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ABSTRACT: We generalize Keller and Lefévre-Hasegawa’s filt construction
and Kadeishvili’s minimality theorem from the case of a ground field F to the
case of an arbitrary commutative ground ring R. Kadeishvili has constructed
a minimal model on the homology of a given A -algebra over F. We construct
a model on an arbitrary projective resolution of the homology of a given
A -algebra over R.
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PREFACE TO EXTENDED VERSION: In both my bachelor thesis [20] and
my master thesis, I investigated problems in the context of A, -theory. For
the bachelor thesis, I wrote an introduction to A..-theory, which could not be
reused directly in the official version of the master thesis to avoid duplication
of the bachelor thesis. Instead, only the necessary parts were reused. In
particular, the proofs were quoted from [20] and many illustrative parts do
not appear at all in the master thesis.

To facilitate reading, the present "extended version" of the master thesis
was prepared. It contains all the parts that were cut out in the official version
due to formal reasons as explained above. Furthermore, I sketched some
further observations that might be useful.

0.1. Introduction

Suppose R is a commutative ring. By graded modules, we denote Z-graded R-modules.
By graded maps, we denote R-linear graded maps between graded modules.

Note that at the evaluation of tensor products of graded modules, the Koszul sign rules
yields additional signs, cf. Definition 15.



0.1.1. A-algebras

Our first guiding example are differential graded algebras (dg-algebras): A dg-algebra
over R is a graded module A, a graded map m; : A — A of degree 1 and a graded map
mg: A® A — A of degree 0 such that

mqom; =0 (m; is a differential)
miomy =ma(m; ® 14+ 1®my) (Leibniz rule)

mg o (Mo ® 1) =mgyo (1 ®my) (Associativity of the multiplication map ms) .

Stasheff introduced in [22] a generalization of dg-algebra structures on A to A-algebra
structures on A, which consists of a graded "multiplication map" my : A®* — A of
degree 2 — k for each k > 1 satisfying the Stasheff identities, cf. Definition 22. The tuple
(A, (myg)k>1) is then called an A -algebra. The first three of the Stasheff identities are

0=myomy

0=mjomy—moo(m ®1+1KQm)

O=miomgzg+mgo(1@mg—my®1)
+mzo(m @1 +10m; ® 1+ 192 @ m,).

Note the similarity to the equations for dg-algebras. E.g. the third Stasheff identity is a
replacement of associativity. Moreover, we recover the dg-algebras as the A, -algebras
with my = 0 for k > 3, cf. e.g. Example 23. An A-algebra (A, (my)g>1) is called
minimal if my; = 0.

The bar construction yields a bijective correspondence between A -structures on A and
graded codifferentials of degree 1 on the graded tensor coalgebra T'SA = @51 (SA)®F,
where SA is the Z-graded module with (SA)? = A?™! (i.e. we shift the grading of A), cf.
section 2.1. For instance, the laborious signs appearing in the Stasheff identities (4)[k]
disappear via this bijection. This way, the bar construction can be used to explain the
intricate list of Stasheff identities. In the literature, there are slightly different variants
of the bar construction in use which yield different variants of the Stasheff identities. We
use the variant given e.g. in [14].

Given A-algebras (A', (m})i>1) and (A, (mg)k>1), an As-morphism or morphism of
Ao-algebras from A’ to A is a tuple (fg)r>1 such that for k > 1, the map f;, : A®% — A
is of degree 1 — k and such that certain equations hold, cf. Definition 22. The first two of
these equations are

fl O m'l =7my © fl
fromy — foo(my@1+1®@m)) =mio fa+mao(fi @ fi).
In particular, the first equation implies that f; : (A’,m}) — (A, m) is a morphism of

complexes. The A-morphism (f;)r>1 is called a quasi-isomorphism of A-algebras if
fi: (A ,m}) — (A, my) is a quasi-isomorphism. If (fx)r>1 is a quasi-isomorphism, then



A’ is called a model of A. If additionally m} = 0, then A’ is called a minimal model of A.
Similarly to how the bar construction associates A, .-algebras with differential coalgebras,
it associates A,,-morphisms with morphisms of differential coalgebras, cf. section 2.1.
Using composition of morphisms of differential coalgebras, this provides a natural way to
define composition of A,.-morphisms, cf. section 2.3.

0.1.2. A -categories

Our second guiding example are Hom™*-dg-categories, which will illustrate the concept of
A -categories.

Suppose given an (ordinary) R-algebra B. Suppose given a set I and a complex (C®), d®))
over B for each i € I. We obtain the complex (C := @;c;C9, d := ©;c;d™) over B. We
have the graded module A := Hom}(C,C) = @, je; Homz(C®, CW). Here for i,j € I
and k € Z, the R-module Homf,(C®, C0)) =17, HomB(Cﬁk, Cij)) is the R-module
of graded B-linear morphisms of degree k from C® to C'¥) (which are not necessarily
compatible with the differential), which then is the homogeneous component of degree k
of the graded R-module Hom(C'W, CW)) := @,z Hom%(CW, CW). On A, we have the
differential diomy,(c,a) that is given for f € A* = Hom"*(C, O) as

om0y (f) :==do f = (=1)ffod.

On A, there is a dg-algebra structure given by setting m; := dpoms,(c,a) and setting my
to be composition, that is for homogeneous f, g € A, we have mq(f ® g) := f o g. Recall
that my := 0 for k > 3 for dg-algebras.

Note that m; and my respect the decomposition A = @®; ;jc; Homy(C®, CW): For
i,7,7, k € I, we have

ma (Homy,(CO), CON)
ma(Hom’y (C'W), CR)) @ Hom’y(C®, CW))
my(Hom’y (CU), 0% @ Homp(C®, CU)))

Hom’}; (C®, C1))

Hom’ (C®, O%)

0 if j #£ 7.

This behaviour of the dg-algebra (A, (my)x>1) is the prototype of an A-category. Indeed,
by setting A(4, j) := Hom(CW), ) (note the swapped indices), we obtain the tuple
(Obj A :=1, A, (my)k>1) which satisfies the following definition of an A.,-category.

[IaNIg

An A -category is a tuple (Obj A, A = @, jeonj aA(, J), (my : A% — A);>1) such that
the following hold.

o (A, (my)g>1) is an A-algebra.
e For k> 1 and jy,...,Jr € Obj A, we have
mi(Ajo, j1) ® .. ® A(jk-1,Jx)) S Aljo, Ju)-

For k > 1 and iy, ..., 4k, J1,- .., jx € Obj A such that there exists x € [1,k — 1] with
ja: 7é iz+17 we have



So an A -category is an A,.-algebra A together with a decomposition of A into a direct
sum such that the my respect this decomposition.

Given A-categories (Obj A’ A', (m},)k>1) and (Obj A, A, (my)g>1), a morphism of Ax-
algebras (or A -functor) from A’ to A is a tuple f = (fobj, (fx)k>1) such that the
following hold.

e (fx)k>1 is a morphism of A-algebras from (A’, (m})k>1) to (A, (mg)r>1)-
] fObj . Ob_] A — ObJ Aisa map.
e For £ > 1 and jy,...,jr € Obj A’, we have

fi(A (Jo, 1) ® ... @ A'(fik—1,Jr)) € A(fonj (o), foni(ir))-

For k > 1 and iy,...,0, j1,--.,jr € Obj A’ such that there exists x € [1,k — 1]
with j, # 9,41, we have

The A -functor f is called a local quasi-isomorphism if for i,7 € Obj A’, the com-

plex morphism f; |38 (A/(i, ) miy) = (A(for(i), fori(j)),mu) is a quasi-

isomorphism.

0.1.3. The filt construction

Suppose given an (ordinary) R-algebra B. Given B-modules S; for i € I, the filt
construction provides a complete description of the full subcategory £i1t(S;,7 € I) of
B-Mod given by the B-modules that have a finite filtration such that each subquotient is
isomorphic to some S; for i € I.

Keller and and Lefévre-Hasegawa’s original version of the filt construction requires that R
is a field, cf. [11, Problem 2|. We generalize the filt construction to arbitrary commutative
ground rings R such as Z or Z,) for p a prime.

In our notation, the filt construction proceeds as follows. First, we choose a projective
resolution (P%, d®) of S; for each i € I. Then, we define the dg-category (I, A =
@i jerA(f,1) = @i jer Hom*(CD,CU)), (my)p>1) as in our second guiding example.

Choose an A.-category (Obj A’ := I, A’ (m})r>1) such that there is a local quasi-
isomorphism of A-categories f = (idy, (fx)k>1) from A’ to A. From A, A" and f, we
obtain the A -categories tw A and tw A" and the local quasi-isomorphism of A, .-categories
tw f from tw A’ to tw A. Very loosely speaking, tw A, tw A’ and tw f are matrix versions of
A, A" and f that are twisted by strictly lower triangular matrices obeying the generalized
Maurer-Cartan equations, cf. Definition/Lemma 121 and Definition/Lemma 122. The
objects of tw A and tw A" are prototypes of the modules in £i1t(S;,i € I), so tw A and
tw A’ typically have a lot more objects than A and A’.



The zeroth homology of an A -category carries the structure of a semicategory, i.e. of a
"category without identities", cf. section 1.4.2. In practice, these semicategories are often
categories!. In our case, we obtain the categories H” tw A’ and Htw A and the fully
faithful functor H tw f from H%tw A’ to H tw A. There is an equivalence of categories
@ from H°tw A to £il1t(S;,i € I). The composite functor @ o H tw f is dense, so we
have the

Theorem 1 (cf. Theorem 131). Q o Htw f is an equivalence of categories from H® tw A’
to £11t(S;,1 € I).

Hence, we may describe the category £ilt(S;,i € I) by the category H° tw A’.

Note that if A" is minimal, then we have A" = @, je; Extj(S;, S;) equipped with m} =0,
with m/, given by the Yoneda product and with some m; for k& > 3. Note that A is
typically a dg-algebra of enormous size and that A’ is comparatively small, and so much
better suited for practical purposes, even taking into account the (possibly nonvanishing)
higher multiplication maps m;, for £ > 3. In Keller and Lefévre-Hasegawa’s original
variant, A’ is chosen in such a way that it is minimal. If R is a field, Kadeishvili’s
minimality theorem ensures that this is possible. Over arbitrary rings R, finding a
suitable A’ is more complex: As detailed in section 0.1.4, the minimality theorem does
not hold over arbitrary rings R, but it is still possible to find a suitable small model A’.

We generalize Keller and Lefévre-Hasegawa’s filt construction to arbitrary commutative
ground rings as follows.

Keller and Lefévre-Hasegawa use A.-modules and factorization of the Yoneda functor
(cf. [11, Theorem in section 7.5]). We use a direct approach. The choice to use a direct
approach was also influenced by the wish to precisely understand how the assembly of
objects of £i1t(S;,7 € I) from the S; translates to the objects of H tw A and of H” tw A’.
We prove the fact that tw f is a local quasi-isomorphism directly from the fact that f is
a local quasi-isomorphism. This implies that H® tw f is fully faithful. Establishing Q as
a fully faithful functor from H’tw A to £i1t(S;,i € I) combines well-known results on
projective resolutions with a straightforward translation to A.-terminology. The proof
that Q as well as Q o H”tw f are dense is done using explicit constructions with the
horseshoe lemma as key ingredient.

0.1.4. Small models of A_-algebras and A -categories over arbitrary ground
rings. The extended Kadeishvili minimal method.

In the filt construction explained in section 0.1.3, we are given an A -category
(Obj A, A, (my)k>1) and we want to construct an A.-category (ObjA’, A’ (m})k>1)

'In our applications, we obtain this almost effortlessly by Lemmas 36 and 39 using the presence of
a suitable local quasi-isomorphisms of A, -categories. In contrast, there are various concepts of
"unital" A..-algebras resp. A.-categories such as strictly unital A.-algebras (cf. [11, section 3.5])
and unital A-categories, (cf. [15, Definition 7.3|). These ensure a priori that the semicategories
mentioned above are categories but introduce additional constraints.



together with a local quasi-isomorphism of A -categories (fon;, (fx)k>1) from A’ to A
such that fop; : Obj A" — Obj A is bijective.

We will first discuss the simpler case where we are given an A -algebra (A, (my),>1) and
we want to construct an A,-algebra (A, (m},)g>1) together with an quasi-isomorphism
of An-algebras (fi)g>1 from A’ to A. We will return to the more general case of
A -categories at the end.

In the context of the filt construction, it is desirable that A’ is as small as possible since
then H° tw A’ also becomes as small and (hopefully) as simple as possible. If m| = 0
then A’ is as small as possible since then A’ is essentially the homology of A. Recall that
in that case, A" is called a minimal model of A. If the ground ring R is a field, then
the existence of minimal models is guaranteed by Kadeishvili’s minimality theorem, cf.
[12] (history), [9], [10]. The original version of the minimality theorem given in [10] uses
Kadeishvili’s algorithm: After constructing f; : A — A and m/ = 0 in the initial step,
Kadeishvili’s algorithm constructs the f; and m) successively for k = 2,3,..., cf. e.g.
Theorem 55.

Over a ground ring R that is not a field, the minimality theorem does not hold in general.
If e.g. R is an integral domain but not a field, we may easily obtain an A.-algebra that
does not have a minimal model, cf. section 4.1.

Kadeishvili’s algorithm works if the homology of A is projective over R, cf. e.g. Theorem 55.
Hence, one reasonable approach is setting A’ to be a direct sum of R-projective resolutions
of the H'A for i € Z. One way of concretizing this idea was done by Sagave in [19] by
extending the concept of A -algebras to dA-algebras. In addition to the "vertical"
grading present in A-algebras, dA-algebras feature a "horizontal" grading. The
horizontal rows then contain the projective resolutions that A’ is composed of. The
multiplication maps of a dA-algebras obey grading conditions and a variant of the
Stasheff identities that involve both the horizontal and the vertical grading. Using
model categories, Sagave obtains in [19] minimal models in the sense of dA -algebras for
dg-algebras over arbitrary commutative rings. However, it is unknown to what extent the
projective resolutions occurring in A’ can be chosen, cf. [19, Remark 4.14]. In particular,
it is not known how large such a minimal model A’ in the sense of dA.-algebras is.

