The integral double Burnside ring of the
symmetric group Sg

Nora Krauf

The double Burnside R-algebra Bg(G,G) of a finite group G with coefficients in a com-
mutative ring R has been introduced by S. Bouc. It is R-linearly generated by finite
(G, G)-bisets, modulo a relation identifying disjoint union and sum. Its multiplication
is induced by the tensor product. In his thesis at NUI Galway, B. Masterson described
Bq(Ss,S3) as a subalgebra of Q®*®. We give a variant of this description and continue to
describe Br(Ss,Ss) for R € {Z, Z), F2, Z3), F3} via congruences as suborders of certain
R-orders respectively via path algebras over R.

0 Introduction

0.1 Groups

Groups describe symmetries of objects. That is to say, any mathematical object X has
a symmetry group, called automorphism group Aut(X), consisting of isomorphisms from

X to X. For instance, for a natural number n, the set {1,2,...,n} has as automorphism
group the symmetric group Aut({1,2,...,n}) =S,. This group consists of all bijections
from {1,2,...,n} to itself. For example, we obtain

o= {(12a) (213) (27) (132)(231) (512)]
= {id,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)} .

In the first row, (Cll i i) is the map sending 1+ a, 2 +— b, 3 — c.

123

31 2) = (1, 3,2), the latter

In the second row, we have used the cycle notation, e.g. (
. « X\
meaning 1 3.
1

()

We multiply by composition, e.g. (1,2) e (1,3) = (1,2, 3).
By a theorem of Cayley, any finite group is isomorphic to a subgroup of S,, for some n.
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0.2 The Biset category and biset functors

Suppose given finite groups H and G. An (H,G)-biset X is a finite set X together with
a multiplication with elements of H on the left and a multiplication with elements of G
on the right that commute with each other, i.e.

(h-z)-g=h-(x-g)=h-z-g

forhe H, g€ G and x € X.

As a first example, M, := S3 is a (Sg, S3)-biset via multiplication in S3. So for h € Sy =
{id, (1,2)}, g€ Ssand x € M; welet h-x-g:=hezxeg.

As a second example, consider the cyclic group C; = {id, (1,2, 3), (1, 3,2)} and the group
isomorphism « : C3 — C3, # — 2%, Then the set M, := Cj is a (Cs, C3)-biset, on the left
via multiplication, on the right via application of o and then multiplication. E.g.

(1,2,3) - (1,3,2) - (1,3,2) = (1,2,3)(1,3,2) e r((1,3,2))
= (1,2,3)e(1,3,2)e(1,2,3) = (1,2,3).

Suppose given a commutative ring R. S. Bouc introduced the biset category Bisety, see
[5, §3.1], see also the historical comments in [5, §1.4]. As objects, the category Bisetg
has finite groups. The R-module of morphisms between two finite groups H and G is
given by the double Burnside R-module Bisetr(H,G) = Bgr(H,G), which is R-linearly
generated by finite (H, G)-bisets, modulo a relation identifying disjoint union and sum.

M
In particular, each (H,G)-biset M yields a morphism H —[—l> G in Bisetg. Composition
of morphisms in Bisetg is given by a tensor product operation on bisets that is similar
to the tensor product of bimodules. Given an (H, G)-biset M and an (G, K)-biset N, we

write M x N for their tensor product, which is an (H, K)-biset. So in Bisetg, we have
G

the commutative triangle

[MxN]
H

< K

The category Bisetz may roughly be imagined by a picture like this.

Sy Sy
N8
/ 3 —_— ...
\cé//

Ay
Here, A, is the alternating group on 4 elements. Each biset yields an arrow, and so does
each R-linear combination of bisets. Of course, there are many more objects in Bisetp —
each finite group is an object there — and many more arrows between them that are not
in our picture.




0.3 Biset functors

Let X and Y be classes of finite groups closed under forming subgroups, factor groups
and extensions. Following Bouc [3, §3.4.1], we say that an (H, G)-biset M is (X, Y)-free
if for each m € M the left stabilizer of m in H is in X and the right stabilizer of m in G
is in Y. We have the subcategory Bisetg’y of Bisetr: As objects, it has finite groups.
The R-module of morphisms in Bisetf;’y between two finite groups H and G is given by
the submodule of Br(H, G) generated by the images of (X, ))-free (H, G)-bisets, cf. [3,
Lemme 4].

Certain classical theories may now be formulated as contravariant functors from Bisetg’y
to the category of R-modules, called biset functors over R.

Consider a prime number p. Let X be the class of all finite groups. Let ) be the class of
finite groups whose orders are not divisible by p. Then e.g. the (S,, S3)-biset M; and the
(Cs, C3)-biset My from §0.2 yield morphisms in Biset“zv’y.

Suppose given an object of Bisetg’y, i.e. a finite group G. Let

F,=2Z/pZ={0,....p—1},

where we agree to calculate modulo p. An F-representation of G is a finite dimen-
sional F-vectorspace V', together with a left multiplication with elements of G. Such a
representation is called simple if it does not have a nontrivial subrepresentation. Each
representation has a sequence of subrepresentations with simple steps, called composition
factors.

Let Repr(G) be the free abelian group on the set of isoclasses of simple representations.
Each F,-representation V' of G yields an element [V] in Repg, (G), namely the formal
sum of its composition factors. Given finite groups H and G and an (H, G)-biset M, we
obtain the map

Repp, ([M])
Repg, (G) —— Repg, (H)
[V] = [FPM F®G V] )

using the usual tensor product over rings.

These constructions furnish a contravariant Z-linear functor Repg, from Biset;(’y to the
category of Z-modules, i.e. to the category of abelian groups. In particular, using the
bisets M; and M, from §0.2, we obtain the maps

Repg, ([Mi])
—

Repp, (S3) Repg, (S2)
V] — [restriction of V' to Sg]
and
Repp, ([Mz])
Repg, (C3) ——— Repy, (Cs)
V] > [twist of V with a] .

Note that, if p < n, even the simple F-representations of S,, are not entirely known: One
knows a construction, due to James [9], but one does not know their F,-dimensions. Biset
functors do not directly aim to solve this problem, but at any rate they are a tool to work
with these representations.



0.4 Globally-defined Mackey functors

There is an equivalence of categories between the category of biset functors over R and
the category of globally-defined Mackey functors Mackg’y 6, §8]. Here, a globally-defined
Mackey functor, with respect to X and ), maps groups to R-modules and each group
morphism « covariantly to an R-module morphism a, provided kern(a)) € Y, and con-
travariantly to a*, provided kern(a)) € X. It is required that these morphisms satisfy a list
of compatibilities, amongst which a Mackey formula, see e.g. [6, §8]. By that equivalence,
these requirements on a Mackey functor can now be viewed as properties that result from
being a contravariant functor from Bisetg’y to R-Mod.

0.5 Further examples

We list two examples of biset functors, [6, §8].

e Let X = {1} and let ) consist of all finite groups. Let n > 0. Consider the biset
functor Bisetg’y — Z-Mod that maps a finite group G to the algebraic K-theory
K, (ZG) of ZG.

e Let X consist of all finite groups and let ) = {1}. Let n > 0. Consider the biset
functor Bisetg’y — R-Mod that maps a finite group G to the cohomology H"(G, R)
of G with trivial coefficients.

