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Chapter O

Introduction

0.1 Graphs

A graph G consists of a set of vertices Vg and of a set of edges Eg together with a source map
sq : E¢ — Vg and a target map tg : Eq — Vg, mapping an edge to its source respectively to
its target; cf. Definition 45.(1) Pictorially, we represent a graph by writing out the vertices of G
and by drawing an arrow for each edge, pointing from its source to its target.

For example, we have the following cyclic graph.

€2

—\
C4 . Vo V3
Vi V4

€4

Or, for example, we have the following graph.

a5

G: 23
a7 [e73)

[e%1 Qg
17 -2——=3

~— a3
a2

So e.g. the edge a3 has source a3 sg = 2 and target aztg = 3.

0.2 Graph morphisms

A graph morphism f : G — H between graphs G' and H consists of a map Vy : Vg — Vg
on the vertices of the graphs and a map E; : Eg — Egy on the edges of the graphs such that

(W1In the literature, graphs in this sense are also called “directed graphs”.



Efsy =sq Vs and Efty = tg Vy; cf. Definition 54.

For instance, we have the following graph morphism f : G — H, mapping the vertices and the
edges in a vertical way; cf. Example 215.

as
—
G: 2~
a7 Qg
a1 Qg
X\
1\/273)3
Qa2
f
B1 B2
A\ 5 ——
H 1 227 =3
Ba B3

We have e.g. ay Efty = B3ty =2=2"Vy = aytg Vy.

The category of graphs and graph morphisms is denoted by Gph.

We denote the set of graph morphisms from G to H by (G, H)gpn ; cf. Definition 64.
Given a graph morphism f : G — H and a graph K, we have the map

(Ka f)Gph : (K, G()Gph — (KvH)Gph g = gfv

cf. Definition 68.

0.3 A model category structure on Gph by BISSON and
TSEMO

BissoN and TSEMO define data for a model category structure on the category Gph as follows.

A graph morphism f : G — H is called a quasiisomorphism if the map

(Ck ; f)Gph : (Ck ) G)Gph — (Ck’ ) H)Gph

is bijective for k£ > 1. In other words, we require each graph morphism C, — H to have a unique

lift C, — G along G " Let Qis € Mor(Gph) denote the subset of quasiisomorphisms;
cf. Definition 115. A quasiisomorphism is written G —~= H . E.g. the example displayed in
§0.2 is a quasiisomorphism.

For a graph G and a vertex v € Vi, we denote by G(v,*) := {e € Eg : esg = v} the set of
edges with source v.



For a graph morphism f : G — H and a vertex v € Vg, we denote

:G(v,%) — H(vVy,x)
e — eEjf.

L H (v Vy %)
Ef,’l) «— Ef |G( f

U?*)

A graph morphism f : G — H is called a fibration if the map

Efy: G(v,%) = H(v Vg, %)
is surjective for v € Vg ; cf. Definition 127.(1). Let Fib C Mor(Gph) denote the subset of
fibrations. A fibration is written G —— H .
A graph morphism f : G — H is called an etale fibration if the map

Ef,v : G(U, *) — H(U Vf , *)
is bijective for v € Vg ; cf. Definition 127.(2). This notion will play a role in a sufficient condition
on a morphism to be a quasiisomorphism; cf. §0.5.

A graph morphism f : G — H is called an acyclic cofibration if the properties (AcCofib 1-5)
hold; cf. Definition 162. Pictorially, an acyclic cofibration is obtained as follows. Let G be
a graph. Glue some trees at their roots to vertices of G to obtain the graph H. Then the
inclusion morphism ¢ : G — H is an acyclic cofibration. Every acyclic cofibration is essentially
obtained in this way.

Let AcCofib C Mor(Gph) denote the subset of acyclic cofibrations. An acyclic cofibration is
written G —o— H .

Let AcFib := QisNFib C Mor(Gph) denote the subset of acyclic fibrations. An acyclic fibration
is written G —+—= H . E.g. the example displayed in §0.2 is an acyclic fibration.

A graph morphism f : G — H is called a cofibration if it has the left lifting property with
respect to AcFib. That is, f : G — H is a cofibration if, given a commutative quadrangle

G—=X

o

in Gph, there exists a graph morphism h : H — X such that the diagram

G—=X

i A4

commutes.
Let Cofib C Mor(Gph) denote the subset of cofibrations. A cofibration is written G —e= H .

Then Gph, together with Qis, Fib and Cofib, is a Quillen closed model category;
cf. [3, Cor. 4.8], [4, Ch. I, §1, Def. 1; Ch. I, §5, Def. 1], Definition 198.(4), Proposition 204.

Moreover, for the set AcCofib, which is defined via (AcCofib 1-5) in Definition 162, we actually
have the equality AcCofib = Cofib N Qis; cf. Lemma 185.
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0.4 Proof that Gph is a model category

Following Bisson and TSeEMO [3, Cor. 4.8], we will show that Gph is a Quillen closed model
category, using the data explained in §0.3; cf. Definition 198.(4).

Note that we have defined Cofib, Qis and AcCofib separately; cf. §0.3. We will show that
CofibN Qis = AcCofib, but this will only be possible having factorization of morphisms in
acyclic cofibrations and fibrations at our disposal; cf. Lemma 185.

First, we show that Qis, Fib and Cofib are closed under composition and under retracts.

Moreover, Qis, Fib and AcFib are shown to be stable under pullbacks, and Cofib and AcCofib
are shown to be stable under pushouts.

In Assertion 251, we give an example that shows that Qis is not stable under pushouts along
cofibrations.

Suppose given subsets M, N C Mor(Gph). We write M AN if for every commutative quadrangle
X ==X
!/
in Gph with m € M and n € N, there exists a morphism A : Y — X’ in Gph such that
X 2= X
/
commutes.
By definition, we have Cofib 1 AcFib.

To show that AcCofib @ Fib, a given acyclic cofibration is factored in successive inclusion mor-
phisms, in each of which single-edge-trees are glued to the subgraph; cf. Lemma 174. Then to
construct the required lift, the definition of a fibration can be used directly.

We have to show that each morphism f : X — Y can be factored into an acyclic cofibration
followed by a fibration.

To this end, a resolution p : F' — Y of Y is constructed, where F' is a disjoint union of trees.
This resolution is glued, via pushout, to the discrete subgraph X of X.

X-—osF

-

X-—osF

AN

Using this factorization property, we are now able to show that we have in fact AcCofib =
Cofib N Qis.



We have to show that each morphism f : X — Y can be factored into a cofibration followed
by an acyclic fibration.

Using a disjoint union X of X with cyclic graphs, we factor f into a cofibration X —-—>X
followed by a graph morphism f : X — Y that becomes surjective under (Ck, —)cph for k >

Now we consider f : X — Y. We iteratively glue cycles in the source graph using a pushout
construction, where the definition of the sets M’ and M ensure that cycles that map to the
same cycle in Y are glued together.

HM’ Cn_‘_>HMC

Using a factorization of foo into an acyclic cofibration h : X —o—> X followed by a fibration

f : X ——=Y , which then is an acyclic fibration, we obtain

i><:zz

X h

90
11f<>o z
\ v

as required.
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0.5 A sufficient condition for a graph morphism to be a
quasiisomorphism

Suppose given graphs G and H.
Suppose given a graph morphism f: G — H.

An edge ey of H is called unitargeting with respect to f if we have
|{étG e € Eg, éEf :€H}| =1,

that is, if its preimage in G has a unique target; cf. Definition 206.
Consider the following property.

(Uni) For n > 1 and each graph morphism u : C, — H, there exists ¢ € Z/nZ such that
e; B, € Ey is unitargeting with respect to f.

Pictorially speaking, f satisfies (Uni) if every cycle in H contains at least a unitargeting edge.
In practice, one removes all unitargeting edges from H to obtain a subgraph H, and one verifies
that (C,,, H)gpn = 0 for n > 1 in order to verify that (Uni) holds.

We show that if f : G — H is an etale fibration and satisfies (Uni), then it is a quasiisomor-
phism; cf. Proposition 210.(

E.g. the graph morphism f : G — H in §0.2 is a quasiisomorphism since it verifies this sufficient
condition as follows.

First, f : G — H is an etale fibration; cf. Definition 127.(2). For instance, G(2',%) = {ar, a5}
maps bijectively to H(2,%) = {4, f2} via E;o since a7 — 4 and az — Ss.

Second, we show that f satisfies (Uni). The edge f5 is unitargeting since oy te = agte = 2.
The edge [ is unitargeting since «; is its only preimage. The edge (4 is unitargeting since
s tg = artg = 1. But the edge (5 is not unitargeting since agtg = 3 # 3’ = a5t . Obtaining
H by removing the unitargeting edges in H there is just the edge 3, left in H, i.e. E i ={B=}
So there does not exist any graph morphism C,, — H for n > 1.

Hence the graph morphism f : G — H in §0.2 is a quasiisomorphism.

There is a dual counterpart to this sufficient condition, obtainable as follows.

Given a graph G, we define the opposite graph G°P by letting sgor := tg and tger 1= sg .
Given a graph morphism f : G — H we define the opposite graph morphism

fOp - (Vfop 7Ef0p) : GOp — HOp

by Vfop = Vf : Vg — Vg and Efop = Ef :Eq — Egy .

Then f°P: G — H®P is a quasiisomorphism if and only if f : G — H is a quasiisomorphism.

(2)Special thanks to Konrad Unger and Lukas Wiedmann who asked persistently if thinness is actually needed
here. This led to a removal of this unnecessary condition.



0.6 Examples and counterexamples

0.6.1 Examples

11

For sake of illustration, we show several examples for quasiisomorphisms obtained by the suffi-
cient condition in Proposition 210, which we verify via Magma [2] in §9.1 using the functions

given in §10.7.

We map the vertices and the edges in a vertical way.

23

1. =2

— =3

fa @

Y10
) A 3/

6 Y5 79
Y1 V4 8
—
~—— ~— 7 ~———
72 3 7

g2 u

Here, 2Vy, = 2 and 2'V; = 2.

3"V, =3

Moreover, 2Vy, = 2, 2'Vy,, = 2/, 3Vy, = 3, 3'V,,

p—t 37
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Varying the target graph and adjusting the other graphs accordingly, we get the following
example.

a7
4// . 5/

fa R

Y10
2/ P S / K\ /

ZONNOX

\/\j\_%\j

g3

B1 B2 B3 Ba
R Rt Feie Tt

Bs B7 Be Bs

Here, 2Vf3 = 2, 2/ st = 2/, 3Vf3 = 3, 3 va = 3, 3" Vf3 = 3/, 4Vf3 = 4, 4IVf3 = 4, 4" Vf3 =4
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In the target graphs of the first two examples, we add two edges and adjust the other two
graphs to get quasiisomorphisms as follows.

fan e
Y10
9! =g
Y6 5 Y6 5 Y9
~1 Y4 Y1 T4 8
— A,
1=—2__ 3 1 >2 3
\73/4 V2 V3 7
y7 Y11
8 Y12
g4 g5 2
Bs B7
1 227 3 17 22 3 4
w Bs Bs Ba
Be e

Here, 2Vy, =2, 2'Vy, =2'. Moreover 2V, =2,2'Vy, =2/, 3V, =3,3 Vy, =3, 3"V, =3
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We can enlarge this example further to obtain the following quasiisomorphisms.

g6 u

By
/ﬁ B2 B3 Ba
— Al — X\
1 - 2 - 3 - 4 - 5
Bs B7 Be
B1o

Here, 2Vf6 = 2, 2/ er = 2/, 3Vf6 = 3, 3 Vf6 = 3, 3" er = 3/, 4Vf6 = 4, 4IVf6 = 4, 4" VfG =4
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In the graph G in the following example we need to have edges from the vertices 1,4,7 and 10
to the vertices 2,5,8 and 11 to obtain an etale fibration. Since in addition the edges 2 — 3,

5—6,8 =9 and 11 — 12 of H are unitargeting, we conclude that h; is a quasiisomorphism;
cf. §0.5.

G 1 2 3
4 5 6
7 8 9
10— 11——>12
hy Q
H le——>2— >3
I 0
I 89
le——11—>12

We let

1Vy, =1 2V, =2 3V, :=3 4V, =1 5V, =5 6V, =6
7Vh1 =1 8vh1 =38 9Vh1 =9 10Vh1 =1 11Vh1 =11 12Vh1 =12

Here, the graph H has only a single vertex named 1, displayed four times for sake of clarity.
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The following graph morphism between fibrant graphs is neither an acyclic fibration nor an
acyclic cofibration but nevertheless a quasiisomorphism; cf. Example 226.

To prove this, we can not apply Proposition 210.

3 6
AR
2 as 066| 5
Ny |

Here, 1Vh2 = 1, 2Vh2 — 2, 3Vh2 — 3, 4Vh2 — 4, 5Vh2 B 5, 6Vh2 = 6.

The following graph morphism is an acyclic fibration but not an etale fibration.

129

N

3
|
3 R
l
0

So even for a fibration, the sufficient condition of Proposition 210 is not necessary for it to be

a quasiisomorphism.
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0.6.2 Counterexamples

We show by an example that the set of quasiisomorphisms is not stable under pushouts along
cofibrations; cf. Assertion 251.

We show by an example that the pushout of two cofibrant graphs is not necessarily cofibrant;
cf. Assertion 255.

We show by an example that the set of cofibrations is not stable under pullbacks; cf. Asser-
tion 253.

We give an example of a pushout and an induced morphism as follows, in which the induced
morphism f is not an acyclic cofibration, only a quasiisomorphism; cf. Assertion 254.

X —o—Y

LR

We give an example f : G — H for which (Cy, f)epn and (Cs, f)gpn are bijective, for which
there exists no injective graph morphism C, — G or Cp, — H for k > 3, but which is not a
quasiisomorphism; cf. Assertion 258.
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Conventions

(1) Given a, b € Z, we write [a,b] :=={z € Z : a < z < b}. In particular, [a,0] =0 if a > b.
(2) Given a € Z, we write Zs, :={z€Z : a < z}, etc.

(3) We set N:=Z,.

(4) We compose on the right. So given maps X Ly %z , their composite is denoted by

X 2219 7 and maps x € X to z(f - g) = (zf)g.

Given a set X, “for z € X” means “for all x € X 7.

(5)

(6) Given a finite set X, we denote by |X| its cardinality.

(7) Given sets X and Y, the set of maps from X to Y is denoted by Y.
(8)

Given a set M, a relation R C M x M, the equivalence relation (~) generated by R
and an element m € M, we write [m].) for the equivalence class of m, i.e. the set of all
elements n € M with (m,n) € R.

The symbol %% in a comment in Magma code refers to a function that is used in this line.

)

(10) The label Reminder indicates a summary of notations or definitions we remind of.
) The label Assertion indicates an assertion that we falsify by a counterexample.
)

Whenever neccessary, we restrict the consideration to a given universe in the sense of
Bourbaki [1].



Chapter 1

Preliminaries

1.1 Preliminaries on categories

Let C be a category.

1.1.1 The properties (2 of 6) and (2 of 3)

Definition 1 Suppose given a subset @ C Mor(C).

(1) We say that @ satisfies (2 of 6) if the following property holds.

Suppose given a commutative diagram

X' Y’
f g
h
X 7a Y
in C.
Then the composites X 9y and X' -2~V arein Q if and only if f,g and h
are in ).

(2) We say that @ satisfies (2 of 3) if the following property holds.

Suppose given a commutative diagram

N

X f

in C.
Then (i, ii, iii) hold.

19
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(i) If f,g € Q then fg € Q.
(i) If f, fg € Q then g € Q.
(iii) If g, fg € Q then f € Q.

Lemma 2 Suppose given a subset Q C Mor(C) such that idy € @ for X € Ob(C).
If @ satisfies (2 of 6), then @ satisfies (2 of 3).

Proof. Suppose given a commutative diagram

/N,

X !

in C. We have to show that (i, ii, iii) from Definition 1 hold.

Ad (i). Suppose that f,g € Q). We have to show that fg é Q.

SN A

Since f, g, idz € @, the morphism fg : X — Z is an element of Q) by (2 of 6); cf. Definition 1.(1).

X

We have the following commutative diagram.
Y g
g

f

!
Ad (ii). Suppose that f, fg € Q. We have to show that g € Q.

We have the following commutative diagram.

X

Since f, fg € @, the morphism g : Y — Z is an element of @) by (2 of 6); cf. Definition 1.(1).

Ad (iii). Suppose that g, fg € Q. We have to show that f é Q.

We have the following commutative diagram.

Since g, fg € @, the morphism f: X — Y is an element of @) by (2 of 6); cf. Definition 1.(1).5
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Remark 3 The subset Iso(C) C Mor(C) satisfies (2 of 6).
Proof. Suppose given the following commutative diagram in C.
g

X%y
! g
h
X fg

Y

Suppose that f, g, h € Iso(C).

Then fg, gh € Iso(C).

Conversely, suppose that fg, gh € Iso(C).

Then ((fg)™'- f)-g=idy and g - (h- (gh)™") =idx .

Thus g- ((fg)™ - f)=9g-((fg)™" - f)-g-(h-(gh)") =g (h-(gh)™") =idx".

Therefore, g is an isomorphism with g=' = (fg)~! - f.

Hence f = (fg)-¢g ' and h = g~' - (gh) are isomorphisms. o

Remark 4 Suppose given a subset  C Mor(C) such that idy € @ for X € Ob(C).
Suppose that @ satisfies (2 of 6).

Then Iso(C) C Q.

Proof. Let g : X — Y be an isomorphism in C.

We have the following commutative diagram in C.

id

S

Y

-1

g
Y

X
idy

Since idy,idy € @, we have g € @ by (2 of 6); cf. Definition 1.(1). o

1.1.2 Pushout and Pullback

Definition 5 Suppose given a quadrangle

x—1.y

1

X —=Y'
f/

in C.
It is called a pushout if (Pushout 1-2) hold.
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(Pushout 1) We have g - f' = f - h.

Pushout 2) Suppose given an object G € Ob(C) and morphisms v : X' — G and v : Y — G in
( ppose g ] D

Mor(C) such that f-v = g-u. Then there exists a unique morphism w : ¥’ — G in
Mor(C) such that f'-w =w and h-w = v.

f

— Y

X
X/

Y/

r-
— >

To indicate that this quadrangle is a pushout, we write

Xty
"
|
X —=Y'.
f/
Then we also say that f’ is a pushout of f.
Remark 6 Suppose given

x—1oy

9 h
|

x Loy

in C such that f'w = f'w and hw = hw.

Then we have w = w.

Proof. Let v := hw = hw and v := f'w = f'w.

We have fv = fhw = gf'w = gu.

Thus there exists exactly one morphism w’ : Y’ — Z such that hw' = v and f'w’ = u.

But we have hw = v and f'w = u, and hw = v and f'0 = w.



&

Sow=w"=

Remark 7 Suppose given

and

in C.

23

h<

<
-~

i
>

Then there exists an isomorphism @ : Y = Y such that f&w = f" and hi = h.

Proof. Because Y’ is a pushout there exists, by (Pushout 2), a unique morphism w : Y’ — Y’

such that hw = h and f'w = f.

Because Y7 is a pushout there exists, by (Pushout 2), a unique morphism @ : Y’ — Y’ such

that f'w = f' and haw = h.

We have

We have to show that ww = idys and ww = idy, .

We have hww = ho = h and f'wd = f% = f'. So we have wi = idy- ; cf. Remark 6.

We have hiow = hw = h and fzI)w = flw = f So we have ww = idy, ; cf. Remark 6. 0
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Remark 8 Suppose given
Xty 2.7

4o

X/—>Y/ﬁ-Z/

I g
in C. Then
x-1 7
j ] Lw
X —7.
g’
Proof.

Ad (Pushout 1).

!

We have to show that u(f’¢’) = (fg)w.
We have uf'g’ = fvg’ = fgw; cf. Definition 5.

Ad (Pushout 2).

Suppose given an object G € Ob(C) and morphisms a : X’ — G and b : Z — G such that
u-a = (fg)-b. We have to show that there exists exactly one morphism d : Z' — G such
that (f'¢’) -d = a and w-d = b. Because Y’ is a pushout there exists exactly one morphism
¢:Y' — G such that f'-c=aand v-c = g-b. Because Z’ is a pushout and because of
v-c = g-b there exists exactly one morphism d : Z' — G such that ¢'-d =cand w-d =b. So
there exists a morphism d : Z/ — G such that f'¢’-d = f'c=a and w-d = b.

It remains to show uniqueness.

Let d : Z' — G in Mor(C) be a morphism such that a = f’¢g'd and such that b = wd.

We have to show that d = d.
Recall that ¢ : Y’ — G is the unique morphism with f'-c=aand v-c=g-b.

We have f'- (¢d) = a and v - (¢'d) = gwd = gb. Because of the uniqueness of the morphism ¢
we get ¢'d = c.

Recall that d : Z/ — G is the unique morphism with ¢'d = ¢ and wd = b.

But ¢'d = ¢ and wd = b. So d = d. o
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Definition 9 Suppose given a quadrangle

x—t.y

gl lh

X —Y'
f/

in C.
It is called a pullback if (Pullback 1-2) hold.

(Pullback 1) We have f-h=g- [

(Pullback 2) Suppose given an object G € Ob(C) and morphisms v : G — Y and v : G — X' in
Mor(C) such that u-h = v - f’. Then there exists a unique morphism w : G — X in
Mor(C) such that w- f = u and w - g = v.

To indicate that this quadrangle is a pullback, we write
x—t.y
r
1
X/ !/
f/

Then we also say that f is a pullback of f’.

The following remarks on pullbacks have dual counterparts; cf. Remarks 6, 7 and 8. We carry out
the proofs nonetheless.

Remark 10 Suppose given

N

X—Y

f
-
|g

X' —=Y'
f/

h
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in C such that wg = wg and wf = wf.

Then we have w = w.

Proof. Let v :=wg =wg and v :=wf =wf.

We have vf' = wgf' = wfh = uh.

Thus there exists exactly one morphism w’ : Z — X such that w'g = v and w'f = w.
But we have wg = v and wf = u, and wg = v and W f = u.

Sow =w' = w.

Remark 11 Suppose given

x—1.vy
r
g h
! /
f/
and
x—1.y
r
g h
XI 1A
f/
in C.

Then there exists an isomorphism @ : X = X such that w f = f and wg = g.

Proof. Because X is a pushout there exists, by (Pushout 2), a unique morphism w : X 5 X

such that wf = f and wg = g.

Because X is a pushout there exists, by (Pushout 2), a unique morphism @ : X — X such that
wf = f and wg = g.



We have

We have to show that ww = idy and ww =idy .

We have wif = wf = f and wd§ = wg = §. So we have ww =idg; cf

We have wwf = wf = f and wwg = w§ = g. So we have ww = idy ; cf. Remark 10.

Remark 12 Suppose given

xJt.y 2.7

7

X/ﬁY/_/)Z/
f g

in C. Then
x-1 7
"]
X —7
f'g’ '
Proof.

Ad (Pullback 1).

We have to show that (fg)w = u(f'g).

We have fgw = fvg = uf'q’; cf. Definition 9.
Ad (Pullback 2).

. Remark 10.
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o

Suppose given an object G € Ob(C) and morphisms a : G — Z and b : G — X’ such that
a-w=">b-(f"g"). We have to show that there exists exactly one morphism d : G — X such that
d-(fg) =aand d-u=0b. Because Y is a pullback there exist exactly one morphism ¢: G — Y
such that ¢- g =a and ¢-v =b- f’. Because X is a pullback and because of ¢-v = b - f’ there
exists exactly one morphism d : G — X such that d-u = b and d- f = c. So there exists a
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morphism d : G — X such that d-u=band d- fg = cg = a.

It remains to show uniqueness.

Let d: G — X in Mor(C) be a morphism such that a = dfg and such that b = du.

We have to show that d = d.

Recall that ¢ : G — Y is the unique morphism with ¢-g=a and c-v="5- f'.

We have (ch) g =aand d-u = b. Because of the uniqueness of the morphism ¢ we get df = c.
Recall that d : G — X is the unique morphism with df = ¢ and du = b.

But df = c and du =b. So d = d. o

1.1.3 Lifting properties

Let C be a category.

Definition 13 Suppose given a set of morphisms M C Mor(C).

(1) For a morphism f: X — Y we define the left lifting property (LLP,;) as follows.

(LLP,s) For each morphism f’: X’ — Y’ in M and all morphisms u : X — X’ andv:Y — Y’
in Mor(C) with fv = wuf’, there exists a morphism h : Y — X’ such that fh = u
and hf' = wv.

X —=X

171

Y _v) Y/
The morphism f may or may not satisfy (LLP /).

(2) Let the left-liftable set “M of M be defined as follows.

9M = {f € Mor(C) : f satisfies (LLP )}

For short, YM 1is also called M left-lift.



Definition 14 Suppose given a set of morphisms M C Mor(C).

(1) For a morphism f : X — Y we define the right lifting property (RLPy,) as follows.

29

(RLP,s) For each morphism f’: X’ — Y"in M and all morphismsu : X’ - X andv:Y' =Y
in Mor(C) with uf = f'v, there exists a morphism h : Y’ — X such that f'h = u

and hf = v.

X' —ts X

177

Y/ T> Y
The morphism f may or may not satisfy (RLP ).

(2) Let the right-liftable set M% of M be defined as follows.

M? :={f € Mor(C) : f satisfies (RLPy)}
For short, the set MY is also called M right-lift.

Definition 15 Suppose given subsets M, N C Mor(C).
We write M @@ N if M C PN, or, equivalently, if M¥ D N; cf. Definitions 13 and 14.
If M@ N, we say M lift N.

Here, we use “lift” as a preposition.

Remark 16 Suppose given subsets M C N C Mor(C).
Then we have M? O N¥ and we have YPM D PN cf. Definitions 13 and 14.

Remark 17 Suppose given a set of morphisms M C Mor(C).

Then we have M C (?M)%? and M C P(M?2).

Proof.

Since we have 2M C M we have PM @@ M and thus M C (YM)%; cf. Definition 15.
Since we have M? C M? we have M @@ M? and thus M C B(M?); cf. Definition 15.

Note that in general, we do not have (PM)¥Y C M. For instance, if C has an object X, then
0 2 {idx} € Mor(C)? = (90)=.

Note that in general, we do not have ¥(M?) C M. For instance, if C has an object X, then
0 2 {idx} € PMor(C) = 2(09).

Remark 18 Suppose given a subset M C Mor(C).
We have Iso(C) C 2M and Iso(C) C M.
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Proof.

Suppose given a commutative diagram

in C with f € Iso(C) and m € M C Mor(C).
We have the morphism f~'a:Y — X’ with ff 'a = a and with f~tam = f~1fb=b.

So we have the following commutative diagram.

X X'

2 f m
fta

Y Y’

And so the isomorphism f : X — Y is in M.
So we have Iso(C) C M.

Now suppose given a commutative diagram

X=X

J

/

in C with f € Iso(C) and m € M C Mor(C).
We have the morphism bf ™' : Y — X’ with mbf™' = af f~' = a and with bf ' f = b.

So we have the following commutative diagram.

X 2 X'
bf!

m | f

Y Y’

And so the isomorphism f: X — Y is in M2,
So we have Iso(C) C MP.

Remark 19 Suppose given a subset M C Mor(C).
Suppose given morphisms f: X — Y and g: Y — Z in PM.
Then the composite fg : X — Z is also in ?M.
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Proof. Suppose given a commutative diagram as follows, where m € M.

X2 X/

/

We have to show that there exists a morphism h : Z — X’ such that (fg)h = q and hm = b.

Since f(gb) = am and since the morphism f : X — Y is in YM, there exists a morphism
k:Y — X’ such that fk = a and km = gb.

Since km = gb and since the morphism ¢ : Y — Z isin Y M, there exists a morphism h : Z — X'
such that gh = k and hm = b.

So we have (fg)h = fk = a and hm = b.

X=X

| 7

Y no|m

i

ks

o

b

Remark 20 Suppose given a subset M C Mor(C).
Suppose given morphisms f: X — Y and g: Y — Z in M¥?.
Then the composite fg: X — Z is also in MY.

Proof. Suppose given a commutative diagram as follows, where m € M.

X' 25X

We have to show that there exists a morphism h : Z' — X such that h(fg) = b and mh = a.

Since (af)g = mb and since the morphism ¢ : Y — Z is in M?, there exists a morphism
k:Z — Y such that kg = b and mk = af.

Since mk = af and since the morphism f : X — Y is in MY, there exists a morphism
h: 7" — X such that hf = k and mh = a.
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So we have h(fg) = kg = b and mh = a.

S

X 25

@L \ =
~s N~

N

Remark 21 Suppose given a subset M C Mor(C).
We have M C Mor(C); cf. Definition 13.
The set “M is stable under pushouts; cf. Definition 82.

Proof. Suppose given a pushout

in C with f: X — X" in ¥M.

We have to show that the morphism ¢g : Y — Y is in YM, i.e. that the morphism ¢ satisfies
(LLPy); cf. Definition 13.

Suppose given a commutative diagram as follows, where m € M.

Xty 2.z

oLl b

X — VvV o7
h q

We have to show that there exists a morphism k:Y' — Z such that gl;; = p and km = q.

Because the morphism f : X — X’ is in YM there exists a morphism k : X’ — Z such that
fk =hpand km = h'q.

Because Y is a pushout and fk = hp, there exists a morphism k:Y' — Z such that W'k = k
and gk = p.

So we have gl~f — p. It remains to show that km = q.
We have h'km = km = W ¢ and gkm = pm = ¢q.

Cancelling /' and ¢ simultaneously using Remark 6, we obtain km = q.

X—r.y * gz

X' Yy’ VA
14 q
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Remark 22 Suppose given a subset M C Mor(C).

We have M¥% C Mor(C); cf. Definition 13.

The set M? is stable under pullbacks; cf. Definition 96.
Proof. Suppose given a pullback

f

Y —7
r
I
Y/ /
fl

in C with h: Z — Z" in MP.

We have to show that the morphism ¢ : Y — Y’ is in M?, i.e. that the morphism ¢ satisfies
(RLPyy); cf. Definition 14.

Suppose given a commutative diagram as follows, where m € M.

Xty ‘.oz

T b

X,T“Y/ﬁ‘zl
!

We have to show that there exists a morphism & : X’ — Z such that mk = p and kg = q.

Because the morphism h : Z — Z’ is in M? there exists a morphism k : X’ — Z such that
mk =pf and kh = qf’.

Because Y is a pullback and kh = pf’, there exists a morphism k: X' — Y such that kf = k
and kg = q.

So we have l;g = q. It remains to show that mk = p.
We have ml;f =mk = af and m/;g = mq = pg.

Cancelling f and ¢ simultaneously using Remark 10, we obtain mk = p.
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1.1.4 Subsets of Mor(C) being closed under retracts

Definition 23 A subset of morphisms M C Mor(C) is called closed under retracts if the
following property (C) holds.

(C) Suppose given a commutative diagram

¢ L

b
idg G—f>H id g/
]
ey
in C such that f: G — H in M.
Then the morphism f': G’ — H' is in M.

Remark 24 The subset of isomorphisms Iso(C) C Mor(C) is closed under retracts; cf. Defini-
tion 23.

Proof. Suppose given a commutative diagram in C as follows.

L m
il
idg G—£>H id g/
]
Ry
We have to show that the morphism f’: G’ — H’ is an isomorphism.
We show that we have f/~! =jf~p: H — G".
We have jf~'p- f'=jf ' fqg=jg=idw and f'-jf'p=iff'p=ip=ide.

So the morphism f’: G’ — H' is an isomorphism. 0

Remark 25 Suppose given a subset M C Mor(C).
The subset “M C Mor(C) is closed under retracts; cf. Definition 23.

Proof. Suppose given a commutative diagram in C as follows, where f € YM.

L m

I

idg | G —— H |idgy

o

G/ Hl



35

We have to show that the morphism f’: G' — H’ is in 2M.

Suppose given a commutative diagram in C as follows, where m € M.

GII m HI/
u v
!
G’ L. H’
p q
idgr G—f> H |idg
i J

¢ L

So we have to show that there exists a morphism h : H' — G” such that hm = v and f'h = u;
cf. Definition 13.

Since the morphism f : G — H is in YM, there exists a morphism k : H — G” such that
km = qu and fk = pu.

We let h := jk: H — G".
We have hm = jkm = jqu = v and we have f'h = f'jk =ifk = ipu = u.
So the morphism [’ : G’ — H' is in Y M. o

Remark 26 Suppose given a subset M C Mor(C).
The subset M? C Mor(C) is closed under retracts; cf. Definition 23.

Proof. Suppose given a commutative diagram in C as follows, where f € M©2.

oL
b
ide | G _J. H |idy
]
oL
We have to show that the morphism f’: G’ — H’ is in M?.

Suppose given a commutative diagram in C as follows, where m € M.

G/ﬁHl
p q

idgr G—f>H id g
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We have to show that there exists a morphism h : H” — G’ such that hf’ = v and mh = u; cf.
Definition 14.

Since the morphism f : G — H is in MY, there exists a morphism k : H” — G such that
kf =wvj and mk = uq.

Welet h:=kp: H — G'.
We have hf' = kpf' = kfq = vjq = v and we have mh = mkp = uip = u.
So the morphism f': G’ — H' is in M¥?. o

Definition 27 Suppose given subset M, N C Mor(C).
We write M A N if the properties (C 1-3) hold.

(C1) M =PN.
(C2) M? = N.

(C 3) For a graph morphism f : X — Z there exist graph morphisms m : X — Y in M and

n:Y — Z in N such that

X !

Z

commutes.

If MDA N, we say M closed-lift N.

Here, we use “closed-lift” as a preposition.

Remark 28 Suppose given subsets M, N C Mor(C) such that M &1 N.

We have M A N if and only if M and N are closed under retracts and (C 3) holds; cf. Defini-
tion 27.

Proof.

First, suppose that M 1 N.

Left-liftable sets are closed under retracts; cf. Remark 25.

Right-liftable sets are closed under retracts; cf. Remark 26.

Second, suppose that M and N are closed under retracts and that (C 3) holds.

We have to show that M = 2N and that M2 = N.

Recall that M &1 N is equivalent to M C YN and to M¥ D N.
!

We have to show that M D 2N.

Suppose given a graph morphism f: X — Y in ¥N. So f &3 N.