We introduce eA-algebras. Each eA-algebra has an underlying A.-algebra, which
facilitates the use of the filt construction. Il.e. eA-algebras are A -algebras with
additional structure. Using a certain notion of minimality for eA-algebras, we obtain
the

Theorem 2 (cf. Theorem 90). Suppose given an Ay -algebra (A, (my)g>1). Choose
projective resolutions P?) of H*A for z € Z.

Then there exists a minimal eA-algebra (A', (m},)r>1) with A" := @,z P®) and a quasi-

isomorphism of Ax-algebras (fi)r>1 from (A', (m})k>1) to (A, (my)>1)-

The construction of the mj, and f; for £ > 1 is done incrementally via an algorithm called
the extended Kadeishvili minimal method. This algorithm requires knowledge about how



the projective resolutions P*) decompose into their positions. The need to store this
information is the cause for introducing eA-algebras, which are A, -algebras that are
equipped with an additional structure that is precisely designed to hold that information.
Technically, this is done by introducing an additional, "horizontal" Z-grading somewhat
similar to Sagave’s dA.-algebras. The projective resolutions P*) then run diagonally
in contrast to dA-algebras, where they run horizontally. For a detailed comparison of
dA-algebras and eA-algebras, see section 4.3.5.

In the same way we have generalized from A -algebras to A,.-categorise, we may now
generalize from eA . -algebras to eA,-categories.

Suppose given an A-category (Obj A, A, (my)r>1). The concept of eA-algebras and
the concept of A_-categories do not interfere with each other. Thus we can perform
the extended Kadeishvili minimal method basically separately on the components of
A = @, jeonj aA(i, j) to obtain the

Theorem 3 (cf. Theorem 98). Suppose given an A-category (ObjA, A, (mg)k>1).
Choose a projective resolution Po(f,)o2 of H* A(01, 02) for each z € Z and each oy, 05 € Obj A.
For 01,0, € Obj A, let A'(01,05) = @.ezP?). Let A = Do, ,00c0bj aA (01,02). Then
there ezists a minimal eAy-category (Obj A’ := Obj A, A', (m})k>1) and a local quasi-
isomorphism of A -categories (id, (fi)g>1) : (Obj A’ A') (m})k>1) — (Obj A, A, (my)k>1)-

0.1.5. Models for cyclic groups over arbitrary ground rings

Suppose given an (ordinary) R-algebra B, a B-module M and a projective resolution P
of M over B. If R is a field, the minimality theorem ensures that there is an A-structure
(m},)k>1 on Exty (M, M) = H* Homp (P, P) such that (Exty (M, M), (my)r>1) becomes a
minimal model of the dg-algebra Hom} (P, P). In the context of this introduction, we
call such an A.-structure on Exty (M, M) a canonical A,-structure on Extp (M, M).
We regard group cohomology algebras as a special cases of Ext*-algebras, so the same
terminology applies for group cohomology algebras.

For an arbitrary field F and n € Z>;, Madsen computed a canonical A -structures
on Extiyy)/(on) (F, F), where F is the trivial Fla]/(a")-module of the algebra F[a]/(a™).
For F := F, and n := p* for a prime p and an integer k > 1, the algebra F,[a]/(a?")
is isomorphic to the group algebra F,C,« of the cyclic group C,t. So this yields also a
canonical A -structure on the group cohomology EXtIE,Cpk (IEy, I,) of the cyclic group C,x

as given by Vejdemo-Johansson in [23, Theorem 4.3.8].

In [23], Vejdemo-Johansson developed an algorithm to compute canonical A.-structures
on group cohomology algebras partially. This algorithm has become a part of the Magma
computing framework, where it can be used to partially compute canonical A-structures
on the cohomology algebras of p-groups. In [23], it is used to partially compute canonical
A o-structure on the cohomology algebras over Fy of the dihedral groups Dg and D¢ as
well as the quaternion group Qs.
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In [24] and [23] (note the comments at [23, p. 41]), Vejdemo-Johannson investigated
a canonical A-structure (m,,),>1 on the group cohomology Exty ¢, «c,) (Fp, ), where
k,l > 4 are multiples of the prime p. He showed that in that case, the multiplication
maps My, My, My, Mi4i—2, Magk—2)+1 and Mag_oy4r are non-zero, cf. [23, Theorem 3.3.3|.

In (13|, Klamt applied A.-theory to representation theory of Lie-algebras. Given certain
direct sums M of parabolic Verma modules, she examined canonical A, -structures on
Exto (M, M). Given such a canonical A-structure (my)g>1, she proved upper bounds
for the maximal k such that m; is non-zero. In certain cases, she computed complete
canonical A-structures.

In [20], a canonical A-structure on the group cohomology Ext ¢ (F,, F,) of the sym-
metric group S, over F, has been computed where p is a prime.

To test the theory of eA . -algebras, we examine the case of cyclic groups over an arbitrary
ground ring:

Recall that R is a commutative ring. Let n > 1. Let e be a generator of the cyclic group
C,. We have the following projective resolution of the trivial RC,,-module R.

el —e n—lgi —e
Pi= (- = RC, == RC, =% RC, =% RO, 2% RC, — 0= ---)

We want to obtain a model (A’, (m})r>1) of the dg-algebra Homp (P, P) such that
(A, (m})k>1) is a minimal eA-algebra and such that A’ consists of standard projective
resolutions of the H' Hompq (P, P) = Extyho (R, R), i € Z.

Let A’ be the free R-module over the set {17, yt/ | j € Zso}. o
A’ is Z-graded by setting ¢J to be homogeneous of degree 25 and setting yi/ to be
homogeneous of degree 25 + 1 for j € Z>y.

Examining models (A’, (m},)r>1) of Hompe (P, P) on A’ that exploit the periodicity
of P leads to a certain condition (cf. (67)) on the coefficients of the m}, cf. Defini-
tion/Remark 104 and Propositions 105 and 110. Some experimentation revealed that
this condition is equivalent to the equation

(h—e)g=r

for formal power series g € RC,[[X]], h € RC,[[X]] and r € R[[X]] with certain
constant and linear terms, cf. Proposition 115. Here, r encodes (mj})r>1 and g and
h encode the quasi-isomorphism of A-algebras from (A’, (m},)r>1) to Homy (P, P).
Since multiplication with e is a circular shift in C,,, the equation of power series given
above is some kind of recurrence relation on ¢g. Indeed, if we restrict us to the case
h € R[[X], then all solutions can be constructed as follows.

Choose g = >, 3: X" € R[[X]] and h = Y7, h:X* € R[[X]] such that hy = go = 1 and
such that h; is a unit in R. We then obtain ¢ and r by

n—1
g = Zhn—l—igei
1=0

11



r:=(h"—1)g.

Given such r, g and h, we may then use r to obtain a model of Homp (P, P) on A’ as
follows. We have r = Zizo r; X* for some r; € R, i > 0.

On A’, an A-structure (mj})x>; is given by setting

xutaz itz if 0 € {ay,...,a;} and k =2
M (XM @ ... @ x%Ik) 1= 4 0 if 0 € {ai,...,a;} and k # 2

rpedttetietl if g = =aq, =1

for k > 1, a1,...,a, € {0,1} and jy,..., 5k > 0. The A-algebra (A’, (m})x>1) carries
the structure of a minimal eA-algebra, cf. Remark 111. We have the following

Proposition 4 (cf. Propositions 110 and 117). The minimal eA-algebra (A, (m})g>1)
is quasi-isomorphic to the dg-algebra Hompq (P, P).

Note that if R = [, for some prime p and n = p° for ¢ € Z>;, we recover the model given
by Madsen and Vejdemo-Johansson, cf. Remarks 114 and 118.

0.1.6. Connecting Hom*-dg-algebras with A_ -morphisms

Suppose given an R-algebra B and two projective resolutions P, () of the same B-module
M. In the situation detailed in section 0.1.7, it was necessary to be able to obtain a
sensible A,,-morphism from the dg-algebra Homp (P, P) to the dg-algebra Hom}(Q, Q).
Note that in this situation, the comparison theorem implies that the complexes P and ()
are homotopy equivalent. So we are able to use the following

Definition/Lemma 5 (cf. Definition/Lemma 63). Suppose given an R-algebra B.
Suppose given complexes (P,dp), (@Q,dg) over B. We have the dg-algebras A’ :=
Hom% (P, P) and A := Homjz(Q, Q).

Suppose given complex morphisms ¢; : P — @ and g, : Q — P. Suppose given a
homotopy h € Hompz' (P, P) such that g, o g; = idp +duom, (p.p)(h).

Then there is a morphism of A-algebras f,, 5,0 = (fi)k>1 from A’ = Homp(P, P) to
A = Hom}(Q, Q) given as follows. For k > 1 and homogeneous elements z; € (A")% for
i €[1,k], we set

k(k—1)

frmr® . @my) =(=1)"7 (=1)Zenn g o (z)0hozyo...0how)o g,

Note that f; maps an element z € Homp (P, P) to g1 o x 0 g2 € Homp3(Q, Q). S0 for g
is in a certain sense induced by g; and gs.

12



0.1.7. Restriction to a subgroup in terms of minimal models on the group
cohomology algebras

Suppose given a field F. Suppose given a finite group G. Suppose given a projective
resolution P of the trivial FG-module F. By the minimality theorem, there exists
an A-structure on the group cohomology Extp.(F,F) = H* Homp, (P, P) such that
Extpe(F,F) becomes a minimal model of the dg-algebra Homp. (P, P). Recall that in
this introduction, we call such an A -structure on Exty,(F,F) a canonical structure
on Extp(F,F). Suppose given a subgroup H of G. The restriction from G to H
induces an inclusion map resgy : Homp. (P, P) — Hompy(P, P) and thus a map
H*resg g : Extpo(F,F) — Extyy, (F,F), cf. e.g. [1, p. 73]. At the presentation of my
bachelor thesis [20], Steffen Kénig asked whether it was known if res¢ g somehow provides
a connection in the A -sense between canonical A -structures on Extp.(F,F) and on
Extyy (F,F).

In [20], a canonical A-structures on Extg ¢ (F,, F,) has been established, where p
is a prime, F, is the field with p elements and S, is the symmetric group with p!
elements. Further investigation showed that the canonical A-structure obtained on
Exty g (Fp, ) (cf. [20, Definition 38, Theorem 39]) bears a striking resemblance to
canonical A,-structures obtained on Exty o (F,, F,), cf. [16, Appendix B Example 2.2]
and |23, Theorem 4.3.8]. This resemblance is given as follows. For both cases, there are
homogeneous generators a, b such that the group cohomology algebra has the [F,-basis
{a?,ba? | j € Z>o} =: B. Evaluating the multiplication maps my, for k > 1 on elements
T ®...® x, with z; € B for ¢ € [1,k], the only non-zero images are

ma(a? ® o) = a7 for j,j € Zsy

ma(ba’ @ a’') =ba?t7 for j,j' € Zsg

ma(a? ® ba’ ) =ba?t7 for j,j' € Zsg

: : Wirtetie for jy,...,5, €7Z for the case C

my(ba” @ ... ® ba’) = ¢ N 7Jp, =0 ' P
(=1)PaP=D+n+tie for j ... j, € Zso for the case S,,.

For the cyclic groups, a =: ac, has degree 2 and b =: bc, has degree 1. For the symmetric
groups, a =: ag, has degree 2(p — 1) and b =: bg, has degree 2(p —1) — 1. So if we identify
as, with alé;l and bg, with —bcpa’é;z, the formulas for the m; are compatible. l.e. we
obtain the canonical model on Extg ¢ (F,, F,) as a (suitably defined) sub-A-algebra of
the canonical model on Extp o (I, Ey).

In section 3.2, we develop results which show that this behaviour can partially be
generalized to group / subgroup pairs where the index of the subgroup in the group is
invertible in the underlying field:

On the one hand using a specialized version of Kadeishvili’s algorithm, we obtain the

Proposition 6 (cf. Proposition 66). Suppose given a field F. Suppose given a finite
group G and a subgroup H < G such that [G : H| is invertible in F. Suppose given a
projective resolution P of the trivial FG-module F over FG.

13



Note that the dg-algebra homomorphism resg g : Homg (P, P) — Homg, (P, P) has an
A -version called stricto(resg m), ¢f. Definition 58.

Suppose given a minimal Ao -structure (m!\?),=1 on Exti,(F, F) and a quasi-isomorphism

of Ax-algebras (féG))nzl . (Bxtig(F,F), (m.“),=1) — Homig (P, P) such that fl(G)
imduces the identity in homology.

Then there is a minimal A -structure (m),),>1 on Extyy(F,F) and a quasi-isomorphism
of A-algebras (fu)n>1 1 (Extpgy (F,F), (m])n>1) — Homgy, (P, P) such that

e f1 induces the identity in homology,

e stricto (H* resg gr) : (Exti (B, F), (m, D)) = (Exthy (F,F), (m))ns1) is an As-
morphism and

e the following diagram of A..-morphisms commutes.

( ”V(LG))nZI

(EXtI?G (F’ F)7 (m%(G))nzl)

Homj (P, P)
strictoo (H* resg, 1) l

(Extey (F,F), (my)n>1)

l/strictoo (resq,m)

(fn)nzl Hom];H(P’ P)

On the other hand using a result by Keller and Prouté (cf. [11, Theorem in section 3.7|,
see also [18, Théoréme 4.27] and |21, Corollary 1.14]), we obtain the following

Proposition 7 (cf. Proposition 67). Suppose given a field F. Suppose given finite groups
G, H with H < G. Suppose given a projective resolution P of the trivial FG-module F
and a projective resolution Q) of the trivial FH-module .

Suppose given minimal A -algebras

together with quasi-isomorphisms of A -algebras

£ = (D51 : M9 — Homiy, (P, P)
FE = (F)0y - M 5 Homi,(Q, Q).

Suppose given FH-linear complex morphisms g1 : P — Q) and go : Q — P together with
a homotopy h € HomET;I(P, P) such that gs o g1 = idp +duoms,, (p.p)(h)-

From g1, g2 and h, we obtain via Definition/Lemma 5 the A-morphism f,, g0 from
Homy (P, P) to Homiy (Q. Q).

14



Then there exists an Ao-morphism ™ from M) to MW such that the following
diagram commutes up to homotopy in the sense of [11, section 3.7].