For some more examples, see [6, §8]. The example of the classical Burnside ring, depending
on a group G, is also explained in [4, §6.1].

0.6 The double Burnside algebra

Suppose given a finite group G, i.e an object of Bisetg. Its endomorphism ring Br(G, G)
in the category Bisety is called double Burnside algebra of G.
The isomorphism classes of finite transitive (G, G)-bisets form an R-linear basis of Bg(G, G).

In particular, if we choose a system Ly of representatives for the conjugacy classes of
subgroups of G x G, we have the R-linear basis ([(G x G)/U]: U € Laxa)-

If G is cyclic and if R is a field in which |G| and @(|G|) are invertible, where ¢ denotes
Euler’s totient function, then the double Burnside algebra Bg(G, ) is semisimple. This
is shown in [7, Theorem 8.11, Remark 8.12(a)].

In case of G = S3, we have 22 conjugacy classes of subgroups of S3 x S; and thus
rkp(Bgr(Ss,S3)) = 22. The double Burnside Q-algebra Bq(S3,S3) has been described
by B. Masterson [1, §8] and then by B. Masterson and G. Pfeiffer [2, §7]. We describe
Bq(Ss,S;) independently, using a direct Magma-supported calculation [10], with the aim
of being able to pass from Bq(Ss,S3) to Bz(Ss, S3) in the sequel.

In order to do that, we first restate some preliminaries on bisets and the double Burnside
ring in §1 and construct a Z-linear basis of Bz(S3,S3) in §2.

In §3 we tackle the problem that the double Burnside Q-algebra Bg(Ss, S3) is not semisim-
ple [5, Proposition 6.1.5], thus not isomorphic to a direct product of matrix rings. As a
substitute, we use a suitable isomorphic copy A of Bq(Ss,S3). We obtain this copy using



a Peirce decomposition of Bq(Ss,S3). In addition, we give a description of Bq(S3,S3) as
path algebra modulo relations.

The next step, in §4, is to pass from Bq(Ss,S3) to Bz(Ss,S3). We find a Z-order Ag
inside A such that Az contains an isomorphic copy of Bz(Ss,S3), which we describe via
congruences, cf. Proposition 5, Theorem 8.

Bq(Ss3,85) —— ]A‘l
BZ (Sg, Sg) injective AZ

We calculate a path algebra for Bz, (Ss,S3), cf. Proposition 11. We deduce that By, (S3, S3)
is Morita equivalent to the path algebra

T4
/72\ (\ ToT1 , T2T3 ToTr,
Fy|es ~ €5 gﬁ €4 / T4T1 , T4T3 T4T7, )
NS BR O, AT, TR

T3

cf. Corollary 12.

We calculate a path algebra for Bz, (Ss,S3), cf. Proposition 15. We deduce that B, (S3, S3)
is Morita equivalent to the path algebra

/\/\

Fs | ¢ [(TaTs, TaT1, ToT1, ToT3) ,

\/\/

ct. Corollary 16.

1 Preliminaries on bisets and the double Burnside
algebra

Bisets. Recall that an (G, G)-biset X is a finite set X together with a left G and a right
G-action that commute with each other, i.e. (h-2)-g=h-(x-g)=th-x-gforh,ge G
and r € X.

Every (G, G)-biset X can be regarded as a left (G x G)-set by setting (h, g)x := hxg™!
for (h,g) € G x G and = € X. Likewise, every left (G x G)-set Y can be regarded as an
(G, G)-biset by setting h-y-g := (h,g ')y for h,g € G and y € Y. We freely use this
identification.

Tensor product. Let M be an (G, G)-biset and let N be a (G, G)-biset. The cartesian
product M x N is a (G, G)-biset via h(m, n)p = (hm,np) for h,p € G and (m,n) € M xN.
It becomes a left G-set via g(m,n) = (mg~!', gn) for g € G and (m,n) € M x N. We call
the set of G-orbits on M x N the tensor product MéN of M and N. This also is an (G, G)-

biset. The G-orbit of the element (m,n) € M x N is denoted by mxn € M x N. Moreover,
G G



let L be a (G, G)-biset. Then M x (N x L) = (M x N)x L, m x (nx £) — (m xn) x {
¢ G ¢ ¢ G ¢ G
as (G, G)-bisets.

Double Burnside R-algebra. We denote by Br(G, G) the double Burnside R-algebra of
G. Recall that Br(G, G) is the R-module freely generated by the isomorphism classes of
finite (G, G)-bisets, modulo the relations [M U N| = [M] + [N] for (G, G)-bisets M, N.
Multiplication is defined by [M ]G[N | =M X N] for (G, G)-bisets M, N. An R-linear basis
of Br(G,G) is given by ([(G x G)/U] : U € Lgxe), where we choose a system Lgyxg of
representatives for the conjugacy classes of subgroups of G x G. Moreover, 1g,c,q) = [G].
Abbreviation. In case of G = S3, we often abbreviate Bg := Br(Ss, S3).

2 Z-linear basis of By(S3,S3)

The following calculations were done using the computer algebra system Magma [10].
The group Sz has the subgroups

Vo = {id}7 V= <(172)>a Vo= <(173)>7 Vs = <(273)>7 Vi= <(172’3>>7 Vs :=S3.

The set {Vy, Vi, Vi, Vs} is a system of representatives for the conjugacy classes of sub-
groups of S3. In S3, we write a := (1,2), b:= (1,2,3) and 1 :=id. So V; = (a), V4 = (b)
and Vs = (a, b).

A system of representatives for the conjugacy classes of subgroups of Sg x S3 is given by

Uso = Vox Vo = {(1,1)}, Up = VixVi = ((b1),(La)),

Uy = VixVo = {(a,1)), Uy = VixVy = {(a,1),(1,b)),

Uoi = Vox Vi = ((1,a)), U, = {(a,), (b, 1),
A1) = ((a,a)), A(Vs) = ((a,a), (b,b)),

U4,0 = Vi X Vb - <(b7 1))? U4,4 = VixVy = <(b7 1)7 (17b)>7

Ups = Vox Vi = {(Lb)), Us = VixVs = {(a1),(1,a),(1,0)),
A(V;l) = <(b7 b)>7 U5,1 = V:f) X Vl = <(a7 1)7 (ba 1), (17 a)),
Ul,l = Vi X Vi = <(a7 1)’<1?a)>7 U4,5 = V4 X VE) = <<b?1)7(17a)7(1>b)>7
U5,0 = ‘/5 X ‘/0 = <(CL, 1)7 <b> 1)>7 U5,4 = V5 X Vy = <<CL, 1)? (b7 1)7 (17 b)>7
UO,S = Vb X VZ’) = <(17a)7(17b)>7 U8 = <(a7a)7(b’1)7(17b>>7
Us = ((a,a),(1,0)), Uss = Vs x Vs = ((a,1),(1,a),(b,1),(1,b)).

