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Introduction

Problem

Suppose given a commutative ring R. Suppose given a finite group G.

Suppose given RG-modules X, Y , Z.

What RG-modules M have a filtration with subfactors X, Y and Z ?

I.e. we ask for RG-modules M having a chain M = M0 ⊇ M1 ⊇ M2 ⊇ M3 = 0 of
submodules such that M0/M1 ' X and M1/M2 ' Y and M2/M3 ' Z.

M = M0

M1

X

M2

Y

0 = M3

Z

The short exact sequences of the form Z →M1 → Y are controlled by Ext1
RG(Y, Z).

The short exact sequences of the form M1 →M → X are controlled by Ext1
RG(X,M1).

The latter R-module might be difficult to cope with, because we need to use M1 as input.

It would be preferable to make do with Ext1
RG(X,X), Ext1

RG(X, Y ), Ext1
RG(Y,X), . . . ,

Ext1
RG(Z,Z).

The Yoneda product maps e.g.

m2 : Ext1
RG(X, Y )× Ext1

RG(Y, Z) - Ext1
RG(X,Z) .

But to reconstruct modules such as M , we also need higher multiplication maps such as
e.g.

m3 : Ext1
RG(Z,X)× Ext1

RG(X,X)× Ext1
RG(X, Y ) - Ext1

RG(Z, Y ) ,

and similarly m4 , m5 , . . . These data form an A∞-category.

The aimed-for reconstruction will be achieved with Keller’s filt-construction.
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Kadeishvili

A cohomology algebra

Given a finite group G, we can consider its cohomology algebra H(G;R) with coefficients
in a commutative ring R. (1)

This cohomology algebra can be calculated as follows. Let P be a projective resolution of
R over RG. Let P [k] arise from P by a shift of k steps to the left, where k ∈ Z>0 , and by
multiplying each differential by (−1)k. Let Ṗ denote the graded RG-module underlying
P , forgetting the differentials. Form the graded algebra DG(G;R) having

DGk(G;R) := RG-grad(Ṗ , Ṗ
[k]) ,

where the latter stands for the R-module of morphisms in the category RG-grad of graded
RG-modules.

Remembering the differentials of P again, DG(G;R) becomes a differential graded algebra.
Its cohomology algebra is H(DG(G;R)) = H(G;R).

If R is a field: A quasiisomorphism of A∞-algebras

Consider the case that R is a field. Suppose given a differential graded algebra D over the
field R, with differential d = mD

1 : D = D⊗1 -D and multiplication mD
2 : D⊗2 -D.

Then its cohomology algebra H(D) carries not only a multiplication map

m
H(D)
2 : H(D)⊗2 - H(D) ,

but also higher multiplication maps

mH(D)
n : H(D)⊗n - H(D) for n > 3

and
m

H(D)
1 := 0 : H(D)⊗1 - H(D) ,

fitting together to turn H(D) into an A∞-algebra. An A∞-algebra with m1 = 0 is called
minimal.

But also D can be viewed as a A∞-algebra by letting mD
n := 0 : D⊗n -D for n > 3.

Kadeishvili’s Theorem states that there is a quasiisomorphism from D to H(D), i.e. a
morphism of A∞-algebras

D - H(D)

that induces an isomorphism on cohomology [1, Th. 1]. More precisely, it states that the
A∞-structure on H(D) can be chosen in such a way that such a quasiisomorphism emerges.
The resulting A∞-algebra is, of course, determined uniquely up to quasiisomorphism.

1In the literature, H(G;R) is often written H∗(G;R).
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The assumption of R being a field is used in this process to ensure that every surjective
R-linear map is a retraction. This prevents us from directly generalising to R being a
discrete valuation ring, say.

In particular, Kadeishvili’s Theorem can be applied to D = DG(G;R) and H(D) =
H(G;R) in the case of R = Fp , where p is a prime divisor of |G|, but not in the case of
R = Z(p) .

Generalisation to arbitrary ground rings

To generalise to an arbitrary commutative ring R, we replace the cohomology modules
by projective resolutions over R. I.e. given a differential graded algebra D, we choose an
augmented projective resolution

. . . - P i
2
- P i

1
- P i

0
- Hi(D) - 0 ,

as suggested by Keller.

Schmid’s Theorem states, roughly put, that there exists a minimal eA∞-algebra structure
on
⊕

i,j P
i
j such that there exists a quasiisomorphism to D [5, Th. 90]. Here, on the one

hand, an eA∞-algebra structure is a refinement of an A∞-algebra structure; on the other
hand, eA∞-minimality is a weakening of A∞-minimality.

In particular, Schmid’s Theorem can be applied to D = DG(G;R) and H(D) = H(G;R)
in the case of R = Z(p) .

Schmid’s procedure is similar to that of Sagave [3], one of the differences being that
Sagave resolves once more in the process, while Schmid sticks to the initially chosen
projective resolutions; cf. [3, Th. 1.1, Rem. 4.14].

Modules

From A∞-algebras to A∞-categories

To fix ideas, we consider RG-modules again.

Note that H(G;R) = ExtRG(R,R), where R is the trivial RG-module.

Suppose given RG-modules S1 , . . . , Sn . To take these several objects into account,
we refine the notion of an A∞-algebra to that of an A∞-category, in that we endow an
A∞-algebra with a categorical grading, which is, in a sense, a fixed Peirce decomposition.

If R is a field, the categorical version of Kadeishvili’s Theorem establishes the structure
of a minimal A∞-category on

⊕
α, β ∈ [1,n] ExtRG(Sα, Sβ).

Over arbitrary R, the categorical version of Schmid’s Theorem establishes the structure
of a minimal eA∞-category on

⊕
α, β ∈ [1,n] Pα,β , where Pα,β is a projective resolution of

ExtRG(Sα, Sβ) over R.
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The filt-construction

A finitely generated RG-module is called (Sα)α-filtered, if it has a filtration whose sub-
factors occur in (Sα)α , up to isomorphy, repetition allowed, ordered arbitrarily.

If R is a field, Keller’s filt-construction recovers the full subcategory of (Sα)α-filtered
modules in RG -mod in terms of the A∞-category

⊕
α, β ∈ [1,n] ExtRG(Sα, Sβ) ; cf. [2, §7.7,

Theorem]. In particular, if the modules Sα represent the isoclasses of simple modules, we
recover the whole category RG -mod.

Schmid generalised this to arbitrary R, using the eA∞-category
⊕

α, β ∈ [1,n] Pα,β ; cf. [5,

Th. 131]. (2)

A desirable future application

We can e.g. take G = Sn and R = Z(p) for some prime divisor of n! and let Sα run
through Specht modules, or certain submodules thereof. One might ask whether, in small
examples, the shape of the indecomposable projective modules can be explained through
the said eA∞-category; just as for Z(5)S5 , the shape of certain indecomposable projective
modules can be explained as being glued from two Specht modules via an element of
Ext1 ; cf. [4, Ex. 7].

Organisatorial matters

We essentially follow the master thesis of Stephan Schmid [5]. Responsibility for mis-
takes and obscurities in this script remains with me. I will be thankful for any hints on
this matter.

We presuppose Algebra and some basic knowledge from Homological Algebra, which will
be recalled in the exercises if necessary.

Sometimes we refer to exercises and solutions, so they are to be viewed as part of the
script.

Because of running modifications, it is recommended to work with the file during the
semester and to print a paper copy only afterwards.

Stuttgart, winter semester 2016/17

Matthias Künzer
2Actually, conditions on R do not play a role in this assertion on the equivalence from the filt-

construction to the category of filtered modules; Schmid gives a somewhat straightened proof and ensures
that the equivalence from the filt-construction to filtered modules can be applied to his eA∞-category⊕

α, β ∈ [1,n] Pα,β .
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Conventions

Let C be a category.

• Given a, b ∈ Z, we write

[a, b] := {z ∈ Z : a 6 z 6 b}

for the integral interval.

• We stipulate that −∞ < a <∞ for a ∈ Z. We write

[a,∞] := {z ∈ Z : a 6 z} ∪ {∞}
[−∞, a] := {−∞} ∪ {z ∈ Z : z 6 a} .

• XXX Z>n, Z<n

• Given a set X, “for x ∈ X ” means “for all x ∈ X ”.

• We use the symbol t for the (interior and exterior) disjoint union of sets and for
the concatenation of tuples.

• All categories are suppose to be small (with respect to a given universe). I.e. we
have the sets Mor(C) and Ob(C).

• We have source and target maps, sC , tC : Mor(C)→ Ob(C), respectively, mapping a

morphism X
f−→ Y in C to fsC = X and to ftC = Y , respectively.

• For X ∈ Ob(C), we write id = idX for the identity morphism on X. In some
contexts, we also write 1 = 1X = idX .

• Given a category C and X, Y ∈ Ob(C), we write C(X, Y ) = { f ∈ Mor(C) :
fsC = X and ftC = Y }.

• Given k > 0, we write X×k :=
∏

i∈[1,k] X for the k-fold cartesian product. We

identify along X×1 → X, (x) 7→ x. Moreover, X×0 = { () } is a one-element set.

• XXX tensor product
⊗

i∈IMi, elementary tensors (mi)
⊗
i∈I ; if I = [a, b] interval, then⊗

i∈[a,b] Mi =: Ma⊗Ma+1⊗ · · · ⊗Mb and (mi)
⊗
i∈I =: ma⊗ma+1⊗ · · · ⊗mb XXX as

far as possible just as for cartesian products

• XXX tensor product of R-modules associative via identification, additive via iden-
tification, R⊗M = M via identification

• XXX concerning tensor products, we freely use [Ritter]

• XXX abbreviate v1 ⊗ . . .⊗ vk = v⊗[1,k] XXX
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• XXXR-linear preadditive categoryXXX plus Example: Peirce decomposition [Rit-
ter]

• XXX composition of morphisms naturally, composition of functors traditionally,
with some exceptions, e.g. for certain standard maps, for maps written in index
notation or for shift functors z 7→ z[i] XXX

• XXX Let Cat be the (1-)category of categories. Let Set be the category of set

• XXX poset: partially ordered set, category of posets and monotone maps: Poset,
(full) subposet (full may be omitted), X6ξ

• XXX category of functors C,D .

• XXX terminal category !

• XXX inverse often f−

• XXX automorphism of a category

• XXX complex

• XXX exact, short exact in B -Mod

• XXX augmented projective resolution
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Fixing the ground ring R

Let R be a commutative ring.

By a module we understand an R-module.

By a linear map we understand an R-linear map.

We write ⊗ := ⊗
R

.

By an algebra we understand an R-algebra.

By a linear category we understand an R-linear preadditive category.

By a linear additive category we understand an R-linear additive category.

By a linear functor we understand an R-linear additive functor.



Chapter 1

Kadeishvili

1.1 Gradings

1.1.1 Grading categories

Let Z be a category.

Example 1

(1) Let G be a group. Then, by abuse of notation, G can be considered as a category
with Ob(G) = {G}, Mor(G) = G and composition given by multiplication.

(2) We may specialise (1) to G = Z. So Ob(Z) = {Z} and Mor(Z) = Z, composition
being given by addition. E.g. we get the commutative triangle

Z 8 //

3
��??? Z

Z 5

??���

(3) Conversely, if |Ob(Z)| = 1 and each morphism in Z is an isomorphism, we may
consider Z as a group. More precisely, Mor(Z) is a group with multiplication given
by composition.

More generally, if |Ob(Z)| = 1, we may consider Z to be a monoid.

(4) Let I be a set. By abuse of notation, let I×2 denote the pair category on I, having
Ob(I×2) = I and Mor(I×2) = I×2.

A morphism (i, j) ∈ Mor(X×2) has source (i, j)sI×2 = i and target (i, j)tI×2 = j.

The composite of the morphisms

x
(x,y)−−→ y

(y,z)−−→ z

10
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is

x
(x,z)−−→ z .

So the identity on x ∈ Ob(X×2) is idx = (x, x).

(5) Write Ob×2(Z) := (Ob(Z))×2 for the pair category on the set Ob(Z).

Definition 2 A shift S on Z is a tuple of maps

S = ( Z(X, Y )
SX,Y−−−→ Z(X, Y ))X,Y ∈Ob(Z)

such that properties (1, 2) hold.

(1) The map SX,Y is bijective for X, Y ∈ Ob(Z).

(2) Given X
a−→ Y

b−→ Z in Z, we have

(a · b)SX,Z = aSX,Y · b = a · bSY,Z .

We often write aS := aSX,Y for X
a−→ Y in Z.

We often write a[k] := aSk for X
a−→ Y in Z and k ∈ Z.

Note that S is not required to be a functor.

Example 3 We have the identical shift (idZ(X,Y ))X,Y ∈Ob(Z) on Z.

Definition 4 Suppose given a shift S on Z.

A degree function on (Z, S) is a map deg : Mor(Z)→ Z such that properties (1, 2) hold.

(1) Given X
a−→ Y

b−→ Z in Z, we have

(a · b) deg = a deg +b deg .

(2) Given X
a−→ Y in Z, we have

(aS) deg = a deg +1 .

So (a[k]) deg = a deg +k for X
a−→ Y in Z and k ∈ Z.

Definition 5 The category Z, together with a shift S on Z and a degree function deg
on (Z, S), is called a grading category. Cf. Definitions 2 and 4.

We often abbreviate Z = (Z, S, deg).
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Example 6

(1) The category Z := Z carries the shift (Z
i−→ Z)S := (Z

i+1−−→ Z) for i ∈ Z, whence
i[k] = i+ k for i, k ∈ Z.

Then (Z, S) carries the degree function deg = idZ . So i deg = i for i ∈ Z.

(2) We generalise (1). Let C be a category. Consider the category Z := Z× C.
The example in (1) can be considered as the particular case C = ! .

The category Z carries the shift

(Z
i−→ Z, X

a−→ Y )S := (Z
i+1−−→ Z, X

a−→ Y )

for (i, a) = (Z
i−→ Z, X

a−→ Y ) in Mor(Z) = Mor(Z)×Mor(C).
So (i, a)[k] = (i+ k, a) for i, k ∈ Z.

For (i, a), (j, b) ∈ Mor(Z) with X
a−→ Y

b−→ Z in C, we obtain in fact the following.

((i, a) · (j, b))S = (i+ j, a · b)S = (i+ j + 1, a · b)
(i, a)S · (j, b) = (i+ 1, a) · (j, b) = (i+ j + 1, a · b)
(i, a) · (j, b)S = (i, a) · (j + 1, b) = (i+ j + 1, a · b)

Then (Z, S) carries the degree function

Mor(Z) -deg
Z

(i, a) - (i, a) deg := i .

For (i, a), (j, b) ∈ Z× C with X
a−→ Y

b−→ Z in C, we obtain in fact the following.

((i, a) · (j, b)) deg = (i+ j, a · b) deg = i+ j = (i, a) deg +(j, b) deg
((i, a)S) deg = (i+ 1, a) deg = i+ 1 = (i, a) deg +1

Definition 7 Suppose given n ∈ Z>1 .

A tuple (yi)i∈[1,n] ∈ Mor(Z)×n is called composable if yitZ = yi+1sZ for i ∈ [1, n− 1].

We often abbreviate y = (yi)i∈[1,n] .

Definition 8 Suppose given z ∈ Mor(Z) and n ∈ Z>1 . Let

factn(z) := { (yi)i∈[1,n] ∈ Mor(Z)×n : (yi)i∈[1,n] composable and z = y1 · y2 · · · yn }

be the set of factorisations of z of length n.

Example 9
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(1) Let z ∈ Mor(Z). Then fact3(z) consists of the diagrams
y1−→ y2−→ y3−→ with y1·y2·y3 = a.

z //

y1
��????????

y2
//

y3

??��������

(2) Let z ∈ Mor(Z). We have fact1(z) = {z}.

(3) For z ∈ Z, we have fact2(z) = { (y1, y2) ∈ Z×2 : y1 + y2 = z }.

1.1.2 Graded modules

Let Z = (Z, S, deg) be a grading category; cf. Definition 5.

Definition 10

(1) A Z-graded module is a map M : Mor(Z) → Ob(R -Mod), z 7→ M z , often written
(M z)z∈Mor(Z) or just (M z)z .

(2) Suppose given a Z-graded module M . Suppose given z ∈ Mor(Z) and m ∈ M z.
We write

m deg := z deg

for the degree of m.

(3) Suppose given Z-graded modules L and M . A (Z-)graded linear map f from L to

M is a tuple of linear maps (Lz
fz−→M z)z∈MorZ , often written just (Lz

fz−→M z)z or
(f z)z . So

(L
f−→M) = (Lz

fz−→M z)z .

(4) The category
Z-grad0

has the Z-graded modules as objects and the graded linear maps as morphisms.

The composite of the Z-graded linear maps L
f−→M

g−→ N is given by

f · g = ((f · g)z)z∈Mor(Z) := (f z · gz)z∈Mor(Z) .

We have the identity idM := (idMz)z∈Mor(Z) .

(5) Suppose given a set I and Z-graded modules Mi for i ∈ I. Define the (external)
direct sum of the tuple (Mi)i∈I as the Z-graded module⊕

i∈I

Mi :=
(⊕

i∈I

M z
i

)
z∈Mor(Z)

.

for z ∈ Mor(Z).
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Example 11 Let B be a linear category. Let Z := Z×Ob×2(B).

Then Mor(Z) = Z×Mor(Ob×2(B)) and so({
B(X, Y ) if i = 0
0 if i 6= 0

})
(i,(X,Y ))∈Z×Mor(Ob×2(B))

is a (Z×Ob×2(B))-graded module.

In particular, given an algebra B, we obtain a linear category, abusively again denoted by
B, having Ob(B) = {B} and Mor(B) = B, composition given by multiplication. Then({

B if i = 0
0 if i 6= 0

})
i∈Z

is a Z-graded module, concentrated in degree 0.

Definition 12 Given a Z-graded module M , we let SM be the Z-graded module defined
by

(SM)z := M zS

for z ∈ Mor(Z).

Given a Z-graded linear map L
f−→ M , we let SL

Sf−→ SM be the Z-graded linear map
defined by

((SL)z
(Sf)z−−−→ (SM)z) := (LzS

fzS−−→M zS)

for z ∈ Mor(Z).

We have a functor
Z-grad0

S−→ Z-grad0

(L
f−→M) 7→ (SL

Sf−→ SM)

This functor is an automorphism of Z-grad0 ; cf. Problem4.(1).

We often write (L[k] f [k]−−→M [k]) := (SkL
Skf−−→ SkM) for L

f−→M in Z-grad0 and k ∈ Z.

So (M [k])z = M z[k] and (f [k])z = f z[k] for z ∈ Mor(Z).

Definition 13 Suppose given Z-graded modules L, M and N .

A shift-graded linear map of degree k from L to M is a pair (f, k), where f : L→M [k] is
a graded linear map.

So f = (Lz
fz−→M z[k])z∈Mor(Z) .

Write (f, k) deg := k.

Suppose given shift-graded linear maps L
(f,k)−−→M

(g,`)−−→ N . Then L
f−→M [k] andM [k]

g[k]−−→
N [k+`] in Z-grad0 , i.e. as graded linear maps. The composite of (f, k) and (g, `) is defined
by

(f, k) · (g, `) := (f · g[k], k + `) : L - N [k + `] .
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We have the identity (idM , 0) on M .

We call (f, k) piecewise injective if f z is injective for z ∈ Mor(Z).

We call (f, k) piecewise surjective if f z is surjective for z ∈ Mor(Z).

The category
Z-grad

has the Z-graded modules as objects and the shift-graded linear maps as morphisms. Cf.
Problem 4.(2).

By abuse of notation, we let

(SL
S(f,k)−−−→ SM) := (SL

(Sf,k)−−−→ SM)(Sf, k)

for L
(f,k)−−→ M in Z-grad. Then S is an automorphism on Z-grad ; cf. Problem 4.(3).

Accordingly, we write

(L[t] (f,k)[t]−−−−→M [t]) := (L[t] (f [t],k)−−−−→M [t])

for t ∈ Z.

Finally, given morphisms (f, k), (g, k) ∈ Mor(Z-grad) of the same degree and r, s ∈ R,
we let

r(f, k) + s(g, k) := (rf + sg, k) ;

cf. Problem 4.(4).

Definition.

(1) Suppose given a Z-graded module M .

Suppose given a submodule M̃ z ⊆ M z for each z ∈ Mor(Z). Then M̃ :=
(M̃ z)z∈Mor(Z) is called a Z-graded submodule of M . We write M̃ ⊆ M . We have
the shift-graded linear inclusion map of degree 0

M̃ → M

at z ∈ Mor(Z) : M̃ z → M z

m̃ 7→ m̃ .

We may form the factor module M z/M̃ z for each z ∈ Mor(Z). Then M/M̃ :=
(M z/M̃ z)z∈Mor(Z) is called the Z-graded factor module of M modulo M̃ . We have
the shift-graded linear residue-class map of degree 0

M → M/M̃

at z ∈ Mor(Z) : M z → M z/M̃ z

m 7→ m+ M̃ z .



16

(2) Suppose given Z-graded modules L and M . Suppose given a shift-graded linear

map L
f−→M of degree d.

Let Kern(f) := (Kern(f z))z∈Mor(Z) . Then Kern(f) is a Z-graded submodule of L.

Let Im(f) := (Im(f z))z∈Mor(Z) . Then Im(f) is a Z-graded submodule of M .

Let Cokern(f) := (M z/ Im(f z))z∈Mor(Z) . Then Cokern(f) = M/ Im(f).

Suppose given Z-graded submodules L̃ ⊆ L and M̃ ⊆ M . Write the inclusions

L̃
i−→ L and M̃

j−→M . Suppose that Im(i · f) ⊆ M̃ .

There exists a unique shift graded linear map L̃
f |M̃

L̃−−→ M̃ , called the restriction of f
to L̃ in the source and M̃ in the target, making the diagram

L
f //M

L̃
f |M̃

L̃ //

i

OO

M̃

j

OO

commutative. In particular, f |M̃
L̃

is of degree d.

