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Abstract

Let p > 3 be a prime. We consider the cyclotomic extension Z(p)[ζp2 ] |Z(p), with
galois group G = (Z/p2)∗. Since this extension is wildly ramified, the Z(p)G-module
Z(p)[ζp2 ] is not projective. We calculate its cohomology ring H∗(G,Z(p)[ζp2 ]; Z(p)),
carrying the cup product induced by the ring structure of Z(p)[ζp2 ]. Formulated in a
somewhat greater generality, our results also apply to certain Lubin-Tate extensions.
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0 Introduction

0.1 Results

0.1.1 A cohomology ring

Suppose given a purely ramified extension T |S of discrete valuation rings of residue char-
acteristic p > 3, with maximal ideals generated by s ∈ S and t ∈ T , respectively. Let
K = fracS, L = fracT , and assume L|K to be galois with Gal(L|K) = Cp = 〈σ〉. In par-
ticular, T |S is wildly ramified, and so, as Speiser remarked [29, §6], T is not projective as

a module over SCp. We are interested in its cohomology ring H∗(Cp, T ;S)
def
= Ext∗SCp(S, T ),

carrying the cup product induced by multiplication on T .

We make the assumption that vs(p) > b − b, where b
def
= −1 + vt(t

σ − t) and b = pb + b
with b ∈ [0, p − 1]. This assumption is void if K is of characteristic p. As a result, we
obtain

H∗(Cp, T ;S)
def
= Ext∗SCp(S, T )

= χ
(0)
0 S

⊕
(
χ

(1)
0 (S/sb+1S)⊕ · · · ⊕ χ(1)

b−1
(S/sb+1S)

)
⊕
(
χ

(1)

b+1
(S/sbS)⊕ · · · ⊕ χ(1)

p−1(S/sbS)
)

⊕ χ
(2)
0 (S/sb−bS)

⊕
(
χ

(3)
0 (S/sb+1S)⊕ · · · ⊕ χ(3)

b−1
(S/sb+1S)

)
⊕
(
χ

(3)

b+1
(S/sbS)⊕ · · · ⊕ χ(3)

p−1(S/sbS)
)

⊕ χ
(4)
0 (S/sb−bS)

⊕ · · · ,

with S-linear generators χ
(k)
i ∈ Hk(Cp, T ;S); where the multiplication χ

(2)
0 ∪ − acts as a

degree shift by 2, and where multiplication of odd degree elements is given by

χ
(2l+1)
j ∪ χ(2m+1)

k = ∂ j+k,2b s
b+j+k−2b (b− j)−1χ

(2l+2m+2)
0

for l,m > 0 and j, k ∈ [0, p− 1] r {b} (4.10), where ∂ denotes the Kronecker delta.
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0.1.2 A reduction isomorphism

Let U |T be a further purely ramified extension of discrete valuation rings, and denote
E = fracU . Suppose E|K to be finite galois, write H = Gal(E|K), and suppose that

[E : L] is coprime to p. So we are given K
p

⊆ L
p′

⊆ E, containing S ⊆ T ⊆ U , respectively.
We have the reduction isomorphism

H∗(H,U ;S) ' H∗(Cp, T ;S)

of graded S-algebras (2.10, 3.1), thus enabling us to disregard the upper p′-part.

0.1.3 A cyclotomic example

The results apply in particular to the following situation.

S = Z(p)[πn−1] s = πn−1

T = Z(p)[πn] t = πn
U = Z(p)[ζpn ] u = ζpn − 1
H = Cp−1 × Cp
b = (pn−1 − 1)/(p− 1)

b = (pn−2 − 1)/(p− 1) b = 1 ,

L = Q(πn)

p

K = Q(πn−1)

pn−2

Q

��
��
�p−1

�
��
�p−1

��
��

��p−1

Q(ζpn) = E

p

Q(ζpn−1)

pn−2

Q(ζp)

where n > 2 and

πn
def
=

∏
j∈[1, p−1]

(ζj
pn−1

pn − 1) = NE|L(ζpn − 1) ,

cf. (5.4). In the case n = 2, we note that π1 = p.

0.2 Method

We reinterpret H∗(Cp, T ;S)
def
= Ext∗SCp(S, T ) ' Ext∗T oCp(T, T ) by adjunction, invoking the

twisted group ring T o Cp ⊇ SCp which carries the multiplication (ρy)(τz) = (ρτ)(yτz),
where ρ, τ ∈ Cp and y, z ∈ T . In this way, we have gained freedom in our choice of
a projective resolution — when resolving T over T o Cp , we are not bound to take a
projective resolution of S over SCp and to tensor it with T o Cp over SCp . The cup
product on Ext∗SCp(S, T ) corresponds to the Yoneda product on Ext∗T oCp(T, T ) (3.1).

Still, we need an interpretation of T o Cp that facilitates the Yoneda product calculation.

Rationally, there is the Wedderburn isomorphism L o Cp -ω∼ EndK L = Kp×p, sending

ρy -ω (z - zρy). Restricting to the locally integral situation and using the resulting
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Wedderburn embedding T oCp -
�� ω

EndS T = Sp×p, we get a workable isomorphic copy
(T o Cp)ω ⊆ Sp×p of T o Cp.

Namely, a matrix in Sp×p is contained in (T o Cp)ω if and only if it satisfies a set of
congruences between its entries that can be deduced from the single congruence

tσ ≡t1+b t ;

see (1.19, 1.17). With this tie description of (T o Cp)ω inside Sp×p at our disposal, it is
easy to calculate the cohomology ring.

In particular, we believe that it is easier to use this tie description to resolve projectively
than to work with the classical projective resolution of T over T oCp . Using the latter, it
seems that at some point the operation of σ on T as an element of EndS T , i.e. the matrix
(σ)ω, enters the picture; for instance, when solving equations occurring in the resolution
of cocycles (cf. 4.2). Using our tie description, we circumvent this problem by choosing
an S-linear basis of (T o G)ω without specifying the coefficients of (σ)ω therein. So it is
no longer necessary to determine the matrix (σ)ω, which, indeed, we have not been able
to control.

0.3 Known results and some historical remarks

0.3.1 Galois module structure, wild case

Let L|K be a finite galois extension with G = Gal(L|K), and let S ⊆ K be a Dedekind
domain with field of fractions K and integral closure T in L. Since T is not isomorphic to
SG as a module over SG as soon as a prime ideal of S wildly ramifies in T , Leopoldt
split the galois module structure problem in two parts. If K = Q, S = Z and G is abelian,
he determined, firstly, generators for the associated order

AL|K = {ξ ∈ KG : Tξ ⊆ T} ;

secondly, he showed that T ' AL|K as a module over AL|K by construction of an isomor-
phism [19, Satz 6].

We recall some of the recent extensions of this result.

(1) If K = Q(ζn), K ⊆ L ⊆ Q(ζmn) and S = Z[ζn], then Byott and Lettl gave a
description of AL|K and showed that T ' AL|K [8].

(2) Aiba showed that the analogue of (1) holds in the Carlitz-Hayes function field case
if L equals the analogue of Q(ζmn) and if the analogue of m divides n. On the other
hand, if this divisibility condition fails, then T 6' AL|K [1, th. 4].

(3) If L|K is an extension of finite extensions of Qp with L|Qp abelian, and S the
valuation ring of K, Lettl gave a description of AL|K and showed that T ' AL|K
[20].
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(4) As Byott observed, similar phenomena as in (2) occur for Lubin-Tate extensions
over Qp [7, th. 5.1].

(5) If L|K is an extension of finite extensions of Qp, and if G = Cpn , Elder calculated
T as a ZpG-module [13].

It is quite possible that such a description of T ' AL|K as a module over SG might
be used to calculate cohomology, and also to calculate the cup product on H∗(G, T ;S).
Nonetheless, generally speaking, Yoneda products are somewhat easier to calculate than
cup products.

In the case of an extension L|K of number fields, with S the ring of algebraic integers
in K and T |S at most tamely ramified, Fröhlich conjectured a connection between the
class of T in Cl(ZG) and the Artin root numbers, which has been proven by Taylor;
see e.g. [31, th. 3]. The extensions of this result from the tame to the wild case start
by replacing T by an object better suited for class group considerations, thus putting the
emphasis on the Artin root numbers; see e.g. [10, sec. 4.2].

0.3.2 Wedderburn embedding

Suppose given a Dedekind domain R and an R-order Ω which is rationally semisimple,

that is, for which Ω̄
def
= (fracR)⊗R Ω is semisimple.

The Wedderburn embedding method consists of restricting the Wedderburn isomorphism
ω from Ω̄ to Ω, and to describe the image Ωω inside a product of rationally simple maximal
orders via congruences of matrix entries, called ties.

For the first time, this method surfaced in the proof of the Brauer-Nesbitt theorem, in
which the assumption of the existence of a certain non-maximal overorder of a quasiblock
is led to a contradiction [6, eq. (36)]. Here, the quasiblocks of Ω are the R-orders Ωε for
rational primitive central idempotents ε ∈ Ω̄.

Around the same time, Higman calculated the ties for Z(Cp o Cp−1) with Cp o Cp−1 =
〈a, b : ap, bp−1, ab = ar〉, where r is a generator of F∗p [15]. In particular, he calculated
the hereditary quasiblock of size (p − 1) × (p − 1), which is isomorphic to the twisted
group ring Z[ζp] o Cp−1. See [26, sec. 6].

In the commutative case, descriptions of suborders via congruences have also been given
by Leopoldt [19, p. 125, p. 134, p. 140].

Milnor gave a pullback description of ZCpn , the iteration of which yields the ties de-
scribing this ring [3, p. 601 f.].

The first systematic study to describe Wedderburn embeddings via ties has been under-
taken by Plesken [24], [25], following hints of Zassenhaus. This has been particularly
successful when the endomorphism rings of the indecomposable projective modules of the
quasiblocks under consideration are isomorphic to the discrete valuation ring R.
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We list some subsequent work related to the twisted group ring T o G, where T |S is a
finite galois extension of discrete valuation rings with G = Gal(T |S).

(1) Auslander and Rim showed that T |S is tamely ramified if and only if T o G is
hereditary [2, prop. 3.5], which in turn corresponds to an upper triangular shape of
its single quasiblock.

(2) Benz and Zassenhaus showed that in the wildly ramified case the radical ideal-
isator process, started with T oG, ends up with a hereditary overorder that is unique
with respect to certain conditions [5, Satz (a)].

(3) Cliff and Weiss showed that the radical idealisator process of (2) ends up with
the unique minimal hereditary overorder of T o G, they determined its shape, and
they calculated the number of steps of this process in terms of the different and the
ramification index of T |S [12]. As an example, they figured out the ties for T o G
in the case of a wildly ramified quadratic extension [11, p. 98, 97].

(4) Wingen calculated the ties of the associated order for G cyclic [33, p. 82].

(5) Weber calculated the ties of T o G in the case T = Z(p)[ζpn ], where n > 2, and
G = Cp [32].
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0.6 Notations and conventions

(i) Composition of maps is written on the right, -a -b = -ab . Exception is made for ‘standard’
maps, such as traces, characters, derivations . . .

(ii) For a, b ∈ Z, we denote by [a, b] := {c ∈ Z | a 6 c 6 b} the integral interval.

(iii) Given elements x, y of some set X, we let ∂x,y = 1 in case x = y and ∂x,y = 0 in case x 6= y.

(iv) Given a, b ∈ Z, the binomial coefficient
(a
b

)
is defined to be zero unless 0 6 b 6 a.

(v) If R is a discrete valuation ring with maximal ideal generated by r, we write vr(x) for the valuation
of x ∈ Rr {0} at r, i.e. x/rvr(x) is a unit in R. Moreover, we let vr(0) = +∞.

(vi) If R is a discrete valuation ring and M -
�� f

N an injective R-linear map between R-modules M
and N with cokernel of finite length in the sense of Jordan-Hölder, we refer to this length `R(N/M)
as the R-linear colength of M in N .

(vii) Let n > 1, let A be a ring. The ring of n× n-matrices over A is denoted by An×n.

(viii) Given a ring A, by an A-module we mean a finitely generated right A-module, unless specified
otherwise.

(ix) Given a ring A, we denote by K−(A) the homotopy category of complexes of A-modules bounded
to the right.

(x) Given a category C, and objects X, Y in C, we denote the set of morphisms from X to Y by
C(X,Y ). If C = mod-A for a ring A, we abbreviate A(X,Y ) := mod-A(X,Y ).

1 A twisted cyclic group ring

We give a description of a certain twisted group ring of a cyclic group as a subring of a
matrix ring. We proceed in descending generality, ending up with a complete description in
the case of a cyclic group of prime order as the galois group of a purely ramified extension
of discrete valuation rings. For an attempt in the next larger case Cp2 , see appendix A.

For the sake of illustration, a continuing example is included, indicated by (cont.).

1.1 Subrings defined by derivations

Let A be a ring, let I ⊆ A be an ideal. Let k > 1, let x = (xj)j∈[1,k] be a tuple of elements
of A and let the corresponding inner derivations be denoted by

A -
Dxj

A
y - yxj − xjy .