Let H;; := [(S3 xS3)/U; ;| for 4,5 € {0,1,4,5}, Hy := [(S3 x S3)/Us] for s € [6,8] and
HA = [(S3x S3)/A(V;)] for t € {1,4,5}.

So we obtain the Z-linear basis

A A
(HO,Ou H1,07 HO,l? Hl ) H4,07 H0,47 H4 ) H1,17 H5,07 H0,57 H67

H =
Hyy, Hy g, Hy, HS  Hyy, Hy 5, Hs 1, Hy 5, Hs 4, Hg, Hs 5)

of Bz(Ss,S3). Of course, H is also a Q-linear basis of Bq(Ss, S3).



3 Bq(Ss,S3)

3.1 Peirce decomposition of Bq(Ss, S3)

Using Magma [10] we obtain an orthogonal decomposition of 1g,, into the following idem-
potents of Bq = Bq(Ss,S3).

e = —i1Hyo+Hio+ 35Hip g2 = —Hoo+ Hio+ Hoy + H{* —2H1 3
g = 3Hoo—2H1o— 3Ho1— Hap+2H 1+ Han ey = —iHoo+1Hso+ 1Hos+ $HY — 2Hyy
h = —{5Hoo+ 35Hoy + jHao— jHos+ $Hys—Hyy 4 = $Hoo — HY — $H + HE

Write €1 := e+ g + h. In Remark 1 and Remark 3, we shall see that these idempotents
are primitive.
In a next step, we fix Q-linear bases of the Peirce components.

Peirce Q-linear basis
component
eBqe e= f%H()?o +Hyo+ %H4,0
eBqyg be,g = 2Hoo— Hio— $Ho1 — 2Hayo+ Hiq + 3Hy;
eBqh be,n = —gHoo + 1Hi0+ $Ho1 + %H4,0 — %HOA — Hy1— $Hy1+ 3Hi 4+ %H4,4
gBqe by = —%Ho,o +2H1 0+ Hyp
9gBqyg g=3Hoo—2Hy0— 3Ho1 — Hyo+2Hy 1 + Hy,
gBqh bgn = —%+Hoo+ sHio+ 2Ho1 + Hao — Hou —2Hy1 — Hyy + 3Hi g+ 3Hyy
hBqe bh,e == —3Hoo + Hayo
hBqg b,y == +Hoo — $Ho1 — Hao + Han
hBqh h=—LHoo+ $Hoq1+ $Hao — YHou+ 3Hyu — Hyp
eBqes bee, :=—2Hoo+ YH1 o+ $Ho1 + §Hao+ §Hoa — $Hi1 — 1Hos — $Han
— 1Hi4— §Hys+ 5Hi5+ $Has
9Bqeés bg.es = —3Hoo+ 5H1,0+ 2Hoy + Hao+ $Hou — Hip — 3Hos — $Ha
—tH\4— tHys+ His+ 1Hys
hBqeés bhey = —15Hoo + §Hop + $Hao + 15Hoa — ¢ Hos — $Hay — $Haa + 5 Has
e2Bqea g9 =—Hoo+ Hio+ Hoy+ H® —2H;
e2Bqes | beye, :=—3Hopo+ sHi0+ 5Ho1 + sHY + $Hou — Hiq — 5Hos — $Hg —
+ Hi5
esBqes | es=—1Hoo+ fHao+ $Hous+ sHY — 2Hyy
esBqge beye = gHoo— 5H10— §Hao+ 3Hsp
eaBqyg beyg = —5Hoo+ 5H1o+ §Hoy + §Hao— SHiy — $Hso — $Hun + $Hs o
€4Bqh beyh == 37Ho,0 — 15H1,0 — $Ho1 — 51Ha0 + §Hou + 5H11 + 15Hs0
+ ¢Hyy — 3Hiu— §Hys — 5Hs1 + 1 Hs 4
eaBqez | beye, :=—5Hoo+ 3H10+ 3Ho1 + $HY + $Hyo — Hiy — 5Hs 0 — $Han
— TH;+ Hs,
eaBqes |ea=1Hoo— HP —1HP + HE,
W, o, = 23Hoo — 55H10 — 35 Ho1 — 93Hao — 55 Hou + §Hig + 55 Hs 0 + 55 Hos
+ 5 Han + 5 Hia+ 5yHaa — gHis — §Hsy — 55Has — 5 Hsa+ $Hs 5
W\ ey = 1Hoo — 1H10 = 3Hoy + THE — §Hao — $Hoa+ 5Hiy + $Hs
+3Hos — $He + 3Hay + 3Hy 4 — $Hr + jHyu — 3Hi5 — SHs,
—3Hy5— 3Hs4+ 1Hs + 3Hs 5

1
5H14




Remark 1. The idempotents e, g, h, 2,5 are primitive, as eBge = Q, gBqg = Q,
hBth Q, €2BQ€2 = Q and 83BQ€3 %’Q

We have the following multiplication table for the basis elements of Bq = Bq(Ss, S3).

() | € |beglbenlbge| G |bgn|bhelbhg| B |beey|bges|bhes| €2 bey ey €3bey,ePes,gbes nfDesca| €4 L, L, <,
e | ¢ |beglben| 0] 0] 010 0] 0 |boes 0] 00 0 ofolojolo]o]o]o
beg| 01 0| 0| ¢ |beglben| 010 0] 0 [besy| 0] 0 0 ofojololo]o]o]o
ben | 0] 0] 01000/ € |beyben 0 [bosi| O 0 ofojololo]o]o]o
boe [bye| 9 |bon| 0] 01 0] 0] 00 |bye 0] 0] 0 0 ofojoflolo]o]o]o
9 | 0100 [bye]l g [bgr| 01000 [byey] 0] 0 0 ofolojolo]o]o0]o0
bon | 0001000 [bgel glbgnl 0] O |bger] O 0 ofolojolo]o] oo
b [brelbrg| B | 0] 0] 00|00 |bre] 0] 0] 0 0 ofolojolo|o]o]o0
brg | 01 0] 0 |brelbng 21 0] 0] 0] 0 [bac 0] 0 0 ofofo[o[o]o 0]o0
B |00 0[0]0/]0 [bhclbng £ | 0| 0 |bhe| O 0 ofojofolo]o]o]o
bee,|] 0010|001 0]0]0]|0 0 0 0 0 0 0fojo01|O0 0 |bee,| O 0
bge, O[O0 O0O[O0O]0O]O0O]0]|]0]O0 0 0 0 0 0 0oL 071]0 0 |bge,| O 0
bhe,/ 0] 0] 0]0O]0OL0]O0O]O0]O0 0 0 0 0 0 00|00 0 |bpe,| O 0
e | O1O0O]O0OJO]OLO0OJ0]O07]O0 0 0 0 €9 bey ey 0jojo|o0 0 0 0 0
b 0] 0]0]0]0O]O0]0]0OJO]O]O0O]0]O0 0 00000 by 0] 0
es | 010101 O0O]O]JO0O]O0O]O0]O0 0 0 0 0 0 ezl 0 | 0 | O 0 0 0 0
berc|pescbesgbern 0] 0 | 0000 B, /0|00 0 ololololo]olo]o
borg| 0| O | O Jbeycbergbernl 010 0] 0 B 00 0 ofolo[o[o]o 0]o0
bean| 0] 0] 0 0] 0[0 Poydbesgbern] 0] 0 P, 0 0 ojolololo]olo]o
beve 01000 [0][0[0][0[0] 0] 0] 0 |boyefp..—125,, _J0]O]0]0O]0]0]0]0
]o0lojlojojololololololo]o0]o 0 N I A
W, 0lo]lolofo]ofofojo[o]0olo0]o0 ofo[o0|0] 0P, o]0
' Jolololofo[ofofojo[o 0o lo0]0 0 ofo[o]o]op,. o]0

We see that €3 is even a central element.