We also write L̃f := Im(f |L̃) ⊆ M̃ .

If L̃ = L, we also write f |M̃ := f |M̃L .

If M̃ = M , we also write f |L̃ := f |M
L̃

.

(3) Suppose given a Z-graded module M . Suppose given a set I and Z-graded sub-
modules Mi ⊆M for i ∈ I.

Write +
i∈I

Mi :=
(
+
i∈I

M z
i

)
z

for the (inner) sum of the tuple (Mi)i∈I of submod-

ules, which is a graded submodule of M .

Consider the following shift-graded linear map of degree 0.⊕
i∈I

Mi

ϕ(Mi)i∈I−−−−−→ +
i∈I

Mi

at z ∈ Mor(Z) :
⊕
i∈I

M z
i → +

i∈I
M z

i

(mi)i∈I 7→
∑

i∈I mi

We say that +
i∈I

Mi is a(n) (inner) direct sum of (Mi)i∈I if ϕ(Mi)i∈I is an isomor-

phism. In this case, we also write, by abuse of notation,
⊕
i∈I

Mi := +
i∈I

Mi .

So the sum +
i∈I

Mi is direct if and only if the sum +
i∈I

M z
i is direct for z ∈ Mor(Z).
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(4) Suppose given a Z-graded module M . Suppose given a set I and Z-graded sub-
modules Mi ⊆M for i ∈ I.

Write
⋂
i∈I

Mi :=
(⋂
i∈I

M z
i

)
z

, which is a graded submodule of M .

Remark 14 Let k ∈ Z.

Given (f, k) ∈ Mor(Z-grad), we often write just f instead of (f, k) if k is known from
context. Then f deg = k.

In particular, we often write 0 instead of (0, k) by abuse of notation.

Given a shift-graded linear map f : L → M of degree k, given a ∈ Mor(Z) and given
` ∈ La, we often write `f instead of `fa.

Example 15 We make use of Remark 14.

Suppose that Z = Z . A complex is a Z-graded module M , together with a shift-graded
linear map d : M →M of degree 1 such that d2 = 0.

Removing the abusive language of Remark 14 again, we should write (d, 1) in place of d.

So d = (M i di−→M i+1)i∈Z .

Moreover, we should write (d, 1)2 = (d · d[1], 2) in place of d2. So in fact, we require

(d · d[1], 2) = (0, 2), i.e. 0 = d · d[1] = (M i di·di+1

−−−−→M i+2)i∈Z , i.e. di · di+1 = 0 for i ∈ Z.

1.1.3 Tensor products

Let Z = (Z, S, deg) be a grading category.

We will not make use of Remark 14 in this §1.1.3.

Definition 16 Suppose given n ∈ Z>1 .

(1) Suppose given a Z-graded module Mi for i ∈ [1, n].

Let
⊗

i∈[1,n] Mi be the Z-graded module defined by( ⊗
i∈[1,n]

Mi

)z
:=

⊕
y ∈ factn(z)

⊗
i∈ [1,n]

Myi
i

for z ∈ Mor(Z).

We often write M1 ⊗ . . .⊗Mn :=
⊗

i∈[1,n] Mi .

(2) Suppose given (ui)i∈[1,n] , (vi)i∈[1,n] ∈ Z×n. Let

b(ui)i , (vi)ic := (−1)
∑

16i<j6n uivj .
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(3) Suppose given Z-graded modules Li and Mi for i ∈ [1, n].

Suppose given shift-graded linear maps Li
(fi , ki)−−−−→Mi for i ∈ [1, n].

Write k :=
∑

i∈[1,n] ki . Define the shift-graded linear map

⊗
i∈[1,n]

Li

⊗
i∈[1,n]

(fi , ki) :=
( ⊗
i∈[1,n]

fi , k
)

−−−−−−−−−−−−−−−−−→
⊗
i∈[1,n]

Mi

at z ∈ Mor(Z) by

(
⊗
i∈[1,n]

Li)
z =

⊕
y ∈ factn(z)

⊗
i∈ [1,n]

Lyii

( ⊗
i∈[1,n]

fi

)z
−−−−−−→

⊕
ỹ ∈ factn(z[k])

⊗
i∈ [1,n]

M ỹi
i = (

⊗
i∈[1,n]

Mi)
z[k] ,

mapping an elementary tensor

(`i)
⊗
i∈[1,n] ∈

⊗
i∈ [1,n]

Lyii

to (
(`i)

⊗
i∈[1,n]

)( ⊗
i∈[1,n]

fi
)z

:= b(ki)i , (yi deg)ic(`if yii )⊗i∈[1,n] ∈
⊗
i∈ [1,n]

M
yi[ki]
i .

The sign b(ki)i , (`i deg)ic ∈ {−1,+1} is called the Koszul sign ; cf. (2). Note that
yi deg = `i deg. Note that in fact, y1[k1] · y2[k2] · · · yn[kn] = (y1 · y2 · · · yn)[k] = z[k].

We often write (f1 , k1)⊗ . . .⊗ (fn , kn) :=
⊗

i∈[1,n](fi , ki) .

(3) In Problem 7.(3), we construct a Z-graded module Ṙ such that

Ṙ⊗M = M = M ⊗ Ṙ

for a Z-graded module M and, more precisely,

(f, k)⊗ (idṘ , 0) = (f, k) = (idṘ , 0)⊗ (f, k)

for a shift-graded linear map M
(f,k)−−→ N between Z-graded modules M and N .

We stipulate that
⊗

i∈[1,0]Mi := Ṙ and that
⊗
i∈[1,0]

(fi , ki) = idṘ , in the context

of (1, 2). In particular,

M⊗k :=
⊗
i∈[1,k]

M

and
(f, k)⊗k :=

⊗
i∈[1,k]

(f, k)

are defined for k ∈ Z>0 , where M⊗0 = Ṙ and (f, k)⊗0 = idṘ .
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Example 17 Suppose given n ∈ Z>1 and (Li
(fi , ki)−−−−→Mi)i∈[1,n] ∈ Mor((Z-grad)×n).

(0) We have b(1, 4, 5) , (−7, 2, 3)c = (−1)1·2+1·3+4·3 = −1.

(1) Suppose n = 1. We have
(⊗
i∈[1,1]

Li

⊗
i∈[1,1]

(fi , ki)

−−−−−−−→
⊗
i∈[1,1]

Mi

)
=
(
L1

(f1 , k1)−−−−→M1

)
.

Note that fact1(z) = {z} for z ∈ Mor(Z), cf. Example 9.(2), and that the Koszul
sign is +1 if n = 1.

(2) Suppose n = 2. The shift-graded linear map

( ⊗
i∈[1,2]

Li

⊗
i∈[1,2]

(fi , ki)

−−−−−−−→
⊗
i∈[1,2]

Mi

)
=
(
L1 ⊗ L2

(f1⊗f2 , k)−−−−−−→M1 ⊗M2

)
of degree k := k1 + k2 has at z ∈ Mor(Z) the entry

(L1 ⊗ L2)z =
⊕

y ∈ fact2(z)

Ly11 ⊗ L
y2
2

(f1⊗f2)z−−−−−→
⊕

ỹ ∈ fact2(z[k])

M ỹ1
1 ⊗M

ỹ2
2 = (M1 ⊗M2)z[k] ,

mapping an elementary tensor

`1 ⊗ `2 ∈ Ly11 ⊗ L
y2
2

to

(`1 ⊗ `2)(f1 ⊗ f2)z = (−1)k1·(`2 deg)(`1f
y1
1 ⊗ `2f

y2
2 ) ∈ M

y1[k1]
1 ⊗My2[k2]

2 .

Here, the Koszul sign

b(k1, k2) , (`1 deg, `2 deg)c = (−1)k1·(`2 deg)

can be interpreted as being caused by pulling f1 , of degree k1 , across `2 , of degree
`2 deg.

Consider the case Z = Z. Then z ∈ Z. The map

(L1 ⊗ L2)z =
⊕

y1 , y2 ∈Z,
y1+y2 = z

Ly11 ⊗ L
y2
2

(f1⊗f2)z−−−−−→
⊕

ỹ1 , ỹ2 ∈Z,
ỹ1+ỹ2 = z+k

M ỹ1
1 ⊗M

ỹ2
2 = (M1 ⊗M2)z+k

maps
`1 ⊗ `2 ∈ Ly11 ⊗ L

y2
2

to
(`1 ⊗ `2)(f1 ⊗ f2)z = (−1)k1·y2(`1f1 ⊗ `2f2) ∈ My1+k1

1 ⊗My2+k2
2 .
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(3) Suppose n = 3. The shift-graded linear map

( ⊗
i∈[1,3]

Li

⊗
i∈[1,3]

(fi , ki)

−−−−−−−→
⊗
i∈[1,3]

Mi

)
=
(
L1 ⊗ L2 ⊗ L3

(f1⊗f2⊗f3 , k)−−−−−−−−→M1 ⊗M2 ⊗M3

)
of degree k := k1 + k2 + k3 has at z ∈ Mor(Z) the entry

(L1 ⊗ L2 ⊗ L3)z =
⊕

y ∈ fact3(z)

Ly11 ⊗ L
y2
2 ⊗ L

y3
3

(f1⊗f2⊗f3)z−−−−−−−→
⊕

ỹ ∈ fact3(z[k])

M ỹ1
1 ⊗M

ỹ2
2 ⊗M

ỹ3
3 = (M1 ⊗M2 ⊗M3)z[k] ,

mapping an elementary tensor

`1 ⊗ `2 ⊗ `3 ∈ Ly11 ⊗ L
y2
2 ⊗ L

y3
3

to

(`1 ⊗ `2 ⊗ `3)(f1 ⊗ f2 ⊗ f3)z = (−1)k1·(`2 deg +`3 deg)+k2·(`3 deg)(`1f
y1
1 ⊗ `2f

y2
2 ⊗ `3f

y3
3 )

∈ M
y1[k1]
1 ⊗My2[k2]

2 ⊗My3[k3]
3

Here, the Koszul sign

b(k1, k2, k3) , (`1 deg, `2 deg, `3 deg)c = (−1)k1·(`2 deg +`3 deg)+k2·(`3 deg)

can be interpreted as being caused by pulling f1 , of degree k1 , across `2 ⊗ `3 , of
degree `2 deg +`3 deg, and f2 , of degree k2 , across `3 , of degree `3 deg.

Consider the case Z = Z. Then z ∈ Z. The map

(L1 ⊗ L2 ⊗ L3)z =
⊕

y1 , y2 , y3 ∈Z,
y1+y2+y3 = z

Ly11 ⊗ L
y2
2 ⊗ L

y3
3

(f1⊗f2⊗f3)z−−−−−−−→
⊕

ỹ1 , ỹ2 , ỹ3 ∈Z,
ỹ1+ỹ2+ỹ3 = z+k

M ỹ1
1 ⊗M

ỹ2
2 ⊗M

ỹ3
3 = (M1 ⊗M2 ⊗M3)z+k

maps

`1 ⊗ `2 ⊗ `3 ∈ Ly11 ⊗ L
y2
2 ⊗ L

y3
3

to

(`1⊗`2⊗`3)(f1⊗f2⊗f3)z = (−1)k1·(y2+y3)+k2·y3(`1f1⊗`2f2⊗`3f3) ∈ My1+k1
1 ⊗My2+k2

2 ⊗My3+k3
3 .

Example 18 We consider the tensor product of two complexes; cf. Example 15.

Let M be a complex with differential (d, 1). Let M̃ be a complex with differential (d̃, 1).

Then the Z-graded module M ⊗ M̃ has at position z ∈ Z the entry⊕
i, j ∈Z, i+j=z

M i ⊗ M̃ j .
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The entry at i + j of the graded linear map (D, 1) := (d, 1) ⊗ (id, 0) + (id, 0) ⊗ (d̃, 1) of
degree 1 maps the elementary tensor

m⊗ m̃ ∈ M i ⊗ M̃ j

to
(m⊗ m̃)D = (−1)1·jmdi ⊗ m̃ id +(−1)0·jm id⊗m̃d̃j

= (−1)jmdi ⊗ m̃+m⊗ m̃d̃j .

So entry at i+ j of the graded linear map (D, 1)2 = (D ·D[1], 2) of degree 2 maps it to

((m⊗ m̃)D)D[1]

= ((−1)jmdi ⊗ m̃+m⊗ m̃d̃j)D[1]

= (−1)j+jmdidi+1 ⊗ m̃+ (−1)jmdi ⊗ m̃d̃j + (−1)j+1mdi ⊗ m̃d̃j +m⊗ m̃d̃j d̃j+1

= 0 + (−1)jmdi ⊗ m̃d̃j(1− 1) + 0

= 0 .

So (D, 1)2 = 0. Hence M ⊗ M̃ , with differential (D, 1), is a complex.

This would not have been the case without inserting a sign such as the Koszul sign.

1.2 A∞-algebras and A∞-categories

Let Z = (Z, S, deg) be a grading category; cf. Definition 5.

Henceforth, we make use of Remark 14.

Definition 19 Suppose given n ∈ [0,∞].

(1) Suppose given a Z-graded module A.

Suppose given a shift-graded linear map mA
k = (mA

k , 2 − k) : A⊗k → A of degree
2− k for k ∈ [1, n] ∩ Z.

Then A = (A, (mA
k )k∈[1,n]∩Z) is a pre-An-algebra (over Z).

A pre-An-algebra A = (A, (mA
k )k∈[1,n]∩Z) is an An-algebra (over Z) if the Stasheff

equation

0 =
∑

(r,s,t)∈Z>0×Z>1×Z>0

r+s+t= k

(−1)r+st(id⊗r⊗mA
s ⊗ id⊗t) ·mA

r+1+t

holds for k ∈ [1, n] ∩ Z.

Note that each summand of the right-hand side is a shift-graded linear map from
A⊗k to A of degree 3− k.
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We often abbreviate A = (A, (mk)k) = (A, (mA
k )k) := (A, (mA

k )k∈[1,n]∩Z).

Sometimes, the tuple (mk)k is referred to as an An-structure on the Z-graded
module A. An entry mk of this tuple is sometimes referred to as kth shift-graded
linear multiplication map.

We often abbreviate the condition (r, s, t) ∈ Z>0×Z>1×Z>0 on the indexing triples
to (r, s, t) > (0, 1, 0).

(2) Suppose given Z-graded modules Ã and A.

Suppose given a shift-graded linear map fk = (fk , 1− k) : Ã⊗k → A of degree 1− k
for k ∈ [1, n] ∩ Z.

Then f = (fk)k∈[1,n]∩Z : Ã→ A is a pre-An-morphism (over Z).

Suppose given An-algebras Ã = (Ã, (mÃ
k )k∈[1,n]∩Z) and A = (A, (mA

k )k∈[1,n]∩Z).

A pre-An-morphism f = (fk)k∈[1,n]∩Z : Ã→ A is an An-morphism or a morphism of
An-algebras (over Z) if the Stasheff equation for morphisms∑

(r,s,t)∈Z>0×Z>1×Z>0

r+s+t= k

(−1)r+st(id⊗r⊗mÃ
s ⊗ id⊗t) · fr+1+t =

∑
r∈[1,k]

∑
(ij)j∈[1,r] ∈Z×r

>1∑
j∈[1,r] ij = k

b(1− ij)j , (ij)jc
( ⊗
j∈[1,r]

fij
)
·mA

r

holds for k ∈ [1, n] ∩ Z.

Note that each summand of the left- and of the right-hand side is a shift-graded
linear map from Ã⊗k to A of degree 2− k.

We often abbreviate (fk)k = (fk)k∈[1,n]∩Z .

We often abbreviate the condition (r, s, t) ∈ Z>0×Z>1×Z>0 on the indexing triples
to (r, s, t) > (0, 1, 0) and the condition (ij)j∈[1,r] ∈ Z×r>1 on the indexing tuples to
(ij)j > (1)j .

Remark 20 Suppose given 1 6 ` 6 n 6∞.

(1) Given an An-algebra (A, (mA
k )k∈[1,n]∩Z), we get an A`-algebra (A, (mA

k )k∈[1,`]∩Z).

(2) Given an An-morphism (fk)k∈[1,n]∩Z from an An-algebra (Ã, (mÃ
k )k∈[1,n]∩Z) to

an An-algebra (A, (mA
k )k∈[1,n]∩Z), we get an A`-morphism (fk)k∈[1,`]∩Z from

(Ã, (mÃ
k )k∈[1,`]∩Z) to (A, (mA

k )k∈[1,`]∩Z) .

Example 21

We consider the Stasheff equation from Definition 19.(1) for an An-algebra A =
(A, (mA

k )k) = (A, (mk)k) for k ∈ [1, 3], supposing n > k.
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(1) For k = 1, the Stasheff equation reads

0 = m1 ·m1 .

So in case Z = Z, the graded module A is a complex with differential m1 .

(2) For k = 2, the Stasheff equation reads

0 = −(id⊗m1) ·m2 − (m1 ⊗ id) ·m2 +m2 ·m1 .

In case Z = Z, we obtain for a, b ∈ A0

((a⊗ b)m2)m1 = (a⊗ bm1)m2 + (am1 ⊗ b)m2 .

Interpreting m1 as differential and m2 as multiplication, this is a product rule for
the differential, often called the Leibniz rule.

(3) For k = 3, the Stasheff equation reads

0 = (m1⊗ id⊗2) ·m3 + (id⊗m1⊗ id) ·m3 + (id⊗2⊗m1) ·m3 + (m2⊗ id) ·m2− (id⊗m2) ·m2 +m3 ·m1 .

In case Z = Z, we obtain for a, b, c ∈ A0

(a⊗ (b⊗ c)m2)m2 − ((a⊗ b)m2 ⊗ c) ·m2

= (am1 ⊗ b⊗ c)m3 + (a⊗ bm1 ⊗ c)m3 + (a⊗ b⊗ cm1)m3 + ((a⊗ b⊗ c)m3)m1

Interpreting m2 as multiplication, we observe that this multiplication is associative
if m3 = 0 or if m1 = 0.

We do not claim that associativity of m2 entails m3 = 0.

Example 22

We consider the Stasheff equation for morphisms from Definition 19.(2) for a morphism
f = (fk)k : Ã→ A of An-algebras for k ∈ [1, 3], supposing n > k.

We consider the conditions of Definition 19.(2) for k ∈ [1, 3], supposing n > k.

(1) For k = 1, we obtain the condition

mÃ
1 · f1 = f1 ·mA

1 .

In case Z = Z, we obtain that f1 is a morphism of complexes from Ã, having
differential mÃ

1 , to A, having differential mA
1 .

(2) For k = 2, we obtain the condition

−(id⊗mÃ
1 ) · f2 − (mÃ

1 ⊗ id) · f2 +mÃ
2 · f1

= f2 ·mA
1 + (f1 ⊗ f1) ·mA

2 .
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(3) For k = 3, we obtain the condition

(mÃ
1 ⊗ id⊗2) · f3 + (id⊗mÃ

1 ⊗ id) · f3 + (id⊗2⊗mÃ
1 ) · f3 + (mÃ

2 ⊗ id) · f2 − (id⊗mÃ
2 ) · f2 +mÃ

3 · f1

= f3 ·mA
1 + (f1 ⊗ f2) ·mA

2 − (f2 ⊗ f1) ·mA
2 + (f1 ⊗ f1 ⊗ f1) ·mA

3 .

Definition 23 Let n ∈ [2,∞]. Suppose given an An-algebra A = (A, (mA
k )k∈[1,n]∩Z).

Then A is called unital, if for X ∈ ObZ, there exists a neutral element 1A,X = 1X ∈ AidX

such that (1, 2) hold.

(1) We have (a⊗ 1X)mA
2 = a for z ∈ Mor(Z) with ztZ = X and a ∈ Az.

(2) We have (1X ⊗ b)mA
2 = b for w ∈ Mor(Z) with wsZ = X and b ∈ Aw.

Then 1X is uniquely determined, for given an element c ∈ AidX having properties (1, 2),
then 1X = (1X ⊗ c)mA

2 = c.

Note that (1X⊗1X)mA
2 m

A
1

1.
= 1Xm

A
1

2.
= (1Xm

A
1 ⊗1X)mA

2 +(1X⊗1Xm
A
1 )mA

2 = 1Xm
A
1 +1Xm

A
1

for X ∈ ObZ, whence 1Xm
A
1 = 0 ; cf. Example 21.(2).

Definition 24 Let n ∈ [2,∞].

Suppose given unital An-algebras Ã and A.

Suppose given an An-morphism Ã
f−→ A, so f = (fk)k∈[1,n]∩Z .

Then f is called unital, if for X ∈ ObZ, we have 1Ã,Xf1 = 1A,X .

Example 25 Suppose given n ∈ [3,∞] .

Suppose given a unital An-algebra A = (A, (mk)k).

Suppose that Az = 0 for z ∈ Mor(Z) with deg z ∈ Z r {0}.

Then mk = 0 for k ∈ [1, n] r {2}. In fact, the shift-graded linear map mk = (mk , 2− k)
actually maps from A⊗k to A[2−k]. So given z ∈ Mor(Z) and y ∈ factk(z) and

a1 ⊗ . . .⊗ ak ∈ Ay1 ⊗ . . .⊗ Ayk ,

its image is
(a1 ⊗ . . .⊗ ak)mk ∈ Az[2−k] .

In order that this image be nonzero, we need that on the one hand, ai is nonzero for
i ∈ [1, k], so necessarily yi deg = 0 for i ∈ [1, k]. On the other hand, we must necessarily
have z[2− k] deg = 0. But

0 = z[2− k] deg = z deg +2− k =
( ∑
i∈[1,k]

yi
)

+ 2− k = 2− k ,
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so k = 2.

In particular, interpreting m2 as multiplication, it is associative; cf. Example 21.(3).

Case Z = Z. Then A0, together with the multiplication

A0 ⊗ A0 → A0

a ⊗ b 7→ a · b := (a⊗ b)m2

is an algebra. The element 1Z ∈ AidZ = A0 is neutral with respect to multiplication ; cf.
Definition 23.