We note that if xixj = xjxi, then Dxi ◦Dxj = Dxj ◦Dxi .

Lemma 1.1 Let h = (hj)j∈[1,k] be a tuple of positive integers (the height). Let l =
(lj)j∈[1,k] be a tuple of positive integers (the length). Then the abelian subgroup

A(x, h, l)I :=
{
y ∈ A : Di1

x1
◦· · ·◦Dik

xk
(y) ∈ I i1l1+···+iklk for (ij)j∈[1,k] ∈

∏
j∈[1,k]

[0, hj]
}
⊆ A
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is a subring of A.

Proof. Given y and z in A(x, h, l)I , we need to show that the product yz is contained in
A(x, h, l)I . So suppose given (ij)j∈[1,k] ∈

∏
j∈[1,k][0, hj]. The term

Di1
x1
◦ · · · ◦Dik

xk
(yz)

equals a sum over terms of type(
Di′1
x1
◦ · · · ◦Di′k

xk(y)
)
·
(
Di′′1
x1
◦ · · · ◦Di′′k

xk(z)
)

where (i′j)j, (i
′′
j )j ∈

∏
j∈[1,k][0, hj] such that (i′j)j + (i′′j )j = (ij)j; each such summand is

contained in I i1l1+···+iklk .

1.2 A Wedderburn embedding

Let T |S be a finite and purely ramified extension of discrete valuation rings of residue
characteristic p > 3. Let L|K be the corresponding extension of fields of fractions,
assumed to be galois with galois group G of order g. Let t generate the maximal ideal of
T , let s := (−1)g+1 NL|K(t) generate the maximal ideal of S. Let

D−1
T |S := {x ∈ L : TrL|K(xT ) ⊆ S} ⊆ L

define the different ideal DT |S ⊆ T , and let ∆T |S := NL|K(DT |S) ⊆ S denote the
discriminant ideal of T |S. Write the minimal polynomial of t over K as

µt,K(X) = Xg +

 ∑
j∈[1,g−1]

ejX
j

− s ∈ S[X] .

We recall that T = S[t], that Ttg = Ts, that S/Ss -∼ T/T t, that µt,K(X) ≡s Xg and
that DT |S = (µ′t,K(t)) ⊆ T [28, III.§6, cor. 2].

By T o G = {
∑

ρ∈G ρyρ : yρ ∈ T} we denote the twisted group ring carrying the
multiplication induced by (ρy)(τz) = (ρτ)(yτz), where ρ, τ ∈ G and y, z ∈ T . Let Ξ
denote the image of the Wedderburn embedding (of S-algebras)

T oG -ω EndS T =: Γ
y - (ẏ : x - xy)
ρ - (ρ̇ : x - xρ)

We consider the subring

Λ :=
{
f ∈ Γ : (Tti)f ⊆ Tti for all i > 0

}
⊆ Γ

which contains Ξ, i.e.
T oG -ω∼ Ξ ⊆ Λ ⊆ Γ ,
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by a slight abuse of the notation ω. Since dimL L ⊗T Λ = g, we have `T (Λ/ṫΛ) =
`T (Λ/Λṫ) = g, and so we obtain

ṫΛ = Λṫ = {f ∈ Γ : (Tti)f ⊆ Tti+1 for all i > 0} ,

which is thus an ideal of Λ. Moreover, note that we may write

Λ = {f ∈ Γ : (Tti)f ⊆ Tti for all i ∈ [0, g − 1]} .

Remark 1.2 Using matrices with respect to the S-linear basis (t0, t1, . . . , tg−1) of T to
represent elements of Γ = EndS T , the subring Λ of the full matrix ring Sg×g is given by
the set of matrices with strictly lower triangular entries contained in Ss. The ideal ṫΛ
is given by the set of matrices with lower triangular entries contained in Ss, including
the main diagonal. In this interpretation, we shall refer to matrix positions using the
coordinates [0, g − 1]× [0, g − 1].

Remark 1.3 (cf. [2, prop. 3.5]) We have g 6≡p 0 if and only if

T oG -ω∼ Ξ = Λ .

In particular, in this case T is projective as a module over T oG (cf. [17, prop. 2.4]).

Proof. By [28, IV.§2, cor. 1, cor. 3], g 6≡p 0 is equivalent to vt(t
ρ − t) = 1 for all

ρ ∈ Gr {1}.

Now by [17, Cor 2.17], the S-linear colength of Ξ in Γ is given by `S(Γ/Ξ) = g·vs(∆T |S)/2.
On the other hand, `S(Γ/Λ) = g(g − 1)/2. Therefore, the inclusion Ξ ⊆ Λ is an equality
if and only if vs(∆T |S) = g − 1. But

vs(∆T |S) = g−1
∑

ρ, τ ∈G,
ρ 6= τ

vt(t
ρ − tτ ) =

∑
ρ∈Gr{1}

vt(t
ρ − t) .

Example 1.4 (cont.) Let S = Z(3), s = 3, t = π2 := (ζ9 − 1)(ζ−1
9 − 1), and T = Z(3)[π2]

(cf. §5.2). Let σ : ζ9 - ζ4
9 , restricted from Q(ζ9) to T . We have G = {1, σ, σ2} ' C3. We

shall use the matrix interpretation explained in (1.2).

The Wedderburn embedding sends t to ṫ =
[

0 1 0
0 0 1
3 −9 6

]
, the last row resulting from

t3 = 3 − 9t + 6t2. Furthermore, it sends σ to σ̇ =
[

1 0 0
6 −5 1
24 −21 4

]
, the second row resulting

from tσ = 6 − 5t + t2. In particular, tσ − t = t2 − 6t + 6 has valuation 2 at t, so Ξ ⊂ Λ is
a proper subring, i.e. the Wedderburn embedding does not induce an isomorphism of T oG
with Λ.

We have Λ =
[
S S S
3S S S
3S 3S S

]
, containing σ̇, and ṫΛ = Λṫ =

[
3S S S
3S 3S S
3S 3S 3S

]
.
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1.3 The intermediate ring ΛD

We assume that
b := −1 + min

ρ∈G
vt(t

ρ − t) > 1 .

For example, if G = 〈σ〉 ' Cg, then b = −1 + vt(t
σ − t) since vt(t

σi − t) > vt(t
σ − t) for

i ∈ [0, g − 1].

Let
ΛD := Λ

(
(ṫ), (g − 1), (1 + b)

)
ṫΛ
⊆ Λ,

where k = 1 in the notation of (1.1). Explicitly, we have

ΛD =

u ∈ Λ :
∑
j∈[0,i]

(−1)j
(
i
j

)
ṫjuṫi−j ≡ṫ(1+b)iΛ 0 for all i ∈ [0, g − 1]

 .

Lemma 1.5 We have
Ξ ⊆ ΛD ( ⊆ Λ ⊆ Γ ) .

Proof. Since ΛD is a subring of Λ, it suffices to show that ṫ ∈ ΛD, which follows from
Di
ṫ
(ṫ) = 0 for i > 1, and that ρ̇ ∈ ΛD for ρ ∈ G, i.e. that Di

ṫ
(ρ̇) lies in ṫi(b+1)Λ for ρ ∈ G

and i ∈ [0, g − 1]. But

0 ≡t(1+b)i (tρ − t)i

=
∑
j∈[0,i]

(−1)i−j
(
i
j

)
(tj)ρti−j

implies

0 ≡ṫ(1+b)iΛ

∑
j∈[0,i]

(−1)i−j
(
i
j

)
(ṫj)ρ̇ṫi−j

= ρ̇−1

∑
j∈[0,i]

(−1)i−j
(
i
j

)
ṫj ρ̇ṫi−j


= ρ̇−1Di

ṫ
(ρ̇) .

1.4 A description of ΛD via ties

For i ∈ Z, we write
i =: gi+ i with i ∈ [0, g − 1].

We note that −i = −1− i− 1, and that −i = g − 1− i− 1.

For i ∈ [0, g − 1] and j > 0, we consider the element εi,j ∈ Λ ⊆ Γ defined on the S-linear
basis (t0, . . . , tg−1) of T by

(tl)εi,j := ∂i,lt
l+jsl+j
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for l ∈ [0, g − 1]. In the interpretation of (1.2), εi,j is the matrix with a single non-zero
entry si+j at position (i, i+ j). The tuple (εi,j)i,j∈[0,g−1] forms an S-linear basis of Λ. For
instance,

ṫ =

 ∑
i∈[0,g−1]

εi,1

− s−1

 ∑
j∈[1,g−2]

ejεg−1,j+1

− eg−1εg−1,0 ∈ Λ .

The elements ρ̇ seem to be harder to describe in this manner (cf. 1.4). In case G = Cp, we
shall circumvent this problem by giving a S-linear basis of Ξ without giving the transition
matrix from the ‘initial’ S-linear basis (ṫiσ̇j)i,j∈[0,g−1] of Ξ to it. To do so, we use a
description of Ξ by congruences, or ties, between the coefficients with respect to the (εi,j)i,j-
basis of Λ.

Lemma 1.6 For i, i′ ∈ [0, g − 1] and j, j′ > 0, we obtain

εi,jεi′,j′ = ∂i′,i+jεi,j+j′ .

Proof. This follows by evaluation on tl for l ∈ [0, g − 1].

Let
ẗ :=

∑
i∈[0,g−1]

εi,1 ∈ Λ .

Lemma 1.7 For j > 0, we obtain

ẗ j =
∑

i∈[0,g−1]

εi,j .

Proof. This follows using induction on j together with (1.6).

Lemma 1.8 We have ẗΛ = Λẗ = ṫΛ = Λṫ . An S-linear basis of ẗ kΛ for k > 0 is
given by

(s−j−kεi,j)i,j∈[0,g−1] .

Proof. To see this, we may use the matrix interpretation of (1.2).

Assumption 1.9 Assume that vs(ej) > 1 + b− b+ j for j ∈ [1, g − 1].

For example, if b = 1, then the assumption (1.9) reads ej ∈ Ss2 for j ∈ [1, g − 2] and
eg−1 ∈ Ss.
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Lemma 1.10 Assuming (1.9), we get ẗ− ṫ ∈ ẗ 1+b(g−1)Λ .

Proof. We have ẗ − ṫ = eg−1εg−1,0 + s−1
∑

j∈[1,g−2] ejεg−1,j+1. Thus, by (1.8), we need to
prove the inequalities{

vs(ej) > − (j + 1)− (1 + b(g − 1)) + 1 = 1 + b− j + b for j ∈ [1, g − 2]

vs(eg−1) > − 0− (1 + b(g − 1)) = 1 + b− (g − 1) + b ,

which in turn have been assumed in (1.9).

Using (1.10), we are in position to substitute ṫ by ẗ in the construction of the subring ΛD.

Lemma 1.11 Assume (1.9). Given γ > 0, we obtain

ṫγΛD (1)
= ṫγΛ

(
(ṫ), (g − 1), (1 + b)

)
ṫΛ

(2)
=

u ∈ Λ :
∑
h∈[0,l]

(−1)h
(
l
h

)
ṫhuṫl−h ≡ṫ(1+b)l+γΛ 0 for all l ∈ [0, g − 1]


(3)
=

u ∈ Λ :
∑
h∈[0,l]

(−1)h
(
l
h

)
ẗhuẗ l−h ≡ẗ(1+b)l+γΛ 0 for all l ∈ [0, g − 1]


(4)
= ẗγΛ

(
(ẗ), (g − 1), (1 + b)

)
ẗΛ
.

Proof. Equation (1) follows by definition of ΛD. Let us prove (3). First, we remark that
for i > 0, (1.10, 1.8) give

ṫi ≡ẗi+b(g−1)Λ ṫi−1ẗ ≡ẗi+b(g−1)Λ · · · ≡ẗi+b(g−1)Λ ẗ i .

Now, both sets are subsets of ṫγΛ = ẗγΛ, as we see by putting l = 0. So suppose given
u ∈ ṫγΛ = ẗγΛ. Using (1.10, 1.8) we obtain

ṫhuṫl−h ≡ẗl+b(g−1)+γΛ ẗ
huṫl−h ≡ẗl+b(g−1)+γΛ ẗ

huẗl−h .

for 0 6 h 6 l 6 g − 1. Since l + b(g − 1) + γ > (1 + b)l + γ, this shows (3). Let us
prove (4). Again, both sides are contained in ẗγΛ. So if v ∈ Λ, then ẗγv is in the right
hand side of (4) if and only if v ∈ Λ

(
(ẗ), (g − 1), (1 + b)

)
ẗΛ

, for multiplication with ẗ is

injective. This in turn is the case if and only if ẗγv is contained in the left hand side of
(4), again by injectivity of the multiplication with ẗ. This proves (4). The argument for
(2) is analogous.

Lemma 1.12 For x, y ∈ Z with y coprime to g, we obtain∑
i∈[0,g−1]

x+ iy = g−1
∑

i∈[0,g−1]

(
(x+ iy)− (x+ iy)

)
= x+ (g − 1)(y − 1)/2 .
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Now we shall give a description of ΛD via ties; that is, we give certain congruences between
the coefficients with respect to the S-linear ε-basis of Λ that are necessary, and, taken
together, also sufficient for an element of Λ to lie in ΛD. Necessity will follow from (1.5),
whereas sufficiency needs a comparison of colengths.