Lemma 2. Consider Q[n,€]/(n*,n¢, &%) = Q[7, €], where we let & == & + (0%, 1€, €%) and
7 :=n+ (0" ).
We have the Q-algebra isomorphism

p: QM &l — e1Bqes
? — b’w4
£ — b’€’4754 )

Proof. Since e4Bqes = (e, VL, ., 07, ) is commutative and (0., )2 =0, (!, .,)2 =0

€4,E47 TE€4,E4 €4,€4 €4,€4

and b, _ b’ =0, the map pu is a well-defined Q-algebra morphism.

€4,€4 "€4,€4

As the Q-linear basis (1,7, £) is mapped to the Q-linear basis (4,5, _ b _ ), it is bijec-

€4,€47 TE4,E4

tive. O

Remark 3. The ring Q[7,&] is local. In particular, €4 is a primitive idempotent of Bq.

Proof. We have U(Q[7,£]) = Q[n, &\ (7, €), as for u := a + b7 + c£ the inverse is given
by u=! =a ! — a2 — a:QCf for a,b,c € Q, with a # 0. Thus the nonunits of Q[7,¢]

form an ideal and so Q[77,&] is a local ring. O




To standardize notation, we aim to construct a Q-algebra A := € A, ; with A = Bq(Ss, S3).
/1:7.]'

In a first step to do so, we choose Q-vector spaces A;; and Q-linear isomorphisms

vij: Aij = e;Bqej fori,j € [1,4]. We define the tuple of Q-vector spaces

(A, A, Aig, A, Q*>*, o0, 0, Q¥

Ag1,  Agp,  Asz, A, 0, Q, 0, Q,

Agiy  Aso, Mgy, Aga, 0, 0, Q. 0,

Ay,  Asa, Az, Aga) Q>3, Q, 0, Q[7,€]) ,cf. Lemma 2.

We have 75, = 0 for (s,t) € {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,4), (4,3) }.
Let

71,1 ¢ Al,l — &1 BQ€1 V1,4 : A1’4 — &1 BQ Eyq
T T2 T riie 4 Tiobey + T1.3ben U Uibe e,
) )
Toq Too Tog | = + Teibge + T229 4 T230gn uy | 4 ugbye,
+ r31bhe + 7320, + T33h
31 T32 733 3,1%h.e 3,2%h.g 33 us + ugbp e,
V2,2 : A272 — &9 BQ Eg V2,4 . A274 — &9 BQ€4
bl )
U > UEY u = ube, .,
73,3 : A373 = €3 BQ €3 V4,1 : A471 — &y BQ €1
) )
U UE3 (vl Vs v3> = U1be, e + Vabey g + V3bey
' ~ L.2 ~
V4,2 0 Ao — e4Bqe Vo=t Agy = £4Bqéu
) —
u —  ubg, ., a+bn+c€ — a64+bb’€4754+cb’6’4’€4.

Let B : Bq x Bq — Bq be the multiplication map on Bg. Write

ﬂz’,j,k =p

Now, we construct Q-bilinear multiplication maps «; j; for 7,7,k € [1,4] such that the
following quadrangle of maps commutes.

>0 BQ €k
E; BQ €5 XEj BQ Ek

:€;Bqej X ejBqer — €iBqer -

i g,k
Aij x Ajg Aik

’szl
Bi,j,k

Le. we set a;jr ==Y © Bijx © (7ij X Vix). This leads to

Vi X‘Yj,ki

&TiBQ gj X gj BQ Ek

* ajjr =0

i (i, ). (7. k) o (i, k) is contained in {(1,2), (1,3), (2, 1), (2,3), (3, 1), (3.2), (3.4), (4,3)}
® (11! A171 X Al,l — A171, (X, Y) — XY
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o a4 A1 XAy — Ay, (X u) = Xu

® a4 =0

® g4 A1y X Ay — Ay, (u,a+ b7+ c€) — ua
® (oo Asg X Asg — Ass, (u,v) — uv

® ooy Asg X Aoy — Aoy, (u,v) — uv

® (g49 =
® gy Aoy X Ay — Agy, (u,a 4 b7 + c€) > ua
® a333: Az X Asg — Az, (u,v) — uv

o ay1:Asn XA — Agq, (0, X) = oX

® (y14': A471 X A174 — A4’4, V,U) — vun

(

(

(

(v, u)
® qyo9: Asa X Asg — Ay, (u,v) — uv
® oy Agp X Agy — Agg, (u,v) = uv(€ — 127)
® uyqq i Agg X Agg — Agy, (a+ 0+ c€v) = av
® ayy0: Aga X Ayo — Ay, (a+ b7+ ct, V) = av

(

® (gq4: A474 X A~4,4 — A474, a+ bﬁ—f— Cg, a+ Bﬁ + éz) — (CL + bﬁ‘f’ Cg) : (EL + Eﬁ‘f‘ 55)
where a, b, c,a,b,¢c € Q

For convenience, we fix a notation similar to matrices and matrix multiplication.

Notation 4. Suppose given r € Zs. Suppose given R-modules M, ; for i,5 € [1,r]. We
write

My, My ... M,

@ Mi’j _. MQ,I ]\4:2,2 e MQ,T
ije[lr] . . e .

Mr,l MT,Z s Mr,r

Accordingly, elements of this direct sum are written as matrices with entries in the respec-
tive summands, i.e. in the form [m; ;]; ; with m;; € M, ; fori,5 € [1,7].

Proposition 5. Let

An A Ay Aia Q> 0 0 Q¥
@ A — Asr Ass Asz Agu _ 0 Q 0 Q
] Z’J Azy Aso Ass Asa 0 0 Q O B
JEE Agr Asp Asz Asa Q" Q 0 Q[m.¢

Define the multiplication
A X A — A
(laijli; » laidse) = [ 2 qirjlair,ar ;)i
re(l1,4]

We obtain a Q-algebra isomorphism
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A L Bq(Ss,Ss)

i jlijena = 22 viglaig) -
1,5€[1,4]

3.2 Bq(Ss,S;3) as path algebra modulo relations

We aim to write Bq = Bq(Ss3,53) = A, up to Morita equivalence, as a path algebra
modulo relations.

We denote by e;; € A;; = Q*® the elements that have a single non-zero entry 1 at
position (i,7). We have a1 == 77'(e) = e;1 € Q¥ C A, v71(g) = egp € Q%3 C A,
v He) =e33 € Q¥ C A and agy, := v (ex) for k € [2,4], cf. Proposition 5.

