/n—i-l - p. Lemma 49 merely guarantees the existence of
such a shift-graded linear map.

Remark 51 Let G be a finite group. Let N € Z~;. Let M;, ..., My be RG-modules.
Suppose M; = R to carry the trivial RG-module structure, i.e. gr = r for ¢ € G and
re R= Ml .

Let P, be a projective resolution of M for s € [1, N]. Write P := (Ps)sep1,n -
Let A := Hompgg(P) be the regular differential graded category of P; cf. Lemma 28.

So A is a unital A -algebra over
Z = Zx[1,N]*%.
For (4, (s,t)) € Mor(Z), we get
(HAP D = Py, PP) =i Exthg(M,, My)
where we have written K := K(RG-Mod); cf. Problem 14.(2). In particular,
(HAPOD = (P, PY') = Exth(My, My) = Exthg(R.R) = H/(G;R),

the group cohomology of G over the ground ring R.
Now suppose R to be a field.

Kadeishvili’s Theorem 50 yields the structure (my), of a minimal A-algebra over Z on
HA and a unital quasiisomorphism

HA — A.
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In particular, m,; = 0. Moreover,

Exth (M, M) @ Extlhe (M, M,) ™% Extii¥(M,, M,)
/T @ ld] = [f-gY]
is the Yoneda product, where (7, (s,t)), (k, (t,u)) € Mor(Z). Cf. Lemma 28, Remark 31.
In particular, ]
H/(G;R) ® HW(G;R) ™ HW(G;R)
is also known as cup product.

In that sense, m,, for n € Z-3 are sometimes referred to as “higher” cup products on the
cohomology ring of GG over the ground field R.



Chapter 2

Schmid’s extension of Kadeishvili

The purpose of the extra machinery in this §2.1 is to remove the restriction on R to be a
field from Theorem 50.

Let Z be a grading category.

2.1 Split-filtered Z-graded modules

Definition 52 A split-filtered Z-graded module is a Z-graded module M, together with
a tuple (M™);cz of Z-graded submodules of M such that the following conditions (1,2)
hold.

(1) We have M =0 for i € Z .

(2) We have M = M@,

iEZ)o

We often abbreviate M = (M, (M),).
Write M<F = @, 1y M for k € Z. So M<* is a Z-graded submodule of M.
We have shift-graded linear inclusion and projection maps
MO By T
of degree 0 for i € Z. We often abbreviate 1 = /{) and 7@ = 7",
So (W7l =id, ;. for i € Z and 7Y =0 for i, j € Z with i # j.

With a similar abuse of notation, we also have shift-graded linear inclusion and projection

maps
RO) (D)

MO 25 sk T @

62
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of degree 0 for i € [0, k].

Given k, ¢ € Z such that ¢ < k, we also have the shift-graded linear inclusion and
projection maps

of degree 0.

I do not know whether a variant of the theory can be carried through with filtered Z-graded
modules instead of split-filtered Z-graded modules.

Example 53 Let X be a Z-graded module. For z € Mor(Z), choose
L= P<2>vz[_2] — P<1>7Z[_1] — P<0>7z[0} - X =0

to be an augmented projective resolution of X# (over R), i.e. P¥*)*=* is projective for
k € Z-( and the sequence is exact at each position.

Write P? := P P for z € Mor(Z).

Z'GZ>0
Then P is a split-filtered Z-graded module with P := (PZ’<i>)Z€M0r(Z) for i € Z.

If Z =7, we can picture the components of P as follows.

this row sums up to P!

this row sums up to P°

this row sums up to P~!

this row sums up to P2

Note that the objects of the respectively chosen projective resolutions can be found in the
diagonals of this diagram, such as the boxed one, whose objects belong to a projective
resolution of X*.
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2.2 eAy-algebras and cA,-categories

Definition 54 Let n € [0, 0o].

An eA,-algebra over Z is a split-filtered Z-graded module A = (A, (A®),), together with
the structure of an A,-algebra (my), on the Z-graded module A, such that the Schmid
condition

(@ AV € AT
S

holds for k € [1,n] N Z and (;) e € Z55 -

We often abbreviate A = (A, (mg)eeqi,n, (AD)icz).

We often write (A%)* =: A% for i € Z and z € Mor(Z).

We often write (AS*)* =: ASF* for k € Z and 2 € Mor(Z).

The “e” in “eA,-algebra” stands for “extended”.

Schmid states that the Schmid condition was motivated by Sagave; cf. [5, Def. 76, (EA 3)],
[3, Def. 2.1]. Tt is a bit weaker than Sagave’s implicitly stated condition.

Definition 55 Let n € [0, oc].