(G)
M®© ! Hom,(P, P)
fmin j'ﬁngQ’hOStrith (I‘GSG’H)
M "™ Hom:
OmIFH(Q7 Q)

Comparing the two results, note that in Proposition 6, an explicit construction is used and
the morphism between the minimal models is the A, ,-morphism induced by restriction.
In Proposition 7, however, the canonical A -structure on Exty, (F,F) can be chosen
and we have no restriction on the index [G : H], but we know less about the morphism
between the minimal models and we obtain commutativity only up to homotopy.
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0.3. Notations and conventions

Miscellaneous

e For modules M, N, we write M < N if M is a submodule of N. For groups H, G,
we write H < G if H is a subgroup of G. If G and H are finite groups and H < G,
we write [G : H| to denote the index of H in G.

e If we denote a commutative ring R as the ground ring, we understand linear
maps between R-modules to be R-linear. Furthermore, tensor products are tensor
products over R.

Graded modules are Z-graded modules over R, cf. section 1.1. Graded maps are
R-linear graded maps, cf. section 1.1.

e Concerning "oo", we assume the set Z U {oo} to be ordered in such a way that
oo is greater than any integer, i.e. co > z for all z € Z, and that the integers are
ordered as usual.

e Fora € Z, b € Z U {oc}, we denote by [a,b] :== {2z € Z | a < 2z < b} C7Z the
integral interval. In particular, we have [a,00] = {2 € Z | 2 > a} C Z for a € Z.

e For n € Z>, k € Z, let the binomial coefficient (Z) be defined by the number of
subsets of the set {1,...,n} that have cardinality k. In particular, if £ < 0 or

k > n, we have (Z) = 0. Then the formula (kfl) + (Z) = ("Zl) holds for all k£ € Z.
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Rings are unital rings.

For a commutative ring R, an R-module M and a,b € M, ¢ € R, we write
b=.a < a—becM.

Often we have M = R as module over itself.
For a prime ¢, let IF, denote the finite field containing ¢ elements.

Let R be a commutative ring. An R-algebra (A, p) is a ring A together with a ring
morphism p : R — A such that p(R) is a subset of the center of A. By abuse of
notation, we often just write A for (4, p). A is an R-module via r - a := p(r) - a for
re R, a€eA

For R-algebras (A, p) and (B, 7), a morphism of R-algebras ¢ : (A4, p) — (B,7) is a
ring morphism ¢ : A — B such that go p = 7.

Morphisms will be written on the left.

Modules are left-modules unless otherwise specified. For a ring A, we denote by
A-Mod the category of left A-modules.

We denote a tuple by enclosing it in parentheses. I.e. for a set M and a; € M,
i € [1,n], n > 0, we have the tuple (aj,as,...,a,) = a. In particular, () is the
empty tuple.

For a map g : M — N from M to a set N, we define

g(a) = (g(x): z € a) := (g(a1),9(az), ..., g(an)).

For a set M’, by abuse of notation, we denote by M’ \ a the set difference between
M’ and the set of elements of a. Similarly, we write a C M’ if each entry of a is an
element of M.

We will express ordered bases of finite-rank free modules as tuples of pairwise
distinct elements.

For sets, we denote by U the disjoint union of sets. For tuples a = (aq, ..., a,) and
b= (by,...,bn), we denote by LI the concatenation:

alb:= (a,as,...,a,,01,b9,...,0,)

| - |1 For y a real number, |y| denotes its absolute value. For a = (ay,...,a,) a
tuple, |a| := n is the number of its entries.
For an element z of a graded module, let |z| := {k € Z | x is homog. of degree k},

cf. section 1.1. Hence, x is homogeneous of degree k iff |x| > k. For a linear
map g between graded modules, let |g| := {k € Z | g is graded of degree k}, cf.
section 1.1.



e Suppose given an I x J-graded module M = &;cr je s M* for sets I, J. We say
that we suppress the grading along I or say that we suppress the grading along
i if we consider M as a J-graded module where given 5 € J, the homogeneous
component of M of degree j is @;e;M*’. In the same way, components of gradings
indexed by Cartesian products of more than two sets may be suppressed.

Restricting and extending maps and morphisms

e Suppose given a function f: A — B.
For a set A” C A, we denote by f|a : A’ — B the restriction in the domain.
For a set B’ C B such that f(A) C B’, we denote by f|?' : A — B’ the restriction
in the codomain.
For sets A’ C A, B’ C B such that f(A') C B/, let f|5 = (f|a)|".

e Suppose given sets A, B,C. Suppose given a set B’ C B. Suppose given maps
f:A— B and g: B — C. We define the composition go f by go f := h, where
h:A— Cis given by h(z) := g(f(z)) for x € A. Le. the inclusion map from A’ to
A is inserted implicitly between ¢g and f.

e Suppose given a commutative ring R. Suppose given R-modules A, B. Suppose
given submodules C,C" < B. Suppose given R-linear maps f: A —-C,g: A — C’.
We define f + g to be the R-linear map f+g¢g: A — (C+C") given by (f +¢g)(x) :=
f(z)+g(x) for z € A. Note that this notion for sums of morphisms is commutative
and associative.

e When combining the two previous conventions, there is the following simplification.
Suppose given a commutative ring R. Suppose given R-modules A, B, C'. Suppose
given submodules B, By, B” < B. Suppose given R-linear maps f; : A — B,
fo: A— Bland g: B” — C. The morphism (f1+ f2) : A — B} + B}, is composable
with g : B” — C iff B} + B, C B”. This holds iff B] C B” and B}, C B”. In that
case, we have go (f1 + fa) =go fi+go fo: A— C.

We conclude that in order to verify that an expression of the form go (f; + f3)
with R-linear maps f1, f2, g is sensible, we only need to check that f; and f; have
the same domain and that the domains of both f; and f, are submodules of the
domain of g.

Complexes Let R be a commutative ring and B an R-algebra.

e Suppose given a (descending) complex of B-modules

(C,d)z(—>0k+lch‘—+l>0ki’“—>0k_1—>)

We often write C' instead of (C, d).
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The k-th boundaries, cycles and homology groups of C' are defined by By (C) :=
imdgi1, Zg(C) := kerdy, and Hg(C') := Zx(C)/B(C). Write Z,(C) := GrezZi(C),
B*(C) = @kGZBk(C) and H*(C) = @kGZHk(C)

For a cycle x € Zi(C), we denote by T := x + B(C) € Hy(C) its equivalence class
in homology.

Suppose given an (ascending) complex of B-modules

k;_

(Cod) = (- — CF L L ok & bty

We often write C' instead of (C,d).

The k-th boundaries, cycles and homology groups of C' are defined by Bk(C) =
im d*~!, Z¥(C) := ker d* and H*(C) := Z"(C)/B*(C). Write Z*(C) := ©rezZF(C),
B*(0) := @rezBF(C) and H*(C) := @pezHF(O).

For a cycle x € Z¥(C), we denote by 7 := x + B*(C) € H*(C) its equivalence class
in homology.

Given a descending complex of B-modules

"—>Ck+1 dk—+1>0kik—>0k_1—> ,
we may obtain an ascending complex of B-modules by setting C* := C_; and
d¥:=d_; for k € Z.

Conversely given an ascending complex of B-modules
Ok 1 ddt Ck Ck—i—l .

we may obtain an descending complex of B-modules by setting C} := C~* and
di :=d* for k € Z.

So we may transform ascending and descending complexes into each other. We
will denote both ascending and descending complexes simply as complexes and
distinguish them from each other by using upper indices for ascending complexes
and lower indices for descending complexes.

For a complex of B-modules C' = (--+ — Cjy Lz Co 25 Oy —) and z € Z,
the shifted complex C[z] = . C' is defined by Cy := Crys, dj, := (—1)%dgs ..

Let

C:( —)CkJrlﬂ)Ck——)Ck 1 — - )
d’
C'=(- _>Ck+lﬂ>ck—_>ckl )

be complexes of B-modules.



Given z € 7Z, let

Hom?%(C, C") HHomB i1z, C1).

€L

This is used to define the graded R-module

Hom,(C, ') := @ Homfy(C, C").

kEZ

For an additional complex C" = (--- — C}/,; — Bt C” C’,’C’ . — ---) and maps
h = (h;)icz € Hom'g (C,C"), W/ = (h/)zeZ € Hom(C’, C’”) m,n € Z, we define the

composition by component-wise composition as
B oh = (h]o hiin)iez € Hom™(C,C").

Furthermore, we define composition on Hom%(C”, C”) ® Homp(C, C”) by linearly
extending the definition given on the summands of Homp(C’, C") @ Hom}(C, C") =
@mnez Hom" (C’, C") @ Hom™ (C, C").

The graded R-module Hom3(C, C") = @, ., Hom};(C, C’) becomes a complex via
the differential dpom,(c,cr), which is defined on elements g € Hom%(C,C"), k € Z
by

drtoms (0 (9) == d 0 g — (=1)*g o d € Hom};"(C, C"),

where d:= (d;41)icz € Homp(C, C) and analogously d’:= (d., )iz € Homp(C’, C").

An element h € Hom%(C,C’) is called a complex morphism if it satisfies
dHom}‘g(C,C’)<h) = O, ie. d o g=4go d.
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1. A-algebras

Suppose given a commutative ground ring R.

1.1. Graded modules. The Koszul sign rule. Graded projectivity.

In this subsection, we review basic definitions and results concerning graded modules
and the Koszul sign rule.

Definition 8. A graded R-module or graded module V is an R-module of the form
V = @uezV9. An element v, € V9, g € Z is said to be of degree ¢. An element v € V is
called homogeneous if there is an integer g € Z such that v € V9. For elements v € V,
let [v| := {k € Z | v is homogeneous of degree k}.

Definition 9. Let A = ®,cz A9, B = ®yezB? be graded R-modules. A graded map of
degree z € 7 from A to B is a linear map g : A — B such that img|Aq C B for q € Z.
For linear maps g : A — B, let |g| := {k € Z | g is graded of degree k}.

Definition 10 (Arithmetics of degrees). Given sets M, M’ C Z, we define their sum by
M+ M :={m+m'|meMm eM}.
Remark 11. Let A, B be graded modules. Let f : A — B be a linear map. Let x € A.

If k, € |z| and k; € |f|, then z € A% and f is graded of degree k;. This implies
f(z) € B so k, + ky € |f(x)]. We conclude |z| + |f] C |f(z)].

Definition 12. The category R-Mod” of graded R-modules is given as follows. Objects
are graded R-modules. Morphisms are graded maps of degree 0. The category R-Mod” is
isomorphic to the category of functors from the discrete category Z to R-Mod. So R-Mod”
is an abelian category since R-Mod is abelian, cf. e.g. [17, IL.11].

For A, B € Obj(R-Mod”), the direct sum A @ B = @, (A? © B?) is then graded by
(A® B)? = A1¢ B?. We denote a direct summand in R-Mod” as a graded direct summand.

For A € Obj(R-Mod?), a submodule M of A is called a graded submodule?® of A if
M = ®yez (AN M). In that case, the inclusion map M — A is a graded map of degree
0.

Lemma 13 (cf. e.g. |2, §11.3 Proposition 3(i)| ). Suppose given graded modules A, B
and a graded map f: A — B. Then im(f) C B is a graded submodule of B.

Proof. Choose ky € |f|. We have

AP ng+kf

im(f) = @pezf (A7) ! C  @pez(im(f) N B") = @yez(im(f) N BY) C im(f).

Hence we have equality everywhere. In particular, we have im(f) = @,ez(im(f)NB?). O

2By some authors, a graded submodule resp. a graded direct summand is also called a homogeneous
submodule resp. a homogeneous direct summand.
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Definition 14. Let A = ©,czA9, B = ©4ezB? be graded R-modules. We have

A® B = EB AZ1®BZ2:@< @ A“@B”).

21,22€7Z q€Z \z1+22=q

As we understand the direct sums to be internal direct sums in A ® B and understand
A* ® B* to be the linear span of the set {a ® b€ A® B |a € A*,b € A*}, we have
equations in the above, not just isomorphisms.

We then set A ® B to be graded by A® B = @, ,(A ® B)?, where (A ® B)? :=
D. .y A7 @ B>

Note that given a € A,b € B, the assumption k, € |a|, k, € |b| implies k, + k; € |a ® b|.
Le. |a| + [b] C |a ® b|.

Definition 15. In the definition of the tensor product of graded maps, we implement the
Koszul sign rule: Let Ay, Ay, By, By be graded R-modules and g: A — By, h: Ay = By
graded maps with k, € |g| and k, € |h|. Then g®h is given on elements r®@y € A% ® AL
by

(9@ h)(z®y) = (=1)""*g(z) ® h(y). (1)
Note that if k, € |g| and kj, € |h], then k, + k, € |¢g ® h|. Le. |g| + |h]| C |g @ A
Remark 16. It is known that for graded R-modules A, B, C, the map

©: (A®B)®C — A®(B®C0)

(a®b)®@c +—— a®(b®c) (2)

is an isomorphism of R-modules. Because of the following, © is homogeneous of degree 0.

(AeB)eC) =PAeBrec*= P B A*eB*)eC>

Yy+z3=q Y+23=q z1+22=Y

=P @ B*) o C*

z1+2z2+23=q

(A (BoC) ' =PA"eBC)Y=H P 4" (B>2C)

z1+y=q z21+Y=q z2+23=Yy

— P4 e (B2 o)

z1+2z2+2z3=q

Let Ay, As, By, By, C1,C5 be graded R-modules, f: Ay — A, g: By — Bs, h: C; — Cy
graded maps with kf € | f], k, € |g|, k;, € |h|. For homogeneous elements © € A;, y € By,
z € Cy with k, € |z|, k, € |y, k, € |2|, we have

(f®g) @h)((z@y)® 2) =(-1)*T)((f @ g)(z ®y)) @ h(2)
= (= 1)lkethdkntaks (£(2) ® g(y)) ® h(2)
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(~)etot W fz) @ (9@ h)(y ® 2))
(—1)felrin i f2) @ (g(y) @ h(2))
= (~plerilatiel f(2) @ (g(y) @ h(2)).