Case Z = Z× I×2 for a set I ; cf. Example 1.(4). Then we have a linear category A0 with
Ob(A0) = I and A0(i, j) = A(0,(i,j)) for i, j ∈ I. Its composition is given by

A(0,(i,j)) ⊗ A(0,(j,k)) → A(0,(i,k))

a ⊗ b 7→ a · b := (a⊗ b)m2

for i, j, k ∈ I. Given (Z, i) ∈ {Z} × I = Ob(Z × I×2), the element 1(Z,i) ∈ Aid(Z,i) =
A(0,(i,i)) is neutral with respect to composition ; cf. Definition 23.

Example 26 Suppose given n ∈ [3,∞].

Suppose given unital An-algebras Ã and A.

Suppose given a unital An-morphism Ã
f−→ A, so f = (fk)k∈[1,n]∩Z .

Suppose that Ãz = 0 and Az = 0 for z ∈ Mor(Z) with deg z ∈ Z r {0}. So mÃ
k = 0 and

mA
k = 0 for k ∈ [1, n] r {2} ; cf. Example 25.

Moreover, fk = 0 for k ∈ [1, n]r {1}. In fact, the shift-graded linear map fk = (fk, 1− k)
actually maps from Ã⊗k to A[1−k]. So given z ∈ Mor(Z) and y ∈ factk(z) and

a1 ⊗ . . .⊗ ak ∈ Ay1 ⊗ . . .⊗ Ayk ,

its image is
(a1 ⊗ . . .⊗ ak)fk ∈ Az[1−k] .

In order that this image be nonzero, we need that on the one hand, ai is nonzero for
i ∈ [1, k], so necessarily yi deg = 0 for i ∈ [1, k]. On the other hand, we must necessarily
have z[1− k] deg = 0. But

0 = z[1− k] deg = z deg +1− k =
( ∑
i∈[1,k]

yi
)

+ 1− k = 1− k ,

so k = 1.

Now Ã
f1−→ A satisfies mÃ

2 · f1 = (f1 ⊗ f1) ·mA
2 ; cf. Example 22.(2).

Case Z = Z. Then Ã0 and A0 are algebras; cf. Example 25. Using the multiplication
notation from there, we obtain

(ã · b̃)f1 = (ã⊗ b̃)(mÃ
2 · f1) = (ã⊗ b̃)(f1 ⊗ f1) ·mA

2 = ãf1 · b̃f1
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for ã, b̃ ∈ Ã0. Moreover, we have

1Ã,Zf1 = 1A,Z .

So f1 is a morphism of algebras from Ã0 to A0.

Case Z = Z× I×2 for a set I ; cf. Example 1.(4). Then Ã0 and A0 are linear categories;
cf. Example 25. Using the composition notation from there, we obtain

(ã · b̃)f1 = (ã⊗ b̃)(mÃ
2 · f1) = (ã⊗ b̃)(f1 ⊗ f1) ·mA

2 = ãf1 · b̃f1

for i, j, k ∈ I, for a ∈ Ã(0,(i,j)) and a ∈ Ã(0,(j,k)). Moreover, we have

1Ãf1 = 1A .

So f1 is a linear functor from Ã0 to A0.

Exceptionally, f1 is written on the right, i.e. naturally.

Definition 27 Recall that Z is a grading category.

(1) An A∞-algebra over Z is called a classical A∞-algebra.

(2) Suppose given a set I.

A unital A∞-algebra A over Z × I×2 is called an A∞-category with set of objects
Ob(A) = I ; cf. Example 1.(4).

(3) A unital A∞-algebra A = (A, (mk)k∈Z>1
) over Z with mk = 0 for k > 3 is called a

differential graded algebra (over Z). Cf. Problem 11.

(4) A unital A∞-algebra A = (A, (mk)k∈Z>1
) over Z with mk = 0 for k > 3 is called a

classical differential graded algebra.

(5) Suppose given a set I.

A unital A∞-algebra A = (A, (mk)k∈Z>1
) over Z × I×2 with mk = 0 for k > 3 is

called a differential graded category with set of objects I ; cf. Example 1.(4).

(6) A unital A∞-algebra A = (A, (mk)k∈Z>1
) over Z with m1 = 0 is called minimal.

1.3 The regular differential graded category for com-

plexes

Suppose given an algebra B.
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Suppose given N ∈ Z>1 . Suppose given complexes Xs ∈ Ob(C(B -Mod)) for s ∈ [1, N ],

where Xs carries the differential ds = (X i
s

dis−→ X i+1
s )i . Write X := (Xs)s∈[1,N ] .

Let Z := Z× [1, N ]×2.

Write

Homj
B(Xs , Xt) := { (f i)i∈Z : X i

s

f i−→ X i+j
t is a B-linear map for i ∈ Z }

for s, t ∈ [1, N ] and j ∈ Z.

In general, the inclusion C(B -Mod)(Xs , Xt) ⊆ Hom0
B(Xs , Xt) is strict. The definition of

Homj
B(Xs , Xt) does not involve the differentials of Xs and of Xt .

We shall construct the regular differential graded algebra HomB(X) of X over Z on the
set of objects [1, N ].

As a Z-graded module, define HomB(X) by letting

HomB(X)(j,(s,t)) := Homj
B(Xs , Xt)

for (j, (s, t)) ∈ Mor(Z).

Let

HomB(X)
m

HomB(X)
1−−−−−−→ HomB(X)

be defined at (j, (s, t)) ∈ Mor(Z) by

Homj
B(Xs , Xt)

m
HomB(X)
1−−−−−−→ Homj+1

B (Xs , Xt)

(f i)i 7→ (f idi+jt − (−1)jdisf
i+1)i .

X i
s

f i //

dis
��

X i+j
t

di+j
t
��

X i+1
s

f i+1
// X i+j+1

t

Let

HomB(X)⊗2 m
HomB(X)
2−−−−−−→ HomB(X)

be defined at (j, (s, t)) ∈ Mor(Z), on the summand belonging to(
(k, (s, u)), (`, (u, t))

)
∈ fact2

(
(j, (s, t))

)
,

i.e. k + ` = j and u ∈ [1, N ], by

Homk
B(Xs , Xu) ⊗ Hom`

B(Xu , Xt)
m

HomB(X)
2−−−−−−→ Homj

B(Xs , Xt)

(f i)i ⊗ (gi)i 7→ (f igi+k)i .

X i
s

f i // X i+k
u

gi+k
// X i+k+`

t
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Lemma 28 Recall that Z = Z× [1, N ]×2. Recall that Xs ∈ C(B -Mod).

Consider the Z-graded module HomB(X) and the shift-graded morphisms

HomB(X)
m

HomB(X)
1−−−−−−→ HomB(X)

of degree 1 and

HomB(X)⊗2 m
HomB(X)
2−−−−−−→ HomB(X)

of degree 0 constructed above. Let m
HomB(X)
k := 0, as a shift-graded linear map of degree

2− k from HomB(X)⊗k to HomB(X), for k ∈ Z>3 .

Then (HomB(X), (m
HomB(X)
k )k∈Z>1

) is a differential graded category on the set of objects
[1, N ] ; cf. Definition 27.(5).

Proof. We have to show the Stasheff equation for k ∈ [1, 3] and the existence of neutral

elements; cf. Problem 11. Write mk := m
HomB(X)
k for k ∈ Z>1 .

Case k = 1. We have to show that m1 ·m1
!

= 0 ; cf. Example 21.(1).

Given (j, (s, t)) ∈ Mor(Z) and (fi)i ∈ Homj
B(Xs , Xt), we obtain

((fi)i)(m1 ·m1)

= ((f idi+jt − (−1)jdisf
i+1)i)m1

= ((f idi+jt − (−1)jdisf
i+1)di+j+1

t − (−1)j+1dis(f
i+1di+j+1

t − (−1)jdi+1
s f i+2))i

= (f idi+jt di+j+1
t − (−1)jdisf

i+1di+j+1
t − (−1)j+1disf

i+1di+j+1
t + (−1)j+1(−1)jdisd

i+1
s f i+2))i

= (0)i .

Case k = 2. We have to show that m2 ⊗ m1
!

= (id⊗m1) · m2 + (m1 ⊗ id) · m2 ; cf.
Example 21.(2).

Given (j, (s, t)) ∈ Mor(Z) and
(
(k, (s, u)), (`, (u, t))

)
∈ fact2

(
(j, (s, t))

)
, i.e. k+ ` = j and

u ∈ [1, N ], and (f i)i ∈ Homk
B(Xs , Xu) and (gi)i ∈ Hom`

B(Xu , Xt), we obtain

((f i)i ⊗ (gi)i)(m2 ⊗m1)

= ((f igi+k)i)m1

= (f igi+kdi+jt − (−1)jdisf
i+1gi+1+k)i

and

((f i)i ⊗ (gi)i)((id⊗m1) ·m2 + (m1 ⊗ id) ·m2)
Koszul

= ((f i)i ⊗ ((gi)i)m1)m2 + (−1)`(((f i)i)m1 ⊗ (gi)i)m2

= ((f i)i ⊗ (gidi+`t − (−1)`diug
i+1)i)m2 + (−1)`((f idi+ku − (−1)kdisf

i+1)i ⊗ (gi)i)m2

= (f igi+kdi+k+`
t − (−1)`f idi+ku gi+k+1)i + (−1)`(f idi+ku gi+k+1 − (−1)k+`disf

i+1gi+k+1)i

= (f igi+kdi+k+`
t − (−1)k+`disf

i+1gi+k+1)i ,
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which is the same.

Case k = 3. We have to show that (m2 ⊗ id) ·m2
!

= (id⊗m2) ·m2 ; cf. Example 21.(3).

Given (j, (s, t)) ∈ Mor(Z) and
(
(k, (s, u)), (`, (u, v)), (p, (v, t))

)
∈ fact3

(
(j, (s, t))

)
, i.e.

k + ` + p = j and u, v ∈ [1, N ], and (f i)i ∈ Homk
B(Xs , Xu) and (gi)i ∈ Hom`

B(Xu , Xv)
and (hi)i ∈ Hom`

B(Xv , Xt), we obtain

((f i)i ⊗ (gi)i ⊗ (hi)i)((m2 ⊗ id) ·m2)
Koszul

= (((f i)i ⊗ (gi)i)m2 ⊗ (hi)i)m2

= ((f igi+k)i ⊗ (hi)i)m2

= (f igi+khi+k+`)i

and
((f i)i ⊗ (gi)i ⊗ (hi)i)((id⊗m2) ·m2)

Koszul
= ((f i)i ⊗ ((gi)i ⊗ (hi)i)m2)m2

= ((f i)i ⊗ (gihi+`)i)m2

= (f igi+khi+k+`)i ,

which is the same.

We have to show the existence of neutral elements, i.e. that HomB(X) is unital; cf.
Definition 23. Given (Z, s) ∈ Ob(Z), let

1s := 1(Z,s) := (idXi
s
)i .

Given (j, (s, t)) ∈ Mor(Z) and (fi)i ∈ Homj
B(Xs , Xt), we obtain (j, (s, t))tZ = (Z, t) and

((fi)i ⊗ 1(Z,t))m2 = (fi · idXi+j
t

)i = (fi)i ,

and we obtain (j, (s, t))sZ = (Z, s) and

(1(Z,s) ⊗ (fi)i)m2 = (idXi
s
·f i)i = (f i)i .

1.4 Cohomology

Let Z be a grading category.

Definition 29 Let n ∈ [1,∞].

(1) Suppose given an An-algebra A over Z.

Let ZA := Kern(m1) be the Z-graded module of cycles.
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Let BA := Im(m1) be the Z-graded module of boundaries.

Note that BA ⊆ ZA since m2
1 = 0 ; cf. Example 21.(1).

Let HA := (ZA)/(BA) be the Z-graded cohomology module of A.

Specifically, we have, at z ∈ Mor(Z),

(ZA)z = Kern(Az
mA

1−−→ Az[1])

(BA)z = Im(Az[−1] mA
1−−→ Az) .

Note that (BA)z ⊆ (ZA)z ; cf. Example 21.(1).

(2) Suppose given a morphism Ã
f−→ A of An-algebras. We shall define a shift-graded

linear map

HÃ
Hf−→ HA

of degree 0. At z ∈ Mor(Z), it is given by

(HÃ)z
(Hf)z−−−→ (HÃ)z

a+ (BÃ)z 7→ af1 + (BA)z

This is a welldefined linear map, since f1 maps (BÃ)z to (BA)z as well as (ZÃ)z to
(ZA)z, because given a′ ∈ Ãz[−1], we get

a′mÃ
1 f1 = a′f1m

A
1 ∈ (BA)z ;

cf. Example 22.(1).

Sometimes, we also write Hf1 := Hf .

(3) A morphism Ã
f−→ A of An-algebras is called a quasiisomorphism if Hf is an isomor-

phism.

Since we do not know yet how to compose An-morphisms, we do not have a category of
An-algebras at our disposal. Hence, at this point, we cannot decide whether H is a functor
from the category of An-algebras over Z to Z-grad. Cf. Problem 23.(7) below.

Our aim is to show the Theorem of Kadeishvili, Theorem 50 below, which, in case R is
a field, will establish the existence of a minimal An-structure on A and at the same time
a quasiisomorphism from HA to A. This theorem seems to be hard to obtain by a direct
calculation, though. We will make a detour, reinterpret Stasheff equations as a codifferential
condition on a tensor coalgebra, in order to obtain an understandable proof. In the following
Remark 30, we illustrate the first two steps towards Kadeishvili.

Remark 30 Let n ∈ [1,∞]. Suppose given an An-algebra A over Z.

Denote by BA
ι̃−→ ZA

ι−→ A the inclusion morphisms.

Denote by ZA
ρ−→ HA the residue class morphism. Note that BA = Kern(ρ).
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In particular, given a morphism Ã
f−→ A of An-algebras, we get the following commutative

diagram.

Ã
f // A

ZÃ
f |ZÃZA //

ι

OO

ρ
��

ZA

ι

OO

ρ

��
HÃ

Hf = Hf1 // HA

If R is a field, we may choose a shift-graded linear map ZA
σ←− HA of degree 0 such that

σρ = idHA ; cf. Problem 15.(2).

If R is a field, we may choose a shift-graded linear map A
τ←− BA of degree −1 such that

τ(m1|BA) = idHA ; cf. Problem 15.(2).

Since (idZA−ρ ·σ)ρ = ρ−ρ ·σρ = ρ−ρ = 0, there exists a unique shift-graded linear map

ZA
ν̃−→ BA of degree 0 such that ν̃ · ι̃ = idZA−ρ · σ ; cf. Problem 15.(1). Write ν := ν̃τ .

So

ν ·m1 = ν̃ · τ · (m1|BA) · ι̃ · ι = ν̃ · ι̃ · ι = (idZA−ρ · σ) · ρ .

A

A

m1

//

m1|BA

// BA ι̃ //

τ

hh ZA

ι

OO

ρ // HA
σ

ii

ZA

idZA−ρ·σ

OO

ν̃

XX

ν

\\

Here the existence of the shift graded linear maps written with dotted arrows is only
ensured if R is a field.

Remark 31 Suppose R to be a field.

Suppose given an A3-algebra A over Z.

We will construct a minimal A3-structure (m̃1, m̃2, m̃3) on HA and a quasiisomorphism
(q1, q2, q3) of A3-algebras from HA to A.

Step 1. For this step, we will only need A as an A1-algebra.

Let m̃1 = 0. Let q1 := σ · ι.

We have

m̃1 · m̃1 = 0.

Hence the Stasheff equation at k = 1 holds; cf. Example 21.(1).
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We have

m̃1 · q1 = 0 = q1 ·m1 .

Hence the Stasheff equation for morphisms at k = 1 holds; cf. Example 22.(1).

Since we have the commutative diagram

HA
q1 // A

ZHA σ // ZA

ι

OO

ρ

��
HHA HA ,

we have Hq1 = idHA, which is an isomorphism. So q = (q1, q2, q3), once constructed as a
morphism of A3-algebras, will be a quasiisomorphism; cf. Definition 29.(2, 3).

Step 2. For this step, we will only need A as an A2-algebra.

By Example 21.(2), we get

ι⊗2 ·m2 ·m1 = ι⊗2(m1 ⊗ id + id⊗m1)
= (ιm1 ⊗ ι+ ι⊗ ιm1)
= 0 .

Thus by Problem 15.(1), we get a unique shift-graded linear map m̌2 : (ZA)⊗2 → ZA of
degree 0 such that the following quadrangle commutes.

A⊗2 m2 // A

(ZA)⊗2 m̌2 //

ι⊗2

OO

ZA

ι

OO

We claim that ((m1|ZA)⊗ idZA) · m̌2 · ρ
!

= 0 and that (idZA⊗(m1|ZA)) · m̌2 · ρ
!

= 0.

We prove the first equation. The second then follows by an analogous reasoning.

Given z ∈ Mor(Z) and (u, v) ∈ fact2(z[−1]) and a ∈ Au and ã ∈ (ZA)v, we have
a⊗ ã ∈ (A⊗2)z[−1] and obtain

(a⊗ ã)((m1|ZA)⊗ idZA)m̌2 · ρ = (a⊗ ã)(m1 ⊗ id)m2 + (BA)z

Ex. 21.(2)
= −(a⊗ ã)(id⊗m1)m2 + (a⊗ ã)m2 ·m1 + (BA)z

= −(a⊗ ãm1) + (a⊗ ã)m2 ·m1 + (BA)z

=
(
(a⊗ ã)m2

)
m1 + (BA)z

= 0 .
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This proves the claim. So by Problem 16.(2), we obtain a unique shift-graded linear map
m̂2 : (HA)⊗2 → HA of degree 0 such that the following quadrangle commutes.

(ZA)⊗2 m̌2 //

ρ⊗2

��

ZA

ρ

��
(HA)⊗2 m̂2 // HA

The shift-graded linear map m̂2 can be obtained in a second way still. We will call the

one resulting from the second construction m̃2 , with the aim of showing m̂2
!

= m̃2 .

Writing
Ψ2 := (q1 ⊗ q1) ·m2 ,

taking under consideration that m̃1 = 0, the Stasheff equation for morphisms the shift-
graded linear maps m̃2 and q2 are to satisfy reads

m̃2 · q1 − q2 ·m1
!

= Ψ2 ;

cf. Example 22.(2).

We claim that Ψ2 factors over ι as Ψ2 = Ψ̌2 · ι. We have to show that Ψ2 ·m1 = 0 ; cf.
Problem 15.(1). In fact,

(q1 ⊗ q1) ·m2 ·m1
Ex. 21.(2)

= (q1 ⊗ q1) · (m1 ⊗ id) ·m2 + (q1 ⊗ q1) · (id⊗m1) ·m2

= (q1m1︸ ︷︷ ︸
= 0

⊗q1) ·m2 + (q1 ⊗ q1m1︸ ︷︷ ︸
= 0

) ·m2

= 0 .

This proves the claim.

Letting
q2 := −Ψ̌2 · ν
m̃2 := Ψ̌2 · ρ ,

we obtain
m̃2 · q1 − q2 ·m1 = Ψ̌2 · ρ · q1 + Ψ̌2 · ν ·m1

= Ψ̌2 · ρ · σ · ι+ Ψ̌2 · (id−ρ · σ) · ι
= Ψ̌2 · ι
= Ψ2 ,

as required.

It remains to show
m̂2

!
= m̃2 .

It suffices to show that ρ⊗2m̂2
!

= ρ⊗2m̃2 , since ρ⊗2 is piecewise surjective; cf. Prob-

lem 16.(1). So we have to show that ρ⊗2Ψ̌2ρ
!

= m̌2ρ. It suffices to find a shift-graded
linear map ξ : (ZA)⊗2 → A of degree −1 such that

ρ⊗2Ψ̌2 − m̌2
!

= ξm1|ZA ,
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i.e. such that

(ρ⊗2Ψ̌2 − m̌2)ι
!

= ξm1|ZAι = ξm1 .

But

(ρ⊗2Ψ̌2 − m̌2)ι
= ρ⊗2Ψ̌2ι− m̌2ι
= ρ⊗2Ψ2 − ι⊗2m2

= ρ⊗2(q1 ⊗ q1)m2 − ι⊗2m2

= (ρ · σ · ι⊗ ρ · σ · ι− ι⊗ ι)m2

= ((ι− νm1)⊗ (ι− νm1)− ι⊗ ι)m2

= (−νm1 ⊗ ι− ι⊗ νm1 + νm1 ⊗ νm1)m2

= −(ν ⊗ ι)(m2m1 − id⊗m1)− (ι⊗ ν)(m2m1 − (m1 ⊗ id)m2) + (νm1 ⊗ ν)(m2m1 −m1 ⊗ id)
= (−(ν ⊗ ι)m2 − (ι⊗ ν)m2 + (νm1 ⊗ ν)m2)m1

since ιm1 = 0.

An associativity. We claim

(m̃2 ⊗ id− id⊗m̃2)m̃2
!

= 0 .

It suffices to show that ρ⊗3(m̃2 ⊗ id− id⊗m̃2)m̃2
!

= 0, since ρ⊗3 is piecewise surjective;
cf. Problem 16.(1). Now

ρ⊗3(m̃2 ⊗ id− id⊗m̃2)m̃2 = (ρ⊗2m̃2 ⊗ ρ− ρ⊗ ρ⊗2m̃2)m̃2

= (m̌2ρ⊗ ρ− ρ⊗ m̌2ρ)m̃2

= (m̌2 ⊗ id− id⊗m̌2)ρ⊗2m̃2

= (m̌2 ⊗ id− id⊗m̌2)m̌2ρ .

So it suffices to find a shift-graded linear map η : (ZA)⊗3 → A of degree −1 such that

(m̌2⊗ id− id⊗m̌2)m̌2
!

= ηm1|ZA, i.e. such that (m̌2⊗ id− id⊗m̌2)m̌2ι
!