!
We have to show that f € M.
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Since (C 3) holds, we have a commutative diagram in Gph as follows, where m € M and n € N.
X——==7

"

idy

Since f 1 N, we have a commutative diagram in Gph as follows.
X——=Z
W

dy

We consider the following commutative diagram in Gph.

X/\X

e

Y Y

Since M is closed under retracts, we obtain f € M.
|
We have to show that M¥ C N.
Suppose given a graph morphism f: X — Y in M?. So M1 f.

!
We have to show that f € N.
Since (C 3) holds, we have a commutative diagram in Gph as follows, where m € M and n € N.

idx

X—X

Y

Since M 11 f, we have a commutative diagram in Gph as follows.

idx

X—X

| )

We consider the following commutative diagram in Gph.

Since N is closed under retracts, we obtain f € N. o
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1.2 Preliminaries on sets

1.2.1 Elementary constructions and properties

Remark 29 Suppose given sets A C B C C.
We have C'\ A= (C'\ B)U (B\ A).

Remark 30 Suppose given sets X,Y, Z.

Suppose given maps f: X =Y, ¢g: Y — Z with g injective.

We have Z\ Xfg=(Z\Yg) U\ Xf)g.

Proof. We have to show that Z \ X fg = (Z\Yg)U(Yg\ Xfg), since XfgCYgC Z.
Because ¢ is injective we have Yg\ X fg= (Y \ X f)g:

We show Yg\ X fg= (Y \ Xf)g.

First, we show Yg\ X fg é Y\ Xf)g

Suppose given z € Yg \ X fg.

There exists y € Y such that z = yg. Then y ¢ X f because of z = yg ¢ X fg.
So we have z = yg € (Y \ X f)g.

Second, we show Yg\ X fg é Y\ Xf)g.

Suppose given z € (Y \ X f)g.

There exists y € Y \ X f such that z = yg € Yyg.

We assume that z € X fg. So we have z = yg € X fg.

There exists z € X such that yg = zfg. Because g is injective we have y = x f, which is a
contradiction.

So we have z ¢ X fg. Hence z € Yg\ X fg. o

Remark 31 Suppose given a surjective map f: X — Y.

Then f: X — Y is an epimorphism in Set.

Proof. Suppose given maps: u,u' : Y — Z such that fu = fu'.

We have to show that u = /.

Suppose given y € Y.

Since f: X — Y is surjective there exists an element x € X such that zf = y.
Since fu = fu' we have yu = zfu = zfu' = yu'.

So we conclude that © = /. 5
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Definition 32 Suppose given a set [I.
Suppose given sets A; for i € I.
Then the coproduct or disjoint union ]_LEI A; of the sets A; for i € I is defined as follows.

[T4 =G a):ac A}

el icl

Suppose given k € I. We let
L © Ak — Hie[ AZ
a +— (k,a)

If I = [1,n] for some n > 1, we often write A; U As ... U A, = ]_L.E[Ln] A

Example 33 Suppose given sets A and B.
Then we have the coproduct AU B of A and B as follows; cf. Definition 32.

AUB={(1,a):a€ AYU{(2,b) : be B}

We have
n: A —- AUB

and
Ly : B — AUB

b — (2,b).

Remark 34 Suppose given a set M.
Suppose given a relation R C M x M.
Let (~) € M x M the equivalence relation generated by R.

Let
p: M— M/<N>

m+— [m] (~) -
Suppose given a set M.
Suppose given a map f: M — N such that zf = yf for (z,y) € R.
Then there exists a unique map f : M/(N) — N such that pf = f, i.e. we have the follwing

commutative diagram.
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Remark 35 Let @) be the subset of bijective maps of Mor(Set). Then @ satisfies (2 of 6); cf.
Definition 1.(1).

Proof. Suppose given sets X, X', Y and Y.
Suppose given maps f: X - X' g: X' =>Y and h:Y =Y’
We have the following commutative diagram in Set.

X/ gh Y
f g
h
X — Y

We have to show that the composites fg: X — Y and gh : X' — Y’ are bijective if and only
if f, g and h are bijective.

First, suppose that fg and gh are bijective.

Since fg is bijective, the map g is surjective.

Since gh is bijective, the map g is injective.

So g is bijective.

Hence f = (fg)-¢g ! and h = g~ - (gh) are bijective.

Now suppose that f, g and h are bijective.

Then the composites fg and gh are bijective. o

1.2.2 Pushouts in Set

Construction 36 Suppose given the diagram
x—1.y
]
X’
in Set.
We consider the coproduct X’ U'Y; cf. Definition 32.
On this set we have the relation R := {((1,zg), (2,zf)) :2 € X} C(X'UY) x (X'UY).
Let (~) be the equivalence relation generated by R.

ey,

So we have the set of equivalence classes Y/ :=

Let
y Loy
y = (2]~
and
x Loy
' [(Lwl)](’”)'
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Then, in Set, we have the pushout

Xty

9l lh

X/ - !
f/

Proof.
Ad (Pushout 1).
We have xfh = [(2,2f)](~) = [(1,29)](~) = xzgf for x € X. So fh=gf"
Ad (Pushout 2).
Suppose given a set Z together with maps v : X’ — Z and v : Y — Z such that fv = gu.
We have to show that there exists exactly one map w : Y’ — Z with f'w =« and hw = v.
Existence.
We define the map
w: XUy — Z

(L,2") — (1,2")w :=2"u

(2,y) — (2,y)w:=yv.
Suppose given ((1,zg),(2,2f)) € R, where x € X. Then (1,zg9)w = zgu = xfv = (2,2 f)w.

Using Y/ = (Xu Y)/(N), where (~) is the equivalence relation generated by R, we obtain the
map

w ! - 7
(1, 2]~y = [(1,2)](nyw = 2'u
(2, 9]~ = [(2,9)]yw = yo.
Xuy —= ~7
I
Y — (XU Y)/

Then for x € X’ we have z f'w = [(1,2")](vyw = 2'u. So we have in fact f'w = u.

Then for y € Y we have yhw = [(2,y)]~yw = yv. So we have in fact hw = v.

Uniqueness.

Suppose given @ : Y — Z with f'i = v and hw = v.

Suppose given ¢ € Y.

For ¢/ € Y’ we have 2’ € X such that [(1,2)](.) = ¢/ or we have y € Y such that [(2,y)]~) =¥
If v = [(1,2")](~y with 2" € X, then we obtain y'w = [(1,2")]vy@w = 2 f'® = 2'u.

If v = [(2,y)](~) With y € Y, then we obtain y"i = [(2,y)] W = yhd = yv.
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Since this holds for every such w, this shows uniqueness.

f

— Y

X
X/

P
—_—

Remark 37 Suppose given the pushout

f

X —Y
|
J
X —=Y’
f/

in Set.
Then we have Y/ = X'f " UYh.

!
Proof. Tt suffices to show that Y’ C X' f" UYh.

According to (Pushout 2) there exists a unique map w : Y' — X'f" U Yh such that hw =
h’X’f’UYh and f/w _ f’X’f/UYh'

h|X’f’uyh

S
X'f'UYh

For 3/ € Y we calculate y'w.

Ify € X'f’, then we write ¢/ = 2’ f' for some 2’ € X’. We obtain y'w = 2’ f'w = ' (f'|X' V) =
:L,/f/ — y/.

If 4/ € Yh, then we write y = yh for some y € Y. We obtain y'w = yhw = y(
yh =1y

So y'w =y’ in both cases.

h”X’f’uYh) —

In particular, vy = y'w € X' f'"UYh.
So we have Y/ C X'f"UYh and thus we have Y’ = X' f" U Yh. o
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Remark 38 Suppose given

in Set with an injective map f: X — X'.
Let V' := (X'\ Xf)LUY.

Let
a: X' —= Y
R (2,za) if2'=zf € Xf for aunique x € X
x
(L") if2’e X'\Xf.
and we let
g: Y - (X'\XfHuy
y = (2,9)
Then
X—2-Y
T
X/éy/

is a pushout in Set.
Proof.
Suppose given = € X. We have zfa’ = (2, za) = zag. So we have fa' = af’.

Now we show that the commutative diagram

X =Y
|k
X —=Y’
is a pushout in Set.
Suppose given
X —=Y

in Set such that av = fu.

We have to show that there exists a unique map w : Y’ — T such that a’w = v and gw = v.
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Uniqueness. This follows from X'a’ UYg=Y".

We show the existence of a map w : Y’ — T such that a'w = v and gw = v.

We let

w Y = T
(1,z') — 2'u
(2,y) = yv.
So we have
X225V
f g
X/ a Y/ v
T.

We have to show that a'w = u.
Suppose given ' € X'.
(2,za)w ifJreX 2/ =xf } { zav ifJreX: 2 =xf } fu=av

(L w ifa' € X'\ Xf vuifa € X'\ Xf B

zfu ifJre X 2/ =af du ifr e Xf ,
= =T U.
du  ifae X'\Xf u ifa’e X'\ Xf

We have 2/d'w = {

We have to show that f'w .

For y € Y we have yf'w = (2,y)w = yv. o

Remark 39 Suppose given

in Set.

If the map f: X — X' is injective, then the map ¢g : Y — Y is injective.

Proof.

Without loss of generality, the pushout is constructed in the way as in Remark 38; cf. Remark 7.

Then the map g is in fact injective. o
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Remark 40 Suppose given

in Set.
If the map f: X — X' is surjective, then the map ¢ : Y — Y’ is surjective.
Proof.

Without loss of generality, the pushout is constructed in the way as in Construction 36; cf.
Remark 7.

So we have Y’ (X'u Y)/(N
{((1,.Tf), (2,1’@)) S X}
Suppose given i € Y.

where (~) is the equivalence relation generated by

We have to show that there exists y € Y such that yg = /.

Case: There exists y € Y such that ¥ = [(2,y)](~) -

Then we have yg = [(2,y)](~) = V.

Case: There exists 2’ € X' such that 3 = [(1,2)](~) -

Since f: X — X' is surjective there exists x € X such that xf = 2/

Def. (~) Def.

So we have y' = [(1,2")]~) = [(1, 2 f)](~) (2, 20)](~y =7 (za)g. .

Without Construction 36 we can use Y’ = X’a’ UY g by Remark 37 to prove this Remark 40.

1.2.3 Pullbacks in Set

Construction 41 Suppose given the diagram

Y
|
x Loy
in Set.
Define the set X := {(2/,y) € X’ x Y : 2'f' = yh}.
Let
X 5 X
(@'y) = o
and
x Ly
(@ y) — vy
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Then, in Set, we have the pullback

f

X —Y
r
]
X —Y’
f/

Proof. We have (2/,y)fh =yh =2’ f' = (2',y)gf’ for (z',y) € X. So fh=gf’ o
Universal property.

Suppose given a set Z together with two maps u: Z — Y and v : Z — X’ such that uh = vf’.
We have to show that there exists exactly one map w : Z — X with wf =« and wg = v.
Existence.

We define the map

w: 4 — X

z = zw:= (20, zu) .

The element (zv, zu) is in fact contained in X since zvf' = zuh.
Then wf = u since for z € Z we have zwf = (zv, zu) f = zu.
Moreover, wg = v since for z € Z we have zwg = (zv, zu)g = zv.
Uniqueness.

Suppose given w : Z — X with wg = v and wf = w.

Suppose given z € Z. Write zw =: (2/,y) € X.

We obtain 2’ = zwg = zv and y = 20 f = zu.

So zw = (zv, zu).

Since this holds for every such w, this shows uniqueness.
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1.2.4 Colimit of a countable chain in Set

Suppose given

X, fon X, f1,2 X, f2,3

in Set.

Let fui = fort1 - fim1g: X = X for 0 < k < 1. In particular, f, = idx, .
We define the relation (~) on | |, X; as follows.

For (i, 2;), (j,7;) € |0 Xi we let

(i,2;) ~ (j,x;) = There exists m > max{j, k} such that z; f; , = z; fim -

The relation (~) is an equivalence relation:

For (j,z;) € [ ];5 Xi we have (j,z;) ~ (j,z;), since z; f;; = xv;idx, = x;f;; .

The relation (~) is symmetric by definition.

Suppose given (j, z;), (k, %), (I, 1) € | ;5o Xi such that (j, ;) ~ (k,2x) and (k, zy) ~ (I, 71).
So there exist m > max{j, k} and n > max{k, [} such that =, f; , = T fem and zx fr, = T fi -
Let p := max{m,n}.

Then we have x; f;, = T fimfmp = Tifomfmp = Tifep = T fenfnp = Tifinfop = Tfip -

So the relation (~) is transitive.

Let [j, z;] be the equivalence class of (j,z;) with respect to (~).

Definition 42

(1) We define the colimit Xo := lim X; := Lizo XV(N) ={lj,z;] : 5 2 0,2; € X;}.
i>0
(2) For k >0, we let

flc,oo: Xk — Xoo
Ty > [k,xk]

Suppose given 0 < k < [. Suppose given x; € Xj. We have (k,z;) ~ (I, 2 fr,1), since
T feg = (wkfk,l) idy, = (xkfk,l>fl,l-
So we have z fi1fi00 = [, Trfri] = [k, 7] = Tpfroo -

So we have fr1fico = fr,o0 -
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Lemma 43 (universal property) Suppose given maps ¢; : X; — T for j > 0 such that
fj7j+1tj+1 = tj fOTj = 0, ie. fchtk = tj for 0 < j < k.

Then there exists a unique map t : Xoo — 1" such that f; .t =t; for j > 0.
Proof.

Uniqueness.

Suppose given t',t" : Xoo — T such that f; t' =t; and f;t" =t; for j > 0.
We have to show that ¢’ =¢".

Let [,7j] € X .

We have to show that [j, z;]t’ = 7, ;]t".

In fact, we have [j, 2]t = z; fj oot = xjt; = ;[ oot” = [J, z;]t".

Existence.

Let
too: Xoo — T

sx] = xjty

We show that this map is well-defined.
Suppose given (j,;), (k, xx) € | ];5o Xi such that [j, x;] = [k, z,].
Then x; f;m = @k fr,m for some m > max{j, k}.

We have to show that z;t; L Trty .

In fact, we have z;t; = x; f;mtm = Tk frmbm = Tl .

Def. ¢
=" x.:t

Suppose given j > 0. Suppose given z; € X;. We have z; f; «otoo = [J, Zj]too g

j .

So we have f; otoo = 1.

fO,oo
fl,oo

f2,oo

Xo

fo

to
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Definition 44 Suppose given a commutative diagram in Set as follows; cf. Definition 42.

We have fj 1141954100 = UjGj,j+19j4+1,00 = Ujj.00 for j = 0.

So because of the universal property there exists a unique map s : Xo — Yo such that
fioolloo = ;0,00 for j = 0; cf. Lemma 43.

We let lim u; := uo .




50



Chapter 2

Graphs

2.1 Definitions for graphs and graph morphisms

Definition 45 A graph G = (Vg,Eq,sq, tg) is a tuple consisting of a set of vertices Vg and
a set of edges Eg together with maps s¢ : Eq — Vg, the source map, and to : Eq — Vg, the
target map.

Remark 46 Suppose given a graph G = (Vg,Eg,sq,te). The elements of Vi are called
vertices and the elements of Eg are called edges.

The element esg € Vg is called the source of e € Eg .
The element ety € Vg is called the target of e € E¢ .

Pictorially, we represent GG by writing out the vertices of G and by drawing an arrow for each
edge e of G, pointing from its source esg to its target ete .

Definition 47 Suppose given a graph G = (Vg,Eq,sq, ta).

(1) A graph G = (Vgl ,Egl , SGr ,tgl) is called a subgmph Of G if Vgl g Vg, EGV g Eg,
Ve Ve
Sqr = 8@ |EG’ s and tgl = tG ‘EG"

To indicate that G’ is a subgraph of G, we write G' C G.

(2) Suppose given subgraphs H C G and K C G. The intersection H N K of the subgraphs
H and K is the subgraph

HNK = (Vuok, Bnnk s saak s trnk) == (Ve O Vi Eg NEx e [0 0ES  te [ D<)

of G.

(3) A subgraph G’ C G is called a full subgraphif Eq» = {e € E¢ : esg € Vo and etg € Vo },
i.e. if for v/, w’ € Vi, each edge e of G having esg = v’ and etg = w' is already an edge
of G'.

(4) A graph G = (Vg ,Eq,sq,tq) is called finite if the sets Vi and Eg both are finite.

o1
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Remark 48 Suppose given a graph G.

(1) To define a subgraph G’ of G, it suffices to give subsets Eq: C Eg and Vg C Vi such
that EG/ Sa g VG/ and EG/ tG g VG/ .

(2) To define a full subgraph G’ of G, it suffices to give a subset Vo C Vi .

Example 49 The graph G having Vg = {1,2,3,4} and Eq = {a1, a2, a3, as} with

alstl, OéltGIZ,
agsg =1, agtg =2,
azsg =3, aztg =2,

agsg =1, astg=1,

is represented the following way.

aq
G: ar(C17 223 4
a2

Note that the graph H having Vg = {1,2,3} and Ey = {1, a2, a3} with

1Sy = 1, OégtHZQ,
Qo SHg = ]-7 a3tH:27

azsg =3, aztg =2,

which is represented as

is a full subgraph of G; cf. Definition 47.
Moreover, the graph K having Vi = {1,2} and Ex = {1, a4} with

ozlsK:L OéltK:2,

agsg =1, aytg =1,

which is represented as

aq

K : a4(;1/“*2,

is a subgraph of GG, but not a full subgraph.
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As intersection, we obtain H N K having Vynr = {1,2} and Egnx = {a1} with
arsunk = 1, aztpynx =2,

which is represented as

a1

HNK: 17 2.

Remark 50 Suppose given a graph G.
Suppose given full subgraphs G C G and G” C G with Vg = Vgr .

Then G' = G".
Proof. We have to show that G’ - G”. Tt remains to show that Eqg . Eqgr as subsets of Eg .
Write V' := Vg = Vgr. We have Eqr = {e € E¢ :esg € V and etg € V} = Egn . o

Notation 51 Suppose given a graph G.
Suppose given vertices v, w € Vg .

Suppose given subsets V, W C Vg .

(1) We denote G(v,w) :={e € Eg :esg =0, etg =w} C Eg.
Write G(v, %) :={e € Eq : esq = v} C Eq.

Write G(x,w) :={e € Eg:etg = w} C E¢.

(2) We denote G(V,W):={e € Eg:esc €V, etc e W} C Eg.
Write G(V,w) := G(V,{w}) and G(v, W) := G({v}, W).
Write G(V, %) :={e € Eg:esqg € V} C Eq.

Write G(x, W) :={e € Eg : et € W} C Eg.
In particular, G(v,*) = G({v}, *) and G(*,w) = G(x,{w}).

Definition 52 Let n € N. We will define a graph C,, .
For i € Z we often abbreviate ¢ := i+ nZ € Z/nZ'

To denote vertices in C,,, we use symbols v;, for i € Z/nZ' To denote edges in C,,, we use

symbols e; , for i € Z/nZ'
The cyclic graph C,, = (Vg,, Ec,,, sc,,, tc, ) is the graph with Vg, == {v; | i € Z/nZ}=
Ec, ={e; |i € Z/nZ} and with

_ _ e/
€;Sc,, = Vi, € tCn = Vi+1 for ¢ € /nZ .
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Example 53 For example the cyclic graph Cj is represented the following way.

€2

—\
Cy: Vo V3
Vi Vyq

Note that vy = vg and e4 = €9 .

Definition 54 Suppose given graphs G = (Vg, Eg, sq,t¢) and H = (Vy, Eg, sy, ty).
A graph morphism f = (V¢ ,Ef) : G — H between G and H is a tuple consisting of a map on
the vertices of the graphs V; : V¢ — V and a map on the edges of the graphs E; : Eq — Eg
such that (Morph 1-2) hold.

(Morph 1) We have Efsy = sq Vs .

(Morph2) We have E;ty = tg Vy.

The graph morphism f = (V;,Ey) is called injective if Vy and Ey are injective.
The graph morphism f = (V;,Ey) is called surjective if V¢ and Ef are surjective.
The graph morphism f = (Vy,Ey) is called bijective if Vy and Ey are bijective.

Definition 55 Suppose given a graph G = (Vg, Eg, sg, tq)-
The graph morphism idg := (Viag, Eia.) : G — G with

\/idG = idVG : VG — VG

v v

for v € Vg and with
Eidg = 1dEG : EG — EG

I

e e
for e € E¢ is called the identity on G.

Note that the identity idg is bijective and thus a graph isomorphism.

Definition 56 Suppose given n € N and k,l € N with k£ < [. We will define a graph D,,, as
well as graph morphisms r,, : D,, = C,, and ¢x; : Dy, — D;.

(1) To denote vertices in D,,, we use symbols ¥;, for ¢ € [0,n]. To denote edges in D,,, we
use symbols ¢é; , for i € [0,n —1].
The direct graph D,, = (Vp,,, Ep, ,sp,, tp, ) is the graph with Vp = {¥; | i € [0,n]},
Ep, :={& | i € [0,n — 1]} and with

éiSDn :\Afz for i € [O,n—l], éztDn :\77;_,_1 for i € [O,n—l]
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(2) We have the graph morphism
rn,: D, — C,
Vrn : XA/'l — Vignz = V; fori e [0, 77,]
E. : & — eium=¢ foriel[0,n—1].
To verify that r, is in fact a graph morphism, we have to show that &;sp, V,, = & E,, sc,
and that é;tp, V., =& E, tc, fori e [0,n —1].

We have é;sp, V,, = V; V,., = Vitnz = €4z Sc, = & By, s¢, for i € [0,n — 1] and we have
€; tDn Vrn = Vi1 Vrn = Vit14nZ = €i+nZ tcn = €; Ern tcn fori e [0, n — 1]

Sor, : D, — C, is in fact a graph morphism. o
3) We have the graph morphism
(

Uk, - Dk — Dl
VLk’l : \Afz — \A/'Z for i € [0, k’]
E & — & for ¢ € [0, k — ]_]

Lk, *

We often identify the direct graph D, with the subgraph Dy ¢;; € D; of the direct graph D; .

We often abbreviate ¢, := ¢, : Do = D,,, where V,, : ¥¢ +— V.

Example 57 For example the direct graph D; is represented the following way.

N € A
D1 . Vo——>V1

Example 58 For example the direct graph Dj is represented the following way.

~ N &1 A SN
D3'

Remark 59 Suppose given a graph G.

Suppose given an edge e € Eg .

Then there exists a unique graph morphism f : D; — G such that ¢y E; = e.

Proof.

Ezistence. Let égEf :=e, Vo Vy := esg and ¥, Vy 1= etq.

We have éysp, V¢ = Vo Vy =esqg = ¢ Efsg and égtp, Vi = Vo Vs =etg = Efte .
So f is in fact a graph morphism.

Uniqueness. Given f : Dy — G such that éyE; = e, we necessarily have vy Vy = &ysp, Vy =
éoEfSGZGSGand<71Vf:éotDIVf:éoEftczetg. 0
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Definition 60 Suppose given graphs X = (Vx,Ex,sx,tx), Y = (Vy,Ey,sy, ty) and

Z = (Vz,Ez,82,t2).

Suppose given graph morphisms f = (Vy,Ef) : X = Y and g = (V,,E;) : Y — Z.

Let f-g:=(Vy-V,, Ef-E;). We often write fg:= f-g.

Then f - g is also a graph morphism, called the composite of the graph morphisms f and g.
Proof. We need to show that fg is a graph morphism.

We have to show that (Morph 1) and (Morph 2) hold for fg.

So we have to show that E;;s, = sx V¢ and that Es,tz L tx Vig.
We have Efg Sz = Ef : Eg *Sz (Morph:1) for g Ef * Sy -Vg (Morphzl) for J Sx 'Vf -Vg = Sx 'Vfg.

(Morph 2) for g (Morph 2) for f

We have Bt ty; = Ef-Ey -tz Ef-ty -V, = tx V-V, =tx - Vj,. .
So

Vfg Vf'vg

Efg_Ef'Eg

Definition 61 Suppose given graphs G and H. Suppose given a graph morphism f : G — H.

The image Gf of the graph morphism f is the graph (Vgy, Eqr,sar,tar) consisting of the

set of vertices Vg 1= Vg Vs C Vpg, the set of edges Eqy := EgEf C Ep, the source map
ng

SGf 1= Sy ]EZ; and the target map tgy :=ty |ch :

Note that the image G f of the graph morphism f is a subgraph of H; cf. Definitions 47 and 54.

Example 62 Let G be the graph having Vo = {1,2,3} and E¢ = {1, as} with

arsg =1, ajtg=2,

arsg =3, aptg =2,

Let H be the graph having Vi = {1,2,3} and Eg = {1, 52} with

Bisu =1, Bitag =2,
Basg =2, Bty =3,

Now we have the following situation

G : 12,92 3

B1 B2
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Let f = (Vy,Ef) : G — H be the graph morphism with
1Vp=1, 2V, =2, 3V, =1,

and with
aq Ef = 51 5
65) Ef = 61 )

Then the image G f of the graph morphism f is the graph having Vgr = {1,2} and Eqy = {61}
with
51 ng = 1, 51 tgf = 2,

The image G f is represented as

Gf: 129

Definition 63 Suppose given a graph morphism f = (Vy,Ef) : G — H.
Suppose given subgraphs G’ C G and H' C H such that G'f C H'.
Let the restriction of f to G’ and H' be defined as

’ Vi1 E
fle = (Vy ‘vgnEf ‘Eg,)

Then f|4 : G — H' is a graph morphism.

Vi E
We have Vflgf = Vi |y, and E "

fIE = Ey |EG/'
If H = H, then we also write f|e = f|4 : G’ — H.
If G’ = G, then we also write f|' := f|4": G — H'.

Note that, in particular, we can restrict the graph morphism f to the subgraph Gf C H to
obtain the surjective graph morphism f|¢/ : G — Gf.

Moreover, we obtain the inclusion morphism idg | : G' — G.
Definition 64 The category of graphs Gph consists of the set of objects
Ob(Gph) :={G : G is a graph}
and the set of morphisms
Mor(Gph) :={f : f is a graph morphism}.

Cf. Definitions 45 and 54.

The category Gph has the identity morphisms introduced in Definition 55 and carries the
composition introduced in Definition 60.
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Suppose given graphs G, H € Ob(Gph). By
(G, H)gpn :=A{G Ny f is a graph morphism} C Mor(Gph)

we denote the set of graph morphisms from G to H. We often abbreviate (G, H) := (G, H)gph -

Remark 65 Suppose given graphs G, H € Ob(Gph). A graph morphism f : G — H is
an isomorphism if and only if it is bijective, i.e. if the map V¢ : Vg — Vg and the map
Ef : E¢ — Eg both are bijective.

Proof. Suppose given a bijective graph morphism f = (Vy,E;): G — H.
Then the map Vy : Vg — Vy is bijective and so there exists its inverse VJT Levy — Ve
Moreover, the map E; : Eq — Ep is bijective and so there exists its inverse E;l Ey — Eq.

Therefore (Vf_l, EJTI) : H — G is a graph morphism with ff~! = idg and f~'f = idy, since
we have E;'sq = E;lsg Vi Vit = B Epsp Vi = sy Vit and Efftg = Efta VeV, =
B Eptg Vil =ty Vi

Furthermore, (Vf,Ef)(Vf—l’Ejtl) _ (vaf_lvEf E;l) — (idy,ids,) = idg and
(VL E NV Ep) = (V' Ve Ef Ey) = (idy,,idg,) = idg. Thus 7! = (Vy=1,Ep) =
(Vf_l,E;l). So f is an isomorphism.

Conversely, if f is an isomorphism, then there exists a graph morphism g : H — G such that
fg =idg and gf = idy. Hence there exist maps V, : Vg — Vg and E, : Eg — E¢ such that
V¢V, =idy, and V, V; =idy,, and such that E¢ E;, = idg, and E;,E; = idg,, .

So both maps Vy and E¢ are bijective. o

Remark 66 Suppose given an injective graph morphism f: X — Y.

Then the restriction f|*/: X — X f is a graph isomorphism.

Proof. We have to show that the graph morphism f|*/ is bijective; cf. Remark 65.

The graph morphism f is injective by supposition. Hence the graph morphism f|*/ is injective.
By construction, the graph morphism f|X/ is surjective.

So the graph morphism f|*/ is bijective. o

Definition 67 Suppose given n € N.
Suppose given s € Z.
We define the graph automorphism

~

a, : C, — C,
€ > Cits

Vi = Vigs .
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In fact, for i € Z/nZ we have

(e; Ea,) Sc, = €irsSc, = Virs = Vi Va, = (€;8¢,) Va, and

(e Ea,) te, = €ipstc, = Vigst1 = Vi1 Va, = (€itc,) Va, -

So a4 is a graph morphism; cf. Definition 54.

We have a, -a; = agyy for s, t € Z.

We have ag = idg, ; cf. Definition 55.

In particular, we have a;-a_s = ag = id¢, and a_s-a;, = ag = id¢,, so that a_; = as_l for s € Z.

So a, is a graph automorphism.

Definition 68 Suppose given graphs G, H, X, Y.
Suppose given a graph morphism f: G — H.

We have the map

(va) P
(X7 G)Gph o (X7 H)Gph

g = gX, flepm i =gf

We have the map

(f:Y)ap
<H7 Y)Gph o (G7 Y)Gph

9 = g(f,Y)epm:=fg.
Remark 69 Suppose given a graphs X, Y and graph morphisms f: G — H,g: H — K and
their composite fg: G — K.
We have

(1) (X, fg)apn = (X, f)apn - (X, 9)cpn
(X ldG’)Gph =id (X,G)aph
(
(

(2) (f9,Y)cpn = (9, )cpn - (f,Y)cpn

ldK’ )Gph - id(Kyy)Gph :

Proof.

Ad (1).

Suppose given a graph morphism v : X — G.

We have u(X, fg)cpn = u(fg) = (uf)g = (u(X, fapn) - 9 = u (X, f)apn - (X, 9)apn) -
We have u(X,idg)gpn = vidg = w.

Ad (2).

Suppose given a graph morphism v : K — Y.

We have v(fg, Y )apn = (f)v = £(g0) = (90) (£, V) = v (9, Y Japn - (Y )apn)

We have v(idg,Y)gpnh = idg v = v. 5
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Remark 70

(1) The cyclic graph C; is the terminal object in the category Gph.
Let Tx be the unique graph morphism tx : X — C;.
We have v Vi, = vy for v € Vx and we have eE;, =e¢; fore € Ex.
(2) The empty graph O := (Vy,Ep) with Vg := () and Ey := 0 is the initial object in the
category Gph.
Let tx be the unique graph morphism tx : ) — X.

Definition 71 Suppose given a graph G.

We will define the discrete subgraph G C G.

We let Vg, := Vi and Eg, := 0.

We have the maps s : 0 — Vi and ts : 0 — V.

We have the inclusion morphism og from G to G as follows.

G %% @
Voo : Vo — Vg
xr — X
Eoo: 0 — Egq

Remark 72 Suppose given a surjective graph morphism f : G — H.

Then f : G — H is an epimorphism in Gph.

Proof. Suppose given graph morphisms u,u' : H — K such that fu = fu'.

We have to show that u = «'. Le. we have to show that V. L V. and E, = E, .
We have V; V,, = V¢, = Vi = V¢V,

Since Vy is surjective, it is epimorphic; cf. Remark 31. So V,, = V.

We have EfE, = Ef, = Efy = EfE, .

Since Ey is surjective, it is epimorphic; cf. Remark 31. So E, = E, .

So we conclude v = u/'. 5

2.2 Thin graphs

Definition 73 A graph G is called thin if for v,v" € Vg we have

He € Eg:esg=v, etg =0} < 1.

[.e. between two vertices there is at most one edge.
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Equivalently, a graph G is thin if the map

EG M) VG XVG
e (esg,etq)

is injective.
Example 74 The cyclic graph C,, is thin for n € N; cf. Definitions 52 and 73.
For i,j5 € Z/nZ we have

1 ifj=i+1

er € Ec, 1 exsc, = Vi, extc, =V} = 1€ € Ec,, 1 eite, =V} = o
{er € Ec, : exsc, wto, = vitl = [{ e Cn = Vi {0 i

Example 75 The direct graph D,, is thin for n € N; cf. Definitions 56 and 73.
1 ifj=i+1

In fact, for i, € [0,n] we have [{é; € Ep, : éxsp, =V;, éxtp, = V;}| =
j € 10.n] we have |{& € B, : &5, = i, & to, = %3} {0 o

Remark 76 Suppose given a thin graph GG. Suppose given a subgraph G’ C G.
Then G’ is thin.

Proof. Suppose given vertices v,v" € Vg C Vg .

We have
{e' € Egr : €/sgr =0, €' ter = v'}] Det. 47.(1 {e' € Eqr @ €/sg =, etg ="}
E./ CEg
‘< H{e€Eq:esqg=v,etg=0v}<1.

Remark 77 Suppose given a graph X. Suppose given a thin graph Y.

(1) Suppose given graph morphisms f,g: X — Y with V; =V,.
Then f=g.
In other words, the map
(X,Y)apn = (Vx, Vy)set
f — Vf .
is injective.
(2) A map u : Vx — Vy is called monotone if for each edge e € Ex there exists an edge
¢ € Ey such that esy = (esx)u and ety = (etx)u.

We have a bijective map

(X,Y)epn — {u € (Vx, Vy)set : u is monotone}
f — Vf .
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Proof.

Ad (1). We have to show that Ey < E,.

The graph Y is thin. So we have [{e € Ey : esy = v, ety =v'}| < 1 for v,v" € Vy .
We have Efty =tx Vy =tx V, = E; ty as well as Eysy =sx Vy =sx V, = Egsy .
Suppose given an edge ex € Ex .

We have vy :=ex Efsy = ex Eg sy € Vy and vy :=ex Efty = ex E ty € Vy.

We have 1 > |{e € Ey : esy = vy, ety = 02} > [{ex Ef, ex E;}| because Y is thin.
So we have ex Ey = ex By .

Therefore, Ey = E, .

Ad (2). By (1), the map in question is injective. It remains to show that it is surjective.
Suppose given a monotone map u : Vxy — Vy .

We let V¢ = u.

For e € Ex, we let eE; := €, where € is the unique edge in Ey having ésy = (esy)u and
éty = (6tx)u.