Thus we have the following commutative diagram (0; and O, are derived from (2))

(fe(geh)(ze(y®=z))

(Al X Bl> ® C4 &)'Al ® (Bl ® Cl)
l(f®g)®h lf®(g®h)
(Ay ® By) ® Cy —2> Ay @ (By ® Cb)

It is therefore valid to use © as an identification and to omit the brackets for the
tensorization of graded R-modules and the tensorization of graded maps.

Lemma 17. Let A;, B;, 1 € {1,2,3} be graded R-modules and f : Ay — Ay, g : By — B,
h:Ay — As, i: By — Bs graded maps. Suppose |f| 3 ky and |i| > k;. Then

(h@i)o(f®g)=(=1)"(hof)@(iog). (3)

Proof. Choose k;, € |h| and k, € |g|. Let a € A; resp. b € By be homogeneous elements
of degree k, resp. k,. We have

(h@i)e(f@g))la® ) (1" (h@1i)(f(a) ® g(b))

= (—totlatklk (o f)(a) (i o g)(b)
= (~1)felot ¥ (ho f)(a) @ (i o g)(b)
(-

D9 ((ho f)® (iog))(a®b).

Repeated application of Lemma 17 yields the following

Corollary 18. Let n > 1. Given graded R-modules V;, W;, U; and graded maps
fi:Vi=> Wi, gi: Wy = U; with | fi| 2 ky,, |gi] 2 kg, fori e [1,n], we have

(1® - @gn)o(fi®-®fu)=(=1)(q10f1) ® @ (gno© fn),

where § = ZKK” <Zl<]<z > = Zl§j<i§n kg, - Ky, -

Definition 19. Let P be a graded module. We denote P to be graded projective iff for
each surjective graded map b : D — C of degree k;, for some graded module C, D and
for each graded map ¢ : P — C of degree k., there exists a graded map d : P — D with
kg € |d| such that ¢ = bod and k. = ky + kq.

_P
3d lc
£

C

D—to
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Lemma 20. Suppose given a graded module P which is projective over R (& all P are
projective over R). Then P is graded projective.

Proof. Suppose given C, D, b, ¢, ky, k. as in Definition 19. Set k; := k. —k,. For = € Z, we
construct morphisms d,, : P* — D***a as follows. Since b is surjective and graded, the

. x4k, z+ke . . . . . . .
restricted map b|gz+szkb = b|gz+k2 is surjective. Since P is projective, and ¢(P*) C C%tke,
Cz+kc Cz+kc

there is a morphism d, : P* — D¢ such that b|Dz+kd od, = ¢|%. . From the maps d,,

we obtain a graded map d : P — D of degree k; by setting d]g?’kd =d, for x € Z. By
the construction of the d,, we have bod = c. O

1.2. A -algebras

Concerning the signs in the definition of A-algebras and A..-morphisms, we follow the
variant given e.g. in [14].
Definition 21. Let n € Z> U {o0}.

(i) Let A be a graded R-module. A pre-A, -structure on A is a family of graded maps
(mu, + A®% — A)pepn ) with [mg| 3 2 — k for k € [1,n]. The tuple (A, (mg)rep,n) is
called a pre-A,-algebra.

(ii)) Let A’, A be graded R-modules. A pre-A,,-morphism from A’ to A is a family of
graded maps (fy : A% = A)pep,n with |fi| 21—k for k € [1,n].

A pre-A,-morphism (fi)re,n) is called strict if fp = 0 for k € [2,n].

Definition 22. Let n € Z>q U {o0}.
(i) An A, -algebra is a pre-Ay-algebra (A, (my)ren,n) such that for k € [1,n], the
Stasheft identity

> (=) Mmoo (1% @m, @ 191) =0 (4)[k]

k=r+s+t,
rt>0,s>1

holds.
In abuse of notation, we sometimes abbreviate A = (A, (my)g>1) for A-algebras.

(ii) Let (A', (m})kep,n) and (A, (my)repn)) be A,-algebras. An A, -morphism or mor-
phism of Ay-algebras from (A’, (m})kepn)) to (A, (Mk)kep,n)) is @ pre-A,-morphism
(fr)kep,n) such that for k € [1,n], we have

DD o (1% @ml @ 19) = Y (=1)'m, o0 (f;, ® fi, ® ... ® f,),

k=r+s+t 1<r<k
rt>0,5>1 i1+...+ir=k
all 35>1

(5)[#]

23



where

V= Z (1 —ig)iy. (6)

1<t<s<r

An A,-morphism is called strict if it is a strict pre-A,,-morphism.

Given n € Zso, n < n, we may forget a part of the structure of an A,-algebra
(A, (mp)rep,n)) to obtain the Agz-algebra (A, (my)rep,a)- This is often done without
comment.

Example 23 (dg-algebras). Let (A, (my)r>1) be an A-algebra. If m,, =0 for n > 3
then A is called a differential graded algebra or dg-algebra. In this case the equations
(4)[n] for n > 4 become trivial: We have (r+1+t)+s=n+1= (r+1+t)+s>5
= Mmyy144 = 0 or mgy = 0. So all summands in (4)|n| are zero for n > 4. Here are the
equations for n € {1,2,3}:

(D[] : 0=myomy
4)[2] : 0O=myomg—mgo(m ®@1+1®m)
(4)[3] : 0=mjomz+moo(l1®@my—my®1)

+mzo(m @1 +1@m @1+ 1% ®@m)

m3=0

:m20(1®m2—m2®1)

So (4)[1] ensures that m; is a differential. ~ Moreover, (4)[3] states that ms is an
associative binary operation, since for homogeneous z,y,z € A we have 0 = msy o
(1@ms—me®@1)(xRY®z) =mo(z @ ma(y ® z) — ma(r ®y) ® z), where because of
|msa| = 0 there are no additional signs caused by the Koszul sign rule. Equation (4)[2] is
the Leibniz rule which can be motivated by the product rule in the algebra of differential
forms on a smooth manifold: We set m; f := 0f and mo(f ® g) := f A g and we have for
homogeneous differential forms f, g

O(f A g)=f) Ng+ (D] A (Dg).
The signs on the right side also motivate the Koszul sign rule.

Example 24 (A,-morphisms induce complex morphisms).
Let n € Z>y U {oo}. Let (A, (m})repn) and (A, (mr)repnn) be Ap-algebras and let
(fr)kepn « (A, (M) ke n) = (A, (Mr)kep,n)) be an Ay,-morphism.

By (4)[1], (A’,m}) and (A, m;) are complexes. Equation (5)[1] is
fi om'1 =my o fi.

Thus f1: (A, m}) — (A, my) is a complex morphism.
If n > 2, we have also (5)[2]:

fiomy— foo(mMi®1+1@mi) =myo fo+meo (fi ® fi) (7)
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Recall the conventions concerning Hom®(C, C").

Lemma 25. Let B be an (ordinary) R-algebra and M = ((M;)icz, (d;)icz) a complez of
B-modules, that is a sequence (M;);cz of B-modules and B-linear maps d; - M; — M; 4
such that d;_1 od; =0 for all i € Z. Let

Homj (M, M) := | [ Homp(M.;, M.)

z€Z

= {g = (gz)zez | g. € HomB(Mz+i>Mz) fOT S Z}

We then obtain the graded R-module

A = Homp(M, M) := @ Hom's(M, M).

€L

We have d := (d.41).ecz € Homp(M, M). We define m, := diiom*(m,0) © A — A, that is
for homogeneous g € A of degree ky, we have

mi(g) =dog—(~1)god.
We define my : A%? — A for homogeneous g, h € A to be composition, i.e.
ma(g ® h) :=goh.
Forn > 3 we set m,, : A°™ — A, m,, = 0. Then (my,)n,>1 is an Ay-algebra structure on

A = Homp(M, M). More precisely, (A, (my)n>1) is a dg-algebra.

Proof. Since d is homogeneous of degree 1, the map m; is graded of degree 1 = 2 — 1.
The graded map ms has degree 0 = 2—2. The other maps m,, are zero and have therefore
automatically correct degree. As discussed in Example 23 we only need to check (4)[n]
for n = 1,2,3. Equation (4)[1] holds because for homogeneous g € A of degree k,, we
have

mi(mi(g)) =mi(do g —(=1)*god)
=doldog—(-1)god — (1) [dog— (-1)¥godod
"0 (~1)dogod— (~1)"dogod=0.
Concerning (4)[2], we have for homogeneous g, h € A of degrees k, € |g| and k;, € |h|

(ma 0 (m1 @ 1+1 @ m1))(g @ h) = ma(ma(g) @ h + (=1)*g @ my(h))
—(dog—(~1)Mgod)oh+(—1)¥go(doh—(—1)*hod)
=dogoh— (1) gohod
= (myoms)(g ® h).

The map ms is induced by the composition of morphisms which is associative. As
discussed in Example 23, equation (4)[3] holds. O
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Definition 26 (Homology of A..-algebras, quasi-isomorphisms, minimality, minimal
models). Let n € Z,>1 U {oo}. Let (A, (my)kep,n) be an A,-algebra. As mi = 0 (cf.
(4)[1]) and as m; is graded of degree 1, we have the complex

ml|Ai—1\ ml‘Ai

PN Ai—l Az Ai+1 e

We define the homology of the A,-algebra A to be the homology of this complex (A, m;).
Le. for k € Z, we have H*A = ker(my | 4¢)/ im(m1| 4-1). Recall H*A = @, _, H* A, which
gives the homology of A the structure of a graded R-module.

A morphism of A,-algebras (fi)repn @ (A", (M) )kepn) = (A, (Mp)kep ) is called a quasi-
isomorphism if the morphism of complexes f; : (A’,m}) — (A, my) (cf. Example 24) is a
quasi-isomorphism.

An A,-algebra is called minimal, if m; = 0. If A is an A,-algebra and A’ is a minimal
A,-algebra quasi-isomorphic to A, then A’ is called a minimal model of A.

The existence of minimal models is assured by the following theorem.

Theorem 27 (minimality theorem, cf. [12] (history), [10], [9] ). Let (A, (my)r>1) be an
A -algebra such that the homology H* A is a projective R-module.

Then there ezists an Ay-algebra structure (m},)i>1 on H*A and a quasi-isomorphism of
Ao-algebras (fi)p>1: (H*A, (m))r>1) — (A, (mg)k>1), such that

e m) =0 and

e the complex morphism fi : (H*A,m}) — (A, my) induces the identity in homology.
Le. each element x € H* A, which is a homology class of (A, my), is mapped by fi
to a representing cycle.

We give a proof of Theorem 27 in section 2.2, cf. Theorem 55.
There is a general statement concerning the computation of minimal models of dg-algebras:
Lemma 28 (cf. 25, Theorem 5|). Let R be a commutative ring and (A, (my)n>1) be a
dg-algebra (over R). Suppose given a graded R-module B and graded maps f, : B®" — A,
m., : B¥" — B for n > 1. Suppose given k > 1 such that

fi=0 fori >k

m. =0 fori>k+1,

and such that (5)[n] is satisfied for 1 <n < 2k —2. Then (5)[n] is satisfied for all n > 1.

Proof. We need to check (5)[n] for n > 2k — 1:

The left side of (5)[n] is zero: For f, 1440 (19" @ m), ® 1%") to be non-zero it is necessary
that r+14+¢t<k—1land s<k,son+1=r+s+t+1<2k—1, which is not the case.
Thus all summands on the left side of (5)[n] are zero.

The right side of (5)[n] is zero: As A is a dg-algebra, we have m,, = 0 for n > 3. So all
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non-zero summands on the right side have r < 2. For a non-zero summand we also have
iy < k—1forally € [1,r]. So for those we have

T

r<2
n=>Y i, < 2(k—1)=2k-2
y=1
But n > 2k — 1, so all summands on the right side of (5)[n| are zero. O

1.3. A -categories

The following may be found e.g. in [11, sections 7.2 and 7.3].

Definition 29. Let n € Z>oU{oo}. A pre-A,,-category Ais a tuple (Obj A, A, (mg)kepi,n))
as follows.

(a) Obj A =: I is the set of objects?.

(b) A= @(Lj’Z)GIX[XzAé’j’Z is an I? x Z-graded R-module.

Fori,j € I, let A(i,j) := @zezAé’j’z, which is a Z-graded module. The module A
becomes a Z-graded module by A = &, ;e A(3, j).

(c) For k € [1,n], the map my, : A®* — A satisfies the following.
a) Given iy, j, € ObjA for y € [1,k] such that there exists x € [1,k — 1] with

ja: 7& i:l?+17 we have

my(A(ir, 1) @ ... @ A(iy, ji)) = 0.

b) Given i, € Obj A for y € [1, k + 1], we have

mk(A(ll,ZQ) ® A(ig,ig) ® e ® A(lk7lk+1)) Q A(il,ik+1>.

Property (c) ensures that knowledge of mk|A( for iy,... 0541 €

i1,i2) ®A(i2,13)®...QA(ik,ik+1)
Obj A is sufficient to obtain my.

Definition 30. Let n,n,n" € Zsy U {oo}. Suppose given a pre-A, -category
(Obj A", A’, (M}, )kep ) and a pre-A,-category (Obj A, A, (my)repn)). A pre-Apn-functor
from A’ to A is a tuple (fobj, (fi)repn) as follows.

(a) fobj is a map from Obj A’ to Obj A.
(b) For k € [1,n"], the map f : (4)®* — A satisfies the following.

3In the literature, it is not always required that Obj A is a set, cf. e.g. [11, 7.2]. Requiring Obj A to
be a set allows us to simplify notation. Furthermore, it allows us to perform constructions which
require a choice for each pair of objects, cf. e.g. section 4.3.4.
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a) Given i,,j, € ObjA’ for y € [1, k| such that there exists x € [1,k — 1] with
ja: # ix+17 we have

felA' (i, 1) @ ... @ Ay, gi)) = 0.
b) Given i, € Obj A’ for y € [1,k + 1], we have

Sr(A (i, ia) ® A'(iz,i3) @ ... @ A'(ig, ik11)) € A(fonj(i), foni(iri))-

Example 31. Suppose given an R-algebra B. Suppose given a set I and complexes
(CD dD) over B for i € 1. For i,j € I, we set A(i,j) := Hom(CW, C®), which is
a graded R-module (Note that i and j are swapped). For i,j,k € I, f € A(i,j) =
Hom’s(CW), CD), g € A(j, k) = Homl(C® CW), we set

ma(f) ::dHom*B(C(j),C(i)) (f)
ma(f®g):=foy.

