Nachklausur zum Übungsschein HM 1 el+phys+kyb+geod

Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung

19.5.2006

Name	Vorname	Matrnummer	Gruppe
Saal	Reihe	Platz	

Anmerkungen zur Korrektur:

1.1	1.2	1.3	Aufgabe 1	2.1	2.2	2.3	Aufgabe 2

1	2		Summe	Note

Bitte tragen Sie in die folgende Tabelle die Lösungen der Aufgaben 1.1 ein:

Aufgabe 1.1		Ergebnis
1.1.a	$ \ln \frac{1+i\sqrt{3}}{1-i\sqrt{3}} $	$2\pi i(k+\frac{1}{3}), k \in \mathbb{Z}$
1.1.b	$arg(e^{\sqrt{i}})$	$\pm \frac{1}{\sqrt{2}} \mod 2\pi$
1.1.c	$ z \cdot \overline{z^{-1}} \text{ für } z \in \mathbb{C} \setminus \{0\}$	1
1.1.d	$\frac{2\cos(i)}{e+e^{-1}}$	1
1.1.e	$\frac{3+i}{1-i}$	1+2i

Bitte tragen Sie in die folgende Tabelle die Lösungen der Aufgaben 1.2 ein:

Aufgabe 1.2		Ja	Nein
1.2.a	$(p \Rightarrow q) \Leftrightarrow (\neg p \Rightarrow \neg q)$		\boxtimes
1.2.b	$(p \land q) \Leftrightarrow \neg (p \lor q)$		\boxtimes
1.2.c	$(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$	\boxtimes	
1.2.d	$\neg (p \land \neg q) \Leftrightarrow (\neg p \lor q)$	\boxtimes	
1.2.e	$(p \land q) \lor (\neg p \lor \neg q)$	\boxtimes	

Bitte tragen Sie in die folgenden Tabellen die Lösungen der Aufgaben 2.1 ein:

Aufgabe 2.1		Ergebnis
2.1.a	$\det A$	4
2.1.b	$\sigma(A)$	$\{i\cdot\sqrt{2},-i\cdot\sqrt{2},1+i,1-i\}$

Aufgabe 2.1		Ja	Nein
2.1.c	A ist unitär		\boxtimes
2.1.d	A ist selbstadjungiert		
2.1.e	A ist diagonalisierbar		

Aufgabe 1 (15 Punkte)

1.1 (5 Punkte) Bestimmen Sie alle Werte folgender Größen und tragen Sie Ihre Antworten in die Tabelle auf Seite 2 ein. Eine Begründung ist nicht erforderlich.

1.1.a
$$\ln \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$$

Es gilt $\left|\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right| = 1$. Da $arg(1\pm i\sqrt{3}) = \pm \arctan\sqrt{3} = \pm \pi/3$ folgt $arg\frac{1+i\sqrt{3}}{1-i\sqrt{3}} = \frac{2\pi}{3} \mod 2\pi$. Dies ergibt

$$\ln \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}} = \ln 1 + i\frac{2\pi}{3} + k \cdot 2\pi i = 2\pi i(k + \frac{1}{3}), \quad k \in \mathbb{Z}.$$

1.1.b
$$\arg(e^{\sqrt{i}})$$

Aus
$$\sqrt{i} = \pm \frac{1}{\sqrt{2}}(1+i)$$
 folgt $arg(e^{\sqrt{i}}) = Im\sqrt{i} = \pm \frac{1}{\sqrt{2}} \mod 2\pi$.

1.1.c
$$|z \cdot \overline{z^{-1}}|$$
 für $z \in \mathbb{C} \setminus \{0\}$

Es gilt
$$|z \cdot \overline{z^{-1}}| = |z| \cdot |\overline{z^{-1}}| = |z| \cdot |z^{-1}| = |z| \cdot \frac{1}{|z|} = 1$$
.

1.1.d
$$\frac{2\cos(i)}{e+e^{-1}}$$

Wegen $\cos(i) = \frac{e^{i \cdot i} + e^{-i \cdot i}}{2} = \frac{e^{-1} + e}{2}$ besitzt der gesuchte Ausdruck den Wert 1.