Lemma 1.13 Assume (1.9). Given γ > 0, we get

ṫγΛD =

{ ∑
i,j∈[0,g−1]

ai,jεi,j : ai,j ∈ S , and for all i, j, l ∈ [0, g − 1], we have

vs

∑
h∈[0,l]

(−1)h
(
l
h

)
ai+h,j

 > 1 + bl − j − 1 + γ

}
⊆ Λ .

Proof. The lth condition of (1.11) (l ∈ [0, g−1]) for an element u =
∑

i,j∈[0,g−1] ai,jεi,j ∈ Λ

(ai,j ∈ S) to lie in ṫγΛD reads

0 ≡ẗ(1+b)l+γΛ

∑
h∈[0,l]

∑
i,j∈[0,g−1](−1)h

(
l
h

)
ẗhai,jεi,j ẗ

l−h

(1.7)
=

∑
h∈[0,l]

∑
i,j,i′,i′′∈[0,g−1](−1)h

(
l
h

)
ai,jεi′,hεi,jεi′′,l−h

(1.6)
=

∑
h∈[0,l]

∑
i,j,i′,i′′∈[0,g−1](−1)h

(
l
h

)
ai,j∂i,i′+h∂i′′,i′+h+jεi′,l+j

=
∑

j,i′∈[0,g−1]

(∑
h∈[0,l](−1)h

(
l
h

)
ai′+h,j

)
εi′,l+j .

For a ∈ S and k > 0, the element aεi,j is contained in ẗ kΛ if and only if vs(a) > −j − k
(cf. 1.8). Thus we obtain the set of conditions

(∗i,j,l) vs

∑
h∈[0,l]

(−1)h
(
l
h

)
ai+h,j

 > −(−bl + j − γ) = 1 + bl − j − 1 + γ

for i, j, l ∈ [0, g − 1], as claimed.

1.5 The cyclic case of order p

As we have seen, in general we have an inclusion T o G -∼ Ξ ⊆ ΛD, and we dispose of a
workable description of ΛD. Now we shall consider a case in which this inclusion will turn
out to be an equality.

Consider the case g = p, i.e. assume G = 〈σ〉 = Cp to be of order equal to the residue
characteristic p of S. Note that then b = −1+vt(t

σ−t), and recall that we have stipulated
b > 1.
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Remark 1.14 We have

vt(DT |S) = vs(∆T |S) = p−1 vt

 ∏
ρ, τ ∈G ,
ρ 6= τ

(tρ − tτ )

 = vt

 ∏
ρ∈Gr{1}

(tρ − t)

 = (p−1)(1+b)

(cf. [28, V.§3, lem. 3]).

Remark 1.15 In the present case G = Cp, assumption (1.9) is fulfilled.

Proof. Since DT |S = (µ′t,K(t)), (1.14) implies in particular that

t(p−1)(1+b) | µ′L|K(t) = ptp−1 +
∑

j∈[1,p−1]

jejt
j−1 ,

i.e. that vt(ej) > (p − 1)(1 + b) − (j − 1) for j ∈ [1, p − 1], for the valuations of the
summands are pairwise different. But since ej ∈ S, this implies

vs(ej) > (p− 1)(1 + b)− (j − 1) + (p− 1) = 1 + b− b+ j

for j ∈ [1, p− 1], and thus, assumption (1.9) is fulfilled.

Lemma 1.16 Suppose given α0, . . . , αp−1 > 0. Consider the S-linear submodule

M :=
{

(xh)h∈[0,p−1] ∈ Sp : for all l ∈ [0, p− 1], we have vs

(∑
h∈[0,l](−1)h

(
l
h

)
xh

)
> αl

}
⊆ Sp .

An S-linear basis of M is given by the tuple
(
(sαl

(
i
l

)
)i∈[0,p−1]

)
l∈[0,p−1]

.

Proof. Let M̃ be the S-linear submodule of Sp spanned by
(
(sαl′

(
i
l′
)
)i∈[0,p−1]

)
l′∈[0,p−1]

.

Since ∑
h∈[0,l]

(−1)h
(
l
h

) (
sαl′

(
h
l′

))
= (−1)l

′
∂l,l′s

αl′

for l, l′ ∈ [0, p − 1], we have M̃ ⊆ M . The S-linear colength of M in Sp is given by∑
l∈[0,p−1] αl, and so is the colength of M̃ . Hence M̃ = M .

Proposition 1.17 Suppose given γ > 0 such that vs(p) > b− b− γ . Then

ṫγΛD =

{ ∑
i,j∈[0,p−1]

ai,jεi,j : ai,j ∈ S , and for all j, l ∈ [0, p− 1], we have

vs

∑
h∈[0,l]

(−1)h
(
l
h

)
ah,j

 > 1 + bl − j − 1 + γ

}
⊆ Λ .
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An S-linear basis of tγΛD is given by

(µ
(γ)
l,j )l, j ∈ [0,p−1] :=

s1+bl−j−1+γ
∑

i∈[0,p−1]

(
i
l

)
εi,j


l, j ∈ [0,p−1]

.

The according basis of ΛD will also be written (µl,j)l,j := (µ
(0)
l,j )l,j. The S-linear colength

of ΛD in Λ is given by bp(p− 1)/2.

Proof. Comparing with (1.13), we have to show the redundancy of the conditions (∗i,j,l)
for i ∈ [1, p − 1], j, l ∈ [0, p − 1]. First of all, we have (−1)h

(
p−1
h

)
≡
s1+b(p−1)−j−1+γ 1 for

h ∈ [0, p− 1], since this holds modulo p. Hence the validity of (∗i,j,p−1) is independent of
i ∈ [0, p−1]. By downwards induction on l ∈ [0, p−2], forming the difference, equivalence
of (∗i,j,l) and (∗i+1,j,l) ensues from (∗i,j,l+1), where i ∈ [0, p− 2].

Now (1.16), applied to a fixed j ∈ [0, p − 1], yields the S-linear basis as claimed. The
colength of ΛD in Λ is given by∑

l∈[0,p−1]

∑
j∈[0,p−1](1 + bl − j − 1)

(1.12)
= p2 +

∑
l∈[0,p−1](bl − p)

= bp(p− 1)/2.

Remark 1.18 In (1.17), we can as well fix any m ∈ [0, p − 1] and impose (∗m,j,l) on
elements of Λ for j, l ∈ [0, p − 1] to describe ṫγΛD inside. Accordingly, we obtain an
S-linear basis (s1+bl−j−1+γ

∑
i∈[0,p−1]

(
i
l

)
εi+m,j)l,j of ṫγΛD.

Theorem 1.19 Recall that we assume b = −1 + vt(t
σ− t) > 1, where Cp = 〈σ〉. Suppose

in addition that vs(p) > b− b.

The Wedderburn embedding factors over the S-algebra isomorphism

T o Cp -ω∼ ΛD ⊆ Λ ⊆ Γ .

Proof. By (1.5), it suffices to show that the S-linear colengths of (T oG)ω = Ξ and of ΛD

in Λ are equal. The colength of Λ in Γ equals p(p− 1)/2, so that, by (1.17), the colength
of ΛD in Γ equals (1 + b)p(p − 1)/2. On the other hand, by [17, cor. 2.17], the colength

of Ξ in Γ equals p vs(∆T |S)/2
(1.14)
= p(1 + b)(p− 1)/2.

Example 1.20 (cont.) We have ṫ =
[

0 1 0
0 0 1
3 −9 6

]
and ẗ =

[
0 1 0
0 0 1
3 0 0

]
.

We have g = p = 3 and b = 1. Since µt,Q(X) = X3 − 6X2 + 9X − 3, assumption (1.9) is

satisfied, in accordance with (1.15). Consequently, we have ṫ− ẗ =
[

0 0 0
0 0 0
0 −9 6

]
∈ 3Λ (cf. 1.10).
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If γ 6 1, then 1 = vs(p) > b− b− γ = 1, and so (1.17) can be applied to give

Z(3)[π2] o C3 = T o C3

-ω
∼ ΛD

=
{ [ a0,0 a0,1 a0,2

3a1,2 a1,0 a1,1
3a2,1 3a2,2 a2,0

]
: a0,0 ∈ 30S, a0,0 − a1,0 ∈ 31S, a0,0 − 2a1,0 + a2,0 ∈ 31S;

a0,1 ∈ 30S, a0,1 − a1,1 ∈ 30S, a0,1 − 2a1,1 + a2,1 ∈ 31S;
a0,2 ∈ 30S, a0,2 − a1,2 ∈ 30S, a0,2 − 2a1,2 + a2,2 ∈ 30S;

}
=

{ [ a0,0 a0,1 a0,2
3a1,2 a1,0 a1,1
3a2,1 3a2,2 a2,0

]
: a0,0 ≡3 a1,0 ≡3 a2,0; a0,1 + a1,1 + a2,1 ≡3 0

}
⊆ S3×3 ,

where S = Z(3). In particular, we have σ̇ =
[

1 0 0
6 −5 1
24 −21 4

]
∈ ΛD, as expected. Similarly,

ṫΛD =
{ [ a0,0 a0,1 a0,2

3a1,2 a1,0 a1,1
3a2,1 3a2,2 a2,0

]
: a0,0 ∈ 31S, a0,0 − a1,0 ∈ 31S, a0,0 − 2a1,0 + a2,0 ∈ 31S;

a0,1 ∈ 30S, a0,1 − a1,1 ∈ 31S, a0,1 − 2a1,1 + a2,1 ∈ 31S;
a0,2 ∈ 30S, a0,2 − a1,2 ∈ 30S, a0,2 − 2a1,2 + a2,2 ∈ 31S;

}
=

{ [3a0,0 a0,1 a0,2
3a1,2 3a1,0 a1,1
3a2,1 3a2,2 3a2,0

]
: a0,1 ≡3 a1,1 ≡3 a2,1; a0,2 + a1,2 + a2,2 ≡3 0

}
⊆ S3×3 .

Example 1.21 Suppose that S contains a primitive p-th root of unity ζp (so in particular,
charK = 0). Let T := S[ p

√
s] and t := p

√
s, i.e. let µt,K(X) = Xp − s. Then L|K is galois

with galois group Cp, and we have

b = −1 + vt(tζp − t) = p vs(1− ζp) =
p

p− 1
vs(p) ,

i.e. vs(p) = b− b, so that (1.19) may be applied.

Corollary 1.22 Suppose given two discrete valuation rings T and T ′ over S with T |S
and T ′|S both purely ramified and galois with galois group Cp. Suppose that

vs(∆T |S) = vs(∆T ′|S) 6 p vs(p) + p− 1 .

Then
T o Cp ' T ′ o Cp

as S-algebras.

Proof. Since vs(∆T |S) = (p − 1)(b + 1) by (1.14), similarly for T ′, and since ΛD depends
only on S and b (cf. 1.17), we may conclude

T o Cp
(1.19)
' ΛD (1.19)

' T ′ o Cp .

Example 1.23 (cont.) Let S = Z(3), T = Z(3)[π2] and let T ′ = S[t′] with µt′,K(X) =
X3 + 3X2 − 18X + 48 [16]. Then ∆T |S = ∆T ′|S = Ss4, whence T o C3 ' T ′ o C3 by (1.22).
The fields of fractions of T and T ′, however, are not isomorphic.
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2 Nebe decomposition

The purpose of this section is, translated to the basic example Z(p2)[ζp2 ]|Z(p), the reduction
of the cohomology calculation from the galois group Cp × Cp−1 to its quotient Cp, being
the galois group of a subextension.

2.1 A block decomposition

Let T |S and U |T be finite purely ramified extensions of discrete valuation rings with
maximal ideals generated by s ∈ S, t ∈ T and u ∈ U , respectively. Let K = fracS,
L = fracT and E = fracU , and suppose that E|K is galois with galois group H, and that
L|K is galois with galois group G. In particular, if

1 - N - H - G - 1

is short exact, then E|L is galois with galois group N . Denote h := |H|, g := |G| and
n := |N |, so h = gn.

The situation can be depicted as follows.

s ∈ S

t ∈ T

u ∈ U

�
��

��
�

�
��

K

G

L

N

E

H

Suppose given an S-linear submodule V of U spanned by a T -linear basis of U , i.e. such
that T ⊗S V -ϕ∼ U , x⊗ y - xy. In general, V is not a subring of U . We write

Γ := EndS U
Γ′ := EndS T
Γ′′ := EndT U
Γ′′0 := EndS V .

Here we change our notation slightly in that the ring EndS T , which has previously been
denoted by Γ, is now denoted by Γ′. Similarly, we denote the Wedderburn embeddings
by

U oH -
�� ω

Γ

T oG -
�� ω′ Γ′

U oN -
�� ω′′ Γ′′ ,
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again switching notation from what has been denoted by ω to ω′. Accordingly, we denote
the images by

Ξ := (U oH)ω
Ξ′ := (T oG)ω′

Ξ′′ := (U oN)ω′′

Usage of the notation Γ′, ω′, Ξ′ pertains only to the present §2, in which we consider the
passage from U oH to T oG.