For n > 3, set m,, :== 0. Then (I, A := &, jc1A(i,j), (My)n>1) is a pre-A.-category.
Definition 32. Let n € Z> U {oo}.

An A, -category is a pre-A,-category (Obj A, A, (my)rep,n)) such that (A, (mi)repq)) is
an A, -algebra.

Suppose given A,-categories (ObjA’, A", (m} )kcpn) and (ObjA, A, (my)kepn)). An
A, -functor or morphism of A, -categories from A’ to A is a pre-A,-functor ( fo;, (fr)kei,n))
from A’ to A such that (fy)ken,n) is a morphism of A,-algebras from (A, (m},)req1,n)) to
(A, (M) kefi,n)-

The A,-functor (fob;, (fr)kepn)) is called a quasi-isomorphism of A,-categories if the
morphism of A,-algebras (fi)rep,n is a quasi-isomorphism.

The A,-functor (fon;, (fr)kepn)) is called a local quasi-isomorphism of A,-categories

if for all 7,7 € Obj A, the complex morphism f1|i,({i()]%j(i)’f0bj(j)) : (Al(iaj)7m/1|ﬁ:8’§;) —

: . A(fo; (i) fon (1)) - . :
(A(fow;i (), fori(4)), m1|A§§g:EZ§§gg 8?%) is a quasi-isomorphism.
An example is given by the following

Lemma 33. The pre-A-category (I, A := @, jerA(4, j), (Mn)n>1) given in Example 31
18 an Ao -category.

Proof. We need to show that (A, (my),>1) is an A-algebra. By construction,
(A, (mp)n>1) is a pre-A-algebra. So we need to verify the Stasheff identities (4)[k] for
k > 1. By Example 23, it suffices to verify (4)[k] for k& € {1,2,3}. Since (A, (my)n>1)
is a pre-A-category, it suffices to verify (4)[k] on elements of A(iy,j1) ® ... ® A(ig, jx)
where j, = i, for x € [1,k—1]. Eq. (4)[1] holds since m; is obtained from a differential.
Since my is associative and since mgz = 0, eq. (4)[3] holds, cf. Example 23. It remains to
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verify (4)[2] on elements of A(i,i') ® A(#',7") = Homy(C), C™) @ Hom}(C), CW).
Suppose given g € A(i,i") and h € A(7, ”) such that g is homogeneous of degree k, and
h is homogeneous of degree k;. We have

(mao(m®@1+1®m)(g® h)
Ema(mi(g) @ h+ (=179 & ma (k)
= Ma(dyoms, (@) ,cw)(9) @ h + (=1 )<g @ Ahtoms, (@ o (h))
=ma((dD og— (=) god)@h+ (—1)g @ (d7) o h — (—=1)*hod))
= (dVog—(=1)god™)oh+ (=1)go (d¥) oh—(—1)hodi)
=dVogoh— (=1)kt*ngohod®)
= dHoij(c(i”Lc(i))(g o h) =y (g ° h) = (ml o mz)(g ® h)-

Thus (mjome—maeo(mi®1+1®@mq))(g®h) = 0. Hence (4)[2] holds. Thus (A, (my)n>1)
is an A -algebra. m

Lemma 34. Let n € Z>, U {oo}. Suppose given A,-categories (Obj A', A’ (m) )kepn),
(Obj A, A, (my)kep ) and an Ay, -functor (fovg, (fe)repn)) from A" to A. If fou; is bijec-

tive then the following are equivalent.
(a) (fovj, (fr)kepn)) @5 a quasi-isomorphism of A,-categories.

(b) (fovs, (fk)eepm)) s a local quasi-isomorphism of A,-categories.

Proof. To shorten notation, we write fop; =: g. The complexes (A’,m}) and (A, m;)
decompose as

.. A (1,5
(A m) = @@ (A6, 5),m ) and
i,jEODbj A’
.. Ai,j
(Am) = @ (AGH), mlie).
i,jEODbj A

For i,j € ObjA’, we have f1(A'(i,5)) € A(g(i),9(j)). So the complex morphism
fi: (A,m}) — (A, m;) decomposes as

A’ (4,
®i,j60bjA/(A (4,7), m1| j;)
[1=; jeon; ar f1|2/(<gi(3)>’g(J>>
. . A(g(i),9(5 Al
DB jcons 4 (AG(D), 9G)) mal 30 50))= B jeons al(AG: ) mul367)-
Hence, f1 : ( ,my) — (A, ml) is a quasi-isomorphism iff all components

Alg(i N Alg(i)g(j . .
fl\A,(f’iEj) (A4, 9), ml\A, zJ)) — (A(g(z),g(])),ml\AEzg&%;;) are quasi-isomorphisms.
[
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1.4. Homology of A, .-categories

It is well-known that the homology of dg-algebras and A_.-algebras resp. of dg-categories
and A-categories carries the structure an algebra resp. a category if we somehow ensure
the existence of a unit resp. of identity morphisms, cf. e.g. [11, sections 3.5, 7.2 and
7.7] and [21, Definition (1a)]. In the following, we present a variant which initially does
not require the homology of an A, -category to have identity morphisms. L.e. it is not
necessarily a category. Instead there is a simple way to use suitable context for proving
the existence of identity morphisms, cf. Lemmas 36 and 39.

1.4.1. Semicategories

We will see that, similarly to a category, the homology of an A, -category features an
associative composition map for morphisms but it may lack identity morphisms. Such a
structure is called a semicategory:
Definition/Remark 35 (cf. e.g. [6]). A semicategory C consists of

e a set of objects ObjC

e for each pair A, B € ObjC, a set of morphisms C(A, B)

e for each triple A, B,C' € ObjC, a function

(1) : C(A,B) x C(B,C) — C(A,QC)
(fr9) — [y
called composition such that composition is associative. Note that in the context of

semicategories, we write composition on the right. We use a dot ("-") to distinguish
it from composition on the left, which is denoted by a circle ("o").

Composition on the right is used to simplify notation when constructing semicate-
gories as homologies of A -categories.

For A € ObjC, we call a morphism id4 € C(A, A) an identity morphism on A if for all
B € ObjC and for all f € C(A,B), g € C(B,A), we have id -f = f and ¢ -ida = g.

If there are identity morphisms id 4 (1),id,2) on A € C, we have id4 (1) = id4,1) -id4,2) =
id4,(2). So identity morphisms are unique, which justifies the notation id4 for an identity
map on A. We say that C has identities iff for each object A € ObjC, there is an identity
morphism on A. In that case, C is a category.

If C and D are categories, then a semifunctor F': C — D consists of
e a function F': ObjC — ObjD
e for each pair A, B € ObjC, a function

Fap :C(A,B) = D(F(A), F(B))
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such that for A, B,C' € ObjC, f € C(A, B) and g € D(B, C), we have
Fap(f) - Fpc(g) = Fac(f - 9)-

We call the semifunctor F' surjective iff F': ObjC — ObjD is surjective.
We call F' faithful iff for all A, B € ObjC, the map Fsp is injective.
We call F' full iff for all A, B € ObjC, the map F4p is surjective.

Lemma 36. Suppose given a fully faithful semifunctor F' : C — D, where D has identities.
Then C has identities and F : C — D is a fully faithful functor between categories.

Proof. Since F' is fully faithful, the maps Fp for A, B € ObjC are all bijective. For
A € ObjC, we set idy := Fy4(idp(a)). For B € ObjC, f € C(A, B) and g € C(B, A), we
have

Fap(ida -f) = Faa(ida) - Fap(f) = idpa) -Fap(f) = Fas(f)
Fpa(g-ida) = Fpa(g) - Faa(ida) = Fpa(g) - idp) = Fpa(g).

Since Fup and Fp, are injective, we have id4-f = f and ¢ -id4 = ¢g. Hence, id4 is an
identity on A for A € ObjC. lL.e. Cis a category. Since F' is a semifunctor, it preserves
composition. By the definition of the id4, the semifunctor F' preserves identities, so it is
actually a functor. m

1.4.2. A_-categories

Definition/Remark 37. Let n € Zs3 U {o0}. Suppose given an A,-category
(Obj A, A(i, §)i jeobj as (Mi)kepn). We define its zeroth homology HYA, which is a
semicategory.

The objects of H’A are the same as those of A. Le. Obj(H"A) := Obj A.
For i,j € Obj A, (A(i,5),m;) is a complex. We set (H°A)(i, j) := H*(A(4, 7), m1).
For iy,i5,13 € Obj A, we define composition by

() : (HYA) (i1, 12) x (HYA)(iz, 43) — (H°A) (i, i)
(g + BO(A(il, ig), ml) s f + BO(A(iQ, 2.3), ml)) — mg(g X f) + BO(A(il, ig), ml).

Recall here that we have H°C = Z°C/B"C.

We need to check that (-) defined above is well-defined and associative. By (4)[2], we
have

mi (ma(Z°(A(in, ia), ma) © Z°(A(ia, i3), 1))
:mg((ml X 1+1 X ml)(ZO(A(il,ig), ml) X ZO(A(iQ, ig),ml))) = O,

so pairs of cycles are mapped by msy to cycles. Once more by (4)[2], we have

ma(BY(A(iy, ia), m1) @ Z°(A(iz, i5), m1))
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:mg((ml X 1)(14(21, ig)_l X ZO(A(iQ,ig),ml)))
=(my omy —my o (1@my))(A(iy,d5) " @ Z°(A(ig, i), m1))
:ml(m2(A(?:1, ’ig)_l (029 ZO(A(iQ, ig), ml))) C BO(A(il, ig), ml).

Similarly, we have
ma(Z°(A(iy, ia), m1) @ BY(A(ia, is), m1)) C B(A(iy,i3), m1),
so (+) is well-defined.
(4)[3] is
ma(my @1 —1®@my) =myoms+mgo(m @12 +1@m; @1+ 192 @ my)

Hence, for i1,is,i3,14 € Obj A and for f € Z°(A(i1,i2),m1), g € Z°(A(ig,i3),m;) and
h € 7°(A(is,i4), my), we have

ma(mo @1 —1@ms)(f ®g®@h) =mi(ms(f ®g®h)) CB(A(ir,is), my).

Hence (f - ) -h— f-(g-h) =0. Thus the composition (-) is associative.

1.4.3. A_-functors

Definition/Remark 38. Let n’ € Z>3 U {oo}. Let n € Zso U{o0}. Suppose given A, -
categories (Obj A', A’, (m})kepi,n), (Obj A, A, (my)kepi o). Suppose given an A,-functor
I = (fobj, frepn)) from A’ to A. Then f induces a semifunctor H°f from H°A’ to H°A
as follows.

We set
(H°f)on; = fob; : Obj A’ — Obj A.

For 7,7 € Obj A’, we set
(HO )iy := HO (Al2ioy @79 s (4G, 3),mh) = (Afong (), fons(i)) )
By (5)[2] (cf. (7)), we have
fromh—my o (fi @ fi) =m0 fo+ foo (mi @1+ 1@ m)).

Hence for i, j,k € Obj A’ and g, € (H A")(i,5), §o € (H°A’)(j, k) with representatives
g1 € ZO(A,(i,j),mll), 92 € ZO(A,(ja k)7m/1) , We have
(H°£)in(91°92) — (H°£)i(30) - (H ) ju(2)
=(f1om) (g1 ® g2) — (ma 0 (f1 ® f1))(g1 ® g2)
=(mio fat fro(my @1+1@m))) (g1 ® ga)
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=(m1 0 f2)(g1 ® g2) + (fao (M @1+ 1@m))) (g1 ®g2) =0.

N J/ J/

TV TV
=0

€BO(A(fob;(4),fobj(k)),m1)

Hence
(Hf)ij(G1) - (H°f)e(32) = (H f)ar(G1 - 52),

so Hf is a semifunctor.

Lemma 39. Let n' € Zs3 U {oo}. Let n € Zsy U {o0}. Suppose given A, -categories
(Ob.] AlaAla (mk)ké[l,n’}% (Ob.] A7A7 (mk)ke[l,n’]> and an An—fU'fLCtOT f = (fObj7 fke[l,n]>
from A’ to A. Suppose that f is a local quasi-isomorphism. Then H°f is fully faithful.
Proof. For i, j Y. : A(fowj(i),fobi(4)) | 1o /

. ,J € ObjA’, the complex morphism f1|A,(i’j) s (A(i,5),m)) —
(A(fow;j(2), fonj(4)), m1) is a quasi-isomorphism since f is a local quasi-isomorphism.
Hence for i, j € Obj A’, the map (H"f);; : (H°A")(i,5) — (H°A)(fon;(7), fon;(4)) is an
isomorphism. Thus (H°f) is fully faithful. ]
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2. On the bar construction

Suppose given a commutative ground ring R.

2.1. The bar construction

The following may be found e.g. in [14, 1.2.2].

Definition 40.

(i) A R-coalgebra (B,A) is an R-module B equipped with a linear and coassocia-
tive comultiplication A : B — B ® B. Coassociativity means that (1 @ A)o A =
(A®1)oA. We will denote R-coalgebras simply as "coalgebras".

(ii) A coderivation of a coalgebra (B,A) is a linear map b : B — B such that
Aob=(b®1+1®b)oA.

(iii) A codifferential of a coalgebra (B, A) is a coderivation b : B — B satisfying b* = 0.

(iv) A coalgebra morphism F : (B', A") — (B, A) between coalgebras (B, A'), (B, A) is
a linear map F': B’ — B such that Ao F' = (F® F) o A’

(v) A differential coalgebra (B,A,b) is a coalgebra (B, A) with a codifferential b on
(B, A).

(vi) A morphism of differential coalgebras F : (B, A’,b') — (B,A,b) is a coalge-
bra morphism F' : (B',A’) — (B, A) that commutes with the differentials, i.e.
boF =Folb.

Lemma 41.

(a) A morphism of coalgebras is an isomorphism if and only if it is bijective.

(b) A morphism of differential coalgebras is an isomorphism if and only if it is bijective.
Proof. Each isomorphism of (differential) coalgebras is bijective as it is also an isomor-
phism in the category of sets.