Then eEfsy = ésy = (esy)u=esy Vyand eEsty =€ty = (etx)u=etx Vy.
So f = (V¢,Ey) is a graph morphism with V; = u. o

Example 78 Suppose given a graph X.

Suppose given n € N.

Suppose given graph morphisms f,g: X — C,, with V; =V,.

Then f = g, since the cyclic graph C,, is thin; cf. Remarks 74 and 77.(1).

Remark 79 Suppose given a thin graph Y.

Suppose given n € N.

Suppose given a map u : Vg, — Vy such that Y (v;u,v;i 1 u) # () for i € Z/nZ'
Then there exists a unique graph morphism f : C,, = Y such that V; = u.
Proof.

Uniqueness. This follows by Remark 77.(1).

Ezistence. Write Y (v; u, vipq u) =: {oy} for i € Z/nZ‘

Let V¢ := u.

Let
Efi Ecn — Ey

€; = oy

Then f := (Vy,Ef) : C, — Y is a graph morphism, since ¢; Efsy = a;8y = v;u = ¢;s¢, V¢
and e; Erty = aity = v u =e;t¢,Vy for i € Z/nZ‘ Cf. also Remark 77.(2). o
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Remark 80 Suppose given a thin graph G.

Suppose given a graph morphism f : G — H such that the map V¢ is injective.

Then the graph morphism f : G — H is injective, i.e. both maps V; and E are injective.
Proof. Suppose given edges e and € in E¢g such that eE; = eEy.

We have to show that e = é.

We have esqg Vi = eEfsy = €Efsy = €sg Vy .

Since the map V; : Vg — Vy is injective, we have esg = €s¢ .

Likewise we have etg = €t¢ .

Since the graph G is thin, we conclude that e = €. 0

Example 81 We consider the following graph morphism.

G 1722
a2
f

H 129

Here, f = (Vy,Ef) : G — H is the graph morphism mapping the vertices and the edges in a
vertical way. l.e.

1V,=1, 2V, =2

and

aEp=051, By =p.

The map V; is injective, while the map Ey is not injective. Note that the graph G is not thin.
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2.3 Pushout and pullback of graphs

2.3.1 Pushout of graphs

Reminder 82 Suppose given a quadrangle

x-toy

1

X/ - Y/
f/

in Gph. It is called a pushout if (Pushout 1-2) hold; cf. Definition 5.

(Pushout 1) We have g - f' = f - h.

(Pushout 2) Suppose given a graph G and graph morphisms v : X’ — G and v : Y — G such that
f+v = g-u. Then there exists a unique graph morphism w : Y’ — G such that f'-w =u
and h-w = v.

f

oy

X
X/

fl
—_—

To indicate that this quadrangle is a pushout, we write

f

X—Y

1

X' _ = Y.

f/

Then we also say that f’ is a pushout of f.
Construction 83 Suppose given a diagram

x—1oy

|

X/

in Gph.
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We aim to construct a pushout
!

X—Y
"t
J
X —Y'.
f/

In particular, we have to construct maps Ej, : Ey — Eysand Ep : Ex: — Ey» and Vj, : Vy — Vy
and Vf’ : VX’ — Vy/ .

We form pushouts in Set as follows.

E; \i

Eg Ep Vo Vi
_ _
EX/ I— EY/ VX’ —_— VY/
Ef’ Vf/

For instance, we can use Construction 36 to achieve this.

Because of the universal property of the pushout Ey., the map ty- is uniquely existent with
respect to tx Vi = Ep tyr and ty Vi, = Ep tyr .

Because of the universal property of the pushout Ey-, the map sy is uniquely existent with
respect to sx Vp = Ep sy and sy Vj, = Ep, sy .

f
EX’ Ey/ ty | [Sy

tx SXx

And so we have the pushout
f

X ——Y
|
|
X' —Y'
f/
in Gph.
Proof. We have Sx/ Vf/ = Ef/ Sy and txr Vf/ = Ef/ ty .

So f" = (Vg, Ep) is a graph morphism from X' = (Vx/,Ex/,sx/,tx/) to Y’ = (Vy/, Eyr, sy7, ty).
We have Sy Vh = Eh Sy and ty Vh = Eh tyr.
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So h = (Vy, Ep) is a graph morphism from Y = (Vy, Ey, sy, ty) to Y/ = (Vy/, Ey/, sy, ty).

We have gf, = (Vg,Eg) . (Vf/Ef/) = (Vg'Vf/7Eg'Ef/) = (ng/7ng/) = (th,th) =
(Vi - Vi, By - Ep) = (Vi Ep) - (Vi En) = fh. 0

Universal property.

Suppose given a graph Z together with graph morphisms v : X’ — Z and u : Y — Z such that
fu= gv.

Since Ey/ is constructed as a pushout, we obtain the unique map E, : Ey: — Ez such that
E,E,=E, and Ep E, =E,.

Since Vy. is constructed as a pushout, we obtain the unique map V,, : Vy» — Vz such that
Vi Vy =V, and Vi V,, =V,

It remains to show that the pair of maps w := (V,,, E,) is in fact a graph morphism.
We have to show that the map w is a graph morphism.

So we have to show that sy V,, - E. sz and that ty: V, - E,tz.

We have Ef (sy' V) =sx' ViV, =sx/ V, = Eysz = Ep(Eysz) .

We have Ej,(sy: V) =sy Vi, Vi, = sy V, = Eusz = Ep(Eysz) .

This shows that sy’ V,, = E,, sz by Remark 6.

We have Ef (ty: V) =tx Vp V,, =tx V, =E tz = Ep(E, t2).

We have Ej,(ty: V) =ty Vi, Vi, =ty Vy = Eytz = Ep(Ey tz).

This shows that ty/ V,, = E,, tz by Remark 6.




So we have obtained the following diagram in Gph.

Remark 84 Suppose given

x—.y

gl h
,

X/ Y/ v

A\

A

XY

4

X/

in Gph with an injective graph morphism f: X — X'
We let Vy := (VX/ \VXf) LJ Vy and Ey/ = (EX/ \EXf) L Ey .

We let

Va/ : Vy — Vyr = (VX/ \fo) U Vy

(27 Ux sz)

1

Vx

(1, UX/)

and

(1, €X/>

We let

V, -

and

We have the pushouts

Vy

Vy

Ey

€y

if vx = vx Vy € Vx; for a unique vx € Vx
if Vxr € VX/ \VXf

{ (2,ex E,)
exr

it exs =ex Ef € Exy for a unique ex € Ex
ifeyx € EX/\EXJc .

— VY/ = (VX/ \VXf) L Vy
—> (Z,Uy)

1

Ey/ = (EX’ \EXf) L EY
— (2,6y)

67
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and

in Set; cf. Remark 38.
We will construct the maps sy and ty- .

Let

syr: By = (Ex \Exp)UEy — (Vx/\Vxp)UVy = Vy
(2,uxV,) ifexsxs =vx Vy€ Vxy
(lex) — exrsx' Vg = for a unique vy € Vy
(Lexrsx) ifexsx € Vx/\ Vxy .
(2,ey) — (2,eysy)=eysyV,

Let

tyr: Eyr = (Ex \Exs) UEy — (Vx/\Vxy)UVy =Vy,
(2,uxV,) ifexty =vxVye Vyxy
(Liex)) — exitx Vo= for a unique vy € Vx
(Lex/tx) ifextx € Vxr\Vxy .
(2,ey) — (2,eyty) =eytyV,

In order to show that we have the pushout

X—2.Y

ok

X —Y’

it suffices to show that E, sy L sx’ Vg and Eg sy~ L sy Vg, and that E, ty . tx V, and
Egty = ty V, ; cf. Construction 83.

We show that E,/ sy~ Ls x' Vg and E; sy L sy Vg .

For ex € Exr we have e E, — (2,exE,) ifexr=exE; € Ex; for a unique ey € Ey
¢ (1,6){/) ifex € EX/\Exf .

So we have
s B gor — (2,ex E,)syr ifexr =exE; € Exy for a unique ex € Ex
X' By Syr = )
(1,€X/)Syl if exr € EX/\EX]l‘
) (2,exEqsy) ifexs =exEy € Exy for a unique ex € Ex
B ex' Sy’ Vy if ex: € EX/\EXf



(2,exsx V,) ifex =exE; € Exy for a unique ex € Ex

ex Sx Vy if ex EEX/\EXf

exrSxr Vg if exs GEX/\EXf

exEfsx: Vg if exr =exEf € Exy for a unique ex € Ex

{ GXsvaV ifeXIZGXEfEEXf foraunique ex € Ex

ex Sx Vy if ex: € EX/\EXf
{ ex' sx' Vg 1ifex € EXf

ex sx: Vg if exs EEX/\EXf
= ex’Sx/ Va/ .

For ey € Ey we have ey E; sy = (2,ey) sy = (2,ey sy) = ey sy Vy.
We show that Ey tyr = tx/ Vo and E, tyr = ty V.
We have
e Eu tyr — { (2,ex Eq) tyr %f ex: =ex Ef € Exy for a unique ex € Ex
(1,ex:) ty if exs € Ex/\ Exy
(2,exE ty) ifex =exEf € Exy for a unique ex € Ex
ex tx: Vo ifexr € Ex'\ Exy
(2,extxV,) ifexr=exE; € Exy for a unique ex € Ey
exitx Vo ifex € Ex\ Ey;

ex txr Vg ifexr € Ex/\ Exs

exEftx Vg if exs =exEyf € Exy for a unique ex € Ex
ex' tx Vy if exs € Ex/\ Exy

ex tx Vg ifexr € Exy

B { extx ViVy ifexr =exEf € Exy for a unique ex € Ex
{ ex'tx: Vg ifex € EX/\EXf
e

For ey € Ey we have ey Eg tyr = (2, ey) tyr = (2, ey ty) =ey ty Vg .

So we have the pushout

2.3.2 Coproducts

Definition 85 Suppose given graphs X and Y.
We will define the coproduct X UY of X and Y.
Note that the graph morphism ty : ) — X is injective.

69
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By Construction 83 and Remark 84, we may form the pushout

f—Y Y
Lk
_
X—=XUuYy

with VXUY = (VX \V@LX) L Vy = VX |_|Vy and EXI_IY = (EX \E@LX) L Ey = EX |_|Ey and with

sxuy ¢ Exuy — Vxuy
(1,6){) —> (1,€XSX)
(2,6y) — (2,€y Sy)

and
txuy : Exuy — Vxuy

(1,6)() —> (1,extx)
(2,6y) — (2,€yty).

The graph X LY is called the coproduct of X and Y.

And we have

t: X — XUuY
V,: Vx — Vxuy =VxUVy
vx +— (Livyx)
E,: Ex — Exuy =ExUEy
ex — (1l,ex)
and
n: Y — XUuY
V,: Vy — Vxuy=VxUVy
vy — (2,vy)
E,: Ey — Eyuy =ExUEy
ey — (2,ey)

Given a graph morphism ¢ : X UY — G, we also write g|x := 19 and g|y := 129.
The following definition is a way to express the universal property of the coproduct.

Definition 86 Suppose given graph morphisms a : X — G and b: Y — G.

We have the following commutative diagram in Gph; cf. Remminder 82.

) —=* . X

L1
N a

Y - 2-XUY

Ly
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Since ¢ (‘;) = a and since iy (’;) = b, the graph morphism (’,f) : X UY — G maps as follows.

V(Z) . VX|_|Y — VG
(1,1))() :UXle — UXva
(2,vy) =vy V,, = vy V,

E(,;> : EXuy — EG
(1,€X):6)(EL1 — ex B,
(2, €y> = ey EL2 — ey By

Definition 87 Suppose given graph morphisms f: X — X' andg:Y — Y.

We have the graph morphisms ¢; : X - X UY, o :Y - XUY, /) : X' — X' UY’ and
vy Y — X"UY’; cf. Definition 85.

£

/) X UY — X'UY’; cf. Definition 86.

gty

Then we have the graph morphism f Ll g := <

So we have ¢1(f U g) = fi} and wo(f U g) = gtb.

We have
Vit Vxuy — Vxwyr
(1,"UX) — UXvL1 Vfug = Ux vabll = (1,21va)
(2, Uy) = Vy VLQ Vfug = Vy Vg VLIQ = (2, Vy Vg)
Erg: Exuy — Exwuy
(1,6){) — €XEL1 EfugzeXEfEL’l I(l,efo)
(2, ey) = ey EL2 Efug = ey Eg EL/2 = (2, ey Eg)
0 Y
L2
s
X LXUY g
idg
fug
! 0 Y’
/ RPA
X' xX'uy’

i
L
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Remark 88 Suppose graph morphisms a: X =Y, d : X' - Y and f:Y — Z.

We have the graph morphism (:/) : X U X" —=Y; cf. Definition 86.

We have (&) f= ().

Proof. Recall the graph morphisms ¢; : X — X U X’ and ¢5 : X’ — X U X’ from Definition 86.

Since we have L1< )f =af = L1( ) and since we have i (j/) f=df = (Z;), we have

() f = (h)-

Remark 89 Suppose given graph morphisms X ox G and Vv Y
We have (f Ug) (Zﬁ) = <’;Z:) :

Proof. Recall the graph morphisms ¢; : X — X UY, /X' - X'UY’ 1n:Y - XUY and
ty Y — X'UY’ from Definition 86.

/

”}); f. Definition 87.

gig

Wehavefl_lg:(

So we have to show that (f|_|g)< > (g@)( ) = (gb,>.
It suffices to show that Ll(fl_lg)< )—Ll( ) and that ¢y fLIg)( );LQ (’;Zf)
(

We have ¢1(f L g) (‘;:) =1 (f/l> (Z,/) = fi Z:) = fd =1y (’;‘;,/>
gtg
We have 5(f U g) (le) = iy (fbll> (‘;ﬁ) = gt} (Zﬁ) =gl =1y (g‘;:) o

Now we generalizes from the coproduct of two graphs to coproducts indexed with a set.

Definition 90 Suppose given a set I.
Suppose given graphs A; for ¢ € I.
We define the coproduct [],.; A; of the graphs A; as follows.
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We let Vi1, a, == [I;e; Va, and Epy,_ 4, := [[;c; Ea,; cf. Definition 32.
Additionally we let
SHiEI A; - EUieIAi - VHiEI A
(i,e) +— (i,esn,) foriel

and
tHieI A : E]—Iiel Ay - Vuiel A
(i,e) = (i,etq,) forie .

We have the inclusion graph morphism ¢ : Ay — ]_[ie ;A for k € I as follows.

e Ar = [l A
Vio: Vao = V4
v —  (k,vg)
E,: Ea — B4
e, — (k,ex)

Suppose given an edge e, € Ay, .
We have ex E,, 811, 4, = (k,ex) sy, a4 = (ks exsa,) = exsa, Vi, .
We have €k ELk tHieI A; — (k‘, Gk) tHieI A; — (k‘, €k tAk) = €k tAk ka .

So the pair of maps ¢, = (V,,, E,,.) is in fact a graph morphism since we have E,, SILic, A =
SA VLk and E”C tHieI A; — tAk VLk .

Definition 91 Let [ be a set.
Suppose given graph morphisms f; : X; = Y for i € I.
We have the graph morphism f =: (fi)ier : [[;c; Xi = Y with

(i,vx,) V§ == vx, Vy, fori e I and vy, € Vy,
(i,ex,)Ef:=ex, Ey, forie I and ey, € Ey; ;
cf. also Definition 86.
We often abbreviate (fi); :== (fi)ier -

The pair of maps (Vy,Ef) is in fact a graph morphism, since (7,ex,) Efsy = ex, Ef, sy =
€X; 8X; Vfi = (iv €Xx; SXi) Vf = (ia eXi) Sier Xi Vf and <i7 eXi) Ef ty = ex;, Efi ty = ex, tx; Vfi =
(i’ €Xx; tXi) Vf = (iv eXi) t]_[iej X Vf :

Note that ¢; f = ¢;(fi)ier = f; for j € I and that f is unique with this property; cf. Definition 90.

Remark 92 Suppose given a set I.

Suppose graph morphisms a; : X; - Y fort €l and f:Y — Z.
We have the graph morphism (a;); : [[,c; Xs = Y; cf. Definition 91.
We have (a;); - f = (a; - f)i
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Proof. Recall the graph morphism ¢ : X}, — [[;.; X; for k& € I from Definition 91.
Since we have t - (a;); - f = ax - f = 1x - (a; - f); for k € I, we have (a;); - f = (a; - f); .

Definition 93 Suppose given a set .
Suppose given graph morphisms f; : X; — Y;.

Recall the graph morphisms ¢ @ Xj — [[;c; Xi and ¢, @ Yy — [, Y for & € I, from
Definition 91.

We define the graph morphism [ [, ; fi :== (fi - ti)ier : [1;e; Xi = ;e Vs -
Then we have vy, - [[,c; fi = tk - (fi - ti)ier = fr - w for k € 1.

Remark 94 Suppose given a set I.

Suppose given graph morphisms X; LYi 2> @G foriel

We have (Hiel fi) (ai)i = (fi - ai)i -
Proof. Recall the graph morphisms ¢, : Y, — ]_[ie ;Y for k € I from Definition 91.

We have (Hj fj) i) VET (f ) (@) N (a:):); PLE(f - ay); . o

Remark 95 Suppose given a set I.
Suppose given a graph morphism f : G — H and graphs X, for i € I.

We have the following commutative diagram

(Hz‘el Xi, G) Gph <:— HiG] (X, G)Gph
(Lies Xi’f)GphL lHiGI(X'L f)aph

b
(Hiel Xi7 H) Gph ~ HiEI(Xi7 H)Gph
in Set with

~

a: HieI(Xi7G)GPh — (Hz‘eIXivG)Gph
(9i)ier = (Gi)ier

and

~

b: Hie](Xi?H)GPh — (HiEIXi’H)Gph
(hi)iel — (hi>iel-

In particular, (JT,c; Xi, f)cpn is bijective if and only if [[,., (X, f)cpn is bijective.
Proof. Because of the universal property of the coproduct, the maps a and b are bijective and
we have

a ! (HiGIXi’G)Gph = Tlies/(Xi, G)apn
g = (g
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and

bt (Hz’eIXi=H)G = [Lic/ (X, H)gpn
— (Li

ph
h h); .
So we have

[Lier(Xi.flap b
*EI—G—}; HieI(Xi ) H)Gph - (Hie] Xi, H)Gph

g > r = (Ligf): - qf

So we have (]_L.el X, f)Gph =a!- HieI(Xi , [)aph - b. o

(Hie] Xi, G)Gph CL_> HieI(Xi ) G)Gph

2.3.3 Pullback of graphs

Reminder 96 Suppose given a quadrangle

x—t.y

gl lh

X — Y’
f/

in Gph. It is called a pullback if (Pullback 1-2) hold; cf. Definition 9.

(Pullback 1) We have f-h=g¢- f'.

(Pullback 2) Suppose given a graph G and graph morphisms v : G — Y and v : G — X’ such that

u-h =wv- f'. Then there exists a unique graph morphism w : G — X such that w- f = u
and w - g = wv.

Then we also say that f is a pullback of f’.
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Construction 97 Suppose given a diagram

Y
|
x Loy
in Gph.
We aim to construct a pullback
x—1.y
r
At
XI . Y/
f/

In particular, we have to construct maps E, : Ex — Ex and Ef : Ex — Ey and V, : Vx — Vx
and VfiVX — Vy .

We construct the pullbacks

and

using Construction 41.

Because of the universal property of the pullback Ex, the map tx is uniquely existent with
respect to tx Vy = Egtx and tx Vy = Efty .

Because of the universal property of the pullback Ex, the map sx is uniquely existent with
respect to sx Vy = Egsys and sx Vy = Eysy .

Ey
Ex Ey
y i y
Ef/
EX/ EY/ ty Sy
tx Sx
t S V Vi V-
x| X X Y
=
tyr Sy’
Vy Vi
Vi Vi
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And so we have the pullback

x—' .y
r
g h
X’ Y
f/

in Gph.

Proof. We have sy Vy = Egsx and tx Vg = Egtx/ .

So g = (Vy, Ey) is a graph morphism from X = (Vx,Ex,sx,tx) to X' = (Vx/, Ex/,sx/, tx/).
We have sy Vy = Efsy and tx Vy = Efty .

So f = (Vy,Ey) is a graph morphism from X = (Vy,Ex,sx,tx) to Y = (Vy,Ey, sy, ty).

We have gf" = (Vg,Ey) - (Vg Ep) = (V- Vp,Eg-Ep) = (Vg Egpr) = (Vin,Epn) =
(Vf 'Vh,Ef Eh) == (Vf,Ef) . (Vh Eh> = fh 0

Universal property.

Suppose given a graph Z together with graph morphisms u : Z — Y and v : Z — X’ such that
uh =uvf’

Since Eyx is constructed as a pullback, we obtain the unique map E, : E; — Ex such that
E,Ef=E, and E,E;, = E, .

Since Vy is constructed as a pullback, we obtain the unique map V,, : V; — Vx such that
Vo Vi =V, and V,, V, = V,,.

It remains to show that the pair of maps w := (V,,, E,) is in fact a graph morphism.

We have to show that the map w is a graph morphism.

So we have to show that sz V,, L E, sx and that tz V, L E,tx.
We have (sz V) Vy =szV, =E,sx =E,E;sx = (Eysx) V,.
We have (sz V) Vi =52V, =E,sy =E, Efsy = (Eysx) Vy.
This shows that sz V,, = E,, sx by Remark 10.

We have (tz V,) Vy =tz V, =E,tx =E,E tx = (B, tx) Vy.
We have (tz V,) Vy =tz V, =E,ty =E, Efty = (E,tx) Vy.
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This shows that t; V,, = E,, tx by Remark 10.

Eyz

2.4 Colimit of a countable chain in Gph

Definition 98 Suppose given

X, fo1 X fi,2 X, f2,3

in Gph.
We define
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and

cf. Definition 42.

Note that [j,v;] = [k,v; Vy,,] for 0 < j <k and v; € V.
Note that [j,e;] = [k, e; Ey, ] for 0 < j <k and ¢; € Ey;.
For k > 0, Definition 42.(2) gives the maps

Vi [k’,Uk]
Efk,oo . EXk — EXoo
e [k,ek] .

We define sy, = limsy; and tx, := limtyx,, which is possible since sx, Vi, .., = By, 1 8x:,,
i>0 i>0

and tx, Vy, .., = Ey, ., tx,,, for i > 0; cf. Definition 44.
We have

i

SXoo . EXoo VX

oo

[k, €k] — [k, ek SXk]

and
tx..: Ex., — Vx.
Def. 44
In fact, we have [k,ex|sx, = exEp _sx.. = ersx, Vi = [k ewsx,] and [k ex]tx, =
Def. 44

This defines the graph Xo := (Vx_,Ex.,sx.,tx.)
For j > 0 we have Ey, _sx, =sx; Vy, . and By, _tx  =tx; Vy, ; cf. Definition 44.
So the pair of maps fj. = (Vy, .., Ey, ) : X; = X is a graph morphism.

Vf(),oo Vf
1,00 Vf27oo
Vi, Vy, Vi, Vi
fo,1 f1,2
SX( ‘txo SXq ‘txl SXo |tx2 SX oo ‘tho
Efo,l Ef1,2
EXO X1 Xo }EXoo
Ef?,oo

Ep
EfO,oo =

We have f; ;11 fit1.00 = fioo; cf. Definition 42.(2), applied to vertices and edges.
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Lemma 99 (universal property) Suppose given graph morphisms ¢; : X; — T for j > 0
such that f; 11ty =t; for j >0, ie. fjpty =1t; for 0 < j < k.

X, fo1 X, fi,2 X, f2,3

t1

to ty + -

T
Then there exists a unique graph morphism ¢, : Xoo — 7' such that f;te =t; for j = 0.
So we may define ligrlXi =X

i>0

Proof.

Uniqueness.

Suppose given t',t" : Xo, — T such that f;t' =t; and f;t" =t; for j > 0.
We have to show that ¢’ = ¢".

Suppose given [j,v;] € Vx__ . We have to show that [j, v;] Vy = 17, v;] Vir .
In fact, we have [j,v;] Vo = v; Vy, Vi = v; Vi, = v; Vi, Vi = [, 05] Vi .
Suppose given [j,e;] € Ex_ . We have to show that [j,e;] Ev - [7, €] Eur .
In fact, we have [j,e;] By = ¢; By, By = ¢; By, = ¢; By, Ep = [j,¢;] By .
Existence.

We have the following commutative diagram.

Vf0,1 Vf1,2 Vf2,3

VX 0 VX 1 VX 2

Vi,

Vto \/t2 o ..

Vr

So because of the universal property of Vy_ there exists a unique map V;_ : Vx_ — Vp such
that the following diagram is commutative.
VfO,oo

Vv
fl,oo szyoo
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We have the following commutative diagram.

Ef0,1 Ef1,2 Ef2,3
Ex, —Ex, X
E
Eto t1 Et2 e
Er

So because of the universal property of Ex_ there exists a unique map E;__ : Ex,, — Ep such
that the following diagram is commutative.

Efo
= Efl,oo

Ef2,oo

We let
to: Xoo — T
Vi, Vx., — Vr
[j, ’Uj] = v Vt].
Etoo EXoo — ET
el — e By

We show that these maps are well-defined.

Suppose given (j,v;), (k,vx) € [ ];5o Vx, such that [j,v;] = [k, vg].
Then v; Vy, . = v Vy, . for some m > max{j, k}.

We have to show that v; Vi, . v Vs, -

In fact, we have v; Vi, = v; Vy, v, = 0x Vi, 1., = Uk Vs, -

Suppose given v; € Vx,. For j > 0 we have v; Vy, _ Vi, = [4,v;] Vi, Def_Yiee v; Vi, -
So we have Vi, 'V, =V, .
Suppose given (j, e;), (k, ex) € | |;5o Ex, such that [j, e;] = [k, ex].
Then ¢; Ey, , = e, Ey, . for some m > max{j, k}.
We have to show that e; Ey; . er By, .
In fact, we have e; By, = e; By, 4, =exEp 1, = ex By,
Def. Eto

Suppose given e; € Ex,. For j > 0 we have e; Ef,  E; = [j.e;] B, ™ = 7 e; By, .
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So we have Ey,  E, =FE .
To show that to = (Vi _, E;) is the unique graph morphism such that

fO,oo
fO,oo
fO,oo

Xo X4 X5

fo,1

f1,2

f2,3

to

is commutative, it remains to show that ¢, actually is a graph morphism.
We have to show that E;__sp Ls x.. Ve, and that E;__ tp Lt Xoo Vi -
Suppose given an edge e, = [j,¢;] € Ex,, with j > 0 and ¢; € Ey; .

We have e Ei st = [j,¢;] Ei st = e, By sr = ejsx, Vi, = [J,¢58x,] Vi, = [, €j]5x00 Vie =
€00 SX., Vi -

And we have e E; tr = [je|E tr = eE tr = etx, Vi, = [jeitx] Vi =
[j, 6]'] tho Vtoo = €0 tho Vtoo . o

Remark 100 Suppose given graph morphisms w’, w” : X — T such that fiow' = froow”
for kK > 0.

Then w' = w".
We say that for & > 0 the graph morphisms f; o, are collectively epimorphic.
Proof. Both graph morphisms w’ and w” are induced by (fxco®)k=0 = (fr.co®@” )0 -

By the uniqueness in the universal property, it follows that w’ = w”; cf. Lemma 99. o

Lemma 101 Suppose given a finite graph G, i.e. the sets Vg and Eg are finite.

Suppose given

fO,oo
fl,oo
f2,oo

XO Xl XQ XOO

fo,1 f1,2 f2,3

(1) Suppose given a graph morphism w : G — X, . Then there exist m > 0 and a graph
morphism w : G — X,,, such that wf,, . = w.

fm,oo

X, — X

N

G
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(2) Suppose given graph morphisms v’ : G — X, and w” : G — X, . Then there exist
m > 0and @' : G - X, and " : G — X, such that we have @'f,, . = w' and
w/,fm o =u"

Proof.

Ad (1). We will construct .

Step 1. We choose j > 0 such that eE, € Ex;, . and vV, € Vx s  fore€ Eg, v e Vg.
This is possible since the graph G is finite; cf. Definition 98.

Step 2. For e € E¢ we choose ¢’ € Ex; such that [j,e'] = e¢E,, .
Note that [j,e'] = ¢ Ey, .

For v € Vi we choose v" € Vx; such that [j,v'] =v'V,,.

Note that [j,v'] = vV, _ .

Step 3. Let e € Eg .

We have [j, €' sx,] DeL. %8 [7,€¢]sx., =eEysx, =esag Vy =[7,(esq)].
So there exists me1 = j such that e'sx, Vi, = (esg)' Vy,,. -

We have [j, € tx,] Def. 98 [j,€]tx. = eEutx, =etg Ve, = [J, (eta)'].

So there exists mez > j such that ' tx, Vy, . = (eta)' Vy,,, , -

Step 4. Let m := max({me1 : e € Eg} U{m.2 : e € Eg}). This is existent since the set E is
finite.

Then €'sx; Vy,,. = (esg)' Vy,,, and €'tx, Vy, = (etg)' Vy,,, for e € Eq.
This follows by application of meeyl,m respectively meez,m to the equations in Step 3.
Step 5. We have the pair of maps
w: G —- X,
Eg: e = €Ey .
Vo: v = v'Vp .

Step 6. The pair of maps w = (Vy, Ey) : G — X, is a graph morphism.
Suppose given e € Eg .

We have to show that e Eysx,, Le sq Vi and that eEgtx,, Le ta Vo .

Step 5 Step 4 Step 5
We have eEysx,, = € Ey, . sx,, =¢€sx; Vs, = (esq) Vy,, = esgVa.

S S . S
We have e EUA] tXm tg) > e Eijm tXm =¢ th Vf].,m te:p ! (6 tg)/ ij,m tg) i (& tG Vﬁ, .
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Step 7. We have to show that w - f;, .o = w.

Suppose given e € Eg .

Step 2

S .
We have eEyy, . = eEy Ej,, e Ef . Epo =€¢Eyp . =1J,¢€] eEy.
Suppose given v € Vg .

Step 5 ’ .47 Step 2
We have v Vyy, . =0V Vi, o = V' Vg Ve =0V =[] =" 0vV,.

o

Ad (2). By (1) there exist m/,m” > 0 and graph morphisms @' : G — X, and 0" : G — X,

such that @' f,y o = W' and @" fr o = W".

Let m := max{m/,m"}.

Let @' == frym : G = X, and let 0" := 0" frr 1 - G = X,
Then we have @' fr,.00 = W frnrmfimco = W frr .00 = W'

And we have @0 fi, 00 = 0" frnrr m finco = W finrr 0o = W".

Lemma 102 Suppose given A C Mor(Gph) and

90,00
91,00
92,00

Xo 90,1 X 91,2 X2 923 Xoo ::@Xi

=0
in Gph such that g¢; ;11 € A for ¢ > 0.
Then the graph morphism go : Xo = X is in PA.

Proof. Suppose given
X() 2 Y

S

Xoob_>Za

where h € A.

We have to show that gy . 41 1, i.e. that there exists a graph morphism ¢ : Xo, — Y such that

Jo,0o€¢ = a and ch = b.

Let ¢g := a.

Since the graph morphism go; : Xo — X is in YA and since we have go 1 - 91,0060 = go,00b = ah =
coh, we may choose a graph morphism ¢; : X; — Y such that gy1c1 = co = a and c1h = g1 ob.

Since the graph morphism ¢; 5 : X7 — X5 is in YA and since we have ¢1 2 - g2.000 = g1.000 = 15,

we may choose a graph morphism ¢y : Xo — Y such that g, 2co = ¢; and cah = g2 ob.

Since the graph morphism go 5 : X5 — X3 is in YA and since we have ¢2 3 - g3.000 = ga.00b = Cah,

we may choose a graph morphism c3 : X3 — Y such that gs3c3 = co and csh = g3 «ob.

Etc.
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In a recursive way we may choose a graph morphism ¢ : X — Y such that gx_1 xcr = cx—1
and cxh = gi00b for k > 0.

We obtain goxcr = go1 - g12 - -- - Gr—1,Ck = Co for k = 0.

Because of the universal property of the colimit in Gph there exists a unique graph morphism
¢: Xoo — Y such that g c = ¢; for k > 0; cf. Lemma 99.

a=cq

91,00

So we have
X =2y
| )
such that gy ¢ = cp = a.
We have to show that ch = b.
So we have gy och = cxh = gi o0 for k > 0.
Now we deduce ch = b by Remark 100. o

Definition 103 Suppose given a countable chain of subgraphs Yy CY; C Y, C ... CY of Y.
Let Vyoo = Ui}[) VYz g VY and Eyoo = Ui}[) Eyz Q Ey.

Woo _ Woo
Ey., and tyoo = ty |Eyoo

Let sy, := sy |
Then the graph Y, := ;2o Y := (Vy.., Bv.., Svi, ty,,) is @ subgraph of Y cf. Definition 47.(1).
In fact, suppose given an edge e € Ey_ = Ui>0 Ey, . There exists ¢ > 0 such that e € Ey; .

Wehavemy:es}fie\/yig\/ym andetyzetYiGVYigVyw. o
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Remark 104 Suppose given a graph Y.

Suppose given a countable chain of subgraphs Yy CY; C Y, C ... C Y such that ¥; C Y isa
full subgraph for ¢ € Z- .

Then | J Y; CY is a full subgraph; cf. Definition 103.
vi = Uiez., Vi

’iEZ>0

Proof. Suppose given vertices v, w € VUieZ>O

Suppose given an edge e € Y (v, w).

!
We have to show that e € EUZ_E%0 v, = Uiez, Bvi -
We can choose j € Z>o such that v € Y; and w € Y] .

The subgraph Y; C Y is a full subgraph.
So we have e € Ey, C |J Ey. . 5

K3

i€Z>0

Remark 105 Suppose given a countable chain of subgraphs X =Y, CY; C Y, C ... CY of
Y.

The graph Yo, = .-, Y C Y is a subgraph of Y; cf. Definition 103.

Then the graph Y., is a colimit of the countable chain of subgraphs Yo CY; CY, C ... CY;
cf. Definition 42.

120

Proof. First, we abbreviate x;; :=idy, |y, : ¥; = Y; for 0 < < j.