Note that we have an isomorphism of S-algebras

Γ′ ⊗S Γ′′0 -∼ EndS(T ⊗S V ) -∼ Γ
α ⊗ β0

- (x⊗ y - xα⊗ yβ0)
η - ϕ−1ηϕ ,

denoted by Γ′ ⊗S Γ′′0 -θ∼ Γ. Moreover, we have an isomorphism of T -algebras

T ⊗S Γ′′0 -∼ EndT (T ⊗S V ) -∼ Γ′′

1 ⊗ β0
- 1 ⊗ β0

- ϕ−1(1⊗ β0)ϕ ,

which shall be denoted by T ⊗S Γ′′0 -ψ∼ Γ′′ . Thus, we have an S-linear isomorphism

Γ′ ⊗T Γ′′ �
1⊗ψ
∼ Γ′ ⊗T T ⊗S Γ′′0 �∼ Γ′ ⊗S Γ′′0 -θ∼ Γ ,

denoted by
Γ′ ⊗T Γ′′ -ϑ∼ Γ .

Lemma 2.1 If (x1, . . . , xg) is an S-linear basis of T , and (y1, . . . , yn) is a T -linear basis
of U lying in V , and given α ∈ Γ′ and β ∈ Γ′′, then (α ⊗ β)ϑ sends xiyj to (xiα)(yjβ),
where i ∈ [1, g], j ∈ [1, n].

Proof. By T -bilinearity we may assume that β = (1 ⊗ β0)ψ with β0 ∈ Γ′′0, in which case
the assertion follows by construction.

We use ϑ for a transport of the S-algebra-structure from Γ to Γ′⊗T Γ′′; i.e. given γ1 , γ2 ∈
Γ′ ⊗T Γ′′, we let

γ1 · γ2 := ((γ1ϑ) · (γ2ϑ))ϑ−1 ,

so that ϑ becomes an isomorphism of S-algebras.

Now we choose V to be the S-linear span of (u0, . . . , un−1) in U . Let

Λ′′ := {ϕ′′ ∈ Γ′′ : ukϕ′′ ∈ Uuk for k > 0 } ⊆ Γ′′ ,

which is a sub-T -algebra.
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Lemma 2.2 The S-linear submodule Ξ′ ⊗T Λ′′ ⊆ Γ′ ⊗T Γ′′ is a sub-S-algebra.

Proof. Given k, l ∈ [0, n−1], we let e′′k,l ∈ Γ′′ be defined by uje′′k,l = ∂j,ku
l for j ∈ [0, n−1].

Then

(∗) Ξ′ ⊗T Λ′′ =

 ∑
k,l∈[0,n−1]

ξ′k,l ⊗ e′′k,l : ξ′k,l ∈ Ξ′ for k 6 l, ξ′k,l ∈ ṫΞ′ for k > l

 .

Since we can write e′′k,l = (1⊗ e′′k,l;0)ψ with e′′k,l;0 ∈ Γ′′0, i.e. since e′′k,l restricts to an S-linear
endomorphism of V , multiplication of elements written in the form as in (∗) is given by

(ξ′ ⊗ e′′k,l)(ξ̃′ ⊗ e′′k̃,l̃) = (ξ′ξ̃′)⊗ (∂l,k̃e
′′
k,l̃

) ,

where ξ̃, ξ̃′ ∈ Ξ′ and k, l, k̃, l̃ ∈ [0, n − 1]. Now if k > l̃ and l = k̃, then k > l or
k̃ > l̃, hence ξ′ξ̃′ ∈ ṫΞ′. Therefore, the S-linear submodule Ξ′ ⊗T Λ′′ is closed under
multiplication.

Lemma 2.3 We have Ξϑ−1 ⊆ Ξ′ ⊗T Λ′′ .

Proof. Since Ξ′ ⊗T Λ′′ is a sub-S-algebra of Γ′ ⊗T Γ′′ (2.2), it suffices to show that
uωϑ−1 ∈ Ξ′ ⊗T Λ′′ and that ρωϑ−1 ∈ Ξ′ ⊗T Λ′′ for ρ ∈ H.

We have (1⊗ uω′′)ϑ = uω by (2.1), hence uωϑ−1 ∈ Ξ′ ⊗T Λ′′.

Suppose given ρ ∈ H. Let (x1, . . . , xg) be an S-linear basis of T . The element xiu
j is

sent to xρi (u
ρ)j by ρω, where i ∈ [1, g], j ∈ [0, n− 1] (2.1). The element of Γ′ determined

by xi - xρi is just ρω′, which is in Ξ′. The element of Γ′′ determined by uj - (uρ)j is
contained in Λ′′. The tensor product of these elements is thus contained in Ξ′ ⊗T Λ′′, as
was to be shown.

Remark 2.4 In general, the element uj - (uρ)j , where j ∈ [0, n− 1], is not contained in
Ξ′′ since ρ need not be in N .

By (2.2, 2.3), we have a commutative diagram of S-algebras

Γ′ ⊗T Γ′′ -ϑ
∼ Γ

6

� �
6

� �
Ξ′ ⊗T Λ′′ �

��ϑ−1

Ξ .

Proposition 2.5 If n 6≡p 0, then

Ξϑ−1 = Ξ′ ⊗T Λ′′ .
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In other words, the Wedderburn embedding U oH -
�� ω

Γ factors as

U oH -ωϑ
−1

∼ Ξ′ ⊗T Λ′′ -
�� Γ′ ⊗T Γ′′ -ϑ∼ Γ .

The tensor product Ξ′ ⊗T Λ′′ is called the Nebe decomposition of U oH.

Proof. First, we remark that if n 6≡p 0, then Ξ′′ = Λ′′ by (1.3).

We need to show that the S-linear colengths coincide. By [17, cor. 2.17], the colength of
Ξ ⊆ Γ equals

h vs(∆U |S)/2 = h vu(DU |S)/2 = h vu(DU |TDT |S)/2 = h(n− 1)/2 + hn vs(∆T |S)/2 .

On the other hand, by [17, cor. 2.17], the colength of the composite embedding
Ξ′ ⊗T Λ′′ ⊆ Γ′ ⊗T Λ′′ ⊆ Γ′ ⊗T Γ′′ equals

(g vs(∆T |S)/2) · n2 + g · n(n− 1)/2 = hn vs(∆T |S)/2 + h(n− 1)/2 .

Example 2.6 (cont.) Let S = Z(3), s = 3, T = Z(3)[π2], t = π2, U = Z(3)[ζ32 ],
u = ζ32 − 1, so that H = (Z/32)∗ ' C3 × C2, G = C3 and N = C2. We use the
S-linear basis (u0, u1) of V and the S-linear basis (t0, t1, t2) of T , and thus the S-linear
basis (u0t0, u0t1, u0t2, u1t0, u1t1, u1t2) of U . By (2.5) and using (∗), the Wedderburn de-
scriptions of Ξ′ and ṫΞ′ obtained in (1.20) can be inserted as blocks into

U oH -ω
∼ Ξ =


a0,0;0,0 a0,0;0,1 a0,0;0,2 a0,1;0,0 a0,1;0,1 a0,1;0,2

3a0,0;1,2 a0,0;1,0 a0,0;1,1 3a0,1;1,2 a0,1;1,0 a0,1;1,1

3a0,0;2,1 3a0,0;2,2 a0,0;2,0 3a0,1;2,1 3a0,1;2,2 a0,1;2,0

3a1,1;0,0 a1,1;0,1 a1,1;0,2 a1,0;0,0 a1,0;0,1 a1,0;0,2

3a1,1;1,2 3a1,1;1,0 a1,1;1,1 3a1,0;1,2 a1,0;1,0 a1,0;1,1

3a1,1;2,1 3a1,1;2,2 3a1,1;2,0 3a1,0;2,1 3a1,0;2,2 a1,0;2,0

 :

{
a0,0;0,0 ≡3 a0,0;1,0 ≡3 a0,0;2,0,
a0,0;0,1 + a0,0;1,1 + a0,0;2,1 ≡3 0;{
a0,1;0,0 ≡3 a0,1;1,0 ≡3 a0,1;2,0,
a0,1;0,1 + a0,1;1,1 + a0,1;2,1 ≡3 0;{
a1,0;0,0 ≡3 a1,0;1,0 ≡3 a1,0;2,0,
a1,0;0,1 + a1,0;1,1 + a1,0;2,1 ≡3 0;{
a1,1;0,1 ≡3 a1,1;1,1 ≡3 a1,1;2,1,
a1,1;0,2 + a1,1;1,2 + a1,1;2,2 ≡3 0


⊆ (S3×3)2×2 .

2.2 A reduction isomorphism

We maintain the notation of §2.1, having chosen V = S〈u0, . . . , un−1〉 ⊆ U .

Definition 2.7 Given a Ξ′-module Y , the S-module Y ⊗T U decomposes into a direct
sum

Y ⊗T U =
⊕

j∈[0,n−1]

Y ⊗ uj,
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so that we may endow it with the structure of a Ξ′ ⊗T Λ′′-module by means of

(y ⊗ uj)(ξ′ ⊗ e′′k,l) := yξ′ ⊗ ∂j,kul,

where y ∈ Y , ξ′ ∈ Ξ′, j, k, l ∈ [0, n− 1], ξ′ ∈ ṫΞ if k > l, and where e′′k,l is as in (∗) above.

More naturally explained, we use the isomorphism Y ⊗T U ' Y ⊗S V to transport the
structure of an Ξ′ ⊗S Γ′′0-module from Y ⊗S V to Y ⊗T U . Restricting the S-algebra
isomorphism Γ′ ⊗S Γ′′0 -∼ Γ′ ⊗T Γ′′ to Ξ′ ⊗S Γ′′0 -∼ Ξ′ ⊗T Γ′′, we obtain on Y ⊗T U the
structure of a Ξ′ ⊗T Γ′′-module, which we restrict to Ξ′ ⊗T Λ′′. This also shows how the
Ξ′ ⊗T Λ′′-module structure on Y ⊗T U depends on the choice of V .

We obtain an exact functor

mod- Ξ′ -F :=(−⊗TU)
mod-(Ξ′ ⊗T Λ′′)

(Y -α Y ′) - (Y ⊗T U -α⊗1
Y ′ ⊗T U) .

Lemma 2.8 The functor F maps projective Ξ′-modules to projective Ξ′ ⊗T Λ′′-modules.
Moreover, F is full and faithful.

Proof. To show that FΞ′ is projective over Ξ′ ⊗T Λ′′, we remark that

FΞ′ = Ξ′ ⊗T U -∼ (1⊗ e′′0,0)(Ξ′ ⊗T Λ′′)
ξ′ ⊗ uj - ξ′ ⊗ e′′0,j ,

where j ∈ [0, n− 1], is an isomorphism of Ξ′ ⊗T Λ′′-modules.

We shall prove that F is full and faithful. Given Y1, Y2 ∈ mod- Ξ′, we claim that

Ξ′(Y1, Y2) -F
Ξ′⊗TΛ′′(FY1, FY2)

is an isomorphism. Using a two-step free resolution of Y1 and exactness of F , we may
assume that Y1 = Ξ′. Likewise, using projectivity of FΞ′ and a two-step free resolution
of Y2, we may assume Y2 = Ξ′. But in this case, we have an isomorphism

Ξ′ -∼
Ξ′(Ξ

′,Ξ′) -F∼ Ξ′⊗TΛ′′(FΞ′, FΞ′) -∼ (1⊗ e′′0,0)(Ξ′ ⊗T Λ′′)(1⊗ e′′0,0)
ξ′ - ξ′ · (−) - (ξ′ ⊗ 1) · (−) - ξ′ ⊗ e′′0,0.

Lemma 2.9 There is an isomorphism

Ext∗Ξ′(T, T ) -Ext∗(F )
∼ Ext∗Ξ′⊗TΛ′′(U,U)

of graded S-algebras with respect to the Yoneda product, where U is a Ξ′ ⊗T Λ′′-module
via U ' T ⊗T U = FT .

Proof. Since F preserves projectivity (2.8), we may apply F to a projective resolution of
T to obtain a projective resolution of U , and use this resolution to calculate Ext∗U oH(U,U).
Application of F to morphisms of complexes modulo homotopy now yields the morphism
of graded S-algebras Ext∗(F ). But since F is full and faithful (2.8), this map is an
isomorphism.
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Proposition 2.10 If n 6≡p 0, then

Ext∗T oG(T, T ) ' Ext∗U oH(U,U)

as graded S-algebras.

Proof. By (2.5), we have Ξ′⊗T Λ′′ ' Ξ ' U oH. So (2.9) gives the assertion, provided the
module structures of Ξ′⊗TΛ′′ and of U oH on U coincide. Suppose given ξ′⊗e′′k,l ∈ Ξ′⊗TΛ′′,
ξ′ ∈ Ξ′, k, l ∈ [0, n− 1]. Let (x1, . . . , xg) be an S-linear basis of T .

In the interpretation U ' T ⊗T U = FT , we have (xi ⊗ uj)(ξ′ ⊗ e′′k,l) = (xiξ
′)⊗ (∂j,ku

l) =

1⊗ (xiξ
′)(∂j,ku

l) by definition of F .