Now let F': (B',A’) — (B, A) be a bijective morphism of coalgebras. Then we have an
R-linear inverse F’. We have

ANoF' =(FF)o(FeF)oAoF =(FF@F)oAoFoF =(F®F)oA
so F’ is a morphism of coalgebras and F' an isomorphism of coalgebras.

For a bijective morphism of differential coalgebras F': (B, A’ V') — (B, A, b), we need
to check that its inverse coalgebra morphism F’ commutes with the differentials. In fact,

Flob=FoboFoF =F oFoboF =bo F'.

So F'is an isomorphism of differential coalgebras. m
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Definition/Remark 42. Let V' be a graded R-module. We shall define the structure
of a (graded) coalgebra on the graded module TV := @,., V®* which then will be
called the tensor coalgebra of V. The grading on TV is given by the grading of tensor
products and sums of graded R-modules, i.e. for homogeneous elements vy, ..., v of
degrees ki, ..., kg, the element v; ® - - - ® vy, is graded of degree k; +. ..+ k. The coalgebra
structure is given by the comultiplication A : TV — TV ® TV defined for elements
V@@, € VO by

Alv; @+ Quy) 1= Z (1@ ®v;) @ (Vip1 ® -+ @ vy)

1<i<k—-1

= Z (Ul K vi1) X (vi1+1 X Ui1+i2)'

i1+is=k
11,0221

A is coassociative, as for v; ® - - ®@ vy € VEF we have
(A®1) o A)(1®- - ® )

= Z(Ul R @Vi,) @ (Viy+1 ® -+ @ Vi) & (Viy i1 @ -+ - @ vg)

i1+igtiz=k
11,12,i3>1

=(1®A)oA)(v; ® -+ ® vg).
So (TV,A) is indeed a coalgebra. The map A is graded of degree 0.

We have the canonical inclusions and projections for k > 1:

L VO — TV
TV — VOF

If we have several graded R-modules V', V', we will usually distinguish the comultiplica-
tions, inclusions and projections on TV resp. TV’ by A resp. A', ¢}, resp. ¢}, and 7, resp.
. etc.

We will prove Ax =0 < eV forzeTV, ie.
ker A = V. (8)

We have readily V' C ker A. To prove equality, we first compose A with the projection
m®id : TV®TV — V @ TV which maps TV @ TV = @,.,(V®* @ TV) onto
its first component. Secondly we compose with the multiplication ¢ : V ®@ TV —
TV, 01 @ (12 @+ @ug) = 0] @V @ -+ ® vg. Application to v, ®@ ---®@wy, € VO k> 2,
gives

A

TV EN TV @ TV
'U1®"'®Uk — Z(/Ul®"'®Uil)®(vi1+1®"'®vi1+i2)
i1+io=k
‘ i1,i2>1
m®id VeTV = v
s v1®(vg®---®vk) = V1 QU Q) Vg .
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So A is injective on @), V" and zero on V, which proves (8).

For n € Z>o U {o0}, we set

TV, = @@ VTV,

ke[l,n]
In particular TV<oo =TV
Note that for k € Z>,, we have
im (A‘Vm) CTVeap1 @TVepoy CTTV, TV, 9)

SO <TV§n, A|TV< > is a subcoalgebra of (T'V, A).

Lemma 43 (Lifting to coderivations). Let V' be a graded R-module. Let n€Z>,U{oco}.
Then the map from the set of graded coderivations of TV, of degree 1 to the set of
families of graded maps (by : VO — V)yepn with |by| 2 1 for k € [1,n] that is given by

b— (110 b| o )kepn] = (M1 060 Lp)relin)

is bijective. Its inverse is given by (by)kepn) — b, where b is defined by

Bl on = Y, 17 @b,®1%" (10)

r+s+t==k
rt>0, s>1

Proof. To show that b — (bi)kep n is surjective, let (by, : Vek V)kep,n be a family of
graded maps with |by| 5 1 for k € [1,n] and construct b as given in (10). The properties
bl > 1, imb C TV, and m o b|v®k = by, follow immediately. We show that b is a
coderivation:

Aoblyer =Ao Y 19 @b, ®1%

r+s+t=k
rt>0,5>1
t t t
— E 1®T1®(1®T2®b8®1®)+ E (1®T®bs®1® 1)®1®2
ri+ro+s+t=k r+s+t1+to=k
ro,t>0 rt1>0
r1,8>1 t2,5>1

— Z Z 1®T1 ® (1@7‘2 ® bs ® 1®t> + Z (1®T ® bs ® 1®t1> ® 1®t2

ri+to=k \ rot+s+it=to r+s+t1=r1
r1,t2>1 ro,t>0,52>1 r,t1>0,s>1

=(1®b+b®1)oA

S0 b — (bk)kep n s surjective and we find a preimage as indicated by (10). For injectivity,
we use the fact that set of graded coderivations of degree 1 is closed under addition, i.e.
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it is an R-module. So we only need to check that the kernel of b +— (by)rep1,n) is zero:
Let b : TV<, — TV, be a graded coderivation of degree 1 such that m o b‘vm =0
for all k& € [1,n]. We prove by induction on k > 0 that b}TV<k = 0 thus b = 0: For

k = 0 there is nothing to prove. So suppose for the induction step that b‘TVq =0 and

k+1€[l,n]. Then Aobou =(1@b+b®1) oMo 2™ 0. So by (8), we

have bo 11 =110 (m obotgr;) =0 and we have proven blTV<k =0
<k+1

Thus the map b+ (bg)rep,n is bijective and its inverse images are given by (10). ]

Lemma 44 (Lifting to coalgebra morphisms).

Let V, V" be graded R-modules. Let n € Zxy U {o0}.

The map from the set of graded coalgebra morphisms F : TV., — TV, of degree O to the
set of families of graded maps (Fy, : V'®* — V) e with |Fyx| 2 0 for k € [1,n] given by

F’—>(7T10F

vrer kel = (10 F ot} Jkenin

is bijective. Its inverse is given by (Fy)repnn — F, where F is defined by

=Y. F@eFf, . (11)

i1+...+is=k
all i;>1

F

Proof. To show that F + (F})keq1,n is surjective, let (Fj, : V'®% — V)ep, be a family
of graded maps with |Fy| > 0 for all £ € [1,n] and construct F' be as in (11). The
properties my o F|yer = Fi, im F' C TV., and |F| 3 0 follow immediately. We show that
F' is a coalgebra morphism:

AoFlpe= Y (F,00F)®F,., 0 F,,)

’i1+...+is+3/=k‘
s,8'>1, all i;>1

- Z Z <Fi1®"'®Fis)®(is+1®'”®ﬂs+s’)

y1+y2=k ) i1+..,+'1's:y1
y1,y2>1 ts41t. i s =Y2
all 4;>1

=(F®F)oA’
So F' = (F})kef1,n) is surjective and we obtain a preimage as indicated by (11). To prove
that F'+ (Fi)re[1,n) is injective, let (Fi)re1n) be as before and let F, F" : TV, — TV,

be coalgebra morphisms of degree 1 satisfying m; o F' |V'®’v =m0 F'| o = Fy for all
k € [1,n]. We prove by induction on k& > 0 that F!TV, = F’|TV, ,s0 F' = F'. For
<k <k

and k + 1 € [1,n] for the

k = 0, there is nothing to prove. So suppose F}TV, = F"TV,
<k <k

induction step. We have

Ao(F—Fou, =FF—-F ®@F)oA ou,
=FQF-F)—(F-F)®@F)oA oy =0

37



as A'(V'EH1) C TV, @ TVL,. As ker A =V, we have

(F=F)ouy=womo(F —F)ouy =110 (Fu — Fepr) =0.

Thus we have F ‘TV, = I ‘TV, and the induction is complete. We have F' = F’ so
<k+1 <k+1
F = (F})kep,n is bijective and its inverse images are given by (11). O

Corollary 45. Letn € Z>1U{occ}. Let V, V' be graded modules. Let F: TV., — TV,

be a morphism of coalgebras of degree 0. Then F(T'V.,) C TV« for k € [0,n].

Proof. This follows from (11) in Lemma 44. O

Lemma 46. Let n € Z>; U {oo}. Let k € [0,n] such that k+ 1 € [1,n].

(i) Let V be a graded R-module and b: TV<,, — TV, be a graded coderivation of

degree 1. Then b2|TV<k = 0 implies im(b* o 1}41) C V.

(i) Let V., V' be graded R-modules and b: TVe,—TVe,, 0': TV., =TV, be graded
coderivations. Let F': TVZ, — TV<, be a graded coalgebra morphism of degree 0.
Then (bo F — Fob/)|,,, =0 implies im ((bo F'— Folf)ou ) CV.

Proof. At the steps marked by "*" in the following, we use (9), and b?
tively (F ot/ —bo F = 0.

‘ Ve 0 respec-

)|TVék

Aob? ot =(10b+b®1)0(1@b+b®1)0 Aoty

MELer —bebrbobt P 1 oAo

=1 +b*®@1]oAoipy =0

Ao(Fobl —boF)oth,, =[(F@®F)oAN ot —(1®b+b®1)0AoFlod,,
=[(F@F)o(1b+V ®1)—(1®b+b®1)o (FRF)loA ou) 4
(3)’|F‘9:()[F®(Fob’—boF)—l—(FOb/—bOF)(X)F]OA,OL;c_H;0
The lemma now follows from ker A =V, cf. (8). O

Definition/Remark 47. For a graded R-module A, we define the R-module SA with
shifted grading by SA = A and (SA)? := A?"!. We have the shift map w : SA — A,
w(z) = « which is a graded map of degree 1. If we have multiple graded modules, say A
and A’, we usually distinguish the shift maps accordingly as w and «’'.

We write SA®F := (SA)®* for k > 1.

Let n € Zso U {oc0}. A corresponding pre-A,-triple on A is defined as a triple
((mk)keu,n], (bk)ke[lm], b) consisting of

(i) a pre-Ap-structure (my)rep,n on A,
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(ii) a family of graded maps (b : SA®* — SA)epr o with |bg| 2 1 for k € [1,n] and
(iii) a graded coderivation b: T'SA<,, — T'SA<, of degree 1
such that b, = w™! o my, o w®" for k € [1,n] and 7, o b|SA®k = by, for k € [1,n].
Given a pre-A,-structure (my)gep,,) on A, a family of graded maps (b : SA®F
SA)kenn with |bg| > 1 for £ € [1,n] or a graded coderivation b : TSA<, — TSA<,
of degree 1, i.e. a datum of type (i), (ii) or (iii), it can be uniquely extended to a
corresponding pre-A,-triple on A: The condition b, = w™! o my o W for k € [1,n]
induces a bijection between data of type (i) and of type (ii). Similarly, Lemma 43 gives a
bijection between data of types (ii) and (iii).

Let n € Zso U {oo}. Let A, A’ be graded R-modules. A corresponding pre-A,,-morphism
triple from A’ to A is defined as a triple ((fx)rei,n]s (Fk)rep,n), £7) consisting of

(i) a pre-A,-morphism (fi)rep,n from A’ to A,
(ii) a family of graded maps (F} : SA™®* — SA)yep ) with [Fy| 2 0 for k& € [1,n] and
(iii) a graded coalgebra morphism F': TSAL, — T'SA<, of degree 0

such that F}, = w™to frow®* for k € [1,n] and T, oF‘SA@k = F}, for k € [1,n]. Analogous
to corresponding pre-A,,-triples, given a datum of type (i), (ii) or (iii), it can be uniquely
extended to a corresponding pre-A,-morphism triple via Lemma 44 and the bijection
induced by the condition Fj, = w™! o f; o w'®*.

We write an asterisk ("+") in place of an entry of a corresponding triple to denote that
the value of that entry is uninteresting.

Theorem 48 (Stasheff [22]). Let A be a graded R-module. Let n € Z>o U {oo}. Let
(M) kepa)s (bk)kep,a), b) be a corresponding pre-Agz-triple on A.
Letn € Z>oU{oo}, n <n. The following are equivalent:

(a) Equation (4)[k] holds for k € [1,n], i.e. (my)repn @5 an Ay, -structure on A.
(b) For k € [1,n], we have

> b0 (17 @b, ®1%) =0, (12)[%]

k=r+s+t,
rt>0, s>1

(c) b2‘TSA< =0, ie. b‘TSA< is a coalgebra differential on T'SA<,.

Proof. We prove (a) < (b): Recall |w| 3 1. Recall |b;| 2 1 and |m;| 2 2 — i for i € [1,k].

4Note that we have my = (-1) R br. I.e. we get an additional sign in situations where the my are

inferred from the by such as in FIXME 63 and 121. There are other versions of the bar construction
in use (with suitable versions of the Stasheff identities) where inferring the my, from the by, is easier.
E.g. in [11], we have the variant my, = w o by, o (w™1)®*.
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We have

Z bT+1+t (] (1®T ® bs ® 1®t)

k=r+s+t,
rt>0, s>1

= Z w om0 (W @wew®)o (1% @b, ® 1%

k=r+s+t,
rt>0, s>1

“BL,o Z (=D mypy1ps 0 (W @ (w0 by) @ W)

k=r+s+t,
rt>0, s>1

o 3 (“D' Mo (0 ® (my 0 W) @ W)

k=r+s+t,
r,t>0, s>1

wlo Z (—1)t(—1)r(2_8)mr+1+t o (1®r R Mm, @ 1®t) o (w®r ®w® ® w®t)

k=r+s+t,
rt>0, s>1

=wlo Z (=) m,p 140 (1% @ me ® 1%%) 0 w®*, (13)
k=r+4s+t,
rt>0, s>1

So (4)[k] & (12)|k], whence (a) < (b).

We prove (b) < (c¢): We first prove for finite n that ((12)[k] for k& € [1,n]) < b?*|rsa., = 0.
We proceed by induction on n > 0. B

For n = 0 we have [1,n] = () and T'SA,, = {0}, so there is nothing to prove. So now
assume for induction that b%|rga_, = 0 < (12)[k] for k € [1,n]. We have to show that
V|rsa.,,, =0 < (12)[k] for k € [1,n+ 1]. It is sufficient to prove under the assumption
b?|rsa., = 0 the equivalence b?|gqen+1 = 0 < (12)[n + 1]. So we assume b?*|rg4_, = 0.
By Lemma 46(i), we have )

C.18

2 2 (10) t
b*0tps1 =t10m 0b 0Ly = L1 0 g b1 0 (197 @ b, @ 197).
n+1l=r+s+t,
r,t>0, s>1

So b%|ggen+1 = 0 & (12)[n + 1| and the induction step is complete.