= ηm1|ZAι = ηm1.
We obtain

(m̌2 ⊗ id− id⊗m̌2)m̌2 · ι
= (m̌2 ⊗ id− id⊗m̌2)ι⊗2m2

= (m̌2 · ι⊗ ι− ι⊗ m̌2 · ι)m2

= (ι⊗2m2 ⊗ ι− ι⊗ ι⊗2m2)m2

= ι⊗3(m2 ⊗ id− id⊗m2)m2
Ex. 21.(3)

= ι⊗3(−(m1 ⊗ id⊗2) ·m3 − (id⊗m1 ⊗ id) ·m3 − (id⊗2⊗m1) ·m3 −m3 ·m1)
= −ι⊗3 ·m3 ·m1

since ιm1 = 0.

Step 3. Write

Ψ3 := (−m̃2 ⊗ id + id⊗m̃2)q2 + (q1 ⊗ q2) ·m2 − (q2 ⊗ q1) ·m2 + (q1 ⊗ q1 ⊗ q1) ·m3 .
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We have to find m̃3 and q3 such that

m̃3 · q1 − q3 ·m1
!

= Ψ3 ;

cf. Example 22.(3).

Provided we can show that Ψ3 ·m1
!

= 0, then we can write Ψ3 = Ψ̌3 · ι ; cf. Problem 15.(1).
Then letting

q3 := −Ψ̌3 · ν
m̃3 := Ψ̌3 · ρ ,

we obtain
m̃3 · q1 − q3 ·m1 = Ψ̌3 · ρ · q1 + Ψ̌3 · ν ·m1

= Ψ̌3 · ρ · σ · ι+ Ψ̌3 · (id−ρ · σ) · ι
= Ψ̌3 · ρ · σ · ι+ Ψ̌3 · (id−ρ · σ) · ι
= Ψ̌3 · ι
= Ψ3 ,

as required.

So it remains to show Ψ3 · m1
!

= 0. Plugging in q2 · m1 = m̃2 · q1 − (q1 ⊗ q1)m2 from
Example 22.(2) and m2 ·m1 = (m1 ⊗ id + id⊗m1)m2 from Example 21.(2) and m3m1 =
−(m1⊗ id⊗2) ·m3− (id⊗m1⊗ id) ·m3− (id⊗2⊗m1) ·m3− (m2⊗ id) ·m2 + (id⊗m2) ·m2

from Example 21.(3), using q1 ·m1 = σ · ι ·m1 = 0 as well as associativity of m̃2 , we obtain

Ψ3 ·m1

= −(m̃2 ⊗ id)q2 ·m1 + (id⊗m̃2)q2 ·m1

+(q1 ⊗ q2) ·m2 ·m1 − (q2 ⊗ q1) ·m2 ·m1 + (q1 ⊗ q1 ⊗ q1) ·m3 ·m1

= −(m̃2 ⊗ id)m̃2 · q1 + (m̃2 ⊗ id)(q1 ⊗ q1)m2

+(id⊗m̃2)m̃2 · q1 − (id⊗m̃2)(q1 ⊗ q1)m2

+(q1 ⊗ q2)(m1 ⊗ id)m2 + (q1 ⊗ q2)(id⊗m1)m2

−(q2 ⊗ q1)(m1 ⊗ id)m2 − (q2 ⊗ q1)(id⊗m1)m2

−(q1 ⊗ q1 ⊗ q1)(m1 ⊗ id⊗2) ·m3

−(q1 ⊗ q1 ⊗ q1)(id⊗m1 ⊗ id) ·m3

−(q1 ⊗ q1 ⊗ q1)(id⊗2⊗m1) ·m3

−(q1 ⊗ q1 ⊗ q1)(m2 ⊗ id) ·m2

+(q1 ⊗ q1 ⊗ q1)(id⊗m2) ·m2

= (m̃2 · q1 ⊗ q1)m2

−(q1 ⊗ m̃2 · q1)m2

+(q1 ⊗ q2 ·m1)m2

−(q2 ·m1 ⊗ q1)m2

−((q1 ⊗ q1)m2 ⊗ q1)m2

+(q1 ⊗ (q1 ⊗ q1)m2) ·m2

= ((m̃2 · q1 − q2 ·m1 − (q1 ⊗ q1)m2)⊗ q1)m2

(q1 ⊗ (−m̃2 · q1 + q2 ·m1 + (q1 ⊗ q1)m2))m2

= 0 .
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Note that the only nontrivial Stasheff equation for (m̃3, m̃2, m̃1) takes place at k = 2,
where it reads (m̃2 ⊗ id− id⊗m̃2) · m̃2 = 0, whose validity we have verified.

To directly proceed in this way, i.e. to construct Ψn analogously for n > 4 and to prove

Ψn ·m1
!
= 0 directly, seems to be involved. We will take a conceptual detour to prove the

Theorem of Kadeishvili; cf. Theorem 50 below.

1.5 Getting rid of signs by conjugation

Let Z be a grading category.

Definition 35 Let A be a Z-graded module. Recall that A[1] is the Z-graded module
having

(A[1])z = Az[1]

for z ∈ Mor(Z); cf. Definition 12.

Define the shift-graded linear map

ω = ωA : A[1] → A

at z ∈ Mor(Z) by

(A[1])z
ω−→ Az[1]

a 7→ a .

Lemma 36 Let n ∈ [0,∞].

Let (A, (m`)`) be a pre-An-algebra over Z.

Given ` ∈ [1, n] ∩ Z, we write

ωm` := ω⊗` ·m` · ω− : (A[1])⊗` → A[1] ,

called the ω-conjugate of m` . Note that ωm` is of degree 1, independent of `.

Suppose given k ∈ [1, n] ∩ Z.

Given (r, s, t) > (0, 1, 0) with r + s+ t = k, we have

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t = ω⊗k
(
(−1)r+st(id⊗r⊗ms ⊗ id⊗t) ·mr+1+t

)
ω− .

In particular, the Stasheff equation at k, viz.

0 =
∑

(r,s,t)>(0,1,0)
r+s+t= k

(−1)r+st(id⊗r⊗ms ⊗ id⊗t) ·mr+1+t ,
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holds if and only if

0 =
∑

(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t

holds.

Proof. Given (r, s, t) > (0, 1, 0) with r + s+ t = k, we have

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t

= (id⊗r⊗ ωms ⊗ id⊗t) · ω⊗r+1+t ·mr+1+t · ω−

= (−1)r(ω⊗r ⊗ (ω⊗s ·ms)⊗ ω⊗t) ·mr+1+t · ω−

= ω⊗k
(
(−1)r+st(id⊗r⊗ms ⊗ id⊗t) ·mr+1+t

)
ω− .

So
0 =

∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t

holds if and only if

0 = ω⊗k
( ∑

(r,s,t)>(0,1,0)
r+s+t= k

(−1)r+st(id⊗r⊗ms ⊗ id⊗t) ·mr+1+t

)
ω−

holds, i.e. if and only if

0 =
∑

(r,s,t)>(0,1,0)
r+s+t= k

(−1)r+st(id⊗r⊗ms ⊗ id⊗t) ·mr+1+t

holds.

Lemma 37 Let n ∈ [0,∞].

Let Ã = (Ã, (m̃`)`) and A = (A, (m`)`) be pre-An-algebras over Z.

Let f = (f`)` be a pre-An-morphism from Ã to A.

Given ` ∈ [1, n] ∩ Z, we write

ωf` := ω⊗` · f` · ω− : (Ã[1])⊗` → A[1] ,

called the ω-conjugate of f` . Note that ωf` is of degree 0, independent of `.

Suppose given k ∈ [1, n] ∩ Z.

Given (r, s, t) > (0, 1, 0) with r + s+ t = k, we have

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t = ω⊗k
(
(−1)r+st(id⊗r⊗m̃s ⊗ id⊗t) · fr+1+t

)
ω− .
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Given r ∈ [1, k] and (ij)j∈[1,r] > 0, we have( ⊗
j∈[1,r]

ωfij
)
· ωmr = ω⊗k

(
b(1− ij)j , (ij)jc

( ⊗
j∈[1,r]

fij
)
·mr

)
ω− .

In particular, the Stasheff equation for morphisms at k, viz.∑
(r,s,t)>(0,1,0)
r+s+t= k

(−1)r+st(id⊗r⊗m̃s ⊗ id⊗t) · fr+1+t =
∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

b(1− ij)j , (ij)jc
( ⊗
j∈[1,r]

fij
)
·mr

holds if and only if∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t =
∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

( ⊗
j∈[1,r]

ωfij
)
· ωmr

holds.

Proof. Given (r, s, t) > (0, 1, 0) with r + s+ t = k, we have

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t

= (id⊗r⊗ ωm̃s ⊗ id⊗t) · ω⊗r+1+t · fr+1+t · ω−

= (−1)r(ω⊗r ⊗ (ω⊗s · m̃s)⊗ ω⊗t) · fr+1+t · ω−

= ω⊗k
(
(−1)r+st(id⊗r⊗m̃s ⊗ id⊗t) · fr+1+t

)
ω− .

Given r ∈ [1, k] and (ij)j∈[1,r] > 0, we have(⊗
j∈[1,r]

ωfij
)
· ωmr

=
(⊗

j∈[1,r]
ωfij
)
· ω⊗r ·mr · ω−

=
(⊗

j∈[1,r]
ωfijω

)
·mr · ω−

=
(⊗

j∈[1,r] ω
⊗ijfij

)
·mr · ω−

= ω⊗k
(
b(1− ij)j , (ij)jc

(⊗
j∈[1,r] fij

)
·mr

)
ω−

So ∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t =
∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j

k=
∑

j ij = k

( ⊗
j∈[1,r]

ωfij
)
· ωmr

holds if and only if

ω⊗k
( ∑

(r,s,t)>(0,1,0)
r+s+t= k

(−1)r+st(id⊗r⊗m̃s⊗id⊗t)·fr+1+t

)
ω− = ω⊗k

( ∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

b(1−ij)j , (ij)jc
( ⊗
j∈[1,r]

fij
)
·mr

)
ω−

holds, i.e. if and only if∑
(r,s,t)>(0,1,0)
r+s+t= k

(−1)r+st(id⊗r⊗m̃s ⊗ id⊗t) · fr+1+t =
∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

b(1− ij)j , (ij)jc
( ⊗
j∈[1,r]

fij
)
·mr

holds.
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1.6 A tensor coalgebra interpretation

Let Z be a grading category.

Given a Z-graded module V and a, b ∈ Z>1 , we often abbreviate an elementary tensor
as follows. Given vi ∈ V for i ∈ [a, b], we write

v⊗[a,b] := va ⊗ va+1 ⊗ . . . vb−1 ⊗ vb .

Definition 38

(1) A coalgebra over Z is a Z-graded module T , equipped with a shift-graded linear
map ∆ : T → T ⊗ T of degree 0, called comultiplication, that is coassociative, i.e.
that satisfies

∆(∆⊗ id) = ∆(id⊗∆) .

T ⊗ T id⊗∆ // T ⊗ T ⊗ T

T ∆ //

∆

OO

T ⊗ T
∆⊗id

OO

Often, we just write T = (T,∆).

(2) Suppose given coalgebras T = (T,∆) and T̃ = (T̃ , ∆̃) over Z. A morphism of
coalgebras, also called coalgebra morphism, (over Z) from T to T̃ is a shift-graded
linear map ψ : T → T̃ of degree 0 such that

ψ∆̃ = ∆(ψ ⊗ ψ) .

T ⊗ T ψ⊗ψ // T ⊗ T

T
ψ //

∆

OO

T

∆

OO

(3) Suppose given a coalgebra T = (T,∆) over Z. A coderivation on T is a shift-graded

linear map T
δ−→ T of degree 1 such that the co-Leibniz-rule

δ∆ = ∆(id⊗δ + δ ⊗ id)

holds.

Note that both sides are linear in δ, so that a linear combination of coderivations
on T is again a coderivation on T .

A coderivation δ on T is called a codifferential if δ2 = 0.
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(4) A coalgebra with codifferential over Z is a coalgebra T over Z, equipped with a
codifferential δ on T .

Often, we just write T = (T,∆, δ).

(5) Suppose given coalgebras T = (T,∆, δ) and T̃ = (T̃ , ∆̃, δ̃) over Z. A morphism of

coalgebras with codifferential (over Z) is a coalgebra morphism T
ψ−→ T̃ such that

ψδ = δψ .

Lemma 39 (and Definition) Let V be a Z-graded module. Let n, ñ ∈ [0,∞].

Consider the Z-graded module

T6n(V ) :=
⊕

k∈[1,n]∩Z

V ⊗k .

In particular, we often write

T(V ) := T6∞(V ) =
⊕
k∈Z>1

V ⊗k .

Moreover, we identify
V = T61(V ) .

(1) Let the shift-graded linear map ∆ = ∆n,V : T6n(V )→ T6n(V )⊗T6n(V ) of degree 0
be defined at z ∈ Mor(Z) on the summand for k ∈ [1, n] ∩ Z, viz.

(V ⊗k)z =
⊕

(y1,...,yk)∈factk(z)

⊗
i∈[1,k]

V yi ,

by defining it on its summand at (y1, . . . , yk) ∈ factk(z) by⊗
i∈[1,k] V

yi → (T6n(V )⊗ T6n(V ))z

v⊗[1,k] = v1 ⊗ . . .⊗ vk 7→
∑

(i,j)∈Z>1×Z>1

i+j= k

v1 ⊗ . . .⊗ vi⊗ vi+1 ⊗ . . .⊗ vi+j =
∑

(i,j)∈Z>1×Z>1

i+j= k

v⊗[1,i]⊗ v⊗[i+1,i+j] .

Here the boldfaced tensor product symbol ⊗ merely indicates the summand the
term is mapped to, that is v1 ⊗ . . .⊗ vi⊗ vi+1 ⊗ . . .⊗ vi+j ∈ (V ⊗i ⊗ V ⊗j)z.
Note that

v⊗[1,k]∆ ∈ (T6n−1(V )⊗ T6n−1(V ))z .

So also the restricted shift-graded linear map ∆|T6n−1(V )⊗T6n−1(V ) of degree 0 exists.

Then T6n(V ) = (T6n(V ),∆n,V ) is a coalgebra, called the tensor coalgebra of V
bounded by n.

If n =∞, we usually omit to mention that T(V ) is bounded by ∞.

Recall that for k ∈ [1, n] ∩ Z, we have shift-graded inclusion and projection maps

V ⊗k
ιk−→ T6n(V )

πk−→ V ⊗k of degree 0 ; cf. Problem 20.(1).
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(2) Suppose given k ∈ [1, n] ∩ Z. The image of ιk∆ : V ⊗k → T6n(V ) ⊗ T6n(V ) is
contained in T6k−1(V )⊗ T6k−1(V ).

(3) Let the shift-graded linear map

T6n(V )⊗ T6ñ(V )
µn,ñ,V−−−→ T6n+ñ(V )

of degree 0 be defined at z ∈ Mor(Z) for (u, ũ) ∈ fact2(z), i.e. z = uũ, by

T6n(V )u ⊗ T6ñ(V )ũ
µn,ñ,V−−−→ T6n+ñ(V )uũ ,

which in turn on

(V ⊗k)u ⊗ (V ⊗k̃)ũ
µn,ñ,V−−−→ (V ⊗k+k̃)uũ

for k ∈ [1, n] and k̃ ∈ [1, ñ] is defined on the summand belonging to

(y1, . . . , yk) ∈ factk(u)
(ỹ1, . . . , ỹk̃) ∈ factk̃(ũ)

by

(V y1 ⊗ . . .⊗ V yk) ⊗ (V ỹ1 ⊗ . . .⊗ V ỹk̃)
µn,ñ,V−−−→ V ⊗k+k̃

v⊗[1,k] ⊗ ṽ⊗
[1,k̃]

7→ v⊗[1,k] ⊗ ṽ
⊗
[1,k̃]

.

(4) We have Kern ∆ = V .

Proof.

Ad (1). We have to show coassociativity of ∆. Let z ∈ Mor(Z). Let k ∈ [1, n] ∩ Z.
Let (y1, . . . , yk) ∈ factk(z). Let vi ∈ V yi for i ∈ [1, k]. Recall that we may abbreviate
v⊗[1,k] = v1 ⊗ . . . vk .

On the one hand, we obtain

v⊗[1,k]∆(id⊗∆) =
( ∑

(i,j)>(1,1)
i+j= k

v⊗[1,i]⊗ v⊗[i+1,i+j]

)
(id⊗∆)

=
∑

(i,j)>(1,1)
i+j= k

v⊗[1,i]⊗
( ∑

(u,w)>(1,1)
u+w= j

v⊗[i+1,i+u]⊗ v⊗[i+u+1,i+u+w]

)
=

∑
(i,u,w)>(1,1,1)
i+u+w= k

v⊗[1,i]⊗ v⊗[i+1,i+u]⊗ v⊗[i+u+1,i+u+w] .
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On the other hand, we obtain

v⊗[1,k]∆(∆⊗ id) =
( ∑

(i,j)>(1,1)
i+j= k

v⊗[1,i]⊗ v⊗[i+1,i+j]

)
(∆⊗ id)

=
∑

(i,j)>(1,1)
i+j= k

( ∑
(u,w)>(1,1)
u+w= i

v⊗[1,u]⊗ v⊗[u+1,u+w]

)
⊗ v⊗[i+1,i+j]

=
∑

(u,w,j)>(1,1,1)
u+w+j= k

v⊗[1,u]⊗ v⊗[u+1,u+w]⊗ v⊗[u+w+1,u+w+j] .

So both results coincide. Hence ∆(id⊗∆) = ∆(∆⊗ id).

Ad (4). We have to show that (Kern ∆)z
!

= V z for z ∈ Mor(Z).

Ad ⊇. Suppose given v1 ∈ V z. Then v1∆ = v⊗[1,1]∆ =
∑

(i,j)>(1,1)
i+j= 1

v⊗[1,i] ⊗ v⊗[i+1,i+j] = 0 as an
empty sum.

Ad ⊆. Write ∆′ := ∆|T6n−1(V )⊗T6n−1(V ) ; cf. (1). We have to show that (Kern ∆′)z
!

⊆ V z.
Note that we have the shift-graded linear projection map T6n−1(V )

π1−→ V ⊗1 = V ; cf.
Problem 20.(1). So we have

T6n(V )
∆′−→ T6n−1(V )⊗ T6n−1(V )

π1⊗id−−−→ V ⊗ T6n−1(V )
µ1,n−1,V−−−−−→ V .

Let k ∈ [1, n] ∩ Z. Let (y1, . . . , yk) ∈ factk(z). Let vi ∈ V yi for i ∈ [1, k]. If k > 2, then
we obtain

v⊗[1,k]∆
′(π1 ⊗ id)µ1,n−1,V =

( ∑
(i,j)>(1,1)
i+j= k

v⊗[1,i]⊗ v⊗[i+1,i+j]

)
(π1 ⊗ id)µ1,n−1,V

= (v1⊗ v⊗[2,k])µ1,n−1,V (using k > 2)

= v⊗[1,k] .

So given ξk ∈ (V ⊗k)z for k ∈ [1, n] ∩ Z, with support { k ∈ [1, n] ∩ Z : k 6 0 } being finite,
we let ξ := (ξk)k∈[1,n]∩Z and obtain

ξ∆′(π1 ⊗ id)µ1,n−1,V = (ξk)k∈[1,n]∩Z∆′(π1 ⊗ id)µ1,n−1,V = (0) t (ξk)k∈[2,n]∩Z .

So if ξ ∈ (Kern ∆′)z, we obtain ξk = 0 for k ∈ [2, n] ∩ Z, i.e. ξ ∈ V z.

Corollary 41 Let n ∈ [1,∞].

Suppose given a Z-graded module V .

Suppose given a Z-graded module U , an integer d ∈ Z and a shift-graded linear map

U
u−→ T6n(V ) of degree d.

Recall that we have shift-graded inclusion and projection maps V = V ⊗1 ι1−→ T6n(V )
π1−→

V ⊗1 = V of degree 0 ; cf. Problem 20.(1).

If u ·∆ = 0, then u = u · π1 · ι1 .
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Proof. By Lemma 39.(4), now V
ι1−→ T6n(V ) is the shift-graded linear inclusion map of

the kernel in the sense of Problem 15.(1). Moreover, ι1 · π1 = idV .

If u∆ = 0, then there exists a shift-graded linear map U
ǔ−→ V of degree d such that

u = ǔ · ι1 by loc. cit. Therefore u · π1 · ι1 = ǔ · ι1 · π1 · ι1 = ǔ · ι1 = u.

Proposition 42 (Lifting to coderivations)

Let n ∈ [1,∞]. Let V be a Z-graded module.

Let

Codern(V ) := {T6n(V )
δ−→ T6n(V ) : δ is a coderivation }

Coderred
n (V ) := { (V ⊗k

µk−→ V )k∈[1,n]∩Z : µk is a shift-graded linear map of degree 1 for k ∈ [1, n] }

So Codern(V ) is a submodule of the module of all shift-graded linear map maps of degree 1
from T6n(V ) to T6n(V ). And Coderred

n (V ) is a module with linear combinations being
formed entrywise.

We have the mutually inverse module morphisms

Codern(V )
∼←→ Coderred

n (V )

δ
α=αCoder,n,V7−−−−−−−−→ (ιk · δ · π1)k∈[1,n]∩Z

µβ
β=βCoder,n,V←−−−−−−−− [ µ = (µk)k∈[1,n]∩Z ,

where µβ is determined by

ιk · (µβ) :=
∑

(r,s,t)∈Z>0×Z>1×Z>0

r+s+t= k

(id⊗r⊗µs ⊗ id⊗t) · ιr+1+t : V ⊗k → T6n(V ) .

for k ∈ [1, n] ∩ Z.

Proof.

Welldefinedness of β. Suppose given µ = (µk)k ∈ Coderred
n (V ). First, µβ is a shift-graded

linear map of degree 1.

We need to show that µβ is a coderivation. Suppose given k ∈ [1, n] ∩ Z. Suppose
given z ∈ Mor(Z) and (y1, . . . , yk) ∈ factk(z). Write yi deg =: di for i ∈ [1, k]. Write
d[a,b] :=

∑
i∈[a,b] di for a, b ∈ [1, k]. Suppose given vi ∈ V yi for i ∈ [1, k]. We have to show

that

v⊗[1,k](µβ)∆
!