On the other hand, by (2.1), the element ξ′⊗e′′k,l is mapped via ϑ to the element in Γ that

maps xiu
j to (xiξ

′)(∂j,ku
l). So after identifying T ⊗T U ' U , the operations coincide.

Example 2.11 (cont.) We have

Ext∗Z(3)[ζ32 ]o(C3×C2)(Z(3)[ζ32 ],Z(3)[ζ32 ]) ' Ext∗Z(3)[π2]oC3
(Z(3)[π2],Z(3)[π2])

as graded Z(3)-algebras.

3 Cup product and Yoneda product coincide

In this section, we let T be a commutative ring, we let G be a group acting on T via
a group morphism G - Autring T , and define S := FixG T to be the fixed ring of this
operation. We assume that T is a free module over S.

We consider the twisted group ring T o G with respect to this operation, which is an
S-algebra.

We write ⊗ := ⊗S. Let

P := (· · · -d3
SG⊗3 -d2

SG⊗2 -d1
SG⊗1︸ ︷︷ ︸
degree 0

- 0 - · · · )

denote the bar resolution, which is a projective resolution of the trivial module S over
SG. The differential is given by

SG⊗i+1 -di SG⊗i

g[0,i]
-

∑
l∈[0,i]

(−1)i−lg[0,i]r{l}

where i > 1, and where we write shorthand

gA := ga1 ⊗ ga2 ⊗ · · · ⊗ gak ,

for A ⊆ Z, where k := #A < ∞, where ai ∈ A and gai ∈ G for i ∈ [1, k], and where

a1 < a2 < · · · < ak. Let SG -d0
S denote the augmentation map, sending each element
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of G to 1 ∈ S. We have a quasiisomorphism P -d0
S, where S is regarded as a complex

concentrated in degree 0 and where d0 also denotes the morphism of complexes given by
d0 in degree 0.

Let

Mod-SG -L Mod-(T oG)
M - LM := M ⊗SG T oG

Mod-SG �R Mod-(T oG)
N |SG =: RN � N .

Then L is left adjoint to R, with adjunction morphisms denoted by

LRN -ηN N counit
n⊗ x - nx

RLM �εM M unit
m⊗ 1 � m

We note that T ' LS, by means of x - 1 ⊗ x, xg � 1 ⊗ xg, x ∈ T , g ∈ G, which we
use as identification. Since T o G is free as a module over SG, both R and L are exact.
To complexes, R and L are applied entrywise. So for instance, RLS is the complex of
SG-modules having entry T in degree 0 and entry 0 elsewhere.

We use the description

ExtiT oG(T, T ) = K−(T oG)(LP,LP [i]) ,

where [i] denotes the shift of complexes by i steps to the left, i.e. (X[i])j := Xj−i, where
i > 0, j ∈ Z. Suppose given u ∈ K−(T oG)(LP,LP [i]), v ∈ K−(T oG)(LP,LP [j]), for some
degrees i, j > 0. The Yoneda product u · v is given as the composite

(LP -u·v LP [i+ j]) := (LP -u LP [i] -
v[i]

LP [i+ j]) ∈ K−(T oG)(LP,LP [i+ j]) .

It turns Ext∗T oG(T, T ) into a graded S-algebra.

Moreover, we use the description of the cohomology of G with coefficients in T over the
ground ring S

Hi(G, T ;S) := ExtiSG(S, T ) = K−(SG)(P,RLS[i]) = Hi(CP ) ,

where i > 0, and where C : Mod-SG - Mod-S : X -
SG(X,T ) is applied entrywise to

complexes. For a morphism f , we denote f ∗ := Cf . Let Zi(CP ) := Kern(CPi -
d∗i+1 CPi+1)

denote the S-module of i-cocycles.

We will also make use of the alternative interpretation

Hi(G, T ;S) = K−(SG)(P,RLS[i]) �λ∼ K−(SG)(P,RLP [i])
u(RLd0[i]) � u .
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Given a ∈ CPi = SG(SG
⊗i+1, T ), b ∈ CPj = SG(SG

⊗j+1, T ), for some degrees i, j > 0,
their cup product a ∪ b ∈ CPi+j = SG(SG

⊗i+j+1, T ) is defined by

(g[0,i+j])(a ∪ b) := (g[0,i])a · (g[i,i+j])b ,

where gl ∈ G for l ∈ [0, i+ j]. Because of the Leibniz rule

(a ∪ b)d∗i+j+1 = (−1)j(ad∗i+1 ∪ b) + (a ∪ bd∗j+1) ,

the cup product restricts to Zi(CP )× Zj(CP ) -∪ Zi+j(CP ) and induces a map

Hi(G, T ;S)× Hj(G, T ;S) -∪ Hi+j(G, T ;S) .

Given cocycles a ∈ Zi(CP ), b ∈ Zj(CP ), where i, j > 0, we let ca,b ∈ CPi+j−1 be defined
by

h[0,i+j−1]ca,b :=
∑

m∈[0,j−1]

(−1)m(i+j−1)(h[m,m+i])a · (h[m+i,i+j−1] ⊗ h[0,m])b ,

where hl ∈ G for l ∈ [0, i+ j − 1]. We obtain

(g[0,i+j])(ca,bd
∗
i+j) = g[0,i]a · g[i,i+j]b− (−1)ijg[0,j]b · g[j,i+j]a ,

whence a ∪ b = (−1)ij b ∪ a as elements of Hi+j(G, T ;S). Thus the cup product turns
H∗(G, T ;S) into a graded commutative S-algebra.

The following proposition we owe to B. Keller.

Proposition 3.1 The isomorphism λ−1κ of graded S-modules, given by

H∗(G, T ;S) �
λ
∼ K−(SG)(P,RLP [∗]) -κ∼ K−(T oG)(LP,LP [∗]) = Ext∗T oG(T, T )

u - (Lu)(ηLP [∗])
(εP )(Ru′) � u′ ,

is in fact an isomorphism of graded S-algebras, with respect to the cup product on
H∗(G, T ;S) and with respect to the Yoneda product on Ext∗T oG(T, T ).

In particular, Ext∗T oG(T, T ) is a graded commutative S-algebra.

Note that H0(G, T ;S) ' HomT oG(T, T ) ' S as S-algebras.

Proof. Given u ∈ K−(SG)(P,RLP [i]), v ∈ K−(SG)(P,RLP [j]), where i, j > 0, we calculate

((uκ) · (vκ))κ−1 =
(

(Lu)(ηLP [i])(Lv[i])(ηLP [i+ j])
)
κ−1

= (εP )(RLu)(RηLP [i])(RLv[i])(RηLP [i+ j])

= u(RLv[i])(RηLP [i+ j]) .

Now suppose given a ∈ Zi(CP ), b ∈ Zj(CP ). Letting Pi+l -
ãi+l

RLPl be defined by

(g[0,i+l])ãi+l := (−1)ilg[0,l] ⊗ (g[l,i+l]a) ,
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where l > 0 and gk ∈ G for k ∈ [0, i+ l], we obtain a morphism of complexes P -ã RLP [i]

that is mapped by λ to P -a RLS[i]. Hence

(g[0,i+j])
(

((aλ−1κ) · (bλ−1κ))κ−1λ
)

= (g[0,i+j])
(

((ãκ) · (b̃κ))κ−1λ
)

= (g[0,i+j])ãi+j(RLb̃j)(RηL(SG))(RLd0[i+ j])

= (−1)ij(g[0,j] ⊗ (g[j,i+j]a))(RLb̃j)(RηL(SG))(RLd0[i+ j])

= (−1)ij(g0 ⊗ (g[0,j]b)⊗ (g[j,i+j]a))(RηL(SG))(RLd0[i+ j])

= (−1)ij(g0 ⊗ (g[0,j]b) · (g[j,i+j]a))(RLd0[i+ j])

= (−1)ij(g[0,j]b) · (g[j,i+j]a)

= (−1)ij(g[0,i+j])(b ∪ a) ,

i.e.
(aλ−1κ) · (bλ−1κ) = (a ∪ b)λ−1κ .

Remark 3.2 The graded commutativity of Ext∗T oG(T, T ) can also be obtained by [30, 2.1].

4 Cohomology

4.0 A classical approach

Example 4.1 We shall calculate the cohomology directly in an example, still disregarding
the cup product, however.

Let π2 =
∏
j∈[1,p−1](ζ

jp

p2 − 1), cf. §5.2 below. Let

S = Z(p) , K = Q ,
T = Z(p)[π2] , L = Q(π2) .

Then G = Cp = 〈σ〉, where σ is the restriction to Q(π2) to the automorphism ζp2 - ζ1+p
p2

of Q(ζp2). Let e := 1
p

∑
j∈[0,p−1] σ

j ∈ QG. We have a split short exact sequence of
SG-modules

0 - M - T - S - 0
x - xe
y � y ,

which is welldefined since TrL|K(x) is divisible by p for all x ∈ T because T |S is wildly
ramified.

Now M is an SG(1 − e)-lattice of rank rkSM = p − 1. Since SG(1 − e) is isomorphic to
S[ζp] via σ(1 − e) -∼ ζp as an S-algebra, we have M ' SG(1 − e). Using the 2-periodic
projective resolution

· · · -b SG -a SG -b SG - 0
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of S, where a : 1 - pe and b : 1 - σ − 1, we obtain

Hj(G,T ;S) ' Hj(G,SGe⊕ SG(1− e);S)

' Hj(G,SGe;S)⊕Hj(G,SG(1− e);S)

'

 0 j odd
Fp j > 2 even
S j = 0

⊕
{

Fp j odd
0 j even

}

'
{

Fp j > 1
S j = 0

}
as an S-module. This will be confirmed by (4.6, 5.4) below, since Hj(G,T ;S) ' ExtjT oG(T, T )
by adjunction.

Remark 4.2 We attempt to explain why in the case of a cyclic galois group, and in presence
of a classical periodic resolution, the description in (1.19) is actually useful to calculate
products in cohomology.

For the purpose of this remark, let G = 〈σ |σg = 1〉 be a cyclic group of order g > 1 acting
on the discrete valuation ring T , let S = FixGT be the fixed ring in T under G, and let
L = fracT , K = fracS. Let

T oG -α0
T oG : 1 -

(∑
i∈Z/g σ

i
)

T oG -β0
T oG : 1 - (σ − 1)

T oG -ε0 T : 1 - 1

be T oG-linear maps. We obtain a periodic projective resolution of period 2

P0 :=

· · · - T oG -α0
T oG -β0

T oG -α0
T oG -β0

T oG︸ ︷︷ ︸
degree 0

- 0 - · · ·

 ,

mapping quasiisomorphically to T via ε0 in degree 0 since the image of α0 is isomorphic to
T via T -∼ Imα0, x - ∑

i∈Z/g σ
ix. So we have

RHomT oG(T, T ) =· · · � T �
TrL|K

T �x
σ−x� x

T �
TrL|K

T �x
σ−x� x

T︸︷︷︸
degree 0

� 0 � · · ·

 ,

whence for instance Ext1
T oG(T, T ) ' {x ∈ T : TrL|K(x) = 0}/{yσ − y : y ∈ T}, or

Ext2
T oG(T, T ) ' S/TrL/K(T ). Suppose given an element of, say, Ext1

T oG(T, T ), represented
by an element e ∈ T with trace 0. To apply Yoneda multiplication, we need to represent it as
an element of K−(T oG)(P0, P0[1]). Let us consider the necessary construction of a morphism
of complexes. We attempt to construct a periodic resolution of e with period 2. If in odd
degrees, the morphism of complexes is given by 1 - ∑

i∈Z/g σ
ixi, and in even degrees > 2

by 1 - ∑
i∈Z/g σ

iyi, where xi, yi ∈ T , then these coefficients are subject to the following
conditions. ∑

i xi = e

(
∑
i σ

ixi)(
∑
j σ

j) = (σ − 1)(
∑
i σ

iyi)

(
∑
j σ

j)(
∑
i σ

ixi) = (
∑
i σ

iyi)(σ − 1) ,
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i.e. ∑
i xi = e∑

i+j≡gk x
σj

i = yk−1 − yk for all k ∈ Z/g
e = yσk−1 − yk for all k ∈ Z/g .

As far as we can see, solving this system requires knowledge of the operation of σ on T in
terms of an S-linear basis of T . Cf. e.g. (1.4) or appendix A.2.

4.1 A projective resolution

We maintain the notation and assumptions of §1.5. In particular, G = Cp = 〈σ〉 is cyclic
of order equal to the residue characteristic p of S, and b = −1+vt(t

σ− t) > 1. To dispose
of the equality Ξ = ΛD, we assume that vs(p) > b− b (1.19).

Let

Ξ -α Ξ : 1 - µ̃p−1,p−b := sb−b−1 εb,p−b

Ξ -β Ξ : 1 - µ1,b = sb
∑

i∈[0,p−1] iεi,b

Ξ -χk T : 1 - tk for k ∈ [0, p− 1]

be Ξ-linear maps (cf. 1.17). Here µ̃p−1,p−b is a ‘shifted version’ of µp−1,p−b (cf. 1.18).