The case n = oo follows by

k€ Zoy : (12)[K] o k€ Lok € [1, K] : (12)[K]
< Vk e ZZO : b2|TSA§k =0 & ¥ =0.

We need a pointwise version of the Theorem 48:

Theorem 49. Let A be a graded R-module. Let i € Z>oU {o0}.
Let ((mu)kep,a)> (bk)kep,a)s b) be a corresponding pre-Az-triple on A.
Let n € [1,n]. Let x € SA®"™. The following are equivalent:
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(a) Equation (4)[n] holds on w®"(z), that is

ST (Dm0 (19 @ m, @ 19) 0 w7 (2) = 0.

n=r+s+t,
r,t>0,5>1

(b) Eq. (12)[n] holds on x, that is

> (riieo (1% @b, 19)() = 0.

n=r-+s+t,
rt>0, s>1

If additionally (4)[k] holds for all k € [1,n — 1] (& (12)[k] holds for all k € [1,n — 1] &
V|rsa., , =0, c¢f. Theorem 48), then (a) and (b) are equivalent to

(c) ¥*(z) =0

Proof. The equivalence (a) < (b) follows from (13).

So suppose b*|rga_,_, = 0. By Lemma 46(i), we have

(2) =i (m (@) o | Y (i o (177 ® b, © 19))(a)

n=r+s+t,
rt>0, s>1

This proves the equivalence (b) < (c). O

Lemma 50. Let A, A" be graded R-modules. Let i € Z>o U {oo}.

Let ((mg)kep,a, (bk)ke[l 7 b) resp. ((my)kepa)s (U)kepn), 0') be corresponding pre-Ag-
triples on A resp. A'. Let ((fr)kep,a)s (Fr)rep,n), F) be a corresponding pre-Az-morphism
triple from A’ to A.

Let n € Z>o U {oo} be such that n < n. The following are equivalent:

(a) Assertion (5)[k]| holds for k € [1,n].
(b) For k € [1,n], we have

Z Fr+1+to (1®T®b;®1®t) = Z bro <E1 ®E2 ®®Er) (14>[k]

k=r+s+t 1<r<k
>0, s>1 i1+ A=k
all is>1
c) Fo b’| =boF
(¢) Foblygy =boFlyg,

Note that we only require conditions on the grading of (mn) >1 and (m],),>1. However if A
and A’ are actually A,-algebras, then condition (a) holds iff ( fi)kej1,,) is an A,-morphism.
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Proof. We prove (a) < (b): Analogously to the proof of (a) < (b) of Theorem 48 we
obtain for the left side of (14)[k]

Y Fno (1T @b@1®) =wlo Y (1) fiip o0 (17 @m, @ 1%) 0w,

k=r+s+t k=r+s+t
rt>0, s>1 r,t>0, s>1
(15)
It remains to examine the right side:
2: bro(Fj,®---®F,)= }: wlom,ow® o (F,® - ®F)
1<r<k 1<r<k
i1+...+ir=k i1+ +ir=k
all ig>1 all is>1
ci18
oo Y (-1)’myo(woF,)® - ®Wwo k)
1<r<k
i1+---+ir:k
all is>1
—wlo Y meo((fy 0w @ @ (fi, ow®h))
1<r<k
i1+...+ir=k
all is>1
1 v IQk
=wlo Y (=1)'mpo(fy, @@ f;,) 0w (16)
1<r<k
i1+...+ir=k
all is>1

In the last step, Corollary 18 gives the exponent

v= Y (uz Ji ): > (1 =iy (17)

2<s<r 1<t<s i 1<t<s<r
Pt e|fi5‘ = €|w’®lt > =

So we have (5)|k| < (14)|k|, whence (a) < (b).

We prove (b) & (c).

We first prove (b) < (c) for finite n. We proceed by induction on n € [0,7]: For n =0
we have [1,n] = () and T'SA”, = {0}, so there is nothing to prove. Now suppose given n.
As induction hypothesis, suppose the equivalence F o /| TsAL = bo F| rsa. & ((14)[]

for k € [1,n]) holds. For the induction step we need to prove that F o b’
bo F}TSA, < ((14)[k] for k € [1,n 4 1]). Suppose that F o/
<n+1

s,

‘TSA’<n =bo FlTSA’<n' It
suffices to show the equivalence F o b"SA@nH =bo F‘SA@HH < (14)[n + 1]

By Lemma 46(ii), we have (Fob' —bo F)ou, =t10[mo(Fob —boF)ou ]| Now
mo(Fob —boF)oul ., is exactly the difference of the sides of (14)[n+ 1|, cf. (10),(11).

So F o b"sA@nH =bo F‘SA’®"+1 < (14)[n + 1] and the induction step is complete.
The case n = oo follows by

Vk € Zsy : (14)[] & Yk € ZsgVk € [1,k] : (14)[K]

& VkEZZO:Fob”TSA, :boF|TSA, & Fob =boF.
<k <k
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Similarly to Theorem 48 and Theorem 49, we have a pointwise version of Lemma 50
given as follows.

Lemma 51. Let A, A" be graded R-modules. Let i € Zso U {oc0}.

Let ((mk)rep,n), (bk)ke[l 7 b) resp. (M) kel (0 )kep,a), b)) be corresponding pre-Aj-
triples on A resp. A'. Let ((fr)kep,a), (Fi)rep,n), ) be a corresponding pre-Az-morphism
triple from A’ to A.

Let n € [1,n]. Let x € SA"®"™. The following are equivalent:

(a) Assertion (5)[n] holds on w'®"(x), that is

S () (frage 0 (157 @ ml, @ 157) 0 w'®") (2)

n=r+s+t
r,t>0,s>1

= Y (D) (mo(f® f,®...® f;,) ow®")(2),

1<r<n
i11+...+i.=n
all is>1

where v is given by (6).

(b) Assertion (14)[n] holds on x, that is

Y (Frpo (1 @b,@1%)(@) = Y (o (F, @ F, @ - F,))(z). (18)

n=r+s+t 1<r<n
rt>0, s>1 i1+...+ip=n
all is>1

If additionally (5)[k] holds for all k € [1,n — 1] (< (14)[k] holds for all k € [1,n — 1] <
(Fob)|rsa. = (boF)lrsa. _, cf. Lemma 50), then (a) and (b) are equivalent to

(¢) (Fo)(x) = (bo F)(x).

Proof. The equivalence (a) < (b) follows from (15), (16) and (17).

So suppose (Fol)|rsa., = (boF)|rsa. . By Lemma 46(ii), we have (Fol/—boF)(x) =
(trofmo(Fob — b o F)])(m) Now (7T1 o (F ol —bo F))(x) is exactly the difference of
the sides of (18), cf. (10),(11). This proves the equivalence (b) < (c). O

2.2. Applications. Kadeishvili's algorithm and the minimality
theorem.

In this subsection we will discuss the construction of minimal models of A-algebras.
Firstly, Lemma 52 states that certain pre-A,-structures and pre-A,-morphisms that arise
in the construction of minimal models are actually A, -structures and A,-morphisms.
Secondly, we give a proof of Theorem 27. We will review KADEISHVILI’s original proof
of [10] as it gives a an algorithm for constructing minimal models which can be used for
the direct calculation of examples.
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Lemma 52. Let n € Z> U {oo}. Let (A',(m})kcnn) be a pre-A,-algebra. Let
(A, (mi)kep,n)) be an Ap-algebra. Let (fi)repn be a pre-A,-morphism from A’ to A such
that (5)[k] holds for k € [1,n]. Suppose that fi is injective.

Then (A", (my,)kepin) is an Ay-algebra and (fi)kepn i @ morphism of A,-algebras from
(A", (M) kenm) to (A, (Mi)kepn)-

Proof. We have the corresponding pre-A,-triple ((m})rei,n, (03 kepng; V'), the corre-
sponding pre-A,,-triple ((mu)keq1,n), (bk)kein), ) and the corresponding pre-A,-morphism
triple ((fi)reptn)s (Fk)kepn, F). It suffices to prove by induction on k € [0,7n] that
(b’)Q‘TSA,q =0, cf. Theorem 48.

For k = 0, we have TSAL, = 0 so there is nothing to prove. For the induction step,

suppose that = 0 for some k > 0 with £+ 1 € [0,n]. By the induction

2 |
TSAL,
hypothesis and Lemma 46(i), we have

im(b'?ou,,) CSA. (19)

(11

L.50 )
.5 = L1OF107T/105/20L2+1- As

T_48 2 / /2 /
Thus 0 ‘= b%oFou) , = Fob <o,

the injectivity of fi implies the injectivity of Fy, we have 0 = tjomob 2o}, Ly 2ouh4y-
Together with the induction hypothesis, we obtain ' 2 = 0, which completes the

(19) / / /2 /
=" Foujomob “ou)

TSA,gM—l

induction step. O

The following two lemmas give the incremental step in Kadeishvili’s algorithm. By a
quasi-monomorphism of complexes we will denote a complex morphism that induces
monomorphisms on homology.

Lemma 53. Let n € Z>,. Let A, A’ be graded R-modules.

Let ((m})kepn+1]s (O )kepni1), V) be a corresponding pre-Ayy1-triple on A’

Let ((mg)k>1, (bk)k>1,b) be a corresponding pre-A-triple on A.

Let ((fr)kepnt1), (Fr)repni1), ) be a corresponding pre-A, 11-morphism triple from A’
to A.

Suppose that the following hold.

(i) We have b'2|TSA, =0,0*=0and Folf :bOF‘TSA’ ‘
<n sn

o,

(ii) We have by =0 and F is a quasi-monomorphism from the complex (SA’, b)) to the
complex (SA, by).

We set h : SA®"+L 5 G A,

hi= Y  Fauo(l¥eel®) - ) byo(Fyy @ Fi, ® ---® F,).
n+1l=r+s+t re[2,n+1]
r,t>0,s€[2,n] i1+...+ip=n+1
all is>1
Then
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a) V2=0,ie (A, (m))reins1y) is an A, -algebra’, cf. Theorem 48.
k/k€[l,n+1]

(b) byoh=0.

(c) Fol =boF & Fiob, —boF, 1 +h=0.

Proof. By Lemma 50, we have F'ob' =bo F < (14)[n + 1]. The difference of the sides
of (14)[n + 1] is given by

! t
G = E Friipo (17 @0, ®@1%)  — E byo(Fiy®Fi, ® - QF,)
n+l=r+s+t 1<r<n+1
T',tZO,SZl i1+...+ir=n+1
all is>1

b =0
1:}7’1ob’nJr1 —bjoF,.1+h

Thus we have Fob' = bo F' < (14)[n+1] & Fyob], , —bjoF, 1 +h = 0, which proves (c).
Note that by (10) and (11), we have m0(Fob' —boF)ou, ;= G = Fiob,  —bjoF, 1 +h.
Thus we have

bloh:blomo(Fob'—boF)OL' —bloFlob;lH%—(bl)Qo 1
OOy om0 (Foll —boF)oi,  — Fob,ob

n+1

b70b1omO(FOb'—bOF)OLnJr1

D/R4_77r1oboblomo(Fob/—bOF)OL;LH

L%.(liﬁlobo(Fob'—boF)OLnJrl

(Z:)ﬂ'lObOFOblol,;H_l

As b} = 0, we obtain im(b o7, ;) € TSAL,, cf. (10). By bo F TsAL = Fol TsaL s We
conclude
boh=moFol? Lt
L'46(Z:)7T10FOL’107rlob’20L;+1D/R47F1 mob ol . (20)
For z € SA™®"*! the element y := (7} o b'? 0], )(2x) is a cycle as b} = 0. Now

Fi(y) = (Fromiob?ou, )(z) = (by o h)(z) is a boundary. As Fj is a quasi-

monomorphism, y is a boundary. As b} = 0, this implies y = 0. Hence 7job/'? 0./, = 0.
Applying Lemma 46(i) via (i), we obtain

(V20 tp)(x) = 0. (21)
Together with (i), we obtain b’ 2 =0, whence (m},)rep,nt1] is an A, yi-structure on A’ as
claimed in (a). Thus, b; o h 2 F1 omob 2o, = 0 as claimed in (b). O

®Note that (4)[n + 1] does not depend on m/, ;4 or fni1, as mj = w' o b} o (w')~* = 0.
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Lemma 54. Let n € Z>1. Let (A, (my)i>1) be an Ax-algebra. Let (A', (m))kep,n) be
an Ay-algebra. Let (fi)kepn be an A,-morphism from (A', (M} )kepnn)) to (A, (Mi)keping)-
Suppose the following hold.

(i) We have m| =0 and f, is a quasi-isomorphism from the complex (A',m}) to the
complex (A, my).

(i1) A" is a projective R-module.

Then there exist fni1 and m;, ., such that (A', (m})kepnt)) @5 an A,iq-algebra and
(fr)kepmt1) 45 an Anq-morphism from (A', (my) ke nt1]) to (A, (Mi)kepnt)-

Note that (A’)* = H*(A,m,) for k € Z.

Proof. We have the corresponding triples ((m)r>1, (bk)r>1,0), ((M)keqins (03 keping> V')
and ((fr)rep,n), (Fi)kep,n); F). For the complexes (SA, b;) and (SA’, b)), we will use the
usual notation for boundaries, cycles and homology. As f; : (A, m}) — (A, my) is a quasi-
isomorphism, the complex morphism Fy : (SA',0}) — (SA,by) is a quasi-isomorphism.
We have 0} = 0 since m} = 0. Note that the term h of Lemma 53 does not depend on
b4 or F41, so h can be unambiguously defined even when m;,_, and F),;, are not yet
defined and we have b; o h = 0. Furthermore, h is graded of degree 1 since for k € [1,n],
we have 1 € |bg|,1 € [b}| and 0 € |F}|. Motivated by Lemma 53(c), we seek (properly
graded) morphisms 0, : SA®" — SA" and F,4; : SA®" — SA such that the
following holds.

h=b10F —Fobl,,

The module A’ is projective, so SA’ and thus also SA®"*! is projective. So Lemma 20
implies that SA’®"*! is graded projective. Since by o h = 0, we have h(SA®"+1) C Z*SA.
Since b} = 0, we have Z*SA" = SA’. We have the following diagram.