An eA,-algebra A = (A, (my) e, (A%)iez) over Z is called minimal if the strong Schmid
condition

(® A<ij>)mk C Ang_3+2j€[1,k]ij

JE[L,K]

holds for k € [1,n] N Z and (i;);ep 4 € Z55 -

Remark 56 Let n € [1,00].
Let A = (A, (me)repn), (A%);ez) be an eA,-algebra.

(1) For k = 1, the Schmid condition reads A“m; C AS for i € Z.

So if Z = Z, taking into account that m; is of degree 1, the (possibly nonvanishing)
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components of m; can be visualised as follows.

A<2>)_1 A<1>7_1 A<0>7_1

By this, we mean that m;7¢ = 0 unless j € [0, 1].
E.g. on A? the shift-graded linear map my of degree 1 has the components

0)

R cmy - 70

all others vanish.

The strong Schmid condition reads A%¥m; C AS1 for i € Z=y. So in case A is
minimal, the components of m; can be visualised as follows.

A1 AL A0)1

v

A2)0 A0 A(0),0

v

A<2>’_1 A<1>7_1 A<0>7_1

v

A<2>7_2 A<1>7_2 A<0>7_2
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(2) Suppose that n > 2. For k = 2, the Schmid condition reads
(A<i1> ®A<i2>)m2 C AStirtiz

for 11, 1p € Z}O-

In case of A being minimal, the strong Schmid condition reads
(A(h) ®A<i2>)m2 C ASItiti

for il, ig € Z)O-

Remark 57 Let n € [0, o0].
Suppose given an A,-algebra A" = (A4’, (m}),).

Define an eA,-algebra A = (A, (my)e, (A®),) by letting A = A’ as Z-graded modules, by
letting my := mj, for ¢ € Z~, and by letting

T 10 ifieZ~ {0}

for i € Z.

In fact, we have @), 5 A® = A® = A’ = A

We have to verify the Schmid condition. For k € [1,n]NZ and iy, ..., iy € Zsy, we
obtain

if there exists j € [1, k] with ¢; > 1

| . 0
(1) (i)
(A @ . @ A™)m, { A — ASH=24T504 gy = = =0

QM|

since in the second case, we have 2k —2 > 0 and Zj 1; = 0.

Now the eA,-algebra A is minimal if and only if (A ® ... ® AD)m, C AS*=3 for
k € Z-,. Since 2k — 3 > 0 and thus AS?*=3 = A©) if k > 2, this condition is equivalent
to AOm; C AS7! =0, i.e. to A'm/ =0, i.e. to A’ being a minimal A,-algebra.

For short,
A minimal < A’ minimal

2.3 A base of an induction
Remark 58 (and definition) Let A = (A, (m,), (A%);) be a minimal eA,-algebra.
We have (A™)m; C AS! for i € Z>¢; cf. Remark 56.(1). That is, we have

O emy =Y g9
j€[0,i—1]
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fori e Zy.

For ¢ € Z-0, we consider the shift-graded linear map
m{? = 0y D A A6

of degree 1.

For i € Z~,, we have

(@) (i—1)

ml . ml —= L<’L> . ml . ﬂ'(i_1> .

i-1) Ly -2

o
= 0 by Stasheff

— ) )

) . . i—9

S scinia £ w0 )y

=0 sinc;? <i—2

If Im(my)) = Kern(mﬁi_n) for i € Z>o, then A is called diagonally resolving.
Cf. Example 53.

Lemma 59 Let A= (A, (my),(AD);) be a diagonally resolving minimal eA -algebra.

(1) We have ZA = A©) + BA.,

(2) We have AS*m; = BAN ASE=Y for k € Z.

Proof.
Ad (1).
Ad D. We have A%m; C AS7! =0, whence A C ZA. So A +BA C ZA.

! )
Ad C. We claim that (AS NZA)+ BA C (AS"'NZA)+BAfor j € Zs, .
Suppose given z € Mor(Z). Suppose given a € (AS NZA)* = AS* N (ZA)?. We have to
! . .
show that a € ((AS"'NZA) + BA)* = (A2 N (ZA)?) + (BA)=.

! .
Since a € (ZA)? and since (BA)* C (ZA)?, it suffices to show that a € AS~1% + (BA)=.
We have A

(aﬂ'(]>)m§‘7> — a]7r<.7>L<j>m17T<.771>
— (a — ZiE[O,j—I] a7‘(‘<i>[/<i>>m17r<j71>
= — Zie[o,jfl] a/ﬂ'(i>[/(7:>m17r<j_1>

=0,
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since i < j—1fori € [0,7—1],i.e. ar¥. 0 € Kern(mf ) Since A is diagonally resolving
and since j > 1, we conclude that ar®! € Im(m <JH)) . So there exists a’ € AU+
such that

ar' = q m?*” = Ity
Now

a = aﬂ<j>b<j>+<z o 1]a7r<>L<'>)

— D ), (Z - a7r<>e<>)

= a9t m, — (Z ci0j-11@ L<J+1>m17r<@>L<i>> + <Zie[0,j—1] Cm(%(i)) ‘
€(BA)* > s N .