1.1.e
$$\frac{3+i}{1-i}$$

Der Quotient ergibt

$$\frac{3+i}{1-i} = \frac{3+i}{1-i} \cdot \frac{1+i}{1+i} = \frac{2+4i}{2} = 1+2i.$$

1.2 (5 Punkte) Welche der folgenden Ausdrücke beschreiben ein logisches Gesetz? Tragen Sie Ihre Antworten in die Tabelle auf Seite 2 ein. Eine Begründung ist nicht erforderlich.

1.2.a
$$(p \Rightarrow q) \Leftrightarrow (\neg p \Rightarrow \neg q)$$

Falsch, z.B. für p = f und q = w ist $f \Rightarrow w$ wahr aber $w \Rightarrow f$ falsch.

1.2.b $(p \land q) \Leftrightarrow \neg (p \lor q)$ $Falsch, \ z.B. \ f\"{u}r \ p = q = w \ ist \ w \land w \ wahr \ aber \ \neg (w \lor w) \ falsch.$

1.2.c $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$ Wahr, betrachte die entsprechende Wahrheitstabelle.

1.2.d $\neg (p \land \neg q) \Leftrightarrow (\neg p \lor q)$ Wahr, betrachte die entsprechende Wahrheitstabelle.

1.2.e $(p \wedge q) \vee (\neg p \vee \neg q)$ $Wahr, \ betrachte \ die \ entsprechende \ Wahrheitstabelle.$

1.3 (5 Punkte) Es sei $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ alle $n \in \mathbb{N}$ und $k \in \{0, 1, \dots, n\}$. Beweisen Sie, daß für $0 \le k \le n-1$ die Identität

$$\left(\begin{array}{c} n \\ k \end{array}\right) + \left(\begin{array}{c} n \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ k+1 \end{array}\right)$$

gilt.

Die Definition der binomischen Koeffizienten ergibt

$$\begin{pmatrix} n \\ k \end{pmatrix} + \begin{pmatrix} n \\ k+1 \end{pmatrix} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!}$$

$$= \frac{(k+1) \cdot n! + (n-k) \cdot n!}{(k+1)!(n-k)!}$$

$$= \frac{(n+1) \cdot n!}{(k+1)!(n+1-(k+1))!}$$

$$= \begin{pmatrix} n+1 \\ k+1 \end{pmatrix}.$$

Nutzen Sie desweiteren diese Aussage, um die Gleichheit

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

zu beweisen.

Die Aussage folgt mit einem Induktionsbeweis.

 $IA: F\ddot{u}r \ n=1 \ ist \left(egin{array}{c} 1 \\ 0 \end{array} \right) + \left(egin{array}{c} 1 \\ 1 \end{array} \right) = 2. \ IV: Sei \sum_{k=0}^n \left(egin{array}{c} n \\ k \end{array} \right) = 2^n. \ IS: \ Unter Ber\ddot{u}cksichtigung \ obiger \ Identit\ddot{a}t \ folgt$

$$\sum_{k=0}^{n+1} \binom{n+1}{k} = \binom{n+1}{0} + \sum_{k=0}^{n-1} \binom{n+1}{k+1} + \binom{n+1}{n+1}$$

$$= 1 + \sum_{k=0}^{n-1} \binom{n}{k} + \sum_{k=0}^{n-1} \binom{n}{k+1} + 1$$

$$= \binom{n}{n} + \sum_{k=0}^{n-1} \binom{n}{k} + \sum_{k=1}^{n} \binom{n}{k} + \binom{n}{0}$$

$$= 2 \sum_{k=0}^{n} \binom{n}{k} = 2 \cdot 2^{n} = 2^{n+1}$$

Aufgabe 2 (15 Punkte)

2.1 (5 Punkte) Gegeben Sei die Matrix

$$A = \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & i \\ 0 & 0 & i & 1 \end{array}\right).$$

Bestimmen Sie folgende Größen und tragen Sie diese in die Tabelle auf Seite 2 ein:

2.1.a
$$\det A \qquad 2.1.b \qquad \sigma(A)$$

$$Die\ Matrix\ A\ ist\ eine\ Blockmatrix\ A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} mit\ A_1 = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} und\ A_2 = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}.\ Dann\ gilt$$

$$\det A = \det A_1 \cdot \det A_2 = (0 \cdot 0 - 2 \cdot (-1)) \cdot (1 \cdot 1 - i \cdot i) = 2 \cdot 2 = 4.$$