Z*SA
Y s p— 7*SA ’ H*SA
3b, 44 T;Z;S‘A_ 75 G A *pO(Fl\%*gﬁ/)

Here, p : Z*SA — H*SA is the residue class map. Since F; : (SA" b)) — (SA,by) is
a quasi-isomorphism, the map —p o (F1]5.94,) is surjective. The map p o (h|?54) is
graded of degree 1. The map p o (Fy|2.24,) is graded of degree 0. So since SA®"1 is
graded projective, there is a graded map b/, : SA®"*! — SA’ of degree 1 such that
po(h|Z54) = —po (Fy|4.34,) o, 1| 4", Hence, im((h+ Fyob, . ,)|?"54) C kerp = B*SA.
Since (h+ Fy obl,,,)|®"4 is graded of degree 1, since b1|®"*4 is a graded epimorphism
of degree 1 and since SA®"! is graded projective, there exists a graded map F,,; :
SAEn+l — S A of degree 0 such that (h+ Fy o b, )B54 = 4|54 0 F, ;. Hence, we
have

h:blan+1_Flob;L+1 (22)
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Using b, ., and F,;1, we extend the corresponding triples ((m})rein, (b)) kepngs V)

~

and ((fx)kepn)y (Fr) ke[, F) to corresponding triples ((m},)re1,nt1]s (0)keint1), b)) and
((fe)repn+1]s (Fi)repnga)s £1). By Lemma 53(a), (A, (m},) ke nt1)) is an A, -algebra.
By (22) and Lemma 53(c), we obtain F ol = bo F. Hence Lemma 50 yields that
(fi)kepmsn = (A, (M) ke nt]) = (A, (M) kepnta)) is a morphism of A, 1-algebras. [

Concerning Lemma 54, we may now also construct m;, ., and f,, 4, directly: We construct
(properly graded) maps m!, , and f,,11 such that (5)[m + 1] holds. Such m,, ., and fy41
exist by Lemma 54. Then Lemma 52 ensures that all other requirements are met.

Theorem 55 (Kadeishvili’s algorithm for the minimality theorem). Let (A, (my)g>1) be
an A -algebra. Let H*A be its homology. Suppose H* A is a projective R-module. Then
we construct a minimal model as follows:

The residue class map p : Z"A — H* A is graded of degree 0 and surjective. Since H* A
is by Lemma 20 graded projective, there is a graded map g : H*A — Z*A of degree 0
such that po g = idg+4. Let f1 : H'A — A be the composite of g : H*A — 7™ A with the
inclusion map of the inclusion Z*A C A. The relation p o g = idy+4 implies that g (and
thus also f1) maps each homology class in H*A to a representing cycle in Z*A.

[
mEO

We set m| : H*A — H*A, m| := 0. We have fom) = 0 mi o fi1, so
fi: (H'A,m)) — (A,my) is a complex morphism. Le. it is a morphism of Ai-algebras.
Since f1 : (H*"A,m}) — (A,my) maps each element of H*A to a representing cycle, it
induces the identity in homology. In particular, fi is a quasi-isomorphism of Ai-algebras.

im f QZ’ZX:kcr mq

We then use Lemma 54 and the construction principle given in Lemma 134 to successively
construct an A-structure (m},)r>1 on H*A and a quasi-isomorphism (fi)i>1 0f Aco-
algebras from (H*A, (m})r>1) to (A, (mg)k>1).

2.3. More on A, -morphisms. The category of A -algebras.

The following may be found e.g. in [11, section 3.4].

Definition/Remark 56. Suppose n € Zso U {oo}. Suppose given graded modules
A A", A". Suppose given a pre-A,-morphism f = (fi)kep,n from A to A’. Suppose
given a pre-A,-morphism f' = (f;)repn from A" to A”. We define the composite
I o [ = (gk)re1,n to be the pre-A,-morphism from A to A” given by

=Y, (“U)flo(fy®...0f) (23)
1<r<k

i1+...+ir=k
all is>1

where
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(This is the same sign as in (5)[k]). Since f; and f! are graded of degree 1 — i, the term

fro(fu®...®f;,) in (23) is graded of degree (1—r)+>_ .y (1—4;) = 1=y 415 = 1—k.
Thus g, is graded of degree 1 — k. Hence, (gi)ref1,n) is @ pre-A,-morphism from A to A”.

This definition is motivated as follows. We have seen that the bar construction relates
morphisms of (pre-)A,-algebras bijectively to certain morphisms of graded coalgebras of
degree 0, cf. Definition/Remark 47 and Lemma 50. Composition of coalgebra morphisms
is given by composition of the underlying maps. Hence, composition of A,-morphisms
is defined in such a way that it coincides with the composition induced by the bar
construction and composition of coalgebra morphisms:

Lemma 57. Suppose n € Z>o U {oc}. Suppose given graded modules A, A'; A”. Sup-
pose giwen a pre-An-morphism [ = (fi)repn from A to A" and a pre-A,-morphism
I = (fi)repm from A" to A”.  We have the corresponding A,-morphism triples
((fe) kel (Fr)renngs F) and ((fi)kenn), (Fi)repn), F'), cf. Definition/Remark 47 .

Then for f o f = (gr)kep,n @s given in Definition/Remark 56, we have the corresponding
pre-A,-morphism triple ((gi)repin)s (Gr)repin), G), where the Gy, are given by

Gii= Y Flo(F,®..0F,)

1<r<k
11+...+i-=k
all is>1

and where G := F' o F.

Proof. Concerning the grading of the maps, we have |F;| 5 0 and |F]| 5 0 for i € [1,n].
Hence, we have |G| 3 0 for k € [1,n]. Since |F| 2 0 and |F’| 2 0, we have |F" o F| 5 0.
Since F' and F’ are coalgebra morphisms, G = F’o F'is a coalgebra morphism. It remains
to show that Gy, = (W)L o grow® and 7} 0 G o1y = Gy for k € [1,n].

For k € [1,n], we have

Gi= Y Flo(F,®..0F)

1<r<k
i1+...+ir=k
all is>1
= Y W) o floW)To(Fy®...0F,)
1<r<k
i1+...+ir=k
all ig>1
2w o Y flo(WoF,)®...0 (W oF,))
1<r<k
i1+..Fir=k
all is>1
— W) o S fle((fu 0w®) ®... ® (fi, 0 w®))
1<r<k
i1+...+ir=k
all is>1
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2o N (CD o (fu®...® fi) 0w,
1<r<k

11+...+i-=k
all is>1

Here at *, we use (3) and the fact that |F;| © 0. At %%, we use (3) and the fact that
Ifil 21 —4 and |w®7| 3 j.

Hence, we have G}, = (w”) ™! o g o w®* for k € [1,n].

Let k € [1,n]. By Corollary 45, we have F(T'SA<;) C TSAL,. Hence, we have

" o / o " / / /
moGoi,=moF oF oy = E m ol o, om o0F oy

1<r<k
= ZF;O?T;OFOLk(g) Z Flo(F,®...QF;,)=Gy.
1<r<k 1<r<k
21++Z7«:]€
all is>1
Thus ((9x)kep.n]s (Gr)rep,n), G) is a corresponding pre-A,-morphism triple. O

Definition 58. Suppose given graded modules A, A’. Suppose given a graded map
g: A — A of degree 0. Suppose given n € Zso U {oco}. We define the strict pre-A,,-
morphism

strict, (9) = (fr) ke[

ifk=1
fk:z{g

from A to A’ by

0 else.

Example 59. Suppose given n € Z>o U {oo}. Suppose given graded modules A, A’, A”.
Suppose given a graded map g : A — A’ of degree 0. Suppose given a pre-A,-morphism
[ = (fr)kep,n from A’ to A” and a pre-A,-morphism f" = (f})kep1,n from A” to A. Then
we have

fo strictn(g) = (fk © 9®k)ke[1,n]
and
strict,(g) o f' = (g0 fi)kepn] -

In particular if we replace f by a strict pre-A,-morphism strict,(g’) for some graded
map ¢ : A” — A” of degree 0, we have

strict, (¢') o strict,(g) = strict, (¢’ o g).

Lemma 60. Suppose given n € Zso U {o0}.

(i) Composition of pre-A,,-morphisms is associative.
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(i) For a graded module A, the triple (strict,(ida), (Fi)repin), idrsa.,) is a pre-Ap-

morphism triple, where
o {idSA ifk=1

0 else.

(i1i) For a graded module A, the pre-A,,-morphism strict, (id4) is the identity pre-A,,-
morphism on A.

Proof. (i): This follows by Lemma 57 from the associativity of the composition of
coalgebra morphisms.

(ii): We need to show that (strict,(ida), (Fk)re[1,n), idrsa.,) is @ pre-A,-morphism triple.
The pre-A,-morphism strict,,(id4) is well-defined since |id4 | 3 0. We have |F;| 3 0 for
all k € [1,n]. We have |idrsa., | 2 0.

For k € [2,n], we have w™! o strict, (ida)r 0 w®* =w o 0o w® =0 = F}.
Furthermore, we have w™! o strict,,(id4); o w®! = w™ ! oidy ow = idgs = F}.
Hence, we have w™! o strict, (id4)s o w®* = Fy, for k € [1,n).

Recall that the ;,¢; are the projections and inclusions of the direct sum
TSA<, = ®repn(SA)®*. Hence for k € [1,n], we have

) idgy ifk=1
o 1dTSA<n Ol =
= 0 else.

=Iy.

(iii): This follows from (ii) and Lemma 57. O
Definition/Lemma 61. Let n € Z>oU{oo}. We define the composite of A,-morphisms
to be the composite of the underlying pre-A,,-morphisms, cf. Definition/Remark 56.
We have

(i) The composite of two A,-morphisms is an A,-morphism.

(ii) Composition of A,-morphisms is associative.

(ili) Given an A,-algebra (A, (my)kepi,n), the pre-A,-morphism strict,, (id4) is the iden-
tity A,-morphism on A.

PT‘OOf. (i): Suppose given An'algebras (A’ (mk)ke[l,n])v (A/7(m;€)ke[l,n]) and (A/: (m/k/)ke[l,n]))
with corresponding triples (1 )kei ), *, 0), ((M})kepngs *, ") and ((m7) kepn), *, b"). Sup-
pose given A,-morphisms f = (fi)kepn 1 A = A" and ' = (f})repn : A" = A", with
corresponding triples ((fx)rep,n), *, ) and ((fi)repn, *, F7).

By Lemma 57, the pre-A,,-morphism f’ o f has the corresponding triple (f'o f,*, [’ o F').
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By Lemma 50, we have b’ o FF'= Foband 0/ o F' = F' o).

This implies " o (F' o F) = F' o' o F = (F' o F') ob. Hence by Lemma 50, f’ o f is an
A, -morphism from (A, (my)kepin)) to (A7, (M) kepn))-

(ii): This results directly from Lemma 60(i).

(iii): We have the corresponding triples ((mg)repn),*,b0) and (by Lemma 60(ii) )
(strict,,(ida), *,idzsa., ). We have boidrga., = b = idyga., ob. Hence, Lemma 50
implies that strict,(id4) is an A,-morphism from (A, (mg)repin) to (A, (Mi)kepin)-
By Lemma 60(iii), strict,(id4) is the identity morphism on A with respect to pre-
A,-morphisms. Each A,-morphism is also a pre-A,-morphism, cf. Definition 22. So
the A,-morphism strict,(id4) is also the identity on (A, (m)kep,n)) with respect to
A,-morphisms. n

Example 62. Suppose given dg-algebras (A’, (m})r>1) and (A, (my)r>1), cf. Example 23.
Suppose given a graded map f : A" — A of degree 0 such that

fomi=miof and
fomy=mao(f&f). (24)
L.e. f is a morphism of dg-algebras.
Then stricto(f) is an As-morphism from (A’, (m} )k>1) to (A, (Mmk)r>1)-
Proof. Let (fi)k>1 = strictoo(f). Recall f; = f and fr = 0 for £ > 2. Recall that for
k > 3, we have my = 0 and mj, = 0. Thus for & > 3, eq. (5)[k] holds since all summands

in (5)[k] are zero. Since fo, = 0 and f; = f, the equations (5)[1] and (5)[2] are the
equations in (24), cf. also Example 24. ]
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3. Restriction to a subgroup in terms of minimal
models on the group cohomology algebras

3.1. An A -morphism between Hom*-dg-algebras

Definition /Lemma 63. Suppose given a commutative ground ring R. Suppose given
an R-algebra B. Suppose given complexes (P, dp), (Q,dg) over B. Lemma 25 yields the
dg-algebras (A" := Hom}p (P, P), (m},)k>1) and (A := Homp(Q, @), (mg)k>1)-

Suppose given complex morphisms ¢; : P — @ and g, : Q — P. Suppose given a
homotopy h € Homjy' (P, P) such that g o g1 = idp +dnoms,p,p) (h)-

Then there is an A -morphism fy, o, » = (fx)r>1 from A’ to A given as follows. For k > 1
and homogeneous elements z; € (A')< for i € [1, k], we set

k(k—1)
2

folar @ ... @) = (—1) 5 (~) T Dy o (m o homyo... 0 hom) o g

Note that e.g. if P = @, g1 = g2 = idp and h = 0, then fy, 4, 5 is the identity-A..-
morphism on Hom} (P, P), cf. Definition/Lemma 61(iii).

Proof. We need to prove that fy, 4,5 is actually an A.,-morphism. It is readily checked
that it is a pre-A-morphism. We have the corresponding triples ((my)g>1, (bk)i>1, *),
((m})k>1, (b )k>1, %) and ((fe)k>1, (Fk)k>1,*). By Lemma 50, it suffices to show (14)[k]
for k > 1.

Suppose given homogeneous elements X; € SAkx1, X, € SA*2. We have
bi(X1) = (W™ omy ow)(X1) = w ™ (ma (w(X1)))
“Hdg ow(X:) — (1)1 w(Xy) 0 dg)
=w ! (dg ow(X1) + (—=1)*1w