Suppose given 7 > 0. Since the graph Y; is a subgraph of Y, = J,»,Yi, we have the graph
morphisms ;o :=idy, |y; 1 Vi = Y.

We have

We show that the graph Y., is a colimit of the chain of subgraphs Yo CY; C Y, C ... CY with
respect to Kjoo 1 Y; = Yoo for ¢ > 0.

Suppose given a commutative diagram in Gph as follows.

We have to show that there exists a unique graph morphism f. : Y, — Z such that the
following diagram is commutative.
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Uniqueness. This follows by Vy, = ;5o Vy; and Ey,, = U2 Ey; -

Existence. We let

Vfoo: VYOO :UiQOVYi — VZ

v = vV, ifveVy, .

We have to show that this map is well-defined.

Suppose given v € Vy,, and v € Vy, and v € Vy, , where i, j > 0.

We show that we have v Vy, = Vi, .
Without loss of generality, we have ¢ < j and thus v Vy, =0V, . =0V, Vp =0V, .
We let

Efoo: EYoo:UiQOEYi — EZ

v = UEfi,ifUEEyi .

We have to show that this map is well-defined.
Suppose given e € Ey_ and e € Ey; and e € Ey, , where 4,5 > 0.

We show that we have e Ey, L e Efj .

Without loss of generality, we have i < j and thus eEy, = eEy, .y, = eEy, By = eEy, .
We show that the pair of maps f. := (Vy,,Es.) is a graph morphism.

Suppose given an edge e € Ey,_ .

We may choose 7 > 0 such that e € Ey; .

We have to show that esy, Vi Ze E¢. sz.

We have esy, Vi Dol sy, Vi Pet e sy, Vi, = eEy, sz et e o oo 87 -

We have to show that ety, Vi Ze Es tz.

We have ety Vi D103 ty, Vi, Pet Yo o ty, Vi, = eEy ty et i o fo bz

We now show that we have ;o foo . fi for v > 0.

Suppose given v € Vy,. We have vV,  Vy =0V Pelfee Vi, .

Suppose given e € Ey,. We have eE,,  E;_ =eE; Pl fee ¢ Ey, . o



88

Lemma 106 Suppose given A C Mor(Gph).

Suppose given a countable chain of subgraphs X =Y, CY; C ... CY such that Y = Ui>0 Y;.
Suppose that the inclusion morphism idy, ., |y, : ¥i — Yiq is in PA for i € Z,.

Then the inclusion morphism idy |x : X — Y is a morphism in ?A.

Proof. The graph Y is the colimit of countable chain of subgraphs X =Y, C Y, C ... CY
with respect to the inclusion morphisms; cf. Remark 105.

Then by Lemma 102 the inclusion morphism idy |x : X — Y is a morphism in PA. 0

2.5 'Tree graphs

Definition 107 A graph morphism p : D,, — X for some n > 0 is called path in X.
Given a path p : D,, = X, we let ps:=v¢V, and pt :=+¥, V,.

We say p is a path from ps to pt with length n. We write length(p) := n.

We often write p = (Y0 V, ;60 E,, ..., 601 Ep).

Conversely, given v € Vx , m > 0 and eg,...,e,_1 € Ex, then (v;eq,...,e,_1) is a path in X
if egsx = v and e;tx = e;.18x for i € [0,m — 2].

A graph morphism p : Dy — X with VoV, =z € Vx is called the empty path at x, also written
p=(z;).

Suppose given a path p =: (v;eq,...,e,-1) in X. We have ps = v. If n > 1 then we have
pt=-e,_1tx,if n =0 then we have pt = v.

For a path p = (v;eq,...,e,-1) in X and an edge e € Ex with esy = pt, we let

pre:=(vieg,...,en_1,€) .

Definition 108 A graph G is called a tree if there exists »r € Vg such that the following
properties (Tree 1-3) hold.

(Tree 1) We have [{e € E¢ : (e)tg =v}| =1 for v € Vg \{r}.
(Tree 2) We have (e) tg # r for e € E¢ .

(Tree 3) There exists a path from r to v for v € V.

The vertex r € Vg is unique with these properties. We call this vertex the root r of G.
Proof. Suppose given two vertices r,7 € Vg with r # 7 satisfying (Tree 1-3).

Then by (Tree 1) we have |[{e € E¢ : (e)tqg = 7}| = 1 since 7 € Vg \{r}, in contradiction to
(Tree 2). o
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Definition 109 Suppose given a graph X and a vertex x € Vx .
We will define the graph Tree(z, X).

We let
Viree(z,x) := {@ ¢ a is a path in X with as =z} .

We let
Etree(z,x) == {(a, €, ) : @, 8 € Viree(s,x) , € € Ex such that at = esy and a-e = 3} .
Note that for (a,e, ) € Etyee(z,x) We have etx = (a-e)t = ft.

For (o, e, 3) € Envee(z,x), We let (a, e, ) Stree(z,x) := @ and (a, e, ) trvee(z,x) := .

Remark 110 Suppose given a graph X. Suppose given a vertex x € Vy .

We have
Viree(e,x) = {(x5€0,...,€n1) : n 20, (w5€0,...,6n-1) path in X}

and
Etree(z,x) = {((z5€0, ... €n-1),€n,(T;€0,...,6,)) : 20, (z;€0,...,€,) path in X} .
Proof.
Ad vTree(x,X) .
Suppose given n > 1. Suppose given a path a = (x;eq,...,e,_1) in X. Then we have as = z;

cf. Definition 109.

Conversely, suppose given a path « in X with s = . Then we have length(a) > 0 and we
write o = (as;@ Eq , . - ., Clength(a)—1 Ea) =: (Z5€0, . .., Clength(a)—1), Which is a path in X.

Ad ETree(x;X) .

Suppose given (o, e, 3) € Emyee(z,x). So @ and § are paths in X and we have an edge e € Ex
such that as =2 and at =esy and a-e = (3.

We write n := length(a) > 0. Then length(8) = length(a - €) = length(a) +1 = n + 1.

We write o = (as;é0Eq,...,6,-1Ey) = (z5€0,...,€,_1). We write ¢, := e. So we have
f=a-e=a-e,=(x;€0,...,6n-1,6).

So we have (a,e, ) = ((z;€0,...,en1),6,(T;€0,...,€n_1,€p)).

Conversely, suppose given n > 0 and ((z;€0,...,€n-1),6n,(T;€0,...,6,)) such that

(x;e0,...,e,) =: 0 is a path in X.

Then we have the graph morphism 5 : D,y — X with (Vo Vg;&Es,...,6,Ep) =
(xi€0,...,€,). Welet a : D,, — X be the graph morphism with v;V, := ¥, Vs for ¢ € [0,n
and with é; E, := ¢, Ez for ¢ € [0,n — 1]. So we have a = f|p, : D,, = X.

—

We obtain o = (f/OVa;éoEa,...,én,lEa) = (\A/'()Vg;éoEg,...,én,lEﬁ) = (m;eo,...,en,l).

So we have ((z;€9,...,6n-1),6n,(x;€0,...,6,)) = (a,€,,5), where a and [ are paths in X
and the edge e, = ¢, Eg is in Ex. Furthermore, we have as = z and at = v, V, = v, Vg =
€n 8D,y Vg = €, Egsxy = e, sx.

And we have a- e, = (x;e0,...,en1) € = (T;€0,...,6n_1,6,) = . o
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Example 111 We consider the following graph.

X 2
7N
l——77—3
We have the graph
Tree(1, X) : (1;a)
1),a, (V \%b (1;a,b))
(1;a,b)
&

In the following Remark 112 we will show that for every graph G and every vertex x € Vg, the
graph Tree(z, G) actually is a tree.

Remark 112 Suppose given a graph G and a vertex x € Vg .

Then the graph Tree(z, G) is a tree with root r := (2;) € Viyee(z,q) -

Proof.

We have to show that the properties (Tree 1-3) hold for Tree(x, G); cf. Definitions 108 and 109.
Ad (Tree 1).

Suppose given a vertex v € Viyee(w,) \{7}-

We have to show that [{€ € Eneez,c) 1 (€) trree(z.c) = V}| =

The vertex v € Viyee(z,r) is a path v : D,, — G in G with vs =z and n > 1 since v # 7.
We write v = (z;¢€9,...,e,) with e; € Eg for i € [1,n].

For an edge € = (o, €, ) € Ernyee(s,cr) , We have (a, €, ) trvee(s,c) = B-

S0 (€) trvee(z,y = v if and only if € = (o, e,v), where a : D,,_y — G is a path with at = esg
and o - e =wv. So it has to be e = ¢, and a = (x;ey,...,€e,_1); cf. Remark 110.

We obtain

{6 € ETree(m,G) : et"[‘ree(:p,G) = U} = {((ZIZ', €0y, en—l)a €n, (33;60 g 7677,))} 5

which contains a single element.

Ad (Tree 2).

!

We have to show that (€) trvee(a,q) 7# 7 for € € Eqyee(a,) -
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Suppose given an edge (a, e, ) € Etree(z,q)-

We have (a, e, ) trvee(z,@)

Ad (Tree 3).

We have to show that there exists a path from (x
The vertex v € Viyee(z,a) 18 a path v : D, — G in G from vs = x, where n :=

We write v = (x;¢q, ...,

= f. Since a.- e = § we have length(f) =
1 > 1, whereas length(r) = 0. So we conclude that (o, e, ) tree(z,q) =

length(a - e)
BF#T.

= length(a) +

;) to v for v € Ve, ) -
length(v) > 0.

en—1) with e; € Eg for i € [1,n — 1].

The following graph morphism p : D,, — Tree(x,G) will be a path in Tree(z, G) from ps =

Vov (

)topt=v,V,=v=

Using Remark 110, we let

p: Dn
V,: Vp,
Vi
E,: Ep,
&

We have to show that E, Styvee(a,q) L Sp

1

VN

(T;€0,...,€n_1)-
Tree(z, G)
VTree(a;,G)
(x;e0,...,e,1) for i € [0,n]
ETree(:r,G)
((x;e0,...,€i-1),€i,(x;5€0,...,€;)) for i € [0,n — 1].

!

. Vp and that E, tryeez,c) = tp, Vp -

Suppose given an edge é; € Ep_, where i € [0,n — 1].

We have & EpStee@,c) = ((z5€0, ...

Vi Vp = €; 8D, Vp .

And we have &; E, trvee(w,q) =

Vil Vp = €; tDn Vp .

Finally, ps =vo V,

(x’ )((z;),eo 7(15;60))(1_; eo)

aei—1)7 €, (Z’, €o,y- .- 76i)) STree(z,G) — (.T, €0, .- )67;—1> =
((z5e0,...,€i-1), €, (Ti€0, -, €)) bvee(a,c) = (T5€0,...,6) =
=(x;)=rand pt=%,V, = (2;€0,...,p-1) = 0.
((z;e0),e1 (€0 ,e1)) ((x;€0 ,e1),e2 ,(x;e0 ,€1 ,e2))
(1'360,61) (x;ela"'aen)

Definition 113 Suppose given a graph G and a vertex x € Vg .

We define the projection morphism p, : Tree(x,G) — G at x.

For a path a : D, = G in Vyee(r,q) We let a'V,,
For an edge (a, €, ) € Eqee(z,c) We let (e, )

To verify that

‘= Vlength(a) Va .

E,, =e€Eq.
p,: Tree(z,G) — G
Vo, " Viee@a — Vo
a > Viength(a) Va
Ep, ¢ Emneewa — Eg
(a,e,0) — e
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is a graph morphism, we have to show that E, sg L STree(z,) Vp, and that E, tq L
tTvee(z,G) Vp, -

So suppose given an edge (a, e, 3) € Etyee(a,q) -

Note that e € Eg with esg = at = Viengtn(a) Vo and with eteg = Bt = Viengtn(s) Vs -

We have

(a,e,B)E, sq = esg = at = Viength(a) Va = @ Vp, = (@, €, B) STree(z,c) Vp, -

And we have
(O{, €, 5) Epz tG - etG - ﬂt - \A/hsngth(,B) VB = vaz = (Oé, €, /B) tTree(:c,G) sz .

So p, is in fact a graph morphism.
Givenn > 1 and o = (w5€0,...,€n-1) € Vireo(a;), We have a'V, =e,_1tq.
Moreover, we have (x;) V, = .

Given <057 €, ﬁ) = (Q?, <€0 ) 7€n71)7 €n, (60 y e 7en>> € ETree(r,G) y WE have

(a,e,B)Ep, = (z5(e0,- - en_1),6n,(€0,... e0)) By, = ey .

Remark 114 Suppose given a graph G and a vertex x € Vg .
We recall the projection morphism p, : Tree(z, G) — G; cf. Definition 113.
We have the bijection

G((%3) Vog %)

EPI Tree(z,G)((x;),*)

: Tree(z, G)((x;), %) = G((x;) Vp,, %) = G(x, %) .

Proof. Note that (z;) is the empty path in x € Vi and thus a vertex in Tree(x, G). So the set
Tree(z, G)((x;), *) consists of all edges in Tree(x, G) which have the empty path as source. So

Tree(x; G)((7;), %) = {((z;), e, (x5€)) + e € Gz, %) = G((2;) Vi, ¥)} -

The claimed bijection ensues. 0
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Properties of graph morphisms

We shall show in §6, Proposition 204, that Gph, equipped with a set of fibrations, a set of cofi-
brations and a set of quasiisomorphisms is a model category in the sense of Definition 198. To
this end, we shall introduce these sets, already employing the language and symbolism of model
categories before §6.

3.1 Quasiisomorphisms

Definition 115 Suppose given graphs G and H.

A graph morphism f : G — H is called a quasiisomorphism if the map (C,,, f)cph is bijective
forn > 1.

To indicate that f is a quasiisomorphism, we often write G Lopg.
By Qis(Gph) € Mor(Gph) we denote the set of quasiisomorphisms in the category Gph.
We often write Qis := Qis(Gph).

So f : G — H is a quasiisomorphism if and only if for n > 1 and for each graph morphism
h : C, — H there exists a unique graph morphism ¢ : C,, — G such that gf = h.

Remark 116 We have Iso(Gph) C Qis(Gph).
Proof. Suppose given a graph isomorphism f: G — H.

We have to show that the graph isomorphism f : G — H is a quasiisomorphism, i.e. that the
map (Cy, flaph : (Cry G)apn — (Cry H)gpn 18 bijective for n > 1; cf. Definition 115.

Suppose given n > 1. Then Cp, flapn - (Cos f Depn ™ (Cotf - F Vg =
) Rem. 69.(1) .
(Cn Y 1dH)Gph - 1d(cn 7H)Gph °
_ Rem. _ . extRem. .
Moreover (Co, f ™ )apn (Cos Fapn = (Coy f75 Faph = (Cuyida)apn 2" ¥ id(c, @)apm -

93
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So (Cy,, f)apn is bijective.

So the map (C,,, f)aph : (Cn, G)aph — (Ch, H)gpn is bijective for n > 1 and thus the graph
isomorphism f : G — H is a quasiisomorphism. o

Remark 117 In Gph, the subset of quasiisomorphisms Qis C Mor is closed under retracts; cf.
Definition 23.

Proof. Suppose given a commutative diagram in Gph as follows.

¢ L

P,

idgr G—i—)H id g

-,

G/éHl

We have to show that the graph morphism f’ : G’ — H’ is a quasiisomorphism; cf. Defini-
tion 115.

Suppose given

We have to show that there exists a unique graph morphism o : C,, — G’ such that 0f' = u;
cf. Definition 115.

Existence. Because the graph morphism f : G — H is a quasiisomorphism there exists a unique
graph morphism v : C,, = G such that vf =uj: C, — H.

So we have the graph morphism ¢ := vp : C,, — G satisfying 0f' = vpf’' = vfq = ujq = u.
Uniqueness. Suppose given
@ —Lm

b

ider G—£_>H id g/

Ti J
!

G/éH/

Cn
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such that vf' = 0f = u.

We have to show that v = 4.

We have vif =vf'j =uj=0f"j =vif

Since the graph morphism f : G — H is a quasiisomorphism, we have vi = v1; cf. Definition 115.

So we have v = vip = vip = v and this shows uniqueness. 0

Example 118 The unique graph morphism tp, : # — Dy is a quasiisomorphism; cf. Defini-
tions 70 and 115:

Suppose given n € N. There does not exist a graph morphism from C,, to () and there does not
exist a graph morphism from C,, to Dy, because Ec, # 0, but Eg = 0) and Ep, = 0. So

(Cnytng) : (CoyB)epn —  (CryDo)apn
is bijective.
Lemma 119 Suppose given a graph X such that (C,, X) =0 for n € X.

Then the graph morphism tx : ) — X is a quasiisomorphism.

Proof. For n € N we have (C,,, X) =0 = (C,,0). o

Example 120 We consider the following graph.

3
7N
2

X

Then (C,,,X) = 0 for n € N. So the graph morphism ty : ) — X is a quasiisomorphism; cf.
Lemma 119.

Example 121 Suppose given a graph morphism f : X — Y with (C,,X) =0 = (C,,Y) for
n € N. Then the graph morphism f : X — Y is a quasiisomorphism; cf. Definition 115.

E.g. for k,l € N with £ < [, we may consider the graph morphism ¢;; : Dy — D;; cf.
Definition 56. Then ¢, is a quasiisomorphism, since (C,,,D,,) = 0 for n,m € N.

The following remark is called (2 of 6).

Remark 122 The subset Qis € Mor(Gph) satisfies (2 of 6).

Proof. Suppose given a commutative diagram in Gph as follows.
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We have to show that the composites fg: X — Y and gh : X’ — Y’ are quasiisomorphisms if
and only if f, g and h are quasiisomorphisms.

Applying (C,,, —)aph to the given commutative diagram yields the following commutative dia-
gram in Set; cf. Remark 69.

(Cn ,gh)
(Cn, X)aph e (Cn, Y )Gph
(Cn V W\)Gph /
(Cn 7h)Gph
(Cn y X)Gph (Cn /9 aon (Cn y Y)Gph

In this situation we have (2 of 6); cf. Remark 35.

The morphisms f, g and h are quasiisomorphisms if and only if the maps (C,, , f)cph, (Cn , 9)Gpn
and (C,,h)gpn are bijective for n € N. This holds if and only if the maps (C,, f)cpn -
(Crs9)eph = (Crn, fg)apn and (Cy, @)aph - (Cr s h)apn = (Chy gh)cpn are bijective for n € N; cf.
Remark 35. This holds if and only if fg and gh are quasiisomorphisms; cf. Definition 115.

Remark 123 The subset Qis € Mor(Gph) satisfies (2 of 3).
Explicitly, this means the following.

Suppose given graph morphisms f: X - Y andg:Y — Z.
Note the graph morphism fg: X — Z.

We have the following commutative triangle.

N

X fg

Z

The composite fg: X — Z is a quasiisomorphism if f and g are quasiisomorphisms.
The graph morphism g is a quasiisomorphism if f and fg are quasiisomorphisms.
The graph morphism f is a quasiisomorphism if g and fg are quasiisomorphisms.

Proof. Since Qis satisfies (2 of 6) and contains all identities in Gph, we conclude that Qis
satisfies (2 of 3) by Lemma 2; cf. Remark 116. .

Remark 124 Suppose given a commutative diagram in Gph as follows.

7N

X !

Z

Suppose given k > 1.
Suppose that the map (Cy, f)gpn Is surjective.
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Then the map (Cy, b)cph is surjective.

Proof. Since (Ci, a)cph - (Cr,b)cph = (Ck, f)apn is surjective, so is (Ck, b)cph - o

Remark 125 In Gph, a pullback of a quasiisomorphism is a quasiisomorphism; cf. Defini-
tion 115.

Proof. Suppose given a pullback in Gph as follows.

We have to show that the graph morphism ¢ : X — X’ is a quasiisomorphism.
Suppose given n > 1 and a graph morphism ¢ : C,, — X'.
We have to show that there exists a unique graph morphism ¢ : C,, — X’ with cg = ¢.

First, we remark that there exists a unique graph morphism w : C,, — Y such that wh = ¢ f’
because h is a quasiisomorphism.

FExistence.

Because X is a pullback, we may choose a graph morphism ¢ : C,, — X such that ¢f = w and
cg==c.

Uniqueness.

Now we have to show that ¢ is unique with respect to cg = ¢.

/

Suppose given a graph morphism ¢ : C,, — X such that ¢g = ¢'.
We have to show that ¢ = ¢.

We have ¢fh = ¢gf’ = ¢ f' and thus ¢f = w.

So we have cf = ¢f.

And we have cg = ¢g.

So we have ¢ = ¢; cf. Remark 10.

X > Y
e 9| T Aw ‘
C,- X’ y’
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Question 126 Suppose given a graph morphism f : G — H with G and H finite.

(1)

(2)

Is it possible to give an algorithm to calculate a number ¢y € Z-; such that
min{n € N: (C,,, f) is not bijective} < (;

if f is not a quasiisomorphism?

An affirmative answer would allow to algorithmically decide whether f is a quasiisomor-
phism; for then f would be a quasiisomorphism if and only if (C,,, f)gpn is bijective for

n e [LCf]

If f is not a quasiisomorphism, then the left hand side
min{n € N: (C,,, f) is not bijective}

seems to be difficult to calculate.

We can only give an algorithm that verifies a sufficient condition for f to be an acyclic
fibration, in particular a quasiisomorphism; cf. Proposition 210. The function SuffCond
is given in §10.6.

Experiments indicate that (; = max{| E¢[,| Ex |} could be a possible choice in (1).

3.2 Fibrations and fibrant graphs

Definition 127 Suppose given graphs G and H.

(1)

A graph morphism f = (V,E;) : G — H is called a fibration if the map

H(vVy %)

Ef’v = Ef |G(v,*) : G(U,*) —)H(UVf,*)

is surjective for v € Vg .

To indicate that f is a fibration, we often write G S
By Fib(Gph) C Mor(Gph) we denote the set of fibrations in the category Gph.
We often write Fib := Fib(Gph).

A graph morphism f = (V;,E) : G — H is called an etale fibration if the map
Efﬂ, : G(’U, *) — H(U Vf , *)

is bijective for v € Vg .
By EtaleFib(Gph) C Mor(Gph) we denote the set of etale fibrations in the category Gph.

The Assertion 249 below shows that being surjective is not a sufficient condition for a graph
morphism to be a fibration.
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Example 128 Suppose given a graph H.
The morphism vy : ) — H is a fibration; cf. Definitions 70 and 127.(1).
We have to show that the map

Enw = En g™ O(v, %) = H(v Vi, %)

is surjective for v € V.

The set Vy = () does not contain any element, so there is nothing to show and the condition for
h to be a fibration is satisfied. o

Remark 129 We have Iso(Gph) C EtaleFib(Gph) C Fib(Gph).
Proof.

|
Ad EtaleFib(Gph) C Fib(Gph). Suppose given an etale fibration f : G — H in EtaleFib(Gph).
Then the map
Ef,v : G(U, *) — H(U Vf , *)

is bijective and thus surjective for v € Vg ; cf. Definition 127. So the graph morphism f : G — H
is a fibration and thus in Fib.

|
Ad Iso(Gph) C EtaleFib(Gph). Suppose given an isomorphism f : G — H in Iso(Gph).
We have to show that the isomorphism f : G — H is an etale fibration.

Therefor we have to show that the map
Efy: G(v,%) = H(vVy, %)

is bijective for v € Vg .

Because the graph morphism f : G — H is an isomorphism, the map E; : E¢ — Ep is bijective.
Suppose given a vertex v € Vg .

Since we have E¢, = Ey \g((:j:/)f *) , the map Ey, is injective because the map E; is injective.
We have to show that the map Eg, is surjective.

Suppose given an edge e € H(v Vy,*) C Ep .

We have esg = v Vy.

We have to find an edge eq € G(v,*) C Eg such that eq Ef,, = eq Ey e

Let eq :=eE;1. Then e Ef =eE;1 Ep =e.

Moreover, e € G(v, *) since egsg = eEf-15¢ = esy V-1 =vVy Vi1 = 0.

So the map Ey,, : G(v,*) — H(v Vy, %) is bijective. o
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Remark 130 In Gph, the subset of fibrations Fib C Mor is closed under retracts; cf. Defini-
tion 23.

Proof. Suppose given a commutative diagram in Gph as follows.

oLy

P
idG/ G —‘|f%- H idH/
[
G/ ; Hl
We have to show that the graph morphism f’': G’ — H' is a fibration; cf. Definition 127.(1).

Since the graph morphism f : G — H is a fibration, given a vertex v € Vg, the map Ey, :
G(v,*) — H(v Vy,*) is surjective; cf. Definition 127.(1).

Suppose given a vertex v’ € Vg .

We have to show that the map Ey v : G'(v/, %) — H'(v' Vyr, %) is surjective.

Suppose given an edge €' € H'(v' Vyr, *).

We have to show that there exists an edge ¢’ € G'(v/, ) such that ¢ Ep , = &' Ep e

Since € E; sy = esy V; = v Vp V; = v Vyp; we have ¢ E; € H(v' Vpj, %).

Let v :=v"V;. We have vVy =v'V; Vy =0 V;y =0/ Vp;. So we have ¢'E; € H(vVy, *).
Since the graph morphism f : G — H is a fibration, there exists an edge é € G(v, *) such that
¢E; = ¢'E;.

Let ¢’ := ¢E,. Then we have €'sgr = eéE,s¢r = ésqgV, = vV, =0 V; V, = v' Vg, = ' Vig, =
v'. So we have &' € G'(v', *).

And we have &' Ep = éE,Ep = éE,p = éEy, = eEfE;, = ¢'E; B, = €' Ej; = ¢'Eyq,, = €.
So the graph morphism f’': G’ — H’ is a fibration. o

Once Lemma 192 below is known, which states that we have Fib = AcCofib?, we can also argue
by Remark 26 to obtain the statement of Remark 130.

Remark 131 Suppose given fibrations f: X ——Y andg: YV —— 7.

Then the composite fg: X — Z is also a fibration.

Proof.

The map Ef, : X(v, %) — Y (v Vy,*) is surjective for v € Vx .

The map Egy,v, : Y (v Vy,*) = Z(vVy Vy, %) is surjective for v € Vx .

We have to show that the map Eg,, : X(v, %) = Z(v Vyg, %) is surjective for v € Vx .
We claim that Ey, - Eg v, . Efgo-

Suppose given e € X (v, %), i.e. e € Ex with esx = v.



Then eEy, - Egv, =eEfEy =eEfy = eByy, .
This proves the claim.

Now since E¢, and E,, v, are surjective, so is Egg .

Once Lemma 192 below is known, which states that we have Fib = AcCofib?, we can also argue
by Remark 20 to obtain the statement of Remark 131.

Remark 132 Suppose given etale fibrations f: X - Y andg:Y — Z.

Then the composite fg: X — Z is also an etale fibration.

Proof. The map E;, : X (v, %) = Y (v Vy,*) is bijective for v € Vx .

The map Eg v, : Y (v Vg, %) = Z(vV; Vg, ) is bijective for v € Vy .

We have to show that the map Ef,,, : X(v, %) = Z(v Vyg, ) is bijective for v € Vx .
We have Ey,, - Eg v, = Eyg; cf. proof of Remark 131.

Now since Ey, and E,,v, are bijective, so is Eyy,, .

Remark 133 In Gph, a pullback of a fibration is a fibration; cf. Definition 127.(1).
Proof. Suppose given a pullback in Gph as follows.

X =X
r
f’l J[f
!/
We have to show that the graph morphism f': X’ — Y’ is a fibration.
Suppose given vy € Vyr .

We write vy: := vy: Vp € Vyr and vx == vx: Vy, € Vx and

' h=
Vy = vyr V), = Uy Vf/ Vi, = vy Vf/h ! :gf Vx! ng = Uxr Vg Vf = VUx Vf € Vy .

We have to show that the map

=B [ X (%) = Y (0, %)

Efl X (vxr,*)

WUxr

is surjective.

Suppose given an edge ey € Y (vyr, %) C Ey .

We have to show that there exists an edge ex: € X'(vxs,*) C Exs such that exs Ep = ey .

We have Vyr = €y’ Sy’ . We write Wy'r .= €y ty/ .
We write ey 1= ey Ej, € Y(vyr Vi, %) = Y (vy, *).

We write Wy ‘= Wy Vh = Cyv ty/ Vh = Cy Eh ty = €y ty .

101
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We have vy = vy Vi, = eyrsyr V), = ey Ej sy = ey sy .

Because the graph morphism f : X ——=Y is a fibration, the map E;,, = E; |§((q;§i)) is
surjective.

So there exists an edge ex € X(vx,*) C Ex such that ex E; = ey .

Note that exsx = vx . We write wy :=ex tx.

Note that wy Vs =extx Vi =ex Efty = ey ty = wy .

Recall that we have to show that there exists an edge exr € X'(vy:, %) C Ex/, i.e.ex/sxr = vxs,
SUCh that ex Ef’ = €y’ .

We consider the direct graph D; with Vp, = {¥o,v1} and Ep, = {&} and & sp, = Vo and
€otp, = V1 ; cf. Definition 56.

We define the graph morphism ¢ : Dy — X by ¥V, :=vx, V1V, := wx and ¢ E; :=ex .

Note that éo EqSX = €Ex Sx = Ux = \A/[)Vq = éoSD1 Vq and that éOeqX = €x tX = Wx = \All Vq =
€ tp, Vg. So ¢ : D1 — X is in fact a graph morphism.

We define the graph morphism p : Dy — Y’ with vV, := vy, %1V, := wys and & E, := ey~ .

Note that é() Ep Sy’ = €y’ Sy’ = Uy’ = \AIO Vp = éo SD, Vp and that é() Ep ty/ = Cy’ ty/ = Wy =
V1V, =étp, V,. Sop: Dy — Y’ is in fact a graph morphism.

We have v V,r = vx Vi = vy = vyr V}, = Vo Vp .
We have v; Vyr = wx Vi = wy = wy' Vi, = V1 Vpy, .
We have é0E;f =ex Ef =ey = ey Ep, =€ Epp, .
So we have ¢f = ph.

Because X' is a pullback there exists a unique graph morphism r : D; — X’ such that rg = ¢
and rf = p.

We let exr := ¢ E, € Exr. Wehave ex Epp =6 E, Ep = ¢ E,pp = E, = ey’

We will show that ex/ é X'(vxr, %), i.e. that exrsxs = &y E,sx: = éysp, V, = Vo V, ;vx/ )
We consider the subgraph Dy C D; with Vp, = {¥} and Ep, = 0; cf. Definition 56.(1).
We consider the graph morphism ¢; : Dy — Dy with ¥¢V,, = ¥ ; cf. Definition 56.(3).
We write p' := 13p = pyrf’ and ¢ := 119 = 117g.

We have p'h = virf'h = uyrgf =¢'f.

So there exists a unique graph morphism 7’ : Dy — X’ such that ' f" = p’ and g = ¢'.
We define the graph morphism 7 : Dy — X by ¥o V7 := vy .

We show that we have 7 f’ = p' and Tg L q.

We have Vo Vi = vx Vg = vyr =%V, = %9 V,,p = Vo Vy . So we have 7f' = p.

We have Vo Vi = vx' V, = vx = VoV, = Vo V,;y = Vo Vg . So we have 7g = ¢.

Because of the uniqueness of 7', we obtain r’ = 7.

/

We consider the graph morphism ¢;7 : Dy — X. We have (117)f' = p' and (117)g = ¢'.
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Because of the uniqueness of 1/, we obtain ' = 7.
Altogether, we have ¢;r = 7. In particular vo V, = %o V,,, = Vo Vi = vx.

So the graph morphism f’: X’ — Y’ is a fibration.

Once Lemma 192 below is known, which states that we have Fib = AcCofib?, we can also argue
by Remark 22 to obtain the statement of Remark 133.

Remark 134 Suppose given a thin graph Y and an etale fibration X —{—>Y; cf. Defini-
tions 73 and 127.(2).

Then the graph X is thin.
Proof. We assume that the graph X is not thin.
Then we may choose two edges e; # e, in Ex such that e; sy = essx and e;ty = extx .

Let v; ;= e;8x. Let vy :=e1tx .
Since the graph morphism X 1.V is an etale fibration, the map
Efv : X(v1,%) = Y(v1 Vg, %)
is bijective.
Since v; = e;8x = easx we have ey, ea € X (v1,%) = X(egsx,*) = X(easx, *).
We have e; Ef,,, e2Es,, € Y(v1 Vp,%). Since the map Eg,, is bijective, we have e; E; =
erEpy, 7 2By, = e By
Because f : X — Y is a graph morphism we have e; Efty = e1tx Vy = 02 Vy = eatx Vy =
€9 Ef ty .

So we have e; Ef # ea Ef in Y (v Vi, v3 Vi), which is a contradiction to the fact that the graph
Y is thin. o

Definition 135 Suppose given a graph X. The graph X is called fibrant if the graph morphism
Tx : X — Cy is a fibration; cf. Remark 70 and Definition 127.(1).
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Remark 136 Suppose given a graph X.
The graph X is fibrant if and only if X (v,*) # () for v € Vy .

Proof. The graph X is fibrant if and only if the graph morphism Tty : X — C; is a fibration,
i.e. if and only if the map

C1(v Vry %)

Ergv =By X (w,)

: X (v, %) = Cq(v Vi, %)

TX

is surjective for v € Vy; cf. Definitions 127.(1) and 135.
For v € Vx we have vV, = v; and so Cy(v Vqy, , %) = Cy(vy, %) = {e1}.

So Er, , is surjective for v € Vy if and only if X (v,*) # ) for v € Vx. o
Note that the empty graph () is fibrant; cf. Remark 70.(2).

Example 137 Suppose given n € N.
The cyclic graph C,, is fibrant; cf. Definitions 52 and 135 and Remark 136.
The direct graph D,, is not fibrant, since etp, # v, for e € Ep, .

3.3 Acyclic fibrations

Recall the notion of quasiisomorphisms from Definition 115 and of fibrations from Defini-
tion 127.(1).

Definition 138 A fibration that is a quasiisomorphism is called an acyclic fibration; cf. Defi-
nitions 115 and 127.(1).

To indicate that a graph morphism G 1. Hisan acyclic fibration, we often write G e

By AcFib := AcFib(Gph) := FibN Qis C Mor(Gph) we denote the set of acyclic fibrations in
the category Gph.