Vv Vv
cASI—1,z cASI—1,2
This proves the claim.

!
Given z € Mor(Z) and a € (ZA)?, we have to show that z € (A +BA)* = A= 1 (BA)>.
There exists j € Zx; such that a € AS*. So

a € (A9%N(ZA)) + (BA)

Claim

C  (AVN(ZA)) + (BA)
Claim

-

Claim

" (4% 1 (Z4)) + (BA):
—  AO: 4 (BA)

Ad (2).
Ad C. We have AS*m; C BA. We have AS*m; C AS*~! by minimality of A.

Ad 2. Claim. Given j € Zsg and £ € Z;, 1, we have AS‘m; N AST—! é ASELm N ASI—L
Suppose given z € Mor(Z) and a € AS%*[71 such that am; € AS~5%*. We have to show
that am, é ALty

Note that am; € ASI=1* C AS=2% S0 we have

Omi? = an®Omyrt

= (a— Eze[oe 1] a0y 7l
e Zie[o,f—l] arm‘ Y my

= 0 since am; € ASE—2:2 =0sincei <l —1

= 0.

1)
1)

= amyr (=1

Since A is diagonally resolving and since ¢ > 1, there exists ' € At1)21=2 such that

(€+1) (€+1)

ar' = a'm] = o'yt
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So
am; = ar9my + (@ — arO)m,

= dFmr@O9my + (a — am?19)my

— a/L<z+1

J

1 {0+ ) (i 0 (¢t
'mymy — (> icf0.—1] @ N 7w ) 4 (a— am'? i)ml
N— e’ ’ N - ~~
=0 GAQZ—I,Z[—I]ml eAglfl,z[fl]ml

E ASZ—I,Z[—l]ml .
This proves the claim.

Suppose given z € Mor(Z) and a € A*=Y such that am, € ASF—12,

We have to show that am; é AskA

There exists ¢ € Z such that a € AS4*171,

If ¢ < k, we have amy € AS6*my C Ask2-1m,
If ¢ > k+ 1, we obtain

am; € At 0 ASkLe
= (AS'my N ASk=1)2

C (A 'my N ASE)

Proposition 60 Suppose given an A;-algebra (A, (my)) over Z.

For z € Mor(Z), suppose given an augmented projective resolution of the module (HA)?
(over R), written as follows.

d(2),z[-2] ~ d1),z[-1]

Ly A@2) AWal-1] AO#0 Zy (A - 0

These linear maps assemble to shift-graded linear maps between Z-graded modules as
follows.

RN Ry (N (U JNEN /)
Here d% is of degree 1 for i € Z=, . Moreover, € is of degree 0.

Let A% =0 forie€ Zoy. Let d9 :=0: AO — AD =0, as shift-graded linear map of
degree 1.

Let A= @, ., AV. So A= (A, (AD),) is a split-filtered Z-graded module.

Then there exist
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o a shift-graded linear map e : A% — A<k=2 of degree 1 for k € Zsg ,

e a shift-graded linear map ¢ : A — A of degree 0

such that, letting the shift-graded linear map m, : A — A of degree 1 be defined by
L g = d0 0D ) i

fori € Z~q, then the following assertions (1,2,3,4,5,6) hold.

1 = (A, (i), (AD),) is a minimal eA;-algebra over Z.

2) (q1) is a quasiisomorphism of Aj-algebras from A to A.

4

(1) A
(2)
(3) A% s a projective module (over R) fori € Z and z € Mor(Z).
(4) A is diagonally resolving.

() ¢

5

A<0 - p exists and is piecewise surjective.

(6) We have A, = BAN A for j € Z.

Ali=1),2(1) Al-2201) . A0#[1]

g .
components of e{?):?

In Kadeishvili’s Theorem 50, an A ,,-structure was constructed on the cohomology HA of a
given A -algebra A, in case R is a field.

We will construct a minimal eA.-structure — so in particular, an A.-structure — on an
arbitrarily chosen projective resolution A, in the sense of Proposition 60, of the cohomology
HA of a given Ac-algebra A; cf. Theorem refXXX below.

Note that in case R is a field, one may choose the trivial projective resolution, where e = id 4
and where A = 0 for i € Z>,, so that A = HA. So in this case the assertions of said
Theorems coincide; cf. Remark 57.

XXXAAAXXX



Appendix A

Problems and solutions

A.1 Problems

Problem 1 (Introduction)
Consider the commutative ring Z. Consider the Z-algebra Z.

