
On the Bisson-Tsemo model category of graphs

Jannik Hess

Master Thesis

January 2022

2′ **

��

3′jj

1)) 2ii // 3

WW

1)) 2))
ii 3ii

��

2

Contents

0 Introduction 5
0.1 Graphs . 5
0.2 Graph morphisms . 5
0.3 A model category structure on Gph by Bisson and Tsemo . 6
0.4 Proof that Gph is a model category . 8
0.5 A sufficient condition for a graph morphism to be a quasiisomorphism 10
0.6 Examples and counterexamples . 11

0.6.1 Examples . 11
0.6.2 Counterexamples . 17

1 Preliminaries 19
1.1 Preliminaries on categories . 19

1.1.1 The properties (2 of 6) and (2 of 3) . 19
1.1.2 Pushout and Pullback . 21
1.1.3 Lifting properties . 28
1.1.4 Subsets of Mor(C) being closed under retracts . 34

1.2 Preliminaries on sets . 38
1.2.1 Elementary constructions and properties . 38
1.2.2 Pushouts in Set . 40
1.2.3 Pullbacks in Set . 45
1.2.4 Colimit of a countable chain in Set . 47

2 Graphs 51
2.1 Definitions for graphs and graph morphisms . 51
2.2 Thin graphs . 60
2.3 Pushout and pullback of graphs . 64

2.3.1 Pushout of graphs . 64
2.3.2 Coproducts . 69
2.3.3 Pullback of graphs . 75

2.4 Colimit of a countable chain in Gph . 78
2.5 Tree graphs . 88

3 Properties of graph morphisms 93
3.1 Quasiisomorphisms . 93
3.2 Fibrations and fibrant graphs . 98
3.3 Acyclic fibrations . 104
3.4 Cofibrations and cofibrant graphs . 106
3.5 Bifibrant graphs . 113
3.6 Acyclic cofibrations . 113
3.7 Summary of some notations . 133

4 Factorization of graph morphisms 135

5 Subsets of Mor(Gph) and their lifting sets 147

6 Gph is a model category 155

7 A sufficient condition for a graph morphism to be a quasiisomorphism 165

3

4

8 Duality 173

9 Some examples and counterexamples 177
9.1 Some examples for quasiisomorphisms . 177
9.2 Some examples of graph morphisms related to the sufficient condition of Proposition 210 211
9.3 Some inequalities of subsets of Mor(Gph) . 215
9.4 Counterexamples for model categories . 219

9.4.1 Elementary counterexamples . 219
9.4.2 Counterexamples for pushouts and pullbacks . 225

9.5 Counterexamples in Gph . 234

10 Algorithmic treatment of graphs 239
10.1 Implementation of graphs . 239
10.2 Implementation of graph morphisms . 242
10.3 Calculating a pushout and a pullback of graphs . 251

10.3.1 Calculating a pushout of graphs . 251
10.3.2 Calculating a pullback of graphs . 253
10.3.3 Calculating induced morphisms of pushouts and pullbacks of graphs 254

10.4 Calculating tree graphs . 257
10.5 Testing properties of graph morphisms . 261
10.6 Testing the sufficient condition of Proposition 210 for graph morphisms 264
10.7 Functions to calculate examples in section 9.1 . 266
10.8 Functions to calculate more examples . 273
10.9 More useful functions . 276

A Explanation for electronic appendix 279

Chapter 0

Introduction

0.1 Graphs

A graph G consists of a set of vertices VG and of a set of edges EG together with a source map
sG : EG −→ VG and a target map tG : EG −→ VG , mapping an edge to its source respectively to
its target; cf. Definition 45.(1) Pictorially, we represent a graph by writing out the vertices of G
and by drawing an arrow for each edge, pointing from its source to its target.

For example, we have the following cyclic graph.

C4 : v2
e2))

v3

e3

��
v1

e1

II

v4
e4
ii

Or, for example, we have the following graph.

G : 2′
α5))

α7

��

3′
α6

ii

1
α1
((
2

α2

hh α3

// 3

α4

WW

So e.g. the edge α3 has source α3 sG = 2 and target α3 tG = 3.

0.2 Graph morphisms

A graph morphism f : G −→ H between graphs G and H consists of a map Vf : VG −→ VH

on the vertices of the graphs and a map Ef : EG −→ EH on the edges of the graphs such that

(1)In the literature, graphs in this sense are also called “directed graphs”.

5

6

Ef sH = sGVf and Ef tH = tGVf ; cf. Definition 54.

For instance, we have the following graph morphism f : G −→ H, mapping the vertices and the
edges in a vertical way; cf. Example 215.

G : 2′
α5))

α7

��

3′
α6

ii

1
α1
((
2

α2

hh α3

// 3

α4

WW

H : 1
β1
((
2

β2
((

β4

hh 3
β3

hh

f

��

We have e.g. α4 Ef tH = β3 tH = 2 = 2′Vf = α4 tGVf .

The category of graphs and graph morphisms is denoted by Gph.

We denote the set of graph morphisms from G to H by (G,H)Gph ; cf. Definition 64.

Given a graph morphism f : G −→ H and a graph K, we have the map

(K, f)Gph : (K,G)Gph −→ (K,H)Gph : g 7→ gf ;

cf. Definition 68.

0.3 A model category structure on Gph by Bisson and

Tsemo

Bisson and Tsemo define data for a model category structure on the category Gph as follows.

A graph morphism f : G −→ H is called a quasiisomorphism if the map

(Ck , f)Gph : (Ck , G)Gph −→ (Ck , H)Gph

is bijective for k ⩾ 1. In other words, we require each graph morphism Ck −→ H to have a unique

lift Ck −→ G along G
f // H . Let Qis ⊆ Mor(Gph) denote the subset of quasiisomorphisms;

cf. Definition 115. A quasiisomorphism is written G ≈ // H . E.g. the example displayed in
§0.2 is a quasiisomorphism.

For a graph G and a vertex v ∈ VG , we denote by G(v, ∗) := {e ∈ EG : e sG = v} the set of
edges with source v.

7

For a graph morphism f : G −→ H and a vertex v ∈ VG , we denote

Ef,v := Ef |
H(vVf ,∗)
G(v,∗) : G(v, ∗) −→ H(vVf , ∗)

e 7→ eEf .

A graph morphism f : G −→ H is called a fibration if the map

Ef,v : G(v, ∗) −→ H(vVf , ∗)

is surjective for v ∈ VG ; cf. Definition 127.(1). Let Fib ⊆ Mor(Gph) denote the subset of
fibrations. A fibration is written G � // H .

A graph morphism f : G −→ H is called an etale fibration if the map

Ef,v : G(v, ∗) −→ H(vVf , ∗)

is bijective for v ∈ VG ; cf. Definition 127.(2). This notion will play a role in a sufficient condition
on a morphism to be a quasiisomorphism; cf. §0.5.

A graph morphism f : G −→ H is called an acyclic cofibration if the properties (AcCofib 1–5)
hold; cf. Definition 162. Pictorially, an acyclic cofibration is obtained as follows. Let G be
a graph. Glue some trees at their roots to vertices of G to obtain the graph H. Then the
inclusion morphism ι : G −→ H is an acyclic cofibration. Every acyclic cofibration is essentially
obtained in this way.

Let AcCofib ⊆ Mor(Gph) denote the subset of acyclic cofibrations. An acyclic cofibration is
written G ◦ // H .

Let AcFib := Qis∩Fib ⊆ Mor(Gph) denote the subset of acyclic fibrations. An acyclic fibration
is written G // H . E.g. the example displayed in §0.2 is an acyclic fibration.

A graph morphism f : G −→ H is called a cofibration if it has the left lifting property with
respect to AcFib. That is, f : G −→ H is a cofibration if, given a commutative quadrangle

G

f
��

a // X

g
��

H
b
// Y

in Gph, there exists a graph morphism h : H −→ X such that the diagram

G

f
��

a // X

g
��

H
b
//

h

>>

Y

commutes.

Let Cofib ⊆ Mor(Gph) denote the subset of cofibrations. A cofibration is written G • // H .

Then Gph, together with Qis, Fib and Cofib, is a Quillen closed model category;
cf. [3, Cor. 4.8], [4, Ch. I, §1, Def. 1; Ch. I, §5, Def. 1], Definition 198.(4), Proposition 204.

Moreover, for the set AcCofib, which is defined via (AcCofib 1–5) in Definition 162, we actually
have the equality AcCofib = Cofib∩Qis; cf. Lemma 185.

8

0.4 Proof that Gph is a model category

Following Bisson and Tsemo [3, Cor. 4.8], we will show that Gph is a Quillen closed model
category, using the data explained in §0.3; cf. Definition 198.(4).

Note that we have defined Cofib, Qis and AcCofib separately; cf. §0.3. We will show that
Cofib∩Qis = AcCofib, but this will only be possible having factorization of morphisms in
acyclic cofibrations and fibrations at our disposal; cf. Lemma 185.

First, we show that Qis, Fib and Cofib are closed under composition and under retracts.

Moreover, Qis, Fib and AcFib are shown to be stable under pullbacks, and Cofib and AcCofib
are shown to be stable under pushouts.

In Assertion 251, we give an example that shows that Qis is not stable under pushouts along
cofibrations.

Suppose given subsetsM,N ⊆ Mor(Gph). We writeM�N if for every commutative quadrangle

X
a //

m
��

X ′

n
��

Y
b
// Y ′

in Gph with m ∈ M and n ∈ N , there exists a morphism h : Y −→ X ′ in Gph such that

X
a //

m
��

X ′

n
��

Y
b
//

h

>>

Y ′

commutes.

By definition, we have Cofib�AcFib.

To show that AcCofib�Fib, a given acyclic cofibration is factored in successive inclusion mor-
phisms, in each of which single-edge-trees are glued to the subgraph; cf. Lemma 174. Then to
construct the required lift, the definition of a fibration can be used directly.

We have to show that each morphism f : X −→ Y can be factored into an acyclic cofibration
followed by a fibration.

To this end, a resolution p : F −→ Y of Y is constructed, where F is a disjoint union of trees.
This resolution is glued, via pushout, to the discrete subgraph Ẋ of X.

Ẋ

��

◦ // F

��
p

��

X ◦ //

f ++

F̃

�
��
Y

Using this factorization property, we are now able to show that we have in fact AcCofib =
Cofib∩Qis.

9

We have to show that each morphism f : X −→ Y can be factored into a cofibration followed
by an acyclic fibration.

Using a disjoint union X̃ of X with cyclic graphs, we factor f into a cofibration X •c // X̃
followed by a graph morphism f̃ : X̃ −→ Y that becomes surjective under (Ck ,−)Gph for k ⩾ 1.

X̃
f̃

��
X

•c
??

f
// Y

Now we consider f̃ : X̃ −→ Y . We iteratively glue cycles in the source graph using a pushout
construction, where the definition of the sets M ′ and M ensure that cycles that map to the
same cycle in Y are glued together.∐

M ′ Cn

��

• //
∐

M Cn

�� c

��

X̃i •
gi,i+1 //

f̃i

))

X̃i+1

f̃i+1

""
X̃

•
g0,i

<<

f̃

//

•
g0,i+1

55

Y

This yields a factorization over the direct limit X̃∞ as follows.

X̃∞

≈
f̃∞

X̃

•
g0,∞

>>

f̃

// Y

Using a factorization of f̃∞ into an acyclic cofibration h : X̃∞ ◦ // ˜̃X followed by a fibration

˜̃f : ˜̃X � // Y , which then is an acyclic fibration, we obtain

X̃∞

≈f̃∞

��

◦h // ˜̃X

˜̃
f

��

X̃

f̃
((

•
g0,∞

>>

X

•c
??

f
// Y ,

as required.

10

0.5 A sufficient condition for a graph morphism to be a

quasiisomorphism

Suppose given graphs G and H.

Suppose given a graph morphism f : G −→ H.

An edge eH of H is called unitargeting with respect to f if we have

|{ẽ tG : ẽ ∈ EG , ẽEf = eH}| = 1 ,

that is, if its preimage in G has a unique target; cf. Definition 206.

Consider the following property.

(Uni) For n ⩾ 1 and each graph morphism u : Cn −→ H, there exists i ∈ Z⧸nZ such that
ei Eu ∈ EH is unitargeting with respect to f .

Pictorially speaking, f satisfies (Uni) if every cycle in H contains at least a unitargeting edge.

In practice, one removes all unitargeting edges from H to obtain a subgraph H̃, and one verifies

that (Cn , H̃)Gph = ∅ for n ⩾ 1 in order to verify that (Uni) holds.

We show that if f : G −→ H is an etale fibration and satisfies (Uni), then it is a quasiisomor-
phism; cf. Proposition 210.(2)

E.g. the graph morphism f : G −→ H in §0.2 is a quasiisomorphism since it verifies this sufficient
condition as follows.

First, f : G −→ H is an etale fibration; cf. Definition 127.(2). For instance, G(2′, ∗) = {α7 , α5}
maps bijectively to H(2, ∗) = {β4 , β2} via Ef,2′ since α7 7→ β4 and α5 7→ β2 .

Second, we show that f satisfies (Uni). The edge β3 is unitargeting since α4 tG = α6 tG = 2′.
The edge β1 is unitargeting since α1 is its only preimage. The edge β4 is unitargeting since
α2 tG = α7 tG = 1. But the edge β2 is not unitargeting since α3 tG = 3 ̸= 3′ = α5 tG . Obtaining

H̃ by removing the unitargeting edges in H there is just the edge β2 left in H̃, i.e. EH̃ = {β2}.
So there does not exist any graph morphism Cn −→ H̃ for n ⩾ 1.

Hence the graph morphism f : G −→ H in §0.2 is a quasiisomorphism.

There is a dual counterpart to this sufficient condition, obtainable as follows.

Given a graph G, we define the opposite graph Gop by letting sGop := tG and tGop := sG .

Given a graph morphism f : G −→ H we define the opposite graph morphism

f op = (Vfop ,Efop) : Gop −→ Hop

by Vfop := Vf : VG −→ VH and Efop := Ef : EG −→ EH .

Then f op : Gop −→ Hop is a quasiisomorphism if and only if f : G −→ H is a quasiisomorphism.

(2)Special thanks to Konrad Unger and Lukas Wiedmann who asked persistently if thinness is actually needed
here. This led to a removal of this unnecessary condition.

11

0.6 Examples and counterexamples

0.6.1 Examples

For sake of illustration, we show several examples for quasiisomorphisms obtained by the suffi-
cient condition in Proposition 210, which we verify via Magma [2] in §9.1 using the functions
given in §10.7.

We map the vertices and the edges in a vertical way.

3′′
α11))

α13

��

4′
α12

jj

2′
α5))

α7

��

3′
α6

ii 2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

WW

1
α1
((
2

α2

hh α3

// 3

α4

WW

1
α1
((
2

α2

hh α3

// 3
α4

WW

α8

GG

2′
γ6

��

γ5

��

2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��
1

γ1
((
2

γ3

66
γ2

hh 3

γ4

__

1
γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7

66 4

γ8

``

≈f1

��

≈f2

��

1
β1
((
2

β2
((

β4

hh 3
β3

hh 1
β1
((
2

β2
((

β6

hh 3
β3
((

β5

hh 4
β4

hh

≈g1

��

≈g2

��

Here, 2Vf1 = 2 and 2′Vf1 = 2′. Moreover, 2Vf2 = 2, 2′ Vf2 = 2′, 3Vf2 = 3, 3′ Vf2 = 3,
3′′Vf2 = 3′.

12

Varying the target graph and adjusting the other graphs accordingly, we get the following
example.

4′′
α17))

α19

��

5′
α18

jj

3′′
α11
))

α13

��

4′
α12

jj α15

// 5

α16

WW

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

XX

α14

GG

1
α1
((
2

α2

hh α3

// 3
α4

WW

α8

FF

2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��

4′
γ14
uu

γ13

��
1

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7

55 4

γ8

``

γ11

66 5

γ12

``

≈f3

��

1
β1
((
2

β2
((

β8

hh 3
β3
))

β7

hh 4
β6

ii
β4
((
5

β5

hh

≈g3

��

Here, 2Vf3 = 2, 2′Vf3 = 2′, 3Vf3 = 3, 3′Vf3 = 3, 3′′ Vf3 = 3′, 4Vf3 = 4, 4′Vf3 = 4, 4′′ Vf3 = 4′.

13

In the target graphs of the first two examples, we add two edges and adjust the other two
graphs to get quasiisomorphisms as follows.

3′′ α11

//
α13

��

4′

α12

]]

α15

��

2′
α5 //α7

��

3′
α6

ii

α10

��

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

WW

α16

dd1

α8

!!

α1
��
2α2

oo
α3

// 3

α4

WW

α9

[[1

α14 ((

α1
��
2

α2oo
α3

// 3
α4

WW

α8

GG

2′
γ6

��

γ5

��

2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��
1

γ7

CC

γ1
((
2

γ3
66γ2

oo 3

γ4

__

γ8

VV
1

γ11

==

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7
66 4

γ8

``

γ12

ZZ

≈f4

��

≈f5

��

1

β5

��β1((
2

β2 ((

β4

hh 3
β3

hh

β6

[[1

β7

!!β1((
2

β2
((

β6

hh 3
β3

((

β5

hh 4
β4

hh

β8

^^

≈g4

��

≈g5

��

Here, 2Vf4 = 2, 2′Vf4 = 2′. Moreover 2Vf5 = 2, 2′ Vf5 = 2′, 3Vf5 = 3, 3′ Vf5 = 3, 3′′Vf5 = 3′.

14

We can enlarge this example further to obtain the following quasiisomorphisms.

4′′ α17

//
α19

��

5′

α21

��

α18

]]

3′′
α11
))

α13

��

4′
α12

jj α15

// 5

α22

hh

α16

WW

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

XX

α14

GG

1

α21

**

α1
��
2

α2oo
α3

// 3
α4

WW

α8

FF

2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��

4′
γ13

��

γ14
uu

1

γ15

::

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7
55 4

γ8

``

γ11
66 5

γ12

``

γ16

^^

≈f6

��

1

β9

""β1((
2

β2
((

β8

hh 3
β3
))

β7

hh 4
β6

ii
β4

((
5

β10

``
β5

hh

≈g6

��

Here, 2Vf6 = 2, 2′Vf6 = 2′, 3Vf6 = 3, 3′Vf6 = 3, 3′′ Vf6 = 3′, 4Vf6 = 4, 4′Vf6 = 4, 4′′ Vf6 = 4′.

15

In the graph G in the following example we need to have edges from the vertices 1, 4, 7 and 10
to the vertices 2, 5, 8 and 11 to obtain an etale fibration. Since in addition the edges 2 −→ 3,
5 −→ 6, 8 −→ 9 and 11 −→ 12 of H are unitargeting, we conclude that h1 is a quasiisomorphism;
cf. §0.5.

G : 1

��

��

// 2 // 3kk

4 //

>>

��

5 // 6kk

7 //

FF

>>

8 // 9kk

10 //

>>

FF

II

11 // 12kk

H : 1 // 2 // 3kk

1 // 5 // 6kk

1 // 8 // 9kk

1 // 11 // 12kk

≈h1

��

We let

1Vh1 := 1 2Vh1 := 2 3Vh1 := 3 4Vh1 := 1 5Vh1 := 5 6Vh1 := 6

7Vh1 := 1 8Vh1 := 8 9Vh1 := 9 10Vh1 := 1 11Vh1 := 11 12Vh1 := 12 .

Here, the graph H has only a single vertex named 1, displayed four times for sake of clarity.

16

The following graph morphism between fibrant graphs is neither an acyclic fibration nor an
acyclic cofibration but nevertheless a quasiisomorphism; cf. Example 226.

To prove this, we can not apply Proposition 210.

3

α3

��

6

α6

��

2

α2

77

5

α5

gg

1
α1

VV

4
α4

HH

3

β3

��

6

β6

��

β8

oo

2

β2

77

5

β5

gg

1
β1

VV

4
β4

HH

β7

oo

≈h2

��

Here, 1Vh2 = 1, 2Vh2 = 2, 3Vh2 = 3, 4Vh2 = 4, 5Vh2 = 5, 6Vh2 = 6.

The following graph morphism is an acyclic fibration but not an etale fibration.

1
α1 //

α2 ��

2

3

0
β1 // 1

≈h3

��

So even for a fibration, the sufficient condition of Proposition 210 is not necessary for it to be
a quasiisomorphism.

17

0.6.2 Counterexamples

We show by an example that the set of quasiisomorphisms is not stable under pushouts along
cofibrations; cf. Assertion 251.

We show by an example that the pushout of two cofibrant graphs is not necessarily cofibrant;
cf. Assertion 255.

We show by an example that the set of cofibrations is not stable under pullbacks; cf. Asser-
tion 253.

We give an example of a pushout and an induced morphism as follows, in which the induced
morphism f is not an acyclic cofibration, only a quasiisomorphism; cf. Assertion 254.

X ◦ //

◦
��

Y

◦
��

◦

��

X ′ ◦ //

◦
--

Y ′

≈
f

Z

We give an example f : G −→ H for which (C1 , f)Gph and (C2 , f)Gph are bijective, for which
there exists no injective graph morphism Ck −→ G or Ck −→ H for k ⩾ 3, but which is not a
quasiisomorphism; cf. Assertion 258.

18

Conventions

(1) Given a, b ∈ Z, we write [a, b] := { z ∈ Z : a ⩽ z ⩽ b }. In particular, [a, b] = ∅ if a > b.

(2) Given a ∈ Z, we write Z⩾a := { z ∈ Z : a ⩽ z }, etc.

(3) We set N := Z⩾1 .

(4) We compose on the right. So given maps X
f−→ Y

g−→ Z, their composite is denoted by

X
fg= f ·g−−−−→ Z and maps x ∈ X to x(f · g) = (xf)g.

(5) Given a set X, “for x ∈ X ” means “for all x ∈ X ”.

(6) Given a finite set X, we denote by |X| its cardinality.

(7) Given sets X and Y , the set of maps from X to Y is denoted by Y X .

(8) Given a set M , a relation R ⊆ M × M , the equivalence relation (∼) generated by R
and an element m ∈ M , we write [m](∼) for the equivalence class of m, i.e. the set of all
elements n ∈ M with (m,n) ∈ R.

(9) The symbol %% in a comment in Magma code refers to a function that is used in this line.

(10) The label Reminder indicates a summary of notations or definitions we remind of.

(11) The label Assertion indicates an assertion that we falsify by a counterexample.

(12) Whenever neccessary, we restrict the consideration to a given universe in the sense of
Bourbaki [1].

Chapter 1

Preliminaries

1.1 Preliminaries on categories

Let C be a category.

1.1.1 The properties (2 of 6) and (2 of 3)

Definition 1 Suppose given a subset Q ⊆ Mor(C).

(1) We say that Q satisfies (2 of 6) if the following property holds.

Suppose given a commutative diagram

X ′ gh //

g

Y ′

X

f
>>

fg
// Y

h

>>

in C.
Then the composites X

fg // Y and X ′ gh // Y ′ are in Q if and only if f, g and h
are in Q.

(2) We say that Q satisfies (2 of 3) if the following property holds.

Suppose given a commutative diagram

Y
g

��
X

f
>>

fg
// Z

in C.
Then (i, ii, iii) hold.

19

20

(i) If f, g ∈ Q then fg ∈ Q.

(ii) If f, fg ∈ Q then g ∈ Q.

(iii) If g, fg ∈ Q then f ∈ Q.

Lemma 2 Suppose given a subset Q ⊆ Mor(C) such that idX ∈ Q for X ∈ Ob(C).

If Q satisfies (2 of 6), then Q satisfies (2 of 3).

Proof. Suppose given a commutative diagram

Y
g

��
X

f
>>

fg
// Z

in C. We have to show that (i, ii, iii) from Definition 1 hold.

Ad (i). Suppose that f, g ∈ Q. We have to show that fg
!
∈ Q.

We have the following commutative diagram.

Y
g //

g

��

Z

X

f
>>

fg
// Z

idZ

??

Since f , g, idZ ∈ Q, the morphism fg : X −→ Z is an element ofQ by (2 of 6); cf. Definition 1.(1).

Ad (ii). Suppose that f, fg ∈ Q. We have to show that g
!
∈ Q.

We have the following commutative diagram.

X
fg //

f

Z

X

idX

>>

f
// Y

g

??

Since f , fg ∈ Q, the morphism g : Y −→ Z is an element of Q by (2 of 6); cf. Definition 1.(1).

Ad (iii). Suppose that g, fg ∈ Q. We have to show that f
!
∈ Q.

We have the following commutative diagram.

Y
g //

g

��

Z

X

f
>>

fg
// Z

idZ

??

Since g, fg ∈ Q, the morphism f : X −→ Y is an element of Q by (2 of 6); cf. Definition 1.(1).

21

Remark 3 The subset Iso(C) ⊆ Mor(C) satisfies (2 of 6).

Proof. Suppose given the following commutative diagram in C.

X ′ gh //

g

Y ′

X

f
>>

fg
// Y

h

>>

Suppose that f , g, h ∈ Iso(C).

Then fg, gh ∈ Iso(C).

Conversely, suppose that fg, gh ∈ Iso(C).

Then ((fg)−1 · f) · g = idY and g · (h · (gh)−1) = idX′ .

Thus g · ((fg)−1 · f) = g · ((fg)−1 · f) · g · (h · (gh)−1) = g · (h · (gh)−1) = idX′ .

Therefore, g is an isomorphism with g−1 = (fg)−1 · f .

Hence f = (fg) · g−1 and h = g−1 · (gh) are isomorphisms.

Remark 4 Suppose given a subset Q ⊆ Mor(C) such that idX ∈ Q for X ∈ Ob(C).

Suppose that Q satisfies (2 of 6).

Then Iso(C) ⊆ Q.

Proof. Let g : X −→ Y be an isomorphism in C.

We have the following commutative diagram in C.

X
idX //

g

X

Y

g−1
>>

idY
// Y

g−1

>>

Since idX , idY ∈ Q, we have g ∈ Q by (2 of 6); cf. Definition 1.(1).

1.1.2 Pushout and Pullback

Definition 5 Suppose given a quadrangle

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in C.

It is called a pushout if (Pushout 1–2) hold.

22

(Pushout 1) We have g · f ′ = f · h.

(Pushout 2) Suppose given an object G ∈ Ob(C) and morphisms u : X ′ −→ G and v : Y −→ G in
Mor(C) such that f · v = g · u. Then there exists a unique morphism w : Y ′ −→ G in
Mor(C) such that f ′ · w = u and h · w = v.

X
f //

g

��

Y

h

�� v

��

X ′ f ′
//

u

))

Y ′
∃!w

��
G

To indicate that this quadrangle is a pushout, we write

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

Then we also say that f ′ is a pushout of f .

Remark 6 Suppose given

X
f //

g

��

Y

h

��
X ′ f ′

// Y ′

w

��

w̃

��

Z

in C such that f ′w = f ′w̃ and hw = hw̃.

Then we have w = w̃.

Proof. Let v := hw = hw̃ and u := f ′w = f ′w̃.

We have fv = fhw = gf ′w = gu.

Thus there exists exactly one morphism w′ : Y ′ −→ Z such that hw′ = v and f ′w′ = u.

But we have hw = v and f ′w = u, and hw̃ = v and f ′w̃ = u.

23

So w = w′ = w̃.

X
f //

g

��

Y

h

��
v

��

X ′ f ′
//

u

))

Y ′

w

��

w̃

��
Z

Remark 7 Suppose given

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

and

X
f //

g

��

Y

h̃��

X ′
f̃ ′
// Ỹ ′

in C.

Then there exists an isomorphism w̃ : Ỹ ′ ∼−→ Y ′ such that f̃ ′w̃ = f ′ and h̃w̃ = h.

Proof. Because Y ′ is a pushout there exists, by (Pushout 2), a unique morphism w : Y ′ −→ Ỹ ′

such that hw = h̃ and f ′w = f̃ ′.

Because Ỹ ′ is a pushout there exists, by (Pushout 2), a unique morphism w̃ : Ỹ ′ −→ Y ′ such
that f̃ ′w̃ = f ′ and h̃w̃ = h.

We have

X
f //

g

��

Y

h

��
h̃

��

X ′ f ′
//

f̃ ′

))

Y ′

w

��
Ỹ ′

w̃
[[

We have to show that ww̃ = idY ′ and w̃w = idỸ ′ .

We have hww̃ = h̃w̃ = h and f ′ww̃ = f̃ ′w̃ = f ′. So we have ww̃ = idY ′ ; cf. Remark 6.

We have h̃w̃w = hw = h̃ and f̃ w̃w = f ′w = f̃ . So we have w̃w = idỸ ′ ; cf. Remark 6.

24

Remark 8 Suppose given

X
f //

u
��

Y

v
��

g // Z

w
��

X ′
f ′
// Y ′

g′
// Z ′

in C. Then
X

fg //

u
��

Z

w
��

X ′
f ′g′

// Z ′ .

Proof.

Ad (Pushout 1).

We have to show that u(f ′g′)
!
= (fg)w.

We have uf ′g′ = fvg′ = fgw; cf. Definition 5.

Ad (Pushout 2).

Suppose given an object G ∈ Ob(C) and morphisms a : X ′ −→ G and b : Z −→ G such that
u · a = (fg) · b. We have to show that there exists exactly one morphism d : Z ′ −→ G such
that (f ′g′) · d = a and w · d = b. Because Y ′ is a pushout there exists exactly one morphism
c : Y ′ −→ G such that f ′ · c = a and v · c = g · b. Because Z ′ is a pushout and because of
v · c = g · b there exists exactly one morphism d : Z ′ −→ G such that g′ · d = c and w · d = b. So
there exists a morphism d : Z ′ −→ G such that f ′g′ · d = f ′c = a and w · d = b.

X
f //

u

��

Y

v

��

g // Z

w

��
b

��

X ′ f ′
//

a
..

Y ′ g′ //

∃!c

%%

Z ′
∃!d

��
G

It remains to show uniqueness.

Let d̃ : Z ′ −→ G in Mor(C) be a morphism such that a = f ′g′d̃ and such that b = wd̃.

We have to show that d
!
= d̃.

Recall that c : Y ′ −→ G is the unique morphism with f ′ · c = a and v · c = g · b.

We have f ′ · (g′d̃) = a and v · (g′d̃) = gwd̃ = gb. Because of the uniqueness of the morphism c

we get g′d̃ = c.

Recall that d : Z ′ −→ G is the unique morphism with g′d = c and wd = b.

But g′d̃ = c and wd̃ = b. So d = d̃.

25

Definition 9 Suppose given a quadrangle

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in C.

It is called a pullback if (Pullback 1–2) hold.

(Pullback 1) We have f · h = g · f ′.

(Pullback 2) Suppose given an object G ∈ Ob(C) and morphisms u : G −→ Y and v : G −→ X ′ in
Mor(C) such that u · h = v · f ′. Then there exists a unique morphism w : G −→ X in
Mor(C) such that w · f = u and w · g = v.

G

∃!w
��

u

��

v

��

X
f
//

g

��

Y

h

��
X ′

f ′
// Y ′

To indicate that this quadrangle is a pullback, we write

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

Then we also say that f is a pullback of f ′.

The following remarks on pullbacks have dual counterparts; cf. Remarks 6, 7 and 8. We carry out
the proofs nonetheless.

Remark 10 Suppose given
Z

w

��

w̃

��

X
f
//

g

��

Y

h

��
X ′

f ′
// Y ′

26

in C such that wg = w̃g and wf = w̃f .

Then we have w = w̃.

Proof. Let v := wg = w̃g and u := wf = w̃f .

We have vf ′ = wgf ′ = wfh = uh.

Thus there exists exactly one morphism w′ : Z −→ X such that w′g = v and w′f = u.

But we have wg = v and wf = u, and w̃g = v and w̃f = u.

So w = w′ = w̃.

Z

w ��
w̃
��

u

!!

v

��

X
f
//

g

��

Y

h

��
X ′

f ′
// Y ′

Remark 11 Suppose given

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

and

X̃
f̃ //

g̃
��

Y

h
��

X ′
f ′
// Y ′

in C.

Then there exists an isomorphism w̃ : X
∼−→ X̃ such that w̃f̃ = f and w̃g̃ = g.

Proof. Because X is a pushout there exists, by (Pushout 2), a unique morphism w : X̃ −→ X
such that wf = f̃ and wg = g̃.

Because X̃ is a pushout there exists, by (Pushout 2), a unique morphism w̃ : X −→ X̃ such that
w̃f̃ = f and w̃g̃ = g.

27

We have

X̃

w ��

f̃

g̃

��

X

w̃

\\

f
//

g

��

Y

h

��
X ′

f ′
// Y ′

We have to show that w̃w = idX and ww̃ = idX̃ .

We have ww̃f̃ = wf = f̃ and ww̃g̃ = wg = g̃. So we have ww̃ = idX̃ ; cf. Remark 10.

We have w̃wf = w̃f̃ = f and w̃wg = w̃g̃ = g. So we have w̃w = idX ; cf. Remark 10.

Remark 12 Suppose given

X
f //

u
��

Y
g //

v
��

Z

w
��

X ′
f ′
// Y ′

g′
// Z ′

in C. Then

X
fg //

u
��

Z

w
��

X ′
f ′g′

// Z ′ .

Proof.

Ad (Pullback 1).

We have to show that (fg)w
!
= u(f ′g′).

We have fgw = fvg′ = uf ′g′; cf. Definition 9.

Ad (Pullback 2).

Suppose given an object G ∈ Ob(C) and morphisms a : G −→ Z and b : G −→ X ′ such that
a ·w = b · (f ′g′). We have to show that there exists exactly one morphism d : G −→ X such that
d · (fg) = a and d ·u = b. Because Y is a pullback there exist exactly one morphism c : G −→ Y
such that c · g = a and c · v = b · f ′. Because X is a pullback and because of c · v = b · f ′ there
exists exactly one morphism d : G −→ X such that d · u = b and d · f = c. So there exists a

28

morphism d : G −→ X such that d · u = b and d · fg = cg = a.

G

b

��

a

!!
∃!c

%%∃!d ��
X

f
//

u

��

Y g
//

v

��

Z

w

��
X ′

f ′
// Y ′

g′
// Z ′

It remains to show uniqueness.

Let d̃ : G −→ X in Mor(C) be a morphism such that a = d̃fg and such that b = d̃u.

We have to show that d
!
= d̃.

Recall that c : G −→ Y is the unique morphism with c · g = a and c · v = b · f ′.

We have (d̃f) · g = a and d̃ ·u = b. Because of the uniqueness of the morphism c we get d̃f = c.

Recall that d : G −→ X is the unique morphism with df = c and du = b.

But d̃f = c and d̃u = b. So d = d̃.

1.1.3 Lifting properties

Let C be a category.

Definition 13 Suppose given a set of morphisms M ⊆ Mor(C).

(1) For a morphism f : X −→ Y we define the left lifting property (LLPM) as follows.

(LLPM) For each morphism f ′ : X ′ −→ Y ′ inM and all morphisms u : X −→ X ′ and v : Y −→ Y ′

in Mor(C) with fv = uf ′, there exists a morphism h : Y −→ X ′ such that fh = u
and hf ′ = v.

X u //

f
��

X ′

f ′

��
Y v

//

h

>>

Y ′

The morphism f may or may not satisfy (LLPM).

(2) Let the left-liftable set �M of M be defined as follows.

�M := {f ∈ Mor(C) : f satisfies (LLPM)}

For short, �M is also called M left-lift.

29

Definition 14 Suppose given a set of morphisms M ⊆ Mor(C).

(1) For a morphism f : X −→ Y we define the right lifting property (RLPM) as follows.

(RLPM) For each morphism f ′ : X ′ −→ Y ′ inM and all morphisms u : X ′ −→ X and v : Y ′ −→ Y
in Mor(C) with uf = f ′v, there exists a morphism h : Y ′ −→ X such that f ′h = u
and hf = v.

X ′ u //

f ′

��

X

f
��

Y ′
v
//

h

>>

Y

The morphism f may or may not satisfy (RLPM).

(2) Let the right-liftable set M� of M be defined as follows.

M� := {f ∈ Mor(C) : f satisfies (RLPM)}

For short, the set M� is also called M right-lift.

Definition 15 Suppose given subsets M,N ⊆ Mor(C).

We write M � N if M ⊆ �N , or, equivalently, if M� ⊇ N ; cf. Definitions 13 and 14.

If M � N , we say M lift N .

Here, we use “lift” as a preposition.

Remark 16 Suppose given subsets M ⊆ N ⊆ Mor(C).

Then we have M� ⊇ N� and we have �M ⊇ �N ; cf. Definitions 13 and 14.

Remark 17 Suppose given a set of morphisms M ⊆ Mor(C).

Then we have M ⊆ (�M)� and M ⊆ �(M�).

Proof.

Since we have �M ⊆ �M we have �M � M and thus M ⊆ (�M)�; cf. Definition 15.

Since we have M� ⊆ M� we have M � M� and thus M ⊆ �(M�); cf. Definition 15.

Note that in general, we do not have (�M)� ⊆ M . For instance, if C has an object X, then
∅ ̸⊇ {idX} ⊆ Mor(C)� = (�∅)�.

Note that in general, we do not have �(M�) ⊆ M . For instance, if C has an object X, then
∅ ⊉ {idX} ⊆ �Mor(C) = �(∅�).

Remark 18 Suppose given a subset M ⊆ Mor(C).

We have Iso(C) ⊆ �M and Iso(C) ⊆ M�.

30

Proof.

Suppose given a commutative diagram

X
a //

f

∼

��

X ′

m
��

Y
b
// Y ′

in C with f ∈ Iso (C) and m ∈ M ⊆ Mor(C).

We have the morphism f−1a : Y −→ X ′ with ff−1a = a and with f−1am = f−1fb = b.

So we have the following commutative diagram.

X a //

f

∼

��

X ′

m

��
Y

b
//

f−1a

>>

Y ′

And so the isomorphism f : X −→ Y is in �M .

So we have Iso(C) ⊆ �M .

Now suppose given a commutative diagram

X a //

m
��

X ′

f

∼

��
Y

b
// Y ′

in C with f ∈ Iso (C) and m ∈ M ⊆ Mor(C).

We have the morphism bf−1 : Y −→ X ′ with mbf−1 = aff−1 = a and with bf−1f = b.

So we have the following commutative diagram.

X
a //

m

��

X ′

f

∼

��
Y

b
//

bf−1

>>

Y ′

And so the isomorphism f : X −→ Y is in M�.

So we have Iso(C) ⊆ M�.

Remark 19 Suppose given a subset M ⊆ Mor(C).

Suppose given morphisms f : X −→ Y and g : Y −→ Z in �M .

Then the composite fg : X −→ Z is also in �M .

31

Proof. Suppose given a commutative diagram as follows, where m ∈ M .

X

f
��

a // X ′

m

��

Y

g

��
Z

b
// Z ′

We have to show that there exists a morphism h : Z −→ X ′ such that (fg)h
!
= a and hm

!
= b.

Since f(gb) = am and since the morphism f : X −→ Y is in �M , there exists a morphism
k : Y −→ X ′ such that fk = a and km = gb.

Since km = gb and since the morphism g : Y −→ Z is in �M , there exists a morphism h : Z −→ X ′

such that gh = k and hm = b.

So we have (fg)h = fk = a and hm = b.

X

f
��

a // X ′

m

��

Y

k

>>

g

��
Z

b
//

h

FF

Z ′

Remark 20 Suppose given a subset M ⊆ Mor(C).

Suppose given morphisms f : X −→ Y and g : Y −→ Z in M�.

Then the composite fg : X −→ Z is also in M�.

Proof. Suppose given a commutative diagram as follows, where m ∈ M .

X ′

m

��

a // X

f
��
Y

g

��
Z ′

b
// Z

We have to show that there exists a morphism h : Z ′ −→ X such that h(fg)
!
= b and mh

!
= a.

Since (af)g = mb and since the morphism g : Y −→ Z is in M�, there exists a morphism
k : Z ′ −→ Y such that kg = b and mk = af .

Since mk = af and since the morphism f : X −→ Y is in M�, there exists a morphism
h : Z ′ −→ X such that hf = k and mh = a.

32

So we have h(fg) = kg = b and mh = a.

X ′

m

��

a // X

f
��
Y

g

��
Z ′

k

>>
h

FF

b
// Z

Remark 21 Suppose given a subset M ⊆ Mor(C).

We have �M ⊆ Mor(C); cf. Definition 13.

The set �M is stable under pushouts; cf. Definition 82.

Proof. Suppose given a pushout

X h //

f
��

Y

g
��

X ′
h′
// Y ′

in C with f : X −→ X ′ in �M .

We have to show that the morphism g : Y −→ Y ′ is in �M , i.e. that the morphism g satisfies
(LLPM); cf. Definition 13.

Suppose given a commutative diagram as follows, where m ∈ M .

X h //

f
��

Y

g
��

p // Z

m
��

X ′
h′
// Y ′

q
// Z ′

We have to show that there exists a morphism k̃ : Y ′ −→ Z such that gk̃ = p and k̃m = q.

Because the morphism f : X −→ X ′ is in �M there exists a morphism k : X ′ −→ Z such that
fk = hp and km = h′q.

Because Y ′ is a pushout and fk = hp, there exists a morphism k̃ : Y ′ −→ Z such that h′k̃ = k
and gk̃ = p.

So we have gk̃ = p. It remains to show that k̃m
!
= q.

We have h′k̃m = km = h′q and gk̃m = pm = gq.

Cancelling h′ and g simultaneously using Remark 6, we obtain k̃m = q.

X
h //

f

��

Y

g

��

p // Z

m

��
X ′

h′
//

k

33

Y ′
q
//

k̃

>>

Z ′

33

Remark 22 Suppose given a subset M ⊆ Mor(C).

We have M� ⊆ Mor(C); cf. Definition 13.

The set M� is stable under pullbacks; cf. Definition 96.

Proof. Suppose given a pullback

Y
f //

g
��

Z

h
��

Y ′
f ′
// Z ′

in C with h : Z −→ Z ′ in M�.

We have to show that the morphism g : Y −→ Y ′ is in M�, i.e. that the morphism g satisfies
(RLPM); cf. Definition 14.

Suppose given a commutative diagram as follows, where m ∈ M .

X
p //

m
��

Y
f //

g
��

Z

h
��

X ′
q
// Y ′

f ′
// Z ′

We have to show that there exists a morphism k̃ : X ′ −→ Z such that mk̃ = p and k̃g = q.

Because the morphism h : Z −→ Z ′ is in M� there exists a morphism k : X ′ −→ Z such that
mk = pf and kh = qf ′.

Because Y is a pullback and kh = pf ′, there exists a morphism k̃ : X ′ −→ Y such that k̃f = k
and k̃g = q.

So we have k̃g = q. It remains to show that mk̃
!
= p.

We have mk̃f = mk = af and mk̃g = mq = pg.

Cancelling f and g simultaneously using Remark 10, we obtain mk̃ = p.

X a //

m

��

Y
g

��

f // Z

h

��
X ′

q
//

k̃

::

k

>>

Y ′
f ′

// Z ′

34

1.1.4 Subsets of Mor(C) being closed under retracts

Definition 23 A subset of morphisms M ⊆ Mor(C) is called closed under retracts if the
following property (C) holds.

(C) Suppose given a commutative diagram

G′ f ′
// H ′

G
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

in C such that f : G −→ H in M .

Then the morphism f ′ : G′ −→ H ′ is in M .

Remark 24 The subset of isomorphisms Iso(C) ⊆ Mor(C) is closed under retracts; cf. Defini-
tion 23.

Proof. Suppose given a commutative diagram in C as follows.

G′ f ′
// H ′

G
f

∼
//

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

We have to show that the morphism f ′ : G′ −→ H ′ is an isomorphism.

We show that we have f ′−1 = jf−1p : H ′ −→ G′.

We have jf−1p · f ′ = jf−1fq = jq = idH′ and f ′ · jf−1p = iff−1p = ip = idG′ .

So the morphism f ′ : G′ −→ H ′ is an isomorphism.

Remark 25 Suppose given a subset M ⊆ Mor(C).

The subset �M ⊆ Mor(C) is closed under retracts; cf. Definition 23.

Proof. Suppose given a commutative diagram in C as follows, where f ∈ �M .

G′ f ′
// H ′

G
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

35

We have to show that the morphism f ′ : G′ −→ H ′ is in �M .

Suppose given a commutative diagram in C as follows, where m ∈ M .

G′′ m // H ′′

G′ f ′
//

u

OO

H ′

v

OO

G
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

So we have to show that there exists a morphism h : H ′ −→ G′′ such that hm = v and f ′h = u;
cf. Definition 13.

Since the morphism f : G −→ H is in �M , there exists a morphism k : H −→ G′′ such that
km = qv and fk = pu.

We let h := jk : H ′ −→ G′′.

We have hm = jkm = jqv = v and we have f ′h = f ′jk = ifk = ipu = u.

So the morphism f ′ : G′ −→ H ′ is in �M .

Remark 26 Suppose given a subset M ⊆ Mor(C).

The subset M� ⊆ Mor(C) is closed under retracts; cf. Definition 23.

Proof. Suppose given a commutative diagram in C as follows, where f ∈ M�.

G′ f ′
// H ′

G
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

We have to show that the morphism f ′ : G′ −→ H ′ is in M�.

Suppose given a commutative diagram in C as follows, where m ∈ M .

G′ f ′
// H ′

G
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

G′′

u

OO

m // H ′′

v

OO

36

We have to show that there exists a morphism h : H ′′ −→ G′ such that hf ′ = v and mh = u; cf.
Definition 14.

Since the morphism f : G −→ H is in M�, there exists a morphism k : H ′′ −→ G such that
kf = vj and mk = ui.

We let h := kp : H ′′ −→ G′.

We have hf ′ = kpf ′ = kfq = vjq = v and we have mh = mkp = uip = u.

So the morphism f ′ : G′ −→ H ′ is in M�.

Definition 27 Suppose given subset M,N ⊆ Mor(C).

We write M �̂N if the properties (C 1–3) hold.

(C 1) M = �N .

(C 2) M� = N .

(C 3) For a graph morphism f : X −→ Z there exist graph morphisms m : X −→ Y in M and
n : Y −→ Z in N such that

Y
n

��
X

m

>>

f
// Z

commutes.

If M �̂N , we say M closed-lift N .

Here, we use “closed-lift” as a preposition.

Remark 28 Suppose given subsets M,N ⊆ Mor(C) such that M � N .

We have M �̂N if and only if M and N are closed under retracts and (C 3) holds; cf. Defini-
tion 27.

Proof.

First, suppose that M �̂N .

Left-liftable sets are closed under retracts; cf. Remark 25.

Right-liftable sets are closed under retracts; cf. Remark 26.

Second, suppose that M and N are closed under retracts and that (C 3) holds.

We have to show that M
!
= �N and that M� !

= N .

Recall that M � N is equivalent to M ⊆ �N and to M� ⊇ N .

We have to show that M
!

⊇ �N .

Suppose given a graph morphism f : X −→ Y in �N . So f � N .

We have to show that f
!
∈ M .

37

Since (C 3) holds, we have a commutative diagram in Gph as follows, where m ∈ M and n ∈ N .

X
m //

f
��

Z

n
��

Y
idY
// Y

Since f � N , we have a commutative diagram in Gph as follows.

X
m //

f
��

Z

n
��

Y
idY
//

h

>>

Y

We consider the following commutative diagram in Gph.

X

idX
**

idX
//

f
��

X
idX
//

m
��

X

f
��

Y
idY

44
h // Z n // Y

Since M is closed under retracts, we obtain f ∈ M .

We have to show that M�
!

⊆ N .

Suppose given a graph morphism f : X −→ Y in M�. So M � f .

We have to show that f
!
∈ N .

Since (C 3) holds, we have a commutative diagram in Gph as follows, where m ∈ M and n ∈ N .

X
idX //

m
��

X

f
��

Z n
// Y

Since M � f , we have a commutative diagram in Gph as follows.

X
idX //

m
��

X

f
��

Z n
//

h

>>

Y

We consider the following commutative diagram in Gph.

X

idX
**

m
//

f
��

Z
h
//

n
��

X

f
��

Y
idY

55
idY // Y

idY // Y

Since N is closed under retracts, we obtain f ∈ N .

38

1.2 Preliminaries on sets

1.2.1 Elementary constructions and properties

Remark 29 Suppose given sets A ⊆ B ⊆ C.

We have C \ A = (C \B)
.
∪ (B \ A).

Remark 30 Suppose given sets X, Y, Z.

Suppose given maps f : X −→ Y , g : Y −→ Z with g injective.

We have Z \Xfg = (Z \ Y g)
.
∪ (Y \Xf)g .

Proof. We have to show that Z \Xfg
!
= (Z \ Y g)

.
∪ (Y g \Xfg), since Xfg ⊆ Y g ⊆ Z.

Because g is injective we have Y g \Xfg = (Y \Xf)g:

We show Y g \Xfg
!
= (Y \Xf)g.

First, we show Y g \Xfg
!

⊆ (Y \Xf)g

Suppose given z ∈ Y g \Xfg.

There exists y ∈ Y such that z = yg. Then y /∈ Xf because of z = yg /∈ Xfg.

So we have z = yg ∈ (Y \Xf)g.

Second, we show Y g \Xfg
!

⊇ (Y \Xf)g.

Suppose given z ∈ (Y \Xf)g.

There exists y ∈ Y \Xf such that z = yg ∈ Y g.

We assume that z ∈ Xfg. So we have z = yg ∈ Xfg.

There exists x ∈ X such that yg = xfg. Because g is injective we have y = xf , which is a
contradiction.

So we have z /∈ Xfg. Hence z ∈ Y g \Xfg.

Remark 31 Suppose given a surjective map f : X −→ Y .

Then f : X −→ Y is an epimorphism in Set.

Proof. Suppose given maps: u, u′ : Y −→ Z such that fu = fu′.

We have to show that u
!
= u′.

Suppose given y ∈ Y .

Since f : X −→ Y is surjective there exists an element x ∈ X such that xf = y.

Since fu = fu′ we have yu = xfu = xfu′ = yu′.

So we conclude that u = u′.

39

Definition 32 Suppose given a set I.

Suppose given sets Ai for i ∈ I.

Then the coproduct or disjoint union
∐

i∈I Ai of the sets Ai for i ∈ I is defined as follows.∐
i∈I

Ai :=
⋃
i∈I

{(i, a) : a ∈ Ai}.

Suppose given k ∈ I. We let

ιk : Ak −→
∐

i∈I Ai

a 7→ (k, a)

If I = [1, n] for some n ⩾ 1, we often write A1 ⊔ A2 ⊔ . . . ⊔ An :=
∐

i∈[1,n] Ai .

Example 33 Suppose given sets A and B.

Then we have the coproduct A ⊔B of A and B as follows; cf. Definition 32.

A ⊔B = {(1, a) : a ∈ A} ∪ {(2, b) : b ∈ B}

We have
ι1 : A −→ A ⊔B

a 7→ (1, a)

and
ι2 : B −→ A ⊔B

b 7→ (2, b).

Remark 34 Suppose given a set M .

Suppose given a relation R ⊆ M ×M .

Let (∼) ⊆ M ×M the equivalence relation generated by R.

Let
ρ : M −→ M⧸(∼)

m 7→ [m](∼) .

Suppose given a set M .

Suppose given a map f : M −→ N such that xf = yf for (x, y) ∈ R.

Then there exists a unique map f̄ : M⧸(∼) −→ N such that ρf̄ = f , i.e. we have the follwing

commutative diagram.

M

ρ
��

f // N

M⧸(∼)

∃!f̄

<<

40

Remark 35 Let Q be the subset of bijective maps of Mor(Set). Then Q satisfies (2 of 6); cf.
Definition 1.(1).

Proof. Suppose given sets X, X ′, Y and Y ′.

Suppose given maps f : X −→ X ′, g : X ′ −→ Y and h : Y −→ Y ′.

We have the following commutative diagram in Set.

X ′ gh //

g

Y ′

X

f
>>

fg
// Y

h

>>

We have to show that the composites fg : X −→ Y and gh : X ′ −→ Y ′ are bijective if and only
if f , g and h are bijective.

First, suppose that fg and gh are bijective.

Since fg is bijective, the map g is surjective.

Since gh is bijective, the map g is injective.

So g is bijective.

Hence f = (fg) · g−1 and h = g−1 · (gh) are bijective.

Now suppose that f , g and h are bijective.

Then the composites fg and gh are bijective.

1.2.2 Pushouts in Set

Construction 36 Suppose given the diagram

X

g
��

f // Y

X ′

in Set.

We consider the coproduct X ′ ⊔ Y ; cf. Definition 32.

On this set we have the relation R := {((1, xg), (2, xf)) : x ∈ X} ⊆ (X ′ ⊔ Y)× (X ′ ⊔ Y).

Let (∼) be the equivalence relation generated by R.

So we have the set of equivalence classes Y ′ := (X ′ ⊔ Y)⧸(∼) .

Let
Y

h−→ Y ′

y 7→ [(2, y)](∼)

and

X ′ f ′
−→ Y ′

x′ 7→ [(1, x′)](∼) .

41

Then, in Set, we have the pushout

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

Proof.

Ad (Pushout 1).

We have xfh = [(2, xf)](∼) = [(1, xg)](∼) = xgf ′ for x ∈ X. So fh = gf ′.

Ad (Pushout 2).

Suppose given a set Z together with maps u : X ′ −→ Z and v : Y −→ Z such that fv = gu.

We have to show that there exists exactly one map w : Y ′ −→ Z with f ′w = u and hw = v.

Existence.

We define the map

ŵ : X ⊔ Y → Z

(1, x′) 7→ (1, x′)ŵ := x′u

(2, y) 7→ (2, y)ŵ := yv .

Suppose given ((1, xg), (2, xf)) ∈ R, where x ∈ X. Then (1, xg)ŵ = xgu = xfv = (2, xf)ŵ.

Using Y ′ = (X ⊔ Y)⧸(∼), where (∼) is the equivalence relation generated by R, we obtain the
map

w : Y ′ → Z

[(1, x′)](∼) 7→ [(1, x′)](∼)w := x′u

[(2, y)](∼) 7→ [(2, y)](∼)w := yv .

X ⊔ Y

��

ŵ // Z

Y ′ = (X ⊔ Y)⧸(∼)

∃!w

88

Then for x ∈ X ′ we have xf ′w = [(1, x′)](∼)w = x′u. So we have in fact f ′w = u.

Then for y ∈ Y we have yhw = [(2, y)](∼)w = yv. So we have in fact hw = v.

Uniqueness.

Suppose given w̃ : Y ′ −→ Z with f ′w̃ = u and hw̃ = v.

Suppose given y′ ∈ Y ′.

For y′ ∈ Y ′ we have x′ ∈ X such that [(1, x′)](∼) = y′ or we have y ∈ Y such that [(2, y)](∼) = y′.

If y′ = [(1, x′)](∼) with x′ ∈ X, then we obtain y′w̃ = [(1, x′)](∼)w̃ = x′f ′w̃ = x′u.

If y′ = [(2, y)](∼) with y ∈ Y , then we obtain y′w̃ = [(2, y)](∼)w̃ = yhw̃ = yv.

42

Since this holds for every such w̃, this shows uniqueness.

X
f //

g

��

Y

h

�� v

��

X ′ f ′
//

u

))

Y ′
∃!w

��
Z

Remark 37 Suppose given the pushout

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in Set.

Then we have Y ′ = X ′f ′ ∪ Y h.

Proof. It suffices to show that Y ′
!

⊆ X ′f ′ ∪ Y h.

According to (Pushout 2) there exists a unique map w : Y ′ −→ X ′f ′ ∪ Y h such that hw =
h|X′f ′∪Y h and f ′w = f |X′f ′∪Y h.

X
f //

g

��

Y

h

��
h|X′f ′∪Y h

��

X ′ f ′
//

f ′|X′f ′∪Y h))

Y ′
∃!w

!!
X ′f ′ ∪ Y h

For y′ ∈ Y we calculate y′w.

If y′ ∈ X ′f ′, then we write y′ = x′f ′ for some x′ ∈ X ′. We obtain y′w = x′f ′w = x′(f ′|X′f ′∪Y h) =
x′f ′ = y′.

If y′ ∈ Y h, then we write y′ = yh for some y ∈ Y . We obtain y′w = yhw = y(h||X′f ′∪Y h) =
yh = y′.

So y′w = y′ in both cases.

In particular, y′ = y′w ∈ X ′f ′ ∪ Y h.

So we have Y ′ ⊆ X ′f ′ ∪ Y h and thus we have Y ′ = X ′f ′ ∪ Y h.

43

Remark 38 Suppose given

X
a //

f
��

Y

X ′

in Set with an injective map f : X −→ X ′.

Let Y ′ := (X ′ \Xf) ⊔ Y .

Let
a′ : X ′ −→ Y ′

x′ 7→

{
(2, xa) if x′ = xf ∈ Xf for a unique x ∈ X

(1, x′) if x′ ∈ X ′ \Xf .

and we let
g : Y −→ (X ′ \Xf) ⊔ Y

y 7→ (2, y)

Then
X a //

f
��

Y

g
��

X ′
a′
// Y ′

is a pushout in Set.

Proof.

Suppose given x ∈ X. We have xfa′ = (2, xa) = xag. So we have fa′ = af ′.

Now we show that the commutative diagram

X a //

f
��

Y

g
��

X ′
a′
// Y ′

is a pushout in Set.

Suppose given

X
a //

f

��

Y

g

��
v

��

X ′ a′ //

u

))

Y ′

T

in Set such that av = fu.

We have to show that there exists a unique map w : Y ′ −→ T such that a′w = u and gw = v.

44

Uniqueness. This follows from X ′a′ ∪ Y g = Y ′.

We show the existence of a map w : Y ′ −→ T such that a′w = u and gw = v.

We let

w : Y ′ −→ T

(1, x′) 7→ x′u

(2, y) 7→ yv .

So we have

X
a //

f

��

Y

g

��
v

��

X ′ a′ //

u

))

Y ′
w

��
T .

We have to show that a′w
!
= u.

Suppose given x′ ∈ X ′.

We have x′a′w =

{
(2, xa)w if ∃!x ∈ X : x′ = xf

(1, x′)w if x′ ∈ X ′ \Xf

}
=

{
xav if ∃!x ∈ X : x′ = xf

x′u if x′ ∈ X ′ \Xf

}
fu=av
={

xfu if ∃!x ∈ X : x′ = xf

x′u if x′ ∈ X ′ \Xf

}
=

{
x′u if x′ ∈ Xf

x′u if x′ ∈ X ′ \Xf

}
= x′u.

We have to show that f ′w
!
= v.

For y ∈ Y we have yf ′w = (2, y)w = yv.

Remark 39 Suppose given

X
a //

f
��

Y

g
��

X ′
a′
// Y ′

in Set.

If the map f : X −→ X ′ is injective, then the map g : Y −→ Y ′ is injective.

Proof.

Without loss of generality, the pushout is constructed in the way as in Remark 38; cf. Remark 7.

Then the map g is in fact injective.

45

Remark 40 Suppose given

X
a //

f
��

Y

g
��

X ′
a′
// Y ′

in Set.

If the map f : X −→ X ′ is surjective, then the map g : Y −→ Y ′ is surjective.

Proof.

Without loss of generality, the pushout is constructed in the way as in Construction 36; cf.
Remark 7.

So we have Y ′ = (X ′ ⊔ Y)⧸(∼) where (∼) is the equivalence relation generated by

{((1, xf), (2, xa)) : x ∈ X}.

Suppose given y′ ∈ Y ′.

We have to show that there exists y ∈ Y such that yg = y′.

Case: There exists y ∈ Y such that y′ = [(2, y)](∼) .

Then we have yg = [(2, y)](∼) = y′.

Case: There exists x′ ∈ X ′ such that y′ = [(1, x′)](∼) .

Since f : X −→ X ′ is surjective there exists x ∈ X such that xf = x′.

So we have y′ = [(1, x′)](∼) = [(1, xf)](∼)
Def. (∼)
= [(2, xa)](∼)

Def. g
= (xa)g.

Without Construction 36 we can use Y ′ = X ′a′ ∪ Y g by Remark 37 to prove this Remark 40.

1.2.3 Pullbacks in Set

Construction 41 Suppose given the diagram

Y

h
��

X ′ f ′
// Y ′

in Set.

Define the set X := {(x′, y) ∈ X ′ × Y : x′f ′ = yh}.

Let
X

g−→ X ′

(x′, y) 7→ x′

and

X
f−→ Y

(x′, y) 7→ y .

46

Then, in Set, we have the pullback

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

Proof. We have (x′, y)fh = yh = x′f ′ = (x′, y)gf ′ for (x′, y) ∈ X. So fh = gf ′.

Universal property.

Suppose given a set Z together with two maps u : Z −→ Y and v : Z −→ X ′ such that uh = vf ′.

We have to show that there exists exactly one map w : Z −→ X with wf = u and wg = v.

Existence.

We define the map

w : Z → X

z 7→ zw := (zv, zu) .

The element (zv, zu) is in fact contained in X since zvf ′ = zuh.

Then wf = u since for z ∈ Z we have zwf = (zv, zu)f = zu.

Moreover, wg = v since for z ∈ Z we have zwg = (zv, zu)g = zv.

Uniqueness.

Suppose given w̃ : Z −→ X with w̃g = v and w̃f = u.

Suppose given z ∈ Z. Write zw̃ =: (x′, y) ∈ X.

We obtain x′ = zw̃g = zv and y = zw̃f = zu.

So zw̃ = (zv, zu).

Since this holds for every such w̃, this shows uniqueness.

Z

∃!w
��

u

!!
v

��

X
f
//

g

��

Y

h

��
X ′

f ′
// Y ′

47

1.2.4 Colimit of a countable chain in Set

Suppose given

X0

f0,1 // X1

f1,2 // X2

f2,3 // · · ·

in Set.

Let fk,l := fk,k+1 · . . . · fl−1,l : Xk −→ Xl for 0 ⩽ k ⩽ l. In particular, fk,k = idXk
.

We define the relation (∼) on
⊔

i⩾0Xi as follows.

For (i, xi), (j, xj) ∈
⊔

i⩾0Xi we let

(i, xi) ∼ (j, xj) :⇔ There exists m ⩾ max{j, k} such that xifi,m = xjfj,m .

The relation (∼) is an equivalence relation:

For (j, xj) ∈
⊔

i⩾0Xi we have (j, xj) ∼ (j, xj), since xjfj,j = xj idXj
= xjfj,j .