Remark 139 We have Iso(Gph) C AcFib(Gph).

Proof. In Gph, we have Iso C FibNQis PeLI3 A CFib since Tso C Fib by Remark 129 and

Iso C Qis by Remark 116. o

Example 140 We consider the graph morphism tp, : ) = Dy .
Recall from Example 128 that ip, is a fibration.
Recall from Example 118 that tp, is a quasiisomorphism.

So tp, : @ — Dy is an acyclic fibration.

Remark 141 In Gph, the subset of acyclic fibrations AcFib C Mor is closed under retracts;
cf. Definition 23.
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Proof. Suppose given a commutative diagram in Gph as follows.

¢ L b

il
idgs G—{—)H id g

[

GléHl

We have to show that the graph morphism f’ : G’ — H' is an acyclic fibration; cf. Definition 138.

Since the subset of quasiisomorphisms Qis C Mor(Gph) is closed under retracts the graph
morphism f': G' — H' is a quasiisomorphism; cf. Remark 117.

Since the subset of fibrations Fib € Mor(Gph) is closed under retracts the graph morphism
f'+ G — H'is a fibration; cf. Remark 130.

So the subset of acyclic fibrations AcFib C Mor(Gph) is closed under retracts, since the graph
morphism f’': G’ — H' is an acyclic fibration; cf. Definition 23. o

Once Lemma 193 below is known, which states that we have AcFib = Cofib?, we can also argue
by Remark 26 to obtain the statement of Remark 141.

Remark 142 Suppose given acyclic fibrations X ey and Y —4= 7 .

Then the composite fg: X — Z is also an acyclic fibration.

Proof. Since f and g are fibrations, so is fg; cf. Definition 127.(1) and Remark 131.
Since f and g are quasiisomorphisms, so is fg; cf. Definition 115 and Remark 122.

So the graph morphism fg : X — Z is a fibration and a quasiisomorphism. Hence fg is an
acyclic fibration. 5

Once Lemma 193 below is known, which states that we have AcFib = Cofib? we can also argue
by Remark 20 to obtain the statement of Remark 142.

Remark 143 In Gph, a pullback of an acyclic fibration is an acyclic fibration; cf. Defini-
tion 138.

Proof. Recall that AcFib = FibN Qis. I.e. a morphism is an acyclic fibration if and only if it is
a fibration and a quasiisomorphism.

A pullback of a fibration is a fibration; c¢f. Remark 133.
A pullback of a quasiisomorphism is a quasiisomorphism; cf. Remark 125.

So a pullback of an acyclic fibration is an acyclic fibration. o

Once Lemma 193 below is known, which states that we have AcFib = Cofib?, we can also argue
by Remark 22 to obtain the statement of Remark 143.
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3.4 Cofibrations and cofibrant graphs

Definition 144 A graph morphism f: X — Y is called a cofibration if it satisfies (LLP scib) ;
cf. Definitions 13 and 138.

To indicate that f is a cofibration, we often write X Ly

By
Cofib(Gph) := ¥ AcFib(Gph) € Mor(Gph)

we denote the set of cofibrations in the category Gph.
We often write Cofib := Cofib(Gph).

Remark 145 We have Iso(Gph) C Cofib(Gph).
Proof. By definition we have Cofib = @ AcFib.
We have Iso C Y AcFib = Cofib; cf. Remark 18. o

Remark 146 In Gph, the subset of cofibrations Cofib C Mor is closed under retracts; cf.
Definition 23.

Proof. Since, by definition, Cofib =¥ AcFib we can argue by Remark 25. o

For an example of a cofibration we refer to Remark 155, which makes use of Remark 151.

Remark 147 Suppose given cofibrations f: X ——=Y andg: YV —e—= 7.
Then the composite fg: X — Z is also a cofibration.
Proof. Since Cofib = ¥ AcFib, this follows by Remark 19.

Remark 148 In Gph, a pushout of a cofibration is a cofibration.
Proof. Suppose given a pushout in Gph as follows.

x—toy
L
|
X/ /
f/
We have to show that the graph morphism A : Y — Y” is a cofibration; cf. Definition 144.

We have to show that the graph morphism h satisfies (LLPacpip); cf. Definitions 144, 13 and
138.

Suppose given the following commutative diagram.

xt.oy_ v gz

bl

X —Y' —7".
f/ v
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We have to show that there exists a graph morphism @ : Y’ — Z such that hi = v and wk = v.

Because the graph morphism X —3- X’ is a cofibration there exists a graph morphism
w: X' — Z such that gw = fu and wk = f'v.

Because Y’ is a pushout and gw = fu there exists a graph morphism @ : Y’ — Z such that
f'w = w and hw = u.

Tt remains to show that @k = v.
We have f'wk = wk = f'v and hwk = uk = hv.

Cancelling f" and h simultaneously using Remark 6, we obtain wk = v.
f

X Y ——=7

g} “"h e %k

X' Y’ A
fl v

Using Definition 144 where we have Cofib(Gph) := Y AcFib(Gph) and Remark 21 the set
Cofib(Gph) is stable under pushouts.
Lemma 149 Suppose given a set I and cofibrations X; ——=Y; fori € I.
X =11
Proof. Suppose given a commutative quadrangle

Hie] X; ﬂ) G

Ilie[gil f
(bi):
Hielnﬁ'ﬂ
in Gph with a; : X; > G and b; : Y; — H fori € I.

Then the graph morphism [, ; g; : [] Y, is a cofibration; cf. Definition 93.

i€l i€l

We have to show that there exists a graph morphism (h;); : [[,c;Yi — G such that
(Hie[ gi) : (hz)z = (ai)i and (hz)z f = (bz)z

Rem. 94

We have (g; - bi); =" (I 00) - (bi)i = (ai)i - £ "= (ai - )it ey Xi = H.
So we have ¢g; - b; = a; - f fori € I.
X, —G
Js

YETH

aq

Since the graph morphism g; : X; —e—=Y, is a cofibration, there exists a graph morphism
h; : Y; = G such that ¢; - h; = a; and h; - f = b;, for each i € I.

XiLG

ol

Y;TH
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So we have the graph morphism (h;); : [[,.;Yi = G, where h; : Y; = G.

We have (IL,c; 0) - (hi)i =" (gi - ha)i = (@) and (ha)i - f =™ (b £ = (b

Therefore, the following diagram commutes.

(a

Hie[ X & G
ier 94 () %f
e/ Yo" H
So the graph morphism [, ; g : [1;c; Xi — [1;c; Yi is a cofibration. o

Definition 150 Suppose given a graph X. The graph X is called cofibrant if the graph mor-
phism tx : ) — X is a cofibration; cf. Remark 70 and Definition 144.

Remark 151 Suppose given n € N.
The cyclic graph C,, is cofibrant; cf. Definitions 52 and 150.

0
o

no v

Proof. Suppose given

u
—_—

>

-
i

>~<

in Gph such that uf’ = ¢, v.

Since the graph morphism X 4V is an acyclic fibration, f’ is in particular a quasiiso-
morphism; cf. Definition 138. Since v € (C,,Y) ~ (C,, X), there exists a graph morphism
g: C, = X such that gf" =v.

We have ¢, g = Lx = u.

So the graph morphism (¢, : ) — C,, is a cofibration and so the cyclic graph C,, is cofibrant. o

Remark 152 Suppose given a set [.
Suppose given cofibrant graphs X; for ¢ € I.
Then the coproduct [[,.; X; is cofibrant.

Proof. Since the graphs X; are cofibrant, the graph morphisms tx, : ) — X; are cofibrations
fori e I.

Since [[;c; 0 = 0, the graph morphism . _, v, : @ — [[,¢; Yi is a cofibration; cf. Lemma 149.
So the coproduct [, ,Y; is cofibrant. .

Example 153 The cyclic graph Cs is cofibrant; c¢f. Remark 151.
Thus the coproduct Cs LI C, is cofibrant; cf. Remark 152.
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Definition 154 Suppose given the graph X.
We have the coproduct X U X; cf. Definition 85.
We define the diagonal graph morphism dx := (jjﬁ) : X UX — X; cf. Definition 86.

In detail, we have

—(idx
X U X M X
Vi, : (1, ) o v forwve Vy
(2 , v > v forv e Vy
Ei,: (1 , e — e foreeEx
2 , e — e foreeEx .

Remark 155 Suppose given n € N.

The diagonal graph morphism d¢,, : C,, UC,, — C,, is a cofibration, i.e. d¢, satisfies (LLP scip) ,
cf. Definitions 144, 138, 154.

Proof. In this proof we abbreviate d := d¢, .

Suppose given the following commutative quadrangle in Gph.

C,uC, —2> X
(fic)=a /
n "% Y

In particular, we have b1 f = a and by f = a.

A

Since f is a quasiisomorphism, the map (C,, , f)gpn is bijective and so we have by = by =: a.
Thus da = (15 ) a = (2) = (1),

Moreover, we have af = b, f = a.

So the diagonal graph morphism dg, : C,, UC,, — C,, is shown to be a cofibration.

The following lemma generalizes Remark 155.

Lemma 156 Suppose given n € N.

Suppose given sets M’ and M, and a map p: M’ — M in Mor(Set).
Suppose given a map v : M — N.

We have the coproducts [, Crrw and 1,y Crnw ; cf. Definition 90.
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We define the graph morphism j : [, car Coruw = [ens G as follows.
i Mwerr Covpwr = Timens Cow
V; - (m/,v;) — (m'p,v;) forie Z/m’,uVZ

E;: (m';e;)) — (m'p,e;) forie Z/m’;wZ

Then j = (V;,Ej) : [Lverr Covw = [, nens Cmo is a cofibration; cf. Definition 144.

Proof. Since for an edge (m/,e;) € Bl e Cor WE have
(m,e;) E; SH,uens Cow = (m/ s, €;) S ers Conw = (m/p, e Scmlw)
= (m/, €; Scm’uu) VJ == (m/7 ei) SHmleM/ Cm/‘w Vj
and
(m/7 ei) E] theNI Cmu = (m/lu’ ei) t]_[meM Cmu = (m/[j” ei tcm/uu)
= (M eite,,, )V = (M &)ty o Vi

the tuple (V;,E;) = j : [1,venr Crrur = [imers Cme s in fact a graph morphism.

Suppose given

wers Conpor — X
| d
HmGM le’ a Y

in Gph such that ja = bf.

Given m’ € M’ we have the graph morphism

tm + G — Hm’eM’ Cont
Vv, vi = (m!,vy)
EL ;- € (m,7ei) :

Since the graph morphism f: X ——=Y is an acyclic fibration, in particular a quasiisomor-
phism, the map [[,.cr/(Cow s aph : [Lnens(Crmv s X)aph = [Lneas (Cow s Y)aph s bijective.

Hence the map (HmeM le,,f)Gph : (HmeM Cow ,X)Gph — (HmeM Cm,,,Y)Gph is bijective,
cf. Remark 95.

So there exists a unique graph morphism a : ] Cy — X such that af = a.

meM
We have
b
Hm’EM’ Cm/#l’ X
(2% jl / %f
Cm’w/ HmEM CmV a Y

We have to show that ja = .

It suffices to show that ¢, ja - Ly b for m’ € M.
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Since the graph morphism f : X ——Y is a quasiisomorphism and thus (C,,u, f)cpn is
bijective, it suffices to show that ¢,/ jaf - Lpbf for m' € M'.

In fact, we have v,y jaf = tpwja = 1, bf. o

Remark 157 Suppose given a graph X and a cofibrant graph Y, i.e. we have P—=Y .
Then we have the cofibration ¢; : X — X UY’; cf. Definition 85.
Proof. By Definition 85 and Remark 148 we have

Ly Y

o

Xuy.

L1

Using a result obtained below in Proposition 210, we show that gluing cofibrant graphs via
pushout does not yield a cofibrant graph in general; cf. Assertion 255.

The following Example 158 also shows that fibrations are not necessarily surjective.

Example 158 Suppose given n > 0.
We consider the graph morphism tp, : ) — D,, ; ¢f. Remark 70.(2), Definition 56.

(1) The graph morphism tp, : ) — D,, is an acyclic fibration; cf. Definition 138.

(2) The graph morphism tp, : ) — D,, is not a cofibration; cf. Definition 144.
That is, D,, is not cofibrant.

Proof.
Ad (1). Suppose given k € N.

We have (Ci,Dy,)gpnh = 0 = (Ck, 0)gpn - So the graph morphism tp,, is a quasiisomorphism; cf.
Definition 115.

Since Vy = (0, the graph morphism tp, is a fibration; cf. Definition 127.(1).
So the graph morphism tp, : ) — D,, is an acyclic fibration.

Ad (2). We have the commutative quadrangle

— 0

0
Dy L Dp,
D

—_—

" idp,,

n

in Gph; cf. (1).
But there does not exist a graph morphism g : D,, — 0.

So the acyclic fibration tp, : ) — D,, is not a cofibration and thus the graph D,, is not cofibrant;
cf. Definition 150. 0
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Once Lemma 185 below is known, which states that we have AcCofib = Cofib N Qis, we can also
argue as follows.

The graph morphism tp,, : ) — D,, is a quasiisomorphism; cf. Definition 138.

The graph morphism tp, : ) — D, is not an acyclic cofibration since (AcCofib 5) is not satisfied.

Since AcCofib "“™22 185 Cofib Qis, the quasiisomorphism tp, : @ — D,, is not a cofibration.

Example 159 Suppose given n € N.
We consider the graph morphism f : Dy — C,, with ¥ V; :=vy.
Then the graph morphism f : Dy — C,, is not a cofibration; cf. Definition 144.

Proof. Consider the graph X with Vx := V¢, U {v{} and with Ex = Ec, U {e}} with
e} sx := v} and with €| tx = v,.

We have the acyclic fibration g : X ——C,, with g|c, := id¢, and with €} E; := e; and with
vi Vg := vy ; cf. Definition 138.

E.g. for n = 4 we have

€2

X Vo V3
el
/
Vl Vi V4

€4

— ~ _
So we have vi V, = v V, = vy.

Since the graph morphism g : X ——= C,, is an acyclic fibration, there exists a unique graph
morphism % : C,, — X such that kg = id¢, ; cf. Definition 138.

We have k| = idc, .

We have the commutative diagram

Dy X
)
f g

in Gph.

!
We will find a graph morphism p : Dy — X such that fidc, = pg and such that fk # p.
We have v; V, = v} V, and we have v; V, = v;.
So we let p: Dg — X be the graph morphism with ¥V, := v} .

Now we have fidc, = pg and we have kg = idc, . But we have fk # p since vy Vy Vi, = v1 V, =
Vi 7é Vll = \70 Vp .

So the graph morphism f : Dy — C,, is not a cofibration. o
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3.5 Bifibrant graphs

Definition 160 A graph X is called bifibrant if X is fibrant and cofibrant; cf. Definitions 135
and 150.

Example 161 Suppose given n € N.
The cyclic graph C,, is bifibrant; cf. Example 137 and Remark 151.

3.6 Acyclic cofibrations

Definition 162 An acyclic cofibration is a graph morphism f = (Vy,E;) : G — H that
satisfies (AcCofib 1-5).

AcCofib1) The map V¢ : Vg — Vg is injective.
AcCofib2) The map E; : Eq¢ — Ep is injective.

( )
( )
(AcCofib3) We have |[{e € Ey : (e)ty =vn}| =1 for vy € Vu \ Var.
(AcCofib4) We have (e)ty € Vg \ Vgr for e € Eg \ Egy .

( )

AcCofib5) For vy € Vi \ Vg there exist n > 1 and e; € Ey for i € [1,n] such that (e1)sy € Vgr,
such that (e;) tg = (e;41)sg for i € [1,n — 1] and such that (e,) ty = vgy .

To indicate that f is an acyclic cofibration, we often write G Lou.
By AcCofib(Gph) C Mor(Gph) we denote the set of acyclic cofibrations in the category Gph.
We often write AcCofib := AcCofib(Gph).

Remark 163 BissoN and TSEMO [3, Def. 3.2] call the acyclic cofibrations whiskerings.

Remark 164 Condition (AcCofib 5) in Definition 162 is equivalent to the following condition
(AcCofib 5').

(AcCofib5’) For vy € Vi \ Vgy, there exist n > 1 and a graph morphism p : D,, — H with v¢ V,, € Vg;
and v, V, = vy .

Here, p is a path from a vertex in Vs to vy ; cf. Definition 107.

Remark 165 We have Iso(Gph) C AcCofib(Gph).

Proof. Suppose given a graph isomorphism f: G = H.

We have to show that f : G = H is an acyclic cofibration; cf. Definition 162.

Ad (AcCofib 1-2). The maps V; : V¢ — Vg and E; : E¢ — Ep are injective; cf. Definition 55.
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Ad (AcCofib 3). We have Vi \ Vgr = Vg \ Vg = 0.
Ad (AcCofib 4). We have Eg \ Eqy = Ex \Eg = 0.
Ad (AcCofib 5). We have Vi \ Vg5 = Vi \ Vy = 0.

Remark 166 Suppose given 0 <7 < kin Zsy .
The graph morphism ¢, : D; — Dy is an acyclic cofibration; cf. Definition 56.(3).
Proof.

Ad (AcCofib 1-2).  We have 1;;, = idp, |p, and so the maps V,,, : Vp, — Vp, and
E,, : Ep, = Ep, are injective.

Ad (AcCofib 3). We have Vp, \ Vp,,,, = Vb, \ Vb, = {V; : j € [ + 1, k]}.
So suppose given j € [i + 1, k].

We have [{e € Ep, : (e)tp, = V;}| = [{&_1}| = 1.

Ad (AcCofib 4). We have Ep, \ Ep,,,, = Ep, \Ep, = {¢&; : j € [i,k — 1]}.
So suppose given j € [i,k — 1].

We have (&;) tp, = Vj+1 € Vp, \ Vb, -

Ad (AcCofib 5). We have Vp, \ Vp,.,, = Vb, \ Vb, = {V; : j € [i + 1, k]}.
So suppose given j € [i + 1, k].

We let n := j —i. Let e, := &44—1 for v € [1,n]. We consider the edges {&,}ucpi,j—1] We
have e; sp, = &;sp, = V; € Vp,. We have e, tp, = €i1y—1tp, = Vitu = €44 5D, = €u+15D, for
uw € [1,n —1]. And we have e, tp, = &;_1tp, =7, . o

Example 167 We consider the graphs

az
(6%
G 1—=2723
as
and
B1 /BL\ Ba Bs

H 1—>2\_/73—>4 5

57l & Bal

7 6

Let f = (Vy,Ef) : G — H be the graph morphism with
1V, =1, 2V, =2, 3V; =3,

and with
arEy =01, apEf =0, azEf=fs.
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Then the graph morphism f is an acyclic cofibration; cf. Definition 162.

Proof. We use this opportunity to illustrate the properties (AcCofib 1-5) from Definition 162.
Ad (AcCofib 1, 2).

The maps V; and E; both are injective.

Ad (AcCofib 3).

We have to show that [{e € Ey : (¢)ty =vg}| =1 for vy € Vg \ Vgr.

We have Vi \ Vg = {1,2,3,4,5,6,7} \ {1,2,3} = {4,5,6,7}.

We have [{e € Ey : (e)ty = 4} = [{fs}| = 1 and |{e € Ey : (e)ty = 5} = [{B5}| = 1 and
{e € En:(e)ty =6} = [{Be}| =1 and [{e € En : (e) tu = 7} = [{Fr}| = 1.

So (AcCofib 3) holds for f.

Ad (AcCofib 4).

We have to show that (e)ty € Vy \ Vgy for e € Eg \ E¢y .

We have EH\EGf = {51 B2, 85,84, 85, Be ,57} \ {51 ,52753} = {54,55 7567ﬁ7}~

We have Vi \ Vg = {4,5,6,7}.

We have B4ty = 4, Bsty = 5, Bety = 6, frty = 7, which are elements in Vy\ Vgr =
{4,5,6,7}, so (AcCofib 4) holds for f.

Ad (AcCofib 5).
We have Vi \ Vg = {4,5,6,7}.
We have Vgr = {1,2,3}.

For the vertex 4 € Vi \ Vg we may choose n := 1 and e; := 4. Then e; sy = fysyg =3 € Vgy
and €1 tH = B4tH =4.

For the vertex 5 € Vg \ Vgr we may choose n := 2 and e; := (3, and ey := 55 € Ey. Then
e1sg = Pasy =3 € Vgrand e;ty = aty =4 = Pssy = easy and eaty = Bty = 5.

For the vertex 6 € Vi \ Vgr we may choose n := 2 and e; := 4 and e, := f € Ey. Then
e1sy = Pasy =3 € Vgrand e;ty = Baty =4 = Pesy = easy and eaty = Bty = 6.

For the vertex 7 € Vi \ Vi we may choose n := 1 and e, := 7. Then e; sy = B7sy =2 € Vgy
and GltH:ﬁ'ytH:?. o

Alternatively, via Magma [2] we may proceed as follows, using the functions given in §10 below.

G :

<[1,2,3],[<1,1,2>,<2,2,3>,<2,3,3>]>;

H :=<[1,2,3,4,5,6,7],[<1,1,2>,<2,2,3>,<2,3,3>,<3,4,4>,<4,5,5>,<4,6,6>,<2,7,7>]>;
f o= <[<1,1>,<2,2>,<3,3>],[<<1,1,2>,<1,1,2>>,<<2,2,3>,<2,2,3>>,<<2,3,3>,<2,3,3>>]>;
> AcCofiblto4(f,G,H);

true

> AcCofib5(f,G,H);

true

> IsAcCofib(f,G,H);

true
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Example 168 We consider the following graph morphism.

H 1 23041

We let 1V :=1.

Then the graph morphism f satisfies (AcCofib 1-4), but not (AcCofib 5).
Hence the graph morphism f is not an acyclic cofibration.

Proof. We show that (AcCofib 5) is not satisfied.

We assume that (AcCofib 5) is satisfied.

So for vy € Vi \ Vgy there exist n > 1 and e; € Ey for ¢ € [1,n] such that e; sy € Vgy, such
that e; ty = e; 418y for i € [1,n — 1] and such that e, ty = vy .

Then ey sy = 1. But there is no edge in H with this property. Contradiction.

Alternatively, via Magma we may proceed as follows, using the functions given in §10 below.

G <[11,0>;
H := <[1,2],[<2,1,2>]>;

o= <[<1,1>], [1>;

> IsGraphMorphism(f,G,H);
true

> AcCofiblto4(f,G,H);
true

> AcCofib5(£f,G,H);

false

> IsAcCofib(f,G,H);

false

Remark 169 Suppose given acyclic cofibrations f: X ——=Y and g: YV —= 7.

Then the composite fg is also an acyclic cofibration.
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Proof.

We have to show that (AcCofib 1-5) hold for the graph morphism fg.
Ad (AcCofib 1).

The composite of injective maps is injective.

The composite of the injective maps V; and V, yields the injective map V¢, = V¢ -V, and so
(AcCofib 1) holds for fg.

Ad (AcCofib 2).
The composite of injective maps is injective.

The composite of the injective maps Ef and E, yields the injective map Efy = Ef-E, and so
(AcCofib 2) holds for fg.

Ad (AcCofib 3).

We have [{ey € Ey : (ey)ty =vy}| =1 for vy € Vy \ Vxy.

We have [{ez € Ez : (ez)tz =vz}| =1 for vy € Vz\ Vy,.

We have to show that |[{ez € Ez : (ez)tz = vz} = 1 for vy € Vy \(Vx) Vyg.

We have Vz \(Vx) Vi, = V2 \(Vx) V; V, 2% (V, \(Vy) V,) U (Vy \(Vx) V}) V, , since V;, =
ViV,

Suppose given vy € Vz \(Vx) Vy,. We have to show that [{ez € Ez : (ez)tz = vz} 1.

We consider two cases.

Case 1: vz € Vz \(Vy)V,. We have to show that |[{ez € Ez : (ez)tz = vz}| = 1. This follows
by g being an acyclic cofibration.

Case 2: vz € (Vy \(Vx) Vy)V,. We have to show that |{e; € E; : (ez)tz; = vz} = 1. There
exists vy € Vy \(Vx) Vy with (vy)V, = vz. We obtain |{ey € Ey : (ey)ty = vy}| =1 by f
being an acyclic cofibration.

We obtain |[{ez € Ez : (ez)tz = vz} =1

!
First, we show that |[{ez € Ez : (ez)tz =vz}| > 1.
Suppose given ey € Ey with (ey)ty = vy. Then (ey E;)tz = (ey ty) Vy = vy V, = vz. So we
obtain ’{QZ e Ey: (62) ty = Uz}| > 1.
|
Second, we show that [{ez € Ez : (ez)tz =vz}| < 1.

Suppose given ez, e, € E; with (ez)tz = vz = (¢}) tz. Since vz € (Vy \(Vx) Vy) V,, we may
write vz = vy V, with vy ¢ (Vx) V.

We have to show that e = e, .
We claim ez € (Ey)E,.

We assume ez ¢ (Ey)E,. With (AcCofib 4) for g we get
(Ww\(Vx) V)V, 2 vz = (ez) tz € V2 \(Vy) V,, which is a contradiction.
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This proves the claim.
So we have ez € (Ey)E,. Likewise we have e/, € (Ey)E, .

There exist ey, e; € Ey such that ey = ey E, and €/, = e} E, .

We have to show that ey = ey .

But we have (ey ty) V, = (ey Eg) tz = (ez)tz = vz = (e)) tz = (e} Eg) tz = (e} ty) V,.
Moreover, vz = (vy) V.

Because V, is injective we get ey ty = ey ty = vy .

And so ey, €}y, € {éy € Ey : (éy)ty = vy} which contains at most one element by (AcCofib 3)
for f. So ey =€} .

This proves |{ez € Ez : (ez)tz = vz} =1.

So (AcCofib 3) holds for fg.

Ad (AcCofib 4).

We have (ey )ty € Vy \(Vx) Vy for ey € Ey \(Ex) E; by (AcCofib 4) for f.
We have (ez)tz € Vz\(Vy)V, for ez € Ez \(Ey)E, by (AcCofib 4) for g¢.

We have Ez \(Ex) Efy = Ez \(Ex) Ef B, "% (E5 \(Ey) Eg) U (Ey \(Ex) Ef) E,, since Ef, =
B/ E,.

Suppose given ez € Ez \(Ex) Ef,. We have to show that (ez)tz € Vz\(Vx) Vg, .

We consider two cases.

Case 1: ez € Ez \(Ey) E;. We have to show that (ez)tz € V;\(Vx) Vy,. We obtain:

We have (ez)tz € Vz\(Vy) V, C V2 \(Vx) V;V, = V2 \(Vx) Vy,.

Case 2: ez € (Ey \(Ex)Ey)E,. We have to show that (ez)t; € Vz\(Vx) Vy,. There exists
ey € Ey \(Ex) E; such that (ey) E; = ez . We have (ey) ty € Vy \(Vx) Vy. So we get

(e2)tz = (ey) Byt = (ex) ty Vy € (Y \(Vi) V) Vy - C Vi \(Vx) Vy, |

So (AcCofib 4) holds for fg.
Ad (AcCofib 5).

Suppose given vz € Vz \(Vx) Vs, We have so show that there exist n > 1 and e; € E for
i € [1,n] such that e;sz € (Vx) Vy,, such that e;t; = e;4187 for i € [1,n — 1] and such that
€n tZ = Vg .

We have (Vx) Vfg - (Vy) Vg - VZ .

We have Vz\(Vx) Vi = (VZ2\(W)Vy) U (WwVy) \ (Vx V) = (Vz2\(Wy)Vy) U
(Vy \(Vx) V¢) V,; cf. Remark 30.

Case vy € (Vy \(Vx) Vf) Vg .

There exists a unique vertex vy € Vy \(Vx) Vy such that vy V, = vy.
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The graph morphism f : X — Y is an acyclic cofibration. So we may choose n > 1 and é; € Ey
for i € [1,n] such that é; sy € (Vx) Vy, such that é; ty = €, sy for i € [1,n — 1] and such that
én ty = Vy .

So (e1Ey)sz = (é1sy)Vy € (Vx)Vy,. Moreover, (&;E )tz = (€ity)V, = (€i415v)V, =
(€iy1 Ey)sz for i € [1,n — 1]. Finally, (€, Ey)tz = (€,ty) Vy = vy Vy, = vz.

So we may take e; := & E, for i € [1,n].

Case vz € Vz \(Vy)V,.

The graph morphism g : X — Y is an acyclic cofibration. So we may choose k > 1 and €}, € E4

for i € [1, k] such that €| sz € (Vy)Vy, such that e;t; = €, sz for i € [1,k — 1] and such that
6;6 tZ = Vgz.

There exists a unique vertex vy € Vy such that vy V, = €] sz.
Subcase 1: vy € (Vx) Vy.

We map n =k, and ¢; := ¢} for i € [1,n].

Then, in particular, e; sz = €f sz = vy Vy € (Vx) V.

Subcase 2: vy € Vy \(Vx) Vyg.

Because f: X — Y is an acyclic cofibration and because of vy € Vy \(Vx) Vy, we may choose
m > 1 and e/ € Ey for i € [1,m] such that efsy € (Vx)V;, such that e}ty = e, sy for
i € [1,m — 1] and such that €/ ty = vy .

e/ E, ifie[l,m]

/
! ifi e [m+1,m+kl.

Let n:=m+k. For i € [1,n] let ¢; := {
€.

—m
_ _ N —

Then e;8; = (] Eg Sz = €] Sy Vg S (Vx) Vf Vg = (VX> Vfg.

Fori e [1,m — 1] we have e;t; =€/ Egtz =e/ty Vy =€l sy Vo =¢€l | Egsz = ep152.

For i =m, we have e,, tz =€, Egtz =€ ty Vg =vy V, = €5z = €4152.

Forie[m+1,n—1] wehavee;ty =€tz =€, .57 =€i115z7.

Finally, we have e, t; = epirtz =€tz =vyz.

So we may choose m > 1 and & E, € EyE, C E; for i € [1,m] such that (61 E;)sz =
(él Sy) Vg € (Vx) Vfg, such that (él Eg) tZ = (él ty) Vg = (éi+1 Sy) Vg = (éiJrl)Eg) Sz for i €
[1,m — 1] and such that (&, E;)tz = (€, ty) Vy = vy V, = vz

So for vz € Vz \(Vy)V, we may choose n:=m+k >1and §,E;, € Ey E, C E; for i € [1,m]
such that (€ E;)sz = (é1sy) Vy € (Vx) Vg, , such that (€, Ey)tz = (€ ty) V, = (Eix18y) V, =
(€i41)Ey) sz for i € [1,m — 1] and such that (&, E;)tz = (€nty) Vy, =vy V, = vyz.

And we may choose ¢; € Ez for i € [m + 1,m + k| such that e,,1157 € Vy V,, such that
eity =eq18y fori € [m+1,m+ k — 1] and such that e, xty = vz.

So we may choose n :=k+m > 1 and e; € E; for i € [1,n] such that e; sz € (Vx) Vy,, such

that e; t; = e;4187 for i € [1,n — 1] and such that e, t; = vz.

So (AcCofib 5) holds for fg and so the graph morphism fg: X — Z is an acyclic cofibration. s
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Once Lemma 191 below is known, which states that we have AcCofib = PFib, we can also argue
by Remark 19 to obtain the statement of Remark 169.

Remark 170 Suppose given an acyclic cofibration f: X ——=Y .
Then the image X f C Y is a full subgraph of Y; cf. Definition 47.

Proof. We have to show that we have Ex; = {ey € Ey : ey sy € Vx; and ey ty € Vxy}, ie.
we have to show that we have e € Ex¢ for e € Ey, v,w € Vxs with esy = v, ety = w.

Suppose given e € Ey, v,w € Vxy with esy = v, ety = w.

We have to show that e € Exs C Ey .

We have (e) ty € Vy \(Vx) Vy for e € Ey \(Ex) Ef; cf. Definition 162 (AcCofib 4).

So we have e € (Ex) Ef for (e)ty € (Vx) Vy.

We have ety = w € Vxy = Vx Vy.

So we have e € (Ex)Ef = Ex;. o

Remark 171 In Gph, a pushout of an acyclic cofibration is an acyclic cofibration; cf. Defini-
tion 162.

Proof. Suppose given a pushout in Gph as follows.

We use the alternative construction for the pushout in Gph from Remark 84; cf. Remark 38.

We may use this construction of the pushout to prove that g is an acyclic cofibration, since
pushouts are unique up to isomorphism; cf. Remarks 7, 165 and 169.

We have the pushouts

Vy —s Vy

ul e

Vs ——= Vy

a

and

in Gph; cf. Remarks 38 and 84.
Ad (AcCofib 1, 2).

Since the graph morphism f : X — X' is an acyclic cofibration, the maps V; : Vx — Vy, and
E;: Ex — Ex are injective; cf. (AcCofib 1, 2).
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So the maps V, : Vy = Vy» and E, : Ey — Ey are injective; cf. Remark 39.
So (AcCofib 1) and (AcCofib 2) hold for the graph morphism g : Y — Y.
Ad (AcCofib 3). Suppose given a vertex vy € Vy+ \ Vy, .

So vy = (1,vx/) € Vy» = (Vx: \ Vxs) U Vy with vx: € Vx/ \ Vxy.

We have to show that |{ey’ € Ey/ : ey tyr = vy} L1

!

First, we show that |{ey: € Eys : eyr tyr = vy }| > 1.

The graph morphism f : X — X' is an acyclic cofibration and we have vy, € Vx/\ Vxy.
Because of (AcCofib 3) for f there exists a unique edge ex: € Exs such that ex/ tx = vxs.
Assume that ex: € Exy. Then ex: = ex Ey for some ex € Ex .

Hence vy, = ex tx = ex Eftx = (ex tx) Vy € Vxy. Contradiction.

So exs € Ex/\ Exys. Thus we have (1,ex/) € Ey» = (Ex/ \ Exs) UEy .

We obtain (1,6){/) ty/ = ex tX/ Va/ = Ux Va/ = (1,UX/) = Vyv, because Vxr € VX’ \va‘

|
Second, we show that [{ey: € Ey: : eys ty: = vy} < 1.