Determine the isoclasses of the Z-modules M that have a chain of submodules
M = My, 2 M, 2 My, 2 Mz =0

such that
My/M, ~ Z/(2)
M, /M, Z/(4)
My/My ~ 7Z/(2).

12

Problem 2 (§1.1.1)
Let Cat denote the (1-)category of categories, (1-)morphisms being functors.
Let Set denote the category of sets, morphisms being maps.
(1) Given a set X, how many isoclasses does the pair category X*? have?
(2) Construct a full and faithful functor P : Set — Cat sending X to X*2.
(3) Show that the functor Ob : Cat — Set has P as a right adjoint, i.e. Ob 4 P.
(4)

4) Determine unit and counit of the adjunction in (3).
Problem 3 (§1.1.1) Let Poset denote the category of posets and monotone maps.

(1) Suppose given a poset X. Show that we have a subcategory C' X of the pair category
X2 with Ob(CX) = X and Mor(CX) = {(z,y) € X** : <y }.

71
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(2) Construct a functor C': Poset — Cat.

(3) Given n € Zs,, we write A, := C[0,n].
We have the monotone map w : [0,1] — [0,n], 0+— 0, 1 — n.
Suppose given a category Z and z € Mor(Z). Let F, : Ay — Z, (0,1) — 2.
Let n > 1. Show that fact,(2) is in bijection to

{A, Y Z : G is a functor such that G o (Cw)=F.}.

Problem 4 (§1.1.2) Let Z = (2, 5,deg) be a grading category. Show.

(1) The shift S is an automorphism of Z-grad,, .
(2) Z-grad is a category.

(3) By S(f,k) := (Sf, k) for (f, k) € Mor(Z-grad), an automorphism S on Z-grad is
defined.

(4) Z-grad, is additive.

(5) Z-grad, is isomorphic to a subcategory of Z-grad.
Is this subcategory full? Does Z-grad have a zero object?

Problem 5 (§1.1.1) Let Z = (£, S,deg) and Z = (2, S, deg) be grading categories.
A (1-)morphism of grading categories from Z to Z is a functor F : Z — Z such that

F(z8) = (Fz)S
(z)deg = (Fz)deg
for z € Mor(Z).
(1) Show that grading categories, together with morphisms of such, form a category

Grad.

(2) Show that (2,57, —deg) is a grading category, where (S7)xy = (Sxy)~ for
X,Y € Ob(2) and z(—deg) := —(zdeg) for z € Mor(Z). Construct an auto-
morphism of order 2 on the category of grading categories.

(3) Show that (idx)deg = 0 for X € Ob(Z).

(4) Show that there exists exactly one morphism of grading categories from Z to Z, i.e.
that Z is the terminal grading category.
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(5) Show that there is a bijection from the set of morphisms of grading categories from
Z to Z to the set of endomorphisms of Z of degree 0.

(6) Suppose given a morphism of grading categories Z 5z
Show that there exist functors

Fyg, ~
Z-grad — Z-grad
F&

having (F€M)? = M"* for M € Ob(Z-grad) and z € Mor(Z), having
(FeM)* = €5 M~ for M € Ob(Z-grad) and Z € Mor(Z) and having F, -+ F¥.
z€Mor(Z)

Fz=z
Problem 6 (§1.1.3) Let (Z,5,deg) be a grading category.

Define a category (Z-grad)*™* such that we have a functor

(Z-grad)*™+ Bectm, Z-grad

(fi,ks)

®i [1,n](fi7ki)
e Mi)ie[l,n] — (®i€[1,n] Ll 64>

(Li Qe Mi) -

Problem 7 (§1.1.3) Let Z = (Z, 5,deg) be a grading category.

Suppose given 1 < £ < n and Z-shift-graded linear maps L; AGLON M; for i € [1,n].

Suppose given Z-shift-graded linear maps L u> M and L -22 A M.
(1) Show that

(M@ ... M) @ (My1 ®...0M,) = Mi®...Q M, .
(2) Show that
(f1, k1) © . @ (fo, ko) @ (frras bern) © - @ (fus bn)) = (f1,51) © . © (fos n) -

(3) Construct a Z-graded module R such that (f, k) ® (ids,0) = (f, k) and (idz,0) ®
(f;k) = (f, k).

(4) Construct an isomorphism L @ L TLTL> L ® L in Z-grad, and likewise Taraz» Such

that the following quadrangle commutes.

Lol iel
(f.k f%i l(—nkﬂfﬁmwﬁm
M@ M52 N @ M
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Problem 8 (Problem 17) Let B be an algebra.

(1) Let A be a linear additive category. Let NV C A be a full additive subcategory.
Write
Nully v (X, Y)
= {X I,V : there exists N € Ob(N) and morphisms X = N =Y such that f =uv} .