The relation (∼) is symmetric by definition.

Suppose given (j, xj), (k, xk), (l, xl) ∈
⊔

i⩾0Xi such that (j, xj) ∼ (k, xk) and (k, xk) ∼ (l, xl).

So there exist m ⩾ max{j, k} and n ⩾ max{k, l} such that xjfj,m = xkfk,m and xkfk,n = xlfl,n .

Let p := max{m,n}.

Then we have xjfj,p = xjfj,mfm,p = xkfk,mfm,p = xkfk,p = xkfk,nfn,p = xlfl,nfn,p = xfl,p .

So the relation (∼) is transitive.

Let [j, xj] be the equivalence class of (j, xj) with respect to (∼).

Definition 42

(1) We define the colimit X∞ := lim−→
i⩾0

Xi :=
⊔

i⩾0Xi⧸(∼) = {[j, xj] : j ⩾ 0, xj ∈ Xj}.

(2) For k ⩾ 0, we let

fk,∞ : Xk → X∞

xk 7→ [k, xk] .

Suppose given 0 ⩽ k ⩽ l. Suppose given xk ∈ Xk . We have (k, xk) ∼ (l, xkfk,l), since
xkfk,l = (xkfk,l) idXl

= (xkfk,l)fl,l .

So we have xkfk,lfl,∞ = [l, xkfk,l] = [k, xk] = xkfk,∞ .

So we have fk,lfl,∞ = fk,∞ .

48

Lemma 43 (universal property) Suppose given maps tj : Xj −→ T for j ⩾ 0 such that
fj,j+1tj+1 = tj for j ⩾ 0, i.e. fj,ktk = tj for 0 ⩽ j ⩽ k.

X0

f0,1 //

t0

��

X1

f1,2 //

t1

��

X2

f2,3 //

t2

��

. . .

T

Then there exists a unique map t∞ : X∞ −→ T such that fj,∞t∞ = tj for j ⩾ 0.

Proof.

Uniqueness.

Suppose given t′, t′′ : X∞ −→ T such that fj,∞t′ = tj and fj,∞t′′ = tj for j ⩾ 0.

We have to show that t′ = t′′.

Let [j, xj] ∈ X∞ .

We have to show that [j, xj]t
′ !
= [j, xj]t

′′.

In fact, we have [j, xj]t
′ = xjfj,∞t′ = xjtj = xjfj,∞t′′ = [j, xj]t

′′.

Existence.

Let
t∞ : X∞ → T

[j, xj] 7→ xjtj .

We show that this map is well-defined.

Suppose given (j, xj), (k, xk) ∈
⊔

i⩾0Xi such that [j, xj] = [k, xk].

Then xjfj,m = xkfk,m for some m ⩾ max{j, k}.

We have to show that xjtj
!
= xktk .

In fact, we have xjtj = xjfj,mtm = xkfk,mtm = xktk .

Suppose given j ⩾ 0. Suppose given xj ∈ Xj. We have xjfj,∞t∞ = [j, xj]t∞
Def. t∞= xjtj .

So we have fj,∞t∞ = tj .

X0

f0,∞

f0,1
//

t0

��

X1

f1,∞

!!

f1,2
//

t1

��

X2

f2,∞

""

f2,3
//

t2

��

· · · X∞

t∞

ss

. . .

T

49

Definition 44 Suppose given a commutative diagram in Set as follows; cf. Definition 42.

X0

f0,∞

f0,1
//

u0

��

X1

f1,∞

f1,2
//

u1

��

X2

f2,∞

!!

f2,3
//

u2

��

X3 f3,4
//

f3,∞

""

u3

��

· · · X∞

Y0

g0,∞

>>
g0,1 // Y1

g1,∞

>>
g1,2 // Y2

g2,∞

==
g2,3 // Y3

g3,4 //

g3,∞

<<· · · Y∞

We have fj,j+1uj+1gj+1,∞ = ujgj,j+1gj+1,∞ = ujgj,∞ for j ⩾ 0.

So because of the universal property there exists a unique map u∞ : X∞ −→ Y∞ such that
fj,∞u∞ = ujgj,∞ for j ⩾ 0 ; cf. Lemma 43.

We let lim−→
i⩾0

ui := u∞ .

X0

f0,∞

f0,1
//

u0

��

X1

f1,∞

f1,2
//

u1

��

X2

f2,∞

!!

f2,3
//

u2

��

X3 f3,4
//

f3,∞

""

u3

��

· · · X∞

u∞
��

Y0

g0,∞

>>
g0,1 // Y1

g1,∞

>>
g1,2 // Y2

g2,∞

==
g2,3 // Y3

g3,4 //

g3,∞

<<· · · Y∞

50

Chapter 2

Graphs

2.1 Definitions for graphs and graph morphisms

Definition 45 A graph G = (VG,EG, sG, tG) is a tuple consisting of a set of vertices VG and
a set of edges EG together with maps sG : EG −→ VG, the source map, and tG : EG −→ VG, the
target map.

Remark 46 Suppose given a graph G = (VG,EG, sG, tG). The elements of VG are called
vertices and the elements of EG are called edges.

The element e sG ∈ VG is called the source of e ∈ EG .

The element e tG ∈ VG is called the target of e ∈ EG .

Pictorially, we represent G by writing out the vertices of G and by drawing an arrow for each
edge e of G, pointing from its source e sG to its target e tG .

Definition 47 Suppose given a graph G = (VG ,EG , sG , tG).

(1) A graph G′ = (VG′ ,EG′ , sG′ , tG′) is called a subgraph of G if VG′ ⊆ VG , EG′ ⊆ EG ,

sG′ = sG |VG′
EG′ , and tG′ = tG |VG′

EG′ .

To indicate that G′ is a subgraph of G, we write G′ ⊆ G.

(2) Suppose given subgraphs H ⊆ G and K ⊆ G. The intersection H ∩K of the subgraphs
H and K is the subgraph

H ∩K = (VH∩K ,EH∩K , sH∩K , tH∩K) := (VH ∩VK ,EH ∩EK , sG |VH ∩VK
EH ∩EK

, tG |VH ∩VK
EH ∩EK

)

of G.

(3) A subgraph G′ ⊆ G is called a full subgraph if EG′ = {e ∈ EG : e sG ∈ VG′ and e tG ∈ VG′},
i.e. if for v′, w′ ∈ VG′ , each edge e of G having e sG = v′ and e tG = w′ is already an edge
of G′.

(4) A graph G = (VG ,EG , sG , tG) is called finite if the sets VG and EG both are finite.

51

52

Remark 48 Suppose given a graph G.

(1) To define a subgraph G′ of G, it suffices to give subsets EG′ ⊆ EG and VG′ ⊆ VG such
that EG′ sG ⊆ VG′ and EG′ tG ⊆ VG′ .

(2) To define a full subgraph G′ of G, it suffices to give a subset VG′ ⊆ VG .

Example 49 The graph G having VG = {1, 2, 3, 4} and EG = {α1 , α2 , α3 , α4} with

α1 sG = 1, α1 tG = 2,

α2 sG = 1, α2 tG = 2,

α3 sG = 3, α3 tG = 2,

α4 sG = 1, α4 tG = 1,

is represented the following way.

G : 1α4 99

α1
((

α2

66 2 3
α3oo 4

Note that the graph H having VH = {1, 2, 3} and EH = {α1 , α2 , α3} with

α1 sH = 1, α3 tH = 2,

α2 sH = 1, α3 tH = 2,

α3 sH = 3, α3 tH = 2,

which is represented as

H : 1
α1
((

α2

66 2 3
α3oo

is a full subgraph of G; cf. Definition 47.

Moreover, the graph K having VK = {1, 2} and EK = {α1 , α4} with

α1 sK = 1, α1 tK = 2,

α4 sK = 1, α4 tK = 1,

which is represented as

K : 1α4 99

α1 **
2 ,

is a subgraph of G, but not a full subgraph.

53

As intersection, we obtain H ∩K having VH∩K = {1, 2} and EH∩K = {α1} with

α1 sH∩K = 1, α3 tH∩K = 2,

which is represented as

H ∩K : 1
α1
''
2 .

Remark 50 Suppose given a graph G.

Suppose given full subgraphs G′ ⊆ G and G′′ ⊆ G with VG′ = VG′′ .

Then G′ = G′′.

Proof. We have to show that G′ !
= G′′. It remains to show that EG′

!
= EG′′ as subsets of EG .

Write V := VG′ = VG′′ . We have EG′ = {e ∈ EG : e sG ∈ V and e tG ∈ V } = EG′′ .

Notation 51 Suppose given a graph G.

Suppose given vertices v, w ∈ VG .

Suppose given subsets V,W ⊆ VG .

(1) We denote G(v, w) := {e ∈ EG : e sG = v, e tG = w} ⊆ EG .

Write G(v, ∗) := {e ∈ EG : e sG = v} ⊆ EG .

Write G(∗, w) := {e ∈ EG : e tG = w} ⊆ EG .

(2) We denote G(V,W) := {e ∈ EG : e sG ∈ V , e tG ∈ W} ⊆ EG .

Write G(V,w) := G(V, {w}) and G(v,W) := G({v},W).

Write G(V, ∗) := {e ∈ EG : e sG ∈ V } ⊆ EG .

Write G(∗,W) := {e ∈ EG : e tG ∈ W} ⊆ EG .

In particular, G(v, ∗) = G({v}, ∗) and G(∗, w) = G(∗, {w}).

Definition 52 Let n ∈ N. We will define a graph Cn .

For i ∈ Z we often abbreviate i := i+ nZ ∈ Z⧸nZ .

To denote vertices in Cn , we use symbols vi , for i ∈ Z⧸nZ . To denote edges in Cn , we use

symbols ei , for i ∈ Z⧸nZ .

The cyclic graph Cn = (VCn ,ECn , sCn , tCn) is the graph with VCn := {vi | i ∈ Z⧸nZ} ,

ECn := {ei | i ∈ Z⧸nZ} and with

ei sCn = vi, ei tCn = vi+1 for i ∈ Z⧸nZ .

54

Example 53 For example the cyclic graph C4 is represented the following way.

C4 : v2
e2))

v3

e3

��
v1

e1

II

v4
e4
ii

Note that v4 = v0 and e4 = e0 .

Definition 54 Suppose given graphs G = (VG,EG, sG, tG) and H = (VH ,EH , sH , tH).

A graph morphism f = (Vf ,Ef) : G −→ H between G and H is a tuple consisting of a map on
the vertices of the graphs Vf : VG −→ VH and a map on the edges of the graphs Ef : EG −→ EH

such that (Morph 1–2) hold.

(Morph 1) We have Ef sH = sGVf .

(Morph 2) We have Ef tH = tGVf .

The graph morphism f = (Vf ,Ef) is called injective if Vf and Ef are injective.

The graph morphism f = (Vf ,Ef) is called surjective if Vf and Ef are surjective.

The graph morphism f = (Vf ,Ef) is called bijective if Vf and Ef are bijective.

Definition 55 Suppose given a graph G = (VG,EG, sG, tG).

The graph morphism idG := (VidG ,EidG) : G −→ G with

VidG := idVG
: VG → VG

v 7→ v

for v ∈ VG and with
EidG := idEG

: EG → EG

e 7→ e

for e ∈ EG is called the identity on G.

Note that the identity idG is bijective and thus a graph isomorphism.

Definition 56 Suppose given n ∈ N and k, l ∈ N with k ⩽ l. We will define a graph Dn , as
well as graph morphisms rn : Dn −→ Cn and ιk,l : Dk −→ Dl .

(1) To denote vertices in Dn , we use symbols v̂i , for i ∈ [0, n] . To denote edges in Dn , we
use symbols êi , for i ∈ [0, n− 1] .

The direct graph Dn = (VDn ,EDn , sDn , tDn) is the graph with VDn := {v̂i | i ∈ [0, n]},
EDn := {êi | i ∈ [0, n− 1]} and with

êi sDn = v̂i for i ∈ [0, n− 1], êi tDn = v̂i+1 for i ∈ [0, n− 1] .

55

(2) We have the graph morphism

rn : Dn −→ Cn

Vrn : v̂i −→ vi+nZ = vi for i ∈ [0, n]

Ern : êi −→ ei+nZ = ei for i ∈ [0, n− 1] .

To verify that rn is in fact a graph morphism, we have to show that êi sDn Vrn = êi Ern sCn

and that êi tDn Vrn = êi Ern tCn for i ∈ [0, n− 1].

We have êi sDn Vrn = v̂i Vrn = vi+nZ = ei+nZ sCn = êi Ern sCn for i ∈ [0, n− 1] and we have
êi tDn Vrn = v̂i+1 Vrn = vi+1+nZ = ei+nZ tCn = êi Ern tCn for i ∈ [0, n− 1].

So rn : Dn −→ Cn is in fact a graph morphism.

(3) We have the graph morphism

ιk,l : Dk −→ Dl

Vιk,l : v̂i −→ v̂i for i ∈ [0, k]

Eιk,l : êi −→ êi for i ∈ [0, k − 1].

We often identify the direct graph Dk with the subgraph Dk ιk,l ⊆ Dl of the direct graph Dl .

We often abbreviate ιn := ι0,n : D0 −→ Dn , where Vιn : v̂0 7→ v̂0 .

Example 57 For example the direct graph D1 is represented the following way.

D1 : v̂0
ê0 // v̂1

Example 58 For example the direct graph D3 is represented the following way.

D3 : v̂0
ê0 // v̂1

ê1 // v̂2
ê2 // v̂3

Remark 59 Suppose given a graph G.

Suppose given an edge e ∈ EG .

Then there exists a unique graph morphism f : D1 −→ G such that ê0 Ef = e.

Proof.

Existence. Let ê0 Ef := e, v̂0Vf := e sG and v̂1Vf := e tG .

We have ê0 sD1 Vf = v̂0Vf = e sG = ê0 Ef sG and ê0 tD1 Vf = v̂0Vf = e tG = ê0 Ef tG .

So f is in fact a graph morphism.

Uniqueness. Given f : D1 −→ G such that ê0 Ef = e, we necessarily have v̂0Vf = ê0 sD1 Vf =
ê0 Ef sG = e sG and v̂1Vf = ê0 tD1 Vf = ê0 Ef tG = e tG .

56

Definition 60 Suppose given graphs X = (VX ,EX , sX , tX), Y = (VY ,EY , sY , tY) and
Z = (VZ ,EZ , sZ , tZ).

Suppose given graph morphisms f = (Vf ,Ef) : X −→ Y and g = (Vg,Eg) : Y −→ Z.

Let f · g := (Vf ·Vg,Ef ·Eg). We often write fg := f · g.

Then f · g is also a graph morphism, called the composite of the graph morphisms f and g.

Proof. We need to show that fg is a graph morphism.

We have to show that (Morph 1) and (Morph 2) hold for fg.

So we have to show that Efg sZ
!
= sX Vfg and that Efg tZ

!
= tX Vfg .

We have Efg sZ = Ef ·Eg · sZ
(Morph 1) for g

= Ef · sY ·Vg
(Morph 1) for f

= sX ·Vf ·Vg = sX ·Vfg .

We have Efg tZ = Ef ·Eg · tZ
(Morph 2) for g

= Ef · tY ·Vg
(Morph 2) for f

= tX ·Vf ·Vg = tX ·Vfg .

So
Vf ·g = Vf ·Vg

Ef ·g = Ef ·Eg .

Definition 61 Suppose given graphs G and H. Suppose given a graph morphism f : G −→ H.

The image Gf of the graph morphism f is the graph (VGf ,EGf , sGf , tGf) consisting of the
set of vertices VGf := VGVf ⊆ VH , the set of edges EGf := EG Ef ⊆ EH , the source map

sGf := sH |VGf

EGf
and the target map tGf := tH |VGf

EGf
.

Note that the image Gf of the graph morphism f is a subgraph of H; cf. Definitions 47 and 54.

Example 62 Let G be the graph having VG = {1, 2, 3} and EG = {α1 , α2} with

α1 sG = 1, α1 tG = 2,

α2 sG = 3, α2 tG = 2,

Let H be the graph having VH = {1, 2, 3} and EH = {β1 , β2} with

β1 sH = 1, β1 tH = 2,

β2 sH = 2, β2 tH = 3,

Now we have the following situation

G : 1
α1 // 2 3

α2oo

H : 1
β1 // 2

β2 // 3

57

Let f = (Vf ,Ef) : G −→ H be the graph morphism with

1Vf = 1, 2Vf = 2, 3Vf = 1,

and with
α1 Ef = β1 ,

α2 Ef = β1 ,

Then the image Gf of the graph morphism f is the graph having VGf = {1, 2} and EGf = {β1}
with

β1 sGf = 1, β1 tGf = 2,

The image Gf is represented as

Gf : 1
β1 // 2

Definition 63 Suppose given a graph morphism f = (Vf ,Ef) : G −→ H.

Suppose given subgraphs G′ ⊆ G and H ′ ⊆ H such that G′f ⊆ H ′.

Let the restriction of f to G′ and H ′ be defined as

f |H′

G′ := (Vf |
VH′
VG′ ,Ef |

EH′
EG′)

Then f |H′

G′ : G′ −→ H ′ is a graph morphism.

We have Vf |H′
G′

= Vf |
VH′
VG′ and Ef |H′

G′
= Ef |

EH′
EG′ .

If H ′ = H, then we also write f |G′ := f |HG′ : G′ −→ H.

If G′ = G, then we also write f |H′
:= f |H′

G : G −→ H ′.

Note that, in particular, we can restrict the graph morphism f to the subgraph Gf ⊆ H to
obtain the surjective graph morphism f |Gf : G −→ Gf .

Moreover, we obtain the inclusion morphism idG |G′ : G′ −→ G.

Definition 64 The category of graphs Gph consists of the set of objects

Ob(Gph) := {G : G is a graph}

and the set of morphisms

Mor(Gph) := {f : f is a graph morphism}.

Cf. Definitions 45 and 54.

The category Gph has the identity morphisms introduced in Definition 55 and carries the
composition introduced in Definition 60.

58

Suppose given graphs G,H ∈ Ob(Gph). By

(G,H)Gph := {G f−→ H : f is a graph morphism} ⊆ Mor(Gph)

we denote the set of graph morphisms from G to H. We often abbreviate (G,H) := (G,H)Gph .

Remark 65 Suppose given graphs G,H ∈ Ob(Gph). A graph morphism f : G −→ H is
an isomorphism if and only if it is bijective, i.e. if the map Vf : VG −→ VH and the map
Ef : EG −→ EH both are bijective.

Proof. Suppose given a bijective graph morphism f = (Vf ,Ef) : G −→ H.

Then the map Vf : VG −→ VH is bijective and so there exists its inverse V−1
f : VH −→ VG .

Moreover, the map Ef : EG −→ EH is bijective and so there exists its inverse E−1
f : EH −→ EG .

Therefore (V−1
f ,E−1

f) : H −→ G is a graph morphism with ff−1 = idG and f−1f = idH , since

we have E−1
f sG = E−1

f sGVf V
−1
f = E−1

f Ef sH V−1
f = sH V−1

f and E−1
f tG = E−1

f tG Vf V
−1
f =

E−1
f Ef tH V−1

f = tH V−1
f .

Furthermore, (Vf ,Ef)(V
−1
f ,E−1

f) = (Vf V
−1
f ,Ef E

−1
f) = (idVG

, idEG
) = idG and

(V−1
f ,E−1

f)(Vf ,Ef) = (V−1
f Vf ,E

−1
f Ef) = (idVH

, idEH
) = idH . Thus f−1 = (Vf−1 ,Ef−1) =

(V−1
f ,E−1

f). So f is an isomorphism.

Conversely, if f is an isomorphism, then there exists a graph morphism g : H −→ G such that
fg = idG and gf = idH . Hence there exist maps Vg : VH −→ VG and Eg : EH −→ EG such that
Vf Vg = idVG

and Vg Vf = idVH
and such that Ef Eg = idEG

and Eg Ef = idEH
.

So both maps Vf and Ef are bijective.

Remark 66 Suppose given an injective graph morphism f : X −→ Y .

Then the restriction f |Xf : X −→ Xf is a graph isomorphism.

Proof. We have to show that the graph morphism f |Xf is bijective; cf. Remark 65.

The graph morphism f is injective by supposition. Hence the graph morphism f |Xf is injective.

By construction, the graph morphism f |Xf is surjective.

So the graph morphism f |Xf is bijective.

Definition 67 Suppose given n ∈ N.

Suppose given s ∈ Z.

We define the graph automorphism

as : Cn
∼−→ Cn

ei 7→ ei+s

vi 7→ vi+s .

59

In fact, for i ∈ Z⧸nZ we have

(ei Eas) sCn = ei+s sCn = vi+s = vi Vas = (ei sCn)Vas and

(ei Eas) tCn = ei+s tCn = vi+s+1 = vi+1Vas = (ei tCn)Vas .

So as is a graph morphism; cf. Definition 54.

We have as · at = as+t for s, t ∈ Z.

We have a0 = idCn ; cf. Definition 55.

In particular, we have as · a−s = a0 = idCn and a−s · as = a0 = idCn , so that a−s = a−1
s for s ∈ Z.

So as is a graph automorphism.

Definition 68 Suppose given graphs G,H,X, Y .

Suppose given a graph morphism f : G −→ H.

We have the map

(X,G)Gph

(X,f)Gph−−−−−→ (X,H)Gph

g 7→ g(X, f)Gph := gf .

We have the map

(H, Y)Gph

(f,Y)Gph−−−−−→ (G, Y)Gph

g 7→ g(f, Y)Gph := fg .

Remark 69 Suppose given a graphs X, Y and graph morphisms f : G −→ H, g : H −→ K and
their composite fg : G −→ K.

We have

(1) (X, fg)Gph = (X, f)Gph · (X, g)Gph

(X, idG)Gph = id(X,G)Gph

(2) (fg, Y)Gph = (g, Y)Gph · (f, Y)Gph

(idK , Y)Gph = id(K,Y)Gph
.

Proof.

Ad (1).

Suppose given a graph morphism u : X −→ G.

We have u(X, fg)Gph = u(fg) = (uf)g = (u(X, f)Gph) · g = u ((X, f)Gph · (X, g)Gph) .

We have u(X, idG)Gph = u idG = u.

Ad (2).

Suppose given a graph morphism v : K −→ Y .

We have v(fg, Y)Gph = (fg)v = f(gv) = (gv)(f, Y)Gph = v ((g, Y)Gph · (f, Y)Gph) .

We have v(idK , Y)Gph = idK v = v.

60

Remark 70

(1) The cyclic graph C1 is the terminal object in the category Gph.

Let τX be the unique graph morphism τX : X −→ C1 .

We have vVτX = v0 for v ∈ VX and we have eEτX = e0 for e ∈ EX .

(2) The empty graph ∅ := (V∅,E∅) with V∅ := ∅ and E∅ := ∅ is the initial object in the
category Gph.

Let ιX be the unique graph morphism ιX : ∅ −→ X.

Definition 71 Suppose given a graph G.

We will define the discrete subgraph Ġ ⊆ G.

We let VĠ := VG and EĠ := ∅.

We have the maps sĠ : ∅ −→ VĠ and tĠ : ∅ −→ VĠ .

We have the inclusion morphism oG from Ġ to G as follows.

Ġ
oG−→ G

VoG : VG −→ VG

x 7→ x

EoG : ∅ −→ EG

.

Remark 72 Suppose given a surjective graph morphism f : G −→ H.

Then f : G −→ H is an epimorphism in Gph.

Proof. Suppose given graph morphisms u, u′ : H −→ K such that fu = fu′.

We have to show that u
!
= u′. I.e. we have to show that Vu

!
= Vu′ and Eu

!
= Eu′ .

We have Vf Vu = Vfu = Vfu′ = Vf Vu .

Since Vf is surjective, it is epimorphic; cf. Remark 31. So Vu = Vu′ .

We have Ef Eu = Efu = Efu′ = Ef Eu .

Since Ef is surjective, it is epimorphic; cf. Remark 31. So Eu = Eu′ .

So we conclude u = u′.

2.2 Thin graphs

Definition 73 A graph G is called thin if for v, v′ ∈ VG we have

|{e ∈ EG : e sG = v, e tG = v′}| ⩽ 1.

I.e. between two vertices there is at most one edge.

61

Equivalently, a graph G is thin if the map

EG
(sG ,tG)−−−−→ VG×VG

e 7→ (e sG , e tG)

is injective.

Example 74 The cyclic graph Cn is thin for n ∈ N; cf. Definitions 52 and 73.

For i, j ∈ Z⧸nZ we have

|{ek ∈ ECn : ek sCn = vi , ek tCn = vj}| = |{ei ∈ ECn : ei tCn = vj}| =

{
1 if j = i+ 1

0 if j ̸= i+ 1.

Example 75 The direct graph Dn is thin for n ∈ N; cf. Definitions 56 and 73.

In fact, for i, j ∈ [0, n] we have |{êk ∈ EDn : êk sDn = v̂i , êk tDn = v̂j}| =

{
1 if j = i+ 1

0 if j ̸= i+ 1.

Remark 76 Suppose given a thin graph G. Suppose given a subgraph G′ ⊆ G.

Then G′ is thin.

Proof. Suppose given vertices v, v′ ∈ VG′ ⊆ VG .

We have

|{e′ ∈ EG′ : e′ sG′ = v, e′ tG′ = v′}| Def. 47.(1)
= |{e′ ∈ EG′ : e′ sG = v, e′ tG = v′}|

EG′⊆EG

⩽ |{e ∈ EG : e sG = v, e tG = v′}| ⩽ 1 .

Remark 77 Suppose given a graph X. Suppose given a thin graph Y .

(1) Suppose given graph morphisms f, g : X −→ Y with Vf = Vg .

Then f = g.

In other words, the map

(X, Y)Gph −→ (VX ,VY)Set

f 7→ Vf .

is injective.

(2) A map u : VX −→ VY is called monotone if for each edge e ∈ EX there exists an edge
ẽ ∈ EY such that ẽ sY = (e sX)u and ẽ tY = (e tX)u.

We have a bijective map

(X, Y)Gph −→ {u ∈ (VX ,VY)Set : u is monotone}
f 7→ Vf .

62

Proof.

Ad (1). We have to show that Ef
!
= Eg .

The graph Y is thin. So we have |{e ∈ EY : e sY = v, e tY = v′}| ⩽ 1 for v, v′ ∈ VY .

We have Ef tY = tX Vf = tX Vg = Eg tY as well as Ef sY = sX Vf = sX Vg = Eg sY .

Suppose given an edge eX ∈ EX .

We have v1 := eX Ef sY = eX Eg sY ∈ VY and v2 := eX Ef tY = eX Eg tY ∈ VY .

We have 1 ⩾ |{e ∈ EY : e sY = v1, e tY = v2}| ⩾ |{eX Ef , eX Eg}| because Y is thin.

So we have eX Ef = eX Eg .

Therefore, Ef = Eg .

Ad (2). By (1), the map in question is injective. It remains to show that it is surjective.

Suppose given a monotone map u : VX −→ VY .

We let Vf := u.

For e ∈ EX , we let eEf := ẽ, where ẽ is the unique edge in EY having ẽ sY = (e sX)u and
ẽ tY = (e tX)u.

Then eEf sY = ẽ sY = (e sX)u = e sX Vf and eEf tY = ẽ tY = (e tX)u = e tX Vf .

So f = (Vf ,Ef) is a graph morphism with Vf = u.

Example 78 Suppose given a graph X.

Suppose given n ∈ N.

Suppose given graph morphisms f, g : X −→ Cn with Vf = Vg .

Then f = g, since the cyclic graph Cn is thin; cf. Remarks 74 and 77.(1).

Remark 79 Suppose given a thin graph Y .

Suppose given n ∈ N.

Suppose given a map u : VCn −→ VY such that Y (vi u, vi+1 u) ̸= ∅ for i ∈ Z⧸nZ .

Then there exists a unique graph morphism f : Cn −→ Y such that Vf = u.

Proof.

Uniqueness. This follows by Remark 77.(1).

Existence. Write Y (vi u, vi+1 u) =: {αi} for i ∈ Z⧸nZ .

Let Vf := u.

Let
Ef : ECn −→ EY

ei 7→ αi

Then f := (Vf ,Ef) : Cn −→ Y is a graph morphism, since ei Ef sY = αi sY = vi u = ei sCn Vf

and ei Ef tY = αi tY = vi+1 u = ei tCnVf for i ∈ Z⧸nZ . Cf. also Remark 77.(2).

63

Remark 80 Suppose given a thin graph G.

Suppose given a graph morphism f : G −→ H such that the map Vf is injective.

Then the graph morphism f : G −→ H is injective, i.e. both maps Vf and Ef are injective.

Proof. Suppose given edges e and ẽ in EG such that eEf = ẽEf .

We have to show that e
!
= ẽ .

We have e sGVf = eEf sH = ẽEf sH = ẽ sG Vf .

Since the map Vf : VG −→ VH is injective, we have e sG = ẽ sG .

Likewise we have e tG = ẽ tG .

Since the graph G is thin, we conclude that e = ẽ.

Example 81 We consider the following graph morphism.

G : 1
α1
((

α2

66 2

H : 1
β1 // 2

f

��

Here, f = (Vf ,Ef) : G −→ H is the graph morphism mapping the vertices and the edges in a
vertical way. I.e.

1Vf = 1, 2Vf = 2

and

α1 Ef = β1 , α2 Ef = β1 .

The map Vf is injective, while the map Ef is not injective. Note that the graph G is not thin.

64

2.3 Pushout and pullback of graphs

2.3.1 Pushout of graphs

Reminder 82 Suppose given a quadrangle

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in Gph. It is called a pushout if (Pushout 1–2) hold; cf. Definition 5.

(Pushout 1) We have g · f ′ = f · h.

(Pushout 2) Suppose given a graph G and graph morphisms u : X ′ −→ G and v : Y −→ G such that
f · v = g · u. Then there exists a unique graph morphism w : Y ′ −→ G such that f ′ ·w = u
and h · w = v.

X
f //

g

��

Y

h

�� v

��

X ′ f ′
//

u

))

Y ′
∃!w

��
G

To indicate that this quadrangle is a pushout, we write

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

Then we also say that f ′ is a pushout of f .

Construction 83 Suppose given a diagram

X

g
��

f // Y

X ′

in Gph.

65

We aim to construct a pushout

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

In particular, we have to construct maps Eh : EY −→ EY ′ and Ef ′ : EX′ −→ EY ′ and Vh : VY −→ VY ′

and Vf ′ : VX′ −→ VY ′ .

We form pushouts in Set as follows.

EX

Ef //

Eg

��

EY

Eh

��

VX

Vf //

Vg

��

VY

Vh

��
EX′

Ef ′
// EY ′ VX′

Vf ′
// VY ′

For instance, we can use Construction 36 to achieve this.

Because of the universal property of the pushout EY ′ , the map tY ′ is uniquely existent with
respect to tX′ Vf ′ = Ef ′ tY ′ and tY Vh = Eh tY ′ .

Because of the universal property of the pushout EY ′ , the map sY ′ is uniquely existent with
respect to sX′ Vf ′ = Ef ′ sY ′ and sY Vh = Eh sY ′ .

EX

Eg

{{

Ef //

sX

��

tX

��

EY

Eh

||
sY

��

tY

��

EX′
Ef ′ //

tX′

��

sX′

��

EY ′

sY ′

��

tY ′

��

VX

Vg{{

Vf // VY

Vh||
VX′

Vf ′
// VY ′

And so we have the pushout

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in Gph.

Proof. We have sX′ Vf ′ = Ef ′ sY ′ and tX′ Vf ′ = Ef ′ tY ′ .

So f ′ = (Vf ′ ,Ef ′) is a graph morphism from X ′ = (VX′ ,EX′ , sX′ , tX′) to Y ′ = (VY ′ ,EY ′ , sY ′ , tY ′).

We have sY Vh = Eh sY ′ and tY Vh = Eh tY ′ .

66

So h = (Vh,Eh) is a graph morphism from Y = (VY ,EY , sY , tY) to Y ′ = (VY ′ ,EY ′ , sY ′ , tY ′).

We have gf ′ = (Vg,Eg) · (Vf ′ Ef ′) = (Vg ·Vf ′ ,Eg ·Ef ′) = (Vgf ′ ,Egf ′) = (Vfh,Efh) =
(Vf ·Vh,Ef ·Eh) = (Vf ,Ef) · (Vh Eh) = fh.

Universal property.

Suppose given a graph Z together with graph morphisms v : X ′ −→ Z and u : Y −→ Z such that
fu = gv.

Since EY ′ is constructed as a pushout, we obtain the unique map Ew : EY ′ −→ EZ such that
Eh Ew = Eu and Ef ′ Ew = Ev .

Since VY ′ is constructed as a pushout, we obtain the unique map Vw : VY ′ −→ VZ such that
Vh Vw = Vu and Vf ′ Vw = Vv .

It remains to show that the pair of maps w := (Vw,Ew) is in fact a graph morphism.

We have to show that the map w is a graph morphism.

So we have to show that sY ′ Vw
!
= Ew sZ and that tY ′ Vw

!
= Ew tZ .

We have Ef ′(sY ′ Vw) = sX′ Vf ′ Vw = sX′ Vv = Ev sZ = Ef ′(Ew sZ) .

We have Eh(sY ′ Vw) = sY Vh Vw = sY Vu = Eu sZ = Eh(Ew sZ) .

This shows that sY ′ Vw = Ew sZ by Remark 6.

We have Ef ′(tY ′ Vw) = tX′ Vf ′ Vw = tX′ Vv = Ev tZ = Ef ′(Ew tZ) .

We have Eh(tY ′ Vw) = tY Vh Vw = tY Vu = Eu tZ = Eh(Ew tZ) .

This shows that tY ′ Vw = Ew tZ by Remark 6.

EX

Eg

}}

Ef //

sX

��

tX

��

EY

Eh

}}
sY

��

tY

��

Ev

��

EX′
Ef ′ //

tX′

��

sX′

��

Eu

Eu **

EY ′

sY ′

��

tY ′

��

Ew

$$

VX

Vg

}}

Vf

// VY

Vv

��

VX′
Vf ′

//

Vu

++

VY ′

Vh

==

Vw

%%

EZ

sZ

��

tZ

��
VZ

67

So we have obtained the following diagram in Gph.

X
f //

g

��

Y

h

��
v

��

X ′ f ′
//

u

))

Y ′
w

��
Z

Remark 84 Suppose given

X
a //

f
��

Y

X ′

in Gph with an injective graph morphism f : X −→ X ′.

We let VY ′ := (VX′ \VXf) ⊔ VY and EY ′ := (EX′ \EXf) ⊔ EY .

We let

Va′ : VX′ −→ VY ′ = (VX′ \VXf) ⊔ VY

vX′ 7→

{
(2, vX Va) if vX′ = vX Vf ∈ VXf for a unique vX ∈ VX

(1, vX′) if vX′ ∈ VX′ \VXf

and

Ea′ : EX′ −→ EY ′ = (EX′ \EXf) ⊔ EY

eX′ 7→

{
(2, eX Ea) if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

(1, eX′) if eX′ ∈ EX′ \EXf .

We let
Vg : VY −→ VY ′ = (VX′ \VXf) ⊔ VY

vY 7→ (2, vY)

and
Eg : EY −→ EY ′ = (EX′ \EXf) ⊔ EY

eY 7→ (2, eY)

We have the pushouts

VX
Va //

Vf

��

VY

Vg

��
VX′

Va′
// VY ′

68

and

EX
Ea //

Ef

��

EY

Eg

��
EX′

Ea′
// EY ′

in Set; cf. Remark 38.

We will construct the maps sY ′ and tY ′ .

Let

sY ′ : EY ′ = (EX′ \EXf) ⊔ EY −→ (VX′ \VXf) ⊔ VY = VY ′

(1, eX′) 7→ eX′ sX′ Va′ =


(2, vX Va) if eX′ sX′ = vX Vf ∈ VXf

for a unique vX ∈ VX

(1, eX′ sX′) if eX′ sX′ ∈ VX′ \VXf .

(2, eY) 7→ (2, eY sY) = eY sY Vg

Let

tY ′ : EY ′ = (EX′ \EXf) ⊔ EY −→ (VX′ \VXf) ⊔ VY = VY ′

(1, eX′) 7→ eX′ tX′ Va′ =


(2, vX Va) if eX′ tX′ = vX Vf ∈ VXf

for a unique vX ∈ VX

(1, eX′ tX′) if eX′ tX′ ∈ VX′ \VXf .

(2, eY) 7→ (2, eY tY) = eY tY Vg

In order to show that we have the pushout

X
a //

f
��

Y

g
��

X ′
a′
// Y ′

it suffices to show that Ea′ sY ′
!
= sX′ Va′ and Eg sY ′

!
= sY Vg , and that Ea′ tY ′

!
= tX′ Va′ and

Eg tY ′
!
= tY Vg ; cf. Construction 83.

We show that Ea′ sY ′
!
= sX′ Va′ and Eg sY ′

!
= sY Vg .

For eX′ ∈ EX′ we have eX′ Ea′ =

{
(2, eX Ea) if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

(1, eX′) if eX′ ∈ EX′ \EXf .

So we have

eX′ Ea′ sY ′ =

{
(2, eX Ea) sY ′ if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

(1, eX′) sY ′ if eX′ ∈ EX′ \EXf

=

{
(2, eX Ea sY) if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ sX′ Va′ if eX′ ∈ EX′ \EXf

69

=

{
(2, eX sX Va) if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ sX′ Va′ if eX′ ∈ EX′ \EXf

=

{
eX sX Vf Va′ if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ sX′ Va′ if eX′ ∈ EX′ \EXf

=

{
eX Ef sX′ Va′ if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ sX′ Va′ if eX′ ∈ EX′ \EXf

=

{
eX′ sX′ Va′ if eX′ ∈ EXf

eX′ sX′ Va′ if eX′ ∈ EX′ \EXf

= eX′ sX′ Va′ .

For eY ∈ EY we have eY Eg sY ′ = (2, eY) sY ′ = (2, eY sY) = eY sY Vg .

We show that Ea′ tY ′
!
= tX′ Va′ and Eg tY ′

!
= tY Vg .

We have

eX′ Ea′ tY ′ =

{
(2, eX Ea) tY ′ if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

(1, eX′) tY ′ if eX′ ∈ EX′ \EXf

=

{
(2, eX Ea tY) if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ tX′ Va′ if eX′ ∈ EX′ \EXf

=

{
(2, eX tX Va) if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ tX′ Va′ if eX′ ∈ EX′ \EXf

=

{
eX tX Vf Va′ if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ tX′ Va′ if eX′ ∈ EX′ \EXf

=

{
eX Ef tX′ Va′ if eX′ = eX Ef ∈ EXf for a unique eX ∈ EX

eX′ tX′ Va′ if eX′ ∈ EX′ \EXf

=

{
eX′ tX′ Va′ if eX′ ∈ EXf

eX′ tX′ Va′ if eX′ ∈ EX′ \EXf

= eX′ tX′ Va′ .

For eY ∈ EY we have eY Eg tY ′ = (2, eY) tY ′ = (2, eY tY) = eY tY Vg .

So we have the pushout

X
a //

f
��

Y

g
��

X ′
a′
// Y ′

2.3.2 Coproducts

Definition 85 Suppose given graphs X and Y .

We will define the coproduct X ⊔ Y of X and Y .

Note that the graph morphism ιX : ∅ −→ X is injective.

70

By Construction 83 and Remark 84, we may form the pushout

∅ ιY //

ιX
��

Y

ι2
��

X ι1
// X ⊔ Y

with VX⊔Y = (VX \V∅ιX) ⊔ VY = VX ⊔VY and EX⊔Y = (EX \E∅ιX) ⊔ EY = EX ⊔EY and with

sX⊔Y : EX⊔Y −→ VX⊔Y

(1, eX) 7→ (1, eX sX)

(2, eY) 7→ (2, eY sY)

and
tX⊔Y : EX⊔Y −→ VX⊔Y

(1, eX) 7→ (1, eX tX)

(2, eY) 7→ (2, eY tY) .

The graph X ⊔ Y is called the coproduct of X and Y .

And we have
ι1 : X −→ X ⊔ Y

Vι1 : VX −→ VX⊔Y = VX ⊔VY

vX 7→ (1, vX)

Eι1 : EX −→ EX⊔Y = EX ⊔EY

eX 7→ (1, eX)

and
ι2 : Y −→ X ⊔ Y

Vι2 : VY −→ VX⊔Y = VX ⊔VY

vY 7→ (2, vY)

Eι2 : EY −→ EX⊔Y = EX ⊔EY

eY 7→ (2, eY)

Given a graph morphism g : X ⊔ Y −→ G, we also write g|X := ι1g and g|Y := ι2g.

The following definition is a way to express the universal property of the coproduct.

Definition 86 Suppose given graph morphisms a : X −→ G and b : Y −→ G.

We have the following commutative diagram in Gph; cf. Remminder 82.

∅ ιX //

ιY

��

X

ι1

��
a

��

Y
ι2 //

b

,,

X ⊔ Y
∃!
(

a
b

)

''
G

71

Since ι1
(

a
b

)
= a and since ι2

(
a
b

)
= b, the graph morphism

(
a
b

)
: X ⊔ Y −→ G maps as follows.

V(
a
b

) : VX⊔Y −→ VG

(1, vX) = vX Vι1 7→ vX Va

(2, vY) = vY Vι2 7→ vY Vb

E(
a
b

) : EX⊔Y −→ EG

(1, eX) = eX Eι1 7→ eX Ea

(2, eY) = eY Eι2 7→ eY Eb

Definition 87 Suppose given graph morphisms f : X −→ X ′ and g : Y −→ Y ′ .

We have the graph morphisms ι1 : X −→ X ⊔ Y , ι2 : Y −→ X ⊔ Y , ι′1 : X ′ −→ X ′ ⊔ Y ′ and
ι′2 : Y

′ −→ X ′ ⊔ Y ′; cf. Definition 85.

Then we have the graph morphism f ⊔ g :=

(
fι′1

gι′2

)
: X ⊔ Y −→ X ′ ⊔ Y ′; cf. Definition 86.

So we have ι1(f ⊔ g) = fι′1 and ι2(f ⊔ g) = gι′2.

We have

Vf⊔g : VX⊔Y −→ VX′⊔Y ′

(1, vX) 7→ vX Vι1 Vf⊔g = vX Vf Vι′1
= (1, vX Vf)

(2, vY) 7→ vY Vι2 Vf⊔g = vY Vg Vι′2
= (2, vY Vg)

Ef⊔g : EX⊔Y −→ EX′⊔Y ′

(1, eX) 7→ eX Eι1 Ef⊔g = eX Ef Eι′1
= (1, eX Ef)

(2, eY) 7→ eY Eι2 Ef⊔g = eY Eg Eι′2
= (2, eY Eg)

∅

��

//

id∅

��

Y

ι2

~~
g

��

X
ι1 //

f

��

X ⊔ Y

f⊔g

��

∅

��

// Y ′

ι′2
~~

X ′
ι′1

// X ′ ⊔ Y ′

72

Remark 88 Suppose graph morphisms a : X −→ Y , a′ : X ′ −→ Y and f : Y −→ Z.

We have the graph morphism
(

a

a′
)
: X ⊔X ′ −→ Y ; cf. Definition 86.

We have
(

a

a′
)
f =

(
af

a′f

)
.

Proof. Recall the graph morphisms ι1 : X −→ X ⊔X ′ and ι2 : X
′ −→ X ⊔X ′ from Definition 86.

Since we have ι1
(

a

a′
)
f = af = ι1

(
af
af

)
and since we have ι2

(
a

a′
)
f = a′f = ι2

(
af
af

)
, we have(

a

a′
)
f =

(
af

a′f

)
.

∅ //

��

X

a

��

ι1

��
X ′

a′ //

ι2 // X ⊔X ′ (
a

a′
)

##

(
af

a′f

)
((

Y

f

��
Z

Remark 89 Suppose given graph morphisms X
f // X ′ a′ // G and Y

g // Y ′ b′ // G .

We have (f ⊔ g)
(

a′

b′

)
=

(
fa′

gb′

)
.

Proof. Recall the graph morphisms ι1 : X −→ X ⊔ Y , ι′1 : X ′ −→ X ′ ⊔ Y ′, ι2 : Y −→ X ⊔ Y and
ι′2 : Y

′ −→ X ′ ⊔ Y ′ from Definition 86.

We have f ⊔ g =

(
fι′1

gι′2

)
; cf. Definition 87.

So we have to show that (f ⊔ g)
(

a′

b′

)
=

(
fι′1
gι′2

)(
a′

b′

)
!
=

(
fa′

gb′

)
.

It suffices to show that ι1(f ⊔ g)
(

a′

b′

)
!
= ι1

(
fa′

gb′

)
and that ι2(f ⊔ g)

(
a′

b′

)
!
= ι2

(
fa′

gb′

)
.

We have ι1(f ⊔ g)
(

a′

b′

)
= ι1

(
fι′1

gι′2

)(
a′

b′

)
= fι′1

(
a′

b′

)
= fa′ = ι1

(
fa′

gb′

)
.

We have ι2(f ⊔ g)
(

a′

b′

)
= ι2

(
fι′1

gι′2

)(
a′

b′

)
= gι′2

(
a′

b′

)
= gb′ = ι2

(
fa′

gb′

)
.

Now we generalizes from the coproduct of two graphs to coproducts indexed with a set.

Definition 90 Suppose given a set I.

Suppose given graphs Ai for i ∈ I.

We define the coproduct
∐

i∈I Ai of the graphs Ai as follows.

73

We let V∐
i∈I Ai

:=
∐

i∈I VAi
and E∐

i∈I Ai
:=

∐
i∈I EAi

; cf. Definition 32.

Additionally we let

s∐
i∈I Ai

: E∐
i∈I Ai

−→ V∐
i∈I Ai

(i, e) 7→ (i, e sAi
) for i ∈ I

and
t∐

i∈I Ai
: E∐

i∈I Ai
−→ V∐

i∈I Ai

(i, e) 7→ (i, e tAi
) for i ∈ I.

We have the inclusion graph morphism ιk : Ak −→
∐

i∈I Ai for k ∈ I as follows.

ιk : Ak −→
∐

i∈I Ai

Vιk : VAk
−→ V∐

i∈I Ai

vk −→ (k, vk)

Eιk : EAk
−→ E∐

i∈I Ai

ek −→ (k, ek)

Suppose given an edge ek ∈ Ak .

We have ek Eιk s
∐

i∈I Ai
= (k, ek) s∐i∈I Ai

= (k, ek sAk
) = ek sAk

Vιk .

We have ek Eιk t
∐

i∈I Ai
= (k, ek) t∐i∈I Ai

= (k, ek tAk
) = ek tAk

Vιk .

So the pair of maps ιk = (Vιk , Eιk) is in fact a graph morphism since we have Eιk s
∐

i∈I Ai
=

sAk
Vιk and Eιk t

∐
i∈I Ai

= tAk
Vιk .

Definition 91 Let I be a set.

Suppose given graph morphisms fi : Xi −→ Y for i ∈ I.

We have the graph morphism f =: (fi)i∈I :
∐

i∈I Xi −→ Y with

(i, vXi
)Vf := vXi

Vfi for i ∈ I and vXi
∈ VXi

(i, eXi
) Ef := eXi

Efi for i ∈ I and eXi
∈ EXi

;

cf. also Definition 86.

We often abbreviate (fi)i := (fi)i∈I .

The pair of maps (Vf ,Ef) is in fact a graph morphism, since (i, eXi
) Ef sY = eXi

Efi sY =
eXi

sXi
Vfi = (i, eXi

sXi
)Vf = (i, eXi

) s∐
i∈I Xi

Vf and (i, eXi
) Ef tY = eXi

Efi tY = eXi
tXi

Vfi =
(i, eXi

tXi
)Vf = (i, eXi

) t∐
i∈I Xi

Vf .

Note that ιjf = ιj(fi)i∈I = fj for j ∈ I and that f is unique with this property; cf. Definition 90.

Remark 92 Suppose given a set I.

Suppose graph morphisms ai : Xi −→ Y for i ∈ I and f : Y −→ Z.

We have the graph morphism (ai)i :
∐

i∈I Xi −→ Y ; cf. Definition 91.

We have (ai)i · f = (ai · f)i .

74

Proof. Recall the graph morphism ιk : Xk −→
∐

i∈I Xi for k ∈ I from Definition 91.

Since we have ιk · (ai)i · f = ak · f = ιk · (ai · f)i for k ∈ I, we have (ai)i · f = (ai · f)i .

Definition 93 Suppose given a set I.

Suppose given graph morphisms fi : Xi −→ Yi .

Recall the graph morphisms ιk : Xk −→
∐

i∈I Xi and ιk : Yk −→
∐

i∈I Yi for k ∈ I, from
Definition 91.

We define the graph morphism
∐

i∈I fi := (fi · ιi)i∈I :
∐

i∈I Xi −→
∐

i∈I Yi .

Then we have ιk ·
∐

i∈I fi = ιk · (fi · ιi)i∈I = fk · ιk for k ∈ I.

Remark 94 Suppose given a set I.

Suppose given graph morphisms Xi
fi // Yi

ai // G for i ∈ I.

We have
(∐

i∈I fi
)
· (ai)i = (fi · ai)i .

Proof. Recall the graph morphisms ιk : Yk −→
∐

i∈I Yi for k ∈ I from Definition 91.

We have
(∐

j fj

)
· (ai)i

Def. 93
= (fj · ιj)j · (ai)i

Rem. 92
= (fj · ιj · (ai)i)j

Def. 91
= (fj · aj)j .

Remark 95 Suppose given a set I.

Suppose given a graph morphism f : G −→ H and graphs Xi for i ∈ I.

We have the following commutative diagram(∐
i∈I Xi, G

)
Gph

(
∐

i∈I Xi,f)
Gph
��

∏
i∈I(Xi, G)Gph∏

i∈I(Xi ,f)Gph

��

a
∼oo

(∐
i∈I Xi, H

)
Gph

∏
i∈I(Xi, H)Gph∼

boo

in Set with

a :
∏

i∈I(Xi, G)Gph
∼−→

(∐
i∈I Xi, G

)
Gph

(gi)i∈I 7→ (gi)i∈I

and
b :

∏
i∈I(Xi, H)Gph

∼−→
(∐

i∈I Xi, H
)
Gph

(hi)i∈I 7→ (hi)i∈I .

In particular, (
∐

i∈I Xi , f)Gph is bijective if and only if
∏

i∈I(Xi , f)Gph is bijective.

Proof. Because of the universal property of the coproduct, the maps a and b are bijective and
we have

a−1 :
(∐

i∈I Xi, G
)
Gph

∼−→
∏

i∈I(Xi, G)Gph

g 7→ (ιig)i

75

and
b−1 :

(∐
i∈I Xi, H

)
Gph

∼−→
∏

i∈I(Xi, H)Gph

h 7→ (ιih)i .

So we have

(
∐

i∈I Xi , G)Gph
a−1

−−→
∏

i∈I(Xi , G)Gph

∏
i∈I(Xi ,f)Gph−−−−−−−−−→

∏
i∈I(Xi , H)Gph

b−→ (
∐

i∈I Xi , H)Gph

g 7→ (ιig)i 7→ (ιigf)i 7→ gf .

So we have
(∐

i∈I Xi, f
)
Gph

= a−1 ·
∏

i∈I(Xi , f)Gph · b.

2.3.3 Pullback of graphs

Reminder 96 Suppose given a quadrangle

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in Gph. It is called a pullback if (Pullback 1–2) hold; cf. Definition 9.

(Pullback 1) We have f · h = g · f ′.

(Pullback 2) Suppose given a graph G and graph morphisms u : G −→ Y and v : G −→ X ′ such that
u · h = v · f ′. Then there exists a unique graph morphism w : G −→ X such that w · f = u
and w · g = v.

G

∃!w
��

u

��

v

��

X
f
//

g

��

Y

h

��
X ′

f ′
// Y ′

To indicate that this quadrange is a pullback, we write

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′ .

Then we also say that f is a pullback of f ′.

76

Construction 97 Suppose given a diagram

Y

h
��

X ′ f ′
// Y ′

in Gph.

We aim to construct a pullback

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

In particular, we have to construct maps Eg : EX −→ EX′ and Ef : EX −→ EY and Vg : VX −→ VX′

and Vf : VX −→ VY .

We construct the pullbacks

EX

Ef //

Eg

��

EY

Eh

��
EX′

Ef ′
// EY ′

and

VX

Vf //

Vg

��

VY

Vh

��
VX′

Vf ′
// VY ′

using Construction 41.

Because of the universal property of the pullback EX , the map tX is uniquely existent with
respect to tX Vg = Eg tX′ and tX Vf = Ef tY .

Because of the universal property of the pullback EX , the map sX is uniquely existent with
respect to sX Vg = Eg sX′ and sX Vf = Ef sY .

EX

Eg

{{

Ef //

tX

��

sX

��

EY

Eh

||
tY

��

sY

��

EX′
Ef ′ //

tX′

��

sX′

��

EY ′

tY ′

��

sY ′

��

VX

Vg{{

Vf // VY

VX′
Vf ′

// VY ′

Vh

<<

77

And so we have the pullback

X
f //

g

��

Y

h

��
X ′

f ′
// Y ′

in Gph.

Proof. We have sX Vg = Eg sX′ and tX Vg = Eg tX′ .

So g = (Vg,Eg) is a graph morphism from X = (VX ,EX , sX , tX) to X ′ = (VX′ ,EX′ , sX′ , tX′).

We have sX Vf = Ef sY and tX Vf = Ef tY .

So f = (Vf ,Ef) is a graph morphism from X = (VX ,EX , sX , tX) to Y = (VY ,EY , sY , tY).

We have gf ′ = (Vg,Eg) · (Vf ′ Ef ′) = (Vg ·Vf ′ ,Eg ·Ef ′) = (Vgf ′ ,Egf ′) = (Vfh,Efh) =
(Vf ·Vh,Ef ·Eh) = (Vf ,Ef) · (Vh Eh) = fh.

Universal property.

Suppose given a graph Z together with graph morphisms u : Z −→ Y and v : Z −→ X ′ such that
uh = vf ′.

Since EX is constructed as a pullback, we obtain the unique map Ew : EZ −→ EX such that
Ew Ef = Eu and Ew Eg = Ev .

Since VX is constructed as a pullback, we obtain the unique map Vw : VZ −→ VX such that
Vw Vf = Vu and Vw Vg = Vv .

It remains to show that the pair of maps w := (Vw,Ew) is in fact a graph morphism.

We have to show that the map w is a graph morphism.

So we have to show that sZ Vw
!
= Ew sX and that tZ Vw

!
= Ew tX .

We have (sZ Vw)Vg = sZ Vv = Ev sX′ = Ew Eg sX′ = (Ew sX)Vg .

We have (sZ Vw)Vf = sZ Vu = Eu sY = Ew Ef sY = (Ew sX)Vf .

This shows that sZ Vw = Ew sX by Remark 10.

We have (tZ Vw)Vg = tZ Vv = Ev tX′ = Ew Eg tX′ = (Ew tX)Vg .

We have (tZ Vw)Vf = tZ Vu = Eu tY = Ew Ef tY = (Ew tX)Vf .

78

This shows that tZ Vw = Ew tX by Remark 10.

EZ

tZ

��

sZ

��

Ew

%%

Eu

((

Ev

��

VZ

Vw

%%

Vu

((

Vv

��

EX

Eg

}}

Ef //

tX

��

sX

��

EY

Eh

}}
tY

��

sY

��

EX′
Ef ′ //

tX′

��

sX′

��

EY ′

tY ′

��

sY ′

��

VX

Vg

}}

Vf // VY

VX′
Vf ′

// VY ′

Vh

==

So we have the following commutative diagram in Gph.

Z

w
��

u

!!
v

��

X
f
//

g

��

Y

h

��
X ′

f ′
// Y ′

2.4 Colimit of a countable chain in Gph

Definition 98 Suppose given

X0

f0,1 // X1

f1,2 // X2

f2,3 // · · ·

in Gph.

We define
VX∞ := lim−→

i⩾0

VXi
= {[j, vj] : j ⩾ 0, vj ∈ VXj

}

79

and

EX∞ := lim−→
i⩾0

EXi
= {[j, ej] : j ⩾ 0, ej ∈ EXj

} ;

cf. Definition 42.

Note that [j, vj] = [k, vj Vfj,k] for 0 ⩽ j ⩽ k and vj ∈ VXj
.

Note that [j, ej] = [k, ej Efj,k] for 0 ⩽ j ⩽ k and ej ∈ EXj
.

For k ⩾ 0, Definition 42.(2) gives the maps

Vfk,∞ : VXk
7→ VX∞

vk 7→ [k, vk]

Efk,∞ : EXk
7→ EX∞

ek 7→ [k, ek] .

We define sX∞ := lim−→
i⩾0

sXi
and tX∞ := lim−→

i⩾0

tXi
, which is possible since sXi

Vfi,i+1
= Efi,i+1

sXi+1

and tXi
Vfi,i+1

= Efi,i+1
tXi+1

for i ⩾ 0; cf. Definition 44.

We have

sX∞ : EX∞ → VX∞

[k, ek] 7→ [k, ek sXk
]

and

tX∞ : EX∞ → VX∞

[k, ek] 7→ [k, ek tXk
] .

In fact, we have [k, ek] sX∞ = ek Efk,∞ sX∞
Def. 44
= ek sXk

Vfk,∞ = [k, ek sXk
] and [k, ek] tX∞ =

ek Efk,∞ tX∞
Def. 44
= ek tXk

Vfk,∞ = [k, ek tXk
].

This defines the graph X∞ := (VX∞ ,EX∞ , sX∞ , tX∞).

For j ⩾ 0 we have Efj,∞ sX∞ = sXj
Vfj,∞ and Efj,∞ tX∞ = tXj

Vfj,∞ ; cf. Definition 44.

So the pair of maps fj,∞ = (Vfj,∞ ,Efj,∞) : Xj −→ X∞ is a graph morphism.

VX0

Vf0,∞

%%

Vf0,1

// VX1

Vf1,∞

%%

Vf1,2

// VX2

Vf2,∞

&&
// · · · VX∞

EX0

Ef0,∞

99

sX0

OO

tX0

OO

Ef0,1 // EX1

Ef1,∞

99

sX1

OO

tX1

OO

Ef1,2 // EX2

Ef2,∞

88
//

sX2

OO

tX2

OO

· · · EX∞

sX∞

OO

tX∞

OO

We have fi,i+1fi+1,∞ = fi,∞ ; cf. Definition 42.(2), applied to vertices and edges.

80

Lemma 99 (universal property) Suppose given graph morphisms tj : Xj −→ T for j ⩾ 0
such that fj,j+1tj+1 = tj for j ⩾ 0, i.e. fj,ktk = tj for 0 ⩽ j ⩽ k.

X0

f0,1 //

t0

��

X1

f1,2 //

t1

��

X2

f2,3 //

t2

��

. . .

. . .

T

Then there exists a unique graph morphism t∞ : X∞ −→ T such that fj,∞t∞ = tj for j ⩾ 0.

So we may define lim−→
i⩾0

Xi := X∞ .

Proof.

Uniqueness.

Suppose given t′, t′′ : X∞ −→ T such that fj,∞t′ = tj and fj,∞t′′ = tj for j ⩾ 0.

We have to show that t′ = t′′.

Suppose given [j, vj] ∈ VX∞ . We have to show that [j, vj] Vt′
!
= [j, vj] Vt′′ .

In fact, we have [j, vj] Vt′ = vj Vfj,∞ Vt′ = vj Vtj = vj Vfj,∞ Vt′′ = [j, vj] Vt′′ .

Suppose given [j, ej] ∈ EX∞ . We have to show that [j, ej] Et′
!
= [j, ej] Et′′ .

In fact, we have [j, ej] Et′ = ej Efj,∞ Et′ = ej Etj = ej Efj,∞ Et′′ = [j, ej] Et′′ .

Existence.

We have the following commutative diagram.

VX0

Vf0,1 //

Vt0

��

VX1

Vf1,2 //

Vt1

��

VX2

Vf2,3 //

Vt2

��

. . .

. . .

VT

So because of the universal property of VX∞ there exists a unique map Vt∞ : VX∞ −→ VT such
that the following diagram is commutative.

VX0

Vf0,∞

%%

Vf0,1

//

Vt0

��

VX1

Vf1,∞

%%

Vf1,2

//

Vt1

��

VX2

Vf2,∞

&&

Vf2,3

//

Vt2

��

· · · VX∞

Vt∞

tt

. . .

VT

81

We have the following commutative diagram.

EX0

Ef0,1 //

Et0

��

EX1

Ef1,2 //

Et1

��

EX2

Ef2,3 //

Et2

��

. . .

. . .

ET

So because of the universal property of EX∞ there exists a unique map Et∞ : EX∞ −→ ET such
that the following diagram is commutative.

EX0

Ef0,∞

%%

Ef0,1

//

Et0

��

EX1

Ef1,∞

%%

Ef1,2

//

Et1

��

EX2

Ef2,∞

&&

Ef2,3

//

Et2

��

· · · EX∞

Et∞

tt

. . .

ET

We let
t∞ : X∞ → T

Vt∞ : VX∞ 7→ VT

[j, vj] 7→ vj Vtj

Et∞ : EX∞ 7→ ET

[j, ej] 7→ ej Etj

We show that these maps are well-defined.

Suppose given (j, vj), (k, vk) ∈
⊔

i⩾0VXi
such that [j, vj] = [k, vk].

Then vj Vfj,m = vk Vfk,m for some m ⩾ max{j, k}.

We have to show that vj Vtj
!
= vk Vtk .

In fact, we have vj Vtj = vj Vfj,mtm = vk Vfk,mtm = vk Vtk .

Suppose given vj ∈ VXj
. For j ⩾ 0 we have vj Vfj,∞ Vt∞ = [j, vj] Vt∞

Def. Vt∞= vj Vtj .

So we have Vfj,∞ Vt∞ = Vtj .

Suppose given (j, ej), (k, ek) ∈
⊔

i⩾0 EXi
such that [j, ej] = [k, ek].

Then ej Efj,m = ek Efk,m for some m ⩾ max{j, k}.

We have to show that ej Etj
!
= ek Etk .

In fact, we have ej Etj = ej Efj,mtm = ek Efk,mtm = ek Etk .

Suppose given ej ∈ EXj
. For j ⩾ 0 we have ej Efj,∞ Et∞ = [j, ej] Et∞

Def. Et∞= ej Etj .