Suppose given ey, éy: € Eys such that ey ty: = vy: = €y ty .
We have to show that ey~ L ey .
We assume that eys € Ey,. Then there exists an edge ey € Ey such that ey = ey E; .
So we have vy = eys tyr = ey E tyr = (ey ty) V, € Vy,, which is a contradiction.
So we have eys € Ey/ \ Ey,. Thus there exists an edge exs € Ex/ \ Exy such that ey = (1, ex/).
We assume that éy» € Ey,. Then there exists an edge éy € Ey such that ey = ey E; .
So we have vy = éys ty, = éy E tyr = (éy ty) V, € Vy,, which is a contradiction.
So we have éys € Ey/ \ Ey,. Thus there exists an edge éx € Ex/ \ Exy such that &y = (1,éx/).
Now we have
vyr =ey tyr = (1L ex)tyr = ex tx: Vi

) (2,uxVe) ifexitxr =wvx Vy € Vxy for a unique vx € Vx
(1,6)(/ tX/) ifex tx € VX/\VXf .

We assume that there exists a vertex vx € Vy such that ex/tx = vx Vy.
Then we have vy = (2,vx V,) € Vy,. But we have vy € Vy \ Vy,, which is a contradiction.
So we have vy = (1,ex/ tx/).
Now we have
vyr = Eyityr = (1,Ex0) tyr = éxr tor Vi
(2,vxV,) iféxtxy =vx Vy € Vxy for a unique vy € Vy
B { (1,éxrtx) if éxrtxr € Vier\ Vs .
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We assume that there exists a vertex vx € Vy such that ex/tx = vx Vy.

Then we have vy = (2,vx V,) € Vy,. But we have vy: € Vy \ Vy,, which is a contradiction.
So we have vy = (1,éx/ tx/).

Recall that vy € Vx/ \ Vxs and vy = (1,vx/).

Therefore we have ex/txr = éxr txr = vxr .

Because of (AcCofib 3) for f we have exr = éx/ .

So we have eyr = (1,ex/) = (1,éx/) = éy.

So (AcCofib 3) holds for the graph morphism g : Y — Y.

Ad (AcCofib 4). Suppose given an edge eys € Ey/\ Ey,, .

!
We have to show that ey ty € Vy/\ Vy, .
We have ey ¢ Ey,. So there exists an edge exs € Ex \ Ex such that ey = (1,ex/).

So we have

ey tyr = (1,6X/)ty/ =ex tx Vy
) (2,ux Vo) ifexitxs = vx Vy € Vxy for a unique vy € Vx
(1,6)(/ tX/) ifex tx € VX/\VX]f .

We have ex: € Ex: \ Exs. Because of (AcCofib 4) for f we conclude that ex/ txs ¢ Vxy.
So we have ey ty: = (1,ex/ tx) & Vy,.

Hence (AcCofib 4) holds for the graph morphism g : Y — Y.

Ad (AcCofib 5). Suppose given vy: € Vy/ \ Vy,, where Vy, = {(2,vy) : vy € Vy }.

We have to show that there exist n > 1 and ey; € Ey/ for i € [1,n] such that ey.; sy» € Vyy,
such that eyr; tyr = eyr;118ys for i € [1,n — 1] and such that ey, ty: = vy’ .

Since vys € Vy+ \ Vy,, there exists a unique vertex vy, € Vx/ \ Vxs such that vy: = (1,vx/).
Now (AcCofib 5) holds for the graph morphism f: X — X'

So we may choose n > 1 and edges ex; € Exs for ¢ € [1,n] such that ex/1 sx € Vx, such that
D' tXI = €X'i+1 55X’ for i S [1, n— 1] and such that EX'n tX/ = Vx’ .

Without loss of generality, we have ex; tx: ¢ Vxs for i € [1,n]. So we have ex/; ¢ Ex; for
i€[l,n].

We let eyr; := (1,ex;) for i € [1,n].

We have eyy sy = (1,ex71) sy = exr18x/ Vo -

Now there exists a unique vertex vx € Vx such that ex/; sxs = vx Vy.
So we have ex/1 sy Voo = (2,0x Vo) = vx V, V, € Vyy.

Suppose given i € [1,n — 1]. Then we have

eyr;ityr = (Lyexr) tyr = exritx Vo = exriv18x Vo = (1, ex7i41) Syr = €yri41 Sy .
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And we have
eyntyr = (1,exn)ty =exmty Vo =vx Vo = (1,ux) = vy,
because vx: € Vx/ \ Vxy.

So (AcCofib 5) holds for the graph morphism ¢g: Y — Y".
So the graph morphism ¢ : Y — Y’ is an acyclic cofibration; cf. Definition 162.

XY

Once Lemma 191 below is known, which states that we have AcCofib = @Fib, we can also argue
by Remark 21 to obtain the statement of Remark 171.

Remark 172 In Gph, the subset of acyclic cofibrations AcCofib C Mor is closed under retracts;
cf. Definition 23.

Proof. Suppose given the following commutative diagram in Gph.
id
/\
X —X—X

R

ey

idy-/

We have to show that the graph morphism f’: X’ — Y” is an acyclic cofibration.
Ad (AcCofib 1).

We have to show that the map Vg : Vx» — Vy- is injective.

We have Vy -V, =V, - Vy. So it suffices to show that the map V, - V; is injective.
The map V; is injective since f € AcCofib.

The map V, is injective since V, - Voo = Vi, -

Ad (AcCofib 2).

We have to show that the map Ey : Ex» — Ey- is injective.

We have Ey - Ep, = E, - E¢. So it suffices to show that the map E, - E¢ is injective.
The map Ey is injective since f € AcCofib.

The map E, is injective since E, - By = Eiq , .

Ad (AcCofib 3).

Suppose given a vertex vy € Vy+ \ Vy/pr.
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We have to show that we have |[{e € Ey : (€) tyr = vy }| 1.

!
We show that vy Vi, & Vx;.

We assume that vy V, € Vx¢. Then there exists a unique vertex vx € Vx such that vy Vj, =
Vx Vf .

Then we have vy = vy’ V, Vy = vx Vy Vy = (vx V) Vpr € Vxopr, which is a contradiction.

!
First, we show that |{e € Eys : ety = vy }| > 1.

Because the graph morphism f : X — Y is an acyclic cofibration, there exists a unique edge
ey € Ey such that €y ty = Vy Vb . We have <€Y Eb/) ty/ = €y ty Vb/ = Vy Vb Vb/ = Vyr .

Second, we show that [{e € Ey' : ety: = vy }| < 1.

Suppose given ey, éyr € Eys such that ey: ty: = éys tyr = vy, . We have to show that ey L ey .
We have (ey/ Eb) ty = €y ty/ Vb = Vy7 Vb = éy/ ty/ Vb = (éy/ Eb) ty .

Because the graph morphism f : X — Y is an acyclic cofibration and because we have vy: V, €
Vy \ Vx; we conclude that eys E, = éy+ Ey .

So we have €y’ = €y Eb Eb/ = éy/ Eb Eb/ = éy/ .
Ad (AcCofib 4).

!
Suppose given an edge ey € Ey/ \ Ex/p. We have to show that ey ty: & Vy/pr.

!
We show that ey Ey, € Ey \ Exy.

We assume that eys By, € Exy. Then there exists a unique edge ex € Ex such that ey E, =
€x Ef .

Then we have ey = ey Ey Ey = ex EfEy = (ex Eor) Epr € Ex/pr, which is a contradiction.

We assume that ey ty: € Vx/p. Then there exists a unique vertex vy, € Vxs such that we
have ey ty: = vx Vf/ . So we have (ey/ Eb) ty = ey tyr Vp = vy Vf/ V, = (UX/ Va) Vf € VXf .

But we have ey’ E, € Ey \ Exy. Since the graph morphism f : X — Y is an acyclic cofibration,
we conclude that eys E, ty € Vy \ Vx which is a contradiction.

Ad (AcCofib 5).
Suppose given a vertex vy € Vys \ Vy/pr.
We have to show that there exist n > 1 and e; € Ey~ for ¢ € [1,n] such that e; sy» € Vx/s, such
that €; tyl = €11 Sy for ¢ € []_, n — 1] and such that €n ty/ = Vy’ .
!
We show that vy' Vj, & Vx;.

We assume that vy V, € Vx;. Then there exists a unique vertex vx € Vx such that vy Vj, =
Vx Vf .

Then we have vy = vy' Vi, Vy = vx Vy Viy = (vx Vo) Vpr € Vxrpr, which is a contradiction.

Now (AcCofib 5) holds for the acyclic cofibration f : X — Y. So we may choose n > 1 and
edges ey, € Ey for i € [1,n] such that ey sy € Vxy and ey, ty = ey,+18y for i € [1,n—1] and



125

such that ey, ty = vy/ V,.
We let e; := ey, Ey for i € [1,n].
We will show that the following statements (i, ii, iii) hold.

|
(i) €18y’ € VX/f/

(11) e; by ; €;11 Sy’ for i € [1, n — 1]
(ifi) en tyr = vy
Ad (i). There exists a unique vertex vx € Vy such that ey sy = vx Vy.
Then we have €1 Sy’ = (ey,l Eb/) Sy’ = €y,1 Sy Vb/ = Ux Vf Vb/ = (UX Va/) Vf/ S VX/f/ .
Ad (ii). Suppose given i € [1,n — 1].
We have ey;ty = ey,;t18y. So we have e;tys = (ey; Ey)ty = eyity Vo = eyip1sy Wy =
(eY,i+1 Eb’) Sy’ = €418y’ .
Ad (iii). We have ey, ty = vy V.
So we have €n ty/ = (€y7n Eb/) ty/ = €yn ty Vb/ = Vy Vb Vb/ = Vyr .

Altogether, the graph morphism f’: X’ — Y’ is an acyclic cofibration, i.e. f’ is in AcCofib. o

Once Lemma 191 below is known, which states that we have AcCofib = @Fib, we can also argue
by Remark 25 to obtain the statement of Remark 172.

However, we need Remark 172 to prove Lemma 185, which we need to prove Lemma 191.

Lemma 173 Suppose given a graph Y.
Suppose given a full subgraph X C Y such that the following properties (1, 2) hold.

(1) We have ey sy € Vx for ey € Ey \ Ex .
(2) For vy € Vy \ Vx, there exists a unique ey € Ey such that ey ty = vy .

Then the inclusion morphism ¢ :=idy |x : X — Y is in P Fib.

Proof. Suppose given a commutative diagram in Gph as follows.

X2 X

(R

/

We have to show that there exists a graph morphism A : Y — X’ such that th = a and hf’ = b.
Let vx V), :=vx V, for vx € Vx and ex E;, ;= ex E, for ex € Ex.
Now suppose given an edge ey € Ey \ Ex .

We now consider the edge ey E, € Ey-.
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We abbreviate vy: := ey sy V, € Vx/; cf. property (1).

. ey sy €V.
Since tb = af’, we have ey Eysyr = ey sy V= X@ySyVLVbzeySyvan/:UX/Vf/.

Since the graph morphism f’: X’ — Y’ is a fibration, the map

/

. Y/ (vxr Vyr %)
EflrvX’ - Ef/ ’X’(’UX/,*)

: X' (vxr, %) = Y (vx Vi, %)
is surjective; cf. Definition 127.(1).

We have vx' Vi = ey Ep sy, and therefore ey Ey, € Y (vx: Vi, *).

So we may choose an edge (ey)x € X'(vys, *) such that (ey)x Ep = ey Ey.
So for the edge ey € Ey \ Ex, we let ey E; := (ey)x € Ex/.

Finally, suppose given a vertex vy € Vy \ Vx.

By (2), there exists a unique edge e,, € Ey such that e,, ty = vy .

Note that e,, € Ey \ Ex since e,, ty = vy € Vy\ Vx.

We let vy V), := (€4 )x tx: € Vxr .

Before we show that h: Y — X’ is a graph morphism we make a remark.
Suppose given an edge ey € Ey \ Ex .

We assume that ey ty € Vx.

We have ey sy € Vx; cf. property (1).

Since X C Y is a full subgraph, we have ey € Ex . Contradiction.

So for the edge ey € Ey \ Ex we have ey ty € Vy \ Vy.

In particular, we have ey = e, , . This finishes the remark.

We have to show that h: Y — X’ is a graph morphism.
First, we have to show that E; sx/ L Sy Vi

Suppose given an edge ey € Ey . We have to show that ey Ej, sx/ . ey Sy Vj .

Case ey € Ex .
ey sx€Vx
We have ethsX/ :6yEaSX/:€ySXVa = €ySXVh:€ySyVh.
Case ey € Ey \ Ex .
(ey) /EX,(’U /,*) Def. vy (1)
We have €y EhSX/ = (ey)X/ Sx/ X=X Vxr =% €ySyVa = eySyVh.

Second, we have to show that Ej, tx: = ty Vj, .

Suppose given an edge ey € Ey . We have to show that ey Ej tx/ L ey ty V.
Case ey € Ex .

We have ey Ejtxr = ey E txr = ey tx V, v XEVX eytx Vi =eyty V.

Case ey € Ey \ Ex .

Now we need the remark made above.
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Writing vy := ey ty € Vy \ Vx , we obtain

eytyvh = vah = (evy)X/ tX/ = Euy Ehtxl = €y EhtX/ .

So h:Y — X’ is in fact a graph morphism.

We now show that a = ih.

Therefor we have to show that V, - V,V, and E, L E, E, .

Suppose given a vertex vy € Vx . We have vx V,V, = vx V), =vx V,.
Suppose given an edge ex € Ex. We have ex E, E, = ex E, = ex E, .
We now show that hf’ = b.

First, we have to show that Vj, Vs . V.

Suppose given a vertex vy € Vy . We have to show that vy Vj, Vy = vy Vp .
Case vy € Vx .
We have vy V, Vpy = vy V, Vp = vy V, Vi, = 0y V.
Case vy € Vy \ Vx.
choice of (evy )
We have vy V), Vi = (€4 ) x7 tx: Vi = (€4y ) xr Epr tys = vy Eptyr = €y ty Vi = vy V.
Second, we have to show that Ej, E - E, .
Suppose given ey € Ey . We have to show that ey E, E . ey By .
Case ey € Ex .
We have ey E, Ep = ey E,Ep = ey E, By = ey By .
Case ey € Ey \ Ex .

choice of (ey)

We have €y Eh Ef/ = (eY)X’ Ef/ = X €y Eb .

Lemma 174 We have AcCofib C UFib.

Proof. Suppose given an acyclic cofibration f: X ——=Y .

We have to show that f satisfies (LLPgyp); cf. Definition 13.

Suppose given a fibration g : X' ——=Y".

Suppose given graph morphisms u : X — X’ and r : Y — Y” such that ug = fr.
X=X

Y

Y—T>Y/
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We have to show that there exists a graph morphism A : Y — X’ such that fh = u and hg = r.

Since (AcCofib 1,2) hold for the acyclic cofibration f : X —o=7Y | the graph morphism f|*/ :
X — X f CY is bijective, i.e. a graph isomorphism; cf. Remark 66. Thus f|*/ € Iso C ?Fib;
cf. Remark 18.

Moreover, the graph X f is a full subgraph in Y; c¢f. Remark 170.
We shall define full subgraphs Y,, C Y recursively.

Let Yy :(= X f.

For n € Z>,, let Y,, be the full subgraph of Y with

Vyn = Vyyhl U {U € Vy :de e Y(Vynil,’l})} ;

cf. Definition 47.(3) and Notation 51.(2).

We now have a countable chain of subgraphs

Xf=Y,CVCY,C...CY.

Note that we have the full subgraph Y, C Yy, for k € Z-y.
Suppose given a vertex vy € Vy \ Vxy.

Since (AcCofib 5) holds for the acyclic cofibration f : X ——=Y | we may choose n > 1 and
edges e; € Ey for ¢ € [1,n] such that e; sy € Vxy, such that e; ty = e;11sy for ¢ € [1,n — 1]
and such that e, ty = vy .

We have e;sy € Vxy = Vy; .

So we have e ty € Vy, .

Since ey sy = e1ty € Vy,, we have exty € Vy, .
Since egsy = eaty € Vy,, we have egty € Vy, .
Etc.

So we deduce that vy = e, ty € Vy, C U,€€Z20 Vy, .
So we deduce that UkeZ>o Vy, = Vy.

Since the graph [y, Y is a full subgraph of Y, we have ;. Yi = Y; cf. Remarks 104
and 50. ] B

Suppose given k € Z~o . The graph Y} is a full subgraph of Y, . In order to apply Lemma 173,
we will show that the following properties (1, 2) hold.

(1) We have €Y1 SV € Vyk for ey, € Eyk_‘_1 \Eyk .

(2) For wy,,, € Vy,,, \ Vy, , there exists a unique ey, , € Ey,,, such that ey,  ty,,, = vy, -

!
Ad (1). Suppose given an edge e € Ey, ., \ Ey, . We have to show that esy € Vy, .
We have ety € Vy, .
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There exists a unique minimal [ € [0, k + 1] such that ety € Vy, .
We have e € Ey,,, \ Ey, € Ey \ Exy.

Since (AcCofib 4) holds for the acyclic cofibration f : X ——=Y | we have ety € Vy \ Vx; =
Vy \ Vy, .

So we deduce that [ > 1.

By minimality of [, we have ety € Vy, \ Vy,_, .

By construction of Vy, , we may choose an edge € € Ey such that ésy € Vy, | and ety = ety .
Note that we have éty = ety € Vy; \ Vy,_, € Vy \ Vxs.

Since (AcCofib 3) holds for the acyclic cofibration f: X ——=Y | we infer e = é.

So we have esy = ésy € Vy,_, C Vy, .

Ad (2). Suppose given a vertex v € Vy,,, \ Vy, . We have to show that there exists a unique
edge e € Ey, ,, such that ety = 0.

By definition of Vy,,, , we may choose an edge e € Ey such that esy € Vy, and ety =v.
Since Y;11 C Y is a full subgraph, we have e € Ey, .

Uniqueness follows since v € Vy,,, \ Vy, € Vy \ Vx; by (AcCofib 3) for the acyclic cofibration
fi: X——=Y.

So the inclusion morphism idy, | |y, : Y5 — Yiy1 is in ?Fib; cf. Lemma 173.

Since the inclusion morphisms idy, ,, lv, @ Yy — Yii are in PFib for £ > 0 and since
Uk€Z>O Y, =Y, the graph morphism idy |y, : Yo — Y is in ?Fib; cf. Lemma 106.

Altogether, f = f|*/ -idy |y, is in 2 Fib; cf. Remark 19. o
The following lemma is due to BissoN and TSEMO [3, Prop. 4.5].

Lemma 175 In Gph, we have AcCofib C Cofib N Qis; cf. Definitions 115, 144 and 162.

!
Proof. We claim that AcCofib C Qis.

Suppose given an acyclic cofibration f: X ——=Y . We have to show that f is a quasiisomor-
phism.

!
Suppose given n > 1 and a graph morphism u : C, — Y. We have to show that C,,u C X f;
cf. Remark 66.
X

zlef

Xf

We assume that C,u € Xf. So Ve, V, € Vxs or Ec, E, € Exy.
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By (AcCofib 4), it is impossible to have V¢, V,, C Vxy and E¢, E, € Ex.
SO an Vu g fo.
Hence, we may choose k € Z/nZ with v V,, € Vy \ Vxy.

Because of (AcCofib 5) we may choose m > 1 and e; € Ey for i € [1,m] such that e; sy € Vxy,
such that e; ty = e;41 sy for ¢ € [1,m — 1] and such that e, ty = v; V,.

Without loss of generality, we have e; ty € Vy \ Vx for i € [1,m].
And we have e;_1 Eyty = ex_1tc, Vu = v Vu = ety .
Because of (AcCofib 3) we have e, = ex_1 E,, .

If m > 2, then we have e,,_1ty = e, 8y = ex_1 Eysy = ex_15¢c, Vu = Vik—1 Vu = ex_2tc, Vu =
[S) ) Eu ty N in Vy\va .

Because of (AcCofib 3), we obtain e, 1 = e;_o E, .

If m > 3, then, by the same argument, we obtain e,, o = ex_3 E, .
If m > 4, then, by the same argument, we obtain e,, 3 = ep_4 E, .
Etc.

Continuing this procedure, we obtain e; = e;_,, E, .

So we have Vx¢ 2 e1Sy = €4—m Eusy = €x—m Sc, Vu = Vi—m Vu -
We have e, E, sy = e sc, Vi = v Vi, € Vy \ Vxy.

So we have e, E, € Ey \Exy. Because of (AcCofib 4) we have e;11 E,sy = epy180, Vu =
Vi+1 V., =es tcn V.=¢e.E,ty € Vy \VXf .

So ep+1Ey € Ey \Exs. By the same argument, we conclude that egoE,sy = vV, =
(ST} E,ty € Vy \VXf .

So ep42E, € Ey \Ex;. By the same argument, we conclude that ey 3E,sy = vii3V, =
€L+2 E,ty € Vy \VXf .

Etc.

Continuing this procedure, we obtain vj_,, V,, = vy Vi, € Vy \ Vx ¢, where [ > 1 is such that
ktl=k-mel/ ;.

But vi_, V, € Vxy. This contradiction proves the claim.

Lemma 174 . . Def. 144
Moreover, we have AcCofib C YFib C W AcFib — =" Cofib.

Altogether, we have AcCofib C Cofib N Qis. o
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In Lemma 175 we have shown the inclusion AcCofib C Cofib N Qis.
In Lemma 185 below, we will show that the inclusion AcCofib é Cofib N Qis also holds, using the
factorization provided by Lemma 184.
Remark 176 In Gph, a pullback of an acyclic cofibration is a quasiisomorphism.
Proof. We have AcCofib C Qis; cf. Lemma 175.
So an acyclic cofibration is a quasiisomorphism.
A pullback of a quasiisomorphism is a quasiisomorphism; cf. Remark 125.

So a pullback of an acyclic cofibration is a quasiisomorphism. o

Example 177 Suppose given n € N.
The graph morphism (¢, : ) — C,, is not an acyclic cofibration.
Proof. Since Vy,, = () and Vg, # (0, the graph morphism t¢, does not satisfy (AcCofib 5).

Alternatively, since (C,, , ) = 0 # (C,,, C,,), the graph morphism t¢, is not a quasiisomorphism,
and thus not an acyclic cofibration; cf. Lemma 175. 0

Remark 178 A graph G is a tree if and only if there exists an acyclic cofibration ¢ : Dy — G.
Proof.
Suppose given an acyclic cofibration ¢ : Dy — G.

We have to show that the graph G is a tree, i.e. that the properties (Tree 1-3) hold; cf.
Definition 108.

We let 7 := v V.. So we have {r} = Vp,..

Ad (Tree 1). Because of (AcCofib 3) we have |{e € E¢ : etg = vg}| = 1 for vg € Vi \ Vpye =
VG \{T}

Ad (Tree 2). Because of (AcCofib 4) we have etg € Vg \ Vp,e = Vg \{r} for e € E¢ \ Ep,. =
Eq \0 = Eg. So we have etg # r for e € Eg and thus (Tree 2).

Ad (Tree 3). Suppose given v € Vg .

We have to show that there exists a path from r to v, i.e. n > 0 and a graph morphism
p : D,, = G such that oV, =r and ¥, V, = v.

If v = r, then we may take n =0 and p = c.
So suppose that v € Vg \{r}.

Because of (AcCofib 5) we may choose n > 1 and e; € Eg for ¢ € [1,n] such that e; s¢ € {r},
such that e; t¢ = e;41 8¢ for i € [1,n — 1] and such that e, t¢ = v.

So for v € Vg we let & E, := e;41 for i € [0,n — 1] and ¥; V, := e;418¢ for ¢ € [0,n — 1] and
‘A/n Vp =€n tG .

Then p : D,, = G is a graph morphism because we have ¢; E, s¢ = €,415¢ = V; V, = &;sp,, V,, for
i € [0,n—1] and since we have &; E, t¢ = €;11tq = €;428¢ = Vig1 Vp, = & tp, V, for i € [0,n—2]
and én—l Ep tG = €y tG = \A/n Vp = én tDn Vp .
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Suppose given a tree G.

We have to show that there exists an acyclic cofibration ¢ : Dy — G.

We let vV, := 1.

We have to show that the graph morphism c is an acyclic cofibration; cf. Definition 162.

Ad (AcCofib 1, 2). The graph morphism ¢ : Dy — G is injective; i.e. the maps V, and E, are
injective.

Ad (AcCofib 3). Because of (Tree 1) we have |[{e € Eg : (e)tg = v}| =1 for v € Vg \ Vp,. =
VG \{T}

Ad (AcCofib 4). Because of (Tree 2) we have (e) tg # r for e € Eg and thus (e) tg € Vg \{r}
for e € EG = EG\ED()C'

Ad (AcCofib 5). Suppose given v € Vg \ Vp,.. Because of (Tree 3) we have a path from r to
v, i.e. we have a graph morphism p : D,, = G such that vV, = and ¥,, V, = v.

We let e; := ¢;_1 E, for ¢ € [1,n]. So we have e;s¢ =& E,s¢ =€ sgV, =voV, =7 € Vp, ..
And we have e;tq = 6,1 Eyta =6_1t¢ V, = €s¢ V, = & E,s¢ = €;418¢ for i € [1,n — 1] and
€n tG = én,1 Ep tG = én,1 tG Vp = \A/'n Vp = . o

Example 179 Let n € N.

Since the graph morphism ¢, : Dy — D,, is an acyclic cofibration, the graph D,, is a tree; cf.
Definition 108, Remark 166 and Remark 178.

This can also be verified directly. The graph D,, has root r = vo. Then (Tree 1) and (Tree 2)
hold since we have &, tp, = Vi for k € [1,n]. Then (Tree 3) holds since we have the paths
tkn @ D — D, for k € [0, n].

Now we can give another proof of Remark 112.

Remark 180 Suppose given a graph G and a vertex x € Vg .

Then the graph Tree(z, G) is a tree with root r := (2;) € Vivee(z,q) -

Proof. We have to show that there exists an acyclic cofibration ¢ : Dy — Tree(z, G).
Let ¥ Ve := (2;) € Vivee(s,0) -

We will show that the graph morphism ¢ : Dy — Tree(z, G) with ¥V, := (z;) is an acyclic
cofibration.

Ad (AcCofib 1, 2). The maps V. and E, are injective.

Ad (AcCofib 3).  We have to show that |[{e € Emneewc) : €tmreec) = v} L 1 for
v E VTree(x,G) \{(ZL’, )}

For a path (w;e1,...,¢e,) € Viee(,c) We have {e € Eqree(a,) * €trrec(w,c) = (T5€1,...,65)} =
{($7 €1 ... 76n—1)7 €n, (I’, €1, aen))}-

Ad (AcCofib 4). Suppose given e € Eree(z,c) \ Eny = Emvee(z,c) \0.
We have e = (v,¢,,7 - e,) for a path v and an edge e, € Eg .



Then we have v - e, # (z;).
Ad (AcCofib 5) Suppose given (z;e1,...,¢en) € Viree(s,q) -

Then there exists

(x )<<I§)751 ,(z;el))( .

: 2 61) ((m5e1),e2 ,(z3e1 €2)) (

. ((z3e1 ,e2),e3 ,(wseq ,e2 ,e3))
Tier,e) oo

3.7 Summary of some notations

Reminder 181 Suppose given a graph morphism f: G — H.

To indicate that f is a quasiisomorphism, we often write G dopg ; cf. Definition 115.

To indicate that f is a fibration, we often write G—t-n ; cf. Definition 127.(1).

To indicate that f is an acyclic fibration, we often write G N ; cf. Definition 138.

To indicate that f is a cofibration, we often write G om ; cf. Definition 144.

s (2561, ..
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To indicate that f is an acyclic cofibration, we often write G A ; cf. Definition 162.

Reminder 182

(1) We denote Qis = {f € Mor(Gph) : f is a quasiisomorphism}; cf. Definition 115.

(2) We denote Fib = {f € Mor(Gph) : f is a fibration}; cf. Definition 127.(1).

We denote AcFib = FibNQis = {f € Mor(Gph) : f is an acyclic fibration}; cf. Defini-

tion 138.

(3) We denote Cofib = {f € Mor(Gph) : f is a cofibration}; cf. Definition 144.

We denote AcCofib = {f € Mor(Gph) : f is an acyclic cofibration}; cf. Definition 162

and Lemma 175.
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Chapter 4

Factorization of graph morphisms

Remark 183 Suppose given a graph morphism f: X — Y.
Consider the graph F:=]] Tree(z Vi ,Y); cf. Definitions 109 and 90.

rEVyx
Consider the discrete subgraph X C X; ¢f. Definition 71.
We define the graph morphism

a: X = F= [.ev, Tree(z Vs, Y)
Vo: Vx=Viy22 — (z,(xVy;))
E,: Ey=0.

Recall that (x Vy;) is an empty path at « Vy; cf. Definition 107.

Then the graph morphism a : X — F is an acyclic cofibration.

Cf. also Remark 178.

Proof.

Note that for € Vy , the graph Tree(z Vy,Y') is a tree with root 7 := (x Vy;); cf. Remark 112
and Definition 108.

We have to show that (AcCofib 1-5) hold for a : X — F; cf. Definition 162.
Ad (AcCofib 1, 2): The maps V, and E, are injective.
Ad (AcCofib 3): Suppose given vp € Vy\ Vg, .

There exists a unique vertex r € X, a unique integer n > 1 and a unique path p: D,, = Y in
Y from z V; such that vp = (z,p). Note that vV, =z V.

So the path p is not the root of the graph Tree(z V;,Y); i.e. p # r; cf. Definition 108.

So because of (Tree 1) we have [{e € Emee@v,y) : (€)tmee@v;y) = pyl = 1 since
pE VTree(ac Vi ,Y) \{T}

Let € € Emee(zv; v) be this edge with € tryeez vy y) = P-

So we have (z,e) tg Det. 90 (7, e trree(z vy v)) = (7,D).

135
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Conversely, suppose given an edge (Z,€) € Ep such that (z,é)tr = (x,p). Then we have
(z,p) = (7,€) tr = (T, € trvee(a v} Y))-

So we have x = 7 and p = € UTree(# Vy ,Y) = € Uvee(z vy Y)-

Because of (Tree 1) we deduce that e = é.

Ad (AcCofib 4).

Suppose given er € Ep\Ex = Ep.

There exist a unique vertex z € Vx and a unique edge ¢ € Eqee(zv; v such that ep = (z,¢).
So we have eptp = (7,€)tr = (T, € trvee(a vy 1))

Because of (Tree 2) we have etmee(zv; vy 7 (¥ Vi ;).

So we have eptp € Vp\ Vy,, .

Ad (AcCofib 5).

Suppose given vp € Vp\ Vg, .

Then there exist a vertex p € Viyee(z v, v) such that vy = (2,p) and p # (z Vy;) =: 7.

Because of (Tree 3) we may choose n > 0 and a path a : D,, — Tree(x V,Y) from voV, =
r=(zVy;) to ¥, Vo =p.
Tree(x V;,Y) —=F

|l

D

Then « - ¢, is a path from Vo(a - 1) =11, = (2,7) = (x, 2 Vy;) =2V,
to Vp(a - ty) = pte = (z,p) = vp; cf. Remark 164.

So the graph morphism a : X — F is an acyclic cofibration. 0

The following lemma is due to BissoN and TSEMO [3, Prop. 3.5].

Lemma 184 Suppose given a graph morphism f: X — Y.

Then there exists a commutative triangle in Gph as follows.
G
AN
/

X Y

f

Proof. We consider the discrete subgraph X C X and the inclusion morphism oy : X — X;
cf. Definition 71.

Consider the graph F:=]] Tree(z Vi ,Y).

xeVx

We define the graph morphism
a: X o F= eevy
Vo: Vx=Vy3z = (z,(xVf;))
Ea . EX = @ .

Tree(x V¢ ,Y)
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Recall that (x V) is an empty path at = V.

Note that the graph morphism a : X — F' is an acyclic cofibration; cf. Remark 183; cf. also
Remark 178.

We now form the pushout as in Construction 83; cf. Remark 171.

X-—8%sF
OX] Lh
Jd 2
X—g—>F

We have the graph morphism Pav; Tree(x Vy,Y) — Y for x € Vy; cf. Definition 113.

So because of the universal property of the coproduct we have the graph morphism

P = (Pyv, Jeevy 1 F'= H Tree(x Vy,Y) = Y

zeVx
with (2, Vivee(e v; ) Vp = UTree(a vy ) Vpl.vf and (7, eTyee(2 v, ,v)) Ep = €mvec(z vy vy B prv; cf. Def-
initions 90 and 91.
We have the following commutative diagram.
X —S=F
1
x 1oy

In fact, suppose given x € Vi = Vx .
Def. 113

We have (zV,)V, = (z,(xV;;))V, = (x Vy;) V,

Py Vf

Vf —xVOX Vf.

Because F is a pushout, there exists a unique graph morphism ¢ : F — Y such that hg = p
and gq = f. We claim that the graph morphism ¢ : F — Y is a fibration.

X-—4~F
Oxj hl
—oa— F

Sy

Suppose given a vertex z € Vi = Vxg U Vpy,; cf. Remark 37.
We consider two cases.

Case 1: z € Vxg.

We choose a vertex x € Vy such that z =2V, .

qu %)

We have to show that the map E, \ : F(z,%) = Y(2V,, %) is surjective.

So suppose given an edge e € Y(qu,*) C Ey. We have esy = 2V, =2V, V, =2 V;. We
write y := ety € Vy. So for the edge e € Ey we have the path (zVy;e) in YV of length
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1 from 2 Vy = esy to y = ety. This path (zVy;e) is a vertex in Tree(z V;,Y). So we
have the vertex (z,(x Vy;e)) € Vp. We have the vertex (z,(zVy;)) € Vp. We have the
edge er := (z,((x Vy;),e, (v Vyse))) € Ep; cf. Definition 109. So ersp = (z,(xVy;)) and
ertr = (x, (z Vy;e)); cf. Definition 90.

We have erE, € Ej, where its source vertex is er Epsp = erspVy = (z,(x'Vy;)) V), =
2V, Vy =2V, Vy =2V, = 2. So the edge er E;, € E; has source z and thus er Ej, € 13(2, *).