Ebenso ist $d_A(\lambda) = d_{A_1}(\lambda) \cdot d_{A_2}(\lambda)$ und somit $\sigma(A) = \sigma(A_1) \cup \sigma(A_2)$. Es folgt

$$d_{A_1}(\lambda) = \lambda^2 + 2 = 0 \Leftrightarrow \lambda = \lambda_{1,2} = \pm i \cdot \sqrt{2}.$$

$$d_{A_2}(\lambda) = (1 - \lambda)^2 + 1 = 0 \Leftrightarrow \lambda = \lambda_{3,4} = 1 \pm i$$

und somit
$$\sigma(A) = \{i \cdot \sqrt{2}, -i \cdot \sqrt{2}, 1+i, 1-i\}.$$

Sind desweiteren folgende Aussagen wahr? Markieren Sie Ihre Antworten in der Tabelle auf Seite 2. Eine Begründung ist nicht erforderlich.

2.1.c A ist unitär

Nein, denn für unitäre A gilt $|\det A| = 1$, aber wir haben $\det A = 4$.

2.1.d A ist selbstadjungiert

Nein, denn offensichtlich ist $A \neq A^*$.

2.1.e A ist diagonalisierbar.

Ja, denn das Spektrum von A ist einfach.

- **2.2 (5 Punkte)** Untersuchen Sie, ob für beliebige Matrizen $A, B \in M^n(\mathbb{C})$, $n \geq 2$, folgende Aussagen wahr sind und begründen Sie Ihre Antwort ausführlich!
- 2.2.a Aus [A, B] = 0 folgt $[A, B^m] = 0$ für alle $m \in \mathbb{N}$.

 $Aus \ AB = BA \ folgt \ durch \ Multiplikation \ mit \ B \ von \ rechts$

$$AB^2 = BAB = B(AB) = B(BA) = B^2A.$$

Dieses Argument läßt sich mit Induktion fortführen zu $[A, B^m] = 0$ für alle $m \in \mathbb{N}$; die Aussage ist also wahr.

2.2.b Für invertierbare B folgt aus [A,B]=0 zudem $[A,B^{-m}]=0$ für alle $m\in\mathbb{N}.$

Aus AB = BA folgt durch Multiplikation mit B^{-1} von rechts

$$B^{-1}A = B^{-1}A(BB^{-1}) = B^{-1}(AB)B^{-1}$$

= $B^{-1}(BA)B^{-1} = (B^{-1}B)AB^{-1} = B^{-1}A$,

also $[A, B^{-1}] = 0$. Nach 2.2.a folgt nun $[A, B^{-m}] = [A, (B^{-1})^m] = 0$ für alle $m \in \mathbb{N}$; die Aussage ist also wahr.

2.2.c Aus [A, B] = 0 folgt $[A, B^*] = 0$.

Falsch. Sei
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Dann gilt $AB - BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ aber $AB^* - B^*A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

2.3 (5 Punkte) Untersuchen Sie mit Hilfe einer geeigneten Fallunterscheidung die Lösbarkeit in $\mathbf{x} \in \mathbb{R}^3$ des Gleichungssystems

$$\left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & 1 & t\\ 2 & 1 & 0 \end{array}\right) \mathbf{x} = \mathbf{y}$$

in Abhängigkeit von $t \in \mathbb{R}$ und $\mathbf{y} \in \mathbb{R}^3$. Bestimmen Sie jeweils die Lösungsmenge dieses Gleichungssystems. Begründen Sie Ihre Antwort ausführlich!

Sei

$$A(t) = \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & 1 & t\\ 2 & 1 & 0 \end{array}\right).$$

Dann gilt det $A(t) = (-1) \cdot (-1 \cdot t) = t$. Ist also $t \neq 0$, so ist die Gleichung für alle $\mathbf{y} \in \mathbb{R}^3$ eindeutig lösbar und

$$\mathbf{x} = A^{-1}(t)\mathbf{y}, \quad A^{-1}(t) = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 0 & 1 \\ -2t^{-1} & t^{-1} & -t^{-1} \end{pmatrix}.$$

 $F\ddot{u}r\ t = 0$ geht die Gleichung in

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

über. Der Rang von A(t) ist 2, es gibt also eine Lösungsbedingung an $\mathbf{y} \in \mathbb{R}^3$, nähmlich $y_3 = -2y_1 + y_2$. Für solche $\mathbf{y} \in \mathbb{R}^3$ ist die Lösung gegeben durch $x_1 = -y_1$, $x_2 = y_2$ und beliebiges $x_3 \in \mathbb{R}$.