82

So we have Efj,∞ Et∞ = Etj .

To show that t∞ := (Vt∞ ,Et∞) is the unique graph morphism such that

X0

f0,∞

f0,1
//

t0

��

X1

f0,∞

!!

f1,2
//

t1

��

X2

f0,∞

""

f2,3
//

t2

��

· · · X∞

t∞

ss

. . .

T

is commutative, it remains to show that t∞ actually is a graph morphism.

We have to show that Et∞ sT
!
= sX∞ Vt∞ and that Et∞ tT

!
= tX∞ Vt∞ .

Suppose given an edge e∞ = [j, ej] ∈ EX∞ with j ⩾ 0 and ej ∈ EXj
.

We have e∞ Et∞ sT = [j, ej] Et∞ sT = ej Etj sT = ej sXj
Vtj = [j, ej sXj

] Vt∞ = [j, ej] sX∞ Vt∞ =
e∞ sX∞ Vt∞ .

And we have e∞ Et∞ tT = [j, ej] Et∞ tT = ej Etj tT = ej tXj
Vtj = [j, ej tXj

] Vt∞ =
[j, ej] tX∞ Vt∞ = e∞ tX∞ Vt∞ .

Remark 100 Suppose given graph morphisms w′, w′′ : X∞ −→ T such that fk,∞w′ = fk,∞w′′

for k ⩾ 0.

Then w′ = w′′.

We say that for k ⩾ 0 the graph morphisms fk,∞ are collectively epimorphic.

Proof. Both graph morphisms w′ and w′′ are induced by (fk,∞w′)k⩾0 = (fk,∞w′′)k⩾0 .

By the uniqueness in the universal property, it follows that w′ = w′′; cf. Lemma 99.

Lemma 101 Suppose given a finite graph G, i.e. the sets VG and EG are finite.

Suppose given

X0

f0,∞

��

f0,1
// X1

f1,∞

��

f1,2
// X2

f2,∞

��

f2,3
// · · · X∞

(1) Suppose given a graph morphism w : G −→ X∞ . Then there exist m ⩾ 0 and a graph
morphism ŵ : G −→ Xm such that ŵfm,∞ = w.

Xm
fm,∞ // X∞

G

w

OO

ŵ

bb

83

(2) Suppose given graph morphisms w′ : G −→ X∞ and w′′ : G −→ X∞ . Then there exist
m ⩾ 0 and ŵ′ : G −→ Xm and ŵ′′ : G −→ Xm such that we have ŵ′fm,∞ = w′ and
ŵ′′fm,∞ = w′′.

Xm
fm,∞ // X∞

G

w′

OO

w′′

OO

ŵ′

aa
ŵ′′

aa

Proof.

Ad (1). We will construct ŵ.

Step 1. We choose j ⩾ 0 such that eEw ∈ EXjfj,∞ and vVw ∈ VXjfj,∞ for e ∈ EG , v ∈ VG .

This is possible since the graph G is finite; cf. Definition 98.

Step 2. For e ∈ EG we choose e′ ∈ EXj
such that [j, e′] = eEw .

Note that [j, e′] = e′ Efj,∞ .

For v ∈ VG we choose v′ ∈ VXj
such that [j, v′] = vVw .

Note that [j, v′] = v′Vfj,∞ .

Step 3. Let e ∈ EG .

We have [j, e′ sXj
]
Def. 98
= [j, e′] sX∞ = eEw sX∞ = e sGVw = [j, (e sG)

′].

So there exists me,1 ⩾ j such that e′ sXj
Vfj,me,1

= (e sG)
′Vfj,me,1

.

We have [j, e′ tXj
]
Def. 98
= [j, e′] tX∞ = eEw tX∞ = e tGVw = [j, (e tG)

′].

So there exists me,2 ⩾ j such that e′ tXj
Vfj,me,2

= (e tG)
′Vfj,me,2

.

Step 4. Let m := max({me,1 : e ∈ EG} ∪ {me,2 : e ∈ EG}). This is existent since the set EG is
finite.

Then e′ sXj
Vfj,m = (e sG)

′Vfj,m and e′ tXj
Vfj,m = (e tG)

′ Vfj,m for e ∈ EG .

This follows by application of Vfme,1,m
respectively Vfme,2,m

to the equations in Step 3.

Step 5. We have the pair of maps

ŵ : G −→ Xm

Eŵ : e 7→ e′ Efj,m

Vŵ : v 7→ v′Vfj,m .

Step 6. The pair of maps ŵ = (Vŵ,Eŵ) : G −→ Xm is a graph morphism.

Suppose given e ∈ EG .

We have to show that eEŵ sXm

!
= e sG Vŵ and that eEŵ tXm

!
= e tGVŵ .

We have eEŵ sXm

Step 5
= e′ Efj,m sXm = e′ sXj

Vfj,m

Step 4
= (e sG)

′ Vfj,m

Step 5
= e sGVŵ .

We have eEŵ tXm

Step 5
= e′ Efj,m tXm = e′ tXj

Vfj,m

Step 4.
= (e tG)

′ Vfj,m

Step 5
= e tG Vŵ .

84

Step 7. We have to show that ŵ · fm,∞
!
= w.

Suppose given e ∈ EG .

We have eEŵfm,∞ = eEŵ Efm,∞
Step 5
= e′ Efj,m Efm,∞ = e′ Efj,∞ = [j, e′]

Step 2
= eEw .

Suppose given v ∈ VG .

We have vVŵfm,∞ = vVŵ Vfm,∞
Step 5
= v′Vfj,m Vfm,∞ = v′Vfj,∞ = [j, v′]

Step 2
= vVw .

Ad (2). By (1) there exist m′,m′′ ⩾ 0 and graph morphisms w̃′ : G −→ Xm′ and w̃′′ : G −→ Xm′′

such that w̃′fm′,∞ = w′ and w̃′′fm′′,∞ = w′′.

Let m := max{m′,m′′}.

Let ŵ′ := w̃′fm′,m : G −→ Xm and let ŵ′′ := w̃′′fm′′,m : G −→ Xm .

Then we have ŵ′fm,∞ = w̃′fm′,mfm,∞ = w̃′fm′,∞ = w′.

And we have ŵ′′fm,∞ = w̃′′fm′′,mfm,∞ = w̃′′fm′′,∞ = w′′.

Lemma 102 Suppose given A ⊆ Mor(Gph) and

X0

g0,∞

��

g0,1
// X1

g1,∞

��

g1,2
// X2

g2,∞

��

g2,3
// · · · X∞ := lim−→

i⩾0

Xi

in Gph such that gi,i+1 ∈ �A for i ⩾ 0.

Then the graph morphism g0,∞ : X0 −→ X∞ is in �A.

Proof. Suppose given

X0
a //

g0,∞
��

Y

h
��

X∞ b
// Z ,

where h ∈ A.

We have to show that g0,∞ � h, i.e. that there exists a graph morphism c : X∞ −→ Y such that
g0,∞c = a and ch = b.

Let c0 := a.

Since the graph morphism g0,1 : X0 −→ X1 is in
�A and since we have g0,1 ·g1,∞b = g0,∞b = ah =

c0h, we may choose a graph morphism c1 : X1 −→ Y such that g0,1c1 = c0 = a and c1h = g1,∞b.

Since the graph morphism g1,2 : X1 −→ X2 is in
�A and since we have g1,2 · g2,∞b = g1,∞b = c1h,

we may choose a graph morphism c2 : X2 −→ Y such that g1,2c2 = c1 and c2h = g2,∞b.

Since the graph morphism g2,3 : X2 −→ X3 is in
�A and since we have g2,3 · g3,∞b = g2,∞b = c2h,

we may choose a graph morphism c3 : X3 −→ Y such that g2,3c3 = c2 and c3h = g3,∞b.

Etc.

85

In a recursive way we may choose a graph morphism ck : Xk −→ Y such that gk−1,kck = ck−1

and ckh = gk,∞b for k ⩾ 0.

We obtain g0,kck = g0,1 · g1,2 · . . . · gk−1,kck = c0 for k ⩾ 0.

Because of the universal property of the colimit in Gph there exists a unique graph morphism
c : X∞ −→ Y such that gk,∞c = ck for k ⩾ 0; cf. Lemma 99.

X0

g0,∞

��

g0,1

��

a=c0 // Y

h

��

X1

g1,∞

��

g1,2

��

c1

55

X2

g2,∞

��

g2,3

��

c2

;;

...

X∞

c

DD

b
// Z

So we have

X0
a=c0 //

g0,∞
��

Y

h
��

X∞ b
//

c

>>

Z

such that g0,∞c = c0 = a.

We have to show that ch
!
= b.

So we have gk,∞ch = ckh = gk,∞b for k ⩾ 0.

Now we deduce ch = b by Remark 100.

Definition 103 Suppose given a countable chain of subgraphs Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ⊆ Y of Y .

Let VY∞ :=
⋃

i⩾0VYi
⊆ VY and EY∞ :=

⋃
i⩾0 EYi

⊆ EY .

Let sY∞ := sY |VY∞
EY∞

and tY∞ = tY |VY∞
EY∞

.

Then the graph Y∞ :=
⋃

i⩾0 Yi := (VY∞ ,EY∞ , sY∞ , tY∞) is a subgraph of Y ; cf. Definition 47.(1).

In fact, suppose given an edge e ∈ EY∞ =
⋃

i⩾0 EYi
. There exists i ⩾ 0 such that e ∈ EYi

.

We have e sY = e sYi
∈ VYi

⊆ VY∞ and e tY = e tYi
∈ VYi

⊆ VY∞ .

86

Remark 104 Suppose given a graph Y .

Suppose given a countable chain of subgraphs Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ⊆ Y such that Yi ⊆ Y is a
full subgraph for i ∈ Z⩾0 .

Then
⋃

i∈Z⩾0
Yi ⊆ Y is a full subgraph; cf. Definition 103.

Proof. Suppose given vertices v, w ∈ V⋃
i∈Z⩾0

Yi
=

⋃
i∈Z⩾0

VYi
.

Suppose given an edge e ∈ Y (v, w).

We have to show that e
!
∈ E⋃

i∈Z⩾0
Yi
=

⋃
i∈Z⩾0

EYi
.

We can choose j ∈ Z⩾0 such that v ∈ Yj and w ∈ Yj .

The subgraph Yj ⊆ Y is a full subgraph.

So we have e ∈ EYj
⊆

⋃
i∈Z⩾0

EYi
.

Remark 105 Suppose given a countable chain of subgraphs X = Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ⊆ Y of
Y .

The graph Y∞ =
⋃

i⩾0 Yi ⊆ Y is a subgraph of Y ; cf. Definition 103.

Then the graph Y∞ is a colimit of the countable chain of subgraphs Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ⊆ Y ;
cf. Definition 42.

Proof. First, we abbreviate κi,j := idYj
|Yi

: Yi −→ Yj for 0 ⩽ i ⩽ j.

Suppose given i ⩾ 0. Since the graph Yi is a subgraph of Y∞ =
⋃

i⩾0 Yi , we have the graph
morphisms κi,∞ := idY∞ |Yi

: Yi −→ Y∞.

We have

Y0

κ0,∞

��
κ0,1

// Y1

κ1,∞

��
κ1,2

// Y2

κ2,∞

��
κ2,3

// · · · Y∞

We show that the graph Y∞ is a colimit of the chain of subgraphs Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ⊆ Y with
respect to κi,∞ : Yi −→ Y∞ for i ⩾ 0.

Suppose given a commutative diagram in Gph as follows.

Y0

f0 00

κ0,∞

""
κ0,1

// Y1

f1

--

κ1,∞

""
κ1,2

// Y2

f2

((

κ2,∞

κ2,3

// · · · Y∞

Z

We have to show that there exists a unique graph morphism f∞ : Y∞ −→ Z such that the
following diagram is commutative.

87

Y0

f0 00

κ0,∞

""
κ0,1

// Y1

f1

--

κ1,∞

""
κ1,2

// Y2

f2

((

κ2,∞

κ2,3

// · · · Y∞

f∞

��
Z

Uniqueness. This follows by VY∞ =
⋃

i⩾0VYi
and EY∞ =

⋃
i⩾0 EYi

.

Existence. We let
Vf∞ : VY∞ =

⋃
i⩾0VYi

−→ VZ

v 7→ vVfi , if v ∈ VYi
.

We have to show that this map is well-defined.

Suppose given v ∈ VY∞ and v ∈ VYi
and v ∈ VYj

, where i, j ⩾ 0.

We show that we have vVfi
!
= vVfj .

Without loss of generality, we have i ⩽ j and thus vVfi = vVκi,jfj = vVκi,j
Vfj = vVfj .

We let
Ef∞ : EY∞ =

⋃
i⩾0 EYi

−→ EZ

v 7→ v Efi , if v ∈ EYi
.

We have to show that this map is well-defined.

Suppose given e ∈ EY∞ and e ∈ EYi
and e ∈ EYj

, where i, j ⩾ 0.

We show that we have eEfi
!
= eEfj .

Without loss of generality, we have i ⩽ j and thus eEfi = eEκi,jfj = eEκi,j
Efj = eEfj .

We show that the pair of maps f∞ := (Vf∞ ,Ef∞) is a graph morphism.

Suppose given an edge e ∈ EY∞ .

We may choose i ⩾ 0 such that e ∈ EYi
.

We have to show that e sY∞ Vf∞
!
= eEf∞ sZ .

We have e sY∞ Vf∞
Def. 103
= e sYi

Vf∞

Def. Vf∞= e sYi
Vfi = eEfi sZ

Def. Ef∞= eEf∞ sZ .

We have to show that e tY∞ Vf∞
!
= eEf∞ tZ .

We have e tY∞ Vf∞
Def. 103
= e tYi

Vf∞

Def. Vf∞= e tYi
Vfi = eEfi tZ

Def. Ef∞= eEf∞ tZ .

We now show that we have κi,∞f∞
!
= fi for i ⩾ 0.

Suppose given v ∈ VYi
. We have vVκi,∞ Vf∞ = vVf∞

Def. f∞
= vVfi .

Suppose given e ∈ EYi
. We have eEκi,∞ Ef∞ = eEf∞

Def. f∞
= eEfi .

88

Lemma 106 Suppose given A ⊆ Mor(Gph).

Suppose given a countable chain of subgraphs X = Y0 ⊆ Y1 ⊆ . . . ⊆ Y such that Y =
⋃

i⩾0 Yi .

Suppose that the inclusion morphism idYi+1
|Yi

: Yi −→ Yi+1 is in �A for i ∈ Z⩾0 .

Then the inclusion morphism idY |X : X −→ Y is a morphism in �A.

Proof. The graph Y is the colimit of countable chain of subgraphs X = Y0 ⊆ Y1 ⊆ . . . ⊆ Y
with respect to the inclusion morphisms; cf. Remark 105.

Then by Lemma 102 the inclusion morphism idY |X : X −→ Y is a morphism in �A.

2.5 Tree graphs

Definition 107 A graph morphism p : Dn −→ X for some n ⩾ 0 is called path in X.

Given a path p : Dn −→ X, we let p s := v̂0Vp and p t := v̂nVp .

We say p is a path from p s to p t with length n. We write length(p) := n.

We often write p = (v̂0Vp ; ê0 Ep , . . . , ên−1 Ep).

Conversely, given v ∈ VX , m ⩾ 0 and e0 , . . . , em−1 ∈ EX , then (v; e0 , . . . , em−1) is a path in X
if e0 sX = v and ei tX = ei+1 sX for i ∈ [0,m− 2].

A graph morphism p : D0 −→ X with v̂0Vp = x ∈ VX is called the empty path at x, also written
p = (x;).

Suppose given a path p =: (v; e0 , . . . , en−1) in X. We have p s = v. If n ⩾ 1 then we have
p t = en−1 tX , if n = 0 then we have p t = v.

For a path p = (v; e0 , . . . , en−1) in X and an edge e ∈ EX with e sX = p t, we let

p · e := (v; e0 , . . . , en−1, e) .

Definition 108 A graph G is called a tree if there exists r ∈ VG such that the following
properties (Tree 1–3) hold.

(Tree 1) We have |{e ∈ EG : (e) tG = v}| = 1 for v ∈ VG \{r}.

(Tree 2) We have (e) tG ̸= r for e ∈ EG .

(Tree 3) There exists a path from r to v for v ∈ VG .

The vertex r ∈ VG is unique with these properties. We call this vertex the root r of G.

Proof. Suppose given two vertices r, r̃ ∈ VG with r ̸= r̃ satisfying (Tree 1–3).

Then by (Tree 1) we have |{e ∈ EG : (e) tG = r̃}| = 1 since r̃ ∈ VG \{r}, in contradiction to
(Tree 2).

89

Definition 109 Suppose given a graph X and a vertex x ∈ VX .

We will define the graph Tree(x,X) .

We let
VTree(x,X) := {α : α is a path in X with α s = x} .

We let

ETree(x,X) := {(α, e, β) : α, β ∈ VTree(x,X) , e ∈ EX such that α t = e sX and α · e = β} .

Note that for (α, e, β) ∈ ETree(x,X) we have e tX = (α · e) t = β t.

For (α, e, β) ∈ ETree(x,X) , we let (α, e, β) sTree(x,X) := α and (α, e, β) tTree(x,X) := β.

Remark 110 Suppose given a graph X. Suppose given a vertex x ∈ VX .

We have
VTree(x,X) = {(x; e0 , . . . , en−1) : n ⩾ 0, (x; e0 , . . . , en−1) path in X}

and

ETree(x,X) = {((x; e0 , . . . , en−1), en , (x; e0 , . . . , en)) : n ⩾ 0, (x; e0 , . . . , en) path in X} .

Proof.

Ad VTree(x,X) .

Suppose given n ⩾ 1. Suppose given a path α = (x; e0 , . . . , en−1) in X. Then we have α s = x;
cf. Definition 109.

Conversely, suppose given a path α in X with α s = x. Then we have length(α) ⩾ 0 and we
write α = (α s; ê0 Eα , . . . , êlength(α)−1 Eα) =: (x; e0 , . . . , elength(α)−1), which is a path in X.

Ad ETree(x;X) .

Suppose given (α, e, β) ∈ ETree(x,X) . So α and β are paths in X and we have an edge e ∈ EX

such that α s = x and α t = e sX and α · e = β.

We write n := length(α) ⩾ 0. Then length(β) = length(α · e) = length(α) + 1 = n + 1.
We write α = (α s; ê0 Eα , . . . , ên−1 Eα) =: (x; e0 , . . . , en−1). We write en := e. So we have
β = α · e = α · en = (x; e0 , . . . , en−1 , en).

So we have (α, e, β) = ((x; e0 , . . . , en−1), e, (x; e0 , . . . , en−1 , en)).

Conversely, suppose given n ⩾ 0 and ((x; e0 , . . . , en−1), en , (x; e0 , . . . , en)) such that
(x; e0 , . . . , en) =: β is a path in X.

Then we have the graph morphism β : Dn+1 −→ X with (v̂0Vβ ; ê0 Eβ , . . . , ên Eβ) =
(x; e0 , . . . , en). We let α : Dn −→ X be the graph morphism with v̂i Vα := v̂iVβ for i ∈ [0, n]
and with êi Eα := êi Eβ for i ∈ [0, n− 1]. So we have α = β|Dn : Dn −→ X.

We obtain α = (v̂0Vα ; ê0 Eα , . . . , ên−1 Eα) = (v̂0Vβ ; ê0 Eβ , . . . , ên−1 Eβ) = (x; e0 , . . . , en−1).

So we have ((x; e0 , . . . , en−1), en , (x; e0 , . . . , en)) = (α, en , β), where α and β are paths in X
and the edge en = ên Eβ is in EX . Furthermore, we have α s = x and α t = v̂nVα = v̂nVβ =
ên sDn+1 Vβ = ên Eβ sX = en sX .

And we have α · en = (x; e0 , . . . , en−1) · en = (x; e0 , . . . , en−1, en) = β.

90

Example 111 We consider the following graph.

X : 2
b

��
1

a

@@

c
// 3

We have the graph

Tree(1, X) : (1; a)
((1;a),b,(1;a,b))

$$
(1;)

((1;),a,(1;a))
<<

((1;),c,(1;c)) ""

(1; a, b) .

(1; c)

In the following Remark 112 we will show that for every graph G and every vertex x ∈ VG , the
graph Tree(x,G) actually is a tree.

Remark 112 Suppose given a graph G and a vertex x ∈ VG .

Then the graph Tree(x,G) is a tree with root r := (x;) ∈ VTree(x,G) .

Proof.

We have to show that the properties (Tree 1–3) hold for Tree(x,G); cf. Definitions 108 and 109.

Ad (Tree 1).

Suppose given a vertex v ∈ VTree(x,G) \{r}.

We have to show that |{ϵ ∈ ETree(x,G) : (ϵ) tTree(x,G) = v}| !
= 1.

The vertex v ∈ VTree(x,G) is a path v : Dn −→ G in G with v s = x and n ⩾ 1 since v ̸= r.

We write v = (x; e0 , . . . , en) with ei ∈ EG for i ∈ [1, n].

For an edge ϵ = (α, e, β) ∈ ETree(x,G) , we have (α, e, β) tTree(x,G) = β.

So (ϵ) tTree(x,G) = v if and only if ϵ = (α, e, v), where α : Dn−1 −→ G is a path with α t = e sG
and α · e = v. So it has to be e = en and α = (x; e1 , . . . , en−1); cf. Remark 110.

We obtain

{e ∈ ETree(x,G) : e tTree(x,G) = v} = {((x; e0 , . . . , en−1), en , (x; e0 , . . . , en))} ,

which contains a single element.

Ad (Tree 2).

We have to show that (ϵ) tTree(x,G)

!

̸= r for ϵ ∈ ETree(x,G) .

91

Suppose given an edge (α, e, β) ∈ ETree(x,G).

We have (α, e, β) tTree(x,G) = β. Since α · e = β we have length(β) = length(α · e) = length(α)+
1 ⩾ 1, whereas length(r) = 0. So we conclude that (α, e, β) tTree(x,G) = β ̸= r.

Ad (Tree 3).

We have to show that there exists a path from (x;) to v for v ∈ VTree(x,G) .

The vertex v ∈ VTree(x,G) is a path v : Dn −→ G in G from v s = x, where n := length(v) ⩾ 0.

We write v = (x; e0 , . . . , en−1) with ei ∈ EG for i ∈ [1, n− 1].

The following graph morphism p : Dn −→ Tree(x,G) will be a path in Tree(x,G) from p s =
v̂0Vp = (x;) to p t = v̂n Vp = v = (x; e0 , . . . , en−1).

Using Remark 110, we let

p : Dn −→ Tree(x,G)

Vp : VDn −→ VTree(x,G)

v̂i 7→ (x; e0 , . . . , ei−1) for i ∈ [0, n]

Ep : EDn −→ ETree(x,G)

êi 7→ ((x; e0 , . . . , ei−1), ei , (x; e0 , . . . , ei)) for i ∈ [0, n− 1].

We have to show that Ep sTree(x,G)
!
= sDn Vp and that Ep tTree(x,G)

!
= tDn Vp .

Suppose given an edge êi ∈ EDn , where i ∈ [0, n− 1].

We have êi Ep sTree(x,G) = ((x; e0 , . . . , ei−1), ei, (x; e0 , . . . , ei)) sTree(x,G) = (x; e0 , . . . , ei−1) =
v̂iVp = êi sDn Vp .

And we have êi Ep tTree(x,G) = ((x; e0 , . . . , ei−1), ei, (x; e0 , . . . , ei)) tTree(x,G) = (x; e0 , . . . , ei) =
v̂i+1Vp = êi tDn Vp .

Finally, p s = v̂0Vp = (x;) = r and p t = v̂nVp = (x; e0 , . . . , en−1) = v.

(x;)
((x;),e0 ,(x;e0))// (x; e0)

((x;e0),e1 ,(x;e0 ,e1))// (x; e0 , e1)
((x;e0 ,e1),e2 ,(x;e0 ,e1 ,e2)) // · · · (x; e1 , . . . , en)

Definition 113 Suppose given a graph G and a vertex x ∈ VG .

We define the projection morphism px : Tree(x,G) −→ G at x.

For a path α : Dn −→ G in VTree(x,G) we let αVpx := v̂length(α) Vα .

For an edge (α, e, β) ∈ ETree(x,G) we let (α, e, β) Epx := e ∈ EG .

To verify that

px : Tree(x,G) −→ G

Vpx : VTree(x,G) −→ VG

α 7→ v̂length(α) Vα

Epx : ETree(x,G) −→ EG

(α, e, β) 7→ e

92

is a graph morphism, we have to show that Epx sG
!
= sTree(x,G) Vpx and that Epx tG

!
=

tTree(x,G) Vpx .

So suppose given an edge (α, e, β) ∈ ETree(x,G) .

Note that e ∈ EG with e sG = α t = v̂length(α) Vα and with e tG = β t = v̂length(β) Vβ .

We have

(α, e, β) Epx sG = e sG = α t = v̂length(α) Vα = αVpx = (α, e, β) sTree(x,G) Vpx .

And we have

(α, e, β) Epx tG = e tG = β t = v̂length(β) Vβ = β Vpx = (α, e, β) tTree(x,G) Vpx .

So px is in fact a graph morphism.

Given n ⩾ 1 and α = (x; e0 , . . . , en−1) ∈ VTree(x;G) , we have αVpx = en−1 tG .

Moreover, we have (x;) Vpx = x.

Given (α, e, β) = (x; (e0 , . . . , en−1), en, (e0 , . . . , en)) ∈ ETree(x,G) , we have

(α, e, β) Epx = (x; (e0 , . . . , en−1), en , (e0 , . . . , en)) Epx = en .

Remark 114 Suppose given a graph G and a vertex x ∈ VG .

We recall the projection morphism px : Tree(x,G) −→ G; cf. Definition 113.

We have the bijection

Epx |
G((x;) Vpx ,∗)
Tree(x,G)((x;),∗) : Tree(x,G)((x;), ∗) −→ G((x;) Vpx , ∗) = G(x, ∗) .

Proof. Note that (x;) is the empty path in x ∈ VG and thus a vertex in Tree(x,G). So the set
Tree(x,G)((x;), ∗) consists of all edges in Tree(x,G) which have the empty path as source. So

Tree(x;G)((x;), ∗) = {((x;), e, (x; e)) : e ∈ G(x, ∗) = G((x;) Vpx , ∗)} .

The claimed bijection ensues.

Chapter 3

Properties of graph morphisms

We shall show in §6, Proposition 204, that Gph, equipped with a set of fibrations, a set of cofi-
brations and a set of quasiisomorphisms is a model category in the sense of Definition 198. To
this end, we shall introduce these sets, already employing the language and symbolism of model
categories before §6.

3.1 Quasiisomorphisms

Definition 115 Suppose given graphs G and H.

A graph morphism f : G −→ H is called a quasiisomorphism if the map (Cn , f)Gph is bijective
for n ⩾ 1.

To indicate that f is a quasiisomorphism, we often write G ≈
f // H .

By Qis(Gph) ⊆ Mor(Gph) we denote the set of quasiisomorphisms in the category Gph.

We often write Qis := Qis(Gph).

So f : G −→ H is a quasiisomorphism if and only if for n ⩾ 1 and for each graph morphism
h : Cn −→ H there exists a unique graph morphism g : Cn −→ G such that gf = h.

G

f
��

Cn h
//

∃!g
>>

H

Remark 116 We have Iso(Gph) ⊆ Qis(Gph).

Proof. Suppose given a graph isomorphism f : G −→ H.

We have to show that the graph isomorphism f : G −→ H is a quasiisomorphism, i.e. that the
map (Cn , f)Gph : (Cn , G)Gph −→ (Cn , H)Gph is bijective for n ⩾ 1; cf. Definition 115.

Suppose given n ⩾ 1. Then Cn , f)Gph · (Cn , f
−1)Gph

Rem. 69.(1)
= (Cn , f · f−1)Gph =

(Cn , idH)Gph
Rem. 69.(1)

= id(Cn ,H)Gph
.

Moreover (Cn , f
−1)Gph ·(Cn , f)Gph

Rem. 69
= (Cn , f

−1 ·f)Gph = (Cn , idG)Gph
textRem. 69

= id(Cn ,G)Gph
.

93

94

So (Cn , f)Gph is bijective.

So the map (Cn , f)Gph : (Cn , G)Gph −→ (Cn , H)Gph is bijective for n ⩾ 1 and thus the graph
isomorphism f : G −→ H is a quasiisomorphism.

Remark 117 In Gph, the subset of quasiisomorphisms Qis ⊆ Mor is closed under retracts; cf.
Definition 23.

Proof. Suppose given a commutative diagram in Gph as follows.

G′ f ′
// H ′

G ≈
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

We have to show that the graph morphism f ′ : G′ −→ H ′ is a quasiisomorphism; cf. Defini-
tion 115.

Suppose given

G′ f ′
// H ′

G ≈
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

Cn

u

OO

We have to show that there exists a unique graph morphism ṽ : Cn −→ G′ such that ṽf ′ = u;
cf. Definition 115.

Existence. Because the graph morphism f : G −→ H is a quasiisomorphism there exists a unique
graph morphism v : Cn −→ G such that vf = uj : Cn −→ H.

So we have the graph morphism ṽ := vp : Cn −→ G satisfying ṽf ′ = vpf ′ = vfq = ujq = u.

Uniqueness. Suppose given

G′ f ′
// H ′

G ≈
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

Cn

u

OO

v

``
ṽ

``

95

such that vf ′ = ṽf ′ = u.

We have to show that v
!
= ṽ.

We have vif = vf ′j = uj = ṽf ′j = ṽif

Since the graph morphism f : G −→ H is a quasiisomorphism, we have vi = ṽi; cf. Definition 115.

So we have v = vip = ṽip = ṽ and this shows uniqueness.

Example 118 The unique graph morphism ιD0 : ∅ −→ D0 is a quasiisomorphism; cf. Defini-
tions 70 and 115:

Suppose given n ∈ N. There does not exist a graph morphism from Cn to ∅ and there does not
exist a graph morphism from Cn to D0, because ECn ̸= ∅, but E∅ = ∅ and ED0 = ∅. So

(Cn , ιD0) : (Cn , ∅)Gph → (Cn ,D0)Gph

is bijective.

Lemma 119 Suppose given a graph X such that (Cn , X) = ∅ for n ∈ X.

Then the graph morphism ιX : ∅ −→ X is a quasiisomorphism.

Proof. For n ∈ N we have (Cn , X) = ∅ = (Cn , ∅).

Example 120 We consider the following graph.

X : 3
α2

��
1 α1

//

α3

77

2

Then (Cn , X) = ∅ for n ∈ N. So the graph morphism ιX : ∅ −→ X is a quasiisomorphism; cf.
Lemma 119.

Example 121 Suppose given a graph morphism f : X −→ Y with (Cn , X) = ∅ = (Cn , Y) for
n ∈ N. Then the graph morphism f : X −→ Y is a quasiisomorphism; cf. Definition 115.

E.g. for k, l ∈ N with k ⩽ l, we may consider the graph morphism ιk,l : Dk −→ Dl ; cf.
Definition 56. Then ιk,l is a quasiisomorphism, since (Cn ,Dm) = ∅ for n,m ∈ N.

The following remark is called (2 of 6).

Remark 122 The subset Qis ⊆ Mor(Gph) satisfies (2 of 6).

Proof. Suppose given a commutative diagram in Gph as follows.

X ′ gh //

g

Y ′

X

f
>>

fg
// Y

h

>>

96

We have to show that the composites fg : X −→ Y and gh : X ′ −→ Y ′ are quasiisomorphisms if
and only if f , g and h are quasiisomorphisms.

Applying (Cn ,−)Gph to the given commutative diagram yields the following commutative dia-
gram in Set; cf. Remark 69.

(Cn , X
′)Gph

(Cn ,gh)Gph //

(Cn ,g)Gph

''

(Cn , Y
′)Gph

(Cn , X)Gph

(Cn ,f)Gph

77

(Cn ,fg)Gph

// (Cn , Y)Gph

(Cn ,h)Gph

77

In this situation we have (2 of 6); cf. Remark 35.

The morphisms f, g and h are quasiisomorphisms if and only if the maps (Cn , f)Gph, (Cn , g)Gph

and (Cn , h)Gph are bijective for n ∈ N. This holds if and only if the maps (Cn , f)Gph ·
(Cn , g)Gph = (Cn , fg)Gph and (Cn , g)Gph · (Cn , h)Gph = (Cn , gh)Gph are bijective for n ∈ N; cf.
Remark 35. This holds if and only if fg and gh are quasiisomorphisms; cf. Definition 115.

Remark 123 The subset Qis ⊆ Mor(Gph) satisfies (2 of 3).

Explicitly, this means the following.

Suppose given graph morphisms f : X −→ Y and g : Y −→ Z.

Note the graph morphism fg : X −→ Z.

We have the following commutative triangle.

Y
g

��
X

f
>>

fg
// Z

The composite fg : X −→ Z is a quasiisomorphism if f and g are quasiisomorphisms.

The graph morphism g is a quasiisomorphism if f and fg are quasiisomorphisms.

The graph morphism f is a quasiisomorphism if g and fg are quasiisomorphisms.

Proof. Since Qis satisfies (2 of 6) and contains all identities in Gph, we conclude that Qis
satisfies (2 of 3) by Lemma 2; cf. Remark 116.

Remark 124 Suppose given a commutative diagram in Gph as follows.

Y
b

��
X

f
//

a

>>

Z

Suppose given k ⩾ 1.

Suppose that the map (Ck , f)Gph is surjective.

97

Then the map (Ck, b)Gph is surjective.

Proof. Since (Ck , a)Gph · (Ck , b)Gph = (Ck , f)Gph is surjective, so is (Ck , b)Gph .

Remark 125 In Gph, a pullback of a quasiisomorphism is a quasiisomorphism; cf. Defini-
tion 115.

Proof. Suppose given a pullback in Gph as follows.

X
f //

g
��

Y

≈ h
��

X ′
f ′
// Y ′

We have to show that the graph morphism g : X −→ X ′ is a quasiisomorphism.

Suppose given n ⩾ 1 and a graph morphism c′ : Cn −→ X ′.

We have to show that there exists a unique graph morphism c : Cn −→ X ′ with cg = c′.

First, we remark that there exists a unique graph morphism w : Cn −→ Y such that wh = c′f ′

because h is a quasiisomorphism.

Existence.

Because X is a pullback, we may choose a graph morphism c : Cn −→ X such that cf = w and
cg = c′.

Uniqueness.

Now we have to show that c is unique with respect to cg = c′.

Suppose given a graph morphism c̃ : Cn −→ X such that c̃g = c′.

We have to show that c
!
= c̃.

We have c̃fh = c̃gf ′ = c′f ′ and thus c̃f = w.

So we have cf = c̃f .

And we have cg = c̃g.

So we have c = c̃ ; cf. Remark 10.

X
f //

g

��

Y

≈ h

��
Cn

c′
//

∃!w

77

∃!c

>>

X ′
f ′

// Y ′

98

Question 126 Suppose given a graph morphism f : G −→ H with G and H finite.

(1) Is it possible to give an algorithm to calculate a number ζf ∈ Z⩾1 such that

min{n ∈ N : (Cn , f) is not bijective} ⩽ ζf

if f is not a quasiisomorphism?

An affirmative answer would allow to algorithmically decide whether f is a quasiisomor-
phism; for then f would be a quasiisomorphism if and only if (Cn , f)Gph is bijective for
n ∈ [1, ζf].

If f is not a quasiisomorphism, then the left hand side

min{n ∈ N : (Cn , f) is not bijective}

seems to be difficult to calculate.

We can only give an algorithm that verifies a sufficient condition for f to be an acyclic
fibration, in particular a quasiisomorphism; cf. Proposition 210. The function SuffCond

is given in §10.6.

(2) Experiments indicate that ζf = max{|EG |, |EH |} could be a possible choice in (1).

3.2 Fibrations and fibrant graphs

Definition 127 Suppose given graphs G and H.

(1) A graph morphism f = (Vf ,Ef) : G −→ H is called a fibration if the map

Ef,v := Ef |
H(vVf ,∗)
G(v,∗) : G(v, ∗) −→ H(vVf , ∗)

is surjective for v ∈ VG .

To indicate that f is a fibration, we often write G �f // H .

By Fib(Gph) ⊆ Mor(Gph) we denote the set of fibrations in the category Gph.

We often write Fib := Fib(Gph).

(2) A graph morphism f = (Vf ,Ef) : G −→ H is called an etale fibration if the map

Ef,v : G(v, ∗) −→ H(vVf , ∗)

is bijective for v ∈ VG .

By EtaleFib(Gph) ⊆ Mor(Gph) we denote the set of etale fibrations in the category Gph.

The Assertion 249 below shows that being surjective is not a sufficient condition for a graph
morphism to be a fibration.

99

Example 128 Suppose given a graph H.

The morphism ιH : ∅ −→ H is a fibration; cf. Definitions 70 and 127.(1).

We have to show that the map

Eh,v = Eh |H(vVh,∗)
∅(v,∗) : ∅(v, ∗) −→ H(vVh, ∗)

is surjective for v ∈ V∅ .

The set V∅ = ∅ does not contain any element, so there is nothing to show and the condition for
h to be a fibration is satisfied.

Remark 129 We have Iso(Gph) ⊆ EtaleFib(Gph) ⊆ Fib(Gph).

Proof.

Ad EtaleFib(Gph)
!

⊆ Fib(Gph). Suppose given an etale fibration f : G −→ H in EtaleFib(Gph).

Then the map

Ef,v : G(v, ∗) −→ H(vVf , ∗)

is bijective and thus surjective for v ∈ VG ; cf. Definition 127. So the graph morphism f : G −→ H
is a fibration and thus in Fib.

Ad Iso(Gph)
!

⊆ EtaleFib(Gph). Suppose given an isomorphism f : G −→ H in Iso(Gph).

We have to show that the isomorphism f : G −→ H is an etale fibration.

Therefor we have to show that the map

Ef,v : G(v, ∗) −→ H(vVf , ∗)

is bijective for v ∈ VG .

Because the graph morphism f : G −→ H is an isomorphism, the map Ef : EG −→ EH is bijective.

Suppose given a vertex v ∈ VG .

Since we have Ef,v = Ef |
H(vVf ,∗)
G(v,∗) , the map Ef,v is injective because the map Ef is injective.

We have to show that the map Ef,v is surjective.

Suppose given an edge e ∈ H(vVf , ∗) ⊆ EH .

We have e sH = vVf .

We have to find an edge eG ∈ G(v, ∗) ⊆ EG such that eG Ef,v = eG Ef
!
= e.

Let eG := eEf−1 . Then eG Ef = eEf−1 Ef = e.

Moreover, eG ∈ G(v, ∗) since eG sG = eEf−1 sG = e sH Vf−1 = vVf Vf−1 = v.

So the map Ef,v : G(v, ∗) −→ H(vVf , ∗) is bijective.

100

Remark 130 In Gph, the subset of fibrations Fib ⊆ Mor is closed under retracts; cf. Defini-
tion 23.

Proof. Suppose given a commutative diagram in Gph as follows.

G′ f ′
// H ′

G �f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

We have to show that the graph morphism f ′ : G′ −→ H ′ is a fibration; cf. Definition 127.(1).

Since the graph morphism f : G −→ H is a fibration, given a vertex v ∈ VG , the map Ef,v :
G(v, ∗) −→ H(vVf , ∗) is surjective; cf. Definition 127.(1).

Suppose given a vertex v′ ∈ VG′ .

We have to show that the map Ef ′,v′ : G
′(v′, ∗) −→ H ′(v′ Vf ′ , ∗) is surjective.

Suppose given an edge e′ ∈ H ′(v′ Vf ′ , ∗).

We have to show that there exists an edge ê′ ∈ G′(v′, ∗) such that ê′ Ef ′,v′ = ê′ Ef ′
!
= e′.

Since e′ Ej sH = e sH′ Vj = vVf ′ Vj = vVf ′j we have e′ Ej ∈ H(v′ Vf ′j, ∗).

Let v := v′ Vi . We have vVf = v′ Vi Vf = v′ Vif = v′Vf ′j . So we have e′ Ej ∈ H(vVf , ∗).

Since the graph morphism f : G −→ H is a fibration, there exists an edge ê ∈ G(v, ∗) such that
êEf = e′ Ej .

Let ê′ := êEp . Then we have ê′ sG′ = êEp sG′ = ê sGVp = vVp = v′Vi Vp = v′Vip = v′VidG′ =
v′. So we have ê′ ∈ G′(v′, ∗).

And we have ê′ Ef ′ = êEp Ef ′ = êEpf ′ = êEfq = êEf Eq = e′ Ej Eq = e′ Ejq = e′ EidH′ = e′.

So the graph morphism f ′ : G′ −→ H ′ is a fibration.

Once Lemma 192 below is known, which states that we have Fib = AcCofib�, we can also argue
by Remark 26 to obtain the statement of Remark 130.

Remark 131 Suppose given fibrations f : X � // Y and g : Y � // Z .

Then the composite fg : X −→ Z is also a fibration.

Proof.

The map Ef,v : X(v, ∗) −→ Y (vVf , ∗) is surjective for v ∈ VX .

The map Eg,vVf
: Y (vVf , ∗) −→ Z(vVf Vg, ∗) is surjective for v ∈ VX .

We have to show that the map Efg,v : X(v, ∗) −→ Z(vVfg, ∗) is surjective for v ∈ VX .

We claim that Ef,v ·Eg,vVf

!
= Efg,v .

Suppose given e ∈ X(v, ∗), i.e. e ∈ EX with e sX = v.

101

Then eEf,v ·Eg,vVf
= eEf Eg = eEfg = eEfg,v .

This proves the claim.

Now since Ef,v and Eg,vVf
are surjective, so is Efg,v .

Once Lemma 192 below is known, which states that we have Fib = AcCofib�, we can also argue
by Remark 20 to obtain the statement of Remark 131.

Remark 132 Suppose given etale fibrations f : X −→ Y and g : Y −→ Z.

Then the composite fg : X −→ Z is also an etale fibration.

Proof. The map Ef,v : X(v, ∗) −→ Y (vVf , ∗) is bijective for v ∈ VX .

The map Eg,vVf
: Y (vVf , ∗) −→ Z(vVf Vg, ∗) is bijective for v ∈ VX .

We have to show that the map Efg,v : X(v, ∗) −→ Z(vVfg, ∗) is bijective for v ∈ VX .

We have Ef,v ·Eg,vVf
= Efg,v ; cf. proof of Remark 131.

Now since Ef,v and Eg,vVf
are bijective, so is Efg,v .

Remark 133 In Gph, a pullback of a fibration is a fibration; cf. Definition 127.(1).

Proof. Suppose given a pullback in Gph as follows.

X ′ g //

f ′

��

X

_f
��

Y ′
h
// Y

We have to show that the graph morphism f ′ : X ′ −→ Y ′ is a fibration.

Suppose given vX′ ∈ VX′ .

We write vY ′ := vX′ Vf ′ ∈ VY ′ and vX := vX′ Vg ∈ VX and

vY := vY ′ Vh = vX′ Vf ′ Vh = vX′ Vf ′h
f ′h=gf
= vX′ Vgf = vX′ Vg Vf = vX Vf ∈ VY .

We have to show that the map

Ef ′,vX′ := Ef ′ |Y
′(vY ′ ,∗)

X′(vX′ ,∗) : X
′(vX′ , ∗) −→ Y ′(vY ′ , ∗)

is surjective.

Suppose given an edge eY ′ ∈ Y ′(vY ′ , ∗) ⊆ EY ′ .

We have to show that there exists an edge eX′ ∈ X ′(vX′ , ∗) ⊆ EX′ such that eX′ Ef ′ = eY ′ .

We have vY ′ = eY ′ sY ′ . We write wY ′ := eY ′ tY ′ .

We write eY := eY ′ Eh ∈ Y (vY ′ Vh , ∗) = Y (vY , ∗).

We write wY := wY ′ Vh = eY ′ tY ′ Vh = eY ′ Eh tY = eY tY .

102

We have vY = vY ′ Vh = eY ′ sY ′ Vh = eY ′ Eh sY = eY sY .

Because the graph morphism f : X � // Y is a fibration, the map Ef,vX = Ef |Y (vY ,∗)
X(vX ,∗) is

surjective.

So there exists an edge eX ∈ X(vX , ∗) ⊆ EX such that eX Ef = eY .

Note that eX sX = vX . We write wX := eX tX .

Note that wX Vf = eX tX Vf = eX Ef tY = eY tY = wY .

Recall that we have to show that there exists an edge eX′ ∈ X ′(vX′ , ∗) ⊆ EX′ , i.e. eX′ sX′ = vX′ ,
such that eX′ Ef ′ = eY ′ .

We consider the direct graph D1 with VD1 = {v̂0 , v̂1} and ED1 = {ê0} and ê0 sD1 = v̂0 and
ê0 tD1 = v̂1 ; cf. Definition 56.

We define the graph morphism q : D1 −→ X by v̂0Vq := vX , v̂1Vq := wX and ê0 Eq := eX .

Note that ê0 Eq sX = eX sX = vX = v̂0Vq = ê0 sD1 Vq and that ê0 Eq tX = eX tX = wX = v̂1Vq =
ê0 tD1 Vq . So q : D1 −→ X is in fact a graph morphism.

We define the graph morphism p : D1 −→ Y ′ with v̂0Vp := vY ′ , v̂1Vp := wY ′ and ê0 Ep := eY ′ .

Note that ê0 Ep sY ′ = eY ′ sY ′ = vY ′ = v̂0Vp = ê0 sD1 Vp and that ê0 Ep tY ′ = eY ′ tY ′ = wY ′ =
v̂1Vp = ê0 tD1 Vp . So p : D1 −→ Y ′ is in fact a graph morphism.

We have v̂0Vqf = vX Vf = vY = vY ′ Vh = v̂0Vph .

We have v̂1Vqf = wX Vf = wY = wY ′ Vh = v̂1Vph .

We have ê0 Eqf = eX Ef = eY = eY ′ Eh = ê0 Eph .

So we have qf = ph.

Because X ′ is a pullback there exists a unique graph morphism r : D1 −→ X ′ such that rg = q
and rf ′ = p.

We let eX′ := ê0 Er ∈ EX′ . We have eX′ Ef ′ = ê0 Er Ef ′ = ê0 Erf ′ = ê0 Ep = eY ′ .

We will show that eX′
!
∈ X ′(vX′ , ∗), i.e. that eX′ sX′ = ê0 Er sX′ = ê0 sD1 Vr = v̂0Vr

!
=vX′ .

We consider the subgraph D0 ⊆ D1 with VD0 = {v̂0} and ED0 = ∅ ; cf. Definition 56.(1).

We consider the graph morphism ι1 : D0 −→ D1 with v̂0Vι1 = v̂0 ; cf. Definition 56.(3).

We write p′ := ι1p = ι1rf
′ and q′ := ι1q = ι1rg.

We have p′h = ι1rf
′h = ι1rgf = q′f .

So there exists a unique graph morphism r′ : D0 −→ X ′ such that r′f ′ = p′ and r′g = q′.

We define the graph morphism r̃ : D0 −→ X by v̂0Vr̃ := vX′ .

We show that we have r̃f ′ !
= p′ and r̃g

!
= q′.

We have v̂0Vr̃f ′ = vX′ Vf ′ = vY ′ = v̂0Vp = v̂0Vι1p = v̂0Vp′ . So we have r̃f ′ = p.

We have v̂0Vr̃g = vX′ Vg = vX = v̂0Vq = v̂0Vι1q = v̂0Vq′ . So we have r̃g = q′.

Because of the uniqueness of r′, we obtain r′ = r̃.

We consider the graph morphism ι1r : D0 −→ X. We have (ι1r)f
′ = p′ and (ι1r)g = q′.

103

Because of the uniqueness of r′, we obtain r′ = ι1r .

Altogether, we have ι1r = r̃. In particular v̂0Vr = v̂0Vι1r = v̂0Vr̃ = vX′ .

So the graph morphism f ′ : X ′ −→ Y ′ is a fibration.

D0

ι1

q′

��
p′

''

D1

r
!!

q

##
p

��

X ′
g
//

_f ′

��

X

_f
��

Y ′
h
// Y

Once Lemma 192 below is known, which states that we have Fib = AcCofib�, we can also argue
by Remark 22 to obtain the statement of Remark 133.

Remark 134 Suppose given a thin graph Y and an etale fibration X �f // Y ; cf. Defini-
tions 73 and 127.(2).

Then the graph X is thin.

Proof. We assume that the graph X is not thin.

Then we may choose two edges e1 ̸= e2 in EX such that e1 sX = e2 sX and e1 tX = e2 tX .

Let v1 := e1 sX . Let v2 := e1 tX .

Since the graph morphism X �f // Y is an etale fibration, the map

Ef,v1 : X(v1 , ∗) −→ Y (v1Vf , ∗)

is bijective.

Since v1 = e1 sX = e2 sX we have e1, e2 ∈ X(v1 , ∗) = X(e1 sX , ∗) = X(e2 sX , ∗).

We have e1 Ef,v1 , e2 Ef,v1 ∈ Y (v1Vf , ∗). Since the map Ef,v1 is bijective, we have e1 Ef =
e1 Ef,v1 ̸= e2 Ef,v1 = e2 Ef .

Because f : X −→ Y is a graph morphism we have e1 Ef tY = e1 tX Vf = v2Vf = e2 tX Vf =
e2 Ef tY .

So we have e1 Ef ̸= e2 Ef in Y (v1Vf , v2Vf), which is a contradiction to the fact that the graph
Y is thin.

Definition 135 Suppose given a graphX. The graphX is called fibrant if the graph morphism
τX : X −→ C1 is a fibration; cf. Remark 70 and Definition 127.(1).

104

Remark 136 Suppose given a graph X.

The graph X is fibrant if and only if X(v, ∗) ̸= ∅ for v ∈ VX .

Proof. The graph X is fibrant if and only if the graph morphism τX : X −→ C1 is a fibration,
i.e. if and only if the map

EτX ,v := EτX |C1(vVτX
,∗)

X(v,∗) : X(v, ∗) −→ C1(vVτX , ∗)

is surjective for v ∈ VX ; cf. Definitions 127.(1) and 135.

For v ∈ VX we have vVτX = v1 and so C1(vVτX , ∗) = C1(v1 , ∗) = {e1} .

So EτX ,v is surjective for v ∈ VX if and only if X(v, ∗) ̸= ∅ for v ∈ VX .

Note that the empty graph ∅ is fibrant; cf. Remark 70.(2).

Example 137 Suppose given n ∈ N.

The cyclic graph Cn is fibrant; cf. Definitions 52 and 135 and Remark 136.

The direct graph Dn is not fibrant, since e tDn ̸= v̂n for e ∈ EDn .

3.3 Acyclic fibrations

Recall the notion of quasiisomorphisms from Definition 115 and of fibrations from Defini-
tion 127.(1).

Definition 138 A fibration that is a quasiisomorphism is called an acyclic fibration; cf. Defi-
nitions 115 and 127.(1).

To indicate that a graph morphism G
f // H is an acyclic fibration, we often write G

f // H .

By AcFib := AcFib(Gph) := Fib∩Qis ⊆ Mor(Gph) we denote the set of acyclic fibrations in
the category Gph.

Remark 139 We have Iso(Gph) ⊆ AcFib(Gph).

Proof. In Gph, we have Iso ⊆ Fib∩Qis
Def. 138
= AcFib since Iso ⊆ Fib by Remark 129 and

Iso ⊆ Qis by Remark 116.

Example 140 We consider the graph morphism ιD0 : ∅ −→ D0 .

Recall from Example 128 that ιD0 is a fibration.

Recall from Example 118 that ιD0 is a quasiisomorphism.

So ιD0 : ∅ −→ D0 is an acyclic fibration.

Remark 141 In Gph, the subset of acyclic fibrations AcFib ⊆ Mor is closed under retracts;
cf. Definition 23.

105

Proof. Suppose given a commutative diagram in Gph as follows.

G′ f ′
// H ′

G
f //

p

OO

H

q

OO

G′ f ′
//

i

OOidG′

KK

H ′

j

OO idH′

SS

We have to show that the graph morphism f ′ : G′ −→ H ′ is an acyclic fibration; cf. Definition 138.

Since the subset of quasiisomorphisms Qis ⊂ Mor(Gph) is closed under retracts the graph
morphism f ′ : G′ −→ H ′ is a quasiisomorphism; cf. Remark 117.

Since the subset of fibrations Fib ⊂ Mor(Gph) is closed under retracts the graph morphism
f ′ : G′ −→ H ′ is a fibration; cf. Remark 130.

So the subset of acyclic fibrations AcFib ⊆ Mor(Gph) is closed under retracts, since the graph
morphism f ′ : G′ −→ H ′ is an acyclic fibration; cf. Definition 23.

Once Lemma 193 below is known, which states that we have AcFib = Cofib�, we can also argue
by Remark 26 to obtain the statement of Remark 141.

Remark 142 Suppose given acyclic fibrations X
f // Y and Y

g // Z .

Then the composite fg : X −→ Z is also an acyclic fibration.

Proof. Since f and g are fibrations, so is fg; cf. Definition 127.(1) and Remark 131.

Since f and g are quasiisomorphisms, so is fg; cf. Definition 115 and Remark 122.

So the graph morphism fg : X −→ Z is a fibration and a quasiisomorphism. Hence fg is an
acyclic fibration.

Once Lemma 193 below is known, which states that we have AcFib = Cofib� we can also argue
by Remark 20 to obtain the statement of Remark 142.

Remark 143 In Gph, a pullback of an acyclic fibration is an acyclic fibration; cf. Defini-
tion 138.

Proof. Recall that AcFib = Fib∩Qis. I.e. a morphism is an acyclic fibration if and only if it is
a fibration and a quasiisomorphism.

A pullback of a fibration is a fibration; cf. Remark 133.

A pullback of a quasiisomorphism is a quasiisomorphism; cf. Remark 125.

So a pullback of an acyclic fibration is an acyclic fibration.

Once Lemma 193 below is known, which states that we have AcFib = Cofib�, we can also argue
by Remark 22 to obtain the statement of Remark 143.

106

3.4 Cofibrations and cofibrant graphs

Definition 144 A graph morphism f : X −→ Y is called a cofibration if it satisfies (LLPAcFib) ;
cf. Definitions 13 and 138.

To indicate that f is a cofibration, we often write X •
f // Y .

By
Cofib(Gph) := �AcFib(Gph) ⊆ Mor(Gph)

we denote the set of cofibrations in the category Gph.

We often write Cofib := Cofib(Gph).

Remark 145 We have Iso(Gph) ⊆ Cofib(Gph).

Proof. By definition we have Cofib = �AcFib.

We have Iso ⊆ �AcFib = Cofib; cf. Remark 18.

Remark 146 In Gph, the subset of cofibrations Cofib ⊆ Mor is closed under retracts; cf.
Definition 23.

Proof. Since, by definition, Cofib = �AcFib we can argue by Remark 25.

For an example of a cofibration we refer to Remark 155, which makes use of Remark 151.

Remark 147 Suppose given cofibrations f : X • // Y and g : Y • // Z .

Then the composite fg : X −→ Z is also a cofibration.

Proof. Since Cofib = �AcFib, this follows by Remark 19.

Remark 148 In Gph, a pushout of a cofibration is a cofibration.

Proof. Suppose given a pushout in Gph as follows.

X
f //

•g
��

Y

h
��

X ′
f ′
// Y ′

We have to show that the graph morphism h : Y −→ Y ′ is a cofibration; cf. Definition 144.

We have to show that the graph morphism h satisfies (LLPAcFib); cf. Definitions 144, 13 and
138.

Suppose given the following commutative diagram.

X
f //

•g
��

Y

h
��

u // Z

k
��

X ′
f ′
// Y ′

v
// Z ′ .

107

We have to show that there exists a graph morphism w̃ : Y ′ −→ Z such that hw̃ = u and w̃k = v.

Because the graph morphism X •
g // X ′ is a cofibration there exists a graph morphism

w : X ′ −→ Z such that gw = fu and wk = f ′v.

Because Y ′ is a pushout and gw = fu there exists a graph morphism w̃ : Y ′ −→ Z such that
f ′w̃ = w and hw̃ = u.

It remains to show that w̃k
!
= v.

We have f ′w̃k = wk = f ′v and hw̃k = uk = hv.

Cancelling f ′ and h simultaneously using Remark 6, we obtain w̃k = v.

X
f //

•g

��

Y

•h
��

u // Z

k

��
X ′

f ′
//

w

33

Y ′
v
//

w̃

>>

Z ′

Using Definition 144 where we have Cofib(Gph) := �AcFib(Gph) and Remark 21 the set
Cofib(Gph) is stable under pushouts.

Lemma 149 Suppose given a set I and cofibrations Xi •
gi // Yi for i ∈ I.

Then the graph morphism
∐

i∈I gi :
∐

i∈I Xi −→
∐

i∈I Yi is a cofibration; cf. Definition 93.

Proof. Suppose given a commutative quadrangle∐
i∈I Xi∐

i∈I gi
��

(ai)i // G

f

��∐
i∈I Yi

(bi)i // H

in Gph with ai : Xi −→ G and bi : Yi −→ H for i ∈ I.

We have to show that there exists a graph morphism (hi)i :
∐

i∈I Yi −→ G such that
(
∐

i∈I gi) · (hi)i = (ai)i and (hi)i · f = (bi)i .

We have (gi · bi)i
Rem. 94
= (

∐
i∈I gi) · (bi)i = (ai)i · f

Rem. 92
= (ai · f)i :

∐
i∈I Xi −→ H.

So we have gi · bi = ai · f for i ∈ I.

Xi

•gi
��

ai // G

f
��

Yi bi
// H

Since the graph morphism gi : Xi • // Yi is a cofibration, there exists a graph morphism
hi : Yi −→ G such that gi · hi = ai and hi · f = bi , for each i ∈ I.

Xi

•gi
��

ai // G

f
��

Yi

hi

>>

bi
// H

108

So we have the graph morphism (hi)i :
∐

i∈I Yi −→ G, where hi : Yi −→ G.

We have (
∐

i∈I gi) · (hi)i
Rem. 94
= (gi · hi)i = (ai)i and (hi)i · f

Rem. 92
= (hi · f)i = (bi)i .

Therefore, the following diagram commutes.

∐
i∈I Xi

∐
i∈I gi

��

(ai)i // G

f

��∐
i∈I Yi

(hi)i

<<

(bi)i // H

So the graph morphism
∐

i∈I gi :
∐

i∈I Xi −→
∐

i∈I Yi is a cofibration.

Definition 150 Suppose given a graph X. The graph X is called cofibrant if the graph mor-
phism ιX : ∅ −→ X is a cofibration; cf. Remark 70 and Definition 144.

Remark 151 Suppose given n ∈ N.

The cyclic graph Cn is cofibrant; cf. Definitions 52 and 150.

Proof. Suppose given

∅ u //

ιCn

��

X

f ′

��
Cn v

// Y

in Gph such that uf ′ = ιCnv.

Since the graph morphism X
f ′
// Y is an acyclic fibration, f ′ is in particular a quasiiso-

morphism; cf. Definition 138. Since v ∈ (Cn , Y) ≃ (Cn , X), there exists a graph morphism
g : Cn −→ X such that gf ′ = v.

We have ιCng = ιX = u.

So the graph morphism ιCn : ∅ −→ Cn is a cofibration and so the cyclic graph Cn is cofibrant.

Remark 152 Suppose given a set I.

Suppose given cofibrant graphs Xi for i ∈ I.

Then the coproduct
∐

i∈I Xi is cofibrant.

Proof. Since the graphs Xi are cofibrant, the graph morphisms ιXi
: ∅ −→ Xi are cofibrations

for i ∈ I.

Since
∐

i∈I ∅ = ∅, the graph morphism ι∐
i∈I Yi

: ∅ −→
∐

i∈I Yi is a cofibration; cf. Lemma 149.

So the coproduct
∐

i∈I Yi is cofibrant.

Example 153 The cyclic graph C2 is cofibrant; cf. Remark 151.

Thus the coproduct C2 ⊔C2 is cofibrant; cf. Remark 152.

109

Definition 154 Suppose given the graph X.

We have the coproduct X ⊔X; cf. Definition 85.

We define the diagonal graph morphism dX :=
(

idX
idX

)
: X ⊔X −→ X; cf. Definition 86.

In detail, we have

X ⊔ X
dX=

(
idX
idX

)
−−−−−−→ X

VdX : (1 , v) 7→ v for v ∈ VX

(2 , v) 7→ v for v ∈ VX

EdX : (1 , e) 7→ e for e ∈ EX

(2 , e) 7→ e for e ∈ EX .

Remark 155 Suppose given n ∈ N.

The diagonal graph morphism dCn : Cn ⊔Cn −→ Cn is a cofibration, i.e. dCn satisfies (LLPAcFib) ,
cf. Definitions 144, 138, 154.

Proof. In this proof we abbreviate d := dCn .

Suppose given the following commutative quadrangle in Gph.

Cn ⊔Cn

(
b1
b2

)
//(

idCn
idCn

)
= d
��

X

f
��

Cn a
// Y

In particular, we have b1f = a and b2f = a.

Since f is a quasiisomorphism, the map (Cn , f)Gph is bijective and so we have b1 = b2 =: â.

Thus dâ =
(

idCn
idCn

)
â =

(
â
â

)
=

(
b1
b2

)
.

Moreover, we have âf = b1f = a.

Cn ⊔Cn

(
b1
b2

)
//

•d
��

X

f
��

Cn a
//

â

88

Y

So the diagonal graph morphism dCn : Cn ⊔Cn −→ Cn is shown to be a cofibration.

The following lemma generalizes Remark 155.

Lemma 156 Suppose given n ∈ N.

Suppose given sets M ′ and M , and a map µ : M ′ −→ M in Mor(Set).

Suppose given a map ν : M −→ N.

We have the coproducts
∐

m′∈M ′ Cm′µν and
∐

m∈M Cmν ; cf. Definition 90.

110

We define the graph morphism j :
∐

m′∈M ′ Cm′µν −→
∐

m∈M Cmν as follows.

j :
∐

m′∈M ′ Cm′µν −→
∐

m∈M Cmν

Vj : (m′, vi) 7→ (m′µ, vi) for i ∈ Z⧸m′µνZ
Ej : (m′, ei) 7→ (m′µ, ei) for i ∈ Z⧸m′µνZ

Then j = (Vj,Ej) :
∐

m′∈M ′ Cm′µν −→
∐

m∈M Cmν is a cofibration; cf. Definition 144.