Proposition 4.3 The complex of Ξ-linear maps

· · · -β Ξ -α Ξ -β Ξ -α Ξ -β Ξ -α · · · ,

periodic of period 2, is acyclic. The image of α is isomorphic to T as a module over Ξ;
more precisely, we have a factorization

(Ξ -α Ξ) = (Ξ -χ0
T - Ξ),

with χ0 surjective and T - Ξ injective.

Denote by

P := (· · · - Ξ -α Ξ -β Ξ︸︷︷︸
degree 0

- 0 - · · · ) ∈ K−(Ξ)

the resulting projective resolution of T .

Proof. We claim exactness of Ξ -α Ξ -β Ξ. To prove that αβ = 0, we calculate

µ1,b µ̃p−1,p−b = sb−1
∑

i∈[0,p−1] iεi,b εb,p−b
(1.6)
= sb−1

∑
i∈[0,p−1] i∂ b,i+b εi,p

= 0 .
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Now, let B ⊆ Λ be the kernel of the Λ-linear map Λ - Λ, 1 - µ1,b. To prove that
Imα = Kern β, we shall show that the S-linear colengths of both submodules in B
coincide. For j, k ∈ [0, p− 1], we have

µ1,b εj,k = sb
∑

i∈[0,p−1] iεi,b εj,k
(1.6)
= sb

∑
i∈[0,p−1] i∂j,i+b εi,k+b

= sb j − b εj−b,k+b ,

and thus B has the S-linear basis (εb,k)k∈[0,p−1]. By (1.17), an element
∑

k∈[0,p−1] xkεb,k,
where xk ∈ S, is in Ξ if and only if

vs(xk) > 1 + b(p− 1)− k − 1

for k ∈ [0, p − 1]. By (1.12), we obtain the colength of Kern β in B to be equal to∑
k∈[0,p−1](1 + b(p− 1)− k − 1) = b(p− 1). On the other hand we obtain

µl,jα = µ̃p−1,p−b µl,j

= sb−b+bl−j−1
∑

i∈[0,p−1]

(
i
l

)
εb,p−b εi,j

(1.6)
= sb−b+bl−j−1

∑
i∈[0,p−1]

(
i
l

)
∂i,0 εb,j+p−b

= ∂l,0s
b−b−1εb,j+p−b

=


sb−b−1εb,j+p−b for l = 0 and j ∈ [0, b− 1]

sb−b εb,j−b for l = 0 and j ∈ [b, p− 1]
0 for l ∈ [1, p− 1] ,

where l, j ∈ [0, p−1], whence the colength of Imα in B equals (b−b−1)p+(p−b) = b(p−1),
too. Thus Imα = Kern β.

Moreover, since
µl,jχ0 = s1+bl−j−1

∑
i∈[0,p−1]

(
i
l

)
t0εi,j

= ∂l,0t
j ,

where l, j ∈ [0, p− 1], the Ξ-linear isomorphism

T -∼ Ξα
tj - sb−b−1εb,j+p−b

yields the commutativity

( Ξ -α Ξα ) = ( Ξ -χ0
T -∼ Ξα ) .

We claim exactness of Ξ -β Ξ -α Ξ. To prove that βα = 0, we calculate

µ̃p−1,p−b µ1,b = sb−1
∑

i∈[0,p−1] iεb,p−b εi,b
(1.6)
= sb−1

∑
i∈[0,p−1] i∂i,0 εb,p

= 0 .
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Now, let A ⊆ Λ be the kernel of the Λ-linear map Λ - Λ, 1 - µ̃p−1,p−b. To prove
that Im β = Kernα, we shall show that the S-linear colengths of both submodules in A
coincide. For j, k ∈ [0, p− 1], we have

εj,kα = sb−b−1εb,p−b εj,k
(1.6)
= sb−b−1∂j,0 εb,p−b+k ,

and therefore A has the S-linear basis (εj,k)j∈[1,p−1], k∈[0,p−1]. By (1.17), Kernα = Ξ ∩ A
has the S-linear basis (µl,j)l∈[1,p−1], j∈[0,p−1], whence the colength of Kernα in A equals
bp(p− 1)/2 (cf. pf. of 1.17). On the other hand, using the S-linear basiss1+bl−j−1

∑
k∈[0,p−1]

(
k
l

)
εk+b+1,j


l,j∈[0,p−1]

of Ξ (1.18), we obtain(
s1+bl−j−1

∑
k∈[0,p−1]

(
k
l

)
εk+b+1,j

)
β

= sb+1+bl−j−1
∑

i∈[0,p−1]

∑
k∈[0,p−1] i

(
k
l

)
εi,b εk+b+1,j

(1.6)
= sb+1+bl−j−1

∑
i∈[0,p−1]

∑
k∈[0,p−1] i

(
k
l

)
∂ k+b+1,i+b εi,b+j

= sb+1+bl−j−1
∑

i∈[l+1,p−1] i
(
i−1
l

)
εi,b+j

= sb+1+bl−j−1+b+j
∑

i∈[l+1,p−1] i
(
i−1
l

)
εi,b+j .

This yields the colength of Im β in A to be equal to∑
j∈[0,p−1]

∑
l∈[0,p−2](b+ j + b+ 1 + bl − j − 1)

(1.12)
= b(p− 1) + (b+ 1)p(p− 1) +

∑
l∈[0,p−2](bl − p)

= bp(p− 1)/2 ,

too. Thus Im β = Kernα.

Example 4.4 (cont.) For Ξ ' Z(3)[π2] o C3, we have b = 1 and b = 0, thus obtaining the
projective resolution

P =

· · · - Ξ -

"
0 0 0
0 0 1

3·2 0 0

#
·(−)

Ξ -

"
0 0 0

3·1 0 0
0 0 0

#
·(−)

Ξ -

"
0 0 0
0 0 1

3·2 0 0

#
·(−)

Ξ︸︷︷︸
degree 0

- 0 - · · ·


of T , with quasiisomorphism given by Ξ -χ0

T in degree 0, sending ξ =
[ a0,0 a0,1 a0,2

3a1,2 a1,0 a1,1
3a2,1 3a2,2 a2,0

]
∈ Ξ

to t0ξ = a0,0t
0 + a0,1t

1 + a0,2t
2. Representing elements of T as row vectors with entries in

S with respect to the basis (t0, t1, t2), the map χ0 is given by [1 0 0 ] · (−).

4.2 The Yoneda ring

Remark 4.5 An S-linear basis of Ξ(Ξ, T ) is given by (χi)i∈[0,p−1]. The restriction map

Λ(Λ, T ) -
Ξ(Ξ, T )

is an isomorphism.
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Proposition 4.6 We have

Ext0
T oG(T, T ) = S〈χ0〉

' S ,

Ext2i
T oG(T, T ) = S〈χ0〉/S〈sb−b · χ0〉

' S/sb−b for i > 1 , and

Ext2i+1
T oG (T, T ) =

S〈 χ0, . . . , χb−1, χb+1, . . . , χp−1〉
S〈sb+1χ0, . . . , sb+1χb−1, s

bχb+1, . . . , s
bχp−1〉

'

 ⊕
k∈[0,b−1]

S/sb+1

⊕
 ⊕
k∈[b+1,p−1]

S/sb

 for i > 0 .

The element represented by χ0 in Ext2i
T oG(T, T ) shall be written χ

(2i)
0 , the element repre-

sented by χj in Ext2i+1
T oG (T, T ) shall be written χ

(2i+1)
j , where i > 0, j ∈ [0, p− 1] r {1}.

Proof. We calculate Ξ(Ξ, T ) -α
∗

Ξ(Ξ, T ), χ - αχ. Given k ∈ [0, p− 1], we get

1Ξ(χkα
∗) = (1Ξα)χk

= (sb−b−1εb,p−b)χk

= sb−b−1(1Ξ χk)εb,p−b
= ∂ b,ks

b−b

= ∂ b,ks
b−b(1Ξ χ0) ,

i.e.
χkα

∗ = ∂ b,ks
b−b · χ0 .

We calculate Ξ(Ξ, T ) -β
∗

Ξ(Ξ, T ), χ - βχ. Given k ∈ [0, p− 1], we get

1Ξ(χkβ
∗) = (1Ξβ)χk

= (sb
∑

i∈[0,p−1] iεi,b)χk

= sb
∑

i∈[0,p−1] i∂i,kt
k+bsk+b

= ksk+b+b(1Ξ χk+b) ,

i.e.
χkβ

∗ = ksk+b+b · χk+b .

The shape of the Ext-groups now follows by (4.3).

Lemma 4.7 We have

sb+j−2b
(
(b− j)−1ε2b−j,j−2b + (j − b)−1εb,j−2b

)
∈ Ξ

for j ∈ [0, p− 1] r {b}.
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Proof. First of all, we have b+ j − 2b > b+−2b = b− 1− 2b− 1 and p(b− 1− 2b− 1) =

(p− 2)(b− 1) + 2b− 1− 1 > 0, both if b = 1 or if b > 1. So the element in question is in
Λ.

By (1.17), we have to prove that for l ∈ [0, p− 1],

vs

(
(−1)2b−j

(
l

2b−j

)
(b− j)−1 + (−1)b

(
l

b

)
(j − b)−1

)
> 1+bl − j − 2b− 1−(b+j − 2b) .

If l ∈ [0, p− 2], then

1 + bl − j − 2b− 1 6 1 + b(p− 2)− j − 2b− 1 = b+ j − 2b .

If l = p− 1 then

1 + b(p− 1)− j − 2b− 1− (b+ j − 2b) = −j − b .

Now (−1)h
(
p−1
h

)
≡p 1 for h ∈ [0, p − 1] and (b− j)−1 + (j − b)−1 ≡p 0 together with

vs(p) > b− b > −j − b, both if b = 1 or if b > 1, yield the result.

Let

Ξ -µj Ξ : 1 - µ0,j =
∑

i∈[0,p−1] εi,j

Ξ -νj Ξ : 1 - sb+j−2b
(
(b− j)−1ε2b−j,j−2b + (j − b)−1εb,j−2b

)
be Ξ-linear maps for j ∈ [0, p− 1] r {b}. By (4.7), the map νj is welldefined.

Lemma 4.8 For j ∈ [0, p− 1] r {b}, we obtain

νjβ = αµj
µjα = βνj
µjχ0 = χj.

That is, for i > 0, we obtain a representative

· · · - Ξ -β
Ξ -α

Ξ -β
Ξ -α

degree 2i+ 1︷︸︸︷
Ξ -β

Ξ -α · · ·

?

µj

?

νj

?

µj

?

νj

?

µj

?

· · · - Ξ -α
Ξ -β

Ξ -α
Ξ -β

Ξ - 0 - · · ·

B
B
B
B
B
B
BN

χj

@@Rχ0

T .

in K−(Ξ)(P, P [2i+ 1]) of χ
(2i+1)
j ∈ Ext2i+1

T oG (T, T ).

Moreover, for i > 0, we obtain a representative
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· · · - Ξ -α
Ξ -β

Ξ -α
Ξ -β

degree 2i︷︸︸︷
Ξ -α

Ξ -β · · ·

?

1Ξ

?

1Ξ

?

1Ξ

?

1Ξ

?

1Ξ

?

· · · - Ξ -α
Ξ -β

Ξ -α
Ξ -β

Ξ - 0 - · · ·

B
B
B
B
B
B
BN

χ0

@@Rχ0

T .

in K−(Ξ)(P, P [2i]) of χ
(2i)
0 ∈ Ext2i

T oG(T, T ).

Proof. We claim that νjβ = αµj. On the one hand, we obtain

1Ξ(νjβ) = sb+b+j−2b
∑

i∈[0,p−1]

(
i(b− j)−1εi,b ε2b−j,j−2b + i(j − b)−1εi,b εb,j−2b

)
(1.6)
= sb+b+j−2b

∑
i∈[0,p−1] i(b− j)−1∂ 2b−j,i+b εi,b+j−2b

= sb+b+j−2b εb−j,b+j−2b

= sb−b−1εb−j,j+p−b .

On the other hand, we obtain

1Ξ(αµj) = sb−b−1
∑

i∈[0,p−1] εi,j εb,p−b
(1.6)
= sb−b−1

∑
i∈[0,p−1] ∂ b,i+j εi,j+p−b

= sb−b−1εb−j,j+p−b .

We claim that µjα = βνj. On the one hand, we obtain

1Ξ(βνj) = sb+b+j−2b
∑

i∈[0,p−1]

(
i(b− j)−1ε2b−j,j−2b εi,b + i(j − b)−1εb,j−2b εi,b

)
(1.6)
= sb+b+j−2b

∑
i∈[0,p−1] i(j − b)−1∂i,j−b εb,b+j−2b

= sb+b+j−2b εb,b+j−2b

= sb−b−1εb,j−b+p .

On the other hand, we obtain

1Ξ(µjα) = sb−b−1
∑

i∈[0,p−1] εb,p−bεi,j
(1.6)
= sb−b−1

∑
i∈[0,p−1] ∂i,0εb,j−b+p

= sb−b−1εb,j−b+p .