We have Aa;; = Aegy as A-modules, using multiplication with e; o from the right from
Aay ;1 to Aego and multiplication with eg; from the right from Aess to Aa; ;. Note that
€12€21 = Q1,1 and €21€12 = €22. Slmllarly Aal,l = Aeg’g.

Therefore, A is Morita equivalent to

/o_ JR— JR—
A= () a)A) ) a) = @ aiday; = P aiidijay;

i€[1,4] 1€[1,4] 1,j€[1,4] i,j€[1,4]
Write A}, := a;A;ja;; = A j for i, j € [2,4].
0
0
0

Identify A11 =Q= ( ) =aipAia C Ay = Q¥3.

o o o

3><1
=a11A14004 C A1 =Q

c o o oP

Identify A}, :=Q = (

Identlfy A41 = Q = ( Q 0 0 ) = Qy, 4A4 1011 - A4 1= Q1X3 Let A =0 and A;‘,l =0
for j € [2, 3]
We have the Q-linear basis of A’

10 0 0] 0 0 0 0] 0 0 0 0]
0 0 0 0 0o 1 0 0 O 0 0 0

M=l 0 0 o ™ Tlo 0o o o ®*Tlo o 1 o0
0 0 o0 0] 0 0 o 0] (0 0o o0 o]
0 0 0 0] 0 0 0 1] 0 0 0 0]
0 0 0 0 0O 0 0 0 O 0 0 0

“EZ 09 0 0 o ™MTlo 0o o ol ™Tlo 0o o o
0 0 o0 1] 0o 0 o 0] 1 0o o o]
0 0 0 0] 0 0 0 0] 0 0 0 0]
0 0 0 1 o o o0 o |, O 0 0 0

24700 0 0 o] ™ T lo 0o o o ™Tlo 0o o o
0 0 o0 0] o 1 0 o] (0o 0 o 7]
0 0 0 0]

v |0 0 00

! 0o 0 0 0
L0 0 0 &
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We have the following multiplication table for the basis elements.

() a1,1 | Q1,4 | A2,2 a2 4 a3,3 | Q4,1 |A4,2 | A4.4 02,4 GZA
ai|ail (a4 0 0 0 0 0 0
aia| O 0 0 0 0 0 0 [aia| O 0
azo| 0 0 |aze a2,4 0 0 0 0 0 0
aza| O 0 0 0 0 |a24| O 0
az3| 0 0 0 0 azsz| 0 0 0 0 0
agy|agy|ag,| 0 O]l 0] O0O]O0O]|O0O]|O
as2| O 0 |aso aﬁ{74712aﬁl74 0 0 0 0 0 0
asga| 0 | 0| O 0 |asy|aaz|asq|al 4|ay,
aﬁl’4 0 0 0 0 0 0 0 aﬁm 0 0
aﬁ{A 0 0 0 0 0 0 aﬁl’74 0 0

We have a} , = a4 - a14 and aj, = agp - az4 + 12a4; - a14 . Hence, as a Q-algebra A’ is
generated by a1, 022,033, 044,014,041, 024,042 .

g s
. . 5 5 TN TN
Consider the quiver ¥ := | as3 2.2 ) a1 1
N __— N~ T
9 P

We have a surjective Q-algebra morphism ¢ : QU — A’ by sending

aig = Qi1 o, Q22 > Q22 , G33 +» a33 , Q44 > Q44

p o Qg ., T o a4, U asp , O Qg

We establish the following multiplication trees, where we underline the elements that are
not in a Q-linear relation with previously underlined elements.

aq,1 o a4 it a1 4047 =0 aso a a4 e ag 4042 =0
a4,2\L a4,1\L
a1 4042 =0 ag 441 =0
Q4.4
aiy \ a1.4
aq.1 /—\
(af 4 —12a)y )as; =0 a a A4101 4 ————> ) 4041 =0
4.4 4,4)%4,1 — 4,2 4,1 4,101.4 as1 4,4%4,1 —
a4
aq,1 a4,2l
!
Q4,202 4 ay 4042 =0

a4,2\L

The multiplication tree of the idempotent as 3 consists only of the element as 3.
So the kernel of ¢ contains the elements:

mp , ol , pmp , dop,
™ , op , pmd , Yov.
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Let I be the ideal in QWU generated by those elements. So I C kern(p). Therefore, ¢
induces a surjective Q-algebra morphism from QW/I to A’ .

Note that QW¥/I is Q-linearly generated by
NZ: {d373+],(~1272+[,d474—l—I,dLl—I—I,O'+I,7T+],Q9+[,p—‘—],’ﬁg‘l'l,pﬂ“l—l},

cf. the underlined elements above. To see that, note that a product £ of k generators
may be written as a product in A of k' generators and a product of k” generators, where
k = k' + K" and where k' is chosen maximal. We call k" the excess of . If k¥ > 1
then, using the trees above, we may write £ as an Q-linear combination of products of
generators that have excess < k” — 1. In the present case, we even have £ = 0.

Moreover, note that [N = 10 = dimg(A’).
Since we have a surjective Q-algebra morphism from QW /I to A’, this dimension argument
shows this morphism to be bijective. In particular, I = kern(y).

We may reduce this list to obtain kern(p) = (7p, 00, 7, 0p). So we obtain the
Proposition 6. Recall that I = (7wp, 0,70, 0p). We have the isomorphism of Q-algebras

g ™

~ TS T T
A — Q| ass a2 Ay 4 arn | /1 =QV/I
\I’T'/ \T/‘f
ain (~1171 +1
azo W+ ago+1
ass —> C~L3,3 + 1
agq > d474 + 1
as; +— p+1
ajqg — m+1
Qg2 > V41

ag 4 '+ o+1.

In particular, QU/I is Morita equivalent to A = Bq(Ss,S3).

4 The double Burnside R-algebra Bpr(S3,S;3) for
R € {Z,Z2),Fy,Zs),Fs}

4.1 Bgyz(Ss,S3) via congruences

Recall that A= @ A;; = Bq, cf. Proposition 5. In the Q-algebra A, we define the

1,5€[1,4] v
Z-order
Azan Azpe Azas Azag z> 0o o0 z¥
Ay = Az Az.99 Azos  Azay _ 0 Z 0 Z cA.
Azs1  Azgs  Azss  Azga 0 0 Z 0
Az 41 Azas  Azus Az Zz> Z 0 AURY
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In fact, Az is a subring of A, as o j,(Az;; X Az jx) C Az, for i, 5,k € [1,4].

Remark 7. As A = Bq is not semisimple, there are no maximal Z-orders in A, [8, §10].
So Agz is not a canonical choice of a Z-order in A, but it nonetheless enables us to describe
A inside Az via congruences.

Consider the following elements of U(A).