Proof. Since for an edge (m′, ei) ∈ E∐
m′∈M′ Cm′µν

we have

(m′, ei) Ej s∐m∈M Cmν = (m′µ, ei) s∐m∈M Cmν = (m′µ, ei sCm′µν
)

= (m′, ei sCm′µν
)Vj = (m′, ei) s∐m′∈M′ Cm′µν

Vj

and
(m′, ei) Ej t∐m∈M Cmν = (m′µ, ei) t∐m∈M Cmν = (m′µ, ei tCm′µν

)

= (m′, ei tCm′µν
)Vj = (m′, ei) t∐m′∈M′ Cm′µν

Vj ,

the tuple (Vj ,Ej) = j :
∐

m′∈M ′ Cm′µν −→
∐

m∈M Cmν is in fact a graph morphism.

Suppose given ∐
m′∈M ′ Cm′µν

b //

j

��

X

f

��∐
m∈M Cmν a

// Y

in Gph such that ja = bf .

Given m′ ∈ M ′, we have the graph morphism

ιm′ : Cm′µν −→
∐

m′∈M ′ Cm′µν

Vιm′ : vi 7→ (m′, vi)

Eιm′ : ei 7→ (m′, ei) .

Since the graph morphism f : X // Y is an acyclic fibration, in particular a quasiisomor-
phism, the map

∏
m∈M(Cmν , f)Gph :

∏
m∈M(Cmν , X)Gph −→

∏
m∈M(Cmν , Y)Gph is bijective.

Hence the map
(∐

m∈M Cmν , f
)
Gph

:
(∐

m∈M Cmν , X
)
Gph

−→
(∐

m∈M Cmν , Y
)
Gph

is bijective,

cf. Remark 95.

So there exists a unique graph morphism â :
∐

m∈M Cmν −→ X such that âf = a.

We have ∐
m′∈M ′ Cm′µν

b //

j

��

X

f

��
Cm′µν

ιm′
88

∐
m∈M Cmν

â

66

a
// Y

We have to show that jâ
!
= b.

It suffices to show that ιm′jâ
!
= ιm′b for m′ ∈ M ′.

111

Since the graph morphism f : X // Y is a quasiisomorphism and thus (Cm′µν , f)Gph is

bijective, it suffices to show that ιm′jâf
!
= ιm′bf for m′ ∈ M ′.

In fact, we have ιm′jâf = ιm′ja = ιm′bf .

Remark 157 Suppose given a graph X and a cofibrant graph Y , i.e. we have ∅ •
ιY // Y .

Then we have the cofibration ι1 : X −→ X ⊔ Y ; cf. Definition 85.

Proof. By Definition 85 and Remark 148 we have

∅ •
ιY //

��

Y

��
X •

ι1
// X ⊔ Y .

Using a result obtained below in Proposition 210, we show that gluing cofibrant graphs via
pushout does not yield a cofibrant graph in general; cf. Assertion 255.

The following Example 158 also shows that fibrations are not necessarily surjective.

Example 158 Suppose given n ⩾ 0.

We consider the graph morphism ιDn : ∅ −→ Dn ; cf. Remark 70.(2), Definition 56.

(1) The graph morphism ιDn : ∅ −→ Dn is an acyclic fibration; cf. Definition 138.

(2) The graph morphism ιDn : ∅ −→ Dn is not a cofibration; cf. Definition 144.

That is, Dn is not cofibrant.

Proof.

Ad (1). Suppose given k ∈ N.

We have (Ck ,Dn)Gph = ∅ = (Ck , ∅)Gph . So the graph morphism ιDn is a quasiisomorphism; cf.
Definition 115.

Since V∅ = ∅, the graph morphism ιDn is a fibration; cf. Definition 127.(1).

So the graph morphism ιDn : ∅ −→ Dn is an acyclic fibration.

Ad (2). We have the commutative quadrangle

∅
ιDn

��

// ∅
ιDn

��
Dn idDn

// Dn

in Gph; cf. (1).

But there does not exist a graph morphism g : Dn −→ ∅.

So the acyclic fibration ιDn : ∅ −→ Dn is not a cofibration and thus the graph Dn is not cofibrant;
cf. Definition 150.

112

Once Lemma 185 below is known, which states that we have AcCofib = Cofib∩Qis, we can also
argue as follows.

The graph morphism ιDn
: ∅ −→ Dn is a quasiisomorphism; cf. Definition 138.

The graph morphism ιDn : ∅ −→ Dn is not an acyclic cofibration since (AcCofib 5) is not satisfied.

Since AcCofib
Lemma 185

= Cofib∩Qis, the quasiisomorphism ιDn : ∅ −→ Dn is not a cofibration.

Example 159 Suppose given n ∈ N.

We consider the graph morphism f : D0 −→ Cn with v̂0Vf := v1 .

Then the graph morphism f : D0 −→ Cn is not a cofibration; cf. Definition 144.

Proof. Consider the graph X with VX := VCn ∪ {v′1} and with EX := ECn ∪ {e′1} with
e′1 sX := v′1 and with e′1 tX := v2 .

We have the acyclic fibration g : X // Cn with g|Cn := idCn and with e′1 Eg := e1 and with
v′1Vg := v1 ; cf. Definition 138.

E.g. for n = 4 we have

X : v2
e2))

v3

e3

��
v′1

e′1
88

v1

e1

II

v4
e4
ii

So we have v1Vg = v′1Vg = v1 .

Since the graph morphism g : X // Cn is an acyclic fibration, there exists a unique graph
morphism k : Cn −→ X such that kg = idCn ; cf. Definition 138.

We have k|Cn = idCn .

We have the commutative diagram

D0

f
��

X

g

��
Cn idCn

//

∃!k
>>

Cn

in Gph.

We will find a graph morphism p : D0 −→ X such that f idCn = pg and such that fk
!

̸= p.

We have v1Vg = v′1Vg and we have v1Vk = v1 .

So we let p : D0 −→ X be the graph morphism with v̂0Vp := v′1 .

Now we have f idCn = pg and we have kg = idCn . But we have fk ̸= p since v̂0Vf Vk = v1Vk =
v1 ̸= v′1 = v̂0Vp .

So the graph morphism f : D0 −→ Cn is not a cofibration.

113

3.5 Bifibrant graphs

Definition 160 A graph X is called bifibrant if X is fibrant and cofibrant; cf. Definitions 135
and 150.

Example 161 Suppose given n ∈ N.

The cyclic graph Cn is bifibrant; cf. Example 137 and Remark 151.

3.6 Acyclic cofibrations

Definition 162 An acyclic cofibration is a graph morphism f = (Vf ,Ef) : G −→ H that
satisfies (AcCofib 1–5).

(AcCofib 1) The map Vf : VG −→ VH is injective.

(AcCofib 2) The map Ef : EG −→ EH is injective.

(AcCofib 3) We have |{e ∈ EH : (e) tH = vH}| = 1 for vH ∈ VH \VGf .

(AcCofib 4) We have (e) tH ∈ VH \VGf for e ∈ EH \EGf .

(AcCofib 5) For vH ∈ VH \VGf there exist n ⩾ 1 and ei ∈ EH for i ∈ [1, n] such that (e1) sH ∈ VGf ,
such that (ei) tH = (ei+1) sH for i ∈ [1, n− 1] and such that (en) tH = vH .

To indicate that f is an acyclic cofibration, we often write G ◦
f // H .

By AcCofib(Gph) ⊆ Mor(Gph) we denote the set of acyclic cofibrations in the category Gph.

We often write AcCofib := AcCofib(Gph).

Remark 163 Bisson and Tsemo [3, Def. 3.2] call the acyclic cofibrations whiskerings.

Remark 164 Condition (AcCofib 5) in Definition 162 is equivalent to the following condition
(AcCofib 5′).

(AcCofib 5′) For vH ∈ VH \VGf , there exist n ⩾ 1 and a graph morphism p : Dn −→ H with v̂0Vp ∈ VGf

and v̂n Vp = vH .

Here, p is a path from a vertex in VGf to vH ; cf. Definition 107.

Remark 165 We have Iso(Gph) ⊆ AcCofib(Gph).

Proof. Suppose given a graph isomorphism f : G
∼−→ H.

We have to show that f : G
∼−→ H is an acyclic cofibration; cf. Definition 162.

Ad (AcCofib 1–2). The maps Vf : VG −→ VH and Ef : EG −→ EH are injective; cf. Definition 55.

114

Ad (AcCofib 3). We have VH \VGf = VH \VH = ∅.

Ad (AcCofib 4). We have EH \EGf = EH \EH = ∅.

Ad (AcCofib 5). We have VH \VGf = VH \VH = ∅.

Remark 166 Suppose given 0 ⩽ i ⩽ k in Z⩾0 .

The graph morphism ιi,k : Di −→ Dk is an acyclic cofibration; cf. Definition 56.(3).

Proof.

Ad (AcCofib 1–2). We have ιi,k = idDk
|Di

and so the maps Vιi,k : VDi
−→ VDk

and
Eιi,k : EDi

−→ EDk
are injective.

Ad (AcCofib 3). We have VDk
\VDi ιi,k = VDk

\VDi
= {v̂j : j ∈ [i+ 1, k]}.

So suppose given j ∈ [i+ 1, k].

We have |{e ∈ EDk
: (e) tDk

= v̂j}| = |{êj−1}| = 1.

Ad (AcCofib 4). We have EDk
\EDi ιi,k = EDk

\EDi
= {êj : j ∈ [i, k − 1]}.

So suppose given j ∈ [i, k − 1].

We have (êj) tDk
= v̂j+1 ∈ VDk

\VDi
.

Ad (AcCofib 5). We have VDk
\VDi ιi,k = VDk

\VDi
= {v̂j : j ∈ [i+ 1, k]}.

So suppose given j ∈ [i+ 1, k].

We let n := j − i. Let eu := êi+u−1 for u ∈ [1, n]. We consider the edges {êu}u∈[i,j−1] We
have e1 sDk

= êi sDk
= v̂i ∈ VDi

. We have eu tDk
= êi+u−1 tDk

= v̂i+u = êi+u sDk
= eu+1 sDk

for
u ∈ [1, n− 1]. And we have en tDk

= êj−1 tDk
= v̂j .

Example 167 We consider the graphs

G : 1
α1 // 2

α2
((

α3

66 3

and

H : 1
β1 // 2

β2
((

β3

66

β7

��

3
β4 // 4

β5 //

β6

��

5

7 6

Let f = (Vf ,Ef) : G −→ H be the graph morphism with

1Vf = 1, 2Vf = 2, 3Vf = 3,

and with
α1 Ef = β1 , α2 Ef = β2 , α3 Ef = β3 .

115

Then the graph morphism f is an acyclic cofibration; cf. Definition 162.

Proof. We use this opportunity to illustrate the properties (AcCofib 1–5) from Definition 162.

Ad (AcCofib 1, 2).

The maps Vf and Ef both are injective.

Ad (AcCofib 3).

We have to show that |{e ∈ EH : (e) tH = vH}| = 1 for vH ∈ VH \VGf .

We have VH \VGf = {1, 2, 3, 4, 5, 6, 7} \ {1, 2, 3} = {4, 5, 6, 7}.

We have |{e ∈ EH : (e) tH = 4}| = |{β4}| = 1 and |{e ∈ EH : (e) tH = 5}| = |{β5}| = 1 and
|{e ∈ EH : (e) tH = 6}| = |{β6}| = 1 and |{e ∈ EH : (e) tH = 7}| = |{β7}| = 1.

So (AcCofib 3) holds for f .

Ad (AcCofib 4).

We have to show that (e) tH ∈ VH \VGf for e ∈ EH \EGf .

We have EH \EGf = {β1 , β2 , β3 , β4 , β5 , β6 , β7} \ {β1 , β2 , β3} = {β4 , β5 , β6 , β7}.

We have VH \VGf = {4, 5, 6, 7}.

We have β4 tH = 4, β5 tH = 5, β6 tH = 6, β7 tH = 7, which are elements in VH \VGf =
{4, 5, 6, 7}, so (AcCofib 4) holds for f .

Ad (AcCofib 5).

We have VH \VGf = {4, 5, 6, 7}.

We have VGf = {1, 2, 3}.

For the vertex 4 ∈ VH \VGf we may choose n := 1 and e1 := β4. Then e1 sH = β4 sH = 3 ∈ VGf

and e1 tH = β4 tH = 4.

For the vertex 5 ∈ VH \VGf we may choose n := 2 and e1 := β4 and e2 := β5 ∈ EH . Then
e1 sH = β4 sH = 3 ∈ VGf and e1 tH = β4 tH = 4 = β5 sH = e2 sH and e2 tH = β5 tH = 5.

For the vertex 6 ∈ VH \VGf we may choose n := 2 and e1 := β4 and e2 := β6 ∈ EH . Then
e1 sH = β4 sH = 3 ∈ VGf and e1 tH = β4 tH = 4 = β6 sH = e2 sH and e2 tH = β6 tH = 6.

For the vertex 7 ∈ VH \VGf we may choose n := 1 and e1 := β7 . Then e1 sH = β7 sH = 2 ∈ VGf

and e1 tH = β7 tH = 7.

Alternatively, via Magma [2] we may proceed as follows, using the functions given in §10 below.

G := <[1,2,3],[<1,1,2>,<2,2,3>,<2,3,3>]>;

H := <[1,2,3,4,5,6,7],[<1,1,2>,<2,2,3>,<2,3,3>,<3,4,4>,<4,5,5>,<4,6,6>,<2,7,7>]>;

f := <[<1,1>,<2,2>,<3,3>],[<<1,1,2>,<1,1,2>>,<<2,2,3>,<2,2,3>>,<<2,3,3>,<2,3,3>>]>;

> AcCofib1to4(f,G,H);

true

> AcCofib5(f,G,H);

true

> IsAcCofib(f,G,H);

true

116

Example 168 We consider the following graph morphism.

G : 1

H : 1 2 α1ee

f

��

We let 1Vf := 1.

Then the graph morphism f satisfies (AcCofib 1–4), but not (AcCofib 5).

Hence the graph morphism f is not an acyclic cofibration.

Proof. We show that (AcCofib 5) is not satisfied.

We assume that (AcCofib 5) is satisfied.

So for vH ∈ VH \VGf there exist n ⩾ 1 and ei ∈ EH for i ∈ [1, n] such that e1 sH ∈ VGf , such
that ei tH = ei+1 sH for i ∈ [1, n− 1] and such that en tH = vH .

Then e1 sH = 1. But there is no edge in H with this property. Contradiction.

Alternatively, via Magma we may proceed as follows, using the functions given in §10 below.

G := <[1],[]>;

H := <[1,2],[<2,1,2>]>;

f := <[<1,1>],[]>;

> IsGraphMorphism(f,G,H);

true

> AcCofib1to4(f,G,H);

true

> AcCofib5(f,G,H);

false

> IsAcCofib(f,G,H);

false

Remark 169 Suppose given acyclic cofibrations f : X ◦ // Y and g : Y ◦ // Z .

Then the composite fg is also an acyclic cofibration.

117

Proof.

We have to show that (AcCofib 1–5) hold for the graph morphism fg.

Ad (AcCofib 1).

The composite of injective maps is injective.

The composite of the injective maps Vf and Vg yields the injective map Vfg = Vf ·Vg and so
(AcCofib 1) holds for fg.

Ad (AcCofib 2).

The composite of injective maps is injective.

The composite of the injective maps Ef and Eg yields the injective map Efg = Ef ·Eg and so
(AcCofib 2) holds for fg.

Ad (AcCofib 3).

We have |{eY ∈ EY : (eY) tY = vY }| = 1 for vY ∈ VY \VXf .

We have |{eZ ∈ EZ : (eZ) tZ = vZ}| = 1 for vZ ∈ VZ \VY g .

We have to show that |{eZ ∈ EZ : (eZ) tZ = vZ}|
!
= 1 for vZ ∈ VZ \(VX)Vfg .

We have VZ \(VX)Vfg = VZ \(VX)Vf Vg
Rem. 30
= (VZ \(VY)Vg) ∪̇ (VY \(VX)Vf)Vg , since Vfg =

Vf Vg .

Suppose given vZ ∈ VZ \(VX)Vfg . We have to show that |{eZ ∈ EZ : (eZ) tZ = vZ}|
!
= 1 .

We consider two cases.

Case 1: vZ ∈ VZ \(VY)Vg . We have to show that |{eZ ∈ EZ : (eZ) tZ = vZ}|
!
= 1. This follows

by g being an acyclic cofibration.

Case 2: vZ ∈ (VY \(VX)Vf)Vg . We have to show that |{eZ ∈ EZ : (eZ) tZ = vZ}|
!
= 1. There

exists vY ∈ VY \(VX)Vf with (vY)Vg = vZ . We obtain |{eY ∈ EY : (eY) tY = vY }| = 1 by f
being an acyclic cofibration.

We obtain |{eZ ∈ EZ : (eZ) tZ = vZ}|
!
= 1:

First, we show that |{eZ ∈ EZ : (eZ) tZ = vZ}|
!

⩾ 1.

Suppose given eY ∈ EY with (eY) tY = vY . Then (eY Eg) tZ = (eY tY)Vg = vY Vg = vZ . So we
obtain |{eZ ∈ EZ : (eZ) tZ = vZ}| ⩾ 1.

Second, we show that |{eZ ∈ EZ : (eZ) tZ = vZ}|
!

⩽ 1.

Suppose given eZ , e
′
Z ∈ EZ with (eZ) tZ = vZ = (e′Z) tZ . Since vZ ∈ (VY \(VX)Vf)Vg , we may

write vZ = vY Vg with vY /∈ (VX)Vf .

We have to show that eZ
!
= e′Z .

We claim eZ ∈ (EY) Eg .

We assume eZ /∈ (EY) Eg . With (AcCofib 4) for g we get
(VY \(VX)Vf)Vg ∋ vZ = (eZ) tZ ∈ VZ \(VY)Vg , which is a contradiction.

118

This proves the claim.

So we have eZ ∈ (EY) Eg. Likewise we have e′Z ∈ (EY) Eg .

There exist eY , e
′
y ∈ EY such that eZ = eY Eg and e′Z = e′Y Eg .

We have to show that eY
!
= e′Y .

But we have (eY tY)Vg = (eY Eg) tZ = (eZ) tZ = vZ = (e′Z) tZ = (e′Y Eg) tZ = (e′Y tY)Vg .

Moreover, vZ = (vY)Vg .

Because Vg is injective we get eY tY = e′Y tY = vY .

And so eY , e
′
Y ∈ {ẽY ∈ EY : (ẽY) tY = vY } which contains at most one element by (AcCofib 3)

for f . So eY = e′Y .

This proves |{eZ ∈ EZ : (eZ) tZ = vZ}| = 1 .

So (AcCofib 3) holds for fg.

Ad (AcCofib 4).

We have (eY) tY ∈ VY \(VX)Vf for eY ∈ EY \(EX) Ef by (AcCofib 4) for f .

We have (eZ) tZ ∈ VZ \(VY)Vg for eZ ∈ EZ \(EY) Eg by (AcCofib 4) for g.

We have EZ \(EX) Efg = EZ \(EX) Ef Eg
Rem. 30
= (EZ \(EY) Eg) ∪̇ (EY \(EX) Ef) Eg, since Efg =

Ef Eg .

Suppose given eZ ∈ EZ \(EX) Efg . We have to show that (eZ) tZ ∈ VZ \(VX)Vfg .

We consider two cases.

Case 1: eZ ∈ EZ \(EY) Eg . We have to show that (eZ) tZ ∈ VZ \(VX)Vfg . We obtain:

We have (eZ) tZ ∈ VZ \(VY)Vg ⊆ VZ \(VX)Vf Vg = VZ \(VX)Vfg .

Case 2: eZ ∈ (EY \(EX) Ef) Eg . We have to show that (eZ) tZ ∈ VZ \(VX)Vfg . There exists
eY ∈ EY \(EX) Ef such that (eY) Eg = eZ . We have (eY) tY ∈ VY \(VX)Vf . So we get

(eZ) tZ = (eY) Eg tZ = (eY) tY Vg ∈ (VY \(VX)Vf)Vg

Rem. 30

⊆ VZ \(VX)Vfg .

So (AcCofib 4) holds for fg.

Ad (AcCofib 5).

Suppose given vZ ∈ VZ \(VX)Vfg. We have so show that there exist n ⩾ 1 and ei ∈ EZ for
i ∈ [1, n] such that e1 sZ ∈ (VX)Vfg , such that ei tZ = ei+1 sZ for i ∈ [1, n − 1] and such that
en tZ = vZ .

We have (VX)Vfg ⊆ (VY)Vg ⊆ VZ .

We have VZ \(VX)Vfg = (VZ \(VY)Vg)
.
∪ ((VY Vg) \ (VX Vfg)) = (VZ \(VY)Vg)

.
∪

(VY \(VX)Vf)Vg; cf. Remark 30.

Case vZ ∈ (VY \(VX)Vf)Vg .

There exists a unique vertex vY ∈ VY \(VX)Vf such that vY Vg = vZ .

119

The graph morphism f : X −→ Y is an acyclic cofibration. So we may choose n ⩾ 1 and ẽi ∈ EY

for i ∈ [1, n] such that ẽ1 sY ∈ (VX)Vf , such that ẽi tY = ẽi+1 sY for i ∈ [1, n− 1] and such that
ẽn tY = vY .

So (ẽ1 Eg) sZ = (ẽ1 sY)Vg ∈ (VX)Vfg . Moreover, (ẽi Eg) tZ = (ẽi tY)Vg = (ẽi+1 sY)Vg =
(ẽi+1 Eg) sZ for i ∈ [1, n− 1]. Finally, (ẽn Eg) tZ = (ẽn tY)Vg = vY Vg = vZ .

So we may take ei := ẽi Eg for i ∈ [1, n].

Case vZ ∈ VZ \(VY)Vg .

The graph morphism g : X −→ Y is an acyclic cofibration. So we may choose k ⩾ 1 and e′i ∈ EZ

for i ∈ [1, k] such that e′1 sZ ∈ (VY)Vg , such that e′i tZ = e′i+1 sZ for i ∈ [1, k− 1] and such that
e′k tZ = vZ .

There exists a unique vertex vY ∈ VY such that vY Vg = e′1 sZ .

Subcase 1: vY ∈ (VX)Vf .

We map n := k, and ei := e′i for i ∈ [1, n].

Then, in particular, e1 sZ = e′1 sZ = vY Vg ∈ (VX)Vfg .

Subcase 2: vY ∈ VY \(VX)Vfg .

Because f : X −→ Y is an acyclic cofibration and because of vY ∈ VY \(VX)Vf , we may choose
m ⩾ 1 and e′′i ∈ EY for i ∈ [1,m] such that e′′1 sY ∈ (VX)Vf , such that e′′i tY = e′′i+1 sY for
i ∈ [1,m− 1] and such that e′′m tY = vY .

Let n := m+ k. For i ∈ [1, n] let ei :=

{
e′′i Eg if i ∈ [1,m]

e′i−m if i ∈ [m+ 1,m+ k].

Then e1 sZ = e′′1 Eg sZ = e′′1 sY Vg ∈ (VX)Vf Vg = (VX)Vfg .

For i ∈ [1,m− 1] we have ei tZ = e′′i Eg tZ = e′′i tY Vg = e′′i+1 sY Vg = e′′i+1 Eg sZ = ei+1 sZ .

For i = m, we have em tZ = e′′m Eg tZ = e′′m tY Vg = vY Vg = e′1 sZ = em+1 sZ .

For i ∈ [m+ 1, n− 1] we have ei tZ = e′i−m tZ = e′i+1−m sZ = ei+1 sZ .

Finally, we have en tZ = em+k tZ = e′k tZ = vZ .

So we may choose m ⩾ 1 and ẽi Eg ∈ EY Eg ⊆ EZ for i ∈ [1,m] such that (ẽ1 Eg) sZ =
(ẽ1 sY)Vg ∈ (VX)Vfg , such that (ẽi Eg) tZ = (ẽi tY)Vg = (ẽi+1 sY)Vg = (ẽi+1)Eg) sZ for i ∈
[1,m− 1] and such that (ẽm Eg) tZ = (ẽm tY)Vg = vY Vg = vZ .

So for vZ ∈ VZ \(VY)Vg we may choose n := m + k ⩾ 1 and ẽi Eg ∈ EY Eg ⊆ EZ for i ∈ [1,m]
such that (ẽ1 Eg) sZ = (ẽ1 sY)Vg ∈ (VX)Vfg , such that (ẽi Eg) tZ = (ẽi tY)Vg = (ẽi+1 sY)Vg =
(ẽi+1)Eg) sZ for i ∈ [1,m− 1] and such that (ẽm Eg) tZ = (ẽm tY)Vg = vY Vg = vZ .

And we may choose ei ∈ EZ for i ∈ [m + 1,m + k] such that em+1 sZ ∈ VY Vg , such that
ei tZ = ei+1 sZ for i ∈ [m+ 1,m+ k − 1] and such that em+k tZ = vZ .

So we may choose n := k +m ⩾ 1 and ei ∈ EZ for i ∈ [1, n] such that e1 sZ ∈ (VX)Vfg , such
that ei tZ = ei+1 sZ for i ∈ [1, n− 1] and such that en tZ = vZ .

So (AcCofib 5) holds for fg and so the graph morphism fg : X −→ Z is an acyclic cofibration.

120

Once Lemma 191 below is known, which states that we have AcCofib = �Fib, we can also argue
by Remark 19 to obtain the statement of Remark 169.

Remark 170 Suppose given an acyclic cofibration f : X ◦ // Y .

Then the image Xf ⊆ Y is a full subgraph of Y ; cf. Definition 47.

Proof. We have to show that we have EXf = {eY ∈ EY : eY sY ∈ VXf and eY tY ∈ VXf}, i.e.
we have to show that we have e ∈ EXf for e ∈ EY , v, w ∈ VXf with e sY = v, e tY = w.

Suppose given e ∈ EY , v, w ∈ VXf with e sY = v, e tY = w.

We have to show that e ∈ EXf ⊆ EY .

We have (e) tY ∈ VY \(VX)Vf for e ∈ EY \(EX) Ef ; cf. Definition 162 (AcCofib 4).

So we have e ∈ (EX) Ef for (e) tY ∈ (VX)Vf .

We have e tY = w ∈ VXf = VX Vf .

So we have e ∈ (EX) Ef = EXf .

Remark 171 In Gph, a pushout of an acyclic cofibration is an acyclic cofibration; cf. Defini-
tion 162.

Proof. Suppose given a pushout in Gph as follows.

X
a //

◦f
��

Y

g
��

X ′
a′
// Y ′

We use the alternative construction for the pushout in Gph from Remark 84; cf. Remark 38.

We may use this construction of the pushout to prove that g is an acyclic cofibration, since
pushouts are unique up to isomorphism; cf. Remarks 7, 165 and 169.

We have the pushouts

VX
Va //

Vf

��

VY

Vg

��
VX′

Va′
// VY ′

and

EX
Ea //

Ef

��

EY

Eg

��
EX′

Ea′
// EY ′

in Gph; cf. Remarks 38 and 84.

Ad (AcCofib 1, 2).

Since the graph morphism f : X −→ X ′ is an acyclic cofibration, the maps Vf : VX −→ VX′ and
Ef : EX −→ EX′ are injective; cf. (AcCofib 1, 2).

121

So the maps Vg : VY −→ VY ′ and Eg : EY −→ EY ′ are injective; cf. Remark 39.

So (AcCofib 1) and (AcCofib 2) hold for the graph morphism g : Y −→ Y ′.

Ad (AcCofib 3). Suppose given a vertex vY ′ ∈ VY ′ \VY g .

So vY ′ = (1, vX′) ∈ VY ′ = (VX′ \VXf) ⊔ VY with vX′ ∈ VX′ \VXf .

We have to show that |{eY ′ ∈ EY ′ : eY ′ tY ′ = vY ′}| !
= 1.

First, we show that |{eY ′ ∈ EY ′ : eY ′ tY ′ = vY ′}|
!

⩾ 1.

The graph morphism f : X −→ X ′ is an acyclic cofibration and we have vX′ ∈ VX′ \VXf .

Because of (AcCofib 3) for f there exists a unique edge eX′ ∈ EX′ such that eX′ tX′ = vX′ .

Assume that eX′ ∈ EXf . Then eX′ = eX Ef for some eX ∈ EX .

Hence vX′ = eX′ tX′ = eX Ef tX′ = (eX tX)Vf ∈ VXf . Contradiction.

So eX′ ∈ EX′ \EXf . Thus we have (1, eX′) ∈ EY ′ = (EX′ \EXf) ⊔ EY .

We obtain (1, eX′) tY ′ = eX′ tX′ Va′ = vX′ Va′ = (1, vX′) = vY ′ , because vX′ ∈ VX′ \VXf .

Second, we show that |{eY ′ ∈ EY ′ : eY ′ tY ′ = vY ′}|
!

⩽ 1.

Suppose given eY ′ , ẽY ′ ∈ EY ′ such that eY ′ tY ′ = vY ′ = ẽY ′ tY ′ .

We have to show that eY ′
!
= ẽY ′ .

We assume that eY ′ ∈ EY g. Then there exists an edge eY ∈ EY such that eY ′ = eY Eg .

So we have vY ′ = eY ′ tY ′ = eY Eg tY ′ = (eY tY)Vg ∈ VY g , which is a contradiction.

So we have eY ′ ∈ EY ′ \EY g . Thus there exists an edge eX′ ∈ EX′ \EXf such that eY ′ = (1, eX′).

We assume that ẽY ′ ∈ EY g. Then there exists an edge ẽY ∈ EY such that ẽY ′ = ẽY Eg .

So we have vY ′ = ẽY ′ tY ′ = ẽY Eg tY ′ = (ẽY tY)Vg ∈ VY g , which is a contradiction.

So we have ẽY ′ ∈ EY ′ \EY g . Thus there exists an edge ẽX′ ∈ EX′ \EXf such that ẽY ′ = (1, ẽX′).

Now we have

vY ′ = eY ′ tY ′ = (1, eX′) tY ′ = eX′ tX′ Va′

=

{
(2, vX Va) if eX′ tX′ = vX Vf ∈ VXf for a unique vX ∈ VX

(1, eX′ tX′) if eX′ tX′ ∈ VX′ \VXf .

We assume that there exists a vertex vX ∈ VX such that eX′ tX′ = vX Vf .

Then we have vY ′ = (2, vX Va) ∈ VY g . But we have vY ′ ∈ VY \VY g , which is a contradiction.

So we have vY ′ = (1, eX′ tX′).

Now we have

vY ′ = ẽY ′ tY ′ = (1, ẽX′) tY ′ = ẽX′ tX′ Va′

=

{
(2, vX Va) if ẽX′ tX′ = vX Vf ∈ VXf for a unique vX ∈ VX

(1, ẽX′ tX′) if ẽX′ tX′ ∈ VX′ \VXf .

122

We assume that there exists a vertex vX ∈ VX such that ẽX′ tX′ = vX Vf .

Then we have vY ′ = (2, vX Va) ∈ VY g . But we have vY ′ ∈ VY \VY g , which is a contradiction.

So we have vY ′ = (1, ẽX′ tX′).

Recall that vX′ ∈ VX′ \VXf and vY ′ = (1, vX′).

Therefore we have eX′ tX′ = ẽX′ tX′ = vX′ .

Because of (AcCofib 3) for f we have eX′ = ẽX′ .

So we have eY ′ = (1, eX′) = (1, ẽX′) = ẽY ′ .

So (AcCofib 3) holds for the graph morphism g : Y −→ Y ′.

Ad (AcCofib 4). Suppose given an edge eY ′ ∈ EY ′ \EY g .

We have to show that eY ′ tY ′
!
∈ VY ′ \VY g .

We have eY ′ /∈ EY g . So there exists an edge eX′ ∈ EX′ \EXf such that eY ′ = (1, eX′).

So we have

eY ′ tY ′ = (1, eX′) tY ′ = eX′ tX′ Va′

=

{
(2, vX Va) if eX′ tX′ = vX Vf ∈ VXf for a unique vX ∈ VX

(1, eX′ tX′) if eX′ tX′ ∈ VX′ \VXf .

We have eX′ ∈ EX′ \EXf . Because of (AcCofib 4) for f we conclude that eX′ tX′ /∈ VXf .

So we have eY ′ tY ′ = (1, eX′ tX′) /∈ VY g .

Hence (AcCofib 4) holds for the graph morphism g : Y −→ Y ′.

Ad (AcCofib 5). Suppose given vY ′ ∈ VY ′ \VY g , where VY g = {(2, vY) : vY ∈ VY }.

We have to show that there exist n ⩾ 1 and eY ′,i ∈ EY ′ for i ∈ [1, n] such that eY ′,1 sY ′ ∈ VY g ,
such that eY ′,i tY ′ = eY ′,i+1 sY ′ for i ∈ [1, n− 1] and such that eY ′,n tY ′ = vY ′ .

Since vY ′ ∈ VY ′ \VY g , there exists a unique vertex vX′ ∈ VX′ \VXf such that vY ′ = (1, vX′).

Now (AcCofib 5) holds for the graph morphism f : X −→ X ′.

So we may choose n ⩾ 1 and edges eX′,i ∈ EX′ for i ∈ [1, n] such that eX′,1 sX′ ∈ VXf , such that
eX′,i tX′ = eX′,i+1 sX′ for i ∈ [1, n− 1] and such that eX′,n tX′ = vX′ .

Without loss of generality, we have eX′,i tX′ /∈ VXf for i ∈ [1, n]. So we have eX′,i /∈ EXf for
i ∈ [1, n].

We let eY ′,i := (1, eX′,i) for i ∈ [1, n].

We have eY ′,1 sY ′ = (1, eX′,1) sY ′ = eX′,1 sX′ Va′ .

Now there exists a unique vertex vX ∈ VX such that eX′,1 sX′ = vX Vf .

So we have eX′,1 sX′ Va′ = (2, vX Va) = vX VaVg ∈ VY g .

Suppose given i ∈ [1, n− 1]. Then we have

eY ′,i tY ′ = (1, eX′,i) tY ′ = eX′,i tX′ Va′ = eX′,i+1 sX′ Va′ = (1, eX′,i+1) sY ′ = eY ′,i+1 sY ′ .

123

And we have

eY ′,n tY ′ = (1, eX′,n) tY ′ = eX′,n tX′ Va′ = vX′ Va′ = (1, vX′) = vY ′ ,

because vX′ ∈ VX′ \VXf .

So (AcCofib 5) holds for the graph morphism g : Y −→ Y ′.

So the graph morphism g : Y −→ Y ′ is an acyclic cofibration; cf. Definition 162.

X a //

◦f
��

Y

◦g
��

X ′
a′
// Y ′

Once Lemma 191 below is known, which states that we have AcCofib = �Fib, we can also argue
by Remark 21 to obtain the statement of Remark 171.

Remark 172 In Gph, the subset of acyclic cofibrations AcCofib ⊆ Mor is closed under retracts;
cf. Definition 23.

Proof. Suppose given the following commutative diagram in Gph.

X ′
a
//

f ′

��

idX′

''
X

a′
//

◦f
��

X ′

f ′

��
Y ′ b //

idY ′

77Y b′ // Y ′

We have to show that the graph morphism f ′ : X ′ −→ Y ′ is an acyclic cofibration.

Ad (AcCofib 1).

We have to show that the map Vf ′ : VX′ −→ VY ′ is injective.

We have Vf ′ ·Vb = Va ·Vf . So it suffices to show that the map Va ·Vf is injective.

The map Vf is injective since f ∈ AcCofib.

The map Va is injective since Va ·Va′ = VidX′ .

Ad (AcCofib 2).

We have to show that the map Ef ′ : EX′ −→ EY ′ is injective.

We have Ef ′ ·Eb = Ea ·Ef . So it suffices to show that the map Ea ·Ef is injective.

The map Ef is injective since f ∈ AcCofib.

The map Ea is injective since Ea ·Ea′ = EidX′ .

Ad (AcCofib 3).

Suppose given a vertex vY ′ ∈ VY ′ \VX′f ′ .

124

We have to show that we have |{e ∈ EY ′ : (e) tY ′ = vY ′}| !
= 1.

We show that vY ′ Vb

!

/∈ VXf .

We assume that vY ′ Vb ∈ VXf . Then there exists a unique vertex vX ∈ VX such that vY ′ Vb =
vX Vf .

Then we have vY ′ = vY ′ VbVb′ = vX Vf Vb′ = (vX Va′)Vf ′ ∈ VX′f ′ , which is a contradiction.

First, we show that |{e ∈ EY ′ : e tY ′ = vY ′}|
!

⩾ 1.

Because the graph morphism f : X −→ Y is an acyclic cofibration, there exists a unique edge
eY ∈ EY such that eY tY = vY ′ Vb . We have (eY Eb′) tY ′ = eY tY Vb′ = vY ′ Vb Vb′ = vY ′ .

Second, we show that |{e ∈ EY ′ : e tY ′ = vY ′}|
!

⩽ 1.

Suppose given eY ′ , ẽY ′ ∈ EY ′ such that eY ′ tY ′ = ẽY ′ tY ′ = vY ′ . We have to show that eY ′
!
= ẽY ′ .

We have (eY ′ Eb) tY = eY ′ tY ′ Vb = vY ′ Vb = ẽY ′ tY ′ Vb = (ẽY ′ Eb) tY .

Because the graph morphism f : X −→ Y is an acyclic cofibration and because we have vY ′ Vb ∈
VY \VXf we conclude that eY ′ Eb = ẽY ′ Eb .

So we have eY ′ = eY ′ Eb Eb′ = ẽY ′ Eb Eb′ = ẽY ′ .

Ad (AcCofib 4).

Suppose given an edge eY ′ ∈ EY ′ \EX′f ′ . We have to show that eY ′ tY ′

!

/∈ VX′f ′ .

We show that eY ′ Eb

!
∈ EY \EXf .

We assume that eY ′ Eb ∈ EXf . Then there exists a unique edge eX ∈ EX such that eY ′ Eb =
eX Ef .

Then we have eY ′ = eY ′ Eb Eb′ = eX Ef Eb′ = (eX Ea′) Ef ′ ∈ EX′f ′ , which is a contradiction.

We assume that eY ′ tY ′ ∈ VX′f ′ . Then there exists a unique vertex vX′ ∈ VX′ such that we
have eY ′ tY ′ = vX′ Vf ′ . So we have (eY ′ Eb) tY = eY ′ tY ′ Vb = vX′ Vf ′ Vb = (vX′ Va)Vf ∈ VXf .

But we have eY ′ Eb ∈ EY \EXf . Since the graph morphism f : X −→ Y is an acyclic cofibration,
we conclude that eY ′ Eb tY ∈ VY \VXf which is a contradiction.

Ad (AcCofib 5).

Suppose given a vertex vY ′ ∈ VY ′ \VX′f ′ .

We have to show that there exist n ⩾ 1 and ei ∈ EY ′ for i ∈ [1, n] such that e1 sY ′ ∈ VX′f , such
that ei tY ′ = ei+1 sY ′ for i ∈ [1, n− 1] and such that en tY ′ = vY ′ .

We show that vY ′ Vb

!

/∈ VXf .

We assume that vY ′ Vb ∈ VXf . Then there exists a unique vertex vX ∈ VX such that vY ′ Vb =
vX Vf .

Then we have vY ′ = vY ′ VbVb′ = vX Vf Vb′ = (vX Va′)Vf ′ ∈ VX′f ′ , which is a contradiction.

Now (AcCofib 5) holds for the acyclic cofibration f : X −→ Y . So we may choose n ⩾ 1 and
edges eY,i ∈ EY for i ∈ [1, n] such that eY,1 sY ∈ VXf and eY,i tY = eY,i+1 sY for i ∈ [1, n− 1] and

125

such that eY,n tY = vY ′ Vb .

We let ei := eY,i Eb′ for i ∈ [1, n].

We will show that the following statements (i, ii, iii) hold.

(i) e1 sY ′
!
∈ VX′f ′

(ii) ei tY ′
!
= ei+1 sY ′ for i ∈ [1, n− 1].

(iii) en tY ′
!
= vY ′

Ad (i). There exists a unique vertex vX ∈ VX such that eY,1 sY = vX Vf .

Then we have e1 sY ′ = (eY,1 Eb′) sY ′ = eY,1 sY Vb′ = vX Vf Vb′ = (vX Va′)Vf ′ ∈ VX′f ′ .

Ad (ii). Suppose given i ∈ [1, n− 1].

We have eY,i tY = eY,i+1 sY . So we have ei tY ′ = (eY,i Eb′) tY ′ = eY,i tY Vb′ = eY,i+1 sY Vb′ =
(eY,i+1 Eb′) sY ′ = ei+1 sY ′ .

Ad (iii). We have eY,n tY = vY ′ Vb .

So we have en tY ′ = (eY,n Eb′) tY ′ = eY,n tY Vb′ = vY ′ VbVb′ = vY ′ .

Altogether, the graph morphism f ′ : X ′ −→ Y ′ is an acyclic cofibration, i.e. f ′ is in AcCofib.

Once Lemma 191 below is known, which states that we have AcCofib = �Fib, we can also argue
by Remark 25 to obtain the statement of Remark 172.

However, we need Remark 172 to prove Lemma 185, which we need to prove Lemma 191.

Lemma 173 Suppose given a graph Y .

Suppose given a full subgraph X ⊆ Y such that the following properties (1, 2) hold.

(1) We have eY sY ∈ VX for eY ∈ EY \EX .

(2) For vY ∈ VY \VX , there exists a unique eY ∈ EY such that eY tY = vY .

Then the inclusion morphism ι := idY |X : X −→ Y is in �Fib.

Proof. Suppose given a commutative diagram in Gph as follows.

X
a //

ι
��

X ′

_f ′

��
Y

b
// Y ′

We have to show that there exists a graph morphism h : Y −→ X ′ such that ιh = a and hf ′ = b.

Let vX Vh := vX Va for vX ∈ VX and eX Eh := eX Ea for eX ∈ EX .

Now suppose given an edge eY ∈ EY \EX .

We now consider the edge eY Eb ∈ EY ′ .

126

We abbreviate vX′ := eY sY Va ∈ VX′ ; cf. property (1).

Since ιb = af ′, we have eY Eb sY ′ = eY sY Vb
eY sY ∈VX= eY sY VιVb = eY sY VaVf ′ = vX′ Vf ′ .

Since the graph morphism f ′ : X ′ −→ Y ′ is a fibration, the map

Ef ′,vX′ = Ef ′ |Y
′(vX′ Vf ′ ,∗)

X′(vX′ ,∗) : X ′(vX′ , ∗) −→ Y ′(vX′ Vf ′ , ∗)

is surjective; cf. Definition 127.(1).

We have vX′ Vf ′ = eY Eb sY ′ , and therefore eY Eb ∈ Y ′(vX′ Vf ′ , ∗).

So we may choose an edge (eY)X′ ∈ X ′(vX′ , ∗) such that (eY)X′ Ef ′ = eY Eb .

So for the edge eY ∈ EY \EX , we let eY Eh := (eY)X′ ∈ EX′ .

Finally, suppose given a vertex vY ∈ VY \VX .

By (2), there exists a unique edge evY ∈ EY such that evY tY = vY .

Note that evY ∈ EY \EX since evY tY = vY ∈ VY \VX .

We let vY Vh := (evY)X′ tX′ ∈ VX′ .

Before we show that h : Y −→ X ′ is a graph morphism we make a remark.

Suppose given an edge eY ∈ EY \EX .

We assume that eY tY ∈ VX .

We have eY sY ∈ VX ; cf. property (1).

Since X ⊆ Y is a full subgraph, we have eY ∈ EX . Contradiction.

So for the edge eY ∈ EY \EX we have eY tY ∈ VY \VX .

In particular, we have eY = eeY tY . This finishes the remark.

We have to show that h : Y −→ X ′ is a graph morphism.

First, we have to show that Eh sX′
!
= sY Vh .

Suppose given an edge eY ∈ EY . We have to show that eY Eh sX′
!
= eY sY Vh .

Case eY ∈ EX .

We have eY Eh sX′ = eY Ea sX′ = eY sX Va
eY sX∈VX= eY sX Vh = eY sY Vh .

Case eY ∈ EY \EX .

We have eY Eh sX′ = (eY)X′ sX′
(eY)X′∈X′(vX′ ,∗)

= vX′
Def. vX′
= eY sY Va

(1)
= eY sY Vh .

Second, we have to show that Eh tX′
!
= tY Vh .

Suppose given an edge eY ∈ EY . We have to show that eY Eh tX′
!
= eY tY Vh .

Case eY ∈ EX .

We have eY Eh tX′ = eY Ea tX′ = eY tX Va
eY tX∈VX= eY tX Vh = eY tY Vh .

Case eY ∈ EY \EX .

Now we need the remark made above.

127

Writing vY := eY tY ∈ VY \VX , we obtain

eY tY Vh = vY Vh = (evY)X′ tX′ = evY Eh tX′ = eY Eh tX′ .

So h : Y −→ X ′ is in fact a graph morphism.

We now show that a
!
= ιh.

Therefor we have to show that Va
!
= VιVh and Ea

!
= Eι Eh .

Suppose given a vertex vX ∈ VX . We have vX VιVh = vX Vh = vX Va .

Suppose given an edge eX ∈ EX . We have eX Eι Eh = eX Eh = eX Ea .

We now show that hf ′ !
= b.

First, we have to show that VhVf ′
!
= Vb .

Suppose given a vertex vY ∈ VY . We have to show that vY Vh Vf ′
!
= vY Vb .

Case vY ∈ VX .

We have vY Vh Vf ′ = vY Va Vf ′ = vY VιVb = vY Vb .

Case vY ∈ VY \VX .

We have vY Vh Vf ′ = (evY)X′ tX′ Vf ′ = (evY)X′ Ef ′ tY ′
choice of (evY)X′

= evY Eb tY ′ = evY tY Vb = vY Vb .

Second, we have to show that Eh Ef ′
!
= Eb .

Suppose given eY ∈ EY . We have to show that eY Eh Ef ′
!
= eY Eb .

Case eY ∈ EX .

We have eY Eh Ef ′ = eY Ea Ef ′ = eY Eι Eb = eY Eb .

Case eY ∈ EY \EX .

We have eY Eh Ef ′ = (eY)X′ Ef ′
choice of (eY)X′

= eY Eb .

X
a //

ι
��

X ′

_f ′

��
Y

b
//

h

>>

Y ′

Lemma 174 We have AcCofib ⊆ �Fib.

Proof. Suppose given an acyclic cofibration f : X ◦ // Y .

We have to show that f satisfies (LLPFib); cf. Definition 13.

Suppose given a fibration g : X ′ � // Y ′ .

Suppose given graph morphisms u : X −→ X ′ and r : Y −→ Y ′ such that ug = fr.

X
u //

◦f
��

X ′

_ g
��

Y r
// Y ′

128

We have to show that there exists a graph morphism h : Y −→ X ′ such that fh = u and hg = r.

Since (AcCofib 1, 2) hold for the acyclic cofibration f : X ◦ // Y , the graph morphism f |Xf :
X −→ Xf ⊆ Y is bijective, i.e. a graph isomorphism; cf. Remark 66. Thus f |Xf ∈ Iso ⊆ �Fib;
cf. Remark 18.

Moreover, the graph Xf is a full subgraph in Y ; cf. Remark 170.

We shall define full subgraphs Yn ⊆ Y recursively.

Let Y0 := Xf .

For n ∈ Z⩾1 , let Yn be the full subgraph of Y with

VYn := VYn−1 ∪{v ∈ VY : ∃e ∈ Y (VYn−1 , v)} ;

cf. Definition 47.(3) and Notation 51.(2).

We now have a countable chain of subgraphs

Xf = Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ⊆ Y .

Note that we have the full subgraph Yk ⊆ Yk+1 for k ∈ Z⩾0 .

Suppose given a vertex vY ∈ VY \VXf .

Since (AcCofib 5) holds for the acyclic cofibration f : X ◦ // Y , we may choose n ⩾ 1 and
edges ei ∈ EY for i ∈ [1, n] such that e1 sY ∈ VXf , such that ei tY = ei+1 sY for i ∈ [1, n − 1]
and such that en tY = vY .

We have e1 sY ∈ VXf = VY0 .

So we have e1 tY ∈ VY1 .

Since e2 sY = e1 tY ∈ VY1 , we have e2 tY ∈ VY2 .

Since e3 sY = e2 tY ∈ VY2 , we have e3 tY ∈ VY3 .

Etc.

So we deduce that vY = en tY ∈ VYn ⊆
⋃

k∈Z⩾0
VYk

.

So we deduce that
⋃

k∈Z⩾0
VYk

= VY .

Since the graph
⋃

k∈Z⩾0
Yk is a full subgraph of Y , we have

⋃
k∈Z⩾0

Yk = Y ; cf. Remarks 104
and 50.

Suppose given k ∈ Z⩾0 . The graph Yk is a full subgraph of Yk+1 . In order to apply Lemma 173,
we will show that the following properties (1, 2) hold.

(1) We have eYk+1
sYk+1

∈ VYk
for eYk+1

∈ EYk+1
\EYk

.

(2) For vYk+1
∈ VYk+1

\VYk
, there exists a unique eYk+1

∈ EYk+1
such that eYk+1

tYk+1
= vYk+1

.

Ad (1). Suppose given an edge e ∈ EYk+1
\EYk

. We have to show that e sY
!
∈ VYk

.

We have e tY ∈ VYk+1
.

129

There exists a unique minimal l ∈ [0, k + 1] such that e tY ∈ VYl
.

We have e ∈ EYk+1
\EYk

⊆ EY \EXf .

Since (AcCofib 4) holds for the acyclic cofibration f : X ◦ // Y , we have e tY ∈ VY \VXf =
VY \VY0 .

So we deduce that l ⩾ 1.

By minimality of l, we have e tY ∈ VYl
\VYl−1

.

By construction of VYl
, we may choose an edge ẽ ∈ EY such that ẽ sY ∈ VYl−1

and ẽ tY = e tY .

Note that we have ẽ tY = e tY ∈ VYl
\VYl−1

⊆ VY \VXf .

Since (AcCofib 3) holds for the acyclic cofibration f : X ◦ // Y , we infer e = ẽ.

So we have e sY = ẽ sY ∈ VYl−1
⊆ VYk

.

Ad (2). Suppose given a vertex v ∈ VYk+1
\VYk

. We have to show that there exists a unique

edge e ∈ EYk+1
such that e tY

!
= v.

By definition of VYk+1
, we may choose an edge e ∈ EY such that e sY ∈ VYk

and e tY = v .

Since Yk+1 ⊆ Y is a full subgraph, we have e ∈ EYk+1
.

Uniqueness follows since v ∈ VYk+1
\VYk

⊆ VY \VXf by (AcCofib 3) for the acyclic cofibration

f : X ◦ // Y .

So the inclusion morphism idYk+1
|Yk

: Yk −→ Yk+1 is in �Fib; cf. Lemma 173.

Since the inclusion morphisms idYk+1
|Yk

: Yk −→ Yk+1 are in �Fib for k ⩾ 0 and since⋃
k∈Z⩾0

Yk = Y , the graph morphism idY |Y0 : Y0 −→ Y is in �Fib; cf. Lemma 106.

Altogether, f = f |Xf · idY |Y0 is in �Fib; cf. Remark 19.

The following lemma is due to Bisson and Tsemo [3, Prop. 4.5].

Lemma 175 In Gph, we have AcCofib ⊆ Cofib∩Qis; cf. Definitions 115, 144 and 162.

Proof. We claim that AcCofib
!

⊆ Qis.

Suppose given an acyclic cofibration f : X ◦ // Y . We have to show that f is a quasiisomor-
phism.

Suppose given n ⩾ 1 and a graph morphism u : Cn −→ Y . We have to show that Cn u
!

⊆ Xf ;
cf. Remark 66.

X

≀ f |Xf

��
Xf

idY |Xf

��
Cn

u // Y

We assume that Cn u ̸⊆ Xf . So VCn Vu ̸⊆ VXf or ECn Eu ̸⊆ EXf .

130

By (AcCofib 4), it is impossible to have VCn Vu ⊆ VXf and ECn Eu ̸⊆ EXf .

So VCn Vu ̸⊆ VXf .

Hence, we may choose k ∈ Z⧸nZ with vk Vu ∈ VY \VXf .

Because of (AcCofib 5) we may choose m ⩾ 1 and ei ∈ EY for i ∈ [1,m] such that e1 sY ∈ VXf ,
such that ei tY = ei+1 sY for i ∈ [1,m− 1] and such that em tY = vk Vu .

Without loss of generality, we have ei tY ∈ VY \VXf for i ∈ [1,m].

And we have ek−1 Eu tY = ek−1 tCn Vu = vk Vu = em tY .

Because of (AcCofib 3) we have em = ek−1 Eu .

If m ⩾ 2, then we have em−1 tY = em sY = ek−1 Eu sY = ek−1 sCn Vu = vk−1Vu = ek−2 tCn Vu =
ek−2 Eu tY , in VY \VXf .

Because of (AcCofib 3), we obtain em−1 = ek−2 Eu .

If m ⩾ 3, then, by the same argument, we obtain em−2 = ek−3 Eu .

If m ⩾ 4, then, by the same argument, we obtain em−3 = ek−4 Eu .

Etc.

Continuing this procedure, we obtain e1 = ek−m Eu .

So we have VXf ∋ e1 sY = ek−m Eu sY = ek−m sCn Vu = vk−m Vu .

We have ek Eu sY = ek sCn Vu = vk Vu ∈ VY \VXf .

So we have ek Eu ∈ EY \EXf . Because of (AcCofib 4) we have ek+1 Eu sY = ek+1 sCn Vu =
vk+1 Vu = ek tCn Vu = ek Eu tY ∈ VY \VXf .

So ek+1 Eu ∈ EY \EXf . By the same argument, we conclude that ek+2 Eu sY = vk+2Vu =
ek+1 Eu tY ∈ VY \VXf .

So ek+2 Eu ∈ EY \EXf . By the same argument, we conclude that ek+3 Eu sY = vk+3Vu =
ek+2 Eu tY ∈ VY \VXf .

Etc.

Continuing this procedure, we obtain vk−m Vu = vk+l Vu ∈ VY \VXf , where l ⩾ 1 is such that

k + l = k −m ∈ Z⧸nZ .

But vk−m Vu ∈ VXf . This contradiction proves the claim.

X

≀
��

Xf

idY |Xf

��
Cn

<<

u
// Cn u //

<<

Y

Moreover, we have AcCofib
Lemma 174

⊆ �Fib ⊆ �AcFib
Def. 144
= Cofib.

Altogether, we have AcCofib ⊆ Cofib∩Qis.

131

In Lemma 175 we have shown the inclusion AcCofib ⊆ Cofib∩Qis.

In Lemma 185 below, we will show that the inclusion AcCofib
!
⊇ Cofib∩Qis also holds, using the

factorization provided by Lemma 184.

Remark 176 In Gph, a pullback of an acyclic cofibration is a quasiisomorphism.

Proof. We have AcCofib ⊆ Qis; cf. Lemma 175.

So an acyclic cofibration is a quasiisomorphism.

A pullback of a quasiisomorphism is a quasiisomorphism; cf. Remark 125.

So a pullback of an acyclic cofibration is a quasiisomorphism.

Example 177 Suppose given n ∈ N.

The graph morphism ιCn : ∅ −→ Cn is not an acyclic cofibration.

Proof. Since V∅ιCn
= ∅ and VCn ̸= ∅, the graph morphism ιCn does not satisfy (AcCofib 5).

Alternatively, since (Cn , ∅) = ∅ ≠ (Cn ,Cn), the graph morphism ιCn is not a quasiisomorphism,
and thus not an acyclic cofibration; cf. Lemma 175.

Remark 178 A graph G is a tree if and only if there exists an acyclic cofibration c : D0 −→ G.

Proof.

Suppose given an acyclic cofibration c : D0 −→ G.

We have to show that the graph G is a tree, i.e. that the properties (Tree 1–3) hold; cf.
Definition 108.

We let r := v̂0Vc. So we have {r} = VD0 c .

Ad (Tree 1). Because of (AcCofib 3) we have |{e ∈ EG : e tG = vG}| = 1 for vG ∈ VG \VD0 c =
VG \{r} .

Ad (Tree 2). Because of (AcCofib 4) we have e tG ∈ VG \VD0 c = VG \{r} for e ∈ EG \ED0 c =
EG \∅ = EG . So we have e tG ̸= r for e ∈ EG and thus (Tree 2).

Ad (Tree 3). Suppose given v ∈ VG .

We have to show that there exists a path from r to v, i.e. n ⩾ 0 and a graph morphism
p : Dn −→ G such that v̂0Vp = r and v̂n Vp = v.

If v = r, then we may take n = 0 and p = c.

So suppose that v ∈ VG \{r}.

Because of (AcCofib 5) we may choose n ⩾ 1 and ei ∈ EG for i ∈ [1, n] such that e1 sG ∈ {r} ,
such that ei tG = ei+1 sG for i ∈ [1, n− 1] and such that en tG = v .

So for v ∈ VG we let êi Ep := ei+1 for i ∈ [0, n − 1] and v̂i Vp := ei+1 sG for i ∈ [0, n − 1] and
v̂n Vp := en tG .

Then p : Dn −→ G is a graph morphism because we have êi Ep sG = ei+1 sG = v̂i Vp = êi sDn Vp for
i ∈ [0, n−1] and since we have êi Ep tG = ei+1 tG = ei+2 sG = v̂i+1 Vp = êi tDn Vp for i ∈ [0, n−2]
and ên−1 Ep tG = en tG = v̂nVp = ên tDn Vp .

132

Suppose given a tree G.

We have to show that there exists an acyclic cofibration c : D0 −→ G.

We let v̂0Vc := r.

We have to show that the graph morphism c is an acyclic cofibration; cf. Definition 162.

Ad (AcCofib 1, 2). The graph morphism c : D0 −→ G is injective; i.e. the maps Vc and Ec are
injective.

Ad (AcCofib 3). Because of (Tree 1) we have |{e ∈ EG : (e) tG = v}| = 1 for v ∈ VG \VD0 c =
VG \{r}.

Ad (AcCofib 4). Because of (Tree 2) we have (e) tG ̸= r for e ∈ EG and thus (e) tG ∈ VG \{r}
for e ∈ EG = EG \ED0 c .

Ad (AcCofib 5). Suppose given v ∈ VG \VD0 c . Because of (Tree 3) we have a path from r to
v , i.e. we have a graph morphism p : Dn −→ G such that v̂0Vp = r and v̂nVp = v.

We let ei := êi−1 Ep for i ∈ [1, n]. So we have e1 sG = ê0 Ep sG = ê0 sGVp = v̂0Vp = r ∈ VDn c .
And we have ei tG = êi−1 Ep tG = êi−1 tGVp = êi sGVp = êi Ep sG = ei+1 sG for i ∈ [1, n− 1] and
en tG = ên−1 Ep tG = ên−1 tGVp = v̂n Vp = v.

Example 179 Let n ∈ N.

Since the graph morphism ι0,n : D0 −→ Dn is an acyclic cofibration, the graph Dn is a tree; cf.
Definition 108, Remark 166 and Remark 178.

This can also be verified directly. The graph Dn has root r = v̂0 . Then (Tree 1) and (Tree 2)
hold since we have êk−1 tDn = v̂k for k ∈ [1, n]. Then (Tree 3) holds since we have the paths
ιk,n : Dk −→ Dn for k ∈ [0, n].

Now we can give another proof of Remark 112.

Remark 180 Suppose given a graph G and a vertex x ∈ VG .

Then the graph Tree(x,G) is a tree with root r := (x;) ∈ VTree(x,G) .

Proof. We have to show that there exists an acyclic cofibration c : D0 −→ Tree(x,G).

Let v̂0Vc := (x;) ∈ VTree(x,G) .

We will show that the graph morphism c : D0 −→ Tree(x,G) with v̂0Vc := (x;) is an acyclic
cofibration.

Ad (AcCofib 1, 2). The maps Vc and Ec are injective.

Ad (AcCofib 3). We have to show that |{e ∈ ETree(x,G) : e tTree(x,G) = v}| !
= 1 for

v ∈ VTree(x,G) \{(x;)}.

For a path (x; e1 , . . . , en) ∈ VTree(x,G) we have {e ∈ ETree(x,G) : e tTree(x,G) = (x; e1 , . . . , en)} =
{(x; e1 . . . , en−1), en , (x; e1 , · · · , en))}.

Ad (AcCofib 4). Suppose given e ∈ ETree(x,G) \ED0 = ETree(x,G) \∅.

We have e = (γ, en , γ · en) for a path γ and an edge en ∈ EG .

133

Then we have γ · en ̸= (x;).

Ad (AcCofib 5) Suppose given (x; e1 , . . . , en) ∈ VTree(x,G) .

Then there exists

(x;)
((x;),e1 ,(x;e1))// (x; e1)

((x;e1),e2 ,(x;e1 e2))// (x; e1 , e2)
((x;e1 ,e2),e3 ,(x;e1 ,e2 ,e3))// · · · · · · // (x; e1 , . . . , en) .

3.7 Summary of some notations

Reminder 181 Suppose given a graph morphism f : G −→ H.

To indicate that f is a quasiisomorphism, we often write G ≈
f // H ; cf. Definition 115.

To indicate that f is a fibration, we often write G �f // H ; cf. Definition 127.(1).

To indicate that f is an acyclic fibration, we often write G
f // H ; cf. Definition 138.

To indicate that f is a cofibration, we often write G •
f // H ; cf. Definition 144.

To indicate that f is an acyclic cofibration, we often write G ◦
f // H ; cf. Definition 162.

Reminder 182

(1) We denote Qis = {f ∈ Mor(Gph) : f is a quasiisomorphism}; cf. Definition 115.

(2) We denote Fib = {f ∈ Mor(Gph) : f is a fibration}; cf. Definition 127.(1).

We denote AcFib = Fib∩Qis = {f ∈ Mor(Gph) : f is an acyclic fibration}; cf. Defini-
tion 138.

(3) We denote Cofib = {f ∈ Mor(Gph) : f is a cofibration}; cf. Definition 144.

We denote AcCofib = {f ∈ Mor(Gph) : f is an acyclic cofibration}; cf. Definition 162
and Lemma 175.

134

Chapter 4

Factorization of graph morphisms

Remark 183 Suppose given a graph morphism f : X −→ Y .