Let A/N be the category that has

Ob(A/N) := Ob(A)
AMX,Y) = AX,Y)/Nullyny(X,Y) for X, Y € Ob(A/N) .

For X L5V % Zin A, we define composition of the respective residue classes in

A/N by
(f + NUHA,N(X7 Y)) ’ (g + NuHA,N(Y7 Z)) = f g+ NuHA,N<X7 Z) :

Show that A/N is a linear additive category. Show that .4 N A/N is a linear
functor with RN ~ 0 for N € Ob(N).

We often write f := f + Nully (X, Y).

Given a linear additive category B and a linear functor A 5B with FFN =~ ( for

N € Ob(N), show that there exists a unique linear functor A/A % B such that
F=FoR.

(2) Let A := C(B-Mod) be the category of complexes of B-modules. Let the differential
of a complex X € Ob(A) be denoted by d = dx. Let N' C A be the full additive
subcategory of split acyclic complexes, i.e. those isomorphic to a complex of the

(10)

form --- - Ut U —5 U@ U™ — ..., where U' € Ob A for i € Z.

Show that Null4ar(X,Y) consists of those morphisms of complexes X Loy for

which there exists a tuple of morphisms (X* r, Y 1),cz such that

ffo= ndyt + diht! for i € Z.

Define K(B-Mod) := A/N to be the homotopy category of complexes of B-modules.
Write shorthand k(X,Y) = knmoa(X,Y) for X, Y € Ob(K(B-Mod)) =
Ob(C(B-Mod)).

(3) Let M be a B-module. Let P be a projective resolution of M with augmentation
e: Py — M. Let Conc(M) € Ob(C(B-Mod)) have M at position 0, and 0 elsewhere.
Let € : P — Conc(M) be the morphism of complexes having entry ¢ at position 0.

Let @ be a complex consisting of projective B-modules, bounded above. Show that
K@,8) : kKQ,P) — «Q,Conc(M)) is an isomorphism.
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(4) Using the universal property from (1), construct a shift functor S on K(B-Mod)
such that (SX)* = X**! and such that di, = —dy' for i € Z. Show that S is an
automorphism.

We also write S* =: (—)I* for k € Z.

Problem 9 (Problem 17) Let g € Z>; . Consider the cyclic group C, = (¢ : ¢?).
Abbreviate K := K(RC,-Mod).

(1) Construct a projective resolution P of the trivial RC,module R
that is periodic of period length 2.

(2) Calculate (P, Conc(R)!) for i € Z.
(3) Calculate (P, P%) for i € Z.
(4) Calculate the composition map
(P, p[i]) ® K(p[i]7p[i+j]) — (P, P[H—j])
fori, j € Z.

Problem 10 (§1.1.1) Let Z and Z be grading categories.

Let 22+ Zbea morphism of grading categories; cf. Problem 5.

Let n € Z, . Let M; be a Z-graded module for ¢ € [1,n|. Write M := (M,)icpn -

(1) Construct an isomorphism Fi(@);c( ) M) RN Ricpn FeMi in Z-grad.

(2) Show that the following quadrangle commutes.

oM

F&(®i€[1,n] M;) — ®i€[17n] FeM;
F&(@ie[l,n](fmki))l l®i6[1,n] Fe(fi ki)

o
F&(®i€[1,n} M'Z) - ®i6[1,n] F&MZ/

Problem 11 (§1.2) Let Z be a grading category.
Let A be a Z-graded module.

Suppose given shift-graded maps m; : A — A of degree 1 and my : A®? — A of degree 0.
For n € Z3, we let m,, := 0, as shift-graded linear map from A®" to A of degree 2 — n.

Suppose that (m,)necz., satisfies the Stasheff equations for k € [1, 3].

Suppose that for each X € Ob(Z), there exists an element 1y € A% such that for
z,w € Mor(Z) such that 2tz = X = wsz and for a € A* and b € A", we have
(a®1x)ms =a and (1x ® b)mgy = b.

Show that (A, (mn)nez.,) is a differential graded algebra over Z.
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Problem 12 (§1.2) Suppose given a grading category Z.

Suppose given A-algebras A and A.

Suppose given a shift—graded linear map f; : A — A of degree 0.

Suppose that f&* . m = mk fi for ke Z-,.

Let fr =0 for k € Z-,, as shift-graded linear map from A%k t6 A of degree 1 — k.
Show that (fi)rez., is a morphism of A-algebras.

Problem 13 (§XXX) Let B be an algebra.

ik r

7 r . k .
Suppose given a diagram X’ — X — X” in C(B-Mod) such that X’* — X* ~ X"k ig
short exact for k € Z. Such a diagram is called a short exact sequence of complexes in B.