= v⊗[1,k]∆(id⊗(µβ) + (µβ)⊗ id) .
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In fact, we obtain

v⊗[1,k](µβ)∆

= v⊗[1,k]

( ∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗µs ⊗ id⊗t) · ιr+1+t

)
∆

=
( ∑

(r,s,t)>(0,1,0)
r+s+t= k

(−1)d[r+s+1,r+s+t] v⊗[1,r] ⊗ v
⊗
[r+1,r+s]µs ⊗ v

⊗
[r+s+1,r+s+t]

)
∆

=
∑

(r′,r′′,s,t)>(1,0,1,0)
r′+r′′+s+t= k

(−1)d[r′+r′′+s+1,r′+r′′+s+t] v⊗[1,r′]⊗ v⊗[r′+1,r′+r′′] ⊗ v
⊗
[r′+r′′+1,r′+r′′+s]µs ⊗ v

⊗
[r′+r′′+s+1,r′+r′′+s+t]

+
∑

(r,s,t′,t′′)>(0,1,0,1)
r+s+t′+t′′= k

(−1)d[r+s+1,r+s+t′+t′′] v⊗[1,r] ⊗ v
⊗
[r+1,r+s]µs ⊗ v

⊗
[r+s+1,r+s+t′]⊗ v⊗[r+s+t′+1,r+s+t′+t′′]

=
∑

(p,q)>(1,1)
p+q= k

( ∑
(r,s,t)>(0,1,0)
r+s+t= q

(−1)d[p+r+s+1, p+r+s+t] v⊗[1, p]⊗ v⊗[p+1, p+r] ⊗ v
⊗
[p+r+1, p+r+s]µs ⊗ v

⊗
[p+r+s+1, p+r+s+t]

+
∑

(r,s,t)>(0,1,0)
r+s+t= p

(−1)d[r+s+1,r+s+t+q] v⊗[1,r] ⊗ v
⊗
[r+1,r+s]µs ⊗ v

⊗
[r+s+1,r+s+t]⊗ v⊗[r+s+t+1,r+s+t+q]

)

=
∑

(p,q)>(1,1)
p+q= k

(
v⊗[1, p]⊗

( ∑
(r,s,t)>(0,1,0)
r+s+t= q

(−1)d[p+r+s+1, p+r+s+t] v⊗[p+1, p+r] ⊗ v
⊗
[p+r+1, p+r+s]µs ⊗ v

⊗
[p+r+s+1, p+r+s+t]

)
+(−1)d[p+1,p+q]

( ∑
(r,s,t)>(0,1,0)
r+s+t= p

(−1)d[r+s+1,r+s+t] v⊗[1,r] ⊗ v
⊗
[r+1,r+s]µs ⊗ v

⊗
[r+s+1,r+s+t]

)
⊗ v⊗[p+1, p+q]

)

=
∑

(p,q)>(1,1)
p+q= k

(
v⊗[1, p]⊗

(
v⊗[p+1, p+q](µβ)

)
+(−1)d[p+1,p+q]

(
v⊗[1, p](µβ)

)
⊗ v⊗[p+1, p+q]

)
=

∑
(p,q)>(1,1)
p+q= k

(
v⊗[1, p]⊗ v⊗[p+1, p+q]

)
(id⊗(µβ) + (µβ)⊗ id)

= v⊗[1,k]∆(id⊗(µβ) + (µβ)⊗ id) .
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Composite β · α !
= id. Suppose given µ = (µk)k ∈ Coderred

n (V ). We obtain

µβα = (ιk · (µβ) · π1)k

=
( ∑

(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗µs ⊗ id⊗t) · ιr+1+t · π1

)
k

= (id⊗0⊗µk ⊗ id⊗0)k

= µ .

Injectivity of α. Suppose given δ ∈ Codern V such that δα = 0. We have to show that

δ
!

= 0.

By induction, we show that δ|T6`(V )
!

= 0 for ` ∈ [0, n] ∩ Z.

Base of the induction. We have T60(V ) = 0, whence δ|T60(V ) = 0.

Step of the induction. Suppose given ` ∈ [0, n − 1] ∩ Z. Suppose that δ|T6`(V ) = 0. We

have to show that ι`+1 · δ
!

= 0.

Since ι`+1 ·∆ restricts to T6`(V )⊗T6`(V ) in the target and since (id⊗δ)|T6`(V )⊗T6`(V ) = 0
and (δ ⊗ id)|T6`(V )⊗T6`(V ) = 0, we have

ι`+1 · δ ·∆ = ι`+1 ·∆ · (id⊗δ + δ ⊗ id) = 0 .

By Corollary 41, we conclude that

ι`+1 · δ = ι`+1 · δ · π1 · ι1 = 0 ,

the latter since δα = (ιk · δ · π1)k = 0.

This concludes the induction.

If n ∈ Z>1 , then letting ` = n, this shows δ = 0.

If n =∞, then ι` · δ = 0 for ` ∈ Z>1 , whence δ = 0.

Proposition 43 (Lifting to coalgebra morphisms)

Let n ∈ [1,∞]. Let Ṽ and V be Z-graded modules.

Let

Coalgn(Ṽ , V ) := {T6n(Ṽ )
ψ−→ T6n(V ) : ψ is a coalgebra morphism }

Coalgred
n (Ṽ , V ) := { (Ṽ ⊗k

ϕk−→ V )k∈[1,n]∩Z : ϕk is a shift-graded linear map of degree 0 for k ∈ [1, n] }

So Coalgn(Ṽ , V ) and Coalgred
n (Ṽ , V ) are sets.

We have the mutually inverse bijections

Coalgn V
∼←→ Coalgred

n

ψ
α=αCoalg,n,Ṽ ,V7−−−−−−−−−−→ (ιk · ψ · π1)k∈[1,n]∩Z

ϕβ
β=βCoalg,n,Ṽ ,V←−−−−−−−−−[ ϕ = (ϕk)k∈[1,n]∩Z ,
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where ϕβ is determined by

ιk · (ϕβ) :=
∑
r∈[1,k]

∑
(ij)j∈[1,r]∈Z×r

>1∑
j∈[1,r] ij = k

( ⊗
j∈[1,r]

ϕij

)
· ιr : Ṽ ⊗k → T6n(V ) .

for k ∈ [1, n] ∩ Z.

Proof.

Welldefinedness of β. Suppose given ϕ = (ϕk)k ∈ Coalgred
n (Ṽ , V ). First, ϕβ is a shift-

graded linear map of degree 0.

We need to show that ϕβ is a coalgebra morphism. Suppose given k ∈ [1, n]∩Z. Suppose
given z ∈ Mor(Z) and (y1, . . . , yk) ∈ factk(z). Suppose given ṽi ∈ Ṽ yi for i ∈ [1, k]. We
have to show that

ṽ⊗[1,k](ϕβ)∆
!

= ṽ⊗[1,k]∆((ϕβ)⊗ (µβ)) .

Given r ∈ [1, k] and (ij)j∈[1,r] > (1)j such that
∑

j ij = k and given s ∈ [1, r], we write

[is] :=
[

1 +
∑

j∈[1,s−1]

ij ,
∑
j∈[1,s]

ij

]
.

We obtain

ṽ⊗[1,k](ϕβ)∆

= ṽ⊗[1,k]

( ∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

(⊗
j∈[1,r] ϕij

)
· ιr
)

∆

=
( ∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

ṽ⊗[i1]ϕi1 ⊗ . . .⊗ ṽ
⊗
[ir]ϕir

)
∆

=
∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

∑
(s,t)>(1,1)
s+t= r

ṽ⊗[i1]ϕi1 ⊗ . . .⊗ ṽ
⊗
[is]ϕis ⊗ ṽ⊗[is+1]ϕis+1 ⊗ . . .⊗ ṽ⊗[is+t]

ϕis+t

=
∑

(p,q)>(1,1)
p+q= k

( ∑
s∈[1,p]

∑
(ij)j∈[1,s]>(1)j∑

j ij = p

ṽ⊗[i1]ϕi1 ⊗ . . .⊗ ṽ
⊗
[is]ϕis

)
⊗
(∑
t∈[1,q]

∑
(ij)j∈[1,t]>(1)j∑

j ij = q

ṽ⊗p+[is+1]ϕis+1 ⊗ . . .⊗ ṽ⊗p+[is+t]
ϕis+t

)

=
( ∑

(p,q)>(1,1)
p+q= k

ṽ⊗[1, p](ϕβ)⊗ ṽ⊗[p+1, p+q](ϕβ)
)

=
( ∑

(p,q)>(1,1)
p+q= k

ṽ⊗[1, p]⊗ ṽ⊗[p+1, p+q]

)
((ϕβ)⊗ (ϕβ))

= ṽ⊗[1,k]∆((ϕβ)⊗ (µβ)) .
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Composite β · α !
= id. Suppose given ϕ = (ϕk)k ∈ Coalgred

n (Ṽ , V ). We obtain

ϕβα = (ιk · (ϕβ) · π1)k

=
( ∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij = k

(⊗
j∈[1,r] ϕij

)
· ιr · π1

)
k

= (
⊗

j∈[1,1] ϕk)k

= ϕ .

Injectivity of α. Suppose given ψ, ψ′ ∈ Coalgn(Ṽ , V ) such that ψα = ψ′α. We have to

show that ψ
!

= ψ′.

By induction, we show that ψ|T6`(Ṽ )
!

= ψ′|T6`(Ṽ ) for ` ∈ [0, n] ∩ Z.

Base of the induction. We have T60(Ṽ ) = 0, whence ψ|T60(Ṽ ) = 0 = ψ′|T60(Ṽ ) .

Step of the induction. Suppose given ` ∈ [0, n−1]∩Z. Suppose that ψ|T6`(Ṽ ) = ψ′|T6`(Ṽ ) .

We have to show that ι`+1 · (ψ − ψ′)
!

= 0. Note that ψ − ψ′ is only a shift-graded linear
map of degree 0.

We have

ι`+1 · (ψ − ψ′) ·∆ = ι`+1 · ψ ·∆− ι`+1 · ψ′ ·∆
= ι`+1 ·∆ · (ψ ⊗ ψ)− ι`+1 ·∆ · (ψ′ ⊗ ψ′)
= ι`+1 ·∆ · (ψ ⊗ (ψ − ψ′) + (ψ − ψ′)⊗ ψ′)
= 0 ,

since ι`+1 · ∆ restricts in the target to T6`(Ṽ ) ⊗ T6`(Ṽ ) and since ψ − ψ′ vanishes on
T6`(Ṽ ). By Corollary 41, we conclude that

ι`+1 · (ψ − ψ′) = ι`+1 · (ψ − ψ′) · π1 · ι1 = 0 ,

the latter since (ιk · δ · π1)k = ψα = ψ′α = (ιk · ψ′ · π1)k .

This concludes the induction.

If n ∈ Z>1 , then letting ` = n, this shows ψ = ψ′.

If n =∞, then ι` · ψ = ι` · ψ′ for ` ∈ Z>1 , whence ψ = ψ′.

Corollary 44 Let n ∈ [1,∞]. Let Ṽ and V be Z-graded modules.

Suppose given k ∈ [1, n].

(1) Let δ : T6n(V )→ T6n(V ) be a coderivation. Then δ|T6k(V )

T6k(V ) exists.
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(2) Let ψ : T6n(Ṽ )→ T6n(V ) be a coalgebra morphism. Then ψ|T6k(V )

T6k(Ṽ )
exists.

Proof.

Ad (1). We have δ = δαβ, and

ι` · (δαβ) =
∑

(r,s,t)∈Z>0×Z>1×Z>0

r+s+t= `

(id⊗r⊗(ιs · δ · π1)⊗ id⊗t) · ιr+1+t

maps to T6k(V ) for ` ∈ [1, k] ∩ Z ; cf. Proposition 42.

Ad (2). We have ψ = ψαβ, and

ι` · (ψαβ) =
∑
r∈[1,k]

∑
(ij)j∈[1,r]∈Z×r

>1∑
j∈[1,r] ij = `

( ⊗
j∈[1,r]

(ιij · ψ · π1)
)
· ιr

maps to T6k(V ) for ` ∈ [1, k] ∩ Z ; cf. Proposition 43.

Lemma 45 Let n ∈ [1,∞]. Let Ṽ and V be Z-graded modules.

Suppose given k ∈ [0, n− 1] ∩ Z.

(1) Suppose given a coderivation T6n(V )
δ−→ T6n(V ).

Suppose that δ2|T6k(V ) = 0.

Then ιk+1 · δ2 = ιk+1 · δ2 · π1 · ι1 .

(2) Suppose given coderivations T6n(Ṽ )
δ̃−→ T6n(Ṽ ) and T6n(V )

δ−→ T6n(V ).

Suppose given a coalgebra morphism T6n(Ṽ )
ψ−→ T6n(V ).

Suppose that (δ̃ · ψ − ψ · δ)|T6k(V ) = 0.

Then ιk+1 · (δ̃ · ψ − ψ · δ) = ιk+1 · (δ̃ · ψ − ψ · δ) · π1 · ι1 .

Proof.

Ad (1). By Corollary 41, we need to show that ιk+1 · δ2 ·∆ !
= 0. In fact, we get

ιk+1 · δ2 ·∆ = ιk+1 · δ · δ ·∆
= ιk+1 · δ ·∆ · (id⊗δ + δ ⊗ id)

= ιk+1 ·∆ · (id⊗δ + δ ⊗ id) · (id⊗δ + δ ⊗ id)

= ιk+1 ·∆ · (id⊗δ2 − δ ⊗ δ + δ ⊗ δ + δ2 ⊗ id)

= ιk+1 ·∆ · (id⊗δ2 + δ2 ⊗ id) ;
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cf. Problem 6. Now ιk+1 ·∆ restricts in the target to T6k(V ) ⊗ T6k(V ), so that we may
conclude from δ2|T6k(V ) = 0 that ιk+1 · δ2 ·∆ = 0.

Ad (2). By Corollary 41, we need to show that ιk+1 · (δ̃ ·ψ−ψ · δ) ·∆
!

= 0. In fact, we get

ιk+1 · (δ̃ · ψ − ψ · δ) ·∆
= ιk+1 · δ̃ · ψ ·∆− ιk+1 · ψ · δ ·∆
= ιk+1 · δ̃ ·∆ · (ψ ⊗ ψ)− ιk+1 · ψ ·∆ · (id⊗δ + δ ⊗ id)

= ιk+1 ·∆ · (id⊗δ̃ + δ̃ ⊗ id) · (ψ ⊗ ψ)− ιk+1 ·∆ · (ψ ⊗ ψ) · (id⊗δ + δ ⊗ id)

= ιk+1 ·∆ · (ψ ⊗ (δ̃ · ψ) + (δ̃ · ψ)⊗ ψ − ψ ⊗ (ψ · δ)− (ψ · δ)⊗ ψ)

= ιk+1 ·∆ · (ψ ⊗ (δ̃ · ψ − ψ · δ) + (δ̃ · ψ − ψ · δ)⊗ ψ .

Now ιk+1 · ∆ restricts in the target to T6k(V ) ⊗ T6k(V ), so that we may conclude from

(δ̃ · ψ − ψ · δ)|T6k(V ) = 0 that ιk+1 · (δ̃ · ψ − ψ · δ) ·∆ = 0.

Proposition 46 Let n ∈ [1,∞].

Suppose given a pre-An-algebra (A, (m`)`) over Z. Write

m := (( ωm`)`)βCoder,n,A[1] ,

which is a coderivation on T6n(A
[1]) ; cf. Proposition 42.

The following assertions (1) and (2) are equivalent.

(1) The tuple (m`)` satisfies the Stasheff equation at k ∈ [1, n]∩Z ; cf. Definition 19.(1).

(2) The coderivation m is a codifferential, i.e. m2 = 0.

Proof. Suppose given u ∈ [0, n]∩Z. We claim equivalence of the following assertions (1u)
and (2u).

(1u) We have
∑

(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t = 0 for k ∈ [1, u].

(2u) We have m2|T6u(A[1]) = 0.

We proceed by induction on u. For u = 0, both assertions (10) and (20) hold.

Suppose given u ∈ [0, n− 1]∩Z. By induction, we suppose that the assertions (1u−1) and
(2u−1) are equivalent.

Consider the following assertions (i) and (ii).
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(i) We have
∑

(r,s,t)>(0,1,0)
r+s+t=u+1

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t = 0.

(ii) We have ιu+1 ·m2 = 0.

We have to show that (2u) ∧ (i)
!⇔ (2u) ∧ (ii), for then

(1u+1) ⇔ ((1u) ∧ (i)) ⇔ ((2u) ∧ (i)) ⇔ ((2u) ∧ (ii)) ⇔ (2u+1) .

We have

ιu+1 ·m2 L. 45.(1)
= ιu+1 ·m2 · π1 · ι1

P. 42
=

∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωms ⊗ id⊗t) · ιr+1+t ·m · π1 · ι1

P. 42
=

∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t · ι1 .

The needed equivalence now follows from ι1 being piecewise injective. This concludes the
induction.

This proves the claim.

Case n ∈ Z. Letting u = n, the assertion of the Proposition follows by Lemma 36.

Case n =∞. We conclude as follows.

The tuple (m`)` satisfies the Stasheff equation at k ∈ [1,∞] ∩ Z .

⇔ The tuple (m`)` satisfies the Stasheff equation at k ∈ [1, u] for u ∈ [0,∞] ∩ Z.
L. 36⇔ We have

∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t = 0 for k ∈ [1, u].

⇔ We have m2|T6u(A[1]) = 0 for u ∈ Z>0.

⇔ We have ι` ·m2 = 0 for ` ∈ Z>1.

⇔ We have m2 = 0.

Proposition 47 Let n ∈ [1,∞].

Suppose given pre-An-algebras Ã = (Ã, (m̃`)`) and A = (A, (m`)`) over Z.

Suppose given a pre-An-morphism f = (f`)` from Ã to A.

Write
m̃ := (( ωm̃`)`)βCoder,n,Ã[1]

m := (( ωm`)`)βCoder,n,A[1] ,
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which are coderivations on T6n(Ã
[1]) resp. on T6n(A

[1]) ; cf. Proposition 42.

Write

f := (( ωf`)`)βCoalg,n,Ã[1],A[1] ,

which is a coalgebra morphism from T6n(Ã
[1]) to T6n(A

[1]) ; cf. Proposition 43.

The following assertions (1) and (2) are equivalent.

(1) The tuple (f`)` satisfies the Stasheff equation for morphisms at k ∈ [1, n] ∩ Z ; cf.
Definition 19.(1).

(2) The coalgebra morphism f satisfies m̃ · f = f ·m.

If Ã and A are An-algebras, (1) means that f is an An-morphism, whereas (2) means,
using Proposition 46, that f is a morphism of coalgebras with codifferential.

Proof. Suppose given u ∈ [0, n]∩Z. We claim equivalence of the following assertions (1u)
and (2u).

(1u) We have∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωm̃s⊗id⊗t)· ωfr+1+t =
∑
r∈[1,k]

∑
(ij)i∈[1,r]>(1)j∑

j ij = k

( ωfi1⊗. . .⊗ ωfir)· ωmr+1+t

for k ∈ [1, u].

(2u) We have (m̃ · f− f ·m)|T6u(Ã[1]) = 0.

We proceed by induction on u. For u = 0, both assertions (10) and (20) hold.

Suppose given u ∈ [0, n− 1]∩Z. By induction, we suppose that the assertions (1u−1) and
(2u−1) are equivalent.

Consider the following assertions (i) and (ii).

(i) We have∑
(r,s,t)>(0,1,0)
r+s+t=u+1

(id⊗r⊗ ωm̃s⊗id⊗t)· ωfr+1+t =
∑

r∈[1,u+1]

∑
(ij)i∈[1,r]>(1)j∑

j ij =u+1

( ωfi1⊗. . .⊗ ωfir)· ωmr .

(ii) We have ιu+1 · (m̃ · f− f ·m) = 0.
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We have to show that (2u) ∧ (i)
!⇔ (2u) ∧ (ii), for then

(1u+1) ⇔ ((1u) ∧ (i)) ⇔ ((2u) ∧ (i)) ⇔ ((2u) ∧ (ii)) ⇔ (2u+1) .

We have

ιu+1 · (m̃ · f− f ·m)
L. 45.(2)

= ιu+1 · (m̃ · f− f ·m) · π1 · ι1
P. 42, P. 43

=
∑

(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ιr+1+t · f · π1 · ι1 −
∑

r∈[1,u+1]

∑
(ij)i∈[1,r]>(1)j∑

j ij =u+1

( ωfi1 ⊗ . . .⊗ ωfir) · ιr ·m · π1 · ι1

P. 42, P. 43
=

( ∑
(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t −
∑

r∈[1,u+1]

∑
(ij)i∈[1,r]>(1)j∑

j ij =u+1

( ωfi1 ⊗ . . .⊗ ωfir) · ωmr

)
· ι1 .

The needed equivalence now follows from ι1 being piecewise injective. This concludes the
induction.

This proves the claim.

Case n ∈ Z. Letting u = n, the assertion of the Proposition follows by Lemma 37.

Case n =∞. We conclude as follows.

The tuple (f`)` satisfies the Stasheff equation for morphisms at k ∈ [1,∞] ∩ Z

⇔ The tuple (f`)` satisfies the Stasheff equation for morphisms at k ∈ [1, u] for u ∈ [0,∞] ∩ Z
L. 36⇔ We have∑

(r,s,t)>(0,1,0)
r+s+t= k

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t =
∑
r∈[1,k]

∑
(ij)i∈[1,r]>(1)j∑

j ij = k

( ωfi1 ⊗ . . .⊗ ωfir) · ωmr+1+t

for k ∈ [1, u].

⇔ We have (m̃ · f− f ·m)|T6u(Ã[1]) = 0 for u ∈ Z>0

⇔ We have ι` · (m̃ · f− f ·m) = 0 for ` ∈ Z>1

⇔ We have m̃ · f = f ·m .