We claim that µjχ0 = χj. In fact,

1Ξ(µjχ0) =
∑

i∈[0,p−1] t
0εi,j

=
∑

i∈[0,p−1] ∂i,0t
j

= tj

= 1Ξ χj .

Example 4.9 (cont.) If Ξ ' Z(3)[π2] o C3, then b = b = 1; ν0 =
[0 0 0

0 0 1/2
3 0 0

]
· (−),

µ0 =
[

1 0 0
0 1 0
0 0 1

]
· (−); ν2 =

[
3/2 0 0
0 3 0
0 0 0

]
· (−), µ2 =

[
0 0 1
3 0 0
0 3 0

]
· (−).
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Theorem 4.10 We have isomorphisms of graded S-algebras

S
[
h

(1)
0 , . . . , h

(1)

b−1
;h

(1)

b+1
, . . . , h

(1)
p−1;h

(2)
0

]


sb+1h
(1)
0 , . . . , sb+1h

(1)

b−1
; sbh

(1)

b+1
, . . . , sbh

(1)
p−1; sb−bh

(2)
0 ;

h
(1)
j · h

(1)
k − ∂ j+k,2b sb+j+k−2b (b− j)−1h

(2)
0

for j, k ∈ [0, p− 1] r {b}


-∼ Ext∗T oG(T, T ) -∼ H∗(G, T ;S)

h
(1)
j

- χ
(1)
j , j ∈ [0, p− 1] r {b}

h
(2)
0

- χ
(2)
0 ,

as quotient of the graded commutative polynomial ring S[h
(1)
0 , . . . , h

(1)

b−1
;h

(1)

b+1
, . . . , h

(1)
p−1;h

(2)
0 ]

with grading determined by deg h
(1)
j = 1 for j ∈ [0, p− 1] r {b} and deg h

(2)
0 = 2.

Proof. The isomorphism Ext∗T oG(T, T ) -∼ H∗(G, T ;S) of graded S-algebras with respect
to the Yoneda product resp. to the cup product is a consequence of (3.1).

We shall exhibit the ring structure on the graded S-module Ext∗T oG(T, T ) (cf. 4.6). By
(4.8), we obtain

χ
(2i)
0 · χ

(2j)
0 = χ

(2i+2j)
0 ∈ Ext2i+2j

T oG (T, T )

χ
(2i)
0 · χ

(2j+1)
k = χ

(2i+2j+1)
k ∈ Ext2i+2j+1

T oG (T, T )

for i, j > 0 and k ∈ [0, p − 1] r {b}. It remains to calculate χ
(1)
j · χ

(1)
k ∈ Ext2

T oG(T, T )

for j, k ∈ [0, p − 1] r {b}. Using (4.8) to represent χj in K−(Ξ)(P, P [1]), this product is
represented by the 2-cocycle νjχk ∈ Ξ(Ξ, T ). We obtain

1Ξ(νjχk) = tksb+j−2b
(
(b− j)−1ε2b−j,j−2b + (j − b)−1εb,j−2b

)
= tksb+j−2b (b− j)−1ε2b−j,j−2b

= sb+j−2b (b− j)−1∂k,2b−j t
k+j−2bsk+j−2b

= sb+j+k−2b (b− j)−1∂ j+k,2b t
0 ,

i.e. νjχk = ∂ j+k,2b s
b+j+k−2b (b− j)−1χ0. Hence

χ
(1)
j · χ

(1)
k = ∂ j+k,2b s

b+j+k−2b (b− j)−1χ
(2)
0 .

Remark 4.11 Since j + k = 2b implies (b− j)−1 ≡p −(b− k)−1, and since vs(p) > b− b,
we obtain the graded commutativity of Ext∗T oG(T, T ) without reverting to the graded com-
mutativity of the cup product.

For instance, if b = p+ 1, then χ(1)
0 ·χ

(1)
2 = sp−1χ

(2)
0 6= 0. In particular, Ext∗T oG(T, T ) is not

commutative in this case.
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Corollary 4.12 If b = 1, then we have isomorphisms of graded S-algebras

S[h(1), h(2)]/(sh(1), sh(2), (h(1))2) -∼ Ext∗T oG(T, T ) -∼ H∗(G, T ;S) ,

as quotient of the commutative polynomial ring S[h(1), h(2)] with grading determined by
deg h(1) = 1, deg h(2) = 2.

Proof. In fact, we have b = 0. There are no nonzero products of homogeneous elements
of odd degree, so we may use the commutative polynomial ring.

Example 4.13 (cont.) We have H∗(C3,Z(3)[π2]; Z(3)) ' Z(3)[h(1), h(2)]/(3h(1), 3h(2), (h(1))2).
Note that H0(C3,Z(3)[π2]; Z(3)) ' Z(3), and that Hi(C3,Z(3)[π2]; Z(3)) ' F3 for i > 1.

5 Applications

We give some applications, refraining, however, from a repetition of (4.10) in different
instances.

5.1 Lubin-Tate extensions

The results apply to certain of the extensions of local fields described by Lubin and Tate

[21]. An introduction to their theory is also given in [28, p. 146 ff.].

Let p > 3 be a prime. Let B be a local field with discrete valuation ring R, whose
maximal ideal is generated by π. Assume that R/π ' Fp. We choose the Lubin-Tate
series f(X) = Xp + πX ∈ R[[X]], and obtain the unique commutative formal group

F (X, Y ) = X + Y
− (π − πp)−1((X + Y )p − (Xp + Y p))

− p(π − πp)−1(π − π2p−1)−1

 πp−1(X + Y )p−1(Xp + Y p)
− (X + Y )p−1((X + Y )p − (Xp + Y p))
− πp−1(X2p−1 + Y 2p−1)


+ O(degree 3p− 2) ∈ R[[X, Y ]]

such that F (f(X), f(Y )) = f(F (X, Y )). There is an injective ring morphism

R - EndF
a - [a](X) ,

where [a](X) ∈ R[[X]] is uniquely determined by [a](X) ≡X2 aX and the endomorphism
property F ([a](X), [a](Y )) = [a](F (X, Y )). So for instance, [π](X) = f(X) = Xp + πX.
We write Pn(X) := [πn](X) ∈ R[X] for n > 0, so that P0(X) = X, P1(X) = f(X) =
Xp + πX and Pn(X) = Pn−1(X)p + πPn−1(X). Moreover, Pn(0) = 0, degPn(X) = pn,
Pn(X) ≡π Xpn and P ′n(X) ≡p πn.
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Let B̄ be an algebraic closure of B, and let m̄ = {x ∈ B̄ : NB(x)|B(x) ∈ Rπ} ⊆ B̄
be the maximal ideal of its valuation ring, which becomes an abelian group (m̄, ∗) via
x ∗ y := F (x, y). Moreover, m̄ becomes an R-module via

R - End(m̄, ∗)
a - ( [a] : x - [a] · x := [a](x) ) .

For n > 1, we let
µn := ann[πn]m̄ = {x ∈ K̄ : Pn(x) = 0} .

By separability of Pn(X), we have #µn = pn for each n > 1, whence µn ' R/πn as R-
modules. Let ϑn be an R-linear generator of µn, chosen in such a way that [π](ϑn) = ϑn−1.
We have µϑn,B(X) = Pn(X)/Pn−1(X) = Pn−1(X)p−1 +π, whence B(µn) = B(ϑn) is galois
over B with

(R/πn)∗ -∼ Gal(B(µn)|B)
u - ( 〈u〉 : ϑn - [u](ϑn) ) .

Now R[ϑn]|R is purely ramified, and as different we obtain

DR[ϑn]|R =
(
µ′ϑn,B(ϑn)

)
= (P ′n(ϑn)/Pn−1(ϑn))

=
(
P ′n−1(ϑn)(pϑp−1

1 + π)/ϑ1

)
=

(
P ′n−2(ϑn)(pϑp−1

2 + π)(pϑp−1
1 + π)/ϑ1

)
= · · ·
=

(
ϑ−1

1

∏
i∈[1,n](pϑ

p−1
i + π)

)
=

(
ϑ−1

1 πn
)
,

whence DR[ϑn]|R[ϑn−1] = (π) = (ϑ
pn−1(p−1)
n ).

Example 5.1 Let n > 2. We may apply (1.19, 4.10) to

S = R[ϑn−1] s = ϑn−1

T = R[ϑn] t = ϑn
b = pn−1 − 1

b = pn−2 − 1 b = p− 1 .

The value of b results from the different by the formula vt(DT |S) = (p− 1)(b+ 1) (1.14).
Moreover, vs(p) > vs(π) = pn−2(p− 1) = b− b .

We have F∗p -
�� (R/πn)∗ by sending j - jp

n−1
. For n > 1, we let

πn :=
∏
j∈F∗p

ϑ〈j
pn−1 〉

n =
∏

j∈[1,p−1]

[jp
n−1

](ϑn) .

Then R[πn] is purely ramified over R, of degree pn−1 and with maximal ideal generated
by πn. In particular, π1 = π. Moreover, πn = NB(ϑn)|B(πn)(ϑn).
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As different, we obtain

DR[πn]|R[πn−1] = D−1
R[ϑn]|R[πn]DR[ϑn]|R[ϑn−1]DR[ϑn−1]|R[πn−1]

= (ϑp−2
n )−1(ϑ

pn−1(p−1)
n )(ϑ

p(p−2)
n )

= (πp
n−1+p−2
n )

[28, III.§3, prop. 13].

Example 5.2 Let n > 2, p > 3. We may apply (1.19, 4.10, 2.10) to

S = R[πn−1] s = πn−1

T = R[πn] t = πn
U = R[ϑn] u = ϑn
b = (pn−1 − 1)/(p− 1)

b = (pn−2 − 1)/(p− 1) b = 1 ,

The value of b results from the different by the formula vt(DT |S) = (p− 1)(b+ 1) (1.14).
Moreover, vs(p) > vs(π) = pn−2 = b− b .

In particular, (3.1, 2.10) yield isomorphisms of graded S-algebras

H∗(Cp × Cp−1, U ;S) ' Ext∗U o(Cp×Cp−1)(U,U) ' Ext∗T oCp(T, T ) ' H∗(Cp, T ;S) .

5.2 Cyclotomic number field extensions

Passing to completions without changing cohomology, we may consider cyclotomic number
field extensions as particular Lubin-Tate extensions. For sake of illustration, we recall the
cyclotomic framework; in it, there is no need for completion, since the formal group law
is given by the polynomial F (X,Y ) = X + Y + XY . Strictly speaking, since in §5.2 we
choose a different Lubin-Tate series as in §5.1, viz. (X + 1)p− 1 instead of Xp + pX, we are
not directly specializing to this cyclotomic case. So keeping the notation of §5.1 is a slight
abuse.

Let p > 3 be a prime. For n > 1, we let ζpn be a primitive pnth root of unity over Q. We
make choices in such a manner that ζppn = ζpn−1 for n > 2 and denote ϑn := ζpn − 1. Let

πn =
∏

j∈[1, p−1]

(ζj
pn−1

pn − 1) .

Then Q(ϑn) = Q(ζpn), Q(πn) = FixCp−1 Q(ϑn) and πn = NQ(ϑn)|Q(πn)(ϑn).

We have NQ(ϑn)|Q(ϑn−1)(ϑn) = ϑn−1 and NQ(πn)|Q(πn−1)(πn) = πn−1. Note that π1 = p.

The integral closure of Z(p) in Q(ϑn) is given by the discrete valuation ring Z(p)[ϑn], with
maximal ideal generated by ϑn, purely ramified over Z(p); the integral closure of Z(p) in
Q(πn) is given by the discrete valuation ring Z(p)[πn], with maximal ideal generated by
πn, purely ramified over Z(p).
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Example 5.3 Let n > 2. We may apply (1.19, 4.10) to

S = Z(p)[ϑn−1] s = ϑn−1

T = Z(p)[ϑn] t = ϑn
b = pn−1 − 1

b = pn−2 − 1 b = p− 1 .

We remark that vs(p) = pn−2(p− 1) = b− b.

Example 5.4 Let n > 2, p > 3. We may apply (1.19, 4.10, 2.10) to

S = Z(p)[πn−1] s = πn−1

T = Z(p)[πn] t = πn
U = Z(p)[ϑn] u = ϑn
b = (pn−1 − 1)/(p− 1)

b = (pn−2 − 1)/(p− 1) b = 1 ,

where b is e.g. calculated using [28, VI.§1, prop. 3]. We remark that vs(p) = pn−2 = b−b.
In particular, (3.1, 2.10) yield

H∗(Cp × Cp−1, U ;S) ' H∗(Cp, T ;S) .

Hence, for instance,

H∗((Z/p2)∗,Z(p)[ζp2 ]; Z(p)) ' Z(p)[h
(1), h(2)]/(ph(1), ph(2), (h(1))2)

(cf. 4.12).

Remark 5.5 In the same manner, (1.19, 4.10, 2.10) may be applied to certain cyclotomic
function field extensions as defined by Carlitz and Hayes (cf. [9], [14]; see also [18, sec.
6.1]). Up to completion, these also form a particular case of Lubin-Tate-extensions; again,
there is no need for completion, the formal group law being given by F (X,Y ) = X + Y .