[0 =2 0 0 0 0] (10 000 0] (100 00 0]
6 6 —4 000 010000 010000
0 0 1000 071000 001001
xryp = , T = y L3 =
0 0 0100 000100 000100
0 0 0010 0000710 0000710
(0 0 000 1] (00000 1) (00600 1]
1 1

We define the injective ring morphism 6 : By — A, y +— a3t a5t 27 -y Hy) -2y 29 23 .
The conjugating element x; was constructed such that the its image lies in Az. The
elements x9, x3 serve the purpose of simplifying the congruences of §(Bz).

Theorem 8. The image 6(Bgz) in Az is given by

( _51’1 51,2 51,3 0 0 tl i 2w — 221 =822 =4 23=4 0
S21 S22 S23 0 0 to T =40
831 532 833 0 0 t3 o my =40

00 0 u 0 v €Az . =0

0O 0 0 0 w 0 Y =0

|21 oz x5y 0 oz 4 200+ 2 i =20

t =0

A=0Ba) = tz Ez 0
(% =) 0

T =3 0

i) =3 0

ZI3 =3 0

Z9 =3 0

In particular, we have Bz = Bz(S3,S3) = A as rings.

More symbolically written, we have

Z Z Z 0 0 (2
Z Z Z 0 0 (2
Z Z Z 0 0 (2
0o 0 0 Z 0 (2

0 0 0 0 Z7 0

(12) (12) (12) (2) 0 Z +(12)7 +(4)¢




Proof. We identify Z??*! and Az along the isomorphism

S1,1, 52,1, 53,1, 51,2, 2,2, $3,2, 51,3, 52,3, 53,3,
r1,T2,x3,U,Y,Ww, tla t2) t37 v, 21,22,%3

S1,1 51,2 S1,3 00
52,1 52,2 52,3 00
531 832 833 0 0
0 0 0 w0
0 0 0 Ow

0

| 71 T2 T3 yOzl—l—zgﬁ—i—zgg_
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Let M be the representation matrix of ¢, with respect to the bases H = (Ho0, Ho 1, Hip,

A A A
Hl ; H0747 H4,07 H4 ) Hl,17 H0,57 H5,Oa H7a Hl,47 H4,17 Hﬁa H5 ; H4,47 H5,17 H1,57 H5,47 H4,57 H87 H5,5)

of Bz and the standard basis of Az. We obtain

0 0 15 -3
0 0 —-18 0
0 0 126 —6
-5 -2 —60 9
6 3 T2 3
42 —20-504 2
0 0 —-10 2
0 0 12 0
0 0 -8 4
0 0-756 36
252 120 3024 —12
0 0 504-24
o 0 o0 1
0 0 0 0
0 0 0 0
0 0 -10 2
0 0 12 0
0 0 -84 4
0 0 0 0
0 0 0 0
0 0 504-24
0 0 0 0
51,1
52,1
Let \:= | *!
0
0
1

We have

-3 1 12 10
0 0 -8 —-15
—6 0 64 100
10 0 —33 —-34

1 1 22 51

15 0—176 —340

2 0 -6 -6

0 0 4 9

4 1 -32 —60
72 0 —384 —600
—228 0 1056 2040
—48 0 192 360
1 1 0 0
—2 0 0 0
0 1 0 0

2 0 -6 —4

0 0 4 6

4 0 —32 —40

0 0 0 0

0 1 0 0
—48 0 192 240
0 0 0 0

4
—4
28
—11
11
=77
—2
2
—14

3 5
-4 =5
26 35
-5 =17
11 17

—65 —119
-1 =3
2 3
—12 =21

—108 —480 —144 —120 —180
432 1632 396 252 612

3 15
-3 —10
21 80

—12 =51
12 34
—84 —272
-2 -9
2 6
—14 —48
72 288

0 0

0 0

0 0
-2 —6

2 4

—14 —-32

0 0

0 0
72 192

0 0

72
0

0

0
—2
2
—14
0

0
72
0

€ Ay, identified with \ € Z?2*1,

0 20 8 6 0 25 7 9 8
0 —-24 0o -9 0 —-30 —-12 -6 —12
0 168 12 60 0 210 78 48 80
-3 —-55-23 —-24-1 -85 —16 —-36 —22
2 66 2 36 1 102 33 24 33
—16 —462 —46 —240 —7 —714 —208 —192 —220
o —-10 -4 -4 0 —-15 -3 -6 —4
0 12 0 6 0 18 6 4 6
0 -8 —6 —40 0 —126 —38 —32 —40
0—1008 —72 —360 0 —1260 —468 —288 —480
96 2772 276 1440 36 4284 1248 1152 1320
0 504 36 240 O 756 228 192 240
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
O —-10 -4 -4 0 —-10 -4 -6 —4
0 12 0 6 0 12 6 4 6
0 —8 -6 —40 0 -84 —40 —-32 —40
0 0 0 0 0 0o -2 0 0
0 0 0 0 0 0 0 0 0
0 504 36 240 O 504 240 192 240
0 0 0 0 0 0 0 0 0
s1,2 s1,3 0 0 t1
s22 s23 0 O to
83,2 53,3 0 0 t3
0 0 u 0 v
0 0 0 w 0
z2 w3y 0 z1+z2n+23€

AeEA & T qe Z¥2¥! such that A = Mg
& JqgeZ®%such that M~ - A =g¢q
24M~1 .\ € 24722%1

-

48 108
1 0
-2 0
0 0
-2 =2
2 2
—14 —14
—2 0
0 0
24 T2
4 0




O O O O O o oo o oo
O OO OO0 o oo o oo
(=l el oleloelNoloelloll ol ol ol

2w — 22’1 =

O O O O O o oo o oo
O O O O O o oo o oo
O OO OO0 o oo o oo

&
1)
z3
)

w

w

w w

0002000 00 O
0000200 00 O
0000020 00 O
00000O0O0120 O
0000000 O6 O
0000O0O0OO0 OO 12
0000000 OO O
0000000 OO O
0000000 OO O
0000000 OO O
0000000 OO O
22542’3540

0

0

0

0

0

0

0

0

0

0

0

0

O O O O o o

—
o O O O N

=
O O O NO OO O O o O

o O O o

O N OO O O+ OO o O

o O O O o o oo
DO O OO O oo o oo

_
[\
o O O O o o

o o

U c 24zll><1

4.2 Localisation at 2: Bz, (S3,S3) via congruences

Write R := Z3). In the Q-algebra A, cf. Proposition 5, we have the R-order

AR,l,l

AR,Q,I
AR =
AR,3,1

AR,4,1

Corollary 9. We have

(

0 0 0
Apy=<{1]0 0 0
| T1 T2 X3

\

In particular, we have Br = Br(Ss,S3) = Ay as R-algebras.