Consider the graph F :=
∐

x∈VX
Tree(xVf , Y); cf. Definitions 109 and 90.

Consider the discrete subgraph Ẋ ⊆ X; cf. Definition 71.

We define the graph morphism

a : Ẋ −→ F =
∐

x∈VX
Tree(xVf , Y)

Va : VX = VẊ ∋ x 7→ (x, (xVf ;))

Ea : EẊ = ∅ .

Recall that (xVf ;) is an empty path at xVf ; cf. Definition 107.

Then the graph morphism a : Ẋ −→ F is an acyclic cofibration.

Cf. also Remark 178.

Proof.

Note that for x ∈ VX , the graph Tree(xVf , Y) is a tree with root r := (xVf ;); cf. Remark 112
and Definition 108.

We have to show that (AcCofib 1–5) hold for a : Ẋ −→ F ; cf. Definition 162.

Ad (AcCofib 1, 2): The maps Va and Ea are injective.

Ad (AcCofib 3): Suppose given vF ∈ VF \VẊa .

There exists a unique vertex x ∈ X, a unique integer n ⩾ 1 and a unique path p : Dn −→ Y in
Y from xVf such that vF = (x, p). Note that v̂0Vp = xVf .

So the path p is not the root of the graph Tree(xVf , Y); i.e. p ̸= r; cf. Definition 108.

So because of (Tree 1) we have |{e ∈ ETree(xVf ,Y) : (e) tTree(xVf ,Y) = p}| = 1 since
p ∈ VTree(xVf ,Y) \{r}.

Let e ∈ ETree(xVf ,Y) be this edge with e tTree(xVf ,Y) = p.

So we have (x, e) tF
Def. 90
= (x, e tTree(xVf ,Y)) = (x, p).

135

136

Conversely, suppose given an edge (x̃, ẽ) ∈ EF such that (x̃, ẽ) tF = (x, p). Then we have
(x, p) = (x̃, ẽ) tF = (x̃, ẽ tTree(x̃Vf ,Y)).

So we have x = x̃ and p = ẽ tTree(x̃Vf ,Y) = ẽ tTree(xVf ,Y).

Because of (Tree 1) we deduce that e = ẽ.

Ad (AcCofib 4).

Suppose given eF ∈ EF \EẊa
= EF .

There exist a unique vertex x ∈ VX and a unique edge e ∈ ETree(xVf ,Y) such that eF = (x, e).

So we have eF tF = (x, e) tF = (x, e tTree(xVf ,Y)).

Because of (Tree 2) we have e tTree(xVf ,Y) ̸= (xVf ;).

So we have eF tF ∈ VF \VẊa .

Ad (AcCofib 5).

Suppose given vF ∈ VF \VẊa .

Then there exist a vertex p ∈ VTree(xVf ,Y) such that vF = (x, p) and p ̸= (xVf ;) =: r.

Because of (Tree 3) we may choose n ⩾ 0 and a path α : Dn −→ Tree(xVf , Y) from v̂0Vα =
r = (xVf ;) to v̂n Vα = p.

Tree(xVf , Y)
ιx // F

Dn

α

OO

α·ιx

88

Then α · ιx is a path from v̂0(α · ιx) = rιx = (x, r) = (x, xVf ;) = xVa

to v̂n(α · ιx) = pιx = (x, p) = vF ; cf. Remark 164.

So the graph morphism a : Ẋ −→ F is an acyclic cofibration.

The following lemma is due to Bisson and Tsemo [3, Prop. 3.5].

Lemma 184 Suppose given a graph morphism f : X −→ Y .

Then there exists a commutative triangle in Gph as follows.

G

�
q

��
X

f
//

◦g
>>

Y

Proof. We consider the discrete subgraph Ẋ ⊆ X and the inclusion morphism oX : Ẋ −→ X;
cf. Definition 71.

Consider the graph F :=
∐

x∈VX
Tree(xVf , Y).

We define the graph morphism

a : Ẋ −→ F =
∐

x∈VX
Tree(xVf , Y)

Va : VX = VẊ ∋ x 7→ (x, (xVf ;))

Ea : EẊ = ∅ .

137

Recall that (xVf ;) is an empty path at xVf .

Note that the graph morphism a : Ẋ −→ F is an acyclic cofibration; cf. Remark 183; cf. also
Remark 178.

We now form the pushout as in Construction 83; cf. Remark 171.

Ẋ ◦a //

oX
��

F

h
��

X ◦
g
// F̃

We have the graph morphism pxVf
: Tree(xVf , Y) −→ Y for x ∈ VX ; cf. Definition 113.

So because of the universal property of the coproduct we have the graph morphism

p := (pxVf
)x∈VX

: F =
∐
x∈VX

Tree(xVf , Y) −→ Y

with (x, vTree(xVf ,Y))Vp = vTree(xVf ,Y) VpxVf
and (x, eTree(xVf ,Y)) Ep = eTree(xVf ,Y) EpxVf

; cf. Def-

initions 90 and 91.

We have the following commutative diagram.

Ẋ ◦a //

oX
��

F

p

��
X

f // Y

In fact, suppose given x ∈ VẊ = VX .

We have (xVa)Vp = (x, (xVf ;)) Vp = (xVf ;) VpxVf

Def. 113
= xVf = xVoX Vf .

Because F̃ is a pushout, there exists a unique graph morphism q : F̃ −→ Y such that hq = p
and gq = f . We claim that the graph morphism q : F̃ −→ Y is a fibration.

Ẋ ◦a //

oX
��

F

h
��

p

��

X ◦
g //

f ++

F̃

q
��
Y

Suppose given a vertex z ∈ VF̃ = VXg ∪VFh; cf. Remark 37.

We consider two cases.

Case 1: z ∈ VXg .

We choose a vertex x ∈ VX such that z = xVg .

We have to show that the map Eq |Y (zVq ,∗)
F̃ (z,∗) : F̃ (z, ∗) −→ Y (zVq , ∗) is surjective.

So suppose given an edge e ∈ Y (zVq , ∗) ⊆ EY . We have e sY = zVq = xVg Vq = xVf . We
write y := e tY ∈ VY . So for the edge e ∈ EY we have the path (xVf ; e) in Y of length

138

1 from xVf = e sY to y = e tY . This path (xVf ; e) is a vertex in Tree(xVf , Y). So we
have the vertex (x, (xVf ; e)) ∈ VF . We have the vertex (x, (xVf ;)) ∈ VF . We have the
edge eT := (x, ((xVf ;), e, (xVf ; e))) ∈ EF ; cf. Definition 109. So eT sF = (x, (xVf ;)) and
eT tF = (x, (xVf ; e)); cf. Definition 90.

We have eT Eh ∈ EF̃ , where its source vertex is eT Eh sF̃ = eT sF Vh = (x, (xVf ;)) Vh =

xVa Vh = xVoX Vg = xVg = z. So the edge eT Eh ∈ EF̃ has source z and thus eT Eh ∈ F̃ (z, ∗).

We show that (eT Eh) Eq
!
= e ∈ Y (zVq , ∗).

We have Eh Eq = Ep . So we have

eT Eh Eq = eT Ep = (x, ((xVf ;), e, (xVf ; e)) Ep
Def. 91
= ((xVf ;), e, (xVf ; e)) EpxVf

Def. 113
= e .

Case 2: z ∈ VFh .

We may choose a vertex in VF , consisting of a vertex x ∈ VX and a vertex v in Tree(xVf , Y),
i.e. a path v = (xVf ; e0 , . . . , en−1) in Y , such that z = (x, v)Vh .

We write yn := vVpxVf
∈ VY ; cf. Definition 113.

We have to show that the map Eq |Y (zVq ,∗)
F̃ (z,∗) : F̃ (z, ∗) −→ Y (zVq , ∗) is surjective.

We have zVq = (x, v)Vh Vq
Vh Vq=Vp

= (x, v)Vp
Def. 91
= vVpxVf

= yn .

So suppose given an edge e ∈ Y (zVq , ∗) = Y (yn, ∗). Note that e sY = yn .

We have to find an edge eF in F̃ (z, ∗) such that eF Eq
!
= e.

We first consider the edge τ := (x, ((xVf ; e0 , . . . , en−1), e, (xVf ; e0 , . . . , en−1, e))) ∈ EF

which has the source vertex (x, v) = (x, (xVf ; e0 , . . . , en−1)) and the target vertex
(x, (xVf ; e0 , . . . , en−1, e)).

We have τ Eh sF̃ = τ sF Vh = (x, v)Vh = z. So we have τ Eh ∈ F̃ (z, ∗).

We now show that τ Eh Eq
!
= e.

We have hq = p and thus we have Eh Eq = Ep .

So we have τ Eh Eq = τ Ep
Def. 91
= ((xVf ; e0 , . . . ; en−1), e, (xVf ; e0 , . . . , en−1, e)) EpxVf

Def. 113
= e.

So the graph morphism q : F̃ −→ Y is a fibration.

Ẋ ◦a //

oX
��

F

h
��

p

��

X ◦
g //

f ++

F̃

�q
��
Y

139

Lemma 185 In Gph, we have AcCofib = Cofib∩Qis.

Proof. We show that AcCofib
!

⊇ Cofib∩Qis.

Suppose given a quasiisomorphism f : X −→ Y that is a cofibration, i.e. that satisfies (LLPAcFib);
cf. Definition 144.

We have to show that f is an acyclic cofibration, i.e. that (AcCofib 1–5) hold for the graph
morphism f ; cf. Definition 162.

By Lemma 184 we may choose an acyclic cofibration w : X −→ Z and a fibration p : Z −→ Y
such that f = wp.

Z

�
p

��
X

◦w

>>

•
f

≈
// Y

Because the graph morphism f : X ≈ // Y is a quasiisomorphism and because the graph mor-
phism w : X ◦ // Z is an acyclic cofibration and thus a quasiisomorphism, we may conclude
by (2 of 3) that the fibration p : Z −→ Y is a quasiisomorphism and thus an acyclic fibration;
cf. Remark 123 and Definition 138.

So we consider the following commutative diagram.

X

•f ≈

��

◦w // Z

p
��

Y
idY
// Y

Because the graph morphism f : X −→ Y is a cofibration and thus in �AcFib, there exists a
graph morphism h : Y −→ Z such that fh = w and such that hp = idY .

X

•f ≈

��

◦w // Z

p
��

Y
idY
//

h

>>

Y

We consider the following commutative diagram.

X

f
��

idX
//

idX

&&
X

◦w
��

idX
// X

f
��

Y h //

idY

88Z
p // Y

Since the set of acyclic cofibrations AcCofib is closed under retracts, the graph morphism
f : X −→ Y is an acyclic cofibration; cf. Remark 172.

So we have AcCofib ⊇ Cofib∩Qis.

140

We have AcCofib ⊆ Cofib∩Qis; cf. Lemma 175.

Altogether, we have AcCofib = Cofib∩Qis.

Lemma 186 Suppose given a graph morphism f : X −→ Y .

Then there exist a commutative triangle in Gph as follows, where (Cn , f
′)Gph is surjective for

n ⩾ 1.

X̃
f ′

��
X

f
//

•
g′

??

Y

Proof. For n ⩾ 1, we let Mn := (Cn , Y)Gph \ Im(Cn , g)Gph .

Let M :=
∐

n⩾1Mn = {(n, u) : n ⩾ 1, u ∈ Mn}.

Let C :=
∐

(n,u)∈M Cn .

We have VC = {((n, u), vi) : n ⩾ 1, u ∈ Mn , i ∈ Z⧸nZ}.

And we have EC = {((n, u), ei) : n ⩾ 1, u ∈ Mn , i ∈ Z⧸nZ}.

We write
(n, u, vi) := ((n, u), vi)

and
(n, u, ei) := ((n, u), ei) .

Using Definition 91, we have the graph morphism

h = (u)(n,u)∈M : C −→ Y

(n, u, vi) 7→ vi Vu for i ∈ Z⧸nZ
(n, u, ei) 7→ ei Eu for i ∈ Z⧸nZ .

Let X ′ := X ⊔ C; cf. Definition 85. Then

VX′ = VX ⊔VC = {(1, vX) : vX ∈ VX} ∪ {(2, vC) : vC ∈ VC}

and
EX′ = EX ⊔EC = {(1, eX) : eX ∈ EX} ∪ {(2, eC) : eC ∈ EC} .

Moreover,

sX′ : EX′ −→ VX′

(1, eX) 7→ (1, eX sX)

(2, eC) 7→ (2, eC sC)

and
tX′ : EX′ −→ VX′

(1, eX) 7→ (1, eX tX)

(2, eC) 7→ (2, eC tC) .

141

We have the graph morphism f ′ :=
(

g
h

)
: X ⊔ C −→ Y satisfying ι1f = g and ι2f = h; cf.

Definition 86.

Writing g′ := ι1 : X −→ X ⊔ C, we have g′f = g.

Claim 1. The graph morphism g′ : X −→ X ′ = X ⊔ C is a cofibration; cf. Definition 144.

The cyclic graph Cn is cofibrant for n ⩾ 1; cf. Remark 151. So the graph C =
∐

(n,u)∈M Cn

is cofibrant, i.e. the graph morphism ιC : ∅ −→ C is a cofibration; cf. Definitions 70, 150 and
Remark 152.

So the graph morphism g′ : X −→ X ⊔ C is a cofibration as a pushout of a cofibration; cf.
Remark 157.

This proves Claim 1.

Claim 2. Given n ⩾ 1. The map (Cn , f
′)Gph : (Cn , X ⊔ C)Gph −→ (Cn , Y)Gph is surjective.

Suppose given a graph morphism u : Cn −→ Y in (Cn , Y)Gph .

Case 1: u ∈ Im(Cn , g)Gph .

Then we may choose a graph morphism ũ : Cn −→ X in (Cn , X)Gph such that u = ũg.

X ⊔ C
f ′=

(
g
h

)
// Y

X

g′

OO
g

77

Cn

ũ

OO u

>>

So we have ũg′ ∈ (Cn , X ⊔ C)Gph and (ũg′)(Cn , f
′)Gph = ũg′f ′ = ũg = u.

Case 2: u ∈ (Cn , Y)Gph \ Im(Cn , g)Gph .

So we have u ∈ Mn , i.e. (n, u) ∈ M .

We have the graph morphism ι(n,u) : Cn −→ C; cf. Definition 90.

We have ι(n,u)h = ι(n,u)(u)(n,u)∈M
Def. 91
= u.

Consider the graph morphism ι2 : C −→ X ⊔ C.

We have ι(n,u) · ι2 ∈ (Cn , X ⊔ C)Gph and (ι(n,u) · ι2)(Cn , f
′)Gph = ι(n,u) · ι2 · f ′ = ι(n,u) · h = u.

X ⊔ C
f ′=

(
g
h

)
// Y

C

ι2

OO
h

77

Cn

ιn,u

OO u

>>

This proves Claim 2.

142

So we have the commutative triangle

X ⊔ C
f ′

##
X

•
g′

;;

g
// Y ,

where (Cn , f
′)Gph is surjective for n ⩾ 1.

The following lemma is an iterated version of an argument of Bisson and Tsemo [3, Prop. 4.6].

Lemma 187 Suppose given a graph morphism f : X −→ Y such that (Cn , f)Gph is surjective
for n ⩾ 1.

Then there exists a commutative triangle in Gph as follows.

G

≈h

��
X

•
g

>>

f
// Y

Proof. We have the graph morphism f0 := f : X −→ Y .

Let X0 := X.

Let g0,0 := idX : X −→ X0 .

Then g0,0 · f0 = f .

For i ⩾ 0, we shall recursively construct a commutative diagram in Gph as follows for suitably
defined sets Mi and M and ji resulting from Lemma 156.∐

(n,p)∈Mi
Cn •

ji //

ai

��

∐
(n,u)∈M Cn

bi
�� c

��

Xi •
gi,i+1 //

fi
++

Xi+1
fi+1

%%
X

•
g0,i

88

•
g0,i+1

33

f
// Y .

Suppose that the commutative triangle

Xk

fk

X

f
//

•
g0,k

>>

Y

is constructed for a given k ⩾ 0.

Let M := {(n, u) : n ⩾ 1, Cn
u // Y }.

143

Then we have the graph
∐

M Cn :=
∐

(n,u)∈M Cn with

V∐
M Cn = {(n, u, vi) : n ⩾ 1, Cn

u // Y , i ∈ Z⧸nZ}
E∐

M Cn = {(n, u, ei) : n ⩾ 1, Cn
u // Y , i ∈ Z⧸nZ} .

Let Mk := {(n, p) : n ⩾ 1, Cn
p // Xk }.

Then we have the graph
∐

Mk
Cn :=

∐
(n,p)∈Mk

Cn with

V∐
Mk

Cn = {(n, p, vi) : n ⩾ 1, Cn
p // Xk , i ∈ Z⧸nZ}

E∐
Mk

Cn = {(n, p, ei) : n ⩾ 1, Cn
p // Xk , i ∈ Z⧸nZ} .

Using the maps µ : Mk −→ M : (n, p) 7→ (n, pfk) and ν : M −→ N : (n, u) 7→ n, Lemma 156 gives
the cofibration

jk :
∐

Mk
Cn −→

∐
M Cn

Vjk : (n, p, vi) 7→ (n, pfk, vi)

Ejk : (n, p, ei) 7→ (n, pfk, ei) .

Using Definition 91, we obtain the following graph morphisms.

ak := (p)(n,p)
∐

Mk
Cn −→ Xk

Vak : (n, p, vi) 7→ vi Vp for vi ∈ VCn

Eak : (n, p, ei) 7→ ei Ep for ei ∈ ECn

c := (u)(n,u)∈M :
∐

M Cn −→ Y

Vc : (n, u, vi) 7→ viVu for vi ∈ VCn

Ec : (n, u, ei) 7→ ei Eu for ei ∈ ECn

We note that since (Cn , fk)Gph is surjective, the graph morphism jk is surjective.

We show that we have jkc
!
= akfk.

Suppose given (n, p, vi) ∈ V∐
Mi

Cn .

We have (n, p, vi)Vjk Vc = (n, pfk, vi)Vc = vi Vpfk = vi Vp Vfk = (n, p, vi)Vak Vfk .

Suppose given (n, p, ei) ∈ E∐
Mi

Cn .

We have (n, p, ei) Ejk Ec = (n, pfk, ei) Ec = ei Epfk = ei Ep Efk = (n, p, ei) Eak Efk .

So we have jkc = akfk.

Forming the pushout, we obtain the following commutative diagram.∐
(n,p)∈Mi

Cn •
ji //

ai

��

∐
(n,u)∈M Cn

bi
�� c

��

Xi •
gi,i+1 //

fi
++

Xi+1
fi+1

%%
X

•
g0,i

88

•
g0,i+1

33

f
// Y .

144

In this diagram, the graph morphism gk,k+1 : Xk −→ Xk+1 is a cofibration; cf. Remark 148.

With respect to the morphisms Xi •
gi,i+1// Xi+1 for i ⩾ 0, we let X∞ := lim−→

i⩾0

Xi ; cf. Definition 98

and Lemma 99.

We have graph morphisms gi,∞ : Xi −→ X∞ such that gi,i+1 · gi+1,∞ = gi,∞ for i ⩾ 0; cf.
Definition 98.

Since gi,i+1 is a cofibration for i ⩾ 0, we conclude that g0,∞ : X0 −→ X∞ is a cofibration; cf.
Lemma 102.

There exists a unique graph morphism f∞ : X∞ −→ Y such that gi,∞ · f∞ = fi for i ⩾ 0; cf.
Lemma 99.

X = X0

g0,∞

""
•
g0,1
//

f0

��

X1

g1,∞

""
•

g1,2
//

f1

��

X2

g2,∞

##
•

g2,3
//

f2

��

X3

g3,∞

%%

f3

��

· · · lim−→
i⩾0

Xi =: X∞

∃!f∞��
Y

idY

<<
idY // Y

idY

<<
idY // Y

idY

;;
idY // Y

idY

::· · · Y

By the surjectivity of (Cn , f)Gph = (Cn , f0)Gph = (Cn , g0,∞)Gph · (Cn , f∞)Gph , we conclude
that the map (Cn , f∞)Gph is surjective for n ⩾ 0.

We claim that the graph morphism f∞ : X∞ −→ Y is a quasiisomorphism.

Suppose given n ⩾ 1. It suffices to show that the map (Cn , f∞)Gph is injective.

Suppose given graph morphisms w′, w′′ : Cn −→ X∞ such that w′f∞ = w′′f∞ .

We have to show that w′ !
= w′′.

We write w := w′f∞ = w′′f∞ .

There exist k ⩾ 0 and graph morphisms ŵ′, ŵ′′ : Cn −→ Xk such that ŵ′gk,∞ = w′ and such that
ŵ′′gk,∞ = w′′; cf. Lemma 101.(2).

We have ŵ′fk = ŵ′gk,∞f∞ = w′f∞ = w = w′′f∞ = ŵ′′gk,∞f∞ = ŵ′′fk .

Xk •
gk,∞ // X∞

f∞

��
Cn w

//

w′
==

w′′

==

ŵ′′

OO

ŵ′

OO

Y

It now suffices to show that ŵ′gk,k+1
!
= ŵ′′gk,k+1 .

Because then we have w′ = ŵ′gk,∞ = ŵ′gk,k+1gk+1,∞ = ŵ′′gk,k+1gk+1,∞ = ŵ′′gk,∞ = w′′.

We have (n, ŵ′′), (n, ŵ′) ∈ Mk .

145

We show that ŵ′gk,k+1
!
= ŵ′′gk,k+1 .

So suppose given vi ∈ VCn , where i ∈ Z⧸nZ .

We have to show that viVŵ′gk,k+1

!
= vi Vŵ′′gk,k+1

.

We have vi Vŵ′gk,k+1
= vi Vŵ′ Vgk,k+1

Def. ak= (n, ŵ′, vi)Vak Vgk,k+1
= (n, ŵ′, vi)Vakgk,k+1

=

(n, ŵ′, vi)Vjkbk = (n, ŵ′, vi)Vjk Vbk

Def. jk= (n,w, vi)Vbk

Def. jk= (n, ŵ′′, vi)Vjk Vbk =

(n, ŵ′′, vi)Vjkbk = (n, ŵ′′, vi)Vakgk,k+1
= (n, ŵ′′, vi)Vak Vgk,k+1

Def. ak= vi Vŵ′′ Vgk,k+1
= vi Vŵ′′gk,k+1

.

Now suppose given an edge ei ∈ ECn .

We have to show that ei Eŵ′gk,k+1

!
= ei Eŵ′′gk,k+1

.

We have ei Eŵ′gk,k+1
= ei Eŵ′ Egk,k+1

Def. ak= (n, ŵ′, ei) Eak Egk,k+1
= (n, ŵ′, ei) Eakgk,k+1

=

(n, ŵ′, ei) Ejkbk = (n, ŵ′, ei) Ejk Ebk

Def. jk= (n,w, ei) Ebk

Def. jk= (n, ŵ′′, ei) Ejk Ebk =

(n, ŵ′′, ei) Ejkbk = (n, ŵ′′, ei) Eakgk,k+1
= (n, ŵ′′, ei) Eak Egk,k+1

Def. ak= ei Eŵ′′ Egk,k+1
= ei Eŵ′′gk,k+1

.

So we have ŵ′gk,k+1 = ŵ′′gk,k+1 .

Altogether, we have obtained a commutative triangle

X∞

≈
f∞

X = X0

•
g0,∞

::

f=f0
// Y

as was to be shown.

Lemma 188 Suppose given a graph morphism g : X −→ Y .

Then there exists a commutative triangle in Gph as follows.

G
f

��
X g

//

•d
>>

Y

Proof.

Step 1. There exists a commutative triangle in Gph as follows, where (Cn , f̃)Gph is surjective
for n ⩾ 1; cf. Lemma 186.

X̃
f̃

��
X g

//

•c
??

Y

Step 2. By Lemma 187 there exists a commutative triangle in Gph as follows.

˜̃X

≈
˜̃
f

��
X̃

f̃

//

•c̃
@@

Y

146

Step 3. By Lemma 184 there exists a commutative triangle in Gph as follows.

G

~
f

��˜̃X ≈

˜̃
f

//

◦˜̃c
??

Y

Because Qis satisfies (2 of 3) and because AcCofib ⊆ Qis, the fibration f : G � // Y is a
quasiisomorphism and thus an acyclic fibration; cf. Lemma 175 and Definition 138.

In conclusion we have the following commutative diagram in Gph.

˜̃X ◦
˜̃c //

≈˜̃
f

��

G

f

��

X̃

•c̃
@@

f̃
''

X g
//

•c
??

Y

The acyclic cofibration ˜̃c : ˜̃X ◦ // G is in particular a cofibration; cf. Lemma 185.

Since the composite of cofibrations is a cofibration, the graph morphism d := cc̃˜̃c : X −→ G is a
cofibration; cf. Remark 147.

Chapter 5

Subsets of Mor(Gph) and their lifting
sets

Lemma 189 In Gph, we have AcCofib� ⊆ Fib.

Proof. Suppose given a graph morphism f : X −→ Y in AcCofib�; cf. Definitions 162 and 14.

We have to show that the graph morphism f : X −→ Y is in Fib, i.e. that f is a fibration.

Suppose given a vertex x ∈ VX .

We have to show that the map Ef,x = E
f |

Y (xVf ,∗)
X(x,∗)

: X(x, ∗) −→ Y (xVf , ∗) is surjective; cf.

Definition 127.(1).

Suppose given an edge e ∈ Y (xVf , ∗), i.e. e ∈ EY with e sY = xVf .

We write y := e tY ∈ VY .

We have to find an edge ẽ ∈ X(x, ∗) such that ẽEf
!
= e.

Let a : D0 −→ X be defined by v̂0Va := x. So a = (x;); cf. Definition 107.

Let b : D1 −→ X be defined by ê0 Eb := e, v̂0Vb := e sY = xVf and v̂1Vb := e tY = y. So
b = (xVf ; e); cf. Definition 107.

In fact, b : D1 −→ Y is a graph morphism since ê0 sD1 Vb = v̂0Vb = e sY = ê0 Eb sY and since
ê0 tD1 Vb = v̂1Vb = e tY = ê0 Eb tY .

Note that the graph morphism ι0,1 : D0 −→ D1 is an acyclic cofibration; cf. Remark 166.

We have the following commutative diagram

D0
a //

◦ι0,1

��

X

f
��

D1
b // Y

since v̂0VaVf
Def. a
= xVf

Def. b
= v̂0Vb = v̂0Vι0,1 Vb .

We have ê0 sD1 = v̂0 = v̂0Vι0,1 .

Because the graph morphism f : X −→ Y is in AcCofib� there exists a graph morphism

147

148

h : D1 −→ X such that ι0,1h = a and hf = b.

D0
a //

◦ι0,1

��

X

f
��

D1
b //

h

>>

Y

Let ẽ := ê0 Eh ∈ EX .

Then we have ẽ sX = ê0 Eh sX = ê0 sD1 Vh = v̂0Vh = v̂0Vι0,1 Vh = v̂0Va
Def. a
= x.

So we have ẽ ∈ X(x, ∗).

Furthermore, ẽEf = ê0 Eh Ef = ê0 Eb
Def. b
= e.

Lemma 190 In Gph, we have �Fib ⊆ AcCofib.

Proof. Suppose given a graph morphism f : X −→ Y in �Fib, i.e. such that f � Fib.

We have to show that f
!
∈ AcCofib, i.e. that f : X −→ Y is an acyclic cofibration.

There exist an acyclic cofibration X ◦a // Z and a fibration Z �b // Y such that f = ab; cf.
Lemma 184.

We consider the following commutative diagram.

X ◦a //

f
��

Z

_b
��

Y
idY
// Y

Because f � Fib there exists a graph morphism h : Y −→ Z such that fh = a and hb = idY .

X ◦a //

f
��

Z

_b
��

Y
idY
//

h

>>

Y

We consider the following commutative diagram.

X
idX
//

f
��

idX

&&
X

idX
//

◦a
��

X

f
��

Y
h //

idY

88Z �b // Y

Because the set of acyclic cofibrations AcCofib is closed under retracts, the graph morphism
f : X −→ Y is an acyclic cofibration; cf. Remark 172

149

Lemma 191 In Gph, we have AcCofib = �Fib.

Proof.

We have AcCofib ⊆ �Fib; cf. Lemma 174.

We have AcCofib ⊇ �Fib; cf. Lemma 190.

Lemma 192 In Gph, we have AcCofib� = Fib.

Proof.

We have AcCofib� ⊆ Fib; cf. Lemma 189.

We have AcCofib� ⊇ Fib, i.e. AcCofib�Fib, i.e. AcCofib ⊆ �Fib; cf. Lemma 174.

Lemma 193 In Gph, we have Cofib� = AcFib.

Proof.

We have Cofib ⊆ �AcFib, i.e. Cofib�AcFib, i.e. Cofib� ⊇ AcFib; cf. Definition 144.

We have to show that Cofib� !

⊆ AcFib.

So suppose given a graph morphism f : X −→ Y in Cofib�.

We have to show that the graph morphism f : X −→ Y is an acyclic fibration; i.e. a fibration
that is a quasiisomorphism.

Since AcCofib ⊆ Cofib we have Cofib� ⊆ AcCofib�; cf. Lemma 175.

So we have f ∈ Cofib� ⊆ AcCofib� = Fib; cf. Lemma 192.

So the graph morphism f : X −→ Y is a fibration.

We now have to show that the fibration f : X −→ Y is a quasiisomorphism.

Let n ⩾ 1.

The graph morphism ιCn : ∅ −→ Cn is a cofibration; cf. Remark 151.

Suppose given a graph morphism p : Cn −→ Y .

We have to show that there exists a unique graph morphism q : Cn −→ X such that qf = p.

Existence. We have the commutative diagram

∅
•ιCn

��

// X

_f
��

Cn p
// Y ;

cf. Remark 151.

Since the fibration f : X −→ Y is in Cofib� there exists a graph morphism q : Cn −→ X such
that qf = p.

∅
•ιCn

��

// X

_f
��

Cn p
//

q
>>

Y

150

Uniqueness.

Suppose given graph morphisms q, q̃ : Cn −→ X such that qf = q̃f = p.

We have to show that q
!
= q̃.

We consider the cofibration dCn : Cn ⊔Cn −→ Cn ; cf. Remark 155.

We consider the following commutative diagram.

Cn ⊔Cn

(
q
q̃

)
//

•dCn

��

X

_f
��

Cn idCn

//

ι1
::

Cn p
// Y

To show that the diagram is commutative we have to show that dCn

!
=

(
p
p̃

)
f .

It suffices to show that p = ι1dCnp
!
= ι1

(
q
q̃

)
f = qf and that p = ι2dCnp

!
= ι2

(
q
q̃

)
f = q̃f . This

holds since qf = p = q̃f .

Since the graph morphism f : X −→ Y is in Cofib�, there exists a graph morphism q′ : Cn −→ X
such that q′f = p and dCnq

′ =
(

q
q̃

)
.

So we have q′ = idCn q
′ = ι1dCnq

′ = ι1
(

q
q̃

)
= q and q′ = idCn q

′ = ι2dCnq
′ = ι2

(
q
q̃

)
= q̃.

So we have q = q′ = q̃.

Using Lemma 188, we can alternatively prove Lemma 193 as follows.

Proof. We now have to show that the fibration f : X −→ Y is a quasiisomorphism.

We have the factorization f = ab with X •a // G and G
b // Y ; cf. Lemma 188 below.

We consider the following commutative diagram.

X
idX //

•a
��

X

f
��

G
b
// Y

Because f ∈ Cofib� there exists a graph morphism k : G −→ X such that ak = idX and kf = b.

X
idX //

•a
��

X

f
��

G
b
//

k

>>

Y

151

We consider the following commutative diagram.

X •
a
//

_f
��

idX

&&
G

k
//

b
��

X

_f
��

Y
idY //

idY

88Y
idY // Y

Since the set of quasiisomorphisms Qis ⊆ Mor(Gph) is closed under retracts the graph mor-
phism f : X −→ Y is a quasiisomorphism; cf. Remark 117

So the graph morphism f : X −→ Y is an acyclic fibration.

Since the set of acyclic fibrations AcFib ⊆ Mor(Gph) is closed under retracts the graph morphism
f : X −→ Y is an acyclic fibration; cf. Remark 141

Hence we have Cofib� ⊆ AcFib and so we conclude Cofib� = AcFib.

Remark 194 We have AcCofib� ∩AcFib� = Qis�.

Proof.

Ad Qis� ⊆ AcCofib� ∩AcFib�.

Since AcCofib ⊆ Qis, we have Qis� ⊆ AcCofib�; cf. Lemma 175.

Since AcFib ⊆ Qis, we have Qis� ⊆ AcFib�; cf. Definition 138.

So we have Qis� ⊆ AcCofib� ∩AcFib�.

Ad AcCofib� ∩AcFib� ⊆ Qis�.

Suppose given a graph morphism f : X −→ Y in AcCofib� ∩AcFib�.

We have to show that the graph morphism f is in Qis�.

Suppose given a commutative diagram in Gph as follows.

G
a //

≈q
��

X

f
��

H
b
// Y

We show that there exists a graph morphism h : H −→ X such that qh = a and hf = b.

By Lemma 184 and since Qis satisfies (2 of 3), we have a commutative triangle as follows.

Z
d

G

◦c
??

≈
q

// H

152

So we have the following commutative diagram.

G
a //

◦c
��

X

f

��

Z

d
��
H

b
// Y

Since f is in AcCofib�, there exists a graph morphism g : Z −→ X such that cg = a and gf = db.

G a //

◦c
��

X

f

��

Z

g
>>

d
��
H

b
// Y

Since f is in AcFib� and since gf = db, there exists a graph morphism h : H −→ X such that
dh = g and hf = b.

G a //

◦c
��

X

f

��

Z

g
>>

d
��
H

b
//

h

FF

Y

So we have cdh = cg = a and hf = b.

So f is in Qis�.

Remark 195 In Gph, the following statements (1–4) hold.

(1) We have AcCofib = �Fib; cf. Lemma 191.

(2) We have AcCofib� = Fib; cf. Lemma 192.

(3) We have Cofib = �AcFib; cf. Definition 144.

(4) We have Cofib� = AcFib; cf. Lemma 193.

153

Remark 196 In Gph, the following statements (1–4) hold.

(1) We have (�Fib)� = AcCofib� = Fib; cf. Remark 195.

(2) We have (�AcFib)� = Cofib� = AcFib; cf. Remark 195.

(3) We have �(Cofib�) = �AcFib = Cofib; cf. Remark 195.

(4) We have �(AcCofib�) = �Fib = AcCofib; cf. Remark 195.

Remark 197 In Gph, we have

Iso = Fib∩ �Fib
Lemma 191

= Fib∩AcCofib
Lemma 185

= Fib∩Cofib∩Qis .

Proof. We show that Fib∩AcCofib
!
= Iso.

Ad Iso
!

⊆ Fib∩AcCofib.

We have Iso ⊆ Fib; cf. Remark 129.

We have Iso ⊆ AcCofib; cf. Remark 165.

Ad Fib∩AcCofib
!

⊆ Iso.

Suppose given a fibration f : G −→ H that is an acyclic cofibration.

We consider the following commutative diagram.

G
idG //

◦f
��

G

_f
��

H
idH
// H

We have AcCofib = �Fib and AcCofib� = Fib; cf. Lemmas 191 and 192.

So there exists a graph morphism h : H −→ G such that the following diagram is commutative.

G
idG //

◦f
��

G

_f
��

H
idH
//

h

>>

H

Thus f is an isomorphism.

154

Chapter 6

Gph is a model category

In Gph, we have defined subsets Qis(Gph), Fib(Gph) and Cofib(Gph) of Mor(Gph) in Defini-
tions 115, 127.(1) and 144.

We want to show that the category Gph, together with these subsets, is a model category in the
sense of Definition 198 below.

We will use notations introduced in Definitions 5, 9, 14, 13 and 15.

Definition 198 Suppose given a category M having an initial object ¡ and a terminal ob-
ject ! . Suppose given subsets Fib(M) ⊆ Mor(M) of fibrations, Cofib(M) ⊆ Mor(M)
of cofibrations and Qis(M) ⊆ Mor(M) of quasiisomorphisms. We consider the axioms
AFib ,ACofib ,AQis ,ALift ,AFact ,MFib and MCofib below.

(1) The category M together with Fib(M), Cofib(M) and Qis(M) is called a basic model
category if (AFib 1, 2), (ACofib 1, 2), (AQis 1, 2), ALift , AFact , (MFib 1, 2) and (MCofib 1, 2)
hold.

(2) The category M together with Fib(M), Cofib(M) and Qis(M) is called a proper basic
model category if (AFib 1, 2), (ACofib 1, 2), (AQis 1, 2), ALift , AFact , MFib and MCofib hold.

(3) The category M together with Fib(M), Cofib(M) and Qis(M) is called a Quillen model
category if MPO , MPB , (AFib 1, 2), (ACofib 1, 2), (AQis 1, 2), ALift , AFact , (MFib 1, 2) and
MCofib (1, 2) hold.

(4) The category M together with Fib(M), Cofib(M) and Qis(M) is called a Quillen closed
model category if MPO , MPB , AFib , ACofib , AQis , ALift , AFact , (MFib 1, 2) and (MCofib 1, 2)
hold.

We define the subset AcFib(M) ⊆ Mor(M) of acyclic fibrations to be

AcFib(M) := Fib(M) ∩Qis(M).

We define the subset AcCofib(M) ⊆ Mor(M) of acyclic cofibrations to be

AcCofib(M) := Cofib(M) ∩Qis(M).

155

156

Suppose given a morphism f : G −→ H in Mor(M).

To indicate that f is a quasiisomorphism, we often write G ≈
f // H .

To indicate that f is a fibration, we often write G �f // H .

To indicate that f is an acyclic fibration, we often write G
f // H .

To indicate that f is a cofibration, we often write G •
f // H .

To indicate that f is an acyclic cofibration, we often write G ◦
f // H .

Suppose given G ∈ Ob(M). Then G is called fibrant, if G � // ! . Moreover G is called
cofibrant, if ¡ • // G .

We consider the following properties.

(MPO) Suppose given the diagram

X u //

f
��

Y

X ′

in M. Then there exists a pushout in M as follows.

X
u //

f
��

Y

g
��

X ′ u′
// Y ′

(MPB) Suppose given the diagram
Y

g
��

X ′ u′
// Y ′

in M. Then there exists a pullback in M as follows.

X
u //

f
��

Y

g
��

X ′ u′
// Y ′

• AFib := (AFib 1) ∧ (AFib 2) ∧ (AFib 3) where:

(AFib 1) We have Iso(M) ⊆ Fib(M).

(AFib 2) Suppose given X �f // Y and Y �g // Z in Mor(M). Then we have X �fg // Z .

(AFib 3) The subset Fib(M) ⊆ Mor(M) is closed under retracts; cf. Definition 23.

• ACofib := (ACofib 1) ∧ (ACofib 2) ∧ (ACofib 3), where:

(ACofib 1) We have Iso(M) ⊆ Cofib(M).

157

(ACofib 2) Suppose given X •
f // Y and Y •

g // Z in Mor(M). Then we have X •
fg // Z .

(ACofib 3) The subset Cofib(M) ⊆ Mor(M) is closed under retracts; cf. Definition 23.

• AQis := (AQis 1) ∧ (AQis 2) ∧ (AQis 3), where:

(AQis 1) We have Iso(M) ⊆ Qis(M).

(AQis 2) The set Qis(M) ⊆ Mor(M) satisfies (2 of 3).

(AQis 3) The subset Qis(M) ⊆ Mor(M) is closed under retracts; cf. Definition 23.

• ALift := (ALift 1) ∧ (ALift 2), where:

(ALift 1) We have AcCofib(M) � Fib(M); cf. Definition 15.

(ALift 2) We have Cofib(M) � AcFib(M); cf. Definition 15.

• ÂLift := (ÂLift 1) ∧ (ÂLift 2), where:

(ÂLift 1) We have AcCofib(M) �̂ Fib(M); cf. Definition 27.

(ÂLift 2) We have Cofib(M) �̂ AcFib(M); cf. Definition 27.

• AFact := (AFact 1) ∧ (AFact 2), where:

(AFact 1) For X
f // Y in M there exists a commutative diagram in M as follows.

U

�h

��
X

f //

◦g
>>

Y

(AFact 2) For X
f // Y in M there exists a commutative diagram in M as follows.

U
h

��
X

f //

•
g

>>

Y

• MFib := (MFib 1) ∧ (MFib 2) ∧ (MFib 3), where:

(MFib 1) Suppose given the diagram
Y

_g
��

X ′ u′
// Y ′

in M. Then there exists a pullback in M as follows.

X
u //

_f

��

Y

_g

��
X ′ u′

// Y ′

158

(MFib 2) Suppose given the diagram
Y

g

��
X ′ u′

// Y ′

in M. Then there exists a pullback in M as follows.

X u //

f

��

Y

g

��
X ′ u′

// Y ′

(MFib 3) Suppose given the diagram
Y

_g

��
X ′ ≈

u′
// Y ′

in M. Then there exists a pullback in M as follows.

X ≈
u //

_f

��

Y

_g

��
X ′ ≈

u′
// Y ′

• MCofib := (MCofib 1) ∧ (MCofib 2) ∧ (MCofib 3), where:

(MCofib 1) Suppose given the diagram

X u //

•f

��

Y

X ′

in M. Then there exists a pushout in M as follows.

X
u //

•f

��

Y

•g

��
X ′ u′

// Y ′

(MCofib 2) Suppose given the diagram

X
u //

◦f

��

Y

X ′

159

in M. Then there exists a pushout in M as follows.

X
u //

◦f

��

Y

◦g

��
X ′ u′

// Y ′

(MCofib 3) Suppose given the diagram

X ≈
u //

•f

��

Y

X ′

in M. Then there exists a pushout in M as follows.

X ≈
u //

•f

��

Y

•g

��
X ′ ≈

u′
// Y ′

Remark 199

(1) We have ÂLift ∧ (AQis 3) if and only if ALift ∧(AFib 3) ∧ (ACofib 3) ∧ (AQis 3) ∧ AFact .

(2) The category M together with Fib(M), Cofib(M) and Qis(M) is a Quillen closed model
category if and only if MPO , MPB , (AFib 1, 2), (ACofib 1, 2), AQis , ÂLift , (MFib 1, 2) and
(MCofib 1, 2) hold.

Proof.

Ad (1).

Ad ⇒.

We have AcCofib(M) �̂ Fib(M) and Cofib(M) �̂ AcFib(M) and the subset Qis(M) ⊆
Mor(M) is closed under retracts.

Because of (C 3) we have AFact ; cf. Definition 27.

Since AcCofib(M) �̂ Fib(M), we have AcCofib(M) � Fib(M) and (AFib 3); cf. Remark 28.

Since Cofib(M) �̂ AcFib(M), we have Cofib(M) � AcFib(M) and (ACofib 3); cf. Remark 28.

So because of AcCofib(M) � Fib(M) and Cofib(M) � AcFib(M) we have ALift .

Ad ⇐.

The subsets Fib(M), Cofib(M) and Qis(M) in Mor(M) are closed under retracts by (AFib 3),
(ACofib 3) and (AQis 3).

Hence the subsets AcFib(M) and AcCofib(M) in Mor(M) are closed under retracts.

160

Because of (AFact 1), (ALift 1), (AFib 3) and AcCofib(M) being closed under retracts we have
(ÂLift 1) by Remark 28.

Because of (AFact 2), (ALift 2), AcFib(M) being closed under retracts and (ACofib 3) we have
(ÂLift 2) by Remark 28.

Ad (2).

This follows using (1).

Reminder 200 We recall the meaning of AcCofib(M) � Fib(M); cf. ALift , Definition 15.

Suppose given an acyclic cofibration X ◦
f // X ′ in AcCofib(M) and a fibration Y �g // Y ′ in

Fib(M). Suppose given a commutative diagram in M as follows.

X
u //

◦f
��

Y

_g
��

X ′
u′
// Y ′

Then there exists a h : X ′ −→ Y in Mor(M) such that fh = u and such that hg = u′, i.e. we
have the following commutative diagram.

X u //

◦f
��

Y

_g
��

X ′
u′
//

∃h
==

Y ′

The morphism h is also called a lift of this quadrangle.

Reminder 201 We recall the meaning of Cofib(M) � AcFib(M); cf. ALift , Definition 15.

Suppose given a cofibration X •
f // X ′ in Cofib(M) and an acyclic fibration Y

g // Y ′ in
AcFib(M). Suppose given a commutative diagram as follows.

X u //

•f
��

Y

g
��

X ′
u′
// Y ′

Then there exists h : X ′ −→ Y in Mor(M) such that fh = u and such that hg = u′, i.e. we have
the following commutative diagram.

X
u //

•f
��

Y

g
��

X ′
u′
//

∃h
==

Y ′

The morphism h is also called a lift of this quadrangle.

161

Remark 202

(1) D. Quillen introduced Quillen model categories under the name model categories in
[4, §I.1].

He introduced Quillen closed model categories under the name closed model categories in
[4, §I.5]; cf. [4, §I.5, Prop. 2].

(2) M. Ritter used basic proper model categories under the name model categories in
[6, Def. 172].

(3) The conditions (MFib 3) and (MCofib 3) were introduced in [5, §1, Def. 1.2].

Reminder 203 We defined the subsets Fib(Gph), Qis(Gph) ⊆ Mor(Gph) directly; cf. Defini-
tions 127 and 115.

We defined AcFib(Gph) = Fib(Gph) ∩Qis(Gph); cf. Definition 138.

We defined Cofib(Gph) = �AcFib(Gph); cf. Definition 144.

The following proposition is due to Bisson and Tsemo [3, Cor. 4.8].

Proposition 204 The category Gph together with Fib(Gph), Cofib(Gph) and Qis(Gph), is a
Quillen closed model category; cf. Definition 198.(4), Reminder 203.

In addition, Gph satisfies (MFib 3).

Moreover, for AcCofib(Gph), as defined by (AcCofib 1–5) in Definition 162, we have the equality
AcCofib(Gph) = Cofib(Gph) ∩Qis(Gph).

Finally, note that Gph satisfies ÂLift ; cf. Remark 199.

Proof. We have AcCofib = Cofib∩Qis; cf. Lemma 185.

We have MPO ; cf. Construction 83.

We have MPB ; cf. Construction 97.

We have (AFib 1); cf. Remark 129.

We have (AFib 2); cf. Remark 131.

We have (AFib 3); cf. Remark 130.

We have (ACofib 1); cf. Remark 145.

We have (ACofib 2); cf. Remark 147.

We have (ACofib 3); cf. Remark 146.

We have (AQis 1); cf. Remark 116.

We have (AQis 2); cf. Remark 123.

We have (AQis 3); cf. Remark 117.

We have (ALift 1), i.e. AcCofib(Gph) � Fib(Gph); cf. Remark 174.

We have (ALift 2), i.e. Cofib(Gph) � AcFib(Gph); cf. Definition 144.

162

We have (AFact 1); cf. Lemma 184.

We have (AFact 2); cf. Lemma 188.

We have (MFib 1); cf. Remark 133.

We have (MFib 2); cf. Remark 143.

We have (MFib 3); cf. Remarks 125 and 133.

We have (MCofib 1); cf. Remark 148.

We have (MCofib 2); cf. Remark 171.

Remark 205 In Gph, the axiom (MCofib 3) does not hold.

In other words, there exists a quasiisomorphism in Gph, whose pushout along a cofibration is
not a quasiisomorphism.

Counterexample.

Consider the following thin graph.

Y : 1
α1
((
2

α2

hh 3
α5oo

α3
((
4

α4

hh

We consider the cofibration dC2 : C2 ⊔C2 • // C2 ; cf. Definition 154.

We consider the quasiisomorphism f : C2 ⊔C2 −→ Y with

(1, v0)Vf := 1, (1, v1)Vf := 2,

(2, v0)Vf := 3, (2, v1)Vf := 4

and with
(1, e0) Ef := α1 , (1, e1) Ef := α2 ,

(2, e0) Ef := α3 , (2, e1) Ef := α4 .

Constructing the pushout using Magma, we obtain

C2 ⊔C2 ≈
f //

•dC2

��

Y

h

��
C2

f ′
// Y ′

with

Y ′ : 1
β1
((

β3

��
2

β2

hh

1Vh = 1, 2Vh = 2, 3Vh = 1, 4Vh = 2,

163

α1 Eh = β1 , α2 Eh = β2 , α3 Eh = β1 ,

α4 Eh = β2 , α5 Eh = β3

and

v0Vf ′ = 1, e0 Ef ′ = β1 ,

v1Vf ′ = 2, e1 Ef ′ = β2 .

But the resulting graph morphism f ′ : C2 −→ Y ′ is not a quasiisomorphism because
|(C2 ,C2)Gph| = 2 ̸= 4 = |(C2 , Y

′)Gph|.

Via Magma [2] we proceed as follows, using the functions given in §10 below.

C2C2 := DCN(2)[1];

C2 := DCN(2)[2];

d := DCN(2)[3];

Y := <[1,2,3,4],[<1,1,2>,<2,2,1>,<3,3,4>,<4,4,3>,<3,5,2>]>;

f := IsSubgraph(C2C2,Y)[1];

PO := PushoutGraphs(C2C2,Y,C2,f,d);

Yp := PO[1]; // "Y prime" = Y’

fp := PO[2]; // "f prime" = f’

h := PO[3];

> C2;

<[1, 2], [<1, 1, 2>, <2, 2, 1>]>

> C2C2;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 1>, <3, 3, 4>, <4, 4, 3>]>

> d;

<[<1, 1>, <2, 2>, <3, 1>, <4, 2>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 2, 1>>, <<3, 3, 4>, <1, 1, 2>>, <<4, 4, 3>, <2, 2, 1>>]>

> Y;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 1>, <3, 3, 4>, <4, 4, 3>, <3, 5, 2>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 2, 1>>, <<3, 3, 4>, <3, 3, 4>>, <<4, 4, 3>, <4, 4, 3>>]>

> Yp;

<[1, 2], [<1, 1, 2>, <2, 2, 1>, <1, 3, 2>]>

> fp;

<[<1, 1>, <2, 2>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>]>

> h;

<[<1, 1>, <2, 2>, <3, 1>, <4, 2>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 2, 1>>, <<3, 3, 4>, <1, 1, 2>>, <<4, 4, 3>, <2, 2, 1>>,

<<3, 5, 2>, <1, 3, 2>>]>

> IsQis_Bound(fp,C2,Yp,2);

false

> #ListOfnCycles(C2,2);

2

> #ListOfnCycles(Yp,2);

4

164

Note that the calculated graph morphism h : Y −→ Y ′ is a cofibration since cofibrations are
stable under pushouts; cf. Remark 148.

In the similar situation of the pointed category of graphs, D. Vicinsky has constructed an ex-
ample that shows that quasiisomorphisms are not stable under pushouts along cofibrations;
cf. [7, Prop. 5.8].

Chapter 7

A sufficient condition for a graph
morphism to be a quasiisomorphism

Definition 206 Suppose given a graph morphism f : G −→ H. An edge eH ∈ EH is called
unitargeting with respect to f , if

|{ẽ tG : ẽ ∈ EG , ẽEf = eH}| = 1.

Example 207 We consider the following graph morphism.

G : 1
α1

��
2

α2 // 4

3

α3

@@

H : 1
β // 2

f

��

Here, f : G −→ H is the graph morphism mapping the vertices and the edges in a vertical way.

Then the edge β ∈ EH is unitargeting with respect to f , since we have

|{ẽ tG : ẽ ∈ EG , ẽEf = β}| = |{α1 tG , α2 tG , α3 tG}| = |{4}| = 1 .

165

166

Lemma 208 Suppose given graphs G and H and an etale fibration f : G −→ H; cf. Defini-
tion 127.(2).

Recall that f being an etale fibration means that the map

Ef,v : G(v, ∗) −→ H(vVf , ∗)

is bijective for v ∈ VG .

Suppose given a commutative diagram in Gph as follows, where ιn = ι0,n : D0 −→ Dn ; cf.
Definition 56.(3).

D0
a //

ιn
��

G

f
��

Dn
y // H

Then there exists a unique graph morphism ŷ : Dn −→ G such that the following diagram is
commutative.

D0
a //

ιn
��

G

f
��

Dn

ŷ
>>

y
// H

Proof. We have to show that there exists a graph morphism ŷ : Dn −→ G such that ιnŷ
!
= a and

such that ŷf
!
= y.

Existence.

We claim that for k ∈ [0, n] there exists ŷk : Dk −→ G such that ι0,kŷk = a and ŷkf = ιk,ny; cf.
Definition 56.(3).

We carry out an induction for k ∈ [0, n]:

If k = 0, we let ŷ0 := a : D0 −→ G. We have ι0,0ŷ0 = idD0 a = a and ŷ0f = ι0,ny.

D0
a //

idD0

��

G

f

��
D0

ŷ0=a

??

ι0,ny
// H

Induction step: Suppose given k ∈ [0, n − 1] and ŷk : Dk −→ G such that ι0,kŷk = a and
ŷkf = ιk,ny.

D0
a //

ι0,k
��

G

f

��

Dk

ŷk

99

ιk,k+1

��
Dk+1 ιk+1,ny

// H

167

We show that there exists ŷk+1 : Dk+1 −→ G such that ι0,k+1ŷk+1 = a and ŷk+1f = ιk+1,ny.

We have v̂k Vŷk ∈ VG and v̂k Vŷk Vf = v̂k Vy ∈ VH .

Since the map Ef,v̂k Vŷk
: G(v̂k Vŷk , ∗) −→ H(v̂k Vy, ∗) is bijective and since êk Ey sH = êk sDn Vy =

v̂k Vy , there exists a unique edge ẽ ∈ G(v̂k Vŷk , ∗) ⊆ EG such that ẽEf = êk Ey ∈ H(v̂k Vy , ∗).

So let ŷk+1 : Dk+1 −→ G with v̂i Vŷk+1
= v̂i Vŷk for i ∈ [0, k] and v̂k+1 Vŷk+1

= ẽ tG , as well as
êi Eŷk+1

:= êi Eŷk for i ∈ [0, k − 1] and êk Eŷk+1
:= ẽ .

We have to show that ŷk+1 is in fact a graph morphism.

We have to show that êi Eŷk+1
sG

!
= êi sDk+1

Vŷk+1
and that êi Eŷk+1

tG
!
= êi tDk+1

Vŷk+1
in VG for

i ∈ [0, k].

If i ∈ [0, k − 1], then we have êi Eŷk+1
sG = êi Eŷk sG = êi sDk

Vŷk = v̂i Vŷk = v̂iVŷk+1
=

(êi sDk+1
)Vŷk+1

.

If i ∈ [0, k − 1], then we have êi Eŷk+1
tG = êi Eŷk tG = êi tDk

Vŷk = v̂i+1Vŷk = v̂i+1Vŷk+1
=

(êi tDk+1
)Vŷk+1

.

If i = k, then we have êk Eŷk+1
sG = ẽ sG = v̂k Vŷk = v̂k Vŷk+1

= êk sDk+1
Vŷk+1

.

If i = k, then we have êk Eŷk+1
tG = ẽ tG = v̂k+1Vŷk+1

= (êk tDk+1
)Vŷk+1

.

So ŷk+1 is in fact a graph morphism.

We have to show that ι0,k+1ŷk+1
!
= a.

In fact, we have v̂0Vι0,k+1
Vŷk+1

= v̂0Vŷk+1
= v̂0Vŷk = v̂0Vι0,k Vŷk = v̂0Va .

We have to show that ŷk+1f
!
= ιk+1,ny.

Since the direct graph Dk+1 is thin, it suffices to show that Vŷk+1f
!
= Vιk+1,ny .

Suppose given i ∈ [0, k + 1].

If i ∈ [0, k], then we have v̂i Vŷk+1f = v̂iVŷk+1
Vf = v̂i Vŷk Vf = v̂iVιk,ny = v̂i Vιk,n Vy = v̂i Vy =

v̂iVιk+1,ny .

If i = k + 1 then we have v̂k+1Vŷk+1f = v̂k+1Vŷk+1
Vf = ẽ tG Vf = ẽEf tH = êk Ey tH =

êk tDn Vy = v̂k+1 Vy = v̂k+1Vιk+1,ny .

D0
a //

ι0,k
��

G

f

��

Dk

ιk,k+1

��

ŷk

<<

Dk+1

ιk+1,n

��

ŷk+1

EE

Dn
y // H

So we have shown in an inductive way, that there exists a graph morphism ŷ := ŷn : Dn −→ G
such that ι0,nŷ = a and ŷf = y.

168

Uniqueness. Suppose given commutative diagrams as follows.

D0
a //

ι0,n

��

G

f
��

D0
a //

ι0,n

��

G

f
��

Dn

ŷ
>>

y // H Dn

ŷ′
>>

y // H

We have to show that ŷ
!
= ŷ′.

Since the direct graph Dn is thin, it suffices to show that Vŷ
!
= Vŷ′ .

We want to show that v̂k Vŷ
!
= v̂k Vŷ′ for k ∈ [0, n].

We proceed by induction on k.

If k = 0 then we have v̂0Vŷ
Def. ι0,n
= v̂0Vι0,n Vŷ

ι0,nŷ=a
= v̂0Va

ι0,nŷ′=a
= v̂0Vι0,n Vŷ′

Def. ι0,n
= v̂0Vŷ′ .

Induction step: Let k ∈ [0, n− 1]. We suppose that v̂k Vŷ = v̂k Vŷ′ .

We have to show that v̂k+1 Vŷ
!
= v̂k+1Vŷ′ .

Let vG := v̂k Vŷ = v̂k Vŷ′ . Since the graph morphism f : G −→ H is an etale fibration, the map
Ef,vG : G(vG, ∗) −→ H(vG Vf , ∗) is bijective.

We have vGVf = v̂k Vŷ Vf = v̂k Vy .

We have êk Ey ∈ H(vGVf , ∗) since (êk Ey) sH = êk sDn Vy = v̂k Vy = vGVf .

We have êk Eŷ ∈ G(vG, ∗) because (êk Eŷ) sG = êk sDn Vŷ = v̂k Vŷ = vG .

Moreover, (êk Eŷ) Ef,vG = êk Eŷ Ef = (êk Ey) .

Likewise, we have êk Eŷ′ ∈ G(vG, ∗) and (êk Eŷ′) Ef,vG = (êk Ey) .

Since the map Ef,vG is bijective, we have êk Eŷ = êk Eŷ′ and so v̂k+1Vŷ = êk tDn Vŷ = êk Eŷ tG =
êk Eŷ′ tG = êk tGVŷ′ = v̂k+1Vŷ′ .

Lemma 209 Suppose given graphs G and H and an etale fibration f : G −→ H; cf. Defini-
tion 127.(2).

Recall that f being an etale fibration means that the map

Ef,v := Ef |
H(vVf ,∗)
G(v,∗) : G(v, ∗) −→ H(vVf , ∗)

is bijective for v ∈ VG .

Suppose given graph morphisms û : Cn −→ G and û′ : Cn −→ G such that ûf = û′f and
v0Vû = v0Vû′ .

Then û = û′.

Proof. Let u := ûf = û′f : Cn −→ H.

Consider the graph morphism a : D0 −→ G with v̂0Va = v0Vû = v0Vû′ , the graph morphism
rn : Dn −→ Cn with v̂i Vr = vi for i ∈ [0, n] and the graph morphism ιn = ι0,n : D0 −→ Dn ; cf.

169

Definition 56.(3). We have the following commutative diagrams.

D0
a //

ιn
��

G

f
��

Dn rn
// Cn

û

>>

u
// H

D0
a //

ιn
��

G

f
��

Dn rn
// Cn

û′
>>

u
// H

Then we have (rnû)f = rnu and (rnû
′)f = rnu, and we have ιn(rnû) = a and ιn(rnû

′) = a.

Because of Lemma 208 there exists a unique graph morphism ŷ : Dn −→ G such that ιnŷ = a
and ŷf = rnu. Therefore, we have rnû = ŷ = rnû

′.

Since rn is surjective, we conclude that û = û′; cf. Remark 72.

Proposition 210 Suppose given graphs G and H.

Suppose given an etale fibration f : G −→ H that satisfies the following property (Uni).

(Uni) For n ⩾ 1 and each graph morphism u : Cn −→ H, there exists i ∈ Z⧸nZ such that
ei Eu ∈ EH is unitargeting with respect to f .

Then the graph morphism f : G −→ H is a quasiisomorphism; cf. Definition 115.

Note that altogether, f is an acyclic fibration; cf. Definition 138.

Proof. Suppose given n ⩾ 1. Suppose given a graph morphism u0 : Cn −→ H.

We have to show that there exists a unique graph morphism û0 : Cn −→ G such that û0f = u.

Since (Uni) is satisfied, we may choose i ∈ Z⧸nZ such that ei Eu0 ∈ EH is unitargeting.

Let u := ai+1 u0 ; cf. Definition 67. Then u0 = a−i−1u.

So the edge ei Eu0 = ei a−i−1 Eu = e−1 Eu ∈ EH is unitargeting.

We have
{û0 ∈ (Cn , G) : û0f = u0}

= {a−i−1 û : û ∈ (Cn , G), a−i−1 ûf = u0 = a−i−1 u}
= {a−i−1 û : û ∈ (Cn , G)Gph , ûf = u}
= ({û ∈ (Cn , G) : ûf = u})(a−i−1 , G) .

So we have to show that there exists a unique graph morphism û : Cn −→ G such that ûf = u.

G

f
��

Cn ũ
//

û

>>

H

170

Uniqueness.

Suppose given graph morphisms û : Cn −→ G and û′ : Cn −→ G such that ûf = u = û′f .

We have to show that û
!
= û′.

We have (e−1 Eû) Ef = e−1 Eu = (e−1 Eû′) Ef .

Since e−1 Eu is unitargeting, we have e−1 Eû tG = e−1 Eû′ tG .

So we have v0Vû = e−1 tCn Vû = e−1 Eû tG = e−1 Eû′ tG = e−1 tCn Vû′ = v0Vû′ .

By Lemma 209 we obtain û = û′.

Existence.

Let {vG} := {ê tG : ê ∈ EG , êEf = e−1 Eu}, using that e−1 Eu is unitargeting.

Consider the graph morphism a : D0 −→ G with v̂0Va := vG , the graph morphism rn : Dn −→ Cn

with v̂i Vr = vi for i ∈ [0, n] and the graph morphism ιn = ι0,n : D0 −→ Dn ; cf. Definition 56.(3).
We have the following commutative diagram.