1.7 Kadeishvili’s theorem

With the coalgebra reinterpretation of §1.6 at hand, we can complete the task tentatively
begun in Remark 30, which is to prove Kadeishvili’s theorem.

Let Z be a grading category.
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Lemma 48 Let n ∈ [1,∞].

Let Ã = (Ã, (m̃`)`) be a pre-An-algebra over Z.

Let A = (A, (m`)`) be an An-algebra over Z.

Let f = (f`)` be a pre-An-morphisms from Ã to A that satisfies the Stasheff equation for
morphisms at k ∈ [1, n] ∩ Z.

Suppose that f1 is piecewise injective.

Then Ã is an An-algebra. So then f : Ã→ A is a morphism of An-algebras.

Proof. Using Propositions 42 and 43, we write

m̃ := (( ωm̃`)`)βCoder,n,Ã[1] (coderivation on T6n(Ã
[1]) )

m := (( ωm`)`)βCoder,n,A[1] (coderivation on T6n(A
[1]) )

f := (( ωf`)`)βCoalg,n,Ã[1],A[1] (coalgebra morphism from T6n(Ã
[1]) to T6n(Ã

[1]) ) .

We have to show that m̃2 !
= 0 ; cf. Proposition 46.

We claim that m̃2|T6k(Ã[1])
!

= 0 for k ∈ [0, n] ∩ Z.

We proceed by induction on k. For k = 0, we get T60(Ã
[1]), whence the assertion.

Suppose given k ∈ [0, n− 1]∩Z. By induction, we have m̃2|T6k(Ã[1]) = 0. We need to show

that m̃2|T6k+1(Ã[1])
!

= 0. It suffices to show that ιk+1 · m̃2 !
= 0.

By Lemma 45.(1), we have ιk+1 · m̃2 · π1 · ι1 . Hence

0
P. 46
= ιk+1 · f ·m2 · π1

P. 47
= ιk+1 · m̃ · f ·m · π1

P. 47
= ιk+1 · m̃2 · f · π1

P. 47
= ιk+1 · m̃2 · π1 · ι1 · f · π1

P. 43
= ιk+1 · m̃2 · π1 · ωf1 .

Since f1 is piecewise injective, so is ωf1. Hence ιk+1 · m̃2 · π1 = 0. Thus

ιk+1 · m̃2 = ιk+1 · m̃2 · π1 · ι1 = 0 .

This proves the claim.

If n ∈ Z>1 , then letting k = n, the claim gives m̃2 = 0.

If n =∞, then ιk · m̃2 = 0 for k ∈ Z>1 , whence m̃2 = 0.

Lemma 49 Let n ∈ Z>1 .
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Let Ã = (Ã, (m̃`)`∈[1,n+1]) and A = (A, (m`)`∈[1,n+1]) be pre-An+1-algebras over Z.

Let f = (f`)`∈[1,n+1] be a pre-An+1-morphism from Ã to A.

Suppose that the following assertions (i, ii, iii) hold.

(i) (Ã, (m̃`)`∈[1,n]) is an An-algebra, (A, (m`)`∈[1,n+1]) is an An+1-algebra

and (f`)`∈[1,n] is an An-morphism from (Ã, (m̃`)`∈[1,n]) to (A, (m`)`∈[1,n]).

(ii) m̃1 = 0.

(iii) f1 is a quasiisomorphism.

Write

Ψn+1 := −
∑

(r,s,t)>(0,2,0)
r+s+t=n+1

(r,t)>(0,0)

(−1)r+st(id⊗r⊗m̃s ⊗ id⊗t) · fr+1+t

+
∑

r∈[2,n+1]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n+1

b(1− ij)j , (ij)jc(fi1 ⊗ . . .⊗ fir) ·mr .

Then
Ψn+1 ·m1 = 0 .

Proof. Write

ωΨn+1 := ω⊗n+1 ·Ψn · ω−
L. 37
= −

∑
(r,s,t)>(0,2,0)
r+s+t=n+1

(r,t)>(0,0)

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t

+
∑

r∈[2,n+1]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n+1

( ωfi1 ⊗ . . .⊗ ωfir) · ωmr .

Using Propositions 42 and 43, we write

m̃ := (( ωm̃`)`∈[1,n+1])βCoder,n+1,Ã[1] (coderivation on T6n+1(Ã
[1]) )

m := (( ωm`)`∈[1,n+1])βCoder,n+1,A[1] (coderivation on T6n+1(A
[1]) )

f := (( ωf`)`∈[1,n+1])βCoalg,n+1,Ã[1],A[1] (coalgebra morphism from T6n+1(Ã
[1]) to T6n+1(Ã

[1]) ) .

By Problem 22, we have

m̃|T6n(Ã[1])

T6n(Ã[1])
:= (( ωm̃`)`∈[1,n])βCoder,n+1,Ã[1] (coderivation on T6n(Ã

[1]) )

m|T6n(A[1])

T6n(A[1])
:= (( ωm`)`∈[1,n])βCoder,n+1,A[1] (coderivation on T6n(A

[1]) )

f|T6n(A[1])

T6n(Ã[1])
:= (( ωf`)`∈[1,n])βCoalg,n+1,Ã[1],A[1] (coalgebra morphism from T6n(Ã

[1]) to T6n(Ã
[1]) ) .



55

So by (i), we have

m̃2|T6n(Ã[1]) = 0

m2 = 0

(m̃ · f− f ·m)|T6n(Ã[1]) = 0 ;

cf. Propositions 46 and 47.

Note that

ιn+1 · m̃ =
∑

(r,s,t)>(0,1,0)
r+s+t=n+1

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ιr+1+t

(ii)
=

∑
(r,s,t)>(0,2,0)
r+s+t=n+1

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ιr+1+t .

In particular, (ιn+1 · m̃)|T6n(Ã[1]) exists.

We obtain

ιn+1 · (m̃ · f− f ·m) · π1

= ιn+1 · m̃ · f · π1 − ιn+1f ·m · π1

P. 42, P. 43
=

∑
(r,s,t)>(0,2,0)
r+s+t=n+1

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ιr+1+t · f · π1

−
∑

r∈[1,n+1]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n+1

( ωfi1 ⊗ . . .⊗ ωfir) · ιr ·m · π1

P. 42, P. 43
=

∑
(r,s,t)>(0,2,0)
r+s+t=n+1

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t

−
∑

r∈[1,n+1]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n+1

( ωfi1 ⊗ . . .⊗ ωfir) · ωmr

= ωm̃n+1 · ωf1 +
∑

(r,s,t)>(0,2,0)
r+s+t=n+1

(r,t)>0

(id⊗r⊗ ωms ⊗ id⊗t) · ωfr+1+t

− ωfn+1 · ωm1 −
∑

r∈[2,n+1]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n+1

( ωfi1 ⊗ . . .⊗ ωfir) · ωmr

= − ωΨn+1 + ωm̃n+1 · ωf1 − ωfn+1 · ωm1 .
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Thus

− ωΨn+1 · ωm1

= ιn+1 · (m̃ · f− f ·m) · π1 · ωm1 − ωm̃n+1 · ωf1 · ωm1 + ωfn+1 · ωm1 · ωm1

(i)
= ιn+1 · (m̃ · f− f ·m) · π1 · ωm1 − ωm̃n+1 · ωm̃1

ωf1 + ωfn+1 · 0
(ii)
= ιn+1 · (m̃ · f− f ·m) · π1 · ωm1

P. 42
= ιn+1 · (m̃ · f− f ·m) · π1 · ι1 ·m · π1

L. 45.(2)
= ιn+1 · (m̃ · f− f ·m) ·m · π1

m2 = 0
= ιn+1 · m̃ · f ·m · π1

(ιn+1 · m̃)|T6n(Ã[1])

= ιn+1 · m̃ · m̃ · f · π1

L. 45.(1)
= ιn+1 · m̃2 · π1 · ι1 · f · π1

P. 43
= ιn+1 · m̃2 · π1 · ωf1 .

Therefore, we obtain

Ψn+1 ·m1 = −ω⊗n+1 · ( ωΨn+1 · ωm1) · ω
= ω⊗n+1 · ιn+1 · m̃2 · π1 · ωf1 · ω

=
(
ω⊗n+1 · ιn+1 · m̃2 · π1 · ω

)
· f1 .

Hence it suffices to show the following claim.

Claim. Suppose given Z-graded module T , an element d ∈ Z, a shift-graded linear map

T
ξ−→ A of degree d− 1 and a shift-graded linear map T

η−→ Ã of degree d such that

ξ ·m1 = η · f1 .

Then η = 0 and ξ ·m1 = 0.

It suffices to show η
!

= 0. We use the notation of Remark 30.

We have f1 ·m1 = m̃1 · f1
(ii)
= 0. By Problem 15.(1), this yields the commutative diagram

Ã
f1 // A

ZÃ
f̌1 // ZA

ι

OO

ρ

��
HÃ

Hf1

∼ // HA .
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So we get the following commutative diagram.

T
η //

ξ

��

Ã

f1

��

m̃1 = 0 //

f̌1

���������������

Hf1

��3
3333333333333 Ã

f1

��

BA ι̃ // ZA
ι

!!BBBBBBBB
ρ // HA

A m1

//
m1|BA

=={{{{{{{{
A m1

// A

We have

ξ ·m1|BA · ι̃ · ι = ξ ·m1 = η · f1 = η · f̌1 · ι,

by pointwise injectivity of ι thus

ξ ·m1|BA · ι̃ = η · f̌1 .

So

η · Hf1 = η · f̌1 · ρ = ξ ·m1|BA · ι̃ · ρ = 0 .

Since Hf1 is an isomorphism by (iii), we conclude that η = 0. This proves the claim.

In Lemma 49, it would have been sufficient to require Hf1 to be pointwise injective, for this
suffices to prove the Claim.

Theorem 50 (Kadeishvili) Suppose that R is a field.

Let n ∈ [1,∞]. Recall that Z is a grading category.

Let A = (A, (m`)`) be an An-algebra over Z.

There exist tuples of shift-graded linear maps (m̃`)` and (q`)` such that

HA = (HA, (m̃`)`)

is a minimal An-algebra over Z and such that

q := (q`)` : HA → A

is a quasiisomorphism. Cf. Definitions 27.(6) and 29.(3).

If A is unital and n > 2, then (HA, (m̃`)`) and q = (q`)` can be chosen to be unital; cf.
Definitions 23 and 24.

When writing (mHA
` )` instead of (m̃`)` , no uniqueness is implied of this structure of an

An-algebra on A with said properties.
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Proof. We use the notation of Remark 30. Where necessary, we shall briefly recall
arguments of Remark 31.

First, we do not suppose A to be unital.

We proceed by induction on n.

Base. Suppose n = 1. Let m̃1 := 0. Let

q1 := σ · ι .

Note that q1 is piecewise injective since σ and ι are.

Then m̃1 · q1 = 0 = σ · ι · m1 = q1 · m1 ; i.e. the Stasheff equation for morphisms holds
at 1 ; cf. Example 22.(1).

We have m̃2
1 = 02 = 0 ; i.e. the Stasheff equation for HA holds at 1 ; cf. also Lemma 48.

Since we have the commutative diagram

HA
q1 // A

ZHA σ // ZA

ι

OO

ρ

��
HHA HA ,

we have Hq1 = idHA, which is an isomorphism.

Step. Suppose the assertion to be known for n ∈ Z>1 . We have to show the assertion for
n+ 1. We have to show that there exists a shift-graded linear map qn+1 : (HA)⊗n+1 → A
of degree −n and a shift-graded linear map m̃n+1 : (HA)⊗n+1 → HA of degree 1 − n
such that (m̃`)`∈[1,n+1] satisfies the Stasheff equation at n + 1 and such that (q`)`∈[1,n+1]

satisfies the Stasheff equation for morphisms at n + 1, with respect to (m̃`)`∈[1,n+1] and
(m`)`∈[1,n+1] .

Since q1 is piecewise injective, it suffices, by Lemma 48, to show the Stasheff equation for
morphisms for (q`)`∈[1,n+1] at n+ 1.

As in Lemma 49, we write

Ψn+1 := −
∑

(r,s,t)>(0,2,0)
r+s+t=n+1

(r,t)>(0,0)

(−1)r+st(id⊗r⊗m̃s ⊗ id⊗t) · qr+1+t

+
∑

r∈[2,n+1]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n+1

b(1− ij)j , (ij)jc(qi1 ⊗ . . .⊗ qir) ·mr ,

which is a shift-graded linear map from (HA)⊗n+1 to A of degree 1− n.



59

In this defining expression for Ψn+1 , in fact m̃i and qi are involved only for i ∈ [1, n].

By Lemma 49, letting for the moment m̃n+1 and qn+1 be arbitrary, e.g. zero, we have

Ψn+1 ·m1 = 0 .

So

Ψn+1 = Ψ̌n+1 · ι ,

where Ψ̌n+1 is a shift-graded linear map from (HA)⊗n+1 to ZA of degree 1− n ; cf. Prob-
lem 15.(1).

Taking into account that m̃1 = 0, the Stasheff equation for morphisms at n+ 1, which we
have to show, writes

Ψn+1
!

= m̃n+1 · q1 − qn+1 ·m1 .

Let
qn+1 := −Ψ̌n+1 · ν
m̃n+1 := Ψ̌n+1 · ρ .

Then
m̃n+1 · q1 − qn+1 ·m1 = Ψ̌n+1 · ρ · σ · ι+ Ψ̌n+1 · ν ·m1

R. 30
= Ψ̌n+1 · ρ · σ · ι+ Ψ̌n+1 · (idZA−ρ · σ) · ι
= Ψn+1 .

Second, we suppose A to be unital and n > 2.

As in Remark 31, we obtain the following commutative diagram.

A⊗2 m2 // A

(ZA)⊗2 m̌2 //

ρ⊗2

��

ι⊗2

OO

ZA

ρ

��

ι

OO

(HA)⊗2 m̂2 // HA

Moreover, we get Ψ2 = (q1⊗ q1)⊗m2 . Letting, as before, Ψ2 = Ψ̌2 · ι and q2 := −Ψ̌2 · ν
and m̃2 := Ψ̌2 · ρ, we have

m̂2 = m̃2 ;

cf. Remark 31.

For X ∈ Ob(Z), we have 1A,X ∈ ZA ; cf. Definition 23.

So for X
x−→ Y

y−→ Z in Z, for a ∈ (ZA)x and b ∈ (ZA)y, we get

(1A,Y ρ⊗ bρ)m̃2 = (1A,Y ⊗ b)ρ⊗2m̃2 = (1A,Y ⊗ b)m̌2ρ = bρ ,
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since

(1A,Y ⊗ b)m̌2 = (1A,Y ⊗ b)m̌2ι = (1A,Y ⊗ b)ι⊗2m2 = (1A,Y ⊗ b)m2 = b .

Likewise, we get
(aρ⊗ 1A,Y ρ)m̃2 = aρ .

So the element 1A,Y ρ ∈ (HA)idY is neutral, i.e. 1HA,Y = 1A,Y ρ.

Hence the An-algebra HA = (HA, (m̃`)`) is unital.

By Problem 18, the choice of σ made in Remark 30 can be made in such a way that
1HA,Xσ = 1A,Xρσ = 1A,X for X ∈ Ob(Z), whence

1HA,Xq1 = 1HA,Xσ ι = 1A,Xι = 1A,X .

Therefore the An-morphism q = (q`)` is unital.

In the induction step of Theorem 50, we could have used an arbitrary shift-graded linear
map Ψn+1 from (HA)⊗n+1 to A of degree 1 − n that satisfies Ψn+1 · m1 = 0 and define
qn+1 := −Ψ̌n+1 · ν and m̃n+1 := Ψ̌n+1 · ρ. Lemma 49 merely guarantees the existence of
such a shift-graded linear map.

Remark 51 Let G be a finite group. Let N ∈ Z>1 . Let M1 , . . . , MN be RG-modules.
Suppose M1 = R to carry the trivial RG-module structure, i.e. gr = r for g ∈ G and
r ∈ R = M1 .

Let Ps be a projective resolution of Ms for s ∈ [1, N ]. Write P := (Ps)s∈[1,N ] .

Let A := HomRG(P ) be the regular differential graded category of P ; cf. Lemma 28.

So A is a unital A∞-algebra over

Z := Z× [1, N ]×2 .

For (j, (s, t)) ∈ Mor(Z), we get

(HA)j,(s,t) = K(Ps , P
[j]
t ) =: ExtjRG(Ms,Mt) ,

where we have written K := K(RG -Mod) ; cf. Problem 14.(2). In particular,

(HA)j,(1,1) = K(P1 , P
[j]
1 ) =: ExtjRG(M1,M1) = ExtjRG(R,R) = Hj(G;R) ,

the group cohomology of G over the ground ring R.

Now suppose R to be a field.

Kadeishvili’s Theorem 50 yields the structure (m̃`)` of a minimal A∞-algebra over Z on
HA and a unital quasiisomorphism

HA → A .
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In particular, m̃1 = 0. Moreover,

ExtjRG(Ms,Mt) ⊗ ExtkRG(Mt,Mu)
m̃2−→ Extj+kRG (Ms,Mu)

[f ] ⊗ [g] 7→ [f · g[j]]

is the Yoneda product, where (j, (s, t)), (k, (t, u)) ∈ Mor(Z). Cf. Lemma 28, Remark 31.

In particular,

Hj(G;R) ⊗ Hj(G;R)
m̃2−→ Hj(G;R)

is also known as cup product.

In that sense, m̃n for n ∈ Z>3 are sometimes referred to as “higher” cup products on the
cohomology ring of G over the ground field R.



Chapter 2

Schmid’s extension of Kadeishvili

The purpose of the extra machinery in this §2.1 is to remove the restriction on R to be a
field from Theorem 50.

Let Z be a grading category.

2.1 Split-filtered Z-graded modules

Definition 52 A split-filtered Z-graded module is a Z-graded module M , together with
a tuple (M 〈i〉)i∈Z of Z-graded submodules of M such that the following conditions (1, 2)
hold.

(1) We have M 〈i〉 = 0 for i ∈ Z<0.

(2) We have M =
⊕

i∈Z>0
M 〈i〉.

We often abbreviate M = (M, (M 〈i〉)i).

Write M6k :=
⊕

i∈[0,k] M
〈i〉 for k ∈ Z. So M6k is a Z-graded submodule of M .

We have shift-graded linear inclusion and projection maps

M 〈i〉 ι
〈i〉
M−−→ M

π
〈i〉
M−−→ M 〈i〉

of degree 0 for i ∈ Z. We often abbreviate ι〈i〉 = ι
〈i〉
M and π〈i〉 = π

〈i〉
M .

So ι〈i〉π〈i〉 = idM〈i〉 for i ∈ Z and ι〈i〉π〈j〉 = 0 for i, j ∈ Z with i 6= j.

With a similar abuse of notation, we also have shift-graded linear inclusion and projection
maps

M 〈i〉 ι〈i〉−−→ M6k π〈i〉−−→ M 〈i〉

62
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of degree 0 for i ∈ [0, k].

Given k, ` ∈ Z such that ` 6 k, we also have the shift-graded linear inclusion and
projection maps

M6` ι6`

−→ M6k π6`

−−→ M6`

of degree 0.

I do not know whether a variant of the theory can be carried through with filtered Z-graded
modules instead of split-filtered Z-graded modules.

Example 53 Let X be a Z-graded module. For z ∈ Mor(Z), choose

. . . → P 〈2〉,z[−2] → P 〈1〉,z[−1] → P 〈0〉,z[0] → Xz → 0

to be an augmented projective resolution of Xz (over R), i.e. P 〈k〉,z[−k] is projective for
k ∈ Z>0 and the sequence is exact at each position.

Write P z :=
⊕

i∈Z>0
P 〈i〉,z for z ∈ Mor(Z).

Then P is a split-filtered Z-graded module with P 〈i〉 := (P z,〈i〉)z∈Mor(Z) for i ∈ Z.

If Z = Z, we can picture the components of P as follows.

...
...

...

. . . P 〈2〉,1 P 〈1〉,1 P 〈0〉,1 this row sums up to P 1

. . . P 〈2〉,0 P 〈1〉,0 P 〈0〉,0 this row sums up to P 0

. . . P 〈2〉,−1 P 〈1〉,−1 P 〈0〉,−1 this row sums up to P−1

. . . P 〈2〉,−2 P 〈1〉,−2 P 〈0〉,−2 this row sums up to P−2

...
...

...

�
�

�
�

�
�

�
�
�

�
�
�

�
��

@
@@
�

�
�

�
�

�
�
�

�
�
�

�
�
��

Note that the objects of the respectively chosen projective resolutions can be found in the
diagonals of this diagram, such as the boxed one, whose objects belong to a projective
resolution of X1.
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2.2 eA∞-algebras and eA∞-categories

Definition 54 Let n ∈ [0,∞].

An eAn-algebra over Z is a split-filtered Z-graded module A = (A, (A〈i〉)i), together with
the structure of an An-algebra (m`)` on the Z-graded module A, such that the Schmid
condition

(
⊗
j∈[1,k]

A〈ij〉)mk ⊆ A62k−2+
∑

j∈[1,k] ij

holds for k ∈ [1, n] ∩ Z and (ij)j∈[1,k] ∈ Z×k>0 .

We often abbreviate A = (A, (m`)`∈[1,n], (A
〈i〉)i∈Z).

We often write (A〈i〉)z =: A〈i〉,z for i ∈ Z and z ∈ Mor(Z).

We often write (A6k)z =: A6k,z for k ∈ Z and z ∈ Mor(Z).

The “e” in “eAn-algebra” stands for “extended”.

Schmid states that the Schmid condition was motivated by Sagave; cf. [5, Def. 76, (EA 3)],
[3, Def. 2.1]. It is a bit weaker than Sagave’s implicitly stated condition.

Definition 55 Let n ∈ [0,∞].