More symbolically written, we have

S1,1 51,2 51,3
521 52,2 523
531 53,2 533

c o OO O

AR AR
ARos AR
AR ARz
ARz AR.a4

0 t i
0 t2

0 t3

0 v

w 0

0 21+ 20+ zgf_

GARZ

R3><3

I
o)
T3
Y
131
ta
i3
v

16
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R R R 0 0 (2

R R R 0 0 (2

R R R 0 0 (2
Ap) =

0O 0 0 R 0 (2

2 0 R +M)7

Remark 10. We claim that 1A(2) = e1 + ey + €3+ e4 + e is an orthogonal decomposition
mto primitive idempotents, where

€1

€4

T

O O O O O O O o o o o

O O O O O O o o o o o o

O O O O O O O o o o o o

O OB O O O O o o o o o

O O O O O O o o o o o o

O O O O O O o o o o o o

€2

€5

O O O O O O O o o o o o

O O O O O O O o o o~ o

O O O O O O O o o o o o

O O O O O O O o o o o o

O R O O O O O o o o o o

_— O O O O O O o o o o o

€3

o O O O o O

SO O O O o O

o O O = O O

o O O O o O

o O O O o O

o O O O o O

Proof. We have e; Aigje; = R, eaAgjea = R, esAgjes = R and eg Age4 = R. So, it
follows that ey, e, €3, €4 are primitive.
As R-algebras, we have

]:2w—221£82254z3540}zzf

es Agyes = {(w, z1+227_]+23g>ER><R[ﬁ,

C Rx R .

To show that es is primitive, we show that I' is local.
We have the R-linear basis (b, by, b3, by) of I', where

(L 1), b= (0 2+47),
(Q %),b4= <Q Q).

We claim that the Jacobson radical of I' is given by J := g(2by, bs, b3, by), that ['/J = Fy
and that I" is local.

In fact, the multiplication table for the basis elements is given by

by =

bs =
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Oloc ] b | b5 ]| s
by [bi| by | by | b
by | by | 205 4 bs | 205 | 204
by [bs| 265 | 0|0
by [bs] 26, | 0] 0

This shows that .J is an ideal. Moreover, J is topologically nilpotent as

J3 = R<8b1,4b2,2b3,4b4> g 265 A(Q) €5 .

Since I'/J = Fy, the claim follows.

]

4.3 Bz, (Ss3,53) and Bp,(S;,S3) as path algebras modulo relations

Write R := Z(). We aim to write A(), up to Morita equivalence, as path algebra modulo
relations. The R-algebra A,y is Morita equivalent to A’(z) = (eg+es+e5)Aoy(es+es+e5)
since A e; = Ag) ea = A(g) e3 using multiplication with elements of Ay with a single

nonzero entry 1 in the upper (3 x 3)-corner.
We have the R-linear basis of A’(z) consisting of

0 000G 0O 000
000O0O0O 000
001000 000
es = s eq4 =
0 000G 0O 000
000O0O0O 000
(00 0 0 0 0] [0 0 0
[0 0 0 0 0 0] [0 0 0
000O0O0O 000
0 000G 0O 000
T = s T2 =
000O0O0O 000
0 000G 0O 000
|00 4 0 0 0] [0 0 0
[0 0 0 0 0 0] 000
0 000G 0O 000
000O0GO0O 000
T4 = ) Ts =
00000 2 000
0 000U 0O 000
|00 0 0 0 O] 000
[0 0000 0
000O0O0 O
000O0O0 O
T7 =
000O0O0 O
000O0O0 O
[0 0 0 0 0 2+47

o O = O O O
O O O O o O

S O O O O o

o O O O o o

o O O O o o
o O O O o o

0 000O0GO0O
0 000O0GO0O
0 000O0O0O
, €5 = )
0 000O0GO0O
0 00O0O0T1O0
0] |00 0 0 0 1]
0] [0 00 0 0 0]
0 000O0GO0O
2 000O0GO0O
y T3 &= 3
0 000O0O0O
0 000O0O0O O
0] (000 2 0 0]
0 000O0O0 0]
0 000O0GO0 O
0 000O0O0 O
y Te &= )
0 00O0O0GO0 O
0 00O0O0GO0 O
87 0 0 0 0 0 4]

We have 75 = my7» and 74 = 1374 + 67172. Hence, as an R-algebra A’(Q) is generated by

€3,€4,€5,71, 72,73, T4, T7.
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Consider the quiver ¥ := ég €5 3

We have a surjective R-algebra morphism ¢ : RV — A’(Q) by sending

€3 F> €3 , € > € , € > e5 , T — T ,

To VW To , T3 +— T3 , T4 +— T4 , T7 +— Ty

We establish the following multiplication trees, where we underline the elements that are
not in an R-linear relation with previous elements.

e_3 T2 - Q T T2T1 = O e_4 T4 - B T T4T1 = O
d d
ToTy = 0 ToTy = 27’2 TyTy = O TyTy = 27’4

T72 = 27'7 + T1T2

[
T1

T7T1 = 27’1 7'7 - T7T3 = 27'3
- — =
7'1 P ’7'17'2 T1T9T3 = 0
T4¢ W x
T3T4 —>73 T3TyT3 = O T1TT7y = 27’17’2 T1T2T1 = 0
T1
7 T3T4T1 = O
T3TyT7 = 27’37’4
So, the kernel of ¢ contains the elements:
7:2%1 ) %4%1 ) %1 7:2 7:1 ) %37:47:1 ) %77:1 - 2%17
ToT3 ; T4T3 ; T1T2T3 ; T3T4T3 ; T7T3 — 273,
~ o~ ~ ~ o~ ~ ~ o~ o~ ~ o~ ~ o~ o~ ~ o~ ~2 ~ ~ o~
ToTy — 2To , TaTy — 2Ty , TiTaTy — 2TiTe , T3TaTy — 2T3Ty , T7 — 2T7 — TiT2 .

Let I be the ideal generated by these elements. So I C kern(y). Therefore, ¢ induces a
surjective R-algebra morphism from R¥/I to A/(2). We may reduce the list of generators
to obtain

I = (Rofy, a1, TrTL — 271, o, TuTs, TrT3 — 273, oy — 27, TuTy — 274, T2 — 27 — T17a) .
Note that RV /I is R-linearly generated by

N =&+ La+1e+1A+1H+1,7+1,7+ 1,7+ 1,77H+ 1,775+,
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cf. the underlined elements above. To see that, note that a product £ of k£ generators
may be written as a product in N of k’ generators and a product of k” generators, where
k = K + k" and where k' is choosen maximal. We call k” the excess of £&. If £ > 1
then, using the trees above, we may write £ as an R-linear combination of products of
generators that have excess < k” — 1. Moreover, note that |N| =10 = rkr(Afy))-

Since we have a surjective R-algebra morphism from RV/I to A’(Q), this rank argument
shows this morphism to be bijective. In particular, I = kern(yp).

So, we obtain the

T2T1 ) T2T3 ) ToT7 — 272,
Proposition 11. Recall that I = T4T1 , TuTs , TuTr — 2Ty,
T — 271, TiT3 — 273, T4 — 2T — TiTe

We have the isomorphism of Z3)-algebras

T4
7:2 /\
Ay = R 63/’\65%3?7 By | /T
\~,/ \ A
T1

T3

e, él—l—lforz€[3,5]
7, = T+ 1 forje[l,7)\{5,6}.

Recall that Bz(2)(83, S3) is Morita equivalent to A’(Q).