(1) Suppose given T' 5 X in C(B-Mod) such that fr = 0. Show that there exists a
unique morphism 7' T X7 such that fli=f.

(2) Suppose given X % T in C(B-Mod) such that ig = 0. Show that there exists a
unique morphism X” <5 T such that r¢” = ¢.

(3) A Z-graded B-module M is a tuple M = (M?),cz of B-modules M?. A graded
B-linear map f : L — M between Z-graded B-modules is a tuple f = (f?).,ez of
B-linear maps f?. Write B-Z-grad for the category of Z-graded B-modules and
graded B-linear maps.

Construct an additive functor H : C(B-Mod) — B-Z-grad having

(HX)* = Kern(d¥)/Im(d*")

for a complex X with differential d = (X* &, XHFD,

()’“

For Y %5 Z in C(B-Mod), we often write (HY)* 5% (HZ)¥) = (HFY 24 Hh ),

(4) Construct a B-linear map H* X" —= W, JHLX for ke Z, called connector of the
given short exact sequence X’ -+ X -+ X" subject to the following conditions (i, ii).

(i) The sequence

kv HFQ ook 3 <w> k41 v/ H+z E+1 HEFLy g1 v
— H*X" — H*X — H*X H* X H™X —— H'"™X

is exact at each position.
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(ii) Given a morphism of short exact sequences, i.e. a commutative diagram

X X = X
l p l ; l p
Y ey Sy

in C(B-Mod) with (i,r) and (7, s) short exact, we get, for k € Z, the commu-
tative quadrangle

k
HkX// REED) Hk+1X/

inf// . inJrlf/
HFY " TG.s) HEHLY

Problem 14 (§1.3,81.4) Suppose given an algebra B. Suppose given n > 1.
Suppose given X, € Ob C(B-Mod) for s € [1,n]. Abbreviate X = (X;)scin -
Abbreviate Z :=Z x [1,n]*?, C := C(B-Mod) and K := K(B-Mod).

(1) Show that (Z Homp(X))060) = (X, X7 for (j, (s,1)) € Mor(Z).
(2) Show that (HHomp(X))0D) = (X, XI) for (§, (s, 1)) € Mor(Z).

(3) Show that m?"mB@ induces a map mgHomB(& : HHomp(X)®? — HHomp(X)
that maps [f] ® [g] to [f - g] for each composable pair of morphisms (f,g) in C,
where we use brackets to denote residue classes of morphisms of C in K.

Problem 15 (§1.4) Let Z be a grading category.
Let L and M be Z-graded modules.

Let L L M bea shift-graded linear map of degree a € Z.

(1) Let K := Kern(f), i.e. K* := Kern(L? ERN M) for z € Mor(2). Let K % L be
the shift-graded inclusion map of degree 0.

Suppose given a Z-graded module T" and a shift-graded linear map T’ L Lof degree
d such that tf = 0.

Show that there exist a unique shift-graded linear map T’ 5K of degree d such
that #i = t.
(2) Suppose R to be a field. Suppose f to be piecewise surjective.

Show that there exists a piecewise injective shift-graded linear map L <= M of
degree —a such that gf =idy, .
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Problem 16 (§1.4) Let Z be a grading category. Let n € Z; .
Let K;, L; and M; be Z-graded modules for i € [1,n].
Let K; 2 L; be a shift-graded linear map of degree ¢; € Z for i € [1,n).

Let L; EIN M; be a piecewise surjective shift-graded linear map of degree a; € Z
for i € [1,n].

(1) Show that &), fi is piecewise surjective.

(2) For i € [1,n], suppose that K; ~% L; EIN M; to be exact at L; ,
i.e. suppose K71 My [z EIN M 46 be exact at L2 for z € Mor(Z).

t

Suppose given a Z-graded module T" and a shift-graded linear map ) L =T

of degree d.

i€[1,n]

Suppose that (1d®' ' @u; ® id*" )t = 0 for j € [1,n].

Show that there exists a unique shift-graded linear map @) M; 5 T of degree

d = icpin) @i such that (Qep i)t =t.

i€[1,n]

Problem 17 (§1.4) Let p > 0 be a prime.

Let P € Ob C(F,C,-Mod) be the projective resolution of the trivial F,C,-module as found
in Problem 9.(1).

Let X := (P), so that X has P as its only tuple entry.

Let A := Homp,c,(X) be the regular differential graded category, i.e. differential graded
algebra over Z = Z x [1,1]*2

Recall from Problem 9 and Problem 14 that we have calculated the Z-graded module HA,
i.e. that we know F,-linear generators for its graded pieces.

Find a minimal As-structure (1, M2, m3) on HA and a quasiisomorphism (g1, g2, q3) :

HA — A of As-algebras.