An eAn-algebra A = (A, (m`)`∈[1,n], (A
〈i〉)i∈Z) over Z is called minimal if the strong Schmid

condition

(
⊗
j∈[1,k]

A〈ij〉)mk ⊆ A62k−3+
∑

j∈[1,k] ij

holds for k ∈ [1, n] ∩ Z and (ij)j∈[1,k] ∈ Z×k>0 .

Remark 56 Let n ∈ [1,∞].

Let A = (A, (m`)`∈[1,n], (A
〈i〉)i∈Z) be an eAn-algebra.

(1) For k = 1, the Schmid condition reads A〈i〉m1 ⊆ A6i for i ∈ Z>0 .

So if Z = Z, taking into account that m1 is of degree 1, the (possibly nonvanishing)
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components of m1 can be visualised as follows.

...
...

...

. . . A〈2〉,1 A〈1〉,1 A〈0〉,1

. . . A〈2〉,0

OO >>~~~~~~~~~

77nnnnnnnnnnnnnnn
A〈1〉,0

OO >>~~~~~~~~~

A〈0〉,0

OO

. . . A〈2〉,−1

OO >>~~~~~~~~~

77nnnnnnnnnnnnnn
A〈1〉,−1

OO >>~~~~~~~~~

A〈0〉,−1

OO

. . . A〈2〉,−2

OO >>~~~~~~~~~

77nnnnnnnnnnnnnn
A〈1〉,−2

OO >>~~~~~~~~~

A〈0〉,−2

OO

...
...

...

By this, we mean that ι〈i〉m1π
〈j〉 = 0 unless j ∈ [0, i].

E.g. on A〈2〉, the shift-graded linear map m1 of degree 1 has the components

ι〈2〉 ·m1 · π〈2〉 , ι〈2〉 ·m1 · π〈1〉 , ι〈2〉 ·m1 · π〈0〉 ,

all others vanish.

The strong Schmid condition reads A〈i〉m1 ⊆ A6i−1 for i ∈ Z>0 . So in case A is
minimal, the components of m1 can be visualised as follows.

...
...

...

. . . A〈2〉,1 A〈1〉,1 A〈0〉,1

. . . A〈2〉,0

>>~~~~~~~~~

77nnnnnnnnnnnnnnn
A〈1〉,0

>>~~~~~~~~~

A〈0〉,0

. . . A〈2〉,−1

>>~~~~~~~~~

77nnnnnnnnnnnnnn
A〈1〉,−1

>>~~~~~~~~~

A〈0〉,−1

. . . A〈2〉,−2

>>~~~~~~~~~

77nnnnnnnnnnnnnn
A〈1〉,−2

>>~~~~~~~~~

A〈0〉,−2

...
...

...
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(2) Suppose that n > 2. For k = 2, the Schmid condition reads

(A〈i1〉 ⊗ A〈i2〉)m2 ⊆ A62+i1+i2

for i1 , i2 ∈ Z>0 .

In case of A being minimal, the strong Schmid condition reads

(A〈i1〉 ⊗ A〈i2〉)m2 ⊆ A61+i1+i2

for i1 , i2 ∈ Z>0 .

Remark 57 Let n ∈ [0,∞].

Suppose given an An-algebra A′ = (A′, (m′`)`).

Define an eAn-algebra A = (A, (m`)`, (A
〈i〉)i) by letting A = A′ as Z-graded modules, by

letting m` := m′` for ` ∈ Z>1 and by letting

A〈i〉 :=

{
A′ if i = 0
0 if i ∈ Z r {0}

for i ∈ Z.

In fact, we have
⊕

i∈ZA
〈i〉 = A〈0〉 = A′ = A.

We have to verify the Schmid condition. For k ∈ [1, n] ∩ Z and i1 , . . . , ik ∈ Z>0 , we
obtain

(A〈i1〉 ⊗ . . .⊗ A〈ik〉)mk

{
= 0 if there exists j ∈ [1, k] with ij > 1

⊆ A〈0〉 = A62k−2+
∑

j ij if i1 = · · · = ik = 0 ,

since in the second case, we have 2k − 2 > 0 and
∑

j ij = 0.

Now the eAn-algebra A is minimal if and only if (A〈0〉 ⊗ . . . ⊗ A〈0〉)mk ⊆ A62k−3 for
k ∈ Z>1. Since 2k − 3 > 0 and thus A62k−3 = A〈0〉 if k > 2, this condition is equivalent
to A〈0〉m1 ⊆ A6−1 = 0, i.e. to A′m′1 = 0, i.e. to A′ being a minimal An-algebra.

For short,
A minimal ⇔ A′ minimal

2.3 A base of an induction

Remark 58 (and definition) Let A = (A, (m1), (A〈i〉)i) be a minimal eA1-algebra.

We have (A〈i〉)m1 ⊆ A6i−1 for i ∈ Z>0 ; cf. Remark 56.(1). That is, we have

ι〈i〉 ·m1 =
∑

j∈[0,i−1]

ι〈i〉 ·m1 · π〈j〉 · ι〈j〉
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for i ∈ Z>0 .

For i ∈ Z>0, we consider the shift-graded linear map

m
〈i〉
1 := ι〈i〉 ·m1 · π〈i−1〉 : A〈i〉 → A〈i−1〉

of degree 1.

For i ∈ Z>1, we have

m
〈i〉
1 ·m

〈i−1〉
1 = ι〈i〉 ·m1 · π〈i−1〉 · ι〈i−1〉 ·m1 · π〈i−2〉

= ι〈i〉 ·
= 0 by Stasheff︷ ︸︸ ︷
m1 ·m1 ·π〈i−2〉

−
∑

j∈[0,i−2] ι
〈i〉 ·m1 · π〈j〉 · ι〈j〉 ·m1 · π〈i−2〉︸ ︷︷ ︸

= 0 since j 6 i− 2

= 0 .

If Im(m
〈i〉
1 ) = Kern(m

〈i−1〉
1 ) for i ∈ Z>2 , then A is called diagonally resolving.

Cf. Example 53.

Lemma 59 Let A = (A, (m1), (A〈i〉)i) be a diagonally resolving minimal eA1-algebra.

(1) We have ZA = A〈0〉 + BA.

(2) We have A6km1 = BA ∩ A6k−1 for k ∈ Z.

Proof.

Ad (1).

Ad ⊇. We have A〈0〉m1 ⊆ A6−1 = 0, whence A〈0〉 ⊆ ZA. So A〈0〉 + BA ⊆ ZA.

Ad ⊆. We claim that (A6j ∩ ZA) + BA
!

⊆ (A6j−1 ∩ ZA) + BA for j ∈ Z>1 .

Suppose given z ∈ Mor(Z). Suppose given a ∈ (A6j ∩ ZA)z = A6j,z ∩ (ZA)z. We have to

show that a
!
∈ ((A6j−1 ∩ ZA) + BA)z = (A6j−1,z ∩ (ZA)z) + (BA)z.

Since a ∈ (ZA)z and since (BA)z ⊆ (ZA)z, it suffices to show that a
!
∈ A6j−1,z + (BA)z.

We have
(aπ〈j〉)m

〈j〉
1 = aπ〈j〉ι〈j〉m1π

〈j−1〉

= (a−
∑

i∈[0,j−1] aπ
〈i〉ι〈i〉)m1π

〈j−1〉

= −
∑

i∈[0,j−1] aπ
〈i〉ι〈i〉m1π

〈j−1〉

= 0 ,
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since i 6 j−1 for i ∈ [0, j−1], i.e. aπ〈j〉ι〈j〉 ∈ Kern(m
〈j〉
1 )z. Since A is diagonally resolving

and since j > 1, we conclude that aπ〈j〉 ∈ Im(m
〈j+1〉
1 )z[−1]. So there exists a′ ∈ A〈j+1〉,z[−1]

such that
aπ〈j〉 = a′m

〈j+1〉
1 = a′ι〈j+1〉m1π

〈j〉 .

Now

a = aπ〈j〉ι〈j〉 +
(∑

i∈[0,j−1] aπ
〈i〉ι〈i〉

)
= a′ι〈j+1〉m1π

〈j〉ι〈j〉 +
(∑

i∈[0,j−1] aπ
〈i〉ι〈i〉

)
= a′ι〈j+1〉m1︸ ︷︷ ︸

∈(BA)z

−
(∑

i∈[0,j−1] a
′ι〈j+1〉m1π

〈i〉ι〈i〉
)

︸ ︷︷ ︸
∈A6j−1,z

+
(∑

i∈[0,j−1] aπ
〈i〉ι〈i〉

)
︸ ︷︷ ︸

∈A6j−1,z

.

This proves the claim.

Given z ∈ Mor(Z) and a ∈ (ZA)z, we have to show that z
!
∈ (A〈0〉+BA)z = A〈0〉,z+(BA)z.

There exists j ∈ Z>1 such that a ∈ A6j,z. So

a ∈ (A6j,z ∩ (ZA)z) + (BA)z

Claim

⊆ (A6j−1,z ∩ (ZA)z) + (BA)z

Claim

⊆ . . .
Claim

⊆ (A60,z ∩ (ZA)z) + (BA)z

= A〈0〉,z + (BA)z .

Ad (2).

Ad ⊆. We have A6km1 ⊆ BA. We have A6km1 ⊆ A6k−1 by minimality of A.

Ad ⊇. Claim. Given j ∈ Z>0 and ` ∈ Z>j+1 , we have A6`m1∩A6j−1
!

⊆ A6`−1m1∩A6j−1.

Suppose given z ∈ Mor(Z) and a ∈ A6`,z[−1] such that am1 ∈ A6j−1,z. We have to show

that am1

!
∈ A6`−1,z[−1]m1 .

Note that am1 ∈ A6j−1,z ⊆ A6`−2,z. So we have

aπ〈`〉m
〈`〉
1 = aπ〈`〉ι〈`〉m1π

〈`−1〉

= (a−
∑

i∈[0,`−1] aπ
〈i〉ι〈i〉)m1π

〈`−1〉

= am1π
〈`−1〉︸ ︷︷ ︸

= 0 since am1 ∈ A6`−2,z

−
∑

i∈[0,`−1] aπ
〈i〉ι〈i〉m1π

〈`−1〉︸ ︷︷ ︸
= 0 since i 6 `− 1

= 0 .

Since A is diagonally resolving and since ` > 1, there exists a′ ∈ A〈`+1〉,z[−2] such that

aπ〈`〉 = a′m
〈`+1〉
1 = a′ι〈`+1〉m1π

〈`〉 .
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So

am1 = aπ〈`〉ι〈`〉m1 + (a− aπ〈`〉ι〈`〉)m1

= a′ι〈`+1〉m1π
〈`〉ι〈`〉m1 + (a− aπ〈`〉ι〈`〉)m1

= a′ι〈`+1〉m1m1︸ ︷︷ ︸
= 0

−
(∑

i∈[0,`−1] a
′ι〈`+1〉m1π

〈i〉ι〈i〉m1︸ ︷︷ ︸
∈A6`−1,z[−1]m1

)
+ (a− aπ〈`〉ι〈`〉︸ ︷︷ ︸
∈A6`−1,z[−1]m1

)m1

∈ A6`−1,z[−1]m1 .

This proves the claim.

Suppose given z ∈ Mor(Z) and a ∈ Az[−1] such that am1 ∈ A6k−1,z.

We have to show that am1

!
∈ A6k,z[−1]m1 .

There exists ` ∈ Z such that a ∈ A6`,z[−1].

If ` 6 k, we have am1 ∈ A6`,z[−1]m1 ⊆ A6k,z[−1]m1 .

If ` > k + 1, we obtain

am1 ∈ A6`,z[−1]m1 ∩ A6k−1,z

= (A6`m1 ∩ A6k−1)z

Claim

⊆ (A6`−1m1 ∩ A6k−1)z

Claim

⊆ . . .
Claim

⊆ (A6km1 ∩ A6k−1)z

= (A6km1)z

= A6k,z[−1]m1 .

Proposition 60 Suppose given an A1-algebra (A, (m1)) over Z.

For z ∈ Mor(Z), suppose given an augmented projective resolution of the module (HA)z

(over R), written as follows.

· · · → Ã〈2〉,z[−2] d〈2〉,z[−2]

−−−−−→ Ã〈1〉,z[−1] d〈1〉,z[−1]

−−−−−→ Ã〈0〉,z[0] εz−→ (HA)z → 0

These linear maps assemble to shift-graded linear maps between Z-graded modules as
follows.

· · · → Ã〈2〉
d〈2〉−−→ Ã〈1〉

d〈1〉−−→ Ã〈0〉
ε−→ HA → 0

Here d〈i〉 is of degree 1 for i ∈ Z>1 . Moreover, ε is of degree 0.

Let Ã〈i〉 := 0 for i ∈ Z<0 . Let d〈0〉 := 0 : Ã〈0〉 → Ã〈−1〉 = 0, as shift-graded linear map of
degree 1.

Let Ã :=
⊕

i∈Z Ã
〈i〉. So Ã = (Ã, (Ã〈i〉)i) is a split-filtered Z-graded module.

Then there exist
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• a shift-graded linear map e〈k〉 : Ã〈k〉 → Ã6k−2 of degree 1 for k ∈ Z>0 ,

• a shift-graded linear map q1 : Ã→ A of degree 0

such that, letting the shift-graded linear map m̃1 : Ã→ Ã of degree 1 be defined by

ι〈i〉 · m̃1 := d〈i〉 · ι〈i−1〉 + e〈i〉 · ι6i−2

for i ∈ Z>0 , then the following assertions (1, 2, 3, 4, 5, 6) hold.

(1) Ã = (Ã, (m̃1), (Ã〈i〉)i) is a minimal eA1-algebra over Z.

(2) (q1) is a quasiisomorphism of A1-algebras from Ã to A.

(3) Ã〈i〉,z is a projective module (over R) for i ∈ Z and z ∈ Mor(Z).

(4) Ã is diagonally resolving.

(5) q1|ZAÃ〈0〉 · ρ exists and is piecewise surjective.

(6) We have Ã6jm̃1 = BÃ ∩ Ã6j−1 for j ∈ Z.

Ã〈i−1〉,z[1] Ã〈i−2〉,z[1] . . . Ã〈0〉,z[1]

Ã〈i〉,z

d〈i〉,z
99ssssssssss

44hhhhhhhhhhhhhhhhhhhhhh

. . .

11ddddddddddddddddddddddddddddddddddddddddddddddddd ︸ ︷︷ ︸
components of e〈i〉,z

In Kadeishvili’s Theorem 50, an A∞-structure was constructed on the cohomology HA of a
given A∞-algebra A, in case R is a field.

We will construct a minimal eA∞-structure – so in particular, an A∞-structure – on an
arbitrarily chosen projective resolution Ã, in the sense of Proposition 60, of the cohomology
HA of a given A∞-algebra A ; cf. Theorem refXXX below.

Note that in case R is a field, one may choose the trivial projective resolution, where ε = idA
and where A〈i〉 = 0 for i ∈ Z>1 , so that Ã = HA. So in this case the assertions of said
Theorems coincide; cf. Remark 57.

XXXAAAXXX



Appendix A

Problems and solutions

A.1 Problems

Problem 1 (Introduction)

Consider the commutative ring Z. Consider the Z-algebra Z.

Determine the isoclasses of the Z-modules M that have a chain of submodules

M = M0 ⊇ M1 ⊇ M2 ⊇ M3 = 0

such that
M0/M1 ' Z/(2)

M1/M2 ' Z/(4)

M2/M3 ' Z/(2) .

Problem 2 (§1.1.1)

Let Cat denote the (1-)category of categories, (1-)morphisms being functors.

Let Set denote the category of sets, morphisms being maps.

(1) Given a set X, how many isoclasses does the pair category X×2 have?

(2) Construct a full and faithful functor P : Set→ Cat sending X to X×2.

(3) Show that the functor Ob : Cat→ Set has P as a right adjoint, i.e. Ob a P .

(4) Determine unit and counit of the adjunction in (3).

Problem 3 (§1.1.1) Let Poset denote the category of posets and monotone maps.

(1) Suppose given a poset X. Show that we have a subcategory CX of the pair category
X×2 with Ob(CX) = X and Mor(CX) = { (x, y) ∈ X×2 : x 6 y }.

71
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(2) Construct a functor C : Poset - Cat.

(3) Given n ∈ Z>0 , we write ∆n := C[0, n].

We have the monotone map ω : [0, 1]→ [0, n] , 0 7→ 0, 1 7→ n.

Suppose given a category Z and z ∈ Mor(Z). Let Fz : ∆1 → Z, (0, 1) 7→ z.

Let n > 1. Show that factn(z) is in bijection to

{∆n
G−→ Z : G is a functor such that G ◦ (Cω) = Fz } .

Problem 4 (§1.1.2) Let Z = (Z, S, deg) be a grading category. Show.

(1) The shift S is an automorphism of Z-grad0 .

(2) Z-grad is a category.

(3) By S(f, k) := (Sf, k) for (f, k) ∈ Mor(Z-grad), an automorphism S on Z-grad is
defined.

(4) Z-grad0 is additive.

(5) Z-grad0 is isomorphic to a subcategory of Z-grad.
Is this subcategory full? Does Z-grad have a zero object?

Problem 5 (§1.1.1) Let Z = (Z, S, deg) and Z̃ = (Z̃, S̃, ˜deg) be grading categories.

A (1-)morphism of grading categories from Z to Z̃ is a functor F : Z → Z̃ such that

F (zS) = (Fz)S̃

(z) deg = (Fz) ˜deg

for z ∈ Mor(Z).

(1) Show that grading categories, together with morphisms of such, form a category
Grad.

(2) Show that (Z, S−,− deg) is a grading category, where (S−)X,Y := (SX,Y )− for
X, Y ∈ Ob(Z) and z(− deg) := −(z deg) for z ∈ Mor(Z). Construct an auto-
morphism of order 2 on the category of grading categories.

(3) Show that (idX) deg = 0 for X ∈ Ob(Z).

(4) Show that there exists exactly one morphism of grading categories from Z to Z, i.e.
that Z is the terminal grading category.
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(5) Show that there is a bijection from the set of morphisms of grading categories from
Z to Z to the set of endomorphisms of Z of degree 0.

(6) Suppose given a morphism of grading categories Z F−→ Z̃.

Show that there exist functors

Z-grad �
-F&

F&
Z̃-grad

having (F&M̃)z = M̃Fz for M̃ ∈ Ob(Z̃-grad) and z ∈ Mor(Z), having

(F&M)z̃ =
⊕

z∈Mor(Z)
Fz=z̃

M z for M ∈ Ob(Z-grad) and z̃ ∈ Mor(Z̃) and having F& a F&.

Problem 6 (§1.1.3) Let (Z, S, deg) be a grading category.

Define a category (Z-grad)×n,± such that we have a functor

(Z-grad)×n,±
⊗

i∈[1,n]−−−−−→ Z-grad

(Li
(fi,ki)−−−→Mi)i∈[1,n] 7−−−−−→ (

⊗
i∈[1,n] Li

⊗
i∈[1,n](fi,ki)−−−−−−−−→

⊗
i∈[1,n] Mi) .

Problem 7 (§1.1.3) Let Z = (Z, S, deg) be a grading category.

Suppose given 1 6 ` 6 n and Z-shift-graded linear maps Li
(fi,ki)−−−→Mi for i ∈ [1, n].

Suppose given Z-shift-graded linear maps L
(f,k)−−→M and L̃

(f̃ ,k̃)−−→ M̃ .

(1) Show that

(M1 ⊗ . . .⊗M`)⊗ (M`+1 ⊗ . . .⊗Mn) = M1 ⊗ . . .⊗Mn .

(2) Show that

((f1, k1)⊗ . . .⊗ (f`, k`))⊗ ((f`+1, k`+1)⊗ . . .⊗ (fn, kn)) = (f1, k1)⊗ . . .⊗ (fn, kn) .

(3) Construct a Z-graded module Ṙ such that (f, k)⊗ (idṘ , 0) = (f, k) and (idṘ , 0)⊗
(f, k) = (f, k).

(4) Construct an isomorphism L ⊗ L̃
τL,L̃−−→∼ L̃ ⊗ L in Z-grad, and likewise τM,M̃ , such

that the following quadrangle commutes.

L⊗ L̃ ∼
τL,L̃ //

(f,k)⊗(f̃ ,k̃)

��

L̃⊗ L

(−1)kk̃(f̃ ,k̃)⊗(f,k)
��

M ⊗ M̃ ∼
τM,M̃ // M̃ ⊗M
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Problem 8 (Problem 17) Let B be an algebra.

(1) Let A be a linear additive category. Let N ⊆ A be a full additive subcategory.
Write

NullA,N (X, Y )

:= {X f−→ Y : there exists N ∈ Ob(N ) and morphisms X
u−→ N

v−→ Y such that f = uv } .

Let A/N be the category that has

Ob(A/N ) := Ob(A)

A/N(X, Y ) := A(X, Y )/NullA,N (X, Y ) for X, Y ∈ Ob(A/N ) .

For X
f−→ Y

g−→ Z in A, we define composition of the respective residue classes in
A/N by

(f + NullA,N (X, Y )) · (g + NullA,N (Y, Z)) = f · g + NullA,N (X,Z) .

Show that A/N is a linear additive category. Show that A R−→ A/N is a linear
functor with RN ' 0 for N ∈ Ob(N ).

We often write f̄ := f + NullA,N (X, Y ).

Given a linear additive category B and a linear functor A F−→ B with FN ' 0 for

N ∈ Ob(N ), show that there exists a unique linear functor A/N F̄−→ B such that
F = F̄ ◦R.

(2) LetA := C(B -Mod) be the category of complexes of B-modules. Let the differential
of a complex X ∈ Ob(A) be denoted by d = dX . Let N ⊆ A be the full additive
subcategory of split acyclic complexes, i.e. those isomorphic to a complex of the

form · · · → U i−1 ⊕ U i

(
0 0
1 0

)
−−−→ U i ⊕ U i+1 → . . . , where U i ∈ ObA for i ∈ Z.