D0
a //

ιn
��

G

f
��

Dn rn
// Cn u

// H

We show that it commutes, i.e. that af
!
= ιnrnu.

We choose ê ∈ EG with êEf = e−1 Eu . Then v̂0Vaf = vGVf = ê tGVf = êEf tH = e−1 Eu tH =
e−1 tCn Vu = v0Vu = v̂0Vru = v̂0Vιnru .

So the diagram is in fact commutative.

By Lemma 208 there exists a graph morphism ŷ : Dn −→ G such that

D0
a //

ιn
��

G

f
��

Dn

ŷ

66

rn
// Cn u

// H

commutes.

Now we show that there exists a graph morphism û : Cn −→ G such that rnû
!
= ŷ.

Therefor we have to show that v̂nVŷ
!
= v̂0Vŷ .

We have ên−1 Eŷ ∈ EG .

We have (ên−1 Eŷ) Ef = ên−1 Ern Eu = en−1 Eu = e−1 Eu .

So we have ên−1 Eŷ tG = vG .

So we have v̂nVŷ = ên−1 tDn Vŷ = ên−1 Eŷ tG = vG = v̂0Va = v̂0Vιn Vŷ = v̂0Vŷ .

171

So we have v̂n Vŷ = v̂0Vŷ .

D0
a //

ιn
��

G

f
��

Dn

ŷ

66

rn
// Cn

û

>>

u
// H

Now we have rnûf = ŷf = rnu.

Since rn is surjective, we conclude that ûf = u; cf. Remark 72.

172

Chapter 8

Duality

Definition 211

(1) Suppose given a graph G.

We define the opposite graph Gop := (VGop ,EGop , sGop , tGop) by VGop := VG , EGop := EG ,
sGop := tG and tGop := sG.

(2) Suppose given a graph morphism f : G −→ H.

We define the opposite graph morphism f op = (Vfop ,Efop) : Gop −→ Hop with Vfop := Vf :
VG −→ VH and Efop := Ef : EG −→ EH .

In fact, we have Efop sHop = Ef tH = tGVf = sGop Vfop and Efop tHop = Ef sH = sGVf =
tGop Vfop .

Remark 212 Suppose given graph morphisms f : X −→ Y and g : Y −→ Z.

(1) We have (f op)op = f .

(2) We have (fg)op = f opgop.

Proof.

Ad (1). We have (Xop)op = X and (Y op)op = Y ; cf. Definition 211.(1).

We have V(fop)op = Vfop = Vf and E(fop)op = Efop = Ef ; cf. Definition 211.(1).

Ad (2). We have V(fg)op = Vfg = Vf Vg = Vfop Vgop = Vfopgop and E(fg)op = Efg = Ef Eg =
Efop Egop = Efopgop ; cf. Definition 211.

Remark 213 Suppose given n ∈ N.

Wel define the graph isomorphism ζn : Cn
∼−→ Cop

n as follows.

173

174

We let
ζn : Cn

∼−→ Cop
n

Vζn : VCn −→ VCop
n

vk 7→ v−k for k ∈ Z⧸nZ
Eζn : ECn −→ ECop

n

ek 7→ e−1−k for k ∈ Z⧸nZ
Suppose given an edge ek ∈ ECn .

We have ek Eζn sCop
n

= e−1−k sCop
n

= e−1−k tCn = v−k = vk Vζn = ek sCn Vζn .

We have ek Eζn tCop
n

= e−1−k tCop
n

= e−1−k sCn = v−1−k = vk+1Vζn = ek tCn Vζn .

So ζn : Cn
∼−→ Cop

n is in fact a graph isomorphism.

We have (Cop
n)op = Cn ; cf. Remark 212.

We have the graph isomorphism ζopn := (Vζn ,Eζn) : C
op
n −→ Cn ; cf. Definition 211.

We show that we have ζnζ
op
n

!
= idCn and ζopn ζn

!
= idCop

n
.

Suppose given a vertex vk ∈ VCn = VCop
n
.

We have vk Vζnζ
op
n

= vk Vζn Vζopn = v−k Vζopn = v−k Vζn = v−(−k) = vk = vk VidCn
.

We have vk Vζopn ζn = vk Vζopn Vζn = vk Vζn Vζn = v−k Vζn = v−(−k) = vk = vk Vid
C
op
n
.

Suppose given an edge ek ∈ ECn = ECop
n
.

We have ek Eζnζ
op
n

= ek Eζn Eζopn = e−1−k Eζopn = e−1−k Eζn = e−1−(−1−k) = ek = ek EidCn
.

We have ek Eζopn ζn = ek Eζopn Eζn = ek Eζn Eζn = e−1−k Eζn = e−1−(−1−k) = ek = ek Eid
C
op
n
.

So we have ζ−1
n = ζopn .

Remark 214 Suppose given a graph morphism f : G −→ H.

Then the graph morphism f op : Gop −→ Hop is a quasiisomorphism if and only if the graph
morphism f : G −→ H is a quasiisomorphism.

Proof. Suppose given k ⩾ 1.

We will show that the map (Ck , f)Gph is bijective if and only if the map (Cop
k , f op) is bijective,

which is the case if and only if the map (Ck , f
op) is bijective.

We consider the following commutative diagram.

g
_

��

(Ck , G)Gph

∼

σ

��

(Ck ,f)Gph // (Ck , H)Gph

∼

τ

��

g
_

��
gop (Cop

k , Gop)Gph

∼

(ζk ,Gop)Gph

��

(Cop
k ,fop)Gph // (Cop

k , Hop)Gph

∼

(ζk ,Hop)Gph

��

gop

(Ck , G
op)Gph

(Ck ,fop)Gph

// (Ck , H
op)Gph

175

Suppose given a graph morphism u ∈ (Ck , G)Gph .

We have uop(Cop
k , f op)Gph = uopf op Rem. 212

= (uf)op = (u(Ck , f)Gph)
op.

So the “upper quadrangle” commutes.

Suppose given a graph morphism r ∈ (Cop
k , Gop)Gph .

We have r(ζn , G
op)Gph(Ck , f

op)Gph = ζnr(Ck , f
op)Gph = ζnrf

op = rf op(ζn , H
op)Gph =

r(Cop
k , f op)Gph(ζn , H

op)Gph .

So the “lower quadrangle” commutes.

The maps σ and τ are bijective because of Remark 212.

The maps (ζn , G
op)Gph and (ζn , H

op)Gph are bijective because of Remark 213.

The graph morphism f : G −→ H is a quasiisomorphism if and only if the map (Ck , f)Gph is
bijective for k ⩾ 1.

By the commutative diagram above, (Ck , f)Gph is bijective if and only if (Ck , f
op)Gph is bijec-

tive.

Hence f is a quasiisomorphism if and only if f op is a quasiisomorphism.

176

Chapter 9

Some examples and counterexamples

The functions that are used in this section to calculate graphs and graph morphisms are given
in §10. They can also be obtained using the electronic appendix, cf. §A.

9.1 Some examples for quasiisomorphisms

Example 215 We consider the following graph morphism.

G : 2′
α5))

α7

��

3′
α6

ii

1
α1
((
2

α2

hh α3

// 3

α4

WW

H : 1
β1
((
2

β2
((

β4

hh 3
β3

hh

f

��

Here, f = (Vf ,Ef) : G −→ H is the graph morphism mapping the vertices and the edges in a
vertical way. So we let

1Vf := 1, 2Vf := 2, 3Vf := 3,

2′Vf := 2, 3′ Vf := 3

177

178

and
α1 Ef := β1 ,

α2 Ef := β4 ,

α3 Ef := β2 ,

α4 Ef := β3 ,

α5 Ef := β2 ,

α6 Ef := β3 ,

α7 Ef := β4 .

Then the graph morphism f is an acyclic fibration.

Proof. Via Magma [2] we will calculate that the graph morphism f is an etale fibration that
satisfies (Uni), using the function SuffCond.

This will show that f is a quasiisomorphism; cf. Proposition 210.

The necessary Magma functions can be found in §10.7, §10.5 and in §10.6; cf. also §A.

The graph G can be obtained with the function trygraph by setting n := 3.

The graph H can be obtained with the function c2chain by setting n := 3.

The graph morphism f can be obtained with the function tryacyclic by setting n := 3.

So letting

G := trygraph(3);

H := c2chain(3);

f := tryacyclic(3);

> G;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>,

<5, 5, 4>, <3, 6, 4>, <4, 7, 1>]>

> H;

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 5>, <2, 2, 3>>,

<<5, 5, 4>, <3, 3, 2>>, <<3, 6, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>]>

we get

> IsGraphMorphism(f,G,H);

true

> SuffCond(f,G,H);

<true, true>

Alternative proof without Proposition 210.

Via Magma we calculate that the graph morphism f is in fact a fibration, using the function
IsFibration given in §10 below.

> IsFibration(f,G,H);

true

179

We will now give a pedestrian proof that f is a quasiisomorphism by classifying all morphisms
from Cn to G respectively to H.

It might be useful as a blueprint for a quasiisomorphy verification in a case where we cannot apply
Proposition 210, or its dual statement using Remark 214.

Let k ∈ N.

We remark that (C2k−1 , H) = ∅ and thus (C2k−1 , G) = ∅.

To prove that f is acyclic, we have to show that the map (C2k , f) : (C2k , G) −→ (C2k , H) is
bijective.

We have to show that for each graph morphism u : C2k −→ H there exists a unique graph morphism
v : C2k −→ G such that vf = u.

G

f

��
C2k u

//

∃!v
==

H

We first show that it suffices to show this for each graph morphism u : C2k −→ H such that
v0 Vu = 2.

Write (C2k , H)2 := {u ∈ (C2k , H) : u graph morphism, v0 Vu = 2}.

Write (C2k , G)2,2′ := {u ∈ (C2k , G) : u graph morphism, v0 Vu ∈ {2, 2′}}.

The map (C2k , f) : (C2k , G) −→ (C2k , H) restricts to the map

(C2k , f)2 := (C2k , f)|(C2k ,H)2
(C2k ,G)2,2′

: (C2k , G)2,2′ −→ (C2k , H)2 .

Recall that the vertices of the graph C2k are written vi for i ∈ Z⧸2kZ.

Recall that the edges of the graph C2k are written ei for i ∈ Z⧸2kZ.

Claim. If (C2k , f)2 is bijective, then (C2k , f) is bijective.

Suppose given u : C2k −→ H. We have to show that there exists a unique graph morphism
v : C2k −→ G such that vf = u.

G

f

��
C2k u

//

∃!v
==

H

A consideration of H shows that there exists s ∈ Z⧸2kZ such that vs Vu = 2.

Let ũ := as · u : C2k −→ H.

We have v0 Vũ = v0 Vas Vu = vs Vu = 2.

Since (C2k , f)2 is bijective, there exists a unique graph morphism ṽ ∈ (C2k , G)2,2′ such that
ṽf = ũ.

G

f

��
C2k

ũ
//

∃!ṽ
==

H

To prove existence, we let v := a−1
s · ṽ.

We obtain vf = a−1
s ṽf = a−1

s ũ = u.

Uniqueness. Suppose given v, v′ ∈ (C2k , G) such that vf = u = v′f .

We have to show that v
!
= v′.

We have as vf = as u = ũ and as v
′f = as u = ũ.

180

Note that V−1
f ({2}) = {2, 2′}.

In particular, v0 Vũ = 2 implies v0 Vas v ∈ {2, 2′} and v0 Vas v′ ∈ {2, 2′}, so as v, as v
′ ∈

(C2k , G)2,2′ .

Since (C2k , f)2 is bijective, we conclude that as v = as v
′. Thus v = v′.

This proves the claim.

Note that the map
Z⧸kZ −→ Z⧸2kZ

i+ kZ 7→ 2i+ 2kZ

exists.

Note that for a graph morphism r : C2k −→ H in (C2k , H)2 we have v2i Vr ∈ {2}, v2i+1 Vr ∈ {1, 3},
e2i Er ∈ {β2 , β4} and e2i+1 Er ∈ {β1 , β3} for i ∈ Z⧸kZ .

Note that for a graph morphism r : C2k −→ G in (C2k , G)2,2′ we have v2i Vr ∈ {2, 2′}, v2i+1 Vr ∈
{1, 3, 3′}, e2i Er ∈ {α2 , α3 , α5 , α7} and e2i+1 Er ∈ {α1 , α4 , α6} for i ∈ Z⧸kZ .

We will introduce bijective maps γ : (C2k , G)2,2′ −→ {0, 1}Z⧸kZ and δ : (C2k , H)2 −→ {0, 1}Z⧸kZ. In
order to show that (C2k , f)2 is bijective, we will show that γ = (C2k , f)2 · δ .

We establish the bijection δ : (C2k , H)2 → {0, 1}Z⧸kZ.

Let
δ : (C2k , H)2 → {0, 1}Z⧸kZ

u 7→ uδ : i 7→

{
0 if v2i+1 Vu = 1

1 if v2i+1 Vu = 3 .

Let
δ̃ : {0, 1}Z⧸kZ → (C2k , H)2

φ 7→ φδ̃

be defined as follows.

Because the graph H is thin it suffices to give Vφδ̃ ; cf. Remark 77.(1).

Let
Vφδ̃ : VC2k

→ VH = {1, 2, 3}
v2i 7→ 2, for i ∈ Z⧸kZ

v2i+1 7→

{
1 if iφ = 0

3 if iφ = 1

}
for i ∈ Z⧸kZ .

To show that the graph morphism φδ̃ is well-defined, we show that there is an edge in EH from

vj Vφδ̃ to vj+1 Vφδ̃ for j ∈ Z⧸2kZ; cf. Remark 79.

We consider two cases:

Case 1: j = 2i for some i ∈ Z⧸kZ.

Then vj Vφδ̃ = v2i Vφδ̃ = 2 and vj+1 Vφδ̃ ∈ {1, 3}.

Subcase: iφ = 0. Then vj+1 Vφδ̃ = v2i+1 Vφδ̃ = 1. And we have β4 ∈ H(2, 1).

Subcase: iφ = 1. Then vj+1 Vφδ̃ = v2i+1 Vφδ̃ = 3. And we have β2 ∈ H(2, 3).

Case 2: j = 2i+ 1 for some i ∈ Z⧸kZ.

Then vj Vφδ̃ = v2i+1 Vφδ̃ ∈ {1, 3} and vj+1 Vφδ̃ = v2i+2 Vφδ̃ = v2(i+1) Vφδ̃ = 2.

Subcase: iφ = 0. Then vj Vφδ̃ = v2i+1 Vφδ̃ = 1. And we have β1 ∈ H(1, 2).

Subcase: iφ = 1. Then vj Vφδ̃ = v2i+1 Vφδ̃ = 3. And we have β3 ∈ H(3, 2).

We have to show that δ · δ̃ !
= id(C2k ,H)2 and that δ̃ · δ !

= id{0,1}Z⧸kZ
.

181

Ad δ · δ̃ !
= id(C2k ,H)2 . We have to show that (u)δδ̃

!
= u for u ∈ (C2k , H)2 .

We have to show that Vuδδ̃

!
= Vu ; cf. Remark 77.(1).

We have v2i V(uδ)δ̃ = 2 = v2i Vu for i ∈ Z⧸kZ.

It remains to show that v2i+1 V(uδ)δ̃

!
= v2i+1 Vu in {1, 3} for i ∈ Z⧸kZ.

So we have to show that 1
!
= v2i+1 Vu if i(uδ) = 0 and that 3

!
= v2i+1 Vu if i(uδ) = 1. This holds

by definition of δ.

Ad δ̃ · δ !
= id{0,1}Z⧸kZ

. We have to show that φδ−1δ
!
= φ for φ ∈ {0, 1}Z⧸kZ. We obtain

i((φδ̃)δ)
Def. δ
=

{
0 if v2i+1 Vφδ̃ = 1

1 if v2i+1 Vφδ̃ = 3

}
Def. δ̃
=

{
0 if iφ = 0

1 if iφ = 1

}
= iφ

for i ∈ Z⧸kZ.

So we have δ̃ = δ−1.

We now establish the bijection γ : (C2k , G)2,2′ −→ {0, 1}Z⧸kZ.

Let
γ : (C2k , G)2,2′ → {0, 1}Z⧸kZ

v 7→ vγ : i 7→

{
0 if v2i+1 Vv = 1

1 if v2i+1 Vv ∈ {3, 3′}.

Let
γ̃ : {0, 1}Z⧸kZ → (C2k , G)2,2′

φ 7→ φγ̃

be defined as follows.

Because the graph G is thin it suffices to give Vφγ̃ ; cf. Remark 77.(1).

Let
Vφγ̃ : VC2k

→ VG = {1, 2, 2′, 3, 3′}

v2i+1 7→


1 if iφ = 0

3 if iφ = 1 and v2i Vφγ̃ = 2

3′ if iφ = 1 and v2i Vφγ̃ = 2′

 for i ∈ Z⧸kZ

v2i+2 7→

{
2 if iφ = 0

2′ if iφ = 1

}
for i ∈ Z⧸kZ .

To show that the graph morphism φγ̃ is well-defined, we show that there is an edge in EG from

vj Vφγ̃ to vj+1 Vφγ̃ for j ∈ Z⧸2kZ ; cf. Remark 79.

We consider two cases:

Case 1: j = 2i+ 2 for some i ∈ Z⧸kZ.

Then vj Vφγ̃ = v2i+2 Vφγ̃ ∈ {2, 2′} and vj+1 Vφγ̃ = v2i+3 Vφγ̃ ∈ {1, 3, 3′}.
Subcase: iφ = 0. Then vj Vφγ̃ = v2i+2 Vφγ̃ = 2.

Subsubcase: (i + 1)φ = 0. Then vj+1 Vφγ̃ = v2(i+1)+1 Vφγ̃ = v2i+3 Vφγ̃ = 1. And we have
α2 ∈ G(2, 1).

Subsubcase: (i + 1)φ = 1. Then vj+1 Vφγ̃ = v2(i+1)+1 Vφγ̃ = v2i+3 Vφγ̃ = 3. And we have
α3 ∈ G(2, 3).

Subcase: iφ = 1. Then vj Vφγ̃ = v2i+2 Vφγ̃ = 2′.

Subsubcase: (i + 1)φ = 0. Then vj+1 Vφγ̃ = v2(i+1)+1 Vφγ̃ = v2i+3 Vφγ̃ = 1. And we have
α7 ∈ G(2′, 1).

182

Subsubcase: (i + 1)φ = 1. Then vj+1 Vφγ̃ = v2(i+1)+1 Vφγ̃ = v2i+3 Vφγ̃ = 3′. And we have
α5 ∈ G(2′, 3′).

Case 2: j = 2i+ 1 for some i ∈ Z⧸kZ.
Then vj Vφγ̃ = v2i+1 Vφγ̃ ∈ {1, 3, 3′} and vj+1 Vφγ̃ = v2i+2 Vφγ̃ ∈ {2, 2′}.
Subcase: iφ = 0. Then vj Vφγ̃ = v2i+1 Vφγ̃ = 1 and vj+1 Vφγ̃ = v2i+2 Vφγ̃ = 2. And we have
α1 ∈ G(1, 2).

Subcase: iφ = 1. Then vj Vφγ̃ = v2i+1 Vφγ̃ ∈ {3, 3′} and vj+1 Vφγ̃ = v2i+2 Vφγ̃ = 2′. And we have
α4 ∈ G(3, 2′) and α6 ∈ G(3′, 2′).

We have to show that γ · γ̃ !
= id(C2k ,G)2,2′

and that γ̃ · γ !
= id{0,1}Z⧸kZ

.

Ad γ · γ̃ !
= id(C2k ,G)2,2′

. We have to show that (v)γγ̃
!
= v for v ∈ (C2k , G)2,2′ .

We have to show that Vvγγ̃
!
= Vv ; cf. Remark 77.(1).

We have to show that v2i+2 V(vγ)γ̃
!
= v2i+2 Vv in {2, 2′} for i ∈ Z⧸kZ .

So we have to show that 2
!
= v2i+2 Vv if i(vγ) = 0 and that 2′

!
= v2i+2 Vf if i(vγ) = 1.

If i(vγ) = 0 then we have v2i+1 Vv = 1 by definition of γ and consequently v2i+2 Vv = 2.

If i(vγ) = 1 then we have v2i+1 Vv ∈ {3, 3′} by definition of γ and consequently v2i+2 Vv = 2′.
This holds by definition of γ.

We have to show that v2i+1 V(vγ)γ̃
!
= v2i+1 Vv in {1, 3, 3′} for i ∈ Z⧸kZ.

So we have to show that 1
!
= v2i+1 Vf if i(fγ) = 0 and that 3

!
= v2i+1 Vv if i(vγ) = 1 and

v2i V(vγ)γ̃ = 2 and that 3′
!
= v2i+1 Vv if i(vγ) = 1 and v2i V(vγ)γ̃ = 2′.

If i(vγ) = 0 then we have v2i+1 Vv = 1 by definition of γ.

If i(vγ) = 1 then, by definition of γ, we have v2i+1 Vv ∈ {3, 3′}.
If i(vγ) = 1 and v2i V(vγ)γ̃ = 2 then, by definition of γ̃, we have (i−1)(vγ) = 0. Then, by definition
of γ, we have v2(i−1)+1 Vv = v2i−1 Vv = 1. By the structure of G we obtain v2i+1 Vv = 3.

If i(vγ) = 1 and v2i V(vγ)γ̃ = 2′ then, by definition of γ̃, we have (i−1)(vγ) = 1. Then, by definition
of γ, we have v2(i−1)+1 Vv = v2i−1 Vv ∈ {3, 3′}. By the structure of G we obtain v2i+1 Vv = 3′.

Ad γ̃ · γ !
= id{0,1}Z⧸kZ

. We have to show that φγ̃γ
!
= φ for φ ∈ {0, 1}Z⧸kZ. We obtain

i((φγ̃)γ)
Def. γ
=

{
0 if v2i+1 Vφγ̃ = 1

1 if v2i+1 Vφγ̃ ∈ {3, 3′}

}
Def. γ̃
=

{
0 if iφ = 0

1 if iφ = 1

}
= iφ

for i ∈ Z⧸kZ.
We have to show commutativity of the following diagram.

(C2k , G)2,2′
γ //

(C2k ,f)

��

{0, 1}Z⧸kZ

id
��

(C2k , H)2
δ
// {0, 1}Z⧸kZ

We have to show that vγ
!
= (v · f)δ for v ∈ (C2k , G)2,2′ .

For i ∈ Z⧸kZ , we have

i((v · f)δ) =

{
0 if v2i+1 Vv·f = 1

1 if v2i+1 Vv·f = 3

}
pre-images

=

{
0 if v2i+1 Vv = 1

1 if v2i+1 Vv ∈ {3, 3′}

}
= i(vγ).

183

Example 216 We consider the following graph morphisms, where G and H are as in Exam-
ple 215.

G : 2′
α5))

α7

��

3′
α6

ii

1
α1
((
2

α2

hh α3

// 3

α4

WW

K : 2′
γ6

��

γ5

��
1

γ1
((
2

γ3

66
γ2

hh 3

γ4

__

f

��

H : 1
β1
((
2

β2
((

β4

hh 3
β3

hh

g

��

Here, the graph morphisms f : G −→ K and g : K −→ H map the vertices and the edges in a
vertical way, where 2′Vf = 2′, 2Vf = 2.

We will verify that the graph morphisms f , g and fg are etale fibrations that satisfy (Uni).

This will show that f , g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma [2] we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function trygraph by setting n := 3.

The graph K can be obtained with the function idtrygraph by setting n := 3.

The graph H can be obtained with the function c2chain by setting n := 3.

The graph morphism f can be obtained with the function tryfactorization by setting n := 3.

The graph morphism g can be obtained with the function idtryacyclic by setting n := 3.

The graph morphism fg can be obtained with the function tryacyclic by setting n := 3.

184

So letting

G := trygraph(3);

K := idtrygraph(3);

H := c2chain(3);

f := tryfactorization(3);

g := idtryacyclic(3);

fg := tryacyclic(3);

> G;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>, <5, 5, 4>,

<3, 6, 4>, <4, 7, 1>]>

> K;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,

<4, 7, 1>]>

> H;

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 2, 1>>, <<2, 3, 3>, <2, 3, 3>>, <<4, 4, 5>, <4, 4, 3>>,

<<5, 5, 4>, <3, 5, 4>>, <<3, 6, 4>, <3, 5, 4>>, <<4, 7, 1>, <4, 7, 1>>]>

> g;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 3>, <2, 2, 3>>,

<<3, 5, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>]>

> fg;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 5>, <2, 2, 3>>,

<<5, 5, 4>, <3, 3, 2>>, <<3, 6, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>]>

we get

> IsGraphMorphism(f,G,K);

true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);

true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));

true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

Varying the input n, we obtain further quasiisomorphisms; cf. Examples 218 and 219 below. This
seems to hold independently of n ⩾ 3.

185

Example 217 We consider the thin graph H from Example 215.

H : 1
β1
((
2

β2
((

β4

hh 3
β3

hh

We want to find graphs G and graph morphisms f : G −→ H such that VG = {1, 2, 3, 4} and
1Vf := 1, 2Vf := 2, 3Vf := 2 and 4Vf := 3 and such that f is an etale fibration that satisfies
(Uni).

Via Magma we proceed as follows.

L := EFU(c2chain(3),[1,2,1]);

> L;

[

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 2>, <3, 3, 2>>]>,

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 2>]>, <[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>,

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>],[<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 3>, <3, 3, 2>>]>,

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 3>]>, <[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>,

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 3>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 2>, <3, 3, 2>>]>,

<[1, 2, 3, 4], [<1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 2>]>, <[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>,

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 3>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 3>, <3, 3, 2>>]>,

<[1, 2, 3, 4], [<1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 3>]>, <[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>

]

> [x[2] : x in L];

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 2>]>

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 3>]>

<[1, 2, 3, 4], [<1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 2>]>

<[1, 2, 3, 4], [<1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,

<4, 6, 3>]>

186

G1 : 2
α2

��

α3

��

G2 : 2
α2

��

α3

��
1

α1

@@

4

α6

^^

1

α1

@@

4
α6

��
3

α4

HH

α5

VV

3
α4

HH

α5

VV

G3 : 2
α2

��

α3

��

G4 : 2
α2

��

α3

��
1

α1

��

4

α6

^^

1
α1

��

4
α6

��
3

α4

HH

α5

VV

3
α4

HH

α5

VV

Note that G1 ≃ G4 and G2 ≃ G3 , with isomorphisms respecting the morphisms to H.

Since our sufficient condition is satisfied the graph morphisms are quasiisomorphisms; cf. Propo-
sition 210.

Cf. also g : K −→ H in Example 216, where K is isomorphic to G3 .

187

Example 218 We consider the following graph morphisms.

G : 3′′
α11))

α13

��

4′
α12

jj

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

WW

1
α1
((
2

α2

hh α3

// 3
α4

WW

α8

GG

K : 2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��
1

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7

66 4

γ8

``

f

��

H : 1
β1
((
2

β2
((

β6

hh 3
β3
((

β5

hh 4
β4

hh

g

��

Here, the graph morphisms f : G −→ K and g : K −→ H map the vertices and the edges in a
vertical way, where 2′Vf = 2′, 2Vf = 2, 3′′Vf = 3′, 3′Vf = 3 and 3Vf = 3.

We will verify that the graph morphisms f , g and fg are etale fibrations that satisfy (Uni).

This will show that f , g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function trygraph by setting n := 4.

The graph K can be obtained with the function idtrygraph by setting n := 4.

The graph H can be obtained with the function c2chain by setting n := 4.

The graph morphism f can be obtained with the function tryfactorization by setting n := 4.

The graph morphism g can be obtained with the function idtryacyclic by setting n := 4.

The graph morphism fg can be obtained with the function tryacyclic by setting n := 4.

188

So letting

G := trygraph(4);

K := idtrygraph(4);

H := c2chain(4);

f := tryfactorization(4);

g := idtryacyclic(4);

fg := tryacyclic(4);

> G;

<[1, 2, 3, 4, 5, 6, 7, 8], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>,

<5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <3, 9, 4>, <4, 10, 1>,

<3, 11, 6>, <6, 12, 7>, <7, 13, 4>]>

> K;

<[1, 2, 3, 4, 6, 7], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>,

<3, 5, 4>, <3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <4, 10, 1>, <7, 13, 4>]>

> H;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>,

<4, 4, 3>, <3, 5, 2>, <2, 6, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>, <<2, 3, 3>, <2, 3, 3>>,

<<4, 4, 5>, <4, 4, 3>>, <<5, 5, 4>, <3, 5, 4>>, <<5, 6, 6>, <3, 6, 6>>,

<<7, 7, 8>, <7, 7, 6>>, <<8, 8, 7>, <6, 8, 7>>, <<3, 9, 4>, <3, 5, 4>>,

<<4, 10, 1>, <4, 10, 1>>, <<3, 11, 6>, <3, 6, 6>>,

<<6, 12, 7>, <6, 8, 7>>, <<7, 13, 4>, <7, 13, 4>>]>

> g;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 6, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 3>, <2, 2, 3>>,

<<3, 5, 4>, <3, 5, 2>>, <<3, 6, 6>, <3, 3, 4>>, <<7, 7, 6>, <3, 3, 4>>,

<<6, 8, 7>, <4, 4, 3>>, <<4, 10, 1>, <2, 6, 1>>, <<7, 13, 4>, <3, 5, 2>>]>

> fg;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 6, 1>>, <<2, 3, 3>, <2, 2, 3>>,

<<4, 4, 5>, <2, 2, 3>>, <<5, 5, 4>, <3, 5, 2>>, <<5, 6, 6>, <3, 3, 4>>,

<<7, 7, 8>, <3, 3, 4>>, <<8, 8, 7>, <4, 4, 3>>, <<3, 9, 4>, <3, 5, 2>>,

<<4, 10, 1>, <2, 6, 1>>, <<3, 11, 6>, <3, 3, 4>>, <<6, 12, 7>,

<4, 4, 3>>, <<7, 13, 4>, <3, 5, 2>>]>

we get

> IsGraphMorphism(f,G,K);

true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);

true

189

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));

true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

Example 219 We consider the following graph morphisms.

G : 4′′
α17))

α19

��

5′
α18

jj

3′′
α11
))

α13

��

4′
α12

jj α15

// 5

α16

WW

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

XX

α14

GG

1
α1
((
2

α2

hh α3

// 3
α4

WW

α8

FF

K : 2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��

4′
γ14
uu

γ13

��
1

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7

55 4

γ8

``

γ11

66 5

γ12

``

f

��

H : 1
β1
((
2

β2
((

β8

hh 3
β3
))

β7

hh 4
β6

ii
β4
((
5

β5

hh

g

��

Here, the graph morphisms f : G −→ K and g : K −→ H map the vertices and the edges in a
vertical way, where 2Vf = 2, 2′Vf = 2′, 3Vf = 3, 3′ Vf = 3, 3′′Vf = 3′, 4Vf = 4, 4′ Vf = 4 and
4′′Vf = 4′.

190

We will verify that the graph morphisms f , g and fg are etale fibrations that satisfy (Uni).

This will show that f , g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function trygraph by setting n := 5.

The graph K can be obtained with the function idtrygraph by setting n := 5.

The graph H can be obtained with the function c2chain by setting n := 5.

The graph morphism f can be obtained with the function tryfactorization by setting n := 5.

The graph morphism g can be obtained with the function idtryacyclic by setting n := 5.

The graph morphism fg can be obtained with the function tryacyclic by setting n := 5.

So letting

G := trygraph(5);

K := idtrygraph(5);

H := c2chain(5);

f := tryfactorization(5);

g := idtryacyclic(5);

fg := tryacyclic(5);

> G;

<[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>,

<4, 4, 5>, <5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <8, 9, 9>,

<10, 10, 11>, <11, 11, 10>, <3, 12, 4>, <4, 13, 1>, <3, 14, 6>,

<6, 15, 7>, <7, 16, 4>, <6, 17, 9>, <9, 18, 10>, <10, 19, 7>]>

> K;

<[1, 2, 3, 4, 6, 7, 9, 10], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>,

<3, 5, 4>, <3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <6, 9, 9>, <10, 10, 9>,

<9, 11, 10>, <4, 13, 1>, <7, 16, 4>, <10, 19, 7>]>

> H;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 5>, <5, 5, 4>,

<4, 6, 3>, <3, 7, 2>, <2, 8, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6>, <9, 9>,

<10, 10>, <11, 9>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>,

<<2, 3, 3>, <2, 3, 3>>, <<4, 4, 5>, <4, 4, 3>>, <<5, 5, 4>, <3, 5, 4>>,

<<5, 6, 6>, <3, 6, 6>>, <<7, 7, 8>, <7, 7, 6>>, <<8, 8, 7>, <6, 8, 7>>,

<<8, 9, 9>, <6, 9, 9>>, <<10, 10, 11>, <10, 10, 9>>,

<<11, 11, 10>, <9, 11, 10>>, <<3, 12, 4>, <3, 5, 4>>,

<<4, 13, 1>, <4, 13, 1>>, <<3, 14, 6>, <3, 6, 6>>,

<<6, 15, 7>, <6, 8, 7>>, <<7, 16, 4>, <7, 16, 4>>,

<<6, 17, 9>, <6, 9, 9>>, <<9, 18, 10>, <9, 11, 10>>,

<<10, 19, 7>, <10, 19, 7>>]>

191

> g;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3>, <9, 5>, <10, 4>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 8, 1>>, <<2, 3, 3>, <2, 2, 3>>,

<<4, 4, 3>, <2, 2, 3>>, <<3, 5, 4>, <3, 7, 2>>, <<3, 6, 6>, <3, 3, 4>>,

<<7, 7, 6>, <3, 3, 4>>, <<6, 8, 7>, <4, 6, 3>>, <<6, 9, 9>, <4, 4, 5>>,

<<10, 10, 9>, <4, 4, 5>>, <<9, 11, 10>, <5, 5, 4>>,

<<4, 13, 1>, <2, 8, 1>>, <<7, 16, 4>, <3, 7, 2>>,

<<10, 19, 7>, <4, 6, 3>>]>

> fg;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>, <9, 5>,

<10, 4>, <11, 5>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 8, 1>>,

<<2, 3, 3>, <2, 2, 3>>, <<4, 4, 5>, <2, 2, 3>>, <<5, 5, 4>, <3, 7, 2>>,

<<5, 6, 6>, <3, 3, 4>>, <<7, 7, 8>, <3, 3, 4>>, <<8, 8, 7>, <4, 6, 3>>,

<<8, 9, 9>, <4, 4, 5>>, <<10, 10, 11>, <4, 4, 5>>,

<<11, 11, 10>, <5, 5, 4>>, <<3, 12, 4>, <3, 7, 2>>,

<<4, 13, 1>, <2, 8, 1>>, <<3, 14, 6>, <3, 3, 4>>,

<<6, 15, 7>, <4, 6, 3>>, <<7, 16, 4>, <3, 7, 2>>,

<<6, 17, 9>, <4, 4, 5>>, <<9, 18, 10>, <5, 5, 4>>,

<<10, 19, 7>, <4, 6, 3>>]>

we get

> IsGraphMorphism(f,G,K);

true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);

true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));

true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

192

Example 220 We consider the following graph morphism.

K : 1
α5

��

α1

��
2

α2 //

α8

��

3
α7

oo

α3

^^

4
α4

VV

α6

@@

H : 1
β4

��

β1

��
2

β2 //
β6

@@

3
β5

kk
β3

^^

f

��

Here, the graph morphism f : K −→ H maps the vertices and the edges in a vertical way, i.e.
we let

1Vf := 1, 2Vf := 2, 3Vf := 3, 4Vf := 1

and

α1 Ef := β1 ,

α2 Ef := β2 ,

α3 Ef := β3 ,

α4 Ef := β1 ,

α5 Ef := β4 ,

α6 Ef := β4 ,

α7 Ef := β5 ,

α8 Ef := β6 .

Then the graph morphism f is an acyclic fibration.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph K can be obtained with the function idTrygraph by setting n := 3.

The graph H can be obtained with the function Doublecyclic by setting n := 3.

The graph morphism f can be obtained with the function idTryacyclic by setting n := 3.

193

So letting

K := idTrygraph(3);

H := Doublecyclic(3);

f := idTryacyclic(3);

> K;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,

<4, 7, 1>, <1, 8, 3>, <3, 9, 1>]>

> H;

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>,

<2, 4, 1>, <1, 5, 3>, <3, 6, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 3>, <2, 2, 3>>,

<<3, 5, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>, <<1, 8, 3>, <1, 5, 3>>,

<<3, 9, 1>, <3, 6, 1>>]>

we get

> IsGraphMorphism(f,K,H);

true

Every edge of H is unitargeting with respect to f .

We obtain that f is an acyclic fibration, in particular a quasiisomorphism, since it satisfies the
sufficient condition of Proposition 210:

> SuffCond(f,K,H);

<true, true>

We extend Example 220 to a commutative trianlge consisting of three quasiisomorphisms in Ex-
ample 221.

194

Example 221 We consider the following graph morphisms.

G : 2′
α5 //α7

��

3′
α6

ii

α10

��

1

α8

!!

α1
��
2α2

oo
α3

// 3

α4

WW

α9

[[

K : 2′
γ6

��

γ5

��
1

γ7

CC

γ1
((
2

γ3
66γ2

oo 3

γ4

__

γ8

VV

f

��

H : 1

β5

��β1((
2

β2 ((

β4

hh 3
β3

hh

β6

[[

g

��

Here, the graph morphisms f : G −→ K and g : K −→ H map the vertices and the edges in a
vertical way, where 2′Vf = 2′ and 2Vf = 2.

We will verify that the graph morphisms f , g and fg are etale fibrations that satisfy (Uni).

This will show that f , g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function Trygraph by setting n := 3.

The graph K can be obtained with the function idTrygraph by setting n := 3.

The graph H can be obtained with the function Doublecyclic by setting n := 3.

The graph morphism f can be obtained with the function Tryfactorization by setting n := 3.

195

The graph morphism g can be obtained with the function idTryacyclic by setting n := 3.

The graph morphism fg can be obtained with the function Tryacyclic by setting n := 3.

So letting

G := Trygraph(3);

K := idTrygraph(3);

H := Doublecyclic(3);

f := Tryfactorization(3);

g := idTryacyclic(3);

fg := Tryacyclic(3);

> G;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>, <5, 5, 4>,

<3, 6, 4>, <4, 7, 1>, <1, 8, 5>, <5, 9, 1>, <3, 10, 1>]>

> K;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,

<4, 7, 1>, <1, 8, 3>, <3, 9, 1>]>

> H;

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>, <1, 5, 3>,

<3, 6, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 2, 1>>, <<2, 3, 3>, <2, 3, 3>>, <<4, 4, 5>, <4, 4, 3>>,

<<5, 5, 4>, <3, 5, 4>>, <<3, 6, 4>, <3, 5, 4>>, <<4, 7, 1>, <4, 7, 1>>,

<<1, 8, 5>, <1, 8, 3>>, <<5, 9, 1>, <3, 9, 1>>, <<3, 10, 1>, <3, 9, 1>>]>

> g;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 3>, <2, 2, 3>>,

<<3, 5, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>, <<1, 8, 3>, <1, 5, 3>>,

<<3, 9, 1>, <3, 6, 1>>]>

> fg;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 5>, <2, 2, 3>>,

<<5, 5, 4>, <3, 3, 2>>, <<3, 6, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>,

<<1, 8, 5>, <1, 5, 3>>, <<5, 9, 1>, <3, 6, 1>>, <<3, 10, 1>, <3, 6, 1>>]>

we get

> IsGraphMorphism(f,G,K);

true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);

true

> SuffCond(g,K,H);

<true, true>

196

> IsEqual(fg,ComposeGraphMorphisms(f,g));

true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

Varying the input n, we obtain further quasiisomorphisms; cf. Examples 222 and 223 below. This
seems to hold independently of n ⩾ 3.

Example 222 We consider the following graph morphisms.

G : 3′′ α11

//
α13

��

4′

α12

]]

α15

��

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

WW

α16

dd1

α14 ((

α1
��
2

α2oo
α3

// 3
α4

WW

α8

GG

K : 2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��
1

γ11

==

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7
66 4

γ8

``

γ12

ZZ

f

��

H : 1

β7

!!β1((
2

β2
((

β6

hh 3
β3

((

β5

hh 4
β4

hh

β8

^^

g

��

197

Here, the graph morphisms f : G −→ K and g : K −→ H map the vertices and the edges in a
vertical way, where 2Vf = 2, 2′Vf = 2′, 3Vf = 3, 3′Vf = 3 and 3′′Vf = 3′.

We will verify that the graph morphisms f , g and fg are etale fibrations that satisfy (Uni).

This will show that f , g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function Trygraph by setting n := 4.

The graph K can be obtained with the function idTrygraph by setting n := 4.

The graph H can be obtained with the function Doublecyclic by setting n := 4.

The graph morphism f can be obtained with the function Tryfactorization by setting n := 4.

The graph morphism g can be obtained with the function idTryacyclic by setting n := 4.

The graph morphism fg can be obtained with the function Tryacyclic by setting n := 4.

So letting

G := Trygraph(4);

K := idTrygraph(4);

H := Doublecyclic(4);

f := Tryfactorization(4);

g := idTryacyclic(4);

fg := Tryacyclic(4);

> G;

<[1, 2, 3, 4, 5, 6, 7, 8], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>,

<5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <3, 9, 4>, <4, 10, 1>, <3, 11, 6>,

<6, 12, 7>, <7, 13, 4>, <1, 14, 8>, <8, 15, 1>, <6, 16, 1>]>

> K;

<[1, 2, 3, 4, 6, 7], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,

<3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <4, 10, 1>, <7, 13, 4>, <1, 14, 6>, <6, 15, 1>]>

> H;

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 3>,

<3, 5, 2>, <2, 6, 1>, <1, 7, 4>, <4, 8, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>, <<2, 3, 3>, <2, 3, 3>>,

<<4, 4, 5>, <4, 4, 3>>, <<5, 5, 4>, <3, 5, 4>>, <<5, 6, 6>, <3, 6, 6>>,

<<7, 7, 8>, <7, 7, 6>>, <<8, 8, 7>, <6, 8, 7>>, <<3, 9, 4>, <3, 5, 4>>,

<<4, 10, 1>, <4, 10, 1>>, <<3, 11, 6>, <3, 6, 6>>, <<6, 12, 7>, <6, 8, 7>>,

<<7, 13, 4>, <7, 13, 4>>, <<1, 14, 8>, <1, 14, 6>>, <<8, 15, 1>, <6, 15, 1>>,

<<6, 16, 1>, <6, 15, 1>>]>

198

> g;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 6, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 3>, <2, 2, 3>>,

<<3, 5, 4>, <3, 5, 2>>, <<3, 6, 6>, <3, 3, 4>>, <<7, 7, 6>, <3, 3, 4>>,

<<6, 8, 7>, <4, 4, 3>>, <<4, 10, 1>, <2, 6, 1>>, <<7, 13, 4>, <3, 5, 2>>,

<<1, 14, 6>, <1, 7, 4>>, <<6, 15, 1>, <4, 8, 1>>]>

> fg;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 6, 1>>, <<2, 3, 3>, <2, 2, 3>>,

<<4, 4, 5>, <2, 2, 3>>, <<5, 5, 4>, <3, 5, 2>>, <<5, 6, 6>, <3, 3, 4>>,

<<7, 7, 8>, <3, 3, 4>>, <<8, 8, 7>, <4, 4, 3>>, <<3, 9, 4>, <3, 5, 2>>,

<<4, 10, 1>, <2, 6, 1>>, <<3, 11, 6>, <3, 3, 4>>, <<6, 12, 7>, <4, 4, 3>>,

<<7, 13, 4>, <3, 5, 2>>, <<1, 14, 8>, <1, 7, 4>>, <<8, 15, 1>, <4, 8, 1>>,

<<6, 16, 1>, <4, 8, 1>>]>

we get

> IsGraphMorphism(f,G,K);

true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);

true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));

true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

199

Example 223 We consider the following graph morphisms.

G : 4′′ α17

//
α19

��

5′

α20

��

α18

]]

3′′
α11
))

α13

��

4′
α12

jj α15

// 5

α22

hh

α16

WW

2′
α5))

α7

��

3′
α6

ii α9

// 4

α10

XX

α14

GG

1

α21

**

α1
��
2

α2oo
α3

// 3
α4

WW

α8

FF

K : 2′
γ6

��

γ5

��

3′
γ10
uu

γ9

��

4′
γ13

��

γ14
uu

1

γ15

::

γ1
((
2

γ3

66
γ2

hh 3

γ4

``

γ7
55 4

γ8

``

γ11
66 5

γ12

``

γ16

^^

f

��

H : 1

β9

""β1((
2

β2
((

β8

hh 3
β3
))

β7

hh 4
β6

ii
β4

((
5

β10

``
β5

hh

g

��

Here, the graph morphisms f : G −→ K and g : K −→ H map the vertices and the edges in a
vertical way, where 2Vf = 2, 2′Vf = 2′, 3Vf = 3, 3′ Vf = 3, 3′′Vf = 3′, 4Vf = 4, 4′ Vf = 4 and
4′′Vf = 4′.

We will verify that the graph morphisms f , g and fg are etale fibrations that satisfy (Uni).

This will show that f , g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

200

The graph G can be obtained with the function Trygraph by setting n := 5.

The graph K can be obtained with the function idTrygraph by setting n := 5.

The graph H can be obtained with the function Doublecyclic by setting n := 5.

The graph morphism f can be obtained with the function Tryfactorization by setting n := 5.

The graph morphism g can be obtained with the function idTryacyclic by setting n := 5.

The graph morphism fg can be obtained with the function Tryacyclic by setting n := 5.

So letting

G := Trygraph(5);

K := idTrygraph(5);

H := Doublecyclic(5);

f := Tryfactorization(5);

g := idTryacyclic(5);

fg := Tryacyclic(5);

> G;

<[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>,

<4, 4, 5>, <5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <8, 9, 9>, <10, 10, 11>,

<11, 11, 10>, <3, 12, 4>, <4, 13, 1>, <3, 14, 6>, <6, 15, 7>, <7, 16, 4>,

<6, 17, 9>, <9, 18, 10>, <10, 19, 7>, <1, 20, 11>, <11, 21, 1>, <9, 22, 1>]>

> K;

<[1, 2, 3, 4, 6, 7, 9, 10], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>,

<3, 5, 4>, <3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <6, 9, 9>, <10, 10, 9>,

<9, 11, 10>, <4, 13, 1>, <7, 16, 4>, <10, 19, 7>, <1, 20, 9>, <9, 21, 1>]>

> H;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 5>, <5, 5, 4>,

<4, 6, 3>, <3, 7, 2>, <2, 8, 1>, <1, 9, 5>, <5, 10, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6>, <9, 9>,

<10, 10>, <11, 9>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>,

<<2, 3, 3>, <2, 3, 3>>, <<4, 4, 5>, <4, 4, 3>>, <<5, 5, 4>, <3, 5, 4>>,

<<5, 6, 6>, <3, 6, 6>>, <<7, 7, 8>, <7, 7, 6>>, <<8, 8, 7>, <6, 8, 7>>,

<<8, 9, 9>, <6, 9, 9>>, <<10, 10, 11>, <10, 10, 9>>,

<<11, 11, 10>, <9, 11, 10>>, <<3, 12, 4>, <3, 5, 4>>,

<<4, 13, 1>, <4, 13, 1>>, <<3, 14, 6>, <3, 6, 6>>,

<<6, 15, 7>, <6, 8, 7>>, <<7, 16, 4>, <7, 16, 4>>,

<<6, 17, 9>, <6, 9, 9>>, <<9, 18, 10>, <9, 11, 10>>,

<<10, 19, 7>, <10, 19, 7>>, <<1, 20, 11>, <1, 20, 9>>,

<<11, 21, 1>, <9, 21, 1>>, <<9, 22, 1>, <9, 21, 1>>]>

201

> g;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3>, <9, 5>, <10, 4>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 8, 1>>, <<2, 3, 3>, <2, 2, 3>>,

<<4, 4, 3>, <2, 2, 3>>, <<3, 5, 4>, <3, 7, 2>>, <<3, 6, 6>, <3, 3, 4>>,

<<7, 7, 6>, <3, 3, 4>>, <<6, 8, 7>, <4, 6, 3>>, <<6, 9, 9>, <4, 4, 5>>,

<<10, 10, 9>, <4, 4, 5>>, <<9, 11, 10>, <5, 5, 4>>,

<<4, 13, 1>, <2, 8, 1>>, <<7, 16, 4>, <3, 7, 2>>,

<<10, 19, 7>, <4, 6, 3>>, <<1, 20, 9>, <1, 9, 5>>,

<<9, 21, 1>, <5, 10, 1>>]>

> fg;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>, <9, 5>,

<10, 4>, <11, 5>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 8, 1>>,

<<2, 3, 3>, <2, 2, 3>>, <<4, 4, 5>, <2, 2, 3>>, <<5, 5, 4>, <3, 7, 2>>,

<<5, 6, 6>, <3, 3, 4>>, <<7, 7, 8>, <3, 3, 4>>, <<8, 8, 7>, <4, 6, 3>>,

<<8, 9, 9>, <4, 4, 5>>, <<10, 10, 11>, <4, 4, 5>>, <<11, 11, 10>, <5, 5, 4>>,

<<3, 12, 4>, <3, 7, 2>>, <<4, 13, 1>, <2, 8, 1>>,

<<3, 14, 6>, <3, 3, 4>>, <<6, 15, 7>, <4, 6, 3>>,

<<7, 16, 4>, <3, 7, 2>>, <<6, 17, 9>, <4, 4, 5>>,

<<9, 18, 10>, <5, 5, 4>>, <<10, 19, 7>, <4, 6, 3>>,

<<1, 20, 11>, <1, 9, 5>>, <<11, 21, 1>, <5, 10, 1>>,

<<9, 22, 1>, <5, 10, 1>>]>

we get

> IsGraphMorphism(f,G,K);

true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);

true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));

true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

202

Example 224 We consider the following graph morphism.

C3,4 : 2
α2
((
3

α8
��

α3 // 4
α4

��
1

α1

HH

7

α9

AA

α7

hh 6
α6

hh 5
α5

hh

C ′
3,4 : 2

α2
((
3

α3
��

α4 // 4
α5

��
1

α1

HH

6
α7

VV

5
α6

hh

f

��

Here, the graph morphism f : C3,4 −→ C ′
3,4 maps the vertices and the edges in a vertical way,

where 1Vf = 1, 2Vf = 2, 4Vf = 4 and 6Vf = 6.

We will verify that the graph morphism f is an etale fibration that satisfies (Uni).

This will show that f is a quasiisomorphism; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph C3,4 can be obtained with the function CnCm by setting n := 3 and m := 4.

The graph C ′
3,4 can be obtained with the function cncm by setting n := 3 and m := 4.

The graph morphism f can be obtained with the function cncmqis by setting n := 3 and
m := 4.

So letting

C34 := CnCm(3,4);

Cp34 := cncm(3,4); // "C prime" = C’

f := cncmqis(3,4);

> C34;

<[1, 2, 3, 4, 5, 6, 7], [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 5>,

<5, 5, 6>, <6, 6, 7>, <7, 7, 1>, <3, 8, 1>, <7, 9, 4>]>

> Cp34;

<[1, 2, 3, 4, 5, 6], [<1, 1, 2>, <2, 2, 3>, <3, 3, 1>, <3, 4, 4>, <4, 5, 5>,

<5, 6, 6>, <6, 7, 3>]>

203

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 6>, <7, 3>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 3>, <2, 2, 3>>, <<3, 3, 4>, <3, 4, 4>>,

<<4, 4, 5>, <4, 5, 5>>, <<5, 5, 6>, <5, 6, 6>>, <<6, 6, 7>, <6, 7, 3>>,

<<7, 7, 1>, <3, 3, 1>>, <<3, 8, 1>, <3, 3, 1>>, <<7, 9, 4>, <3, 4, 4>>]>

we get

> IsGraphMorphism(f,C34,Cp34);

true

> SuffCond(f,C34,Cp34);

<true, true>

Varying the input n and m, it is possible to construct further quasiisomorphisms. This seems to
hold independently of n ⩾ 2.

Example 225 We consider the following inclusion morphism f of the subgraph G into the
graph H.

G : 1
β1
((
2

β2

hh 3
β4
((
4

β5

hh

H : 1
β1
((
2

β3 //

β2

hh 3
β4
((
4

β5

hh

f

��

Then the graph morphism f is a quasiisomorphism.

Via Magma, we calculated that the graph morphism f satisfies (Uni) as follows.

G := <[1,2,3,4],[<1,1,2>,<2,2,1>,<3,4,4>,<4,5,3>]>;

H := <[1,2,3,4],[<1,1,2>,<2,2,1>,<2,3,3>,<3,4,4>,<4,5,3>]>;

f := IsSubgraph(G,H)[1];

> IsGraphMorphism(f,G,H);

true

> Uni(f,G,H);

true

> IsEtaleFibration(f,G,H);

false

But we can not apply Proposition 210 because f is not an etale fibration.

204

Proof. Suppose given the following diagram in Gph.

G

f
��

Cn
p // H

We have to show that there exists a unique graph morphism q : Cn −→ G such that qf = p.

Uniqueness. The graph morphism q : Cn −→ G is unique since the graph morphism f : G −→ H
is injective, whence (Cn , f)Gph is injective.

Existence. In order to be able to let q := p|G, we have to show that Cn p ⊆ G. I.e. we have to
show that β3 /∈ ECn Ep .

We assume that β3 ∈ ECn Ep .

So there exists an edge ej ∈ ECn such that ej Ep = β3 .

Thus ej+1 Ep = β4 . Thus ej+2 Ep = β5 . Thus ej+3 Ep = β4 . Etc.

We deduce that ei Ep ∈ {β4 , β5} for i ∈ Z⧸nZ , contradicting ej Ep = β3 .

Example 226 We consider the following inclusion morphism f of the subgraph G into the
graph H.

G : 3

β3

��

6

β6

��

2

β2

77

5

β5

gg

1
β1

VV

4
β4

HH

H : 3

β3

��

6

β6

��

β8

oo

2

β2

77

5

β5

gg

1
β1

VV

4
β4

HH

β7

oo

f

��

Then the graph morphism f is a quasiisomorphism.

Both G and H are fibrant.

205

The graph morphism f is not a fibration.

Via Magma we calculated that the graph morphism f satisfies (Uni), using the functions given in
§10 below.

But we can not apply Proposition 210 because f is not an etale fibration.

With the function CNCN we calculated the graphs G and H and the graph morphism f.

So letting

G := CNCN(3)[1];

H := CNCN(3)[2];

f := CNCN(3)[3];

we get

> IsSubgraph(G,H)[2];

true

> IsGraphMorphism(f,G,H);

true

> Uni(f,G,H);

true

> IsEtaleFibration(f,G,H);

false

Proof. Suppose given the following diagram in Gph.

G

f
��

Cn
p // H

We have to show that there exists a unique graph morphism q : Cn −→ G such that qf = p.

Uniqueness. The graph morphism q : Cn −→ G is unique since the graph morphism f : G −→ H
is injective, whence (Cn , f)Gph is injective

Existence. In order to be able to let q := p|G, we have to show that Cn p ⊆ G. I.e. we have to
show that β7 , β8 /∈ ECn Ep .

We show that β7 /∈ Cn p , the proof for β8 being similar.

We assume that β7 ∈ ECn Ep .

So there exists an edge ej ∈ ECn such that ej Ep = β7.

Thus ej+1 Ep = β1 . Thus ej+2 Ep = β2 . Thus ej+3 Ep = β3 . Thus ej+4 Ep = β1 . Etc.

We deduce that ei Ep ∈ {β1 , β2 , β3} for i ∈ Z⧸nZ , contradicting ej Ep = β7 .

Varying the input n, it is possible to construct further quasiisomorphisms.

206

Example 227 We consider the following graphs.

G : 5

α12

--

2

α9xx1

α1

@@

α2

��
α3��

α4

^^

4
α11

��

3
α10

VV

6

α5

]]

α6

HH

α7

^^

α8

AA

H : 5
β5

��

2

β8xx1

β1

@@

β2

��β3��

β4

^^

4

β6

77

3
β7

VV

f

��

We consider the graph morphism f : G −→ H with

1Vf := 1, 2Vf := 2, 3Vf := 3,

4Vf := 4, 5Vf := 5, 6Vf := 1;

and with the corresponding map on the edges.

The graph morphism f : G −→ H is an acyclic fibration.

Proof. Via Magma we will calculate that the graph morphism f is an etale fibration that
satisfies (Uni), using the functions given in §10 below.

This will show that f is a quasiisomorphism; cf. Proposition 210.

The graph morphism f together with the graphs G and H can be obtained with Magma with
the function Exflower by setting n := 4 and list := [2,3].

207

So letting

G := Exflower(4,[2,3])[1];

H := Exflower(4,[2,3])[2];

f := Exflower(4,[2,3])[3];

> G;

<[1, 2, 3, 4, 5, 6], [<1, 1, 2>, <1, 2, 3>, <1, 3, 4>, <1, 4, 5>, <6, 5, 2>,

<6, 6, 3>, <6, 7, 4>, <6, 8, 5>, <2, 9, 1>, <3, 10, 1>, <4, 11, 6>,

<5, 12, 6>]>

> H;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <1, 2, 3>, <1, 3, 4>, <1, 4, 5>, <5, 5, 1>,

<4, 6, 1>, <3, 7, 1>, <2, 8, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 1>], [<<1, 1, 2>, <1, 1, 2>>,

<<1, 2, 3>, <1, 2, 3>>, <<1, 3, 4>, <1, 3, 4>>, <<1, 4, 5>, <1, 4, 5>>,

<<6, 5, 2>, <1, 1, 2>>, <<6, 6, 3>, <1, 2, 3>>, <<6, 7, 4>, <1, 3, 4>>,

<<6, 8, 5>, <1, 4, 5>>, <<2, 9, 1>, <2, 8, 1>>, <<3, 10, 1>, <3, 7, 1>>,

<<4, 11, 6>, <4, 6, 1>>, <<5, 12, 6>, <5, 5, 1>>]>

we get

> IsGraphMorphism(f,G,H);

true

> SuffCond(f,G,H);

<true, true>

By varying the input n and list it is possible to construct further quasiisomorphisms using
Exflower(n,list).

The “lower” graph consists of 4 respectively n cyclic graphs C2 glued together at one vertex such
that the form of a flower is visible.

208

Example 228 We consider the graph morphism

G : 1

��

��

// 2 // 3kk

4 //

>>

��

5 // 6kk

7 //

FF

>>

8 // 9kk

10 //

>>

FF

II

11 // 12kk

H : 1 // 2 // 3kk

1 // 5 // 6kk

1 // 8 // 9kk

1 // 11 // 12kk

f

��

where we let

1Vf := 1 2Vf := 2 3Vf := 3 4Vf := 1 5Vf := 5 6Vf := 6

7Vf := 1 8Vf := 8 9Vf := 9 10Vf := 1 11Vf := 11 12Vf := 12 .

Here, the graph H has only a single vertex named 1, displayed four times for sake of clarity.

209

The graph morphism f : G −→ H is an acyclic fibration.

Proof. Via Magma we will calculate that the graph morphism f is an etale fibration that
satisfies (Uni), using the functions given in §10 below.

This will show that f is a quasiisomorphism; cf. Proposition 210.

The graph morphism f together with the graphs G and H can be obtained with Magma with
the function Exflower2 by setting n := 4 and k := 3.

So letting

G := Exflower2(4,3)[1];

H := Exflower2(4,3)[2];

f := Exflower2(4,3)[3];

> G;

<[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [<1, 1, 2>, <2, 2, 3>, <3, 3, 1>,

<4, 4, 5>, <5, 5, 6>, <6, 6, 4>, <7, 7, 8>, <8, 8, 9>, <9, 9, 7>,

<10, 10, 11>, <11, 11, 12>, <12, 12, 10>, <1, 13, 5>, <1, 14, 8>, <1, 15, 11>,

<4, 16, 2>, <4, 17, 8>, <4, 18, 11>, <7, 19, 2>, <7, 20, 5>, <7, 21, 11>,

<10, 22, 2>, <10, 23, 5>, <10, 24, 8>]>

> H;

<[1, 2, 3, 4, 5, 6, 7, 8, 9], [<1, 1, 2>, <2, 2, 3>, <3, 3, 1>, <1, 4, 4>,

<4, 5, 5>, <5, 6, 1>, <1, 7, 6>, <6, 8, 7>, <7, 9, 1>, <1, 10, 8>, <8, 11, 9>,

<9, 12, 1>]>

> f;

<[<1, 1>, <4, 1>, <7, 1>, <10, 1>, <2, 2>, <3, 3>, <5, 4>, <6, 5>, <8, 6>,

<9, 7>, <11, 8>, <12, 9>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 3>, <2, 2, 3>>,

<<3, 3, 1>, <3, 3, 1>>, <<4, 4, 5>, <1, 4, 4>>, <<5, 5, 6>, <4, 5, 5>>,

<<6, 6, 4>, <5, 6, 1>>, <<7, 7, 8>, <1, 7, 6>>, <<8, 8, 9>, <6, 8, 7>>,

<<9, 9, 7>, <7, 9, 1>>, <<10, 10, 11>, <1, 10, 8>>, <<11, 11, 12>, <8, 11, 9>>,

<<12, 12, 10>, <9, 12, 1>>, <<1, 13, 5>, <1, 4, 4>>, <<1, 14, 8>, <1, 7, 6>>,

<<1, 15, 11>, <1, 10, 8>>, <<4, 16, 2>, <1, 1, 2>>, <<4, 17, 8>, <1, 7, 6>>,

<<4, 18, 11>, <1, 10, 8>>, <<7, 19, 2>, <1, 1, 2>>, <<7, 20, 5>, <1, 4, 4>>,

<<7, 21, 11>, <1, 10, 8>>, <<10, 22, 2>, <1, 1, 2>>, <<10, 23, 5>, <1, 4, 4>>,

<<10, 24, 8>, <1, 7, 6>>]>

we get

> SuffCond(f,G,H);

<true, true>

Note that we need to have edges from the vertices 1, 4, 7 and 10 to the vertices 2, 5, 8 and 11 to
obtain an etale fibration.