Problem 18 (§1.4) Suppose R to be a field.
Let Z be a grading category. Let n € [1,00]. Let A be a unital A,-algebra over Z.

Consider the shift-graded linear residue class map ZA 2 HA of degree 0.

Show that there exists a shift graded linear map ZA < HA of degree 0 such that op = idg4
and such that (1xp)o = 1x for X € Ob(Z2).

Problem 19 (§1.6) Let Z be a grading category.
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Let V = (V,A) and V = (V, A) be coalgebras over Z. Let V 5 Vbea morphism
of coalgebras.

Suppose that f is piecewise bijective.
Show that f is an isomorphism of coalgebras, i.e. that there exists a morphism of
coalgebras V <= V such that fg = idy; and ¢gf = idy .

Then g is uniquely determined and written f~ := g.

Let V = (V,A,$) and V = (V, A, ) be coalgebras with differential over Z. Let
V5 Vibea morphism of coalgebras with differential.
Suppose that f is piecewise bijective.

Show that f is an isomorphism of coalgebras with codifferential, i.e. that there
exists a morphism of coalgebras with codifferential V <= V such that fg = id;; and

Then g is uniquely determined and written f~ := g.

Let V = (V,A) and V = (V, A) be coalgebras over Z.
Let V 25 V be an isomorphism of coalgebras.

Suppose given a codifferential § on V. Show that f6f~ is a codifferential on V.

Let V' = (V, A) be a coalgebra over Z. Let AV — Rbea shift-graded linear map
of degree 0; cf. Problem 7.(3). Recall that R® V =V =V ® R by identification.
Let 6y := A(id ®\) — A(A ®id). Show that J, is a coderivation.

Coderivations of this form are called inner.

Problem 20 (§1.1.2) Let Z be a grading category.

Let I be a set. Let V; be a Z-graded module for ¢ € I. Recall that the Z-graded module
P,c, Vi is defined by letting (,., Vi) = @, Vi* for z € Mor(2).

(1)

(2)

Given j € I, construct a shift-graded linear inclusion map v; : V; — @, Vi of

degree 0 and a shift-graded linear projection map ; : @,., Vi — V; of degree 0.

Suppose given a Z-graded module S. Suppose given d € Z. Suppose given a
shift-graded linear map s; : S — V; of degree d for j € I.

Show that there exists a unique shift-graded linear map s : S — @,_,; V; of degree

d such that sm; = s; for j € I.

icl

Suppose I to be finite.

Suppose given a Z-graded module T. Suppose given d € Z. Suppose given shift-
graded linear maps ¢; : V; — T of degree d for j € I.

Show that there exists a unique shift-graded linear map ¢ : @,.; Vi — T of degree
d such that ¢t =t; for j € I.
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Problem 21 (§1.6) Let Z be a grading category. Let n € [1,00]. Let (A, (my),) be a
pre-A,-algebra.

Write m := ((me>€6[1,n}ﬁZ)BCoder,n,A[I] :

(1) Suppose given p € [1,n]. Write m’ := ((“my)ec pinz) Booderp Al -

TQP(AM)

Show that m’ = m|T<p(A[1]) .

(2) Suppose n € Zs;. Suppose that (my), satisfies the Stasheff equation at each k €
[1,n—1].

Suppose given z € Mor(Z) and a € ((AM)®")?. Consider the following assertions.

(i) We have

a Z (1d¥" ®“ms ®id®") - “myq10 | = 0

(r,s,£)>(0,1,0)
r+s+t=n

(i) We have am? = 0.

Show that (i) and (ii) are equivalent.

Problem 22 (§1.6) Let Z be a grading category. Let n € [1,00]. Let (A, ()cpinnz)
and (A, (mg)ecpnnz) be pre-Ay-algebras. Let f = (fo)ecpnnz be a pre-A,-morphism

from A to A.

Write R
= ((“Me)eennnz)Beoder.n, Al

(( wm€>f€ [Ln]ﬂz)ﬁCoder,n,A[l]

= ((“fo)ect.nnz) Booalg.n At ani -

- 2 2
I

(1) Suppose given p € [1,n]. Write

m’ ((“1e) ee.p)nz) Booder p. Al
m = (( wmf)ﬁe[l,p]mz)BCOder,p,A[U
f/

(( wfé)ee[LP]mz)ﬁCoalg,p,A[l] LA

Show that -
S g Tp(A)
m o ﬂT<p(A[1])
m = m| <4
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(2) Suppose n € Z; . Suppose that (f,), satisfies the Stasheff equation for morphisms
at each k € [1,n — 1].

Suppose given z € Mor(Z) and @ € ((AM)#"). Consider the following assertions.

(i) We have

al Y W@ em,@id™) “fag | =al| Yy, Yo () cmy

(Tv‘g_;jf)it(ovlvo) 7‘6[17]6} (ij)jE[lyT]>(1)j jE[l,T‘]
T TSs =n .
Zj ="

(ii) We have a(mf — fm) = 0.