Corollary 12. As Fy-algebras, we have

2 T2T1 , T2T3 TaT7,
Ny 2Ny = Fy | 65" o Dm 6 s s -
(2)/ 2y — T2/¢€3 € & | /| T, TaTs T4T7,
\./ \ o o _ o
1 ™o, ™73 ., T; —TiT2

Recall that B, (S, S3) 1s Morita equivalent to Ay /2, .

4.4 Localisation at 3: Bz, (S3,S3) via congruences

Write R = Z). In the Q-algebra A, cf. Proposition 5, we have the R-order

Arin Arjie  Aris Araa R3*3 0 0 R3*1

Ap = AR,Q,I AR72,2 AR,2,3 AR,2,4 . 0 R 0 R cA.
Ars1  Arsz  Arssz  ARrga 0 0 R 0
Ara1 Apas  Arusz  Aruaa RY3 R 0 R[7,¢]
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Corollary 13. We have

( -51,1 512513 0 0 ty | )
S9.1822823 0 0 ta 1 =30
A = 831832833 0 0 t3 € Ap- T9 =30 C Ap.
0O 0 0 uw O v r3=30
0 0 0 0 w 0 29 =30
L 71 w2 23 y O 21+Z2ﬁ+2’3§_ )

In particular, we have Br = Bg(Ss,S3) = Ay as R-algebras.

More symbolically written, we have

R R R 0 0 R

R R 0 R

R R R 0 0 R
A@) =

o 0 0 R 0 R

O 0 0 0 R 0

'3 (B (3 R 0 R +(3)7 +RE

Remark 14. We claim that 1A(3> =e;+eytes3+es+es+eg is an orthogonal decompo-
sition into primitive idempotents, where

100000 00000O0O 000000
000000 010000 000000
000000 000000 001000
e = , €2 = , €3 = )
000000 000000 000000
000000 00000O0O 000000
(00000 0] 00000 0] (00000 O]
[0 0000 0] [0 0000 0] [0 0000 0]
000000 00000O0O 000000
000000 000000 000000
€4 = y €5 = y €6 =
000100 00000O0O 000000
000000 000010 000000
(00000 0] (00000 0] (00000 1)

Proof. We have e; Agye, = R for s € [1,5]. Therefore it follows that ey, ey, e3, €4, €5 are
primitive.

To show that that eg is primitive, we claim that the ring eg A(3) eg = R[7,&] is local.

We have U(R[7,€]) = R[77,€]\ (3,7,€) . In fact, for u := a4 b+ c€ with a € R\ (3) and
b,c € R, the inverse is given by u™! = a=! — a2 — a"%c€ as

uu' =aat + (—a" b+ a” )+ (—a e+ ale)E =1 .

Thus the nonunits of R[7, ] form an ideal and so R[7,£] is a local ring. This proves the
claim. O
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4.5 Bz, (S3,53) and Bp,(S;,S3) as path algebras modulo relations

Write R := Z3). We aim to write A(s), up to Morita equivalence, as path algebra modulo
relations.

The R-algebra Ay is Morita equivalent to A’(g) = (e3+es+e5+es) Az (es+es+es+eq)
since Az)e; = Ay ey = Az ez using multiplication with elements of A3y with a single
nonzero entry 1 in the upper (3 x 3)-corner. We have the R-linear basis of Al(g) consisting
of

[0 00 00O 000000 00 0O0O0O
000000 000000 00 0O0O0O
001000 00 0O0O00O0 00 0O0O0O
€3 = ;€4 = , es = ,
000000 000100 00 0O0O0O
000000 000000 000O0T1O0
00 0 0 0 0] 00 0 00 O] |00 0 00 0]
[0 0 0 00 0] [0 0 0 00 0] [0 0 0 00 0]
00 0O0O0O0 00 0O0O00O0 00 0O0O0O
000000 000000 000001
e = s L= sy T2 = )
000000 000000 00 0O0GO0O
00 0O0O0O0 00 0O0O0O0 00 0O0O0O
000 0 0 1] 00 3 00 0] 00 0 0 0 O]
[0 0 0 0 0 0] 000000 00000 O
00 0O0O0O 00 0O0O0O0 00000 O
00 0O0O0O0 000000 00000 O
T3 = , T4 = , Ts = )
00 0O0O0 O 000O0O0°1 000O0O0 O
00000 O 00 0O0O0O0 000O0O0 O
0001 0 0] 000000 0000 0 37
[0 0 0 0 0 0]
000000
00 0O0O0O
T6 =
00 0O0O0O
00 0O0O0O
00 0 0 0 £|

We have 75 = 775 and 174 = 7374 + 4779 . Hence, as an R-algebra A/(s) is generated by
€3,€4,€5,€6,71,72,73,74 -

T2 T4
. . 5 5 /“_\\ B /’\ _ . .
Consider the quiver ¥ := | é5 €3 €g é4 | - We have a surjective R-
\/ \~_/
T1 T3

algebra morphism ¢ : RV — A’(3) by sending

ég'—)eg,é4’—>e4,é5l—>e5,éﬁi—>66,

%1HT1,7:2|—>7'2,7~'3|—>T3,%4|—>T4

We establish the following multiplication trees, where we underline the elements that are
not in an R-linear relation with previous elements.

The multiplication tree of the idempotent e; consists only of the element es.
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S m =0 eg——m——>T7 m e =0
" |
TyT1 = 0 T9T3 = 0
C6
T3
T1
T2
T3T4T3 = 0 T3 T TiT2 = 717271 = 0
T / —\L
T3 T3
T3T4 17973 = 0
Tli
T3T4T1 = 0

So the kernel of ¢ contains the elements: 7471, 7473, ToT1, ToT3, 737473, 7273, 137471, T17273, T1T271.
Let I be the ideal generated by these elements. So, I C kern(y). Therefore, ¢ induces a
surjective R-algebra morphism from RV /I to A/(g)- We may reduce the list of generators

to obtain I = (7473, T4T1, ToT1, T273).

Note that R¥ /I is R-linearly generated by

N ={&+1Les+Les+ g+ 1,1+ 1,7+ 1,3+, 7a+ 1,37+ 1,717+ 1},

cf. the underlined elements above.

To see that, note that a product £ of k generators may be written as a product in N of
k' generators and a product of & generators, where k = k' + k” and where k' is choosen
maximal. If &7 > 1 then, using the trees above, we have £ = 0. Moreover, note that
Since we have an surjective algebra morphism from RWV/I to A’(3), this rank argument
shows this morphism to be bijective. In particular, I = kern(yp).

So, we obtain the

PI‘OpOSitiOl’l 15. Recall that I = (%4%3, %2%1, %4%1, %2%3).
We have the isomorphisms of R-algebras

T2 T4
TN N
— R|e 5 €3 €g €
AN /N A
\~/ \/
T1 T3

e, — &+1 foriel3,6]
7, — T+ 1 foriell,4]

a | /1

Recall that Bz, (S3,S3) is Morita equivalent to Afy, .
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Corollary 16. As Fs-algebras, we have

. /\/\

Ai3)/3Ms = Fs | & [(TaTs, TaT1, ToT1, ToTs) .

\/V

Recall that By, (S3,S3) is Morita equivalent to Ay /3A(,
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