Show that NullA,N (X, Y ) consists of those morphisms of complexes X
f−→ Y for

which there exists a tuple of morphisms (X i hi−→ Y i−1)i∈Z such that

f i = hidi−1
Y + diXh

i+1 for i ∈ Z.

Define K(B -Mod) := A/N to be the homotopy category of complexes of B-modules.
Write shorthand K(X, Y ) := K(B -Mod)(X, Y ) for X, Y ∈ Ob(K(B -Mod)) =
Ob(C(B -Mod)).

(3) Let M be a B-module. Let P be a projective resolution of M with augmentation
ε : P0 →M . Let Conc(M) ∈ Ob(C(B -Mod)) have M at position 0, and 0 elsewhere.
Let ε̂ : P → Conc(M) be the morphism of complexes having entry ε at position 0.

Let Q be a complex consisting of projective B-modules, bounded above. Show that

K(Q, ¯̂ε) : K(Q,P )→ K(Q,Conc(M)) is an isomorphism.
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(4) Using the universal property from (1), construct a shift functor S on K(B -Mod)
such that (SX)i = X i+1 and such that diSX = −di+1

X for i ∈ Z. Show that S is an
automorphism.

We also write Sk =: (−)[k] for k ∈ Z.

Problem 9 (Problem 17) Let q ∈ Z>1 . Consider the cyclic group Cq = 〈 c : cq 〉.

Abbreviate K := K(RCq -Mod).

(1) Construct a projective resolution P of the trivial RCq-module R
that is periodic of period length 2.

(2) Calculate K(P,Conc(R)[i]) for i ∈ Z.

(3) Calculate K(P, P [i]) for i ∈ Z.

(4) Calculate the composition map

K(P, P [i])⊗ K(P [i], P [i+j]) → K(P, P [i+j])

for i, j ∈ Z.

Problem 10 (§1.1.1) Let Z and Z̃ be grading categories.

Let Z -F Z̃ be a morphism of grading categories; cf. Problem 5.

Let n ∈ Z>1 . Let Mi be a Z-graded module for i ∈ [1, n]. Write M := (Mi)i∈[1,n] .

(1) Construct an isomorphism F&(
⊗

i∈[1,n] Mi)
σM−−→∼

⊗
i∈[1,n] F&Mi in Z̃-grad.

(2) Show that the following quadrangle commutes.

F&(
⊗

i∈[1,n] Mi)
σM //

F&(
⊗

i∈[1,n](fi , ki))

��

⊗
i∈[1,n] F&Mi⊗

i∈[1,n] F&(fi , ki)

��
F&(

⊗
i∈[1,n] M

′
i)

σM′ //
⊗

i∈[1,n] F&M
′
i

Problem 11 (§1.2) Let Z be a grading category.

Let A be a Z-graded module.

Suppose given shift-graded maps m1 : A→ A of degree 1 and m2 : A⊗2 → A of degree 0.
For n ∈ Z>3 , we let mn := 0, as shift-graded linear map from A⊗n to A of degree 2− n.

Suppose that (mn)n∈Z>1
satisfies the Stasheff equations for k ∈ [1, 3].

Suppose that for each X ∈ Ob(Z), there exists an element 1X ∈ AidX such that for
z, w ∈ Mor(Z) such that ztZ = X = wsZ and for a ∈ Az and b ∈ Aw, we have
(a⊗ 1X)m2 = a and (1X ⊗ b)m2 = b.

Show that (A, (mn)n∈Z>1
) is a differential graded algebra over Z.
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Problem 12 (§1.2) Suppose given a grading category Z.

Suppose given A∞-algebras Ã and A.

Suppose given a shift-graded linear map f1 : Ã→ A of degree 0.

Suppose that f⊗k1 ·mA
k = mÃ

k · f1 for k ∈ Z>1 .

Let fk = 0 for k ∈ Z>2 , as shift-graded linear map from Ã⊗k to A of degree 1− k.

Show that (fk)k∈Z>1
is a morphism of A∞-algebras.

Problem 13 (§XXX) Let B be an algebra.

Suppose given a diagram X ′
i−→ X

r−→ X ′′ in C(B -Mod) such that X ′k
ik−→ Xk rk−→ X ′′k is

short exact for k ∈ Z. Such a diagram is called a short exact sequence of complexes in B.

(1) Suppose given T
f−→ X in C(B -Mod) such that fr = 0. Show that there exists a

unique morphism T
f ′−→ X ′ such that f ′i = f .

(2) Suppose given X
g−→ T in C(B -Mod) such that ig = 0. Show that there exists a

unique morphism X ′′
g′′−→ T such that rg′′ = g.

(3) A Z-graded B-module M is a tuple M = (M z)z∈Z of B-modules M z. A graded
B-linear map f : L → M between Z-graded B-modules is a tuple f = (f z)z∈Z of
B-linear maps f z. Write B-Z-grad for the category of Z-graded B-modules and
graded B-linear maps.

Construct an additive functor H : C(B -Mod)→ B-Z-grad having

(HX)k = Kern(dk)/ Im(dk−1)

for a complex X with differential d = (Xk dk−→ Xk+1)k .

For Y
f−→ Z in C(B -Mod), we often write ((HY )k

(Hf)k−−−→ (HZ)k) =: (HkY
Hkf−−→ HkZ).

(4) Construct a B-linear map HkX ′′
γk
(i,r)−−−→ Hk+1X ′ for k ∈ Z, called connector of the

given short exact sequence X ′
i−→ X

r−→ X ′′, subject to the following conditions (i, ii).

(i) The sequence

. . . → HkX ′
Hki−−→ HkX

Hkr−−→ HkX ′′
γk
(i,r)−−−→ Hk+1X ′

Hk+1i−−−→ Hk+1X
Hk+1r−−−→ Hk+1X ′′ → . . .

is exact at each position.
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(ii) Given a morphism of short exact sequences, i.e. a commutative diagram

X ′ i //

f ′

��

X r //

f
��

X ′′

f ′′

��
Y ′

j // Y s // Y ′′

in C(B -Mod) with (i, r) and (j, s) short exact, we get, for k ∈ Z, the commu-
tative quadrangle

HkX ′′
γk
(i,r) //

Hkf ′′
��

Hk+1X ′

Hk+1f ′
��

HkY ′′
γk
(j,s) // Hk+1Y ′ .

Problem 14 (§1.3, §1.4) Suppose given an algebra B. Suppose given n > 1.

Suppose given Xs ∈ Ob C(B -Mod) for s ∈ [1, n]. Abbreviate X := (Xs)s∈[1,n] .

Abbreviate Z := Z× [1, n]×2, C := C(B -Mod) and K := K(B -Mod).

(1) Show that (Z HomB(X))(j,(s,t)) = C(Xs, X
[j]
t ) for (j, (s, t)) ∈ Mor(Z).

(2) Show that (H HomB(X))(j,(s,t)) = K(Xs, X
[j]
t ) for (j, (s, t)) ∈ Mor(Z).

(3) Show that m
HomB(X)
2 induces a map m

H HomB(X)
2 : H HomB(X)⊗2 → H HomB(X)

that maps [f ] ⊗ [g] to [f · g] for each composable pair of morphisms (f, g) in C,
where we use brackets to denote residue classes of morphisms of C in K.

Problem 15 (§1.4) Let Z be a grading category.

Let L and M be Z-graded modules.

Let L
f−→M be a shift-graded linear map of degree a ∈ Z.

(1) Let K := Kern(f), i.e. Kz := Kern(Lz
f−→ M z[a]) for z ∈ Mor(Z). Let K

i−→ L be
the shift-graded inclusion map of degree 0.

Suppose given a Z-graded module T and a shift-graded linear map T
t−→ L of degree

d such that tf = 0.

Show that there exist a unique shift-graded linear map T
ť−→ K of degree d such

that ťi = t.

(2) Suppose R to be a field. Suppose f to be piecewise surjective.

Show that there exists a piecewise injective shift-graded linear map L
g←− M of

degree −a such that gf = idM .
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Problem 16 (§1.4) Let Z be a grading category. Let n ∈ Z>1 .

Let Ki , Li and Mi be Z-graded modules for i ∈ [1, n].

Let Ki
ui−→ Li be a shift-graded linear map of degree ci ∈ Z for i ∈ [1, n].

Let Li
fi−→Mi be a piecewise surjective shift-graded linear map of degree ai ∈ Z

for i ∈ [1, n].

(1) Show that
⊗

i∈[1,n] fi is piecewise surjective.

(2) For i ∈ [1, n], suppose that Ki
ui−→ Li

fi−→Mi to be exact at Li ,

i.e. suppose K
z[−ci]
i

ui−→ Lzi
fi−→M

z[ai]
i to be exact at Lzi for z ∈ Mor(Z).

Suppose given a Z-graded module T and a shift-graded linear map
⊗

i∈[1,n] Li
t−→ T

of degree d.

Suppose that (id⊗j−1⊗uj ⊗ id⊗n−j)t = 0 for j ∈ [1, n].

Show that there exists a unique shift-graded linear map
⊗

i∈[1,n] Mi
t̃−→ T of degree

d−
∑

i∈[1,n] ai such that (
⊗

i∈[1,n] fi)t̃ = t.

Problem 17 (§1.4) Let p > 0 be a prime.

Let P ∈ Ob C(FpCp -Mod) be the projective resolution of the trivial FpCp-module as found
in Problem 9.(1).

Let X := (P ), so that X has P as its only tuple entry.

Let A := HomFpCp(X) be the regular differential graded category, i.e. differential graded
algebra over Z = Z× [1, 1]×2.

Recall from Problem 9 and Problem 14 that we have calculated the Z-graded module HA,
i.e. that we know Fp-linear generators for its graded pieces.

Find a minimal A3-structure (m̃1, m̃2, m̃3) on HA and a quasiisomorphism (q1, q2, q3) :
HA→ A of A3-algebras.

Problem 18 (§1.4) Suppose R to be a field.

Let Z be a grading category. Let n ∈ [1,∞]. Let A be a unital An-algebra over Z.

Consider the shift-graded linear residue class map ZA
ρ−→ HA of degree 0.

Show that there exists a shift graded linear map ZA
σ←− HA of degree 0 such that σρ = idHA

and such that (1Xρ)σ = 1X for X ∈ Ob(Z).

Problem 19 (§1.6) Let Z be a grading category.
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(1) Let Ṽ = (Ṽ , ∆̃) and V = (V,∆) be coalgebras over Z. Let Ṽ
f−→ V be a morphism

of coalgebras.

Suppose that f is piecewise bijective.

Show that f is an isomorphism of coalgebras, i.e. that there exists a morphism of

coalgebras Ṽ
g←− V such that fg = idṼ and gf = idV .

Then g is uniquely determined and written f− := g.

(2) Let Ṽ = (Ṽ , ∆̃, δ̃) and V = (V,∆, δ) be coalgebras with differential over Z. Let

Ṽ
f−→ V be a morphism of coalgebras with differential.

Suppose that f is piecewise bijective.

Show that f is an isomorphism of coalgebras with codifferential, i.e. that there
exists a morphism of coalgebras with codifferential Ṽ

g←− V such that fg = idṼ and
gf = idV .

Then g is uniquely determined and written f− := g.

(3) Let Ṽ = (Ṽ , ∆̃) and V = (V,∆) be coalgebras over Z.

Let Ṽ
f−→ V be an isomorphism of coalgebras.

Suppose given a codifferential δ on V . Show that fδf− is a codifferential on Ṽ .

(4) Let V = (V,∆) be a coalgebra over Z. Let λ : V - Ṙ be a shift-graded linear map
of degree 0 ; cf. Problem 7.(3). Recall that Ṙ⊗ V = V = V ⊗ Ṙ by identification.

Let δλ := ∆(id⊗λ)−∆(λ⊗ id). Show that δλ is a coderivation.

Coderivations of this form are called inner.

Problem 20 (§1.1.2) Let Z be a grading category.

Let I be a set. Let Vi be a Z-graded module for i ∈ I. Recall that the Z-graded module⊕
i∈I Vi is defined by letting (

⊕
i∈I Vi)

z =
⊕

i∈I V
z
i for z ∈ Mor(Z).

(1) Given j ∈ I, construct a shift-graded linear inclusion map ιj : Vj →
⊕

i∈I Vi of
degree 0 and a shift-graded linear projection map πj :

⊕
i∈I Vi → Vj of degree 0.

(2) Suppose given a Z-graded module S. Suppose given d ∈ Z. Suppose given a
shift-graded linear map sj : S → Vj of degree d for j ∈ I.

Show that there exists a unique shift-graded linear map s : S →
⊕

i∈I Vi of degree
d such that sπj = sj for j ∈ I.

(3) Suppose I to be finite.

Suppose given a Z-graded module T . Suppose given d ∈ Z. Suppose given shift-
graded linear maps tj : Vj → T of degree d for j ∈ I.

Show that there exists a unique shift-graded linear map t :
⊕

i∈I Vi → T of degree
d such that ιjt = tj for j ∈ I.
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Problem 21 (§1.6) Let Z be a grading category. Let n ∈ [1,∞] . Let (A, (m`)`) be a
pre-An-algebra.

Write m := (( ωm`)`∈[1,n]∩Z)βCoder,n,A[1] .

(1) Suppose given p ∈ [1, n]. Write m′ := (( ωm`)`∈[1,p]∩Z)βCoder,p,A[1] .

Show that m′ = m|T6p(A[1])

T6p(A[1])
.

(2) Suppose n ∈ Z>1 . Suppose that (m`)` satisfies the Stasheff equation at each k ∈
[1, n− 1].

Suppose given z ∈ Mor(Z) and a ∈ ((A[1])⊗n)z. Consider the following assertions.

(i) We have

a

 ∑
(r,s,t)>(0,1,0)
r+s+t=n

(id⊗r⊗ ωms ⊗ id⊗t) · ωmr+1+t

 = 0

(ii) We have am2 = 0.

Show that (i) and (ii) are equivalent.

Problem 22 (§1.6) Let Z be a grading category. Let n ∈ [1,∞] . Let (Ã, (m̃`)`∈[1,n]∩Z)
and (A, (m`)`∈[1,n]∩Z) be pre-An-algebras. Let f = (f`)`∈[1,n]∩Z be a pre-An-morphism

from Ã to A.

Write
m̃ := (( ωm̃`)`∈[1,n]∩Z)βCoder,n,Ã[1]

m := (( ωm`)`∈[1,n]∩Z)βCoder,n,A[1]

f := (( ωf`)`∈[1,n]∩Z)βCoalg,n,Ã[1],A[1] .

(1) Suppose given p ∈ [1, n]. Write

m̃′ := (( ωm̃`)`∈[1,p]∩Z)βCoder,p,Ã[1]

m′ := (( ωm`)`∈[1,p]∩Z)βCoder,p,A[1]

f′ := (( ωf`)`∈[1,p]∩Z)βCoalg,p,Ã[1],A[1]

Show that

m̃′ = f|T6p(Ã[1])

T6p(Ã[1])

m′ = m|T6p(A[1])

T6p(A[1])

f′ = f|T6p(A[1])

T6p(Ã[1])
.
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(2) Suppose n ∈ Z>1 . Suppose that (f`)` satisfies the Stasheff equation for morphisms
at each k ∈ [1, n− 1].

Suppose given z ∈ Mor(Z) and ã ∈ ((Ã[1])⊗n)z. Consider the following assertions.

(i) We have

ã

 ∑
(r,s,t)>(0,1,0)
r+s+t=n

(id⊗r⊗ ωm̃s ⊗ id⊗t) · ωfr+1+t

 = ã


∑
r∈[1,k]

∑
(ij)j∈[1,r]>(1)j∑

j ij =n

( ⊗
j∈[1,r]

ωfij
)
· ωmr


(ii) We have ã(m̃f− fm) = 0.

Show that (i) and (ii) are equivalent.

Problem 23 (§XXX) Let n ∈ [1,∞]. Let Z be a grading category.

Let (A, (m`)`), (A′, (m′`)`), (A′′, (m′′` )`), (A′′′, (m′′′` )`) be An-algebras over Z.

Let f = (f`)` : A→ A′, f ′ = (f ′`)` : A′ → A′′, f ′′ = (f ′′` )` : A′′ → A′′′ be An-morphisms.

Write ωf := ( ωf`)` .

Define

f · f ′ := ω−
(
(( ωf)β · ( ωf ′)β)α

)
.

(1) Show that f · f ′ is a morphism of An-algebras from A to A′′.

(2) Write f · f ′ in terms of (f`)` and (f ′`)` . What is the entry of f · f ′ at ` = 1 ?

(3) Show that (f · f ′) · f ′′ = f · (f ′ · f ′′).

(4) Suppose given shift-graded linear maps g : A → A′ and g′ : A′ → A′′ of degree 0.
Define strictn(g) := (g, 0, 0, . . . ).
When is strictn(g) : A→ A′ a morphism of An-algebras? Is strictn(idA) a morphism
of An-algebras? If strictn(g) and strictn(g′) are morphisms of An-algebras, show
that strictn(gg′) = strictn(g) · strictn(g′).

(5) Show that f · strictn(idA′) = f and that strictn(idA′) · f ′ = f ′.

(6) Define the category An-Z-alg of An-algebras over Z and An-morphisms.
Therein, define the subcategory strict-An-Z-alg of An-algebras over Z and strict
An-morphisms.

(7) Show that H is a functor from An-Z-alg to Z-grad0 .
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Problem 24 (§XXX) Let n ∈ [1,∞]. Let Z F−→ Z̃ be a morphism of grading categories;
cf. Problem 5. Let (A, (mk)k) be an An-algebra over Z.

(1) Show that F&A = (F&A, (σ
− ·F&m`)`) is an An-algebra over Z̃ , where σ = σ(A,...,A) ;

cf. Problem 10.

(2) Consider the case n = ∞, u ∈ Z>1 , Z = Z × [1, u]×2, Z̃ = Z and P being the
projection, mapping a morphism (j, (s, t)) to j.

Given a unital Z× [1, u]×2-algebra A, i.e. an A∞-category with set of objects [1, u],
show that its total A∞-algebra P&A is unital.

Problem 25 (§XXX) Let Z be a grading category.

Let A = (A, (m1), (A〈i〉)i) be a minimal eA1-algebra over Z.

Suppose that there exist shift-graded linear map d〈i〉 : A〈i〉 → A〈i−1〉 of degree 1 and
shift-graded linear map e〈i〉 : A〈i〉 → A6i−2 of degree 1 for i ∈ Z>0 such that

ι〈i〉 ·m1 = d〈i〉 · ι〈i−1〉 + e〈i〉 · ι6i−2 .

holds for i ∈ Z>0 .

(1) Express the Stasheff equation at 1 in terms of d〈i〉 and e〈i〉, where i ∈ Z>0 .

(2) Show that A is diagonally resolving if and only if Kern(d〈i〉) = Im(d〈i+1〉) for i ∈ Z>1 .

Problem 26 (§XXX) Let Z be a grading category.

Suppose given an eA∞-algebra (A, (mk)k , (A
〈i〉)i) over Z. Suppose that A〈i〉 = 0 for

i ∈ Z r [0, `].

For which integers k ∈ Z>1 is the Schmid condition on mk not void?

For which integers k ∈ Z>1 is the strong Schmid condition on mk not void?

(1) Consider the case ` = 1.

(2) Consider the case ` = 2.

(3) Consider the case ` = 3.

Problem 27 (§XXX) Let Z be a grading category.

Suppose given an eA∞-algebra (A, (mk)k, (A
〈i〉)i) over Z. Let k > 1. Let (j1, . . . , jk) ∈

Z×k>0 .

What bound results from the Schmid condition for the image of A〈j1〉 ⊗ . . .⊗A〈jk〉 under
a summand of the Stasheff equation at k ?
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Problem 28 Let X = (X,6) be a poset. We call X artinian if it does not contain a
strictly descending chain. We call X superartinian if X6ξ is finite for all ξ. We call X
discrete if (6) = (=). We call X narrow if each discrete subposet of X is finite.

Suppose given k ∈ Z>1 and posets Y1 , . . . , Yk .

(1) Show that X is artinian if and only if each nonempty subposet of X has a minimal
element.

(2) If X is superartinian, show that X is artinian. Does the converse hold?

(3) Construct the product
∏

i∈[1,k] Yi in Poset, which is to be equipped with monotone

maps
∏

i∈[1,k] Yi
πj−→ Yj for j ∈ [1, k] such that for each poset T and each tuple

(T
ti−→ Yi)i of monotone maps, there exists a unique monotone map T

t−→
∏

i∈[1,k] Yi
such that t · πj = tj for j ∈ [1, k].

(4) If Yi is artinian for i ∈ [1, k], show that
∏

i∈[1,k] Yi is artinian.

(5) If Yi is superartinian for i ∈ [1, k], show that
∏

i∈[1,k] Yi is superartinian.

(6) Show that Z×k>0 :=
∏

i∈[1,k] Z>0 is superartinian and narrow.
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A.2 Solutions

XXX



Literatur

[1] Kadeishvili, T.V., On the homology theory of fiber spaces, Russian Math. Surveys, 35 (3),
p. 231–238, 1980.

[2] Keller, B., Introduction to A-infinity algebras and modules [plus Addendum], Homology, Homo-
topy and Applications, vol. 3 (1), p. 1–35, 2001.

[3] Sagave, S., DG-algebras and derived A-infinity algebras, Journal für die reine und angewandte
Mathematik 639, p. 73–105, 2010.

[4] Schmid, S., An A∞-structure on the cohomology ring of the symmetric group Sp with coefficients
in Fp , Bachelor thesis, Stuttgart, 2012.

[5] Schmid, S., On A∞-categories, Master thesis (extended version), Stuttgart, 2015.

85


	Kadeishvili
	Gradings
	Grading categories
	Graded modules
	Tensor products

	A-algebras and A-categories
	The regular differential graded category for complexes
	Cohomology
	Getting rid of signs by conjugation
	A tensor coalgebra interpretation
	Kadeishvili's theorem

	Schmid's extension of Kadeishvili
	Split-filtered Z-graded modules
	eA-algebras and eA-categories
	A base of an induction

	Problems and solutions
	Problems
	Solutions