Via Magma, we calculated that we obtain quasiisomorphisms with Exflower2 for input values n
in [1, 30] and k in [2, 30].

210

Example 229 We consider the graph morphism

G : 1α1 99

α2
++ 2

α3

kk α4ee

H : 1β1 99 β2ee

f

��

where
1Vf = 1, 2Vf = 1,

α1 Ef = β1 , α3 Ef = β1 ,

α2 Ef = β2 , α4 Ef = β2 .

Via Magma we will calculate that the graph morphism f is an etale fibrations that satisfies
(Uni), using the functions given in §10 below.

Letting

G := <[1,2],[<1,1,1>,<1,2,2>,<2,3,1>,<2,4,2>]>;

H := <[1],[<1,1,1>,<1,2,1>]>;

f := <[<1,1>,<2,1>],[<<1,1,1>,<1,1,1>>,<<1,2,2>,<1,2,1>>,<<2,3,1>,<1,1,1>>,

<<2,4,2>,<1,2,1>>]>;

we get

> SuffCond(f,G,H);

<true, true>

Example 230 We consider the graph

G : 1α1 99
α2 // 2

and the cyclic graph C1 ; cf. Definition 52.

We consider the graph morphism f : G −→ C1 with

1Vf = v0 , α1 Ef = e0 ,

2Vf = v0 , α2 Ef = e0 .

211

G : 1α1 99
α2 // 2

C1 : v0e0 66

f

��

We will calculate that the graph G and the cyclic graph C1 are thin and that the graph
morphism f : G −→ C1 does not satisfy (Uni) and f is not a fibration; cf. Definitions 52
and 127.(1) and Proposition 210. But the graph morphism f : G −→ C1 is a quasiisomorphism;
cf. Definition 115.

Via Magma we may proceed as follows, using the functions given in §10 below.

G := <[1,2],[<1,1,1>,<1,2,2>]>;

> IsThin(G);

true

C1 := C(1);

> IsThin(C1);

true

f := ListGraphMorphisms(G,C1)[1];

> f;

<[<1, 1>, <2, 1>], [<<1, 1, 1>, <1, 1, 1>>, <<1, 2, 2>, <1, 1, 1>>]>

> Uni(f,G,C1);

false

> IsFibration(f,G,C1);

false

9.2 Some examples of graph morphisms related to the

sufficient condition of Proposition 210

Example 231 We consider the graph morphism f : ∅ −→ C1 .

Via Magma, we calculated that the empty graph ∅ and the cyclic graph C1 =: H are thin and
that the graph morphism f : ∅ −→ C1 is an etale fibration; cf. Definitions 70, 52 and 127.(2).
But the graph morphism f does not satisfy (Uni); cf. Proposition 210. Moreover, f is not a
quasiisomorphism, since (C1 , ∅)Gph = ∅ ≠ (C1 ,C1)Gph .

212

G := <[],[]>;

H := C(1);

f := <[],[]>;

> IsThin(G);

true

> IsThin(H);

true

> IsEtaleFibration(f,G,H);

true

> Uni(f,G,H);

false

> IsQis_Bound(f,G,H,1);

false

Example 232 We consider the graph morphism f : D1 −→ C1 .

Via Magma, we calculated that the direct graph D1 and the cyclic graph C1 are thin and that
the graph morphism f : D1 −→ C1 satisfies (Uni); cf. Definitions 56 and 52 and Proposition 210.
But the graph morphism f is not a fibration; cf. Definition 127.(1). Moreover, f is not a
quasiisomorphism, since (C1 ,D1)Gph = ∅ ≠ (C1 ,C1)Gph .

G := D(1);

> IsThin(G);

true

H := C(1);

> IsThin(H);

true

> f := ListGraphMorphisms(G,H)[1];

> f;

<[<0, 1>, <1, 1>], [<<0, 0, 1>, <1, 1, 1>>]>

> Uni(f,G,H);

true

> IsFibration(f,G,H);

false

Example 233 We consider the graphs

G : 1
α1
((
2

α2
((

α4

hh 3
α3

hh

and C2 .

Let f : G −→ C2 be the graph morphism with

1Vf = v1 , 2Vf = v2 , 3Vf = v1 ,

α1 Ef = e1 , α2 Ef = e2 , α3 Ef = e1 , α4 Ef = e2 .

213

Via Magma, we calculated that the graph G and the cyclic graph C2 are thin and that the graph
morphism f : G −→ C2 satisfies (Uni); cf. Definition 52 and Proposition 210. Moreover, f is a
fibration; cf. Definition 127.(1). But the graph morphism f is not an etale fibration; cf. Defi-
nition 127.(2). And f is not a quasiisomorphism since |(C2 , G)Gph| = 4 ̸= 2 = |(C2 ,C2)Gph|;
cf. Definition 115.

G := c2chain(3);

> G;

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>

> IsThin(G);

true

H := C(2);

> H;

<[1, 2], [<1, 1, 2>, <2, 2, 1>]>

> IsThin(H);

true

> f := ListGraphMorphisms(G,H)[2];

> f;

<[<1, 1>, <2, 2>, <3, 1>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 3>, <2, 2, 1>>,

<<3, 3, 2>, <1, 1, 2>>, <<2, 4, 1>, <2, 2, 1>>]>

> Uni(f,G,H);

true

> IsFibration(f,G,H);

true

> IsEtaleFibration(f,G,H);

false

> IsQis_Bound(f,G,H,2);

false

214

Example 234 We consider the following graph morphism, mapping the vertices and the edges
in a vertical way.

G : 1
α1 //

α2

2

3

D1 : v̂0
ê0 // v̂1

f

��

Via Magma, we calculated that the graph morphism f : G −→ D1 satisfies (Uni) and that f is
a fibration; cf. Proposition 210 and Definition 127.(1). But the graph morphism f is not an
etale fibration; cf. Definition 127.(2). However, f is a quasiisomorphism, since (Cn , G)Gph =
∅ = (Cn ,D1)Gph for n ∈ N.

G := <[0,1,2],[<0,1,1>,<0,2,2>]>;

H := D(1);

f := ListGraphMorphisms(G,H)[1];

> f;

<[<0, 0>, <1, 1>, <2, 1>], [<<0, 1, 1>, <0, 0, 1>>, <<0, 2, 2>, <0, 0, 1>>]>

> IsFibration(f,G,H);

true

> Uni(f,G,H);

true

> IsEtaleFibration(f,G,H);

false

So the converse to Proposition 210 does not hold, even for fibrations satisfying (Uni).

Example 235 Suppose given n ∈ N.

We consider the graph morphism f := τC1 ⊔Cn : C1 ⊔Cn −→ C1 .

The graph morphism f is an etale fibration. The edge e0 of the target C1 is not unitargeting.
In fact, the edges mapping to e0 have n+ 1 ⩾ 2 distinct targets.

The graph morphism f can be calculated via Magma with the function exampleforbadbound2

given in §10.8.

215

E.g., setting n := 3, we get

> exampleforbadbound2(3);

<<[1, 2, 3, 4], [<1, 1, 1>, <2, 2, 3>, <3, 3, 4>, <4, 4, 2>]>,

<[1], [<1, 1, 1>]>, <[<1, 1>, <2, 1>, <3, 1>, <4, 1>],

[<<1, 1, 1>, <1, 1, 1>>, <<2, 2, 3>, <1, 1, 1>>, <<3, 3, 4>,

<1, 1, 1>>, <<4, 4, 2>, <1, 1, 1>>]>>

The map (Ck , f)Gph is bijective for 1 ⩽ k < n since there are unique graph morphisms
Ck −→ C1 ⊔Cn and Ck −→ C1 .

But the map (Cn , f)Gph is not bijective since we may have p, q : Cn −→ C1 ⊔Cn with Cn p = C1

and Cn q = Cn .

In particular, f is not a quasiisomorphism.

E.g., we get

f := exampleforbadbound2(3)[3];

G := exampleforbadbound2(3)[1];

> IsQis_Bound(f,G,C(1),2);

true

> IsQis_Bound(f,G,C(1),3);

false

and

f := exampleforbadbound2(10)[3];

G := exampleforbadbound2(10)[1];

> IsQis_Bound(f,G,C(1),9);

true

> IsQis_Bound(f,G,C(1),10);

false

9.3 Some inequalities of subsets of Mor(Gph)

We consider subsets of Mor(Gph).

Remark 236 We have AcFib ⊊ Fib.

Proof. We consider the graph morphism ι1 : D0 −→ D0 ⊔C1 .

Note that the map Eι1 ,v̂0 : ∅ −→ ∅ is surjective. Thus the graph morphism ι1 : D0 −→ D0 ⊔C1

is a fibration; cf. Definition 127.(1). But ι1 is not a quasiisomorphism; cf. Definitions 115
and 127.(1).

So ι1 ∈ Fib \AcFib.

216

Remark 237 We have AcFib ⊊ Qis.

Proof. Let

P : 1
α1 //

α2
��

2

3

We consider the acyclic cofibration g : D1 −→ P mapping ê1 to α2 ; cf. Assertion 254 below.

The graph morphism g : D1 −→ P is an acyclic cofibration and thus a quasiisomorphism; cf.
Lemma 175. But g is not a fibration and thus not an acyclic fibration; cf. Definitions 115,
127.(1), 138.

> P := <[1,2,3],[<1,1,2>,<1,2,3>]>;

> g := VtoE(D(1),P,[<0,1>,<1,3>]);

> IsAcCofib(g,D(1),P);

true

So g ∈ Qis \AcFib.

Remark 238 We have AcCofib ⊊ Cofib.

Proof. We consider the cofibration ιC1 : ∅ −→ C1 ; cf. Remark 151.

The graph morphism ιC1 : ∅ −→ C1 is not a quasiisomorphism; cf. Definition 115.

So ιC1 ∈ Cofib \AcCofib.

Remark 239 We have AcCofib ⊊ Qis.

Proof. We consider the acyclic fibration ιD0 : ∅ −→ D0 ; cf. Example 158.(1).

The graph morphism ιD0 : ∅ −→ D0 is an acyclic fibration and thus a quasiisomorphism.

But ιD0 is not a cofibration; cf. Example 158.(2). Thus it is not an acyclic cofibration; cf.
Lemma 175.

Alternatively, the graph morphism ιD0 : ∅ −→ D0 is not an acyclic cofibration because it does
not satisfy (AcCofib 3) since VD0 \V∅ ̸= ∅, but ED0 = ∅.

So ιD0 ∈ Qis \AcCofib.

Remark 240 We have �Qis ⊊ �AcFib
Def. 144
= Cofib.

In fact, we have AcCofib \�Qis ̸= ∅.

Proof. We consider the graph morphism ι0,1 : D0 −→ D1; cf. Definition 56. It is an acyclic
cofibration; cf. Remark 166. Thus it is a cofibration and a quasiisomorphism; cf. Lemma 175.

217

We consider the following commutative quadrangle.

D0

idD0 //

ι0,1

��

D0

≈ ι0,1
��

D1 idD1

// D1

Since ED1 = {ê0} and ED0 = ∅, there does not exist a graph morphism c : D1 −→ D0 .

D0

idD0 //

ι0,1

��

D0

≈ ι0,1
��

D1 idD1

//

∄
>>

D1

So the graph morphism ι0,1 : D0 −→ D1 is in AcCofib \�Qis.

Note that we also have �Fib ⊊ �AcFib since

�Fib
Lemma 191

= AcCofib
Remark 238

⊊ Cofib
Definition 144

= �AcFib .

Remark 241 We have �Qis \ AcCofib Lemma 191
= �Qis \ �Fib ̸= ∅.

Proof. We consider the graph morphism f := ιC2 : ∅ −→ C2 .

First, we show that f is in �Qis.

Suppose given a commutative diagram as follows.

∅
f
��

p // G

≈ g

��
C2 q

// H

Since the graph morphism g : G −→ H is a quasiisomorphism, there exists a graph morphism
h : C2 −→ G such that hg = q.

Thus we have the following commutative diagram.

∅
f
��

p // G

≈ g

��
C2 q

//

h

>>

H

So the graph morphism f : ∅ −→ C2 is in �Qis.

In particular, f is a cofibration; cf. Remark 195.(3) and Definition 138, or Remark 151.

Secondly, we show that f is not in �Fib.

218

We consider the following commutative diagram.

∅
f

��

p // C4

_τC4

��
C2 τC2

// C1

Note that the graph morphism τC4 : C4 −→ C1 is a fibration; cf. Example 137.

But there does not exist a graph morphism h : C2 −→ C4 at all.

So f is not in �Fib.

Alternatively, using �Fib
Lemma 191

= AcCofib, f is not an acyclic cofibration since it does not
satisfy (AcCofib 5).

So f ∈ �Qis \ �Fib.

Remark 242 We have �Fib \ �Qis
Lemma 191

= AcCofib \�Qis ̸= ∅.

Proof. We consider the acyclic cofibration f := ι0,1 : D0 −→ D1 ; cf. Remark 166.

We consider the following commutative diagram.

D0

idD0 //

◦f
��

D0

≈ f
��

D1 idD1

// D1

There does not exist a graph morphism h : D1 −→ D0 .

So f is not in �Qis.

So f ∈ AcCofib \�Qis.

Remark 243 We have Qis� ⊊ AcCofib� Lemma 192
= Fib.

In fact, we have AcFib \Qis� ̸= ∅.

Proof. We consider the graph morphism f := ι1 : D0 −→ D0 ⊔D0, where v̂0Vf = (1, v̂0).

The graph morphism f : D0 −→ D0 ⊔D0 is a quasiisomorphism since (Cn ,D0)Gph = ∅ =
(Cn ,D0 ⊔D0)Gph .

The map Ef,v̂0 : ∅ −→ ∅ is surjective. So the graph morphism f : D0 −→ D0 ⊔D0 is a fibration.

So the graph morphism f : D0 −→ D0 ⊔D0 is an acyclic fibration.

We consider the following commutative quadrangle.

D0

idD0 //

≈f
��

D0

f
��

D0 ⊔D0 idD0 ⊔D0

// D0 ⊔D0

219

There exists the unique graph morphism c : D0 ⊔D0 −→ D0, having (1, v̂0)Vc = (2, v̂0)Vc = v̂0 .

But we do not have cf = idD0 ⊔D0 since (2, v̂0)Vcf = (1, v̂0) ̸= (2, v̂0) = (2, v̂0)VidD0 ⊔D0
.

D0

idD0 //

≈f
��

D0

f
��

D0 ⊔D0 idD0 ⊔D0

//

∄
66

D0 ⊔D0

So the graph morphism f : D0 −→ D0 ⊔D0 is in AcFib \Qis�.

Note that we also have Cofib� ⊊ AcCofib� since

Cofib� Lemma 193
= AcFib

Remark 236
⊊ Fib

Lemma 192
= AcCofib�.

Remark 244 We have Cofib� \Qis�
Lemma 193

= AcFib \Qis� ̸= ∅.

Proof. We consider the acyclic fibration f : ∅ −→ D0 ; cf. Example 158.(1).

We consider the following commutative diagram

∅

≈f
��

// ∅
f
��

D0 idD0

// D0

There does not exist a graph morphism h : D0 −→ ∅.

So the graph morphism f is not in Qis�.

So f ∈ Cofib� \Qis�.

9.4 Counterexamples for model categories

Recall that Gph is a Quillen closed model category; cf. Proposition 204.

Recall that the label Assertion indicates an assertion that we falsify by a counterexample.

Some of the following assertions are dual to each other, leading to further possibilities to falsify
them.

9.4.1 Elementary counterexamples

Assertion 245 In a Quillen closed model category, each acyclic fibration is a retraction.

This assertion is false.

Counterexample 1 in Gph.

We consider the acyclic fibration f : ∅ −→ D0 ; cf. Example 158.

220

But f is not a retraction since there does not exist a graph morphism g : D0 −→ ∅.

Counterexample 2 in Gph.

Consider the graph morphism f : G −→ H as in Example 215.

The acyclic fibration f is not a retraction.

We assume that f is a retraction.

Let g : H −→ G be a corresponding coretraction, i.e. g · f = idH .

So 1Vg = 1. Thus β1 Eg = α1 . So 2Vg = 2. Thus β2 Eg = α3 . So 3Vg = 3. Thus β3 Eg = α4 .
So 2Vg = 2′.

Contradiction.

Assertion 246 The subset of fibrations in a Quillen closed model category satisfies (2 of 3).

This assertion is false.

Counterexample in Gph.

Consider the following graphs.

X : 1α1 99

Y : 1α1 99
α2 // 2

f

��

g

OO

We consider the unique graph morphisms f : X −→ Y and g := τY : Y −→ X, as well as their
composite fg = idX : X −→ X.

The graph morphisms idX and g are acyclic fibrations.

But f is not a fibration; cf. Definition 127.

X := C(1);

Y := <[1,2],[<1,1,1>,<1,2,2>]>;

f := VtoE(X,Y,[<1,1>]);

> f;

<[<1, 1>], [<<1, 1, 1>, <1, 1, 1>>]>

> IsFibration(f,X,Y);

false

221

Assertion 247 In a Quillen closed model category, each acyclic cofibration is a coretraction.

This assertion is false.

Counterexample in Gph.

We consider the acyclic cofibration ι0,1 : D0 −→ D1 ; cf. Remark 166.

But ι0,1 is not a coretraction since there does not exist a graph morphism g : D1 −→ D0 .

Assertion 248

(1) The subset of acyclic cofibrations in a Quillen closed model category satisfies (2 of 3).

(2) The subset of cofibrations in a Quillen closed model category satisfies (2 of 3).

The assertions (1) and (2) are false.

Counterexample in Gph.

We consider the following graph morphisms.

D0 : v̂0

Y : 1
α1 //

α2

''

2

3

f

��

D1 : 0
β1 // 1

g

��

We consider the graph morphisms f : D0 −→ Y , g : Y −→ D1 and fg = ι1 : D0 −→ D1 , where
v̂0Vf := 1 and g mapping the vertices and the edges in a vertical way.

222

The graph morphisms f and fg are acyclic cofibrations; cf. Remark 166.

But g is not an acyclic cofibration since it does not satisfy e.g. (AcCofib 2).

Y := <[1,2,3],[<1,1,2>,<1,2,3>]>;

f := VtoE(D(0),Y,[<0,1>]);

g := ListGraphMorphisms(Y,D(1))[1];

> IsAcCofib(f,D(0),Y);

true

> IsAcCofib(ComposeGraphMorphisms(f,g),D(0),D(1));

true

> IsAcCofib(g,Y,D(1));

false

Since g is a quasiisomorphism, we infer that g is not a cofibration; cf. Lemma 185.

Assertion 249 Consider the following assertions (1–6) in a Quillen closed model category.

(1) Each quasiisomorphism that is a retraction is a fibration.

(2) Each quasiisomorphism that is a coretraction is a cofibration.

(3) Suppose given a commutative diagram as follows.

Y
f

��
X

g
>>

�
gf

// Z

Then f : Y −→ Z is a fibration.

(4) Suppose given a commutative diagram as follows.

Y
f

��
X

g
>>

gf
// Z

Then f : Y −→ Z is an acyclic fibration.

(5) Suppose given a commutative diagram as follows.

Y
f

��
X

g
>>

•
gf

// Z

Then g : X −→ Y is a cofibration.

223

(6) Suppose given a commutative diagram as follows.

Y
f

��
X

g
>>

◦
gf

// Z

Then g : X −→ Y is an acyclic cofibration.

The assertions (1–6) are false.

Counterexample in Gph.

We consider the following graph morphisms.

Y : 1

2
α1 // 3

X = Z : 1
β1 // 2

f

��

g

OO

Here, the graph morphisms f : Y −→ Z and g : X −→ Y map the vertices and the edges in a
vertical way, where 1Vg := 2, 2Vg := 3 and β1 Eg := α1 .

So we have gf = idX .

So the graph morphism f : Z −→ Y is a retraction and the graph morphism g : X −→ Z is a
coretraction.

Since (Ck , X)Gph = (Ck , Y)Gph = ∅ for k ⩾ 1, the graph morphisms f and g are quasiisomor-
phisms.

X := D(1);

Z := D(1);

Y := <[1,2,3],[<2,1,3>]>;

g := VtoE(X,Y,[<0,2>,<1,3>]);

f := VtoE(Y,Z,[<1,0>,<2,0>,<3,1>]);

Ad (1).

The graph morphism f : Y −→ Z is a retraction and a quasiisomorphism but not a fibration.

224

> IsFibration(f,Y,Z);

false

Ad (2).

The graph morphism g : X −→ Z is a coretraction and a quasiisomorphism but not a cofibration.

> IsAcCofib(g,X,Z);

false

The graph morphism g is not an acyclic cofibration since g does not satisfy (AcCofib 3, 5).

Since g is a quasiisomorphism and since AcCofib = Cofib∩Qis, g is not a cofibration; cf.
Lemma 185.

Alternative proof for (2). We have Cofib = �AcFib; cf. Definition 144. The graph morphism g
is an acyclic fibration since it is a quasiisomorphism and a fibration; cf. Definition 138.

> IsFibration(g,X,Y);

true

We consider the following commutative diagram.

X
idX //

g
��

X

g
��

Y
idY
// Y

But there does not exist a graph morphism h : Z −→ X such that gh = idX and hg = idX since
g is not a graph isomorphism.

So g is not a cofibration.

Ad (3).

We have gf = idX : X � // Z , but f is not a fibration.

Ad (4).

We have gf = idX : X // Z , but f is not an acyclic fibration since it is not a fibration.

Ad (5).

We have gf = idX : X • // Z , but g is not a cofibration.

Ad (6).

We have gf = idX : X ◦ // Z , but g is not an acyclic cofibration.

Remark 250 Using Gphop, we can falsify the assertions dual to Assertions 245 – 249.

225

9.4.2 Counterexamples for pushouts and pullbacks

The following assertions take place in a Quillen closed model category.

Assertion 251 In a Quillen closed model category, a pushout of a quasiisomorphism along a
cofibration is a quasiisomorphism.

This assertion is false.

Counterexample in Gph.

A counterexample is given in Remark 205.

Assertion 252

Consider the following assertions (1–4) in a Quillen closed model category.

(1) A pushout of a fibration is a fibration.

(2) A pushout of an acyclic fibration is a fibration.

(3) A pushout of an acyclic fibration is a quasiisomorphism.

(4) A pushout of an etale fibration is a fibration.

The assertions (1), (2), (3) and (4) are false.

Counterexample in Gph.

We consider the following graphs.

X : 1 2 3

α1

zz

Y : 1 2
β1oo 3

X ′ : 1
α′
2
((

α′
3

66 2 α′
1ee

Let f = (Vf ,Ef) : X −→ Y be the graph morphism with

1Vf = 1, 2Vf = 1, 3Vf = 2

and with
α1 Ef = β1 .

Then the graph morphism f is an etale fibration as we calculated with Magma [2].

226

X := <[1,2,3],[<3,1,1>]>;

Y := <[1,2,3],[<2,1,1>]>;

f := <[<1,1>,<2,1>,<3,2>],[<<3,1,1>,<2,1,1>>]>;

> IsFibration(f,X,Y);

true

> IsEtaleFibration(f,X,Y);

true

Moreover, f is a quasiisomorphism since (Cn , X)Gph = ∅ = (Cn , Y)Gph for n ∈ N.

In conclusion, f is an acyclic fibration.

Let g = (Vg,Eg) : X −→ X ′ be the graph morphism with

1Vg = 2, 2Vg = 1, 3Vg = 2

and with
α1 Eg = α′

1 .

We calculated a pushout with Magma.

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

We obtained the pushout Y ′.

Y ′ : 1
β′
1

..

β′
2

[[

β′
3

2

We have
1Vf ′ = 1, 2Vf ′ = 1,

α′
1 Ef ′ = β′

1 , α′
2 Ef ′ = β′

2 , α′
3 Ef ′ = β′

3

and
1Vh = 1, 2Vh = 1, 3Vh = 2,

β1 Eh = β′
1 .

The graph morphism f is an etale fibration but the graph morphism f ′ is not.

Xp := <[1,2],[<2,1,2>,<1,2,2>,<1,3,2>]>; // "X prime" = X’

g := ListGraphMorphisms(X,Xp)[1];

> g;

<[<1, 2>, <2, 1>, <3, 2>], [<<3, 1, 1>, <2, 1, 2>>]>

> IsGraphMorphism(g,X,Xp);

true

227

PO := PushoutGraphs(X,Y,Xp,f,g);

> PO;

<<[1, 2], [<1, 1, 1>, <1, 2, 1>, <1, 3, 1>]>,

<[<1, 1>, <2, 1>], [<<2, 1, 2>, <1, 1, 1>>, <<1, 2, 2>, <1, 2, 1>>,

<<1, 3, 2>, <1, 3, 1>>]>,

<[<1, 1>, <2, 1>, <3, 2>], [<<2, 1, 1>, <1, 1, 1>>]>>

Yp := PO[1]; // "Y prime" = Y’

fp := PO[2]; // "f prime" = f’

h := PO[3];

> IsFibration(fp,Xp,Yp);

false

> IsQis_Bound(fp,Xp,Yp,1);

false

Here, the pushout f ′ : X ′ −→ Y ′ of the acyclic fibration f : X −→ Y is neither a fibration nor a
quasiisomorphism, as we calculated with Magma. We can also directly see that

|{e ∈ EX′ : e sX′ = 2}| = 1 ̸= 3 = |{e ∈ EY ′ : e sY ′ = 2Vf ′ = 1}|

and that |(C1 , X
′)Gph| = 1 ̸= 3 = |(C1 , Y

′)Gph|.

Assertion 253 In a Quillen closed model category, a pullback of an acyclic cofibration is a
cofibration.

This assertion is false.

Counterexample in Gph.

We consider the following graphs.

X : 1

Y ′ : 1 α // 2 3

Y : 1
β // 2

Let f = (Vf ,Ef) : X −→ Y be the graph morphism with

1Vf = 1.

Then the graph morphism f is an acyclic cofibration, as we calculated with Magma [2].

228

Let q = (Vq ,Eq) : Y
′ −→ Y be the graph morphism with

1Vq = 1,

2Vq = 2,

3Vq = 2,

and with

αEq = β .

Let f ′ : X ′ −→ Y ′ be the pullback of f : X −→ Y along q.

X ′ p //

f ′

��

X

◦f
��

Y ′
q
// Y .

Via Magma, we obtain VX′ = {1} and EX′ = ∅ and

1Vf ′ = 1,

and

1Vp = 1.

X ′ : 1

The graph morphism f is an acyclic cofibration, but the graph morphism f ′ is not, as we
calculated with Magma:

X := <[1],[]>;

Y := <[1,2],[<1,1,2>]>;

Yp := <[1,2,3],[<1,1,2>]>; // "Y prime" = Y’

f := <[<1,1>],[]>;

q := <[<1,1>,<2,2>,<3,2>],[<<1,1,2>,<1,1,2>>]>;

> IsGraphMorphism(f,X,Y);

true

> IsAcCofib(f,X,Y);

true

> IsGraphMorphism(q,Yp,Y);

true

PB := PullbackGraphs(X,Y,Yp,f,q);

> PB;

<<[1], []>, <[<1, 1>], []>, <[<1, 1>], []>>;

Xp := PB[1]; // "X prime" = X’

fp := PB[2]; // "f prime" = f’

q := PB[3];

229

> IsAcCofib(fp,Xp,Yp);

false

> AcCofib1to4(fp,Xp,Yp);

false

> AcCofib5(fp,Xp,Yp);

false

We can see that the vertex 3 ∈ VY ′ \VX′f ′ does not have an edge e ∈ EY ′ such that e tY ′ = 3.
So the graph morphism f ′ : X ′ −→ Y ′ does not satisfy (AcCofib 3). Hence it is not an acyclic
cofibration.

The pullback f ′ : X ′ −→ Y ′ of the acyclic cofibration f : X −→ Y is not a cofibration since
first, it is not an acyclic cofibration, and second, it is a quasiisomorphism as (Cn , Y

′)Gph = ∅ =
(Cn , X

′)Gph , for n ∈ N, or by Remark 125; cf. Lemma 185.

Alternatively, to show that f ′ is not a cofibration, we can consider the commutative diagram

X ′ //

f ′

��

p // C1

ι1
��

Y ′
r
// C1 ⊔D0 ,

where 1Vp := v0 , 1Vr = (1, v0), 2Vr = (1, v0) and 3Vr := (2, v̂0).

The graph morphism ι1 is in fact a quasiisomorphism since (Ck , ι1)Gph is injective and
|(Ck ,C1)Gph| = 1 = |(Ck ,C1 ⊔D0)Gph|.

Moreover, ι1 is a fibration, as we will verify with Magma. So ι1 is an acyclic fibration.

The unique graph morphism h : Y ′ −→ C1 maps the vertex 3 to v0 .

So we have 3Vr = (2, v̂0) ̸= (1, v0) = v0Vι1 = 3Vhι1 .

Thus hι1 ̸= r.

So f ′ does not have the left lifting property with respect to the acyclic fibration ι1 .

So f ′ : X ′ −→ Y ′ is not a cofibration; cf. Definition 144.

Xp := <[1],[]>; // "X prime" = X’

p := VtoE(Xp,C(1),[<1,1>]);

> p;

<[<1, 1>], []>

Yp := <[1,2,3],[<1,1,2>]>; // "Y prime" = Y’

fp := <[<1,1>],[]>; // "f prime" = f’

C1D0 := <[0,1],[<0,1,0>]>;

r := <[<1,0>,<2,0>,<3,1>],[<<1,1,2>,<0,1,0>>]>;

iota_1 := VtoE(C(1),C1D0,[<1,0>]);

> iota_1;

<[<1, 0>], [<<1, 1, 1>, <0, 1, 0>>]>

> IsFibration(iota_1,C(1),C1D0);

true

230

> Lift(Xp,C(1),Yp,C1D0,p,r,fp,iota_1);

false

Note that in Gph, a pullback of an acyclic cofibration is a quasiisomorphism; cf. Remark 176.

Assertion 254 Consider the following assertions (1–2) in a Quillen closed model category.

(1) Suppose given a commutative diagram as follows.

X ◦
f //

◦g

��

Y

◦h

��
◦q

��

X ′ ◦
f ′
//

◦
p

))

Y ′
w

��
Z

Then the graph morphism w : Y ′ −→ Z is an acyclic cofibration.

(2) Suppose given a commutative diagram as follows.

X •
f //

•g

��

Y

•h

��
•q

��

X ′ •
f ′
//

•
p

))

Y ′
w

��
Z

Then the graph morphism w : Y ′ −→ Z is a cofibration.

The assertions (1) and (2) are false.

Ad (1). Counterexample in Gph.

We consider

D0 ◦
ι0,1 //

◦ι0,1

��

D1

◦g1
��

D1 ◦
g2
// P ;

where ê0 Eg1 := e1 and ê0 Eg2 := e2; cf. Remarks 166 and 171.

Magma gives

P : 1
e1 //

e2
��

2

3

231

We now consider

D0 ◦
ι0,1 //

◦ι0,1

��

D1

◦g1

��
◦idD1

��

D1 ◦
g2 //

◦
idD1

))

P
h

��
D1

We have
h : P −→ D1

Vh : 1 7→ v̂0

2 7→ v̂1

3 7→ v̂1

Eh : e1 7→ ê0

e2 7→ ê0

Note that the graph morphism idD1 : D1 −→ D1 is an acyclic cofibration; cf. Remark 165.

But the graph morphism h : P −→ D1 is not an acyclic cofibration, since neither Vh nor Eh are
injective; cf. Definition 162.

D0 := D(0);

D1 := D(1);

f := VtoE(D0,D1,[<0,0>]); // iota_{0,1}

> D0;

<[0], []>

> D1;

<[0, 1], [<0, 0, 1>]>

> f;

<[<0, 0>], []>

PO := PushoutGraphs(D0,D1,D1,f,f);

> PO[1];

<[1, 2, 3], [<1, 1, 2>, <1, 2, 3>]>

> PO[2];

<[<0, 1>, <1, 2>], [<<0, 0, 1>, <1, 1, 2>>]>

> PO[3];

<[<0, 1>, <1, 3>], [<<0, 0, 1>, <1, 2, 3>>]>

> IsAcCofib(Identity(D1),D1,D1);

true

h := VtoE(PO[1],D1,[<1,0>,<2,1>,<3,1>]);

> h;

<[<1, 0>, <2, 1>, <3, 1>], [<<1, 1, 2>, <0, 0, 1>>, <<1, 2, 3>, <0, 0, 1>>]>

> IsEqual(ComposeGraphMorphisms(PO[2],h),Identity(D1));

true

232

> IsEqual(ComposeGraphMorphisms(PO[3],h),Identity(D1));

true

> IsAcCofib(h,PO[1],D1);

false

> IsFibration(h,PO[1],D1);

true

Note that h is a quasiisomorphism by (2 of 3).

Thus h is not a cofibration.

By the way, h is an acyclic fibration as it is a quasiisomorphism and a fibration.

Ad (2). Counterexample in Gph.

We consider

D0 •
ι0,1 //

•ι0,1

��

D1

•g1
��

D1 •
g2
// P

where ê0 Eg1 := e1 and ê0 Eg2 := e2 as above; cf. Lemma 185 and Remark 148.

We now consider

D0 •
ι0,1 //

•ι0,1

��

D1

•g1

��
•idD1

��

D1 •
g2 //

•
idD1

))

P
h

��
D1

as above.

Note that the graph morphism idD1 : D1 −→ D1 is a cofibration; cf. Remark 145.

But we will show that the graph morphism h : P −→ D1 is not a cofibration.

Since (Cn , P) = ∅ = (Cn , D1) the graph morphism h : P −→ D1 is a quasiisomorphism; cf.
Definition 115.

But the graph morphism h is not an acyclic cofibration since it does not satisfy (AcCofib 1)
since 2Vh = v̂1 = 3Vh .

Since we have AcCofib = Cofib∩Qis the quasiisomorphism h is not a cofibration; cf.
Lemma 175.

Assertion 255 Suppose given a pushout as follows.

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

233

If Y and X ′ are cofibrant, then Y ′ is cofibrant.

This assertion is false.

Counterexample in Gph.

We consider the following graph.

H : 1
β1
((
2

β2
((

β4

hh 3
β3

hh

The graph H is not cofibrant; cf. Definition 150.

Assume that H is cofibrant. Consider f : G // H from Example 215. Then we obtain a
commutative diagram as follows

∅ //

•
��

G

f
��

H
idH
//

??

H .

But f : G −→ H is not a retraction; cf. Counterexample 2 to Assertion 245.

However, Magma yields a pushout as follows.

D0

��

// C2

��
C2

// H

Note that C2 is cofibrant; cf. Remark 151.

D0 := D(0);

C := C(2);

f := VtoE(D0,C,[<0,1>]);

> D0;

<[0], []>

> C;

<[1, 2], [<1, 1, 2>, <2, 2, 1>]>

> f;

<[<0, 1>], []>

PO := PushoutGraphs(D0,C,C,f,f);

> PO[1];

<[1, 2, 3], [<1, 1, 2>, <2, 2, 1>, <1, 3, 3>, <3, 4, 1>]>

> PO[2];

<[<1, 1>, <2, 2>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>]>

> PO[3];

<[<1, 1>, <2, 3>], [<<1, 1, 2>, <1, 3, 3>>, <<2, 2, 1>, <3, 4, 1>>]>

We obtain that PO[1]≃ H.

Remark 256 Using Gphop, we can falsify the assertions dual to Assertions 251 – 255.

234

9.5 Counterexamples in Gph

Assertion 257

(1) Suppose given an acyclic fibration f : G // H .

Suppose given n ∈ Z⩾1 . Suppose given graph morphisms Cn
p−→ G and Cn

q−→ G.

If Cnp ∩ Cn q = ∅, then Cn pf ∩ Cn qf = ∅.

(2) Suppose given an acyclic fibration f : G // H .

Suppose given n ∈ Z⩾1 . Suppose given graph morphisms Cn
p−→ G, Cn

q−→ G and Cn
r−→ G.

If Cn p, Cn q and Cn r are pairwise disjoint, so are Cn pf , Cn qf and Cn rf .

The assertions (1, 2) are false.

Counterexamples.

Ad (1). We consider the graph morphism g : K −→ H from Example 216.

We let n := 2

We consider the graph morphisms p, q : C2 −→ K, where v0Vp := 1, v1Vp := 2, v0Vq := 2′ and
v1Vq := 3.

Then we have C2 p ∩ C2 q = ∅, but C2 pf ∩ C2 qf consists the vertex 2.

Ad (2). We consider the graph morphism g : K −→ H from Example 218.

We let n := 2

We consider the graph morphisms p, q, r : C2 −→ K where v0Vp := 1, v1Vp := 2, v0Vq := 2′,
v1Vq := 3, v0Vr := 3′ and v1Vr := 4.

Then we have C2 p ∩ C2 q = ∅, but C2 pf ∩ C2 qf consists the vertex 2.

And we have C2 q ∩ C2 r = ∅, but C2 qf ∩ C2 rf consists the vertex 3.

Assertion 258

(1) Suppose given a graph morphism f : G −→ H.

If for each n ⩾ 1 and each graph morphism u : Cn −→ H such that Eu is injective there
exists a unique graph morphism û : Cn −→ G with ûf = u, then f is a quasiisomorphism.

(2) Suppose given m ∈ N such that there does not exist an injective graph morphism
g : Cn −→ G for n > m and such that there does not exist an injective graph mor-
phism h : Cn −→ H for n > m and such that the map (Cn , f)Gph is bijective for n ∈ [1,m].

Then the graph morphism f : G −→ H is a quasiisomorphism.

The assertions (1, 2) are false.

235

Counterexample.

We consider the following graph morphism.

G : 1α1 99 2 α2ee 3
α3
((
4

α4

hh

H : 1β1 99 β2ee

f

��

Here, f : G −→ H is the graph morphism with

1Vf = 1 2Vf = 1 3Vf = 1 4Vf = 1

α1 Ef = β1 α2 Ef = β2 α3 Ef = β1 α4 Ef = β2

Ad (1).

There are two graph morphisms p, q : C1 −→ H with Ep ,Eq injective, having e0 Ep = β1 and
e0 Eq = β2 .

For each of these injective graph morphisms there exists a unique graph morphism p̃, q̃ : C1 −→ G
such that p̃f = p and q̃f = q.

There are two graph morphisms p, q : C2 −→ H with Ep and Eq injective. In particular, we have
e0 Ep = β1 and e0 Eq = β2 .

For each of these injective graph morphisms exists a unique graph morphism p̃, q̃ : C2 −→ G
such that p̃f = p and q̃f = q.

But the graph morphism f : G −→ H is not a quasiisomorphism.

Let g : C3 −→ G be the graph morphism with

v0Vg = 1, v1Vg = 1, v2Vg = 1,

e0 Eg = β1 , e1 Eg = β2 , e2 Ef = β1 .

There does not exist a graph morphism g̃ : C3 −→ G such that g̃f = g.

So the graph morphism f : G −→ H is not a quasiisomorphism.

Ad (2).

We have m = 2 since there does not exist an injective graph morphism g : Cn −→ G for n > 2
and there does not exist an injective graph morphism h : Cn −→ H for n > 2. Furthermore,
(Cn , f)Gph is bijective for n ∈ [1, 2], but (C3 , f)Gph is not bijective since it is not surjective.

236

Assertion 259 Suppose given

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

in Gph.

(1) If (Cn , f)Gph is surjective for n ⩾ 1, then (Cn , f
′)Gph is surjective for n ⩾ 1.

(2) If f is a retraction, then f ′ is a retraction.

The assertions (1) and (2) are false.

Counterexample.

Let X := C2 ⊔C2. Let Y := C2 . Let f := dC2 : C2 ⊔C2 −→ C2 .

Then f is a retraction. In particular, (Cn , f)Gph is surjective for n ⩾ 1.

Let

X ′ : 1
α1
((
2

α3 //
α2

hh 3
α4 // 4

α5
((
5

α6

hh

Let g : C2 ⊔C2 −→ X be defined by

(1, v0)Vg := 1, (1, v1)Vg := 2,

(2, v0)Vg := 5, (2, v1)Vg := 4.

This defines g since C2 ⊔C2 is thin; cf. Remark 77.

We form the pushout

X
f //

g
��

Y

h
��

X ′
f ′
// Y ′

via Magma.

X := DUC([2,2]);

Y := C(2);

Xp := <[1,2,3,4,5],[<1,1,2>,<2,2,1>,<2,3,3>,<3,4,4>,<4,5,5>,<5,6,4>]>;

// "X prime" = X’

f := VtoE(X,Y,[<1,1>,<2,2>,<3,1>,<4,2>]);

g := VtoE(X,Xp,[<1,1>,<2,2>,<3,5>,<4,4>]);

PO := PushoutGraphs(X,Y,Xp,f,g);

Yp := PO[1]; // "Y prime" = Y’

fp := PO[2]; // "f prime" = f’

h := PO[3];

237

We have obtained

Y ′ : 1
β1
((
2

β2

hh

β3
((
3

β4

hh

We verify that (Cn , f
′)Gph is not surjective.

listXp := ListGraphMorphisms(C(2),Xp);

listYp := Sort(ListGraphMorphisms(C(2),Yp));

listXpfp := RedSeq([ComposeGraphMorphisms(k,fp) : k in listXp]);

// set of images

> #listYp;

4

> #listXpfp;

2

In particular, f ′ is not a retraction.

We verify this again independently as follows.

We search for a coretraction to f ′; i.e. a graph morphism c : Y ′ −→ X ′ such that cf · f ′ = idY ′ .

> Identity(Yp);

<[<1, 1>, <2, 2>, <3, 3>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2, 1>>,

<<2, 3, 3>, <2, 3, 3>>, <<3, 4, 2>, <3, 4, 2>>]>

list := ListGraphMorphisms(Yp,Xp);

> #list;

4

Cf := [ComposeGraphMorphisms(l,fp) : l in list];

> Cf;

[

<[<1, 1>, <2, 2>, <3, 1>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2,

1>>, <<2, 3, 3>, <2, 2, 1>>, <<3, 4, 2>, <1, 1, 2>>]>,

<[<1, 2>, <2, 1>, <3, 2>], [<<1, 1, 2>, <2, 2, 1>>, <<2, 2, 1>, <1, 1,

2>>, <<2, 3, 3>, <1, 1, 2>>, <<3, 4, 2>, <2, 2, 1>>]>,

<[<1, 2>, <2, 1>, <3, 2>], [<<1, 1, 2>, <2, 2, 1>>, <<2, 2, 1>, <1, 1,

2>>, <<2, 3, 3>, <1, 1, 2>>, <<3, 4, 2>, <2, 2, 1>>]>,

<[<1, 1>, <2, 2>, <3, 1>], [<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 1>, <2, 2,

1>>, <<2, 3, 3>, <2, 2, 1>>, <<3, 4, 2>, <1, 1, 2>>]>

]

Cfid := [l : l in list | IsEqual(ComposeGraphMorphisms(l,fp),Identity(Yp))];

> #Cfid;

0

So f ′ : X ′ −→ Y ′ is not a retraction since there does not exist a coretraction.

238

Assertion 260 Suppose given an acyclic fibration f : G // H .

Suppose given n ∈ N and an injective graph morphism ι : Cn −→ G.

Then the graph morphism ι · f is injective.

This assertion is false.

Counterexample.

We consider the graphs G, H and the acyclic fibration f as in Example 215. Consider the
injective graph morphism ι : C4 −→ G given by

v1Vι = 1, v2Vι = 2,

v3Vι = 3, v4Vι = 2′,

and by

e1 Eι = α1 , e2 Eι = α3 ,

e3 Eι = α4 , e4 Eι = α7 .

Then (v2)Vιf = 2 = (v4)Vιf . So the graph morphism ι · f is not injective.

Assertion 261 Suppose given n ∈ N and a graph morphism f : Cn −→ G. Then there exists
k ∈ N and a graph morphism g : Ck −→ G such that Eg is injective and Cn f = Ck g.

This assertion is false.

Counterexample.

We consider the following graph.

G : 1
α3 //

α1

��
3

α4 // 2

α2

dd

We consider the graph morphism f : C5 −→ G with

v0Vf := 1, v1Vf := 2, v2Vf := 1, v3Vf := 3, v4Vf := 2,

e0 Ef := α1 , e1 Ef := α2 , e2 Ef := α3 , e3 Ef := α4 , e4 Ef := α2 .

Assume that there exists k ∈ N and an injective graph morphism g : Ck −→ G such that
Cn f = Ck g.

Since Cn f = G, we have k = |EG | = 4.

Without loss of generality, we have e0 Eg = α1 .

Hence e1 Eg = α2 .

Hence e2 Eg = α3 , using injectivity of Eg .

Hence e3 Eg = α4 .

Hence e0 Eg = e4 Eg = α2 .

Contradiction.

Chapter 10

Algorithmic treatment of graphs

We use Magma [2] to codify finite graphs and graph morphisms in order to perform calculations.

10.1 Implementation of graphs

In the following functions we calculate graphs and graph morphisms as introduced in Defini-
tion 45 and 54.

In our implementation, a graph is a tuple consisting of its list of vertices as first entry and its
list of edges as second entry.

An edge is a triple consisting of its source vertex as first entry, its name as second entry and
its target vertex as third entry.

For instance, in Example 49 we consider the graph

G : 1α4 99

α1
((

α2

66 2 3
α3oo 4

It has the following codification.

G := <[1,2,3,4],[<1,1,2>,<1,2,2>,<3,3,2>,<1,4,1>]>;

> G;

<[1, 2, 3, 4], [<1, 1, 2>, <1, 2, 2>, <3, 3, 2>, <1, 4, 1>]>

Note that the edges are codified by their indices, so e.g. 1
α2 // 2 is codified as <1,2,3>, and

1
α4 // 1 is codified as <1,4,1>.

Here,

> G[1];

[1, 2, 3, 4]

239

240

is the list of the four vertices in the graph G and

> G[2];

[<1, 1, 2>, <1, 2, 2>, <3, 3, 2>, <1, 4, 1>]

is the list of the four edges in the graph G.

The following function SetGraphExample gives us a random graph with exactly e edges and v

vertices.

SetGraphExample := function(v,e) // v: number of vertices, e: number of edges

edges := [];

for j in [1..e] do

edges cat:= [<Random([1..v]),j,Random([1..v])>];

end for;

return <[i : i in [1..v]],edges>;

end function;

For example the following graph has been obtained by this function.

> SetGraphExample(3,4);

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 1>, <1, 4, 3>]>

1 1 //

4

772 2 // 3

3

zz

Given n in N, with the function CyclicGraph we calculate the cyclic graph Cn .

CyclicGraph := function(n) // returns cyclic graph with n edges

return <[i : i in [1..n]],[<i,i,i+1> : i in [1..n-1]] cat [<n,n,1>]>;

end function;

For example, we get

> CyclicGraph(1);

<[1], [<1, 1, 1>]>

> CyclicGraph(2);

<[1, 2], [<1, 1, 2>, <2, 2, 1>]>

> CyclicGraph(3);

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 1>]>

> CyclicGraph(4);

<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 1>]>

241

C4 : v2
e2))

v3

e3

��
v1

e1

II

v4
e4
ii

Note that we have v4 = v0 and e4 = e0 .

For further use, we abbreviate

C := CyclicGraph; // %%

Given n in N, with the function DirectGraph we calculate the direct graph Dn .

DirectGraph := function(n)

return <[i : i in [0..n]],[<i,i,i+1> : i in [0..n-1]]>;

end function;

For example, we get

> DirectGraph(0);

<[0], []>

> DirectGraph(1);

<[0, 1], [<0, 0, 1>]>

> DirectGraph(2);

<[0, 1, 2], [<0, 0, 1>, <1, 1, 2>]>

> DirectGraph(3);

<[0, 1, 2, 3], [<0, 0, 1>, <1, 1, 2>, <2, 2, 3>]>

D3 : v̂0
ê0 // v̂1

ê1 // v̂2
ê2 // v̂3

For further use, we abbreviate

D := DirectGraph; // %%

With the function IsThin we can test if a given graph G is thin.

IsThin := function(G)

E := {<e[1],e[3]> : e in G[2]};

return #E eq #G[2];

end function;

For example, given the graph G from above we get

> IsThin(G);

false

> IsThin(C(4));

true

242

10.2 Implementation of graph morphisms

In our implementation, a graph morphism f : G −→ H is a tuple consisting of the map Vf as
first entry and the map Ef as second entry.

Such a map on vertices is a list of tuples with each vertex vG ∈ VG of the graph G as first entry
and its image vG Vf ∈ VH as second entry.

Such a map on edges is a list of tuples with each edge eG ∈ EG of the graph G as first entry
and its image eG Ef ∈ EH as second entry.

Given graphs G and H as shown below, for example f is a graph morphism from G to H.

G := <[1, 2, 3, 4], [<1, 1, 1>, <1, 2, 2>, <3, 3, 2>]>;

H := <[1, 2, 3], [<1, 1, 2>, <2, 2, 2>, <3, 3, 2>]>;

f := <[<1, 2>, <2, 2>, <3, 1>, <4, 1>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>;

We have the map on the vertices

> f[1];

[<1, 2>, <2, 2>, <3, 1>, <4, 1>]

and the map on the edges

> f[2];

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]

We have

G : 4 1

α2

��

α1

��

3
α3 // 2

H : 1
β1

// 2

β2

��
3

β3

oo

f

��

and the graph morphism f: G −→ H with

1Vf = 2 2Vf = 2 3Vf = 1 4Vf = 1

α1 Ef = β2 α2 Ef = β2 α3 Ef = β1 .

243

With the function IsGraphMorphism we can test if a given pair of maps m from a given graph
G to a given graph H is a graph morphism.

IsGraphMorphism := function(m,G,H) // m = <v,e>

v := m[1];

e := m[2];

// test, if v is a map:

if not SequenceToMultiset([x[1] : x in v]) eq SequenceToMultiset(G[1]) then

return false;

end if;

if not SequenceToSet([x[2] : x in v]) subset SequenceToSet(H[1]) then

return false;

end if;

// test, if e is a map:

if not SequenceToMultiset([x[1] : x in e]) eq SequenceToMultiset(G[2]) then

return false;

end if;

if not SequenceToSet([x[2] : x in e]) subset SequenceToSet(H[2]) then

return false;

end if;

// test, if v and e are compatible concerning source and target:

for x in e do

if not &and[<x[1][1],x[2][1]> in v, <x[1][3],x[2][3]> in v] then

return false;

end if;

end for;

return true;

end function;

We can confirm that the graph morphism f above actually is a graph morphism.

> IsGraphMorphism(f,G,H);

true

Moreover, we give an example of a pair of maps g

g := <[<1,2>,<2,2>,<3,2>,<4,1>],

[<<1,1,1>,<2,2,2>>,<<1,2,2>,<2,2,2>>,<<3,3,2>,<1,1,2>>]>;

for which

> IsGraphMorphism(g,G,H);

false

Using the following functions we calculate the list of all graph morphisms from a given graph
G to a given graph H.

244

IsRightUnique := function(u) // u: relation, e.g. u := [<1,3>,<1,4>,<2,3>],

// or u := {<1,3>,<1,4>,<2,3>}

right_unique := true;

left_elements := {x[1] : x in u};

for y in left_elements do

if #{x[2] : x in u | x[1] eq y} ge 2 then

right_unique := false;

break y;

end if;

end for;

return right_unique;

end function;

CompletionsToMaps := function(D,C,u)

// D/C: list of elements in the domain/codomain,

// u: right unique relation

// e.g. D := [1,2,3,4]; C := [1,2,3,4,5]; u := {<1,3>, <3,5>};

to_be_mapped := [x : x in D | not x in {y[1] : y in u}];

list := [u];

for i in to_be_mapped do

list_new := [];

for v in list do

for j in C do

list_new cat:= [v join {<i,j>}];

end for;

end for;

list := list_new;

end for;

return list;

end function;

RelationOnVerticesFromPartialMapOnEdges := function(x);

// x: partial map on edges from graph G to graph H (G, H not required as data)

return {<z[1][1],z[2][1]> : z in x} join {<z[1][3],z[2][3]> : z in x};

end function;

For further use, we abbreviate

RVPME := RelationOnVerticesFromPartialMapOnEdges; // %%

ListGraphMorphisms := function(G,H)

list := [[]];

for z in G[2] do

list_new := [];

for w in H[2] do

for x in list do

x_test := x cat [<z,w>];

245

if IsRightUnique(RVPME(x_test)) then // %%

list_new cat:= [x_test];

end if;

end for;

end for;

list := list_new;

end for;

list_mor := [];

for y in list do

list_completions_to_maps_on_vertices := [Sort(SetToSequence(x)) : x in

CompletionsToMaps(G[1],H[1],RVPME(y))]; // %%

list_mor cat:= [<x,y> : x in list_completions_to_maps_on_vertices];

end for;

return list_mor;

end function;

For example, we can list all graph morphisms between the graphs G and H given above.

> ListGraphMorphisms(G,H);

[

<[<1, 2>, <2, 2>, <3, 1>, <4, 1>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>,

<[<1, 2>, <2, 2>, <3, 1>, <4, 2>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>,

<[<1, 2>, <2, 2>, <3, 1>, <4, 3>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>,

<[<1, 2>, <2, 2>, <3, 2>, <4, 1>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <2, 2, 2>>]>,

<[<1, 2>, <2, 2>, <3, 2>, <4, 2>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <2, 2, 2>>]>,

<[<1, 2>, <2, 2>, <3, 2>, <4, 3>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <2, 2, 2>>]>,

<[<1, 2>, <2, 2>, <3, 3>, <4, 1>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <3, 3, 2>>]>,

<[<1, 2>, <2, 2>, <3, 3>, <4, 2>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <3, 3, 2>>]>,

<[<1, 2>, <2, 2>, <3, 3>, <4, 3>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <3, 3, 2>>]>

]

> ListGraphMorphisms(H,G);

[

<[<1, 1>, <2, 1>, <3, 1>], [<<1, 1, 2>, <1, 1, 1>>,

<<2, 2, 2>, <1, 1, 1>>, <<3, 3, 2>, <1, 1, 1>>]>

]

Note that the graph morphism f: G −→ H from above

246

> f;

<[<1, 2>, <2, 2>, <3, 1>, <4, 1>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>

is the first entry in ListGraphMorphisms(G,H).

Given a graph G, we can get the identity idG with the following function Identity.

Identity := function(G);

return <[<x,x> : x in G[1]], [<x,x> : x in G[2]]>;

end function;

For example, for G as above we get

> G;

<[1, 2, 3, 4], [<1, 1, 1>, <1, 2, 2>, <3, 3, 2>]>

> Identity(G);

<[<1, 1>, <2, 2>, <3, 3>, <4, 4>],

[<<1, 1, 1>, <1, 1, 1>>, <<1, 2, 2>, <1, 2, 2>>, <<3, 3, 2>, <3, 3, 2>>]>

With the function Is_Injective we can test if a given graph morphism f from a given graph
G to a given graph H is injective.

With the function Is_Surjective we can test if it is surjective, with the function Is_Bijective

we can test if it is bijective.

Is_Injective := function(m,G,H)

// m: G -> H: <morphism_on_vertices,morphism_on_edges>

return #SequenceToSet([u[2] : u in m[1]]) eq #m[1] and

#SequenceToSet([u[2] : u in m[2]]) eq #m[2];

end function;

Is_Surjective := function(m,G,H)

// m: G -> H: <morphism_on_vertices,morphism_on_edges>

return #SequenceToSet([u[2] : u in m[1]]) eq #H[1] and

#SequenceToSet([u[2] : u in m[2]]) eq #H[2];

end function;

Is_Bijective := function(f,G,H)

return Is_Injective(f,G,H) and Is_Surjective(f,G,H); // %%

end function;

For example, given G, H and f as above, we get

> Is_Injective(f,G,H);

false

> Is_Surjective(f,G,H);

false

> Is_Bijective(f,G,H);

false

247

With the function ComposeGraphMorphisms we can compose given graph morphisms

G
p // H

q // I .

ComposeGraphMorphisms := function(p,q)

v := []; // v for vertices

for x in p[1] do

v cat:= [<x[1],y[2]> : y in q[1] | x[2] eq y[1]];

end for;

e := []; // e for edges

for x in p[2] do

e cat:= [<x[1],y[2]> : y in q[2] | x[2] eq y[1]];

end for;

return <v,e>;

end function;

For example, let

p := ListGraphMorphisms(G,H)[8];

q := ListGraphMorphisms(H,H)[1];

Then we get

> ComposeGraphMorphisms(p,q);

<[<1, 2>, <2, 2>, <3, 1>, <4, 2>],

[<<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>

The result equals ListGraphMorphisms(G,H)[2].

With the function IsIsomorphic we can test if given graphs G and H are isomorphic.

In case of isomorphic graphs, we additionally give a graph isomorphism as output.

IsIsomorphic := function(G,H) // G, H: graphs

if #G[1] ne #H[1] or #G[2] ne #H[2] then

return <0,false>;

end if;

list := ListGraphMorphisms(G,H); // %%

for m in list do

if Is_Bijective(m,G,H) then // %%

return <m,true>;

end if;

end for;

return <0,false>;

end function;

For example:

> IsIsomorphic(G,H);

<0, false>

248

With the function IsSubgraph we can test if a given graph G is a subgraph of a given graph H.

If so, we additionally give the inclusion morphism as output.

IsSubgraph := function(G,H) // returns true if G is a subgraph of H

for v in G[1] do

if not v in H[1] then

return <0,false>;

end if;

end for;

for e in G[2] do

if not e in H[2] then

return <0,false>;

end if;

end for;

m := <[<v,v> : v in G[1]],[<e,e> : e in G[2]]>;

return <m,true>;

end function;

A test whether G is a full subgraph of H:

IsFullSubgraph := function(G,H);

if not IsSubgraph(G,H)[2] then // %%

return false;

end if;

return not &or[e[1] in G[1] and e[3] in G[1] and not e in G[2] : e in H[2]];

end function;

For example, for

G1 := <[1, 2], [<1, 1, 1>, <1, 2, 2>]>;

H1 := <[1, 2, 3], [<1, 1, 1>, <1, 2, 2>, <2, 3, 1>, <2, 4, 2>, <3, 5, 2>]>;

we get

> IsSubgraph(G1,H1);

<<[<1, 1>, <2, 2>], [<<1, 1, 1>, <1, 1, 1>>, <<1, 2, 2>, <1, 2, 2>>]>, true>

> IsFullSubgraph(G1,H1);

false

With the function VtoE we can complete a given map on vertices from a given graph G to a
given thin graph H to a graph morphism.

If such a graph morphism does not exist, the function prints this out and returns <0,0>.

VtoE := function(G,H,Vf) // H thin, Vf = [<1,2>,<2,5>,<3,1>,<4,2>] map on

// vertices

249

for e in G[2] do

if #[h : h in H[2] | h[1] eq [v[2] : v in Vf | v[1] eq e[1]][1] and

h[3] eq [v[2] : v in Vf | v[1] eq e[3]][1]] eq 0 then

print "graph morphism does not exist";

return <0,0>;

end if;

end for;

Ef := [<e,[h : h in H[2] | h[1] eq [v[2] : v in Vf | v[1] eq e[1]][1] and

h[3] eq [v[2] : v in Vf | v[1] eq e[3]][1]][1]> : e in G[2]];

return <Vf,Ef>;

end function;

E.g. the graph morphism f from above can be obtained as

> VtoE(G,H,f[1]);

With ListGraphMorphisms_partial we get the list of graph morphisms f: G −→ H that obey
given partial mapping rules, without having to calculate the whole list of graph morphisms
from G to H.

This is useful for the search for quasiisomorphisms.

ListGraphMorphisms_partial := function(f,G,H)

// returns all graph morphisms that obey given partial mapping rule f

vertices_partial := f[1];

v1 := [n[1] : n in f[1]];

edges_partial := f[2];

e1 := [n[1] : n in f[2]];

list := [[]];

for z in G[2] do

list_new := [];

if z in e1 then

H_edges := [n[2] : n in f[2] | n[1] eq z];

else

H_edges := H[2];

end if;

source := [v : v in H[1] | #[e : e in H[2] | e[1] eq v] ge 1];

target := [v : v in H[1] | #[e : e in H[2] | e[3] eq v] ge 1];

if z[1] in v1 then

source := [n[2] : n in f[1] | n[1] eq z[1]];

end if;

if z[3] in v1 then

target := [n[2] : n in f[1] | n[1] eq z[3]];

end if;

H_edges := [h : h in H_edges | h[1] in source and h[3] in target];

for w in H_edges do

for x in list do

250

x_test := x cat [<z,w>];

if IsRightUnique(RVPME(x_test)) then // %%

list_new cat:= [x_test];

end if;

end for;

end for;

list := list_new;

end for;

list_mor := [];

for y in list do

list_completions_to_maps_on_vertices := [Sort(SetToSequence(x)) : x in

CompletionsToMaps(G[1],H[1],RVPME(y)

join SequenceToSet(f[1]))]; // %%

list_mor cat:= [<x,y> : x in list_completions_to_maps_on_vertices];

end for;

return list_mor;

end function;

For example, for

G := <[1, 2, 3, 4], [<1, 1, 1>, <1, 2, 2>, <3, 3, 2>]>;

H := <[1, 2, 3], [<1, 1, 2>, <2, 2, 2>, <3, 3, 2>]>;

as above, we get

> ListGraphMorphisms_partial(<[<4,1>],[]>,G,H);

[

<[<1, 2>, <2, 2>, <3, 1>, <4, 1>], [<<1, 1, 1>, <2, 2, 2>>,

<<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>>]>,

<[<1, 2>, <2, 2>, <3, 2>, <4, 1>], [<<1, 1, 1>, <2, 2, 2>>,

<<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <2, 2, 2>>]>,

<[<1, 2>, <2, 2>, <3, 3>, <4, 1>], [<<1, 1, 1>, <2, 2, 2>>,

<<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <3, 3, 2>>]>

]

The function DisjointUnionCycles produces a graph isomorphic to a disjoint union of cycles.
E.g. for list := [2,4,5], it returns a graph isomorphic to C2 ⊔C4 ⊔C5 .

DisjointUnionCycles := function(list) // e.g. list := [2,4,5]

G1 := [i : i in [1..&+list]]; // vertices

lists := [[u : u in [1..list[1]]]] cat [[u : u in

[&+[list[k] : k in [1..i-1]]+1..&+[list[k] : k in [1..i]]]] : i in [2..#list]];

edges := &cat[[<t[i],t[i+1]> : i in [1..#t-1]] cat [<t[#t],t[1]>] : t in lists];

edges_numbered := [<edges[i][1],i,edges[i][2]> : i in [1..#edges]];

G := <G1,edges_numbered>;

return G;

end function;

251

We abbreviate as follows.