A The case Cp2: a conjecture and an experiment

So far, we have essentially only treated the case of an extension with galois group Cp. The
galois group Cp2 seems to yield a somewhat more involved twisted group ring, which we
would like to illustrate in the case of Z(p)[π3] oCp2 . The calculations were carried out using
Magma [22].

A.1 The conjectural situation

Suppose given a prime p > 3. We maintain the notation of §5.2 concerning πn. Let

S = Z(p) , s = π1 = p ,
T = Z(p)[π2] , t = π2 ,
U = Z(p)[π3] , u = π3 ,
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and let G = Cp2 be generated by the restriction of ζp3 -σ ζp+1
p3 from Q(ζp3) to Q(π3). (The role of U in

this appendix differs from the role of U in §2, where it has been a ‘cohomologically inessential’ extension
of T .)

For some peculiar reason, t will not play a role at all. Instead, we consider a Sen element (cf.
[27, Lem. 1])

v :=
∏

i∈[0,p−1]

uσ
i

.

The S-linear colength of the Wedderburn embedding

U o Cp2 -
�� ω

Γ := EndS U

is p2(p2 + (p2 − p− 2)/2) [17, (2.17)]. We fix the S-linear basis

(uivj)i∈[0,p−1], j∈[0,p−1] = (u0v0, u0v1, . . . , u0vp−1, u1v0, . . . , u1vp−1, . . . , up−1v0, . . . , up−1vp−1)

of U with respect to which we represent elements of Γ as matrices, i.e. by means of which we identify
Γ = Sp

2×p2 .

Remark A.1 We have
vu(uσ − u) = 1 + 1
vu(vσ − v) = 1 + 2p .

Proof. The second congruence is equivalent to vu(uσ
p − u) = 1 + (p+ 1), so that both assertions follow

from [28, VI.§1, prop. 3].

As usual, let Ξ denote the image of the Wedderburn embedding

U o Cp2 -ω Γ
u - (u̇ : x - xu)
σ - (σ̇ : x - xσ) ,

and let
Λ :=

{
f ∈ Γ : (Uui)f ⊆ Uui for all i ∈ [0, p− 1]

}
⊆ Γ .

By (A.1) we obtain the intermediate ring

Ξ ⊆ ΛD := Λ((u̇, v̇), (p− 1, p− 1), (2, 2p+ 1))u̇Λ

= {f ∈ Λ : Di
u̇ ◦D

j
v̇(f) ≡u̇2i+(2p+1)jΛ 0 for all i, j ∈ [0, p− 1]}

⊆ Λ ,

cf. (1.1). Presumably, this is the smallest intermediate ring between Ξ and Λ that can be defined by
derivations.

Conjecture A.2

(i) Given τ ∈ Cp2 , we conjecture that

2(v − vτ ) + (uτ )p(u− uτ )up−1 + ((uτ )2p−1 − (uτ )2p)(u− uτ ) ≡u2p+3 0 .
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(ii) Moreover, we conjecture that

ΛD, E := {f ∈ ΛD : Di
u̇ ◦ E

j
u̇,v̇(f) ≡u̇2i+(2p+3)jΛ 0 for all i, j ∈ [0, p− 1]}

contains Ξ, where

Eu̇,v̇(f) := 2Dv̇(f) + u̇pDu̇(f)u̇p−1 + (u̇2p−1 − u̇2p)Du̇(f) .

Remark A.3

(i) Conjecture (A.2.i) holds for p ∈ {3, 5, 7}.

(ii) If p = 3, we obtain the colengths

Ξ = ΛD, E
9·(3−1)

⊆ ΛD
9·(3·(3+1)/2−1)

⊆ Λ
9·(9−1)/2

⊆ Γ .

(iii) If p = 5, we obtain the colengths

Ξ
25·(5−1)(5−3)/2

⊆ ΛD, E
25·(5−1)

⊆ ΛD
25·(5·(5+1)/2−1)

⊆ Λ
25·(25−1)/2

⊆ Γ .

(iv) According to our wishful thinking, (A.2.i) should be part of a series of congruences in U that
completely describes Ξ by adding the according congruences in Λ to the provisional definition of
ΛD, E given in (A.2.ii).

(v) Since Eju̇,v̇ is not a derivation, we do not know whether (A.2.i) implies (A.2.ii).

A.2 Simplifying u̇, v̇

A.2.1 The case p = 3

Suppose p = 3, i.e. S = Z(3), u = π3 = (ζ27 − 1)(ζ−1
27 − 1), v = u uσuσ

2
= (ζ27 − 1)(ζ−1

27 − 1)(ζ4
27 − 1)·

·(ζ−4
27 − 1)(ζ16

27 − 1)(ζ−16
27 − 1) and U = Z(3)[π3].

With respect to the basis (u0v0, u0v1, u0v2, u1v0, u1v1, u1v2, u2v0, u2v1, u2v2), the multiplication by u on
U is given by

u̇ =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

− 2433
7217

3119
1031 −

2151
7217 −

6249
7217 −

12225
1031

1168
1031

19680
7217

25540
7217 −

306
1031

− 4050
7217

3777
1031

593
7217

18804
7217 −

20163
1031

987
1031 − 6885

7217
64005
7217 −

278
1031

− 111
7217 −

1026
1031

50145
7217

18189
7217 −

14604
1031 −

12306
1031 −

6684
7217

29259
7217

6603
1031



≡u̇6Λ


0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 −1 0 −1 0
0 0 1 −3 0 0 0 0 −1
3 0 0 0 −3 0 −3 0 0

 =:
...
u ≡u̇3Λ


0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

 =: ü ,
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the multiplication by the Sen-element v by

v̇ =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
2256
1031 − 19548

1031
31788
1031

2484
1031 − 3456

1031 −
31626
1031 − 495

1031 − 7083
1031

10224
1031

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
27891
7217 − 37620

1031
494226
7217

69981
7217 −

19980
1031 −

97587
1031 −

11043
7217 −

186021
7217

35910
1031

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1
104247
7217 −

137862
1031

1734570
7217

186300
7217 − 7866

1031 −
385245
1031 −

15474
7217 −

809595
7217

140031
1031



≡u̇9+3·(3+1)/2Λ


0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
3 0 0 0 0 0 9 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 9 0 3 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 9 0 3 0 0

 =:
...
v ≡u̇9+3Λ


0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 3 0 0

 =: v̈ ,

and the operation of σ by

σ̇ =



1 0 0 0 0 0 0 0 0

− 24876
7217

25976
1031 − 31737

7217
55068
7217 − 25392

1031
5540
1031 − 16308

7217
36132
7217 − 1176

1031

− 62766
1031

413856
1031 − 149176

1031
117030
1031 − 647484

1031
228306
1031 − 34326

1031
147615
1031 − 51159

1031

0 0 0 4 0 0 −1 0 0

− 35412
7217

29460
1031 − 75624

7217
164160
7217 − 57244

1031
17712
1031 − 51540

7217
97432
7217 − 4033

1031

− 845298
7217

815757
1031 − 3392322

7217
2508327

7217 − 2001978
1031

810182
1031 − 796137

7217
3442200

7217 − 184868
1031

− 210
1031 − 2776

1031 − 206
1031

13095
1031

563
1031

679
1031 − 2419

1031 − 347
1031 − 162

1031

− 9945
1031

52791
1031 − 35236

1031
72018
1031 − 171069

1031
62570
1031 − 21546

1031
43586
1031 − 14447

1031

− 2471781
7217

2428305
1031 − 12112977

7217
8656818

7217 − 7025124
1031

2951589
1031 − 2779557

7217
12296484

7217 − 676060
1031


.

We observe that we may replace u̇, v̇ by ü, v̈ resp. by
...
u ,

...
v to obtain

ΛD = Λ((ü, v̈), (2, 2), (2, 7))u̇Λ = {f ∈ Λ : Di
ü ◦D

j
v̈(f) ≡u̇2i+7jΛ 0 for all i, j ∈ [0, 2]}

and
Ξ = ΛD, E = {f ∈ ΛD : Di...

u ◦ E
j...
u ,

...
v (f) ≡u̇2i+9jΛ 0 for all i, j ∈ [0, 2]} .

A.2.2 The case p = 5

Suppose p = 5, i.e. S = Z(5), u = π3 = (ζ125 − 1)(ζ−1
125 − 1)(ζ57

125 − 1)(ζ−57
125 − 1), ζσ125 = ζ6

125,
v = u uσuσ

2
uσ

3
uσ

4
and U = Z(5)[π3]. With respect to the basis

( u0v0, u0v1, u0v2, u0v3, u0v4,
u1v0, u1v1, u1v2, u1v3, u1v4,
u2v0, u2v1, u2v2, u2v3, u2v4,
u3v0, u3v1, u3v2, u3v3, u3v4,
u4v0, u4v1, u4v2, u4v3, u4v4, ) ,
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the matrix describing the multiplication by u on U reduces to

u̇ ≡u̇31Λ



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−5 −9 0 3 3 10 0 0 3 1 −10 10 0 1 2 0 −10 −1 1 1 −5 −6 1 0 2
15 −5 −9 0 3 5 10 0 0 3 10 −10 10 0 1 5 0 10 −1 1 10 −5 −6 1 0
15 15 −5 −9 0 15 5 10 0 0 5 10 −10 10 0 5 5 0 10 −1 0 10 −5 −6 1
0 15 15 −5 −9 0 15 5 10 0 0 5 10 −10 10 −5 5 5 0 10 5 0 10 −5 −6

−45 0 15 15 −5 0 0 15 5 10 50 0 5 10 −10 50 −5 5 5 0 −5 5 0 10 −5



=:
...
u

≡u̇5Λ



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



=: ü ,

and the matrix describing the multiplication by the Sen-element v reduces to

v̇ ≡u̇25+5·(5+1)/2Λ



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −25 0 0 0 25 25 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 25 25 0 0 5 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −50 0 0 0 25 25 0 0 5 75 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −50 0 0 0 25 25 0 0 5 75 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 −50 0 0 0 25 25 0 0 5 75 0 0 0



=:
...
v
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≡u̇25+5Λ



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0



=: v̈ .

We observe that we may replace u̇, v̇ by ü, v̈ resp. by
...
u ,

...
v to obtain

ΛD = Λ((ü, v̈), (4, 4), (2, 11))u̇Λ = {f ∈ Λ : Di
ü ◦D

j
v̈(f) ≡u̇2i+11jΛ 0 for all i, j ∈ [0, 4]}

and
ΛD, E = {f ∈ ΛD : Di...

u ◦ E
j...
u ,

...
v (f) ≡u̇2i+13jΛ 0 for all i, j ∈ [0, 4]} .

A.3 A spectral sequence

Alternatively, there is a Lyndon-Hochschild-Serre-Grothendieck spectral sequence that might
perhaps help in calculating cohomology in the case Cp2 using the result in the case Cp in-
stead of using the Wedderburn embedding of U o Cp2 (cf. preceding sections). Due to
varying ground rings, we have to apply a (hardly visible) modification to the usual Lyndon-
Hochschild-Serre spectral sequence.

Let S ⊆ T ⊆ U be an iterated finite extension of discrete valuation rings, U |S galois with H = Gal(U |S),
T |S galois with G = Gal(T |S). Let N be the kernel of the restriction map H - G, so N = Gal(U |T )
and G ' H/N . In this section, modules are not necessarily finitely generated.

The Grothendieck spectral sequence of the composition

Mod-U oH -UoN(U,−)
Mod-T oG -T oG(T,−)

Mod-S

is given by

(∗) Em,n2 := ExtmT oG(T,ExtnU oN (U,X)) ,

where X ∈ mod-U o H, m, n > 0. For X ∈ Mod-U o H, the T o G-module structure on the image
U oN(U,X) is induced by the U oN(U,X) ' TN(T,X) and the left T oG-module structure on T .

To prove that it converges to Extm+n
U oH (U,X), it suffices to show that an injective U oH-module I is mapped

to an injective module. In fact, for Y ∈ Mod-T oG we calculate

T oG(Y, U oN(U, I)) ' T oG(Y, TN(T, I))
' TN(Y ⊗T oG T, I)
' TN(Y ⊗T oG T, U oH(U oH, I))
' U oH(Y ⊗T oG T ⊗TN U oH, I) ,

so that the assertion follows by injectivity of I and by projectivity as a left T oG-module of

T ⊗TN U oH T oG' T ⊗TN (T oH)(#N)

T oG' (T oG)(#N) .
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Using adjunction, we may rewrite (∗) in the familiar shape

(∗∗) Em,n2 = Hm(G,Hn(N,X;T );S) =⇒ Hm+n(H,X;S) ,

applicable to X ∈ Mod-U oH — so e.g. to X = U . Concerning the cup product, cf. [4, sec. 3.9].

Now, if H = Cp2 , N = Cp, G = Cp and X = U , and our remaining conditions are satisfied (pure
ramification, v(p) big enough), then (4.6) already calculates Em,02 for m > 0. The first step to take when
pursuing this spectral sequence approach, using (∗) rather than (∗∗), would be to calculate ExtnU oN (U,U)
as a T oG-module for n > 1. We do not know whether this approach is actually viable.
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