We show that (er Ej,) E, Zee Y(2V,,*).
We have E, E;, = E,,. So we have

Def. 91

erEnEg =er By = (2, (2 Vi), e, (2 Vyie) By 7=" ((x Vi3 ),e (xVyie)) E

Def. 113
Pz Vf - €

Case 2: z € Vpy, .

We may choose a vertex in Vg, consisting of a vertex x € Vy and a vertex v in Tree(x Vy,Y),
i.e. apathv=(rVy;ep,...,e,_1) in Y, such that z = (z,0) V).

We write y, := v 'V,_ v; € Vy ; cf. Definition 113.

We have to show that the map E, \?E:ﬁz ) F(z,%) = Y(2V,,*) is surjective.
We have 2V, = (z,v) V,, V, Vi Y (z,0)V, DL 91 v =Y.

Py Vf

So suppose given an edge e € Y (2 V,, %) = Y (y,, *). Note that esy =y, .

We have to find an edge ep in F(z, %) such that ep E, =e.

We first consider the edge 7 := (z,((x Vy;eq,...,en1),€,(xVsseq,...,en_1,€))) € Ep
which has the source vertex (z,v) = (z,(xVf;ep,...,en—1)) and the target vertex
(x,(xVyie,...,en_1,€)).

We have 7 Ey s = 755 Vi, = (,0) V,, = 2. So we have 7B, € F(z, %).

We now show that 7 Ej E, e
We have hg = p and thus we have E; E, = E, .

Def. 91

So we have 7B By = 7B, "7 (0 Vyse0, - sena)se (0Vy 60, e, ) B,y ME e

Px Vf

So the graph morphism ¢ : F — Y is a fibration.

X 4. F
Oxj hL
X 42F \
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Lemma 185 In Gph, we have AcCofib = Cofib N Qis.

!
Proof. We show that AcCofib O Cofib N Qis.

Suppose given a quasiisomorphism f : X — Y that is a cofibration, i.e. that satisfies (LLP pcpip );
cf. Definition 144.

We have to show that f is an acyclic cofibration, i.e. that (AcCofib 1-5) hold for the graph
morphism f; cf. Definition 162.

By Lemma 184 we may choose an acyclic cofibration w : X — Z and a fibration p : Z7 — Y
such that f = wp.
Z
wo/ \<
/

~
~

X Y

Because the graph morphism f: X —~=Y is a quasiisomorphism and because the graph mor-
phism w : X ——= Z is an acyclic cofibration and thus a quasiisomorphism, we may conclude
by (2 of 3) that the fibration p : Z — Y is a quasiisomorphism and thus an acyclic fibration;
cf. Remark 123 and Definition 138.

So we consider the following commutative diagram.

X =7

b b

dy

Because the graph morphism f : X — Y is a cofibration and thus in ¥ AcFib, there exists a
graph morphism A : Y — Z such that fh = w and such that hp = idy .

X-$s7Z

AT

idy

We consider the following commutative diagram.

X

|

~

b
A Y

y o

Since the set of acyclic cofibrations AcCofib is closed under retracts, the graph morphism
f X — Y is an acyclic cofibration; cf. Remark 172.

So we have AcCofib O Cofib N Qis.
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We have AcCofib C Cofib N Qis; cf. Lemma 175.
Altogether, we have AcCofib = Cofib N Qis. o

Lemma 186 Suppose given a graph morphism f: X — Y.

Then there exist a commutative triangle in Gph as follows, where (C,,, f')gpn is surjective for

n>1.
X
N
Y

X !

Proof. For n > 1, we let M, := (C,,,Y)cpn \ Im(C,,, g)Gph -
Let M :=[[,o1 Mn={(n,u) : n>1,ue€ M,}.
Let C == [{,,.en Cn -
We have Vo = {((n,u),v;) :n=1, ue M,, i€ Z/nZ}'
And we have Ec = {((n,u),e;) : n>1,ueM,,ic Z/nZ}'
We write

(n,u,v;) == ((n,u),v;)
and

(n,u,e;) := ((n,u),e) .

Using Definition 91, we have the graph morphism

h= (u)(mu)eM : C - Y
(n,u,v;) — v;V, forie Z/nZ
(n,u,e;) +— e E, forie Z/nZ )
Let X’ := X U C; cf. Definition 85. Then

Vx/ ZVX |—|VC - {(1,UX) L Ux S VX}U{(2aUC) el € VC}

and
EX/:EXHEC:{(l,eX) : eerx}U{(Q,ec) : €C€Ec}.
Moreover,
Sx’ - EX/ — VX/
(1,6)() —> (1,€X SX)
2,60) —> (2,60 Sc)
and
tx : Ex — VX/
(1,6){) —> (1,6){ tx)

u[\D
o)
Q
I

(2, €c tc) .
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We have the graph morphism f’ := (i) : X UC — Y satistying v3f = g and of = h; cf.
Definition 86.

Writing ¢’ := 11 : X - X UC, we have ¢'f = g.
Claim 1. The graph morphism ¢’ : X — X' = X U C is a cofibration; cf. Definition 144.

The cyclic graph C,, is cofibrant for n > 1; cf. Remark 151. So the graph C' = ]_[ (nuw)EM Cn
is cofibrant, i.e. the graph morphism o : ) — C is a cofibration; cf. Definitions 70, 150 and
Remark 152.

So the graph morphism ¢’ : X — X U C is a cofibration as a pushout of a cofibration; cf.
Remark 157.

This proves Claim 1.

Claim 2. Given n > 1. The map (C,,, f')gpn : (Cr, X UC)apn — (C, Y)gpn is surjective.
Suppose given a graph morphism v : C,, — Y in (C,, Y )gpn -

Case 1: v € Im(C,,, g)cph -

Then we may choose a graph morphism @ : C,, — X in (C,,, X)gpn such that u = ug.

&0

>

XU
/|

|

n

Q

Y

N

So we have @g’ € (C,,, X U C)gpn and (ag')(Cy,, f)apn = g’ f' = g = u.
Case 2: u € (Cp,Y)gpn \ Im(Cy, , g)cph -

So we have u € M, , ie. (n,u) € M.

We have the graph morphism ¢, : C,, — C; cf. Definition 90.

We have L(n, u)h = l(nu) (u)(n u)eM Def:.91 u

Consider the graph morphism ¢, : C' — X U C.
We have ¢(n4) - t2 € (Cp, X U C)gph and (t(nu) - £2)(Cr s faph = i) - L2 - f' = ttnu) - h = .

74

n

X

This proves Claim 2.
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So we have the commutative triangle

where (C,,, f')gpn is surjective for n > 1. o

The following lemma is an iterated version of an argument of BisSSON and TSEMO [3, Prop. 4.6].

Lemma 187 Suppose given a graph morphism f : X — Y such that (C, , f)cpn is surjective
forn > 1.

Then there exists a commutative triangle in Gph as follows.

G

P

X !

Y

Proof. We have the graph morphism fy:= f: X =Y.
Let Xy := X.

Let gop :=1idx : X = Xj.

Then goo - fo=f.

For 7 > 0, we shall recursively construct a commutative diagram in Gph as follows for suitably
defined sets M; and M and j; resulting from Lemma 156.

Ji
H(nvp)GMi Cn H(n,u)eM Cy

aij bil
N c

Giyit1
X Xiv1

-
90,i fit1
X Y.

f

Suppose that the commutative triangle

is constructed for a given k > 0.

Let M :={(n,u):n>1, C,—=Y }.
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Let My .= {(n,p) :n>1, C, —= X, }.
Then we have the graph [],, C, =[], year, Cn With

VHMk Cn = {(n,p, Vi) tn oz
EH]\/Ik Cn — {(n,p, ei) tn oz

Using the maps p: My — M : (n,p) — (n,pfy) and v : M — N : (n,u) — n, Lemma 156 gives

the cofibration
vj : (n7p7 Vi) = (napfkavi)
Ejk : (n7p7 ei) = (napfkn ei) .
Using Definition 91, we obtain the following graph morphisms.
ar = (p)(n,p) ]_[M,C C, = Xi
Voo o (nyp,vi) — vV, for v; € Vg,
E..: (n,p,e;) — ¢E, for ¢; € Eg,

C:= (u)(nyu)eM : HM Cn — Y
Ve: (nyu,vi) — v;V, for v; € Vg,
E.: (n,u,e;) — eE, for e; € Eg,

We note that since (C,, , fx)capn is surjective, the graph morphism jj, is surjective.

We show that we have jic = ay [r-

Suppose given (n,p,v;) € VHMi C, -

We have (n,p,v;) Vj, Ve = (0, pfi, Vi) Ve = v; Vpp, = Vi V, Vy, = (n,p,v;) Ve, Vi, .
Suppose given (n,p,e;) € Ert,, ¢ -

We have (n,p,e;) E;, E. = (n,pfr,e;)) Ec =e; Epp, = ¢, E,Ef. = (n,p,¢;) Eq, Ey, .
So we have ji.c = ay fr.

Forming the pushout, we obtain the following commutative diagram.

Ji
H(”:P)GMi C (nu)eM Cn
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In this diagram, the graph morphism g x+1 : Xx — X+ is a cofibration; cf. Remark 148.

Giyi+1

With respect to the morphisms X; —e= X, ,; fori > 0, we let X, := @Xi ; cf. Definition 98
i>0

and Lemma 99.

We have graph morphisms g; @ X; — X such that ¢;;+1 - git1,00 = ¢ico for ¢ = 0; cf.

Definition 98.

Since g; ;11 is a cofibration for ¢ > 0, we conclude that gp : Xo — X is a cofibration; cf.
Lemma 102.

There exists a unique graph morphism f : Xoo — Y such that ¢, « - foo = fi for ¢ > 0; cf.
Lemma 99.

X = XO ?]071 Xl g£2 X2 92‘13 X3 A hﬂXz = Xoo
120
fo\ \fl ‘fQ ‘f3 F'f
idy idy idy
Y Y Y Y Y

By the SurjeCtiVity of (Cn ) f)Gph = (Cn ) fO)Gph = (Cn 790,00)Gph ' (Cn ) foo)Gphv we conclude
that the map (C,, , fo)apn Is surjective for n > 0.

We claim that the graph morphism f : X, — Y is a quasiisomorphism.
Suppose given n > 1. It suffices to show that the map (C,,, foo)apn is injective.
Suppose given graph morphisms w’, w” : C,, = X, such that w'f, = w" f .
We have to show that w' = w".

We write w := w' foo = 0" fo .

There exist £ > 0 and graph morphisms @', " : C,, — X}, such that @'gy ~. = w’ and such that
W" gk 0o = w"; cf. Lemma 101.(2).

We have @' f, = @' g0 foo = W' foo = w = 0" foo = W' gpocfoc = 0" fic.

9k,
X ——= X

w/
w//
w//

Cn

’L’l\}/

foo

Y

Lo
It now suffices to show that @' gy k+1 = W’ g t1 -

/ ~1 ~! ~1 ~! 1
Because then we have w' = W' gy 00 = W' Gk k+19k+1,00 = W' G k1 Gk+1,00 = W' Ghyoo = W'

We have (n,w"), (n,w') € M.
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We show that @'gy k11 = 0" gk g1 -

So suppose given v; € V¢, , where ¢ € Z/nZ'

!

We have to show that v; Vigrg, .. = Vi Varg, o -
Def. ay ~
We have v; Virg, ., ViVar Vgpoon = (0,0, vi) Vo, Vg, oy = (0,
(n, @', v3) Vi, (n ' v) Vi Vi, D= (v Vi, DER (o,
(nv wlla Vi) ijbk - (nv w//’ Vi) Vakgk,k+1 = (n7 wﬂa VZ) V ng k41 Delax Vi V o’ ng k41

Now suppose given an edge e; € Ec, .

We have to show that e; Egrg, = € Egrgy i -

We have e; Eyg, , e; By E Def. ax (n,',e;) Eq, E = (n,0
k1 9k, k+1 ' P ) Ak Sk k1 )

(n,0',e;)E;p, = (n,0,¢)E; Ey, Del i (n,w,e;) Ey, Del g (

(nv w”, ei) Ejkbk = (n " el) Eakgk,k+1 = (nv w"”, ei) Eq, Egk,kﬂ DL e; Egr Egk,,cﬂ

So we have W' gy k+1 = W" Gk o1 -

Altogether, we have obtained a commutative triangle

90,00 \ foo

X =X

f=fo

as was to be shown.

Lemma 188 Suppose given a graph morphism g : X — Y.

Then there exists a commutative triangle in Gph as follows.

X}/G\ﬁi}/

Proof.

l) Ak Gk, k+1

145

) ij ka =

=V;

7ei) Eakgk,k+1
~ 11

", e;) Ej By, =
= €; E

v

W gk 1

W g k+1

Step 1. There exists a commutative triangle in Gph as follows, where (C,, , f )Gph 1s surjective

for n > 1; cf. Lemma 186.

Step 2. By Lemma 187 there exists a commutative triangle in Gph as follows.

N

X Y

~m
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Step 3. By Lemma 184 there exists a commutative triangle in Gph as follows.

G
i/
./
)

— =Y

~u Q

Because Qis satisfies (2 of 3) and because AcCofib C Qis, the fibration f : G——=Y is a
quasiisomorphism and thus an acyclic fibration; c¢f. Lemma 175 and Definition 138.

In conclusion we have the following commutative diagram in Gph.

/g” %
7

The acyclic cofibration ¢ : X —o—= G is in particular a cofibration; ¢f. Lemma 185.

Since the composite of cofibrations is a cofibration, the graph morphism d := c¢é¢: X — G is a
cofibration; cf. Remark 147. 0



Chapter 5

Subsets of Mor(Gph) and their lifting
sets

Lemma 189 In Gph, we have AcCofib? C Fib.

Proof. Suppose given a graph morphism f : X — Y in AcCofib?; cf. Definitions 162 and 14.
We have to show that the graph morphism f: X — Y is in Fib, i.e. that f is a fibration.
Suppose given a vertex x € Vy .

We have to show that the map E;, = Efli((zv’g) : X(x,%) = Y(xVy,*) is surjective; cf.
Definition 127.(1).

Suppose given an edge e € Y (x Vg, *), i.e. e € Ey with esy =z V.

We write y := ety € Vy.

We have to find an edge € € X (x, %) such that é E; Ze.

Let a : Dg — X be defined by v¢V, := x. So a = (z;); cf. Definition 107.

Let b : Dy — X be defined by ¢ E, :== ¢, vV, :== esy = 2Vy and V1V, := ety = y. So
b= (x Vy;e); cf. Definition 107.

In fact, b : Dy — Y is a graph morphism since €ysp, V, = VoV, = esy = &y Eysy and since
éOtDl Vb :\71\/}, = ety = éoEbty.

Note that the graph morphism ¢ ; : Dy — D; is an acyclic cofibration; cf. Remark 166.
We have the following commutative diagram
DO L> X

b |

b
D, —Y
. ~ Def. a Def. b ~
since Vo Vo,V = o Vy = VoV, =V V,, V.
We have éysp, = Vg =VoV,, -

Because the graph morphism f : X — Y is in AcCofib? there exists a graph morphism

147
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h : Dy — X such that (p1h = a and hf = b.

Dy —2= X
w2 )
D, 2>V
Let e := ¢ Ep, € Ex .
Then we have esy = €y Epsx = €ysp, Vi, = Vo Vi, = Vo Vo, Vi = Vo Vo Do o
So we have € € X (x, *).
~ A ~ Def. b
Furthermore, €E; = & E, Ef =6 E, = "e. )

Lemma 190 In Gph, we have YFib C AcCofib.

Proof. Suppose given a graph morphism f : X — Y in PFib, i.e. such that f 11 Fib.
!

We have to show that f € AcCofib, i.e. that f: X — Y is an acyclic cofibration.

There exist an acyclic cofibration X —6= 7 and a fibration Z —4-V such that f = ab; ct.
Lemma 184.

We consider the following commutative diagram.

X —S$>7
fl b
Y idy

Because f [@ Fib there exists a graph morphism h : Y — Z such that fh = a and hb = idy .
X —$=7
N
Y —Y

idy

We consider the following commutative diagram.

X—X—

idx idx X
bl
Y

y_hogz b,

~

Because the set of acyclic cofibrations AcCofib is closed under retracts, the graph morphism
f X — Y is an acyclic cofibration; cf. Remark 172 0



149

Lemma 191 In Gph, we have AcCofib = P Fib.

Proof.

We have AcCofib C PFib; cf. Lemma 174.

We have AcCofib D PFib; cf. Lemma 190. o

Lemma 192 In Gph, we have AcCofib? = Fib.

Proof.

We have AcCofib? C Fib; cf. Lemma 189.

We have AcCofib? D Fib, i.e. AcCofib @ Fib, i.e. AcCofib C ?Fib; cf. Lemma 174. o

Lemma 193 In Gph, we have Cofib” = AcFib.
Proof.
We have Cofib C 2 AcFib, i.e. Cofib @ AcFib, i.e. Cofib? D AcFib; cf. Definition 144.

!
We have to show that Cofib? C AcFib.
So suppose given a graph morphism f : X — Y in Cofib?.

We have to show that the graph morphism f : X — Y is an acyclic fibration; i.e. a fibration
that is a quasiisomorphism.

Since AcCofib C Cofib we have Cofib? C AcCofib?; cf. Lemma 175.
So we have f € Cofib? C AcCofib? = Fib; cf. Lemma 192.
So the graph morphism f: X — Y is a fibration.
We now have to show that the fibration f: X — Y is a quasiisomorphism.
Let n > 1.
The graph morphism (¢, : ) — C, is a cofibration; cf. Remark 151.
Suppose given a graph morphism p: C,, = Y.
We have to show that there exists a unique graph morphism ¢ : C,, — X such that ¢f = p.
Existence. We have the commutative diagram
)——X

Cp, } f

C,——=Y;

P
cf. Remark 151.

Since the fibration f : X — Y is in Cofib? there exists a graph morphism ¢ : C,, — X such
that ¢ f = p.
) —X

n
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Uniqueness.

Suppose given graph morphisms ¢, ¢ : C,, = X such that ¢f = q¢f = p.
We have to show that ¢ = q.

We consider the cofibration d¢, : C,, LU C,, — C,,; cf. Remark 155.

We consider the following commutative diagram.

C,uC,—X
%} J[f
Cp = Co——Y

To show that the diagram is commutative we have to show that d¢, < (;;) I

It suffices to show that p = t1dc,p = 1 (g) f = qf and that p = wadc,p = Lo (g) f=qf. This
holds since qf = p = qf.

Since the graph morphism f : X — Y is in Cofib?, there exists a graph morphism ¢’ : C,, — X
such that ¢'f = p and d¢,¢' = (g)

So we have ¢’ =id¢, ¢ = t1dc, ¢ = 11 (g) =gqand ¢ =idc, ¢ = todc, ¢ = 12 (g) =q.
So we have ¢ = ¢’ = q. o
Using Lemma 188, we can alternatively prove Lemma 193 as follows.

Proof. We now have to show that the fibration f: X — Y is a quasiisomorphism.

We have the factorization f = ab with X —¢=G and G N ; cf. Lemma 188 below.

We consider the following commutative diagram.

id
21X x

X
ai f
G

—=Y

Because f € Cofib? there exists a graph morphism & : G — X such that ak = idx and kf = b.

ldX

X
f

1(
G Y

1N
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We consider the following commutative diagram.

idx

X—ﬁGT

>~

b
id id
YlY dy

\_/

idy

B a—
&,}

>.<

Since the set of quasiisomorphisms Qis € Mor(Gph) is closed under retracts the graph mor-
phism f: X — Y is a quasiisomorphism; cf. Remark 117

So the graph morphism f : X — Y is an acyclic fibration.

Since the set of acyclic fibrations AcFib C Mor(Gph) is closed under retracts the graph morphism
f X — Y is an acyclic fibration; cf. Remark 141

Hence we have Cofib? C AcFib and so we conclude Cofib? = AcFib. 5

Remark 194 We have AcCofib? N AcFib? = Qis?.

Proof.

Ad Qis? C AcCofib? N AcFib?.

Since AcCofib C Qis, we have Qis? C AcCofib?; cf. Lemma 175.
Since AcFib C Qis, we have Qis? C AcFib?; cf. Definition 138.

So we have Qis? C AcCofib? N AcFib?.

Ad AcCofib? N AcFib? C Qis?.

Suppose given a graph morphism f : X — Y in AcCofib? N AcFib?.
We have to show that the graph morphism f is in Qis?.

Suppose given a commutative diagram in Gph as follows.

G—=X

ql|2 lf

\

We show that there exists a graph morphism h : H — X such that ¢gh = a and hf = b.

By Lemma 184 and since Qis satisfies (2 of 3), we have a commutative triangle as follows.

A
co/ d
/
G—7j

— > H



152

So we have the following commutative diagram.

|
S

o
< o0—

N
~

SH
<f—

T
>~<

Since f is in AcCofib?, there exists a graph morphism ¢ : Z — X such that cg = a and gf = db.

s X

g
c

|
|

N

d

H Y

|

Since f is in AcFib? and since gf = db, there exists a graph morphism h : H — X such that
dh =g and hf =b.

G—=X
17
Z Ju o |
i
So we have cdh = cg = a and hf = 0.
So f is in Qis?. o

Remark 195 In Gph, the following statements (1-4) hold.

(1) We have AcCofib = 2Fib; cf. Lemma 191.
(2) We have AcCofib® = Fib; cf. Lemma 192.
(3) We have Cofib = Y AcFib; cf. Definition 144.

(4) We have Cofib? = AcFib; cf. Lemma 193.
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Remark 196 In Gph, the following statements (1-4) hold.

1) We have (?Fib)? = AcCofib? = Fib; cf. Remark 195.

(1)
(2) We have (? AcFib)? = Cofib? = AcFib; cf. Remark 195.
(3) We have B(Cofib?) = @ AcFib = Cofib; cf. Remark 195.
(4)

4) We have P(AcCofib?) = PFib = AcCofib; cf. Remark 195.

Remark 197 In Gph, we have
Iso = FibN 2Fib "2 ' Fib N1 AcCofib “™2* ' Fib N Cofib N Qis .

Proof. We show that Fib N AcCofib = Tso.

!
Ad Iso C Fib N AcCofib.
We have Iso C Fib; cf. Remark 129.
We have Iso C AcCofib; cf. Remark 165.

!
Ad FibN AcCofib C Iso.
Suppose given a fibration f : G — H that is an acyclic cofibration.

We consider the following commutative diagram.

idg

G——CG

f$ f

H

|

idy

We have AcCofib = 2Fib and AcCofib? = Fib; cf. Lemmas 191 and 192.
So there exists a graph morphism h : H — G such that the following diagram is commutative.

G idg Gq
f
H

L3

H

idyg

Thus f is an isomorphism. o
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Chapter 6

Gph is a model category

In Gph, we have defined subsets Qis(Gph), Fib(Gph) and Cofib(Gph) of Mor(Gph) in Defini-
tions 115, 127.(1) and 144.

We want to show that the category Gph, together with these subsets, is a model category in the
sense of Definition 198 below.

We will use notations introduced in Definitions 5, 9, 14, 13 and 15.

Definition 198 Suppose given a category M having an initial object | and a terminal ob-
ject !.  Suppose given subsets Fib(M) C Mor(M) of fibrations, Cofib(M) C Mor(M)
of cofibrations and Qis(M) C Mor(M) of quasiisomorphisms. We consider the axioms
Arib s Acosib » Aqis s ALift s Aract » Mrin and Mcosn below.

(1) The category M together with Fib(M), Cofib(M) and Qis(M) is called a basic model
category if (A 1, 2), (Acofib 1, 2), (Aqis 1, 2), Aviti, Aract » (Mpin 1, 2) and (Mo, 1, 2)
hold.

(2) The category M together with Fib(M), Cofib(M) and Qis(M) is called a proper basic
model category if (A, 1, 2), (Acoib 1, 2), (Aqis 1, 2), AL, Apact » Mpib and Mo hold.

(3) The category M together with Fib(M), Cofib(M) and Qis(M) is called a Quillen model
category if Mpo , Mpg, (Arib 1, 2), (Acob 1, 2), (Aqis 1, 2), AL, Apact, (M 1, 2) and
Mcoﬁb (1, 2) hold.

(4) The category M together with Fib(M), Cofib(M) and Qis(M) is called a Quillen closed
model category if Mpo , Mpg , Arib ; Acosib » AQis » ALift s Aract » (Mrib 1, 2) and (Mcofin 1, 2)
hold.

We define the subset AcFib(M) C Mor(M) of acyclic fibrations to be
AcFib(M) := Fib(M) N Qis(M).

We define the subset AcCofib(M) C Mor(M) of acyclic cofibrations to be
AcCofib(M) := Cofib(M) N Qis(M).

155
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Suppose given a morphism f: G — H in Mor(M).

To indicate that f is a quasiisomorphism, we often write G Lop.
To indicate that f is a fibration, we often write G Lo

To indicate that f is an acyclic fibration, we often write G 4oF.
To indicate that f is a cofibration, we often write G Lom.

To indicate that f is an acyclic cofibration, we often write G Lo

Suppose given G € Ob(M). Then G is called fibrant, if G——=!. Moreover G is called
cofibrant, if |—e=G .

We consider the following properties.

(Mpo) Suppose given the diagram
X —=Y

4
X/

in M. Then there exists a pushout in M as follows.

X ——Y

ok

X eyt

(Mpg) Suppose given the diagram
Y

b

X/ u Y/
in M. Then there exists a pullback in M as follows.

X =Y
r
i
X/ o’ Y/
o Apip := (Apip 1) A (Apib 2) A (Api, 3) where:
(Apip, 1) We have Iso(M) C Fib(M).

(Afpib 2) Suppose given X Loy and Y47 in Mor(M). Then we have X iy
(Apip 3) The subset Fib(M) C Mor(M) is closed under retracts; cf. Definition 23.

[ ] Acoﬁb = (Acoﬁb 1) A (Acoﬁb 2) A (Acoﬁb 3), Where:

(Acosib 1) We have Iso(M) C Cofib(M).
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(Acofib 2) Suppose given X 4V and Y —4-Z in Mor(M). Then we have X Bz,
(Acosib 3) The subset Cofib(M) C Mor(M) is closed under retracts; cf. Definition 23.

o Agis == (Aqis 1) A (Aqis 2) A (Aqis 3), where:

(Aqis 1) We have Iso(M) C Qis(M).
(Aqis 2) The set Qis(M) C Mor(M) satisfies (2 of 3).
(Aqis 3) The subset Qis(M) C Mor(M) is closed under retracts; cf. Definition 23.

e Apite := (ALire 1) A (AL 2), where:

(ALitr 1) We have AcCofib(M) @ Fib(M); cf. Definition 15.
(Aritr 2) We have Cofib(M) @@ AcFib(M); cf. Definition 15.

o AL = (ALift 1) A (ALift 2), where:

(A 1) We have AcCofib(M) &1 Fib(M); cf. Definition 27.
(Apir, 2) We have Cofib(M) @@ AcFib(M); cf. Definition 27.

i AFact = (AFact 1) A (AFact 2), where:

(Apact 1) For X .y i M there exists a commutative diagram in M as follows.

U

g, \<
/ f
(Afact 2) For X .y i M there exists a commutative diagram in M as follows.

_n

* MFib = (MFib 1) A\ (MFib 2) A (Mpib 3), where:

X Y

X Y

(Mpj, 1) Suppose given the diagram
Y

b

X/ L>_ Y/
in M. Then there exists a pullback in M as follows.

X —=Y
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(Mpip 2) Suppose given the diagram
Y

1

X/ u Y/
in M. Then there exists a pullback in M as follows.

X —=Y

(Mpi, 3) Suppose given the diagram

g

b'd _u V!
in M. Then there exists a pullback in M as follows.

X —%=Y
r

f g

X! _%’_)_Yv

® Mcosib := (MCoﬁb 1) A (MCoﬁb 2) A (MCoﬁb 3), where:

(Mcogin 1) Suppose given the diagram
X —=Y

fl
X/

in M. Then there exists a pushout in M as follows.

X ——=Y

(Mcogip 2) Suppose given the diagram
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in M. Then there exists a pushout in M as follows.

X =Y
J
Xy
(Mcogip 3) Suppose given the diagram
X %Y
f'
X/

in M. Then there exists a pushout in M as follows.

X —£-Y

fl g
J

X/_g+yl

Remark 199

(1) We have Apig A (Aqgis3) if and only if A A(AFin 3) A (Acosb 3) A (Agis 3) A Apact -

(2) The category M together with Fib(M), Cofib(M) and Qis(M) is a Quillen closed model
category if and only if Mpo, Mpr, (Arip 1,2), (Acosb 1,2), Aqis, Arnite, (Mpip 1,2) and
(Mcoﬁb 1, 2) hold.

Proof.
Ad (1).
Ad =

We have AcCofib(M) & Fib(M) and Cofib(M) 2 AcFib(M) and the subset Qis(M) C
Mor(M) is closed under retracts.

Because of (C 3) we have Ap,¢ ; cf. Definition 27.

Since AcCofib(M) @ Fib(M), we have AcCofib(M) @ Fib(M) and (Agy, 3); cf. Remark 28.
Since Cofib(M) @ AcFib(M), we have Cofib(M) @ AcFib(M) and (Acogn 3); cf. Remark 28.
So because of AcCofib(M) @ Fib(M) and Cofib(M) 11 AcFib(M) we have Ay .

Ad <.

The subsets Fib(M), Cofib(M) and Qis(M) in Mor(M) are closed under retracts by (Agip, 3),
(Acoﬁb 3) and (AQis 3)

Hence the subsets AcFib(M) and AcCofib(M) in Mor(M) are closed under retracts.
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Because of (Apact 1), (Anits 1), (Arin 3) and AcCofib(M) being closed under retracts we have
(AL 1) by Remark 28.

Because of (Apact 2), (ALt 2), AcFib(M) being closed under retracts and (Acosp 3) we have

(ALift 2) by Remark 28. n
Ad (2).
This follows using (1). o

Reminder 200 We recall the meaning of AcCofib(M) &1 Fib(M); cf. Api , Definition 15.

Suppose given an acyclic cofibration X 4o X' in AcCofib(M) and a fibration ¥ —{=Y” in
Fib(M). Suppose given a commutative diagram in M as follows.

X—t>Y

o

X —Y’

Then there exists a h : X’ — Y in Mor(M) such that fh = w and such that hg = u/, i.e. we
have the following commutative diagram.

The morphism h is also called a lift of this quadrangle.

Reminder 201 We recall the meaning of Cofib(M) @@ AcFib(M); cf. AL , Definition 15.

Suppose given a cofibration X X' i Cofib(M) and an acyclic fibration Y =Y’ in
AcFib(M). Suppose given a commutative diagram as follows.

X —=Y

b

X —Y’

Then there exists h : X’ — Y in Mor(M) such that fh = w and such that hg = v/, i.e. we have
the following commutative diagram.

X ——Y

gl

X —=Y'

ul

The morphism A is also called a lift of this quadrangle.
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Remark 202

(1) D. Quillen introduced Quillen model categories under the name model categories in
[4, §1.1].
He introduced Quillen closed model categories under the name closed model categories in
[4, §1.5]; cf. [4, §1.5, Prop. 2].

(2) M. Ritter used basic proper model categories under the name model categories in
[6, Def. 172].

(3) The conditions (Mgi, 3) and (Mcosn 3) were introduced in [5, §1, Def. 1.2].

Reminder 203 We defined the subsets Fib(Gph), Qis(Gph) € Mor(Gph) directly; cf. Defini-
tions 127 and 115.

We defined AcFib(Gph) = Fib(Gph) N Qis(Gph); cf. Definition 138.
We defined Cofib(Gph) = ¥ AcFib(Gph); cf. Definition 144.

The following proposition is due to BissoN and TsEMO [3, Cor. 4.8].

Proposition 204 The category Gph together with Fib(Gph), Cofib(Gph) and Qis(Gph), is a
Quillen closed model category; cf. Definition 198.(4), Reminder 203.

In addition, Gph satisfies (Mg, 3).

Moreover, for AcCofib(Gph), as defined by (AcCofib 1-5) in Definition 162, we have the equality
AcCofib(Gph) = Cofib(Gph) N Qis(Gph).

Finally, note that Gph satisfies ALift; cf. Remark 199.
Proof. We have AcCofib = Cofib N Qis; cf. Lemma 185.
We have Mpg ; cf. Construction 83.

We have Mpg ; cf. Construction 97.

We have (Apjp, 1); cf. Remark 129.

We have (Apyp, 2); cf. Remark 131.
We have (Apyp, 3); cf. Remark 130.
We have (Acofib 1); cf. Remark 145.
We have (Acofib 2); cf. Remark 147.
We have (Acofib 3); cf. Remark 146.
We have (A 1); cf. Remark 116.
We have (Aqis2); cf. Remark 123.
We have (Aq;s 3); cf. Remark 117.
We have (A 1), i.e. AcCofib(Gph) @@ Fib(Gph); cf. Remark 174.
We have (A 2), i.e. Cofib(Gph) @ AcFib(Gph); cf. Definition 144.
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We have (Apact 1); cf. Lemma 184.

We have (Apact 2); cf. Lemma 188.

We have (Mg, 1); cf. Remark 133.

We have (Mgy, 2); cf. Remark 143.

We have (Mg, 3); cf. Remarks 125 and 133.

We have (Mcogp 1); cf. Remark 148.

We have (Mcogp 2); cf. Remark 171. 5

Remark 205 In Gph, the axiom (Mg, 3) does not hold.

In other words, there exists a quasiisomorphism in Gph, whose pushout along a cofibration is
not a quasiisomorphism.

Counterezample.

Consider the following thin graph.

vi 17 2<m3T 4
a2 (e}

We consider the cofibration d¢, : Cy LI Cog —e—— Cy ; cf. Definition 154.
We consider the quasiisomorphism f : Co LU Cy — Y with

(1,vo) Vi =1, (1,v1)Vy:=2,

(2,vo) Vp:=3, (2,v1)Vy;:=4

and with
(Leg) Ef :=a1, (1,e1)Ef:= s,

(2,60) Ef = Qs, (2,61)Ef =0y .