DUC := DisjointUnionCycles; // %%

E.g. we get

> DUC([2,4,5]);

<[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [<1, 1, 2>, <2, 2, 1>, <3, 3, 4>,

<4, 4, 5>, <5, 5, 6>, <6, 6, 3>, <7, 7, 8>,

<8, 8, 9>, <9, 9, 10>, <10, 10, 11>, <11, 11, 7>]>

With the function DCN we calculate the diagonal graph morphism dCn : Cn ⊔Cn −→ Cn for a
given n.

DCN := function(n)

G := DUC([n,n]); // %%

H := C(n); // %%

f := VtoE(G,H,Sort([<i,i mod n> : i in [1..2*n-1] | not i eq n] cat

[<n,n>,<2*n,n>]));

return <G,H,f>;

end function;

E.g. we get

> DCN(3)[3];

<[<1, 1>, <2, 2>, <3, 3>, <4, 1>, <5, 2>, <6, 3>],

[<<1, 1, 2>, <1, 1, 2>>, <<2, 2, 3>, <2, 2, 3>>, <<3, 3, 1>, <3, 3, 1>>,

<<4, 4, 5>, <1, 1, 2>>, <<5, 5, 6>, <2, 2, 3>>, <<6, 6, 4>, <3, 3, 1>>]>

10.3 Calculating a pushout and a pullback of graphs

10.3.1 Calculating a pushout of graphs

The following functions return the equivalence relation that is generated by a given relation R

on M. Here a relation on M is a list of pairs with both entries in M.

RedSeq := function(S); // S: sequence, to be reduced and sorted

return Sort(SetToSequence(SequenceToSet(S)));

end function;

Equivclasses := function(R,M) // R: relation on set M

Rinv := [<r[2],r[1]> : r in R];

Diag := [<m,m> : m in M];

RR := [r : r in R cat Rinv | not r[1] eq r[2]];

equivclasses := [];

252

Mtodo := [m : m in M];

while not #Mtodo eq 0 do

k := Mtodo[1];

kclassold := [];

kclassnew := [k];

while not #kclassnew eq #kclassold do

kclassold := kclassnew;

kclassnew cat:= [j[2] : j in RR | j[1] in kclassold];

kclassnew := RedSeq(kclassnew); // %%

end while;

equivclasses cat:= [kclassnew];

Mtodo := [u : u in Mtodo | not u in kclassnew];

end while;

return equivclasses;

end function;

Equivrelation := function(R,M) // R: relation on set M

equivclasses := Equivclasses(R,M); // %%

return Sort(&cat[[<k,l> : k, l in x] : x in equivclasses]);

end function;

With the following functions we calculate a pushout in Set.

DisjointUnionSets := function(X,Y); // X, Y lists

return [<1,x> : x in X] cat [<2,y> : y in Y];

end function;

PushoutSets := function(X,Y,X2,f,g); // f : X -> Y, g : X -> X2 maps

M := DisjointUnionSets(X2,Y); // %%

R := [[<<1, g_elt[2]>, <2, f_elt[2]>> : g_elt in g, f_elt in f |

g_elt[1] eq x and f_elt[1] eq x][1] : x in X];

equiv := Equivclasses(R,M); // %%

u := [[<x2,t> : t in equiv | <1,x2> in t][1] : x2 in X2];

v := [[< y,t> : t in equiv | <2, y> in t][1] : y in Y];

return <equiv, u, v>; // pushout, u : X2 -> pushout, v : Y -> pushout

end function;

With the following function we calculate a pushout in Gph.

PushoutGraphs := function(X,Y,X2,f,g); // f : X -> Y, g : X -> X2

// graph morphisms, returns the pushout

vertices := PushoutSets(X[1],Y[1],X2[1],f[1],g[1]); // %%

edges := PushoutSets(X[2],Y[2],X2[2],f[2],g[2]); // %%

N := [i : i in [1..#vertices[1]]];

E := [i : i in [1..#edges[1]]]; // edges without source and target

EE := [<Index(vertices[1], [n : n in vertices[1] | <edges[1][e][1][1],

253

edges[1][e][1][2][1]> in n][1]),e, Index(vertices[1], [n :

n in vertices[1] | <edges[1][e][1][1],edges[1][e][1][2][3]> in n][1])> :

e in E];

// edges with source and target

PP := <N,EE>;

uN := [<x2, Index(vertices[1], [n[2] : n in vertices[2] | x2 eq n[1]][1]) > :

x2 in X2[1]]; // <p,p@v>

uE := [<x2, Index(edges[1], [e[2] : e in edges[2] | x2 eq e[1]][1]) > :

x2 in X2[2]]; // <p,p@v>, second entry is number of edge

uEE := [<x[1], <[ee[1] : ee in EE | ee[2] eq x[2]][1],x[2],[ee[3] : ee in EE |

ee[2] eq x[2]][1]>> : x in uE]; // <p,p@u>

// second entry with source and target

u := <uN,uEE>;

vN := [<y, Index(vertices[1], [n[2] : n in vertices[3] | y eq n[1]][1]) > :

y in Y[1]]; // <p,p@v>

vE := [<y, Index(edges[1], [e[2] : e in edges[3] | y eq e[1]][1]) > :

y in Y[2]]; // <p,p@v>, , second entry is number of edge

vEE := [<x[1], <[ee[1] : ee in EE | ee[2] eq x[2]][1],x[2],[ee[3] : ee in EE |

ee[2] eq x[2]][1]>> : x in vE]; // <p,p@u>

// second entry with source and target

v := <vN,vEE>;

return <PP,u,v>; // pushout, u : X2 -> pushout, v : Y -> pushout

end function;

E.g. we get

> PushoutGraphs(G,H,H,f,f);

<<[1, 2, 3, 4], [<1, 1, 2>, <2, 2, 2>, <3, 3, 2>, <4, 4, 2>]>,

<[<1, 1>, <2, 2>, <3, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <3, 3, 2>>]>,

<[<1, 1>, <2, 2>, <3, 4>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <4, 4, 2>>]>>

10.3.2 Calculating a pullback of graphs

With the following function we calculate a pullback in Set.

PullbackSets := function(X,Y,Y2,f,g) // f: X -> Y, g: Y2 -> Y, maps between sets

// given as a list of tuples, e.g. f = [<x_1,y_1>,...,<x_n,y_n>]

P := Sort([<x,y2> : x in X, y2 in Y2 | #[<s,t> : s in f, t in g | x eq s[1] and

y2 eq t[1] and s[2] eq t[2]] eq 1]);

return P;

end function;

254

With the following function we calculate a pullback in Gph.

PullbackGraphs := function(X,Y,Y2,f,g)

// f: X -> Y, g: Y2 -> Y graph morphisms

vertices := PullbackSets(X[1],Y[1],Y2[1],f[1],g[1]); // %%

edges := PullbackSets(X[2],Y[2],Y2[2],f[2],g[2]); // %%

N := [i : i in [1..#vertices]];

E := [i : i in [1..#edges]]; // edges without source and target

EE := [<Index(vertices,<edges[e][1][1],edges[e][2][1]>),e,

Index(vertices,<edges[e][1][3],edges[e][2][3]>)> : e in E];

// edges with source and target

PP := <N, EE>;

vE := [<ee,edges[ee[2]][1]> : ee in EE]; // <p,p@v>

uE := [<ee,edges[ee[2]][2]> : ee in EE]; // <p,p@u>

vN := [<n,vertices[n][1]> : n in N]; // <p,p@v>

uN := [<n,vertices[n][2]> : n in N]; // <p,p@u>

v := <vN,vE>;

u := <uN,uE>;

return <PP,u,v>; // pullback, u: pullback -> Y2, v: pullback -> X

end function;

E.g. we get

> PullbackGraphs(G,H,G,f,f);

<<[1, 2, 3, 4, 5, 6, 7, 8], [<1, 1, 1>, <1, 2, 2>, <1, 3, 3>, <1, 4, 4>,

<5, 5, 4>]>,

<[<1, 1>, <2, 2>, <3, 1>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>],

[<<1, 1, 1>, <1, 1, 1>>, <<1, 2, 2>, <1, 2, 2>>, <<1, 3, 3>, <1, 1, 1>>,

<<1, 4, 4>, <1, 2, 2>>, <<5, 5, 4>, <3, 3, 2>>]>,

<[<1, 1>, <2, 1>, <3, 2>, <4, 2>, <5, 3>, <6, 3>, <7, 4>, <8, 4>],

[<<1, 1, 1>, <1, 1, 1>>, <<1, 2, 2>, <1, 1, 1>>, <<1, 3, 3>, <1, 2, 2>>,

<<1, 4, 4>, <1, 2, 2>>, <<5, 5, 4>, <3, 3, 2>>]>>

10.3.3 Calculating induced morphisms of pushouts and pullbacks of
graphs

With the following functions we calculate the induced morphism of a given pushout respectively
pullback.

InducedMorphismSetsPO := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X -> X2, u2: X2 -> Y2, v: X -> Y, v2: Y -> Y2

T := <Y2,u2,v2>;

P := PushoutSets(X,Y,X2,v,u); // %%

x2 := [<i,[t[2] : t in T[2] | t[1] in [r[1] : r in P[2] | r[2] eq i]]> :

i in P[1]];

y := [<i,[t[2] : t in T[3] | t[1] in [r[1] : r in P[3] | r[2] eq i]]> :

255

i in P[1]];

c := [<r[1],r[2][1]> : r in x2 | not #r[2] eq 0] cat [<r[1],r[2][1]> :

r in y | not #r[2] eq 0];

return RedSeq(c); // %%

end function;

InducedMorphismGraphsPO := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X -> X2, u2: X2 -> Y2, v: X -> Y, v2: Y -> Y2

T := <Y2,u2,v2>;

P := PushoutGraphs(X,Y,X2,v,u); // %%

x2_vertices := [<i,[t[2] : t in T[2][1] | t[1] in [r[1] : r in P[2][1] |

r[2] eq i]]> : i in P[1][1]];

x2_edges := [<i,[t[2] : t in T[2][2] | t[1] in [r[1] : r in P[2][2] |

r[2] eq i]]> : i in P[1][2]];

y_vertices := [<i,[t[2] : t in T[3][1] | t[1] in [r[1] : r in P[3][1] |

r[2] eq i]]> : i in P[1][1]];

y_edges := [<i,[t[2] : t in T[3][2] | t[1] in [r[1] : r in P[3][2] |

r[2] eq i]]> : i in P[1][2]];

c_vertices := [<r[1],r[2][1]> : r in x2_vertices | not #r[2] eq 0]

cat [<r[1],r[2][1]> : r in y_vertices | not #r[2] eq 0];

c_edges := [<r[1],r[2][1]> : r in x2_edges | not #r[2] eq 0]

cat [<r[1],r[2][1]> : r in y_edges | not #r[2] eq 0];

c := <RedSeq(c_vertices),RedSeq(c_edges)>; // %%

return c;

end function;

This allows us to decide whether a given commutative quadrangle is a pushout:

IsPushoutGraphs := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X -> X2, u2: X2 -> Y2, v: X -> Y, v2: Y -> Y2

p := InducedMorphismGraphsPO(X,X2,Y,Y2,u,u2,v,v2); // %%

return Is_Bijective(p,PushoutGraphs(X,Y,X2,v,u)[1],Y2); // %%

end function;

With the following functions we calculate the induced morphism of a given pullback.

PullbackSets_num := function(X,Y,Y2,f,g) // f: X -> Y, g: Y2 -> Y

// maps between sets

// given as a list of tuples, e.g. f = [<x_1,y_1>,...,<x_n,y_n>]

P := Sort([<x,y2> : x in X, y2 in Y2 | #[<s,t> : s in f, t in g |

x eq s[1] and y2 eq t[1] and s[2] eq t[2]] eq 1]);

PP := [i : i in [1..#P]];

v := [<i,P[i][1]> : i in PP]; // <p,p@v>

u := [<i,P[i][2]> : i in PP]; // <p,p@u>

num := [<i,P[i]> : i in [1..#P]];

return <PP,u,v,num>; // pullback PP, u: PP -> Y2, v: PP -> X

end function;

256

PullbackGraphs_num := function(X,Y,Y2,f,g) // f: X -> Y, g: Y2 -> Y

// graph morphisms

vertices := PullbackSets(X[1],Y[1],Y2[1],f[1],g[1]); // %%

edges := PullbackSets(X[2],Y[2],Y2[2],f[2],g[2]); // %%

N := [i : i in [1..#vertices]];

E := [i : i in [1..#edges]]; // edges without source and target

EE := [<Index(vertices,<edges[e][1][1],edges[e][2][1]>),e,

Index(vertices,<edges[e][1][3],edges[e][2][3]>)> : e in E];

// edges with source and target

PP := <N, EE>;

vE := [<ee,edges[ee[2]][1]> : ee in EE]; // <p,p@v>

uE := [<ee,edges[ee[2]][2]> : ee in EE]; // <p,p@u>

vN := [<n,vertices[n][1]> : n in N]; // <p,p@v>

uN := [<n,vertices[n][2]> : n in N]; // <p,p@u>

v := <vN,vE>;

u := <uN,uE>;

numvertices := [<i,vertices[i]> : i in [1..#vertices]];

numedges := [<i,edges[i]> : i in [1..#edges]];

num := <numvertices,numedges>;

return <PP,u,v,num>; // pullback PP, u: PP -> Y2, v: PP -> X

end function;

InducedMorphismSetsPB := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X -> X2, u2: X2 -> Y2, v: X -> Y, v2: Y -> Y2

T := <X,v,u>;

P := PullbackSets_num(Y,Y2,X2,v2,u2); // %%

c_uncode := [<t,<[r[2] : r in T[2] | r[1] eq t][1],[r[2] : r in T[3] |

r[1] eq t][1]>> : t in T[1]];

c := [<r[1],Index([p[2] : p in P[4]],r[2])> : r in c_uncode];

return c;

end function;

InducedMorphismGraphsPB := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X -> X2, u2: X2 -> Y2, v: X -> Y, v2: Y -> Y2

T := <X,v,u>;

P := PullbackGraphs_num(Y,Y2,X2,v2,u2); // %%

c_uncode_vertices := [<t,<[r[2] : r in T[2][1] | r[1] eq t][1],[r[2] :

r in T[3][1] | r[1] eq t][1]>> : t in T[1][1]];

c_uncode_edges := [<t,<[r[2] : r in T[2][2] | r[1] eq t][1],[r[2] :

r in T[3][2] | r[1] eq t][1]>> : t in T[1][2]];

c_vertices := [<r[1],Index([p[2] : p in P[4][1]],r[2])> :

r in c_uncode_vertices];

c_edges := [<r[1],Index([p[2] : p in P[4][2]],r[2])> : r in c_uncode_edges];

c := <c_vertices,c_edges>;

return c;

end function;

257

This allows us to decide whether a given commutative quadrangle is a pullback:

IsPullbackGraphs := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X -> X2, u2: X2 -> Y2, v: X -> Y, v2: Y -> Y2

p := InducedMorphismGraphsPB(X,X2,Y,Y2,u,u2,v,v2); // %%

return Is_Bijective(p,X,PullbackGraphs_num(Y,Y2,X2,v2,u2)[1]); // %%

end function;

10.4 Calculating tree graphs

With the following functions we calculate the graph Tree(x,X) at a given vertex x ∈ VX of a
given graph X if Tree(x,X) is finite.

The function CyclesFromVertex returns true if cycles in a given graph G exist that contain a
given vertex x.

CyclesFromVertex := function(x,G) // G graph, x vertex in G

if #[a : a in G[2] | a[1] eq x] eq 0 then

return false;

end if;

S := {}; // S: set of vertices to achieve

Snew := {x};

while not #Snew eq #S do

S := Snew;

Snew join:= {a[3] : a in G[2] | a[1] in S};

if x in {a[3] : a in G[2] | a[1] in S} then

return true;

end if;

end while;

return false;

end function;

For example, for the graph

G2 := <[1, 2, 3], [<2, 1, 2>, <3, 2, 2>, <2, 3, 3>, <1, 4, 2>]>;

the function yields

> CyclesFromVertex(1,G2);

false

> CyclesFromVertex(2,G2);

true

> CyclesFromVertex(3,G2);

true

258

Given a graph G and a vertex r of G, the function VerticesToAchieve returns the list of vertices
v in G for which there exists a path from r to v.

VerticesToAchieve := function(G,r) // G: graph, r vertex in G

if #[a : a in G[2] | a[1] eq r] eq 0 then

return [];

end if;

S := {}; // S: set of vertices to achieve

Snew := {r};

while not #Snew eq #S do

S := Snew;

Snew join:= {a[3] : a in G[2] | a[1] in S};

end while;

return Sort(SetToSequence(Snew));

end function;

E.g. we get

> VerticesToAchieve(G2,1);

[1, 2, 3]

> VerticesToAchieve(G2,2);

[2, 3]

> VerticesToAchieve(G2,3);

[2, 3]

The following function CyclesInPathFromx returns true if some path from a given vertex x in
a given graph G can be restricted to a graph morphism to a cyclic graph Cn for some n.

CyclesInPathFromx := function(x,G)

return &or[CyclesFromVertex(v,G) : v in VerticesToAchieve(G,x)];

end function;

E.g. we get

> CyclesInPathFromx(1,G2);

true

The function Paths returns the list of paths in G starting in x if there are finitely many. Such
a path is given as a list of edges.

Paths := function(x,G) // G graph, x vertex in G[1],

if not CyclesInPathFromx(x,G) then // %%

Listofpaths := [[[]]];

if not #[[[e] : e in G[2] | e[1] eq x]] eq 0 then

Listofpaths cat:= [[[e] : e in G[2] | e[1] eq x]];

else

259

return &cat(Listofpaths);

end if;

newpaths := [<p,[e : e in G[2] | e[1] eq p[#p][3]]> :

p in Listofpaths[#Listofpaths] | not #[e : e in G[2] |

e[1] eq p[#p][3]] eq 0];

while not #newpaths eq 0 do

Listofpaths cat:= [&cat[&cat[[n[1] cat [n[2][i]]] : i in [1..#n[2]]] :

n in newpaths]];

newpaths := [<p,[e : e in G[2] | e[1] eq p[#p][3]]> :

p in Listofpaths[#Listofpaths] | not #[e : e in G[2] |

e[1] eq p[#p][3]] eq 0];

end while;

return Listofpaths;

end if;

return "infinite";

end function;

The function TreeOfPaths returns the graph Tree(x,G) in case it is finite, for a given graph G

and one of its vertices x.

TreeOfPaths := function(x,G) // G graph, x vertex in G

if not CyclesInPathFromx(x,G) then // %%

P := Paths(x,G); // %%

V := &cat(P);

E := [<[],<[],p[1],p>,p> : p in P[2]];

E cat:= [<[p[i] : i in [1..#p-1]],<[p[i] : i in [1..#p-1]],p[#p],p>,p> :

p in V | #p ge 2];

return <V,E>;

end if;

return "infinite";

end function;

For example, for

G3 := <[1, 2, 3], [<1, "a", 2>, <2, "b", 3>, <1, "c", 3>]>;

C(3);

we get

> Paths(1,G3);

[

[

[]

],

[

[<1, "a", 2>],

[<1, "c", 3>]

260

],

[

[<1, "a", 2>, <2, "b", 3>]

]

]

> Paths(1,C(3));

infinite

> TreeOfPaths(1,G3);

<[

[],

[<1, "a", 2>],

[<1, "c", 3>],

[<1, "a", 2>, <2, "b", 3>]

], [

<[], <[], <1, "a", 2>, [<1, "a", 2>]>, [<1, "a", 2>]>,

<[], <[], <1, "c", 3>, [<1, "c", 3>]>, [<1, "c", 3>]>,

<[<1, "a", 2>],

<[<1, "a", 2>], <2, "b", 3>, [<1, "a", 2>, <2, "b", 3>]>,

[<1, "a", 2>, <2, "b", 3>]>]>

> TreeOfPaths(1,C(3));

infinite

With the function IsTreeDef we can calculate whether a given graph G is a tree using Defini-
tion 108.

IsTreeDef := function(G)

for r in G[1] do // searching root

if #[v : v in [g : g in G[1] | not g eq r] | not #[e : e in G[2] |

e[3] eq v] eq 1] eq 0 then // (Tree 1)

if #[e : e in G[2] | e[3] eq r] eq 0 then // (Tree 2)

if &and[v in VerticesToAchieve(G,r) : v in G[1]] then // (Tree 3) // %%

return true;

end if;

end if;

end if;

end for;

return false;

end function;

Cf. the function IsTree in §10.5 below.

261

10.5 Testing properties of graph morphisms

With the following functions we test properties of graph morphisms as discussed in §3.

ListOfnCycles := function(G,n) // G: graph

return ListGraphMorphisms(C(n),G); // %%

end function;

The function Cnf_Bij returns true if (Cn , f)Gph is bijective for a given graph morphism
f: G −→ H and for a given number n.

Cnf_Bij := function(f,G,H,n) // G, H: graphs, f: G -> H: graph morphism

if not #ListOfnCycles(G,n) eq #ListOfnCycles(H,n) then // %%

return false;

end if;

if SequenceToSet([ComposeGraphMorphisms(ListOfnCycles(G,n)[i],f) : i in

[1..#ListOfnCycles(G,n)]]) eq SequenceToSet(ListOfnCycles(H,n)) then

return true; // %%

end if;

return false;

end function;

Given a graph morphism f: G -> H and an upper bound ub, the function IsQis_Bound returns
true if the map (Ck , f)Gph is bijective for k ⩽ ub.

IsQis_Bound := function(f,G,H,ub) // ub: upper bound

i := 1;

while Cnf_Bij(f,G,H,i) and i le ub do // %%

i := i+1;

end while;

return i eq ub+1;

end function;

With the function IsFibration we can calculate whether a given graph morphism f: G -> H

is a fibration or not; cf. Definition 127.(1).

IsFibration := function(f,G,H) // G, H: graphs, f: G -> H graph morphism

for x in G[1] do

y := [a[2] : a in f[1] | a[1] eq x][1];

for b in [h : h in H[2] | h[1] eq y] do

if #[0 : a in G[2] | <a,b> in f[2] and a[1] eq x] eq 0 then

return false;

end if;

end for;

end for;

return true;

end function;

262

With the function IsEtaleFibration we can calculate whether a given graph morphism
f: G -> H is an etale fibration or not; cf. Definition 127.(2).

IsEtaleFibration := function(f,G,H) // G, H: graphs, f: G -> H graph morphism

for x in G[1] do

y := [a[2] : a in f[1] | a[1] eq x][1];

if not #[e : e in G[2] | e[1] eq x] eq #[h : h in H[2] | h[1] eq y] then

return false;

elif not Sort([a[2] : a in f[2] | a[1][1] eq x])

eq Sort([h : h in H[2] | h[1] eq y]) then

return false;

end if;

end for;

return true;

end function;

For example, given

G := <[1,2,3],[<1,1,2>,<1,2,3>]>;

f := VtoE(G,D(1),[<1,0>,<2,1>,<3,1>]);

we get

> IsFibration(f,G,D(1));

true

> IsEtaleFibration(f,G,D(1));

false

With the function IsFibrant we can calculate whether a given graph X is fibrant or not; cf.
Definition 135.

IsFibrant := function(X)

return &and[not #[e : e in X[2] | e[1] eq v] eq 0: v in X[1]];

end function;

For example, we get

> IsFibrant(C(2));

true

> IsFibrant(D(2));

false

With the functions AcCofib1to4 and AcCofib5 we can check if a given graph morphism
f: G -> H satisfies the properties (AcCofib 1–4) respectively (AcCofib 5).

The function IsAcCofib checks all properties (AcCofib 1–5), i.e. it decides whether f is an
acyclic cofibration.

263

AcCofib1to4 := function(f,G,H) // f: G -> H graph morphism

if #[0 : x in H[1] | #[0 : a in G[1] | <a,x> in f[1]] ge 2] ge 1 then

// (AcCofib 1)

return false;

end if;

if #[0 : x in H[2] | #[0 : a in G[2] | <a,x> in f[2]] ge 2] ge 1 then

// (AcCofib 2)

return false;

end if;

HH1 := [x : x in H[1] | #[0 : a in G[1] | <a,x> in f[1]] eq 0];

HH2 := [x : x in H[2] | #[0 : a in G[2] | <a,x> in f[2]] eq 0];

if #[0 : x in HH1 | not #[a : a in H[2] | a[3] eq x] eq 1] ge 1 then

// (AcCofib 3)

return false;

end if;

if #[0 : x in HH2 | not x[3] in HH1] ge 1 then

// (AcCofib 4)

return false;

end if;

return true;

end function;

AcCofib5 := function(f,G,H)

HH1 := [x : x in H[1] | #[0 : a in G[1] | <a,x> in f[1]] eq 0];

max := #H[2];

L := [];

for i in [1..max] do

L cat:= [ListGraphMorphisms(D(i),H)]; // %%

end for;

for v in HH1 do

list := [];

for i in [1..max] do

list cat:= [l : l in L[i] | not l[1][1][2] in HH1 and l[1][#l[1]][2] eq v];

end for;

if #list eq 0 then

return false;

end if;

end for;

return true;

end function;

IsAcCofib := function(f,G,H)

return AcCofib1to4(f,G,H) and AcCofib5(f,G,H);

end function;

264

For example, for f := VtoE(D(0),D(2),[<0,0>]);

we get

> IsAcCofib(f,D(0),D(2));

true

For example, for

G := <[],[]>;

f := <[],[]>;

we get

> AcCofib1to4(f,G,C(1));

true

> AcCofib5(f,G,C(1)); // %%

false

With the function IsTree we can calculate whether a given graph G is a tree using Remark 178.

IsTree := function(G)

for x in G[1] do

if IsAcCofib(VtoE(D(0),G,[<0,x>]),D(0),G) then // %%

return true;

end if;

end for;

return false;

end function;

10.6 Testing the sufficient condition of Proposition 210

for graph morphisms

The function Unitargeting returns the unitargeting edges in H with respect to f.

Unitargeting := function(f,G,H)

return [e : e in H[2] | #RedSeq([ee[1][3] : ee in f[2] | ee[2] eq e]) eq 1];

// %%

end function;

For example, using functions from §10.7, for

G := trygraph(3);

H := c2chain(3);

f := tryacyclic(3);

265

we get

> G;

<[1, 2, 3, 4, 5], [<1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>, <5, 5, 4>,

<3, 6, 4>, <4, 7, 1>]>

> H;

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>

> f;

<[<1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 1>, <2, 4, 1>>, <<2, 3, 3>, <2, 2, 3>>, <<4, 4, 5>, <2, 2, 3>>,

<<5, 5, 4>, <3, 3, 2>>, <<3, 6, 4>, <3, 3, 2>>, <<4, 7, 1>, <2, 4, 1>>]>

> Unitargeting(f,G,H);

[<1, 1, 2>, <3, 3, 2>, <2, 4, 1>]

G : 4
4
((

7

��

5
5

hh

1
1
((
2

2

hh
3
// 3

VV

H : 1
1
((
2

2
((

4

hh 3
3

hh

f

��

The function Uni tests if the property (Uni) holds for the given graph morphism f: G -> H.

Uni := function(f,G,H)

U := Unitargeting(f,G,H); // %%

HH := <H[1],[e : e in H[2] | not e in U]>; // H without unitargeting edges

n := Minimum([#HH[1],#HH[2]]);

return &and[#ListGraphMorphisms(C(i),HH) eq 0 : i in [1..n]]; // %%

end function;

With the function SuffCond we test if our sufficient condition for a morphism to be a quasi-
isomorphism holds; cf. Proposition 210.

SuffCond := function(f,G,H)

return <IsEtaleFibration(f,G,H),Uni(f,G,H)>; // %%

end function;

266

For example, we get

> Uni(f,G,H);

true

> SuffCond(f,G,H);

<true, true>

For

G := <[1, 2, 3], [<2, 1, 2>, <3, 2, 1>, <3, 3, 1>]>;

H := <[1, 2, 3], [<2, 1, 2>, <3, 2, 1>, <1, 3, 3>]>;

L := ListGraphMorphisms(G,H);

M := ListGraphMorphisms(H,G);

we get

> M;

[

<[<1, 2>, <2, 2>, <3, 2>], [<<2, 1, 2>, <2, 1, 2>>,

<<3, 2, 1>, <2, 1, 2>>, <<1, 3, 3>, <2, 1, 2>>]>

]

> L;

[

<[<1, 2>, <2, 2>, <3, 2>], [<<2, 1, 2>, <2, 1, 2>>,

<<3, 2, 1>, <2, 1, 2>>, <<3, 3, 1>, <2, 1, 2>>]>,

<[<1, 1>, <2, 2>, <3, 3>], [<<2, 1, 2>, <2, 1, 2>>,

<<3, 2, 1>, <3, 2, 1>>, <<3, 3, 1>, <3, 2, 1>>]>,

<[<1, 3>, <2, 2>, <3, 1>], [<<2, 1, 2>, <2, 1, 2>>,

<<3, 2, 1>, <1, 3, 3>>, <<3, 3, 1>, <1, 3, 3>>]>

]

> SuffCond(M[1],H,G);

<true, false>

> SuffCond(L[1],G,H);

<false, false>

> SuffCond(L[2],G,H);

<false, true>

> SuffCond(L[3],G,H);

<false, true>

10.7 Functions to calculate examples in §9.1

With the following functions we calculated the examples mentioned in §9.1.

267

c2chain := function(n)

edges := [<i,i,i+1> : i in [1..n-1]] cat [<i+1,2*n-1-i,i> : i in [1..n-1]];

edges_tosort := Sort([<e[2],e[1],e[3]> : e in edges]);

edges := [<e[2],e[1],e[3]> : e in edges_tosort];

return <[i : i in [1..n]],edges>;

end function;

trygraph := function(n) // n geq 3

edges := [<3*n-5,3*n-5,3*n-4>,<3*n-4,3*n-4,3*n-5>,<3*n-5,6*n-11,3*n-8>,

<3*n-6,6*n-12,3*n-5>];

edges cat:= &cat[[<3*k-2,3*k-2,3*k-1>,<3*k-1,3*k-1,3*k-2>,<3*k-1,3*k,3*k>] :

k in [1..n-2]]; // innerhalb der Stufen

edges cat:= &cat[[<3*k+1,3*n-5+3*k,3*k-2>,<3*k,3*n-6+3*k,3*k+1>,

<3*k,3*n-4+3*k,3*k+3>] : k in [1..n-3]];

edges_tosort := Sort([<e[2],e[1],e[3]> : e in edges]);

edges := [<e[2],e[1],e[3]> : e in edges_tosort];

G := <[i : i in [1..3*n-4]],edges>;

return G;

end function;

tryacyclic := function(n) // trygraph -> c2chain

vertices := [<1,1>,<2,2>,<4,2>,<3*n-6,n>,<3*n-4,n>];

vertices cat:= &cat[[<3*k-6,k>,<3*k-4,k>,<3*k-2,k>] : k in [3..n-1]];

if n eq 3 then

edges := [<<1,1,2>,<1,1,2>>,<<2,2,1>,<2,2*n-2,1>>,<<2,3,3>,<2,2,3>>,

<<4,4,5>,<2,2,3>>,<<5,5,4>,<3,2*n-3,2>>,

<<3,3*n-3,4>,<3,2*n-3,2>>,<<4,3*n-2,1>,<2,2*n-2,1>>];

else

edges := [<<1,1,2>,<1,1,2>>,<<2,2,1>,<2,2*n-2,1>>,<<2,3,3>,<2,2,3>>,

<<4,4,5>,<2,2,3>>,<<5,5,4>,<3,2*n-3,2>>,

<<3,3*n-3,4>,<3,2*n-3,2>>,<<4,3*n-2,1>,<2,2*n-2,1>>,

<<7,3*n+1,4>,<3,2*n-3,2>>,<<3*n-7,3*n-6,3*n-6>,<n-1,n-1,n>>,

<<3*n-5,3*n-5,3*n-4>,<n-1,n-1,n>>,

<<3*n-4,3*n-4,3*n-5>,<n,n,n-1>>,

<<3*n-9,6*n-13,3*n-6>,<n-1,n-1,n>>,

<<3*n-6,6*n-12,3*n-5>,<n,n,n-1>>];

edges cat:= &cat[[<<3*k-4,3*k-3,3*k-3>,<k,k,k+1>>,

<<3*k-2,3*k-2,3*k-1>,<k,k,k+1>>,<<3*k-1,3*k-1,3*k-2>,<k+1,2*n-1-k,k>>,

<<3*k-6,3*n-10+3*k,3*k-3>,<k,k,k+1>>,

<<3*k-3,3*n-9+3*k,3*k-2>,<k+1,2*n-1-k,k>>,

<<3*k+1,3*n-5+3*k,3*k-2>,<k+1,2*n-1-k,k>>] : k in [3..n-2]];

end if;

edges_tosort := Sort([<<e[1][2],e[1][1],e[1][3]>,e[2]> : e in edges]);

edges := [<<e[1][2],e[1][1],e[1][3]>,e[2]> : e in edges_tosort];

return <Sort(vertices),edges>;

end function;

268

glue_vertices := function(G,list) // e.g. list := [[2,3],[1,4,5]] list of

// sublists of vertices to glue

list := [RedSeq(l) : l in list | #RedSeq(l) ge 2]; // %%

vertices_to_glue := RedSeq(&cat(list)); // %%

vertices_left_over := [n : n in G[1] | not n in vertices_to_glue];

vertices := Sort([l[1] : l in list] cat vertices_left_over);

edges_1 := [e : e in G[2] | not e[1] in vertices_to_glue

and not e[3] in vertices_to_glue];

edges := [];

for e in G[2] do

if not e[1] in vertices_to_glue and not e[3] in vertices_to_glue then

edges cat:= [e];

else if not e[1] in vertices_to_glue then

edges cat:= [<e[1],e[2],[l[1] : l in list | e[3] in l][1]>];

else

edges cat:= [<[l[1] : l in list | e[1] in l][1],e[2],e[3]>];

end if;

end if;

end for;

edges_named := [];

for e in edges do

if e[1] in &cat(list) then

e1_new := [l : l in list | e[1] in l][1][1];

else

e1_new := e[1];

end if;

if e[3] in &cat(list) then

e3_new := [l : l in list | e[3] in l][1][1];

else

e3_new := e[3];

end if;

edges_named cat:= [<e1_new,e[2],e3_new>];

end for;

return <vertices,edges_named>;

end function;

glue_vertices_including_edges := function(G,list)

// e.g. list := [[2,3],[1,4,5]] list of sublists of vertices to glue

G := glue_vertices(G,list); // %%

edges := [];

for g in G[2] do

if #[e : e in edges | e[1] eq g[1] and e[3] eq g[3]] eq 0 then

edges cat:= [g];

end if;

end for;

return <G[1],edges>;

end function;

269

For example, for

G := <[1,2,3],[<1,1,2>]>;

H := <[1,2,3],[<1,1,2>,<1,2,2>,<2,3,3>,<2,4,3>]>;

we get

> glue_vertices(G,[[1,2]]);

<[1, 3], [<1, 1, 1>]>

> glue_vertices(H,[[1,2]]);

<[1, 3], [<1, 1, 1>, <1, 2, 1>, <1, 3, 3>, <1, 4, 3>]>

> glue_vertices_including_edges(H,[[1,2]]);

<[1, 3], [<1, 1, 1>, <1, 3, 3>]>

try_id_vertices := function(n) // n ge 3

return [[3*i,3*i+2] : i in [1..n-2]];

end function;

idtrygraph := function(n)

return glue_vertices_including_edges(trygraph(n),try_id_vertices(n));

// %%

end function;

tryfactorization := function(n) // trygraph --> idtrygraph

T := try_id_vertices(n); // %%

G := trygraph(n); // %%

vertices := Sort([<t[2],t[1]> : t in T] cat [<i,i> : i in [1..3*n-4] |

not i in [t[2] : t in T]]);

edges_to_map := trygraph(n)[2];

edges_images := idtrygraph(n)[2];

edges := [];

for e in edges_to_map do

if e in edges_images then

im_e := e;

else

im_e1 := [n[2] : n in vertices | n[1] eq e[1]][1];

im_e3 := [n[2] : n in vertices | n[1] eq e[3]][1];

im_e := [edge : edge in edges_images |

edge[1] eq im_e1 and edge[3] eq im_e3][1];

end if;

edges cat:= [<e,im_e>];

end for;

return <vertices,edges>;

end function;

270

idtryacyclic := function(n) // idtrygraph -> c2chain

T := try_id_vertices(n); // %%

T2 := [t[2] : t in try_id_vertices(n)]; // %%

G := idtrygraph(n); // %%

f := tryacyclic(n); // %%

vertices := [n : n in f[1] | n[1] in G[1]];

edges := [];

for e in f[2] do

if e[1] in G[2] then

edges cat:= [e];

else

e1 := e[1][1];

e3 := e[1][3];

if e[1][1] in T2 then

e1 := [t[1] : t in T | t[2] eq e[1][1]][1];

end if;

if e[1][3] in T2 then

e3 := [t[1] : t in T | t[2] eq e[1][3]][1];

end if;

edges cat:= [<<e1,e[1][2],e3>,e[2]>];

end if;

end for;

edges2 := [];

for e in edges do

if not <e[1][1],e[1][3]> in [<e[1][1],e[1][3]> : e in edges2] then

edges2 cat:= [e];

end if;

end for;

return <vertices,edges2>;

end function;

Doublecyclic := function(n)

C := c2chain(n); // %%

return <C[1],C[2] cat [<1,#C[2]+1,#C[1]>] cat [<#C[1],#C[2]+2,1>]>;

end function;

Trygraph := function(n)

T := trygraph(n); // %%

return <T[1],T[2] cat [<1,#T[2]+1,#T[1]>, <#T[1],#T[2]+2,1>, <#T[1]-2,#T[2]+3,1>]>;

end function;

Tryacyclic := function(n) // Trygraph -> Doublecyclic

T := Trygraph(n); // %%

t := #T[2];

D := Doublecyclic(n); // %%

d := #D[2];

f := tryacyclic(n); // %%

271

return <f[1],f[2] cat [<T[2][t-2],D[2][d-1]>,

<T[2][t-1],D[2][d]>, <T[2][t],D[2][d]>]>;

end function;

idTrygraph := function(n)

T := idtrygraph(n); // %%

t := [r[2] : r in T[2]];

return <T[1],T[2] cat [<1,t[#t]+1,T[1][#T[1]-1]>]

cat [<T[1][#T[1]-1],t[#t]+2,1>]>;

end function;

Tryfactorization := function(n) // Trygraph -> idTrygraph

T := trygraph(n); // %%

TT := idtrygraph(n); // %%

t := [r[2] : r in TT[2]];

f := tryfactorization(n); // %%

return <f[1],f[2] cat [<<1,#T[2]+1,#T[1]>,<1,t[#t]+1,TT[1][#TT[1]-1]>>]

cat [<<#T[1],#T[2]+2,1>,<TT[1][#TT[1]-1],t[#t]+2,1>>]

cat [<<#T[1]-2,#T[2]+3,1>,<TT[1][#TT[1]-1],t[#t]+2,1>>]>;

end function;

idTryacyclic := function(n) // idTrygraph -> Doublecyclic

f := idtryacyclic(n); // %%

T := idtrygraph(n); // %%

t := [r[2] : r in T[2]];

C := c2chain(n); // %%

return <f[1],f[2] cat [<<1,t[#t]+1,T[1][#T[1]-1]>,<1,#C[2]+1,#C[1]>>]

cat [<<T[1][#T[1]-1],t[#t]+2,1>,<#C[1],#C[2]+2,1>>]>;

end function;

cncm := function(n,m) // cn glued to cm at vertex n

V := [i : i in [1..n+m-1]];

E := [<i,i,i+1> : i in [1..n-1]] cat [<n,n,1>] cat [<n+i,n+i+1,n+i+1> :

i in [0..m-2]] cat [<n+m-1,n+m,n>];

return <V,E>;

end function;

CnCm := function(n,m)

V := [i : i in [1..n+m]];

E := [<i,i,i+1> : i in [1..n+m-1]] cat [<n+m,n+m,1>]

cat [<n,n+m+1,1>,<n+m,n+m+2,n+1>];

return <V,E>;

end function;

272

cncmqis := function(n,m)

return VtoE(CnCm(n,m),cncm(n,m),[<i,i> : i in [1..n+m-1]] cat [<n+m,n>]);

// %%

end function;

CNCN := function(n)

G := DUC([n,n]); // %%

H := <G[1],G[2] cat [<n+1,2*n+1,1>,<2*n,2*n+2,n>]>;

f := VtoE(G,H,[<i,i> : i in [1..2*n]]); // %%

return <G,H,f>;

end function;

c2graph := function(list) // list e.g. [<1,3>,<2,4>,<6,6>] list of tuples

// of vertices

n := Maximum([x[1] : x in list] cat [x[2] : x in list]);

edges := [];

for x in list do

i := Index(list,x);

edges cat:= [<x[1],i,x[2]>,<x[2],2*#list-i+1,x[1]>];

end for;

edges_tosort := Sort([<e[2],e[1],e[3]> : e in edges]);

edges := [<e[2],e[1],e[3]> : e in edges_tosort];

return <[i : i in [1..n]],edges>;

end function;

Exflower := function(n,list) // list := [2,3,5] contains vertices

// that are connected with "upper" vertex 1 in G

edges_G := Sort(&cat[[<1,i>,<n+2,i>] : i in [2..n+1]]);

if #list eq 0 then // alle unten

edges_G cat:= [<i,n+2> : i in [2..n+1]];

edges_G := [<edges_G[i][1],i,edges_G[i][2]> : i in [1..#edges_G]];

else

edges_G cat:= [<i,1> : i in list];

edges_G cat:= [<i,n+2> : i in [2..n+1] | not i in list];

edges_G := [<edges_G[i][1],i,edges_G[i][2]> : i in [1..#edges_G]];

end if;

flowerG := <[i : i in [1..n+2]],edges_G>;

flowerH := c2graph([<1,i> : i in [2..n+1]]); // %%

flowerf := VtoE(flowerG,flowerH,[<i,i> : i in [1..n+1]] cat [<n+2,1>]);

// %%

return <flowerG,flowerH,flowerf>;

end function;

Exflower2 := function(n,k)

// n: number of "petals", k: size of "petals"

G := DUC([k : i in [1..n]]); // %%

VG := G[1];

273

EG := G[2];

V := [1+i*k : i in [0..n-1]];

EG2 := &cat[[<v,vv> : vv in [vv+1 : vv in [vv : vv in V | not vv eq v]]] :

v in V];

EG2 := [<e[1],#EG+Index(EG2,e),e[2]> : e in EG2];

flowerG := <VG,EG cat EG2>;

VH := [i : i in [1..n*(k-1)+1]];

EH := [<1,1+i*k,2+i*(k-1)> : i in [0..n-1]];

if not k eq 2 then

for i in [1..n] do

EH cat:= [<1+(i-1)*(k-1)+l,1+(i-1)*k+l,2+(i-1)*(k-1)+l> : l in [1..k-2]];

end for;

end if;

EH cat:= [<k+i*(k-1),k*(i+1),1> : i in [0..n-1]];

EH_sort := [<e[2],e[1],e[3]> : e in Sort([<e[2],e[1],e[3]> : e in EH])];

flowerH := <VH,EH_sort>; // %%

VtoE_vertices := [<v,1> : v in V] cat &cat[[<1+(i-1)*k+l,2+(i-1)*k+l-i> :

l in [1..k-1]] : i in [1..n]];

flowerf := VtoE(flowerG,flowerH,VtoE_vertices); // %%

return <flowerG,flowerH,flowerf>;

end function;

10.8 Functions to calculate more examples

exampleforbadbound := function(n) // (c_2n,f) first not to be bijective

V := [i : i in [1..2*n+1]];

E := [<i,i+1,i+1> : i in [3..2*n]];

E cat:= [<1,1,2>, <2,2,1>, <1,3,3>, <2*n+1,2*n+2,1>];

X := <V,E>;

f := ListGraphMorphisms(X,C(2))[2]; // %%

return <X,f>;

end function;

exampleforbadbound2 := function(n) // (c_n,f) first not to be bijective

G := DUC([1,n]); // %%

f := <[<v,1> : v in G[1]],[<e,<1,1,1>> : e in G[2]]>;

return <G,C(1),f>;

end function;

exampleforbadbound3 := function(n) // n even, n ge 4

G := DUC([2,n-2,n]); // %%

H := <[i : i in [1..n-1]],[<i,i,i+1> : i in [1..n-2]]

cat [<n-1,n-1,n-2>,<n-2,n,1>]>;

u_vertices := [<1,n-1>,<2,n-2>] cat [<i,i-2> : i in [3..n]]

cat [<i,i-n> : i in [n+1..2*n-1]] cat [<2*n,n-2>];

274

u_edges := [<c,[h : h in H[2] | h[1] eq [u[2] : u in u_vertices |

u[1] eq c[1]][1] and h[3] eq [u[2] : u in u_vertices |

u[1] eq c[3]][1]][1]> : c in G[2]];

u := <u_vertices,u_edges>;

return <G,H,u>;

end function;

DTB := function(n) // decimal to binary

A := [];

if n eq 0 then

return [0];

end if;

while n gt 0 do

A cat:= [n mod 2];

n := Integers()!((n-(n mod 2))/2);

end while;

return A;

end function;

DTO := function(list) // decimal to other, e.g. list := [2,4,3]

W := [[i : i in [1..list[1]]]];

for i in [2..#list] do

W cat:= [[u : u in [W[#W][#W[#W]]+1..W[#W][#W[#W]]+list[i]]]];

end for;

n := #list;

A := [];

for i in [0..&*list-1] do

j := i;

AA := [];

for l in [list[#list-i] : i in [0..#list-1]] do

AA cat:= [j mod l];

j := Integers()!((j-(j mod l))/l);

end for;

A cat:= [[AA[#AA-i] : i in [0..#AA-1]]];

end for;

return A;

end function;

With the function Thins we list all thin graphs that have n vertices.

Thins := function(n)

PV := [<i,j> : i,j in [1..n]]; // pairs of vertices for one edge

LG := []; // list of thin graphs

for i in [0..2^(n^2)-1] do

A := DTB(i); // %%

E := [PV[i] : i in [1..#A] | A[i] eq 1];

E := [<e[1],Index(E,e),e[2]> : e in E];

275

LG cat:= [<[i : i in [1..n]],E>];

end for;

return LG;

end function;

With the function Thins2 we list all thin graphs that have n vertices and that do not have an
edge that has the same vertex as source as as target.

Thins2 := function(n)

PV := [<i,j> : i,j in [1..n]]; // pairs of vertices for one edge

LG := []; // list of thin graphs

for i in [0..2^(n^2)-1] do

A := DTB(i); // %%

E := [PV[i] : i in [1..#A] | A[i] eq 1];

E := [e : e in E | not e[1] eq e[2]];

E := [<e[1],Index(E,e),e[2]> : e in E];

LG cat:= [<[i : i in [1..n]],E>];

end for;

return RedSeq(LG); // %%

end function;

For a graph H and a list F of prescribed cardinalities, the function EFU gives the list of etale
fibrations f: G -> H satisfying (Uni) such that the cardinalities of the fibres of the vertices of
H under Vf are listed in F.

EFU := function(H,F) // returns all etale fibrations f: G -> H that

// satisfy (Uni)

// F: sizes of fibres in list, e.g. F := [1,2,1]

n := #H[1];

VG := [i : i in [1..&+F]];

W := [[i : i in [1..F[1]]]];

for i in [2..#F] do

W cat:= [[u : u in [W[#W][#W[#W]]+1..W[#W][#W[#W]]+F[i]]]];

end for;

Vf := [<i,Index(W,[a : a in W | i in a][1])> : i in [1..&+F]];

EG_all := [[<i,j> : i in W[e[1]], j in W[e[3]]] : e in H[2]];

Ef_all_sort := &cat([[<[e : e in EG_all[i] | e[1] eq v],H[2][i]> :

i in [1..#EG_all]]: v in VG]);

Ef_all_sort := [e : e in Ef_all_sort | not #e[1] eq 0];

Ef_poss := [[<Ef_all_sort[i][1][d[i]+1],Ef_all_sort[i][2]> : i in [1..#d]] :

d in DTO([#e[1] : e in Ef_all_sort])]; // %%

Ef_poss_numbered := [[<<Ef_poss[i][j][1][1],j,Ef_poss[i][j][1][2]>,

Ef_poss[i][j][2]> : j in [1..#Ef_poss[i]]] : i in [1..#Ef_poss]];

EF := [<<Vf,Ef_poss_numbered[i]>,<VG,[Ef_poss_numbered[i][j][1] : j in

[1..#Ef_poss_numbered[i]]]>,H> : i in [1..#Ef_poss_numbered]];

// <f,G,H> all possibilities that f is an etale fibration

return [f : f in EF | &and[SuffCond(f[1],f[2],f[3])[i] : i in [1,2]]];

end function;

276

For example, given

H := c2chain(3);

F := [1,2,1];

we get

> EFU(H,F);

[

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 2>, <3, 3, 2>>]>, <[1, 2, 3, 4],

[<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 2>]>,

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>,

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 2>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 3>, <3, 3, 2>>]>, <[1, 2, 3, 4],

[<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 3>]>,

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>,

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 3>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 2>, <3, 3, 2>>]>, <[1, 2, 3, 4],

[<1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 2>]>,

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>,

<<[<1, 1>, <2, 2>, <3, 2>, <4, 3>], [<<1, 1, 3>, <1, 1, 2>>,

<<2, 2, 4>, <2, 2, 3>>, <<2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,

<<3, 5, 1>, <2, 4, 1>>, <<4, 6, 3>, <3, 3, 2>>]>, <[1, 2, 3, 4],

[<1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 3>]>,

<[1, 2, 3], [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1>]>>

]

10.9 More useful functions

IsEqual := function(f,g) // returns true if graph morphisms

// f, g: G -> H are equal

// returns true if graphs f, g are equal

return (SequenceToSet(f[1]) eq SequenceToSet(g[1]))

and (SequenceToSet(f[2]) eq SequenceToSet(g[2]));

end function;

277

IsoRepresentatives := function(T,n); // returns representatives of isoclasses

TT := [T[1]];

for i in [1..n] do

if not &or[IsIsomorphic(T[i],t)[2] : t in TT] then // %%

TT cat:= [T[i]];

end if;

end for;

return TT;

end function;

Is_Comm_Quad_Graphs := function(X,Y,X2,Y2,f,f2,g,h)

// f: X -> Y, f2: X2 -> Y2, g: X -> X2, h: Y -> Y2

if IsEqual(ComposeGraphMorphisms(f,h),ComposeGraphMorphisms(g,f2)) then // %%

return true;

end if;

return false;

end function;

The function Lift returns a lift of a given commutative quadrangle if existent.

Lift := function(X,Y,X2,Y2,f,f2,g,h) // f: X -> Y, f2: X2 -> Y2,

// g: X -> X2, h: Y -> Y2

L := ListGraphMorphisms(X2,Y); // %%

L_comm := [l : l in L | IsEqual(ComposeGraphMorphisms(g,l),f) and

IsEqual(ComposeGraphMorphisms(l,h),f2)]; // %%

if not #L_comm eq 0 then

return L_comm[1];

end if;

return false;

end function;

remove_edges := function(G,list)

return <G[1],[e : e in G[2] | not e in list]>;

end function;

remove_vertices := function(G,list)

return <[n : n in G[1] | not n in list],[e : e in G[2] |

not e[1] in list and not e[2] in list]>;

end function;

graph_op := function(G); // functor, reverses the direction of arrows in graph

// exchanges source and target of edges in graph

return <G[1],[<e[3],e[2],e[1]> : e in G[2]]>;

end function;

278

connection := function(G) // returns the list of connected components

list := [];

G_done := {};

while not #G_done eq #G[1] do

S := {}; // S: set of vertices to achieve

r := [g : g in G[1] | not g in G_done][1];

Snew := {r};

while not #Snew eq #S do

S := Snew;

Snew join:= {a[1] : a in G[2] | a[3] in S} join {a[3] : a in G[2] | a[1] in S};

end while;

G_done join:= Snew;

Snew := Sort(SetToSequence(Snew));

edges := Sort([a : a in G[2] | a[1] in Snew or a[3] in Snew]);

list cat:= [<Snew,edges>];

end while;

return list;

end function;

Appendix A

Explanation for electronic appendix

On the memory stick attached there is a file called electronic_appendix.txt. It contains
all functions in Magma code that are mentioned in this master thesis. It can be loaded into
Magma with

load "electronic_appendix.txt";

279

280

References

[1] Nicolas Bourbaki, Univers, appendix to Exposé I of M. Artin, A. Grothendieck, J.-L. Verdier: Théorie des
Topos et Cohomologie Étale des Schémas (SGA 4), Springer Lecture Notes 269, 1972.

[2] Wieb Bosma, John Cannon and Catherine Playoust, The Magma algebra system. I. The user language, J.
Symbolic Comput., 24, pp. 235–265, 1997.

[3] Terrence Bisson and Aristide Tsemo, A homotopical algebra of graphs related to zeta series, Homology,
Homotopy and Applications, vol. 11(1), pp. 171–184, 2009.

[4] Daniel G. Quillen, Homotopical algebra, Springer Lecture Notes 43, 1967.

[5] A. K. Bousfield and E. M. Friedlander, Homotopy theory of Γ-spaces, spectra and bisimplicial sets, Springer
Lecture Notes 568, pp. 81–130, 2006.

[6] Mathias Ritter, Quasi-model-categories, Master’s Thesis, Stuttgart, 2018.

[7] Deborah A. Vicinsky, The homotopy calculus of categories and graphs, Thesis, University of Oregon, 2015.

281

282

Zusammenfassung

Graphen. Ein Graph G besteht aus einer Menge von Knoten VG und einer Menge von Kanten
EG , zusammen mit einer Startabbildung sG : EG −→ VG und einer Zielabbildung tG : EG −→ VG ,
welche einer Kante ihren jeweiligen Start- bzw. Zielknoten zuordnen.

Graphmorphismen. Ein Graphmorphismus f : G −→ H zwischen Graphen G und H besteht
aus einer Abbildung Vf : VG −→ VH auf den Knoten und einer Abbildung Ef : EG −→ EH auf
den Kanten derart, dass Ef sH = sGVf und Ef tH = tGVf ist.

Zum Beispiel bildet der folgende Graphmorphismus f : G −→ H die Knoten und Kanten vertikal
ab.

G : 2′
α5

55
α7

��

3′
α6uu

1
α1
((
2

α2

hh α3

// 3

α4

WW

H : 1
β1
((
2

β2
((

β4

hh 3
β3

hh

f

��

Die Kategorie der Graphen bezeichnen wir mit Gph. Die Menge der Graphmorphismen von G
nach H bezeichnen wir mit (G,H)Gph . Zu einem Graphmorphismus f : G −→ H und einem
Graphen K haben wir die Abbildung

(K, f)Gph : (K,G)Gph −→ (K,H)Gph : g 7→ gf .

Eine Modellkategorienstruktur auf Gph. Bisson und Tsemo definieren Daten für eine
Modellkategorienstruktur auf Gph wie folgt.

Ein Graphmorphismus f : G −→ H ist ein Quasiisomorphismus, wenn

(Ck , f)Gph : (Ck , G)Gph −→ (Ck , H)Gph

bijektiv ist für k ⩾ 1. Wir bezeichnen die Menge der Quasiisomorphismen mit Qis ⊆ Mor(Gph).
Für einen Knoten v ∈ VG bezeichnen wir mit G(v, ∗) := {e ∈ EG : e sG = v} die Menge der
Kanten mit Start v. Wir haben die Abbildung

Ef,v := Ef |
H(vVf ,∗)
G(v,∗) : G(v, ∗) −→ H(vVf , ∗)

e 7→ eEf .

283

Ein Graphmorphismus f : G −→ H heißt eine Faserung, wenn die Abbildung

Ef,v : G(v, ∗) −→ H(vVf , ∗)

surjektiv ist für v ∈ VG . Wir bezeichnen die Menge der Faserungen mit Fib ⊆ Mor(Gph).

Ein Graphmorphismus f : G −→ H heißt eine etale Faserung, wenn die Abbildung

Ef,v : G(v, ∗) −→ H(vVf , ∗)

bijektiv ist für v ∈ VG . Dies wird für ein hinreichendes Kriterium für Quasiisomorphismen
benötigt.

Ein Graphmorphismus f : G −→ H heißt eine azyklische Kofaserung, wenn die Eigenschaften
(AcCofib 1–5) erfüllt sind; cf. Definition 162. Anschaulich erhalten wir eine azyklische Ko-
faserung f : G −→ H, wenn der Graph H durch Ankleben von Bäumen an den Graphen G
entsteht. Wir bezeichnen die Menge der azyklischen Kofaserungen mit AcCofib ⊆ Mor(Gph).

Die Menge der azyklischen Faserungen bezeichnen wir mit AcFib := Qis∩Fib ⊆ Mor(Gph).
Wir schreiben G // H für eine azyklische Faserung.

Ein Graphmorphismus f : G −→ H heißt eine Kofaserung, wenn wir zu einem kommutativen
Viereck

G

f
��

a // X

g

��
H

b
// Y ,

immer einen Lift h : H −→ X so finden, dass zwei kommutative Dreiecke entstehen. Die Menge
der Kofaserungen bezeichnen wir mit Cofib ⊆ Mor(Gph).

Nun wird Gph zusammen mit Qis, Fib und Cofib zu einer geschlossenen Quillen-
Modellkategorie; cf. [3, Cor. 4.8].

Zusätzlich gilt AcCofib = Cofib∩Qis.

Beweis, dass Gph eine Modellkategorie ist. Zum Beweis folgen wir Bisson und
Tsemo [3]. Beim Nachweis der Faktorisierung eines gegebenen Morphismus in eine Kofaserung,
gefolgt von einer azyklischen Faserung verwenden wir eine iterierte Pushout-Konstruktion.

Ein hinreichendes Kriterium für Quasiisomorphismen. Sei f : G −→ H ein Graphmor-
phismus. Eine Kante e ∈ EH heißt einzielig, wenn das Urbild der Kante e unter Ef einen
eindeutigen Zielknoten besitzt.

Wir betrachten folgende Eigenschaft.

(Uni) Für n ⩾ 1 und jeden Graphmorphismus u : Cn −→ H gibt es ein i ∈ Z⧸nZ so, dass
ei Eu ∈ EH einzielig ist.

Nach Entfernung der einzieligen Kanten aus H darf es also keinen Zykel mehr darin geben,
damit (Uni) erfüllt ist.

Wenn eine etale Faserung f : G −→ H die Eigenschaft (Uni) erfüllt, ist sie ein Quasiisomorphis-
mus.

284

Z.B. ist der Graphmorphismus f : G −→ H von oben ein Quasiisomorphismus, wie damit
überprüft werden kann.

Beispiele und Gegenbeispiele. Wir geben eine Reihe von Beispielen für Quasiisomorphis-
men, berechnet mit Magma [2] mithilfe unseres hinreichenden Kriteriums.

Wir zeigen, dass Quasiisomorphismen nicht stabil sind unter Pushouts entlang Kofaserungen.

Wir zeigen, dass Kofaserungen nicht stabil sind unter Pullbacks.

Wir geben ein Beispiel f : G −→ H so, dass (C1 , f)Gph und (C2 , f)Gph bijektiv sind und es
keinen injektiven Graphmorphismus Ck −→ G oder Ck −→ H für k ⩾ 3 gibt, bei welchem jedoch
f kein Quasiisomorphismus ist.

285

Versicherung

Hiermit versichere ich,

1. dass ich meine Arbeit selbstständig verfasst habe,

2. dass ich keine anderen als die angegeben Quellen benutzt habe und alle wörtlich oder
sinngemäß aus anderen Werken übernommenen Aussagen als solche gekennzeichnet habe,

3. dass die eingereichte Arbeit weder vollständig noch in wesentlichen Teilen Gegenstand
eines anderen Prüfungsverfahrens gewesen ist und

4. dass das elektronische Exemplar mit den anderen Exemplaren übereinstimmt.

Stuttgart, 12.01.2022

Jannik Hess

	Introduction
	Graphs
	Graph morphisms
	A model category structure on Gph by Bisson and Tsemo
	Proof that Gph is a model category
	A sufficient condition for a graph morphism to be a quasiisomorphism
	Examples and counterexamples
	Examples
	Counterexamples

	Preliminaries
	Preliminaries on categories
	The properties (2 of 6) and (2 of 3)
	Pushout and Pullback
	Lifting properties
	Subsets of Mor(C) being closed under retracts

	Preliminaries on sets
	Elementary constructions and properties
	Pushouts in Set
	Pullbacks in Set
	Colimit of a countable chain in Set

	Graphs
	Definitions for graphs and graph morphisms
	Thin graphs
	Pushout and pullback of graphs
	Pushout of graphs
	Coproducts
	Pullback of graphs

	Colimit of a countable chain in Gph
	Tree graphs

	Properties of graph morphisms
	Quasiisomorphisms
	Fibrations and fibrant graphs
	Acyclic fibrations
	Cofibrations and cofibrant graphs
	Bifibrant graphs
	Acyclic cofibrations
	Summary of some notations

	Factorization of graph morphisms
	Subsets of Mor(Gph) and their lifting sets
	Gph is a model category
	A sufficient condition for a graph morphism to be a quasiisomorphism
	Duality
	Some examples and counterexamples
	Some examples for quasiisomorphisms
	Some examples of graph morphisms related to the sufficient condition of Proposition 210
	Some inequalities of subsets of Mor(Gph)
	Counterexamples for model categories
	Elementary counterexamples
	Counterexamples for pushouts and pullbacks

	Counterexamples in Gph

	Algorithmic treatment of graphs
	Implementation of graphs
	Implementation of graph morphisms
	Calculating a pushout and a pullback of graphs
	Calculating a pushout of graphs
	Calculating a pullback of graphs
	Calculating induced morphisms of pushouts and pullbacks of graphs

	Calculating tree graphs
	Testing properties of graph morphisms
	Testing the sufficient condition of Proposition 210 for graph morphisms
	Functions to calculate examples in section 9.1
	Functions to calculate more examples
	More useful functions

	Explanation for electronic appendix