Show that (i) and (ii) are equivalent.

Problem 23 (§XXX) Let n € [1,00]. Let Z be a grading category.

Let (A, (me)e), (A, (m})e), (A", (m}))e), (A", (m})e) be A,-algebras over Z.

Let f=(fo)e: A=A f=(f))e: A — A" f"=(f])e: A” — A" be A,-morphisms.
Write “f := (“fo)e -

Define
Fof = (((“HB - (“f)B)a) -

(1) Show that f - f’ is a morphism of A,-algebras from A to A”.

)

(2) Write f - f’ in terms of (f;), and (f}),. What is the entry of f- f"at £ =17

(3) Show that (f - f')- f"=f-(f"- f").

(4) Suppose given shift-graded linear maps g : A — A" and ¢’ : A" — A” of degree 0.
Define strict,(g) := (g,0,0,...).
When is strict,(g) : A — A" a morphism of A,,-algebras? Is strict, (id4) a morphism
of A,-algebras? If strict,(g) and strict,(¢’) are morphisms of A,-algebras, show
that strict,(gg’) = strict,(g) - strict,(¢’).

(5) Show that f - strict,(ida/) = f and that strict,(id4/) - f' = f.

(6) Define the category A,-Z-alg of A,-algebras over Z and A,-morphisms.
Therein, define the subcategory strict-A,,-Z-alg of A,-algebras over Z and strict
A,,-morphisms.

(7) Show that H is a functor from A,-Z-alg to Z-grad, .
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Problem 24 (§XXX) Let n € [1,00]. Let Z Ly Z be a morphism of grading categories:
cf. Problem 5. Let (A, (mg)x) be an A,,-algebra over Z.

(1) Show that Fg A = (Fg A, (0~ - Fgmy),) is an A ,-algebra over Z  where o = O(A,.,A)
cf. Problem 10.

(2) Consider the case n = 0o, u € Zz1, Z = Z x [1,u]*?, Z = Z and P being the
projection, mapping a morphism (7, (s,t)) to j.

Given a unital Z x [1,u]*?-algebra A, i.e. an A-category with set of objects [1,u],
show that its total A, -algebra Py A is unital.

Problem 25 (§XXX) Let Z be a grading category.
Let A= (4, (m1), (A®);) be a minimal eA;-algebra over Z.

Suppose that there exist shift-graded linear map d® : A% — AG=1 of degree 1 and
shift-graded linear map e : A® — AS=2 of degree 1 for i € Z-, such that

holds for i € Z~y .

(1) Express the Stasheff equation at 1 in terms of d and e, where i € Z .

(2) Show that A is diagonally resolving if and only if Kern(d”) = Im(d%+") fori € Z-, .

Problem 26 (§XXX) Let Z be a grading category.

Suppose given an eA,-algebra (A, (mg), (A™);) over Z. Suppose that A® = 0 for
i€ Z~[0,4.

For which integers k € Z-; is the Schmid condition on mj not void?

For which integers k € Z-; is the strong Schmid condition on my not void?

(1) Consider the case ¢ = 1.
(2) Consider the case ¢ = 2.

(3) Consider the case ¢ = 3.

Problem 27 (§XXX) Let Z be a grading category.

Suppose given an eA..-algebra (A, (mg)r, (A®);) over Z. Let k > 1. Let (j1,...,7j%) €
z5k.

What bound results from the Schmid condition for the image of AY") ® ... ® AV under
a summand of the Stasheff equation at k7
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Problem 28 Let X = (X, <) be a poset. We call X artinian if it does not contain a
strictly descending chain. We call X superartinian if X<, is finite for all {. We call X
discrete if (<) = (=). We call X narrow if each discrete subposet of X is finite.

Suppose given k € Z>, and posets Y7, ..., Y.
(1) Show that X is artinian if and only if each nonempty subposet of X has a minimal
element.
(2) If X is superartinian, show that X is artinian. Does the converse hold?

(3) Construct the product Hie[l,k] Y; in Poset, which is to be equipped with monotone
maps Hie[l’k} Y, = Y; for j € [1,k] such that for each poset T" and each tuple

(T N Y;); of monotone maps, there exists a unique monotone map 7' AN Hie[l,k] Y;
such that t - ; = ¢; for j € [1,k].

(4) If'Y; is artinian for ¢ € [1, k], show that J[,c; ,; Y; is artinian.
(5) 1f'Y; is superartinian for i € [1, k], show that [],.; ,; Vi is superartinian.

(6) Show that ZZ} := [Tici1 4 Z>0 is superartinian and narrow.
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A.2 Solutions

XXX
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