Constructing the pushout using Magma, we obtain

CoUCy—L oy

d02 h
_

C, f v

with

Y’ 17 2

1V, =1, 2V, =2, 3V, =1, 4V, =2,
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o Ep =061, wwE, =0, azBE, =5,
as By = B2, asEp = B3

and
voVp =1, egEp =f,
V1Vf/ :2, elEf/ :ﬁg .
But the resulting graph morphism f* : Cy; — Y’ is not a quasiisomorphism because

|(C2 s C2)Gph| =2 7é 4= |(C2 7Y/)Gph|'

Via Magma [2] we proceed as follows, using the functions given in §10 below.

C2C2 := DCN(2) [1];
C2 := DCN(2) [2];

d := DCN(2) [3];

Y :=<[1,2,3,4],[<1,1,2>,<2,2,1>,<3,3,4>,<4,4,3>,<3,5,2>]>;
f := IsSubgraph(C2C2,Y)[1];

PO := PushoutGraphs(C2C2,Y,C2,f,d);

Yp := PO[1]; // "Y prime" = Y’

fp := PO[2]; // "f prime" = £’

h := PO[3];

> C2;

<[ 1, 271, [ <1, 1, 2>, <2, 2, 1> 1>

> C2C2;

<[1, 2,383,471, [<1, 1, 2>, <2, 2, 1>, <3, 3, 4>, <4, 4, 3> 1>
> d;
<[ <1, 1>, <2, 2>, <3, 1>, <4, 2> ], [ <1, 1, 2>, <1, 1, 2>>,
K2, 2, 1>, <2, 2, 1>>, <3, 3, 4>, <1, 1, 2>>, <4, 4, 3>, <2, 2, 1>> 1>
> Y;
<[1,2,3,47, [<1, 1, 2>, <2, 2, 1>, <3, 3, 4>, <4, 4, 3>, <3, 5, 2> I>
> f;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 4> ], [ <1, 1, 2>, <1, 1, 2>>,
K2, 2, 1>, <2, 2, 1>>, <3, 3, 4>, <3, 3, 4>>, <4, 4, 3>, <4, 4, 3>> 1>
> Yp;
<[ 1, 271, [<1, 1, 2>, <2, 2, 1>, <1, 3, 2> 1>
> fp;
<[ <1, 1>, <2, 2> 7, [ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>> 1>
> h;
<[ <1, 1>, <2, 2>, <3, 1>, <4, 2> ], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 2, 1>>, <3, 3, 4>, <1, 1, 2>>, <4, 4, 3>, <2, 2, 1>
<3, 5, 2>, <1, 3, 2>> 1>
> IsQis_Bound(fp,C2,Yp,2);
false
> #List0fnCycles(C2,2);
2
> #ListO0fnCycles(Yp,2);
4

3
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Note that the calculated graph morphism h : Y — Y’ is a cofibration since cofibrations are
stable under pushouts; cf. Remark 148.

In the similar situation of the pointed category of graphs, D. Vicinsky has constructed an ex-
ample that shows that quasiisomorphisms are not stable under pushouts along cofibrations;
cf. [7, Prop. 5.8].



Chapter 7

A sufficient condition for a graph
morphism to be a quasiisomorphism

Definition 206 Suppose given a graph morphism f : G — H. An edge ey € Epy is called
unitargeting with respect to f, if

|{étG 1€ E Eg, éEf = GH}’ =1.

Example 207 We consider the following graph morphism.

Here, f : G — H is the graph morphism mapping the vertices and the edges in a vertical way.

Then the edge 8 € Ep is unitargeting with respect to f, since we have
{étg: €€ Eq, eEf =B} = {aute, mata, aste}| = {4} =1.

165
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Lemma 208 Suppose given graphs G and H and an etale fibration f : G — H; cf. Defini-
tion 127.(2).
Recall that f being an etale fibration means that the map
Ef,v : G(U, *) — H(U Vf , *)

is bijective for v € Vg .

Suppose given a commutative diagram in Gph as follows, where ¢, = vo, : Do — D, ; cf.
Definition 56.(3).

D

D

Then there exists a unique graph morphism ¢ : D,, — G such that the following diagram is
commutative.

0 a

G
|
n'_jiﬁ’]y

I)O'—ilﬁ>(;

7

H

n

Proof. We have to show that there exists a graph morphism ¢ : D,, — G such that ¢, 7 = g and
such that §f = .

FEzistence.

We claim that for k € [0,n] there exists gy : Dy, — G such that 1o ,0r = a and Jf = txny; cf.
Definition 56.(3).

We carry out an induction for k € [0, n:

If £ =0, welet 9p:=a:Dy— G. We have 09y = idp, @ = a and 9o f = to,Y.

Dy = G
idDO Yo=a f
DO Lo,nyY H

Induction step: Suppose given k € [0,n — 1] and g, : Dy — G such that ¢,0r = a and
Uef = tkny-

Dy = G
Lakl //EE///j
I)k f

Llc,k+1j

Dk+1 Lk4+1,nY H
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We show that there exists §x11 : Dry1 — G such that ¢ p419k+1 = @ and Gr1 f = ter1nY-

We have v, Vy, € Vg and ¥, Vg, Ve =V, V, € V.

Since the map Ey, v, 1 G(Vy Vg, *) = H(Vx Vy, *) is bijective and since & E, sy = & sp, V,, =
ViV, , there exists a unique edge € € G(vy, Vy,,*) C E¢ such that éE; =&, E, € H(V, V,, *).
So let Ypy1 @ Dyp1 — G with v,V
& E

1 \A/'Z VZ)k for 1 € [O,k] and \A/]H_l V@
=6E; forie[0,k—1] and ¢, Ey,  , :=¢€.

Jk+1

v = €ta, as well as

Jr+1

We have to show that g, is in fact a graph morphism.

We have to show that é; E Sa - €; Sp,,., Vg, and that ¢; Ey, | tg - € tp,,, Vg, in Vg for

Jr+1 k1
i€ [0,k
If i € [0,k — 1], then we have & By, s¢ = & Ey s¢ = &sp, Vy, = Vi Vg, = iV, =
(€i5Dg11) Vg -
If i € [0,k — 1], then we have & E;,  tq¢ = & Ey tq = &tp, Vy, = Vie1 Vg, = Vi1 Vg, =

(éi tDkJrl) vﬁkﬂ :

If i = k, then we have &, Ey, , sq = ésqg =V, Vy, = Vx Vy,,, = € sp,, Vy

Yk+1 k+1°
If i = k, then we have &, Ey, . ta = étg = Vit1 Vi, ., = (Crtpe,,) Vi, -
So Yr41 is in fact a graph morphism.
We have to show that ¢g j110k+1 L.
In fact, we have vo Vi, , ., Vg = Vo Vg = Vo Vg, = Vo Vie,, Vi, = Vo Va -
We have to show that g1 f = Lk+1,nY-
Since the direct graph Dy is thin, it suffices to show that Vy, . ; < Vistny -

Suppose given i € [0,k + 1].

If i € [0, k], then we have ¥; Vy,, ;= ¥; Vy
{/i VLk+1,ny :

If i = k+ 1 then we have V41V
ertp, Vy = Vig1 Vy = Ven V,

Vi=viVy Vy =V V,, .y =ViV,, V, =V V, =

k+1

= Vi+1 V:’:’kJrl

Vf = étg\/f = éEftH = ékEytH =

k+1f

k+1,nY *

Do —2 G

Lk, k41 f

Dj11

Lk+1,n

D, 2L~ H

So we have shown in an inductive way, that there exists a graph morphism ¢ := g, : D, — G
such that ¢,y = a and §f = v.
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Uniqueness. Suppose given commutative diagrams as follows.

D0L>G DOLG
ol ol
D, Y~ H D, Y~ H

We have to show that g = U
Since the direct graph D,, is thin, it suffices to show that Vj = Vi .

We want to show that ¥, V; = ¥, Vy for k € [0, n].

We proceed by induction on k.

- ~7
Def. to,n . to,nj=a . to,n¥ =a Def. to,n .

If £ =0 then we have \AIO VQ = Vo Vbo,n V:[/ = Vp Va = \A/() VLo,n Vg/ = Vo V@/ .
Induction step: Let k € [0,n — 1]. We suppose that ¥ Vy = ¥, V.

We have to show that V541 Vi = 9541 Vi .

Let vg 1= ¥ Vy = Vv Vi . Since the graph morphism f : G — H is an etale fibration, the map
Efv : G(vg, *x) = H(ve Vi, %) is bijective.

We have vg Vi = v, V3 Vi =V V.

We have &, E, € H(vg Vy,*) since (&, E,) sy = €, sp, Vy, = V% V, = vg Vy.
We have &, E; € G(vg, *) because (6; E;)sq = € sp, Vy = Vi Vy = vg.
Moreover, (&, E;)Ef., = E;Er = (6 E,y).

Likewise, we have é; Ey € G(vg, *) and (&, Ey) Efy, = (6 Ey).

Since the map Ey,,, is bijective, we have &, E; = €, Ey and so V41 Vy =€ tp, Vy =& Ejta =
erEy ta = éte Vg = Vi1 Vi o

Lemma 209 Suppose given graphs G and H and an etale fibration f : G — H; cf. Defini-
tion 127.(2).

Recall that f being an etale fibration means that the map

H(vVy %)
Ef’v = Ef ’G(v,*)f : G(’U, *) — H(U Vf , *)

is bijective for v € Vg .

Suppose given graph morphisms @ : C, — G and @' : C, — G such that af = 4'f and
Vo Vﬁ =V Vﬂl .

Then o = 4.
Proof. Let w:=uf=4'f:C, — H.

Consider the graph morphism a : Dy — G with v¢V, = vo Vi = vo Vi, the graph morphism
T @ Dy — C,, with ¥; V,, = v; for ¢ € [0,n] and the graph morphism ¢, = ¢y, : Dy = D,,; cf.
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Definition 56.(3). We have the following commutative diagrams.

Dy z G
|
Dy z G

{7

Then we have (r,u)f = rpu and (r,@’)f = rpu, and we have ¢, (r,0) = a and ¢, (r, ') = a.

Because of Lemma 208 there exists a unique graph morphism ¢ : D,, — G such that ¢,y = a
and yf = r,u. Therefore, we have r,u =y = r, 0.

Since r,, is surjective, we conclude that @ = 4'; cf. Remark 72. 0

Proposition 210 Suppose given graphs G and H.
Suppose given an etale fibration f: G — H that satisfies the following property (Uni).

(Uni) For n > 1 and each graph morphism u : C, — H, there exists ¢ € Z/nZ such that
e; B, € Ey is unitargeting with respect to f.

Then the graph morphism f : G — H is a quasiisomorphism; cf. Definition 115.
Note that altogether, f is an acyclic fibration; cf. Definition 138.
Proof. Suppose given n > 1. Suppose given a graph morphism ug : C,, — H.
We have to show that there exists a unique graph morphism g : C,, = G such that ugf = u.
Since (Uni) is satisfied, we may choose i € Z/nZ such that e; E,, € Ey is unitargeting.
Let u := a;;1 ug; cf. Definition 67. Then ug = a_;_qu.
So the edge e; E,, = e;a_;_1 E, = e_1 E, € Ey is unitargeting.
We have
{io € (Cp,G) : tiof = uo}
(Cn,G)ya;10f =ug=a_; ju}
= {a_;10: 1€ (C,,G)gpn, uf =u}
= ({te(Ch,G):af =uf)(a_in,G).

So we have to show that there exists a unique graph morphism « : C,, — G such that 4f = u.

= {a_i_lﬂ C U
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Uniqueness.

Suppose given graph morphisms 4 : C,, = G and @' : C,, — G such that uf =u =14'f.
We have to show that @ = .

We have (e_; E3)Ef =e_1E, = (e_1 Ey) Ey.

Since e_; E, is unitargeting, we have e 1 Egjtg =e_1 By tg.

So we have vo Vg =e_1tc, Vo =e_1Egtg =e_1Eytg =e_1tc, Voo = vo Vi

By Lemma 209 we obtain @ = /.

Ezistence.

Let {vg} :={étg:é € Eg, éE; =e_1 E,}, using that e_; E, is unitargeting.

Consider the graph morphism a : Dg — G with ¥¢ V, := vg, the graph morphism r,, : D,, — C,,
with ¥; V,, = v; for i € [0, n] and the graph morphism ¢,, = ¢y, : Dg — D,, ; cf. Definition 56.(3).
We have the following commutative diagram.

Dg G

Lnl f

We show that it commutes, i.e. that af L Ly U

We choose ¢ € Eg with éEf =e_1E,. Then VoV =vgVy =étq Vs =¢eEstyg =e_1 E tyg =
€_1 tCn Vu = Vo vu = \70 vru = \A/O VLnru .

So the diagram is in fact commutative.

By Lemma 208 there exists a graph morphism ¢ : D,, — G such that

Dg G

l / ;

D,——=C,—/H

n

commutes.

Now we show that there exists a graph morphism « : C,, — G such that r,u - 7.

Therefor we have to show that ¥,, Vj = %9 \/%

We have ¢, E; € E¢ .

We have (6,1 Ej)E;=¢,1E, E,=e,_1E,=e_1E,.
So we have €, Ejte = v .

So we have XA/n V@ = én—l tDn VQ = én—l EQ tG = Vg = \70 Va = \70 VLn V@ = XA/() V@ .
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So we have v,, V;; = v V.

Now we have r,uf = yf = ryu.

Since r, is surjective, we conclude that @ f = u; cf. Remark 72. 0
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Chapter 8

Duality

Definition 211

(1) Suppose given a graph G.
We define the opposite graph GP := (Vgop , Egor , Sgop , tgor) by Vger := Vi, Egor 1= Eq,
Sgor = tg and tger 1= s¢.

(2) Suppose given a graph morphism f: G — H.

We define the opposite graph morphism f° = (Vop , Efop) : GP — HP with Vyep := V :
VG — Vg and Efop = Ef : EG — Egy.

In fact, we have Eop sgor = Efty = tg Vi = sgor Voo and Egop tgor = Efsy = s Vy =
tGOP Vfop-

Remark 212 Suppose given graph morphisms f: X - Y andg:Y — Z.

(1) We have (f°P)°P = f.

(2) We have (fg) = fg°P.

Proof.
Ad (1). We have (X°P)? = X and (Y°P)? =Y cf. Definition 211.(1).
We have V(fopyor = Vyor = Vy and E(joryor = Eor = E¢; cf. Definition 211.(1).

Ad (2) We have V(fg)op == Vfg — Vf Vg — Vfop Vgop = Vfopgop and E(fg)op = Efg = Ef Eg —
E fop Egor = Efopgop ; cf. Definition 211. o

Remark 213 Suppose given n € N.
Wel define the graph isomorphism ¢, : C,, = C° as follows.

173
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We let N
Cn C, — CF
Vgn Vcn — VC%p
vi +— v_ fork e Z/nZ
Eq, : Ec, — Ecor
e, — e_j_p forke Z/nZ

Suppose given an edge e, € Ec,, .

We have e, E¢, scor = e_1_pscor = e_1_ptc, = v = vy V¢, = ersc, Ve, -

We have e, E¢, tcor = e_1_pteor = e_1_pSc, = Voi—kp = Vi1 Ve, = e te, Ve, -

So ¢, : C, = C% is in fact a graph isomorphism.

We have (C;P)°? = C,,; cf. Remark 212.

We have the graph isomorphism ¢ := (V¢, ,E¢,) : C;P — C,, ; cf. Definition 211.

We show that we have (2 = ide, and (PC, = ideor .

Suppose given a vertex v, € Vg, = Veor .

We have v, Vi coo = v Ve, Veor = vy Veor = v Ve, = V() = v = Vi Vige, -

We have vy, Veore, = v Veor Ve, = vie Ve, Ve, = v Ve, = V_(Lp) = Vi = Vi, Vido%p .
Suppose given an edge e, € E¢, = Ecor .

We have e, E¢ cor = ep B¢, Ecor =e_1 pEeor =e 1 1 B, =e 1 (1 p) =er =ex Eigg, -
We have ey, Ecor. = e Ecor B¢, = e B¢, B¢, =e_1 1 E¢, =e_1_(—1-p) =er = ey Eidc%p .

So we have ;! = (°P. o

Remark 214 Suppose given a graph morphism f: G — H.

Then the graph morphism f°° : G°* — H°P is a quasiisomorphism if and only if the graph
morphism f : G — H is a quasiisomorphism.

Proof. Suppose given k > 1.

We will show that the map (Cg, f)gpn is bijective if and only if the map (C*, f°P) is bijective,
which is the case if and only if the map (Cy , f°P) is bijective.

We consider the following commutative diagram.

(Ck 7f)Gph

g (Ck, G)aph (Ck s H)Gph g
e 712

e (CP G (P, FoP) ipn (CP | HOP) g g
2| (Ck sG°P)Gph 2| (Ck s HP)Gph

(Ck , G°®)Gph (Cr, HP)Gph

(Ck »f°P)aph
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Suppose given a graph morphism u € (Cg, G)gph -

We have uP(C}F | foP)qpn = u°P foP fern. 212 (uf)® = (u(Cy, f)apn)®.
So the “upper quadrangle” commutes.

Suppose given a graph morphism r € (C;”, G)gph -
We have T(Cn ) GOP)Gph(Ck ) fOp)Gph = CnT(Ck , fOP)Gph = (rfPr = ’I“fOP(Cn , HOp)Gph =
T(CZD ) fop)Gph(gn 3 Hop)Gph .

So the “lower quadrangle” commutes.

The maps o and 7 are bijective because of Remark 212.
The maps (¢, , GP)gpn and ((, , HP)gpn are bijective because of Remark 213.

The graph morphism f : G — H is a quasiisomorphism if and only if the map (Cy, f)cpn is
bijective for k > 1.

By the commutative diagram above, (Cy, f)gpn is bijective if and only if (Cg, fP)gpn is bijec-
tive.

Hence f is a quasiisomorphism if and only if f°P is a quasiisomorphism. 0
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Chapter 9

Some examples and counterexamples

The functions that are used in this section to calculate graphs and graph morphisms are given
in §10. They can also be obtained using the electronic appendix, cf. §A.

9.1 Some examples for quasiisomorphisms

Example 215 We consider the following graph morphism.

as

G 2_ "3
ar Qg

Here, f = (Vy,Ef) : G — H is the graph morphism mapping the vertices and the edges in a
vertical way. So we let

1Vf = 1, QVf = 27 3Vf = 3,
2Vy:=2, 3V;:=3

177
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and
arEp = fp,
az By = fy,
azEy =y,
ay By = 3,
asEfp =,
ag By = (3,
a7 By =y .

Then the graph morphism f is an acyclic fibration.

Proof. Via Magma [2] we will calculate that the graph morphism f is an etale fibration that
satisfies (Uni), using the function SuffCond.

This will show that f is a quasiisomorphism; cf. Proposition 210.

The necessary Magma functions can be found in §10.7, §10.5 and in §10.6; cf. also §A.
The graph G can be obtained with the function trygraph by settingn := 3.

The graph H can be obtained with the function c2chain by settingn := 3.

The graph morphism f can be obtained with the function tryacyclic by settingn := 3.
So letting

trygraph(3);
c2chain(3);
tryacyclic(3);

G;
[ 1,2, 3,4,57], [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>,
<5, 5, 4>, <3, 6, 4>, <4, 7, 1> 1>

AV H IO Q
I

> H;

<[1, 2,37, [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> 1>

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3> ], [ <<1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 4, 1>>, <2, 3, 3>, <2, 2, 3>>, <4, 4, 5, <2, 2, 3>>,
<<5, B, 4>, <3, 3, 2>>, <3, 6, 4>, <3, 3, 2>>, <4, 7, 1>, <2, 4, 1>> 1>

we get

> IsGraphMorphism(f,G,H);
true

> SuffCond(f,G,H);

<true, true>

Alternative proof without Proposition 210.

Via Magma we calculate that the graph morphism f is in fact a fibration, using the function
IsFibration given in §10 below.

> IsFibration(f,G,H);
true



We will now give a pedestrian proof that f is a quasiisomorphism by classifying all morphisms
from C,, to G respectively to H.

It might be useful as a blueprint for a quasiisomorphy verification in a case where we cannot apply
Proposition 210, or its dual statement using Remark 214.

Let k£ € N.
We remark that (Cog—1, H) = 0 and thus (Cax—1,G) = 0.

To prove that f is acyclic, we have to show that the map (Cax, f) : (Caor,G) — (Co, H) is
bijective.

We have to show that for each graph morphism wu : Cop, — H there exists a unique graph morphism
v : Cop — G such that vf = u.
Il lf

Cop ——H
We first show that it suffices to show this for each graph morphism w : Cop — H such that
vo Vy = 2.
Write (Caog , H)2 := {u € (Cai, H) : u graph morphism, v V,, = 2}.
Write (Coi , G)2,2 := {u € (Cax, G) : u graph morphism, v, V,, € {2,2'}}.
The map (Cag, f) : (Cox, G) = (Ca , H) restricts to the map

(Cors )2 = (Ca, Al 1? ¢ (Con G)azr = (Con, H)a

Recall that the vertices of the graph Cof are written v; for i € Z/QkZ'

Recall that the edges of the graph Cqy are written e; for i € Z/ka.
Claim. If (Cay, f)2 is bijective, then (Cgyy , f) is bijective.

Suppose given u : Cop, — H. We have to show that there exists a unique graph morphism
v : Cop — G such that vf = u.
Il lf

CQk?H

A consideration of H shows that there exists s € Z/ZkZ such that v, V, = 2.
Let w:=as-u:Cor — H.
We have vo Vi =vo Vo, Vi =vs V,, = 2.
Since (Cag, f)2 is bijective, there exists a unique graph morphism o € (Cgp,G)22/ such that
of = 4.
G
)
C2k: T H

To prove ezistence, we let v :=a;!- v.

We obtain vf =a;lof =a;la = .
Uniqueness. Suppose given v,v' € (Caog , G) such that vf =u=v'f.
We have to show that v = v/

We have a,vf = a;u =4 and a;v' f = a, u = 1.

179



180

Note that V;*({2}) = {2,2'}.
In particular, voVz = 2 implies voVa,, € {2,2'} and voV,, . € {2,2'}, so azv,as0v" €
(Cok , G)a,2r .
Since (Cag , f)2 is bijective, we conclude that a; v = agv’. Thus v = v'.
This proves the claim.
Note that the map

Z Z

vz~ kT

1+ k7 — 214+ 2kZ

exists.
Note that for a graph morphism r : Co, — H in (Cay , H)2 we have vo; V. € {2}, vo;41 V.. € {1,3},
ey B € {B2, B4} and e 11 E, € {B1, B3} for i € Z/k;z~
Note that for a graph morphism r : Cop, — G in (Cai , G)2,2r we have vo; V. € {2,2'}, vo;11 V; €
{1, 3, 3/}, ey B, € {Oég , 3,05, 057} and €241 E, € {Oél , Oy ,046} for i e Z/kZ
We will introduce bijective maps v : (Cai , G)2.20 — {0, 1}Z/kZ and ¢ : (Coi, H)2 — {0, 1}Z/kZ. In
order to show that (Cag, f)2 is bijective, we will show that v = (Cap, f)2- 9.
We establish the bijection ¢ : (Coi, , H)2 — {0, 1}Z/kZ.

Let ”
§: (Cop,H)y — {0,1}742
u o= ud i 0 ?fV%HVu:l
1 if V22‘+1Vu=3.

Let ~ ”
0: {071}/’€Z — (Cgk,H)Q
¢ = @b
be defined as follows.
Because the graph H is thin it suffices to give V<p5 ; cf. Remark 77.(1).

Let
Vs: Vo, — Ve={1,23}

©d
Vo; — 2, for i € Z/kZ
1 ifip=0 7
i — fi c .
V2it1 {3 ifi@zl} ori €Ly

To show that the graph morphism <p5 is well-defined, we show that there is an edge in Ey from
vj V5 to v V5 for j € Z/ka; cf. Remark 79.

We consider two cases:

Case 1: j = 2i for some i € Z/kZ'

Then v; V«ps = Vo V«pS =2and v ng e {1,3}.

Subcase: ip = 0. Then vj4q V@g = Voit1 V@g = 1. And we have 84, € H(2,1).
Subcase: ip = 1. Then v, V5 = vait1 V5 =3. And we have 35 € H(2,3).

Case 2: j = 2i+ 1 for some i € Z/kZ'

Then v; sz = V2i+1 sz S {1,3} and v;i1 V<P<§ = V2i42 V«PS = Va(i+1) VW§ = 2.
Subcase: ip = 0. Then v; V@g = Voit1 V@g = 1. And we have 1 € H(1,2).
Subcase: i = 1. Then v; VgoS = Voiy1 VgoS = 3. And we have 83 € H(3,2).

We have to show that § - § = id(c,, ,H), and that 5.6+ id{m}z/kZ .
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Ad§-5= id(c,, ,m), - We have to show that (u)56 Zuforue (Cax, H)s.
We have to show that V, 5 =V, ; of. Remark 77.(1).

We have va; V55 = 2 = vai Vi for i € 2.

It remains to show that vo; 41 V(ué)S L Vair1 Vi in {1,3} for i € Z/kZ'

So we have to show that 1 — Voit1 Vy if i(ud) = 0 and that 3 L vait1 Vy if 4(ud) = 1. This holds
by definition of 4.

AdS -5 = id{071}Z/1cz . We have to show that o316 = ¢ for ¢ € {0, 1}Z/kZ. We obtain

< e 0 ifveV =1 of. § if ip = )
¢<<¢5>5>Dé5{ i Vi }Dy{o itig O}ZW

1 if V2i+1 VL,DS =3 1 if ZQO =1

for i € Z/kZ'
So we have § = 6~
We now establish the bijection 7y : (Co , G)2,20 — {0, I}Z/kZ.

Let ’
E (CQk 3 G)Q,Q/ — {07 1} /kZ
. 0 if Voi4+1 Vv =1
v Uy i )
1 if V2it1 V, € {3,3/}.

Let ’
F: {0,1}7%2  —  (Cox,G)a

® — Y

be defined as follows.
Because the graph G is thin it suffices to give V5 ; cf. Remark 77.(1).
Let
Vos: Vo, — Ve=1{1,2,2/,33}
1 ifip=0
Voirl 3 ifip=1and vy Vo5 =2 fori e Z/kZ
3 ifip=1and vy Vo5 =2/
Voit2 { i/ i:i:(l) } for i EZ/kZ-
To show that the graph morphism @7 is well-defined, we show that there is an edge in E¢ from
v;j Voy to v Vs for j € Z/Zk;Z9 cf. Remark 79.
We consider two cases:
Case 1: j = 2i 4+ 2 for some i € Z/kZ
Then v; Vo5 = vaita Vos € {2,2'} and v Vs = vaips Vs € {1,3,3'}.
Subcase: ip = 0. Then v; Vs = vaiyo Vpy = 2.

Subsubcase: (i + 1) = 0. Then vj1 Vo5 = Voiig1)41 Vs = Vaiys Vpy = 1. And we have
as € G(2,1).

Subsubcase: (i + 1) = 1. Then v Vyy = Voiig1)41 Vs = Vaiys Vpy = 3. And we have
Qs € G(2,3)

Subcase: i = 1. Then v; Vy5 = Va0 Voy = 2.

Subsubcase: (i + 1) = 0. Then v;y1 Vo5 = Vogg1)41 Vey = Vairs Vs = 1. And we have
a7 € G(Q/, 1)
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Subsubcase: (i +1)¢ = 1. Then v;y1 Vo5 = Vagir1)41 Vs = Va2irs Vpy = 3'. And we have
as € G(2/,3).

Case 2: j = 2i+ 1 for some i € Z/kZ~

Then Vi VLP:Y = V211 Vgo:y S {1, 3, 3’} and Vi+1 VlP:Y = V212 VﬁP:Y S {2, 2/}.

Subcase: ip = 0. Then v; Vo5 = voip1 Vs = 1 and vy Vyo5 = Vaiga Vs = 2. And we have
a1 € G(l, 2)

Subcase: i@ = 1. Then v; Vo5 = va;q1 Vg € {3,3'} and vj41 Vyq = vaip0 Vs = 2/, And we have
ay € G(3,2") and ag € G(3/,2').

1 - L.
We have to show that v -5 = id(c,, RE) and that y-v = ld{o71}%z .

Ad -~ . id(c,y ,G), ., - We have to show that (v)y¥ Zyforve (Cak , G)aor -
We have to show that V,5 £V, ; cf. Remark 77.(1).
We have to show that va;i2 Vi3 L Voita V, in {2,2'} for i € Z/kZ'

So we have to show that 2 = Voira Vy if i(vy) = 0 and that 2 L Vaita Vy if i(vy) = L.

If i(vy) = 0 then we have vo;11 V, = 1 by definition of v and consequently vo;12 V, = 2.

If i(vy) = 1 then we have vg;41 V, € {3,3'} by definition of v and consequently va; 12V, = 2/
This holds by definition of .

We have to show that va;11 Vi3 . voit1 Vo in {1,3,3'} for i € Z/kZ'

So we have to show that 1 — voi+1 V¢ if i(fy) = 0 and that 3 L vaip1 Vy if i(vy) = 1 and
v2i Vivy)5 = 2 and that 3’ L vaip1 Vy if i(vy) = 1 and vo; V()5 = 2.
If i(vy) = 0 then we have vo;11 V, = 1 by definition of ~.

If i(vy) = 1 then, by definition of 7, we have vg; 11V, € {3,3'}.

If i(vy) = 1 and vg; V()5 = 2 then, by definition of 4, we have (i —1)(vy) = 0. Then, by definition
of 7, we have va(;_1)11 Vo = v2;-1 V, = 1. By the structure of G we obtain va;41 V, = 3.

If i(vy) = 1 and v; V(yy)5 = 2’ then, by definition of 4, we have (i—1)(vy) = 1. Then, by definition
of v, we have vy(;_1)41 Vo = vai_1 Vi, € {3,3'}. By the structure of G we obtain vo; 41V, = 3'.

Ad A -y S id{0 1z - We have to show that o5y £ o for ¢ € {0, 1}Z/kZ. We obtain

. - Def. 0 ifVi V~:1 Def. & 0 le :0 i
i((99)7) —”{ 2t Yo }} —”{ 4 }—w

1 if Voitl Vépfy S {3, 3 1 if =1

for ¢ € Z/kZ

We have to show commutativity of the following diagram.

(Cok, G)2,2r - {o, 1}Z/kz

(Cak ,f)l lid

(Cok, H)2 — {0, 1}Z/kZ

We have to show that vy = (v- f)d for v e (Caop, Qa2

For 7 € Z/kZ7 we have

Z(('U ) f)d) _ { 0 if Voi+1 Vv.f =1 } pre—igages { 0 if Voi+1 VU =1

=1i(vy).
1 if Voit1 Vv.f =3 1 if Vair1 Vu € {3731} } ( 7)
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Example 216 We consider the following graph morphisms, where G and H are as in Exam-
ple 215.

~—

a (£23
17 =2—=3

a2

Here, the graph morphisms f : G — K and ¢g : K — H map the vertices and the edges in a
vertical way, where 2V, =2/, 2V; = 2.

We will verify that the graph morphisms f, g and fg are etale fibrations that satisfy (Uni).
This will show that f, g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma [2] we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function trygraph by settingn := 3.

The graph K can be obtained with the function idtrygraph by settingn := 3.

The graph H can be obtained with the function c2chain by settingn := 3.

The graph morphism f can be obtained with the function tryfactorization by settingn := 3.
The graph morphism g can be obtained with the function idtryacyclic by settingn := 3.
The graph morphism fg can be obtained with the function tryacyclic by settingn := 3.
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So letting

G := trygraph(3);

K := idtrygraph(3);

H := c2chain(3);

f := tryfactorization(3);
g := idtryacyclic(3);

fg := tryacyclic(3);

> G;

<[ 1, 2,3, 4,57, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>, <5, 5, 4>,
<3, 6, 4>, <4, 7, 1> 1>

> K;

<[ 1) 2, 3, 4 ]2 I: <1, 1, 2>’ <2, 2, 1>’ <2, 3, 3>’ <4, 4, 3>’ <3, 5, 4>)
<4, 7, 1> 1>

> H;

<[1, 2,37, [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> 1>

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3> ], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 2, 1>>, <<L2, 3, 3>, <2, 3, 3>>, 4, 4, 5>, <4, 4, 3>>,
<5, 5, 4>, <3, b, 4>>, <<3, 6, 4>, <3, 5, 4>>, 4, 7, 1>, <4, 7, 1>> 1>
>g;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2> ], [ <1, 1, 2>, <1, 1, 2>>,

<2, 2, 1>, <2, 4, 1>>, <2, 3, 3>, <2, 2, 3>>, <4, 4, 3>, <2, 2, 3>>,
<<3, b, 4>, <3, 3, 2>>, 4, 7, 1>, <2, 4, 1>> I>

> fg;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3> 7], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 4, 1>>, <2, 3, 3>, <2, 2, 3>>, <4, 4, 5>, <2, 2, 3>>,
<5, b, 4>, <3, 3, 2>>, <<L3, 6, 4>, <3, 3, 2>>, 4, 7, 1>, <2, 4, 1>> 1>

we get

> IsGraphMorphism(f,G,K);
true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);
true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));
true

> IsGraphMorphism(fg,G,H);
true

> SuffCond(fg,G,H);

<true, true>

Varying the input n, we obtain further quasiisomorphisms; cf. Examples 218 and 219 below. This
seems to hold independently of n > 3.
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Example 217 We consider the thin graph H from Example 215.

A /62N
H:| 172723

Ba B3

We want to find graphs G and graph morphisms f : G — H such that Vg = {1,2,3,4} and
1Vy:=1,2Vy:=2,3Vy:=2and 4V; := 3 and such that f is an etale fibration that satisfies
(Uni).

Via Magma we proceed as follows.

L := EFU(c2chain(3),[1,2,11);
> L;
[
L[ <1, 1>, <2, 2>, <3, 2>, <4, 3> 1, [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <<4, 6, 2>, <3, 3, 2>> 1>,
<[1, 2,3,417, [ <1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 2> 1>, <[ 1, 2, 37, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> I>>,
L[ <1, 1>, <2, 2>, <3, 2>, <4, 3> ],[ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>, <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <<4, 6, 3>, <3, 3, 2>> 1>,
<[1, 2,3,417, [<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 3> 1>, <[ 1, 2, 31, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> ]>>,
L[ <1, 1>, <2, 2>, <3, 2>, <4, 3> 1, [ <1, 1, 3>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <3, 4, 4>, 6 <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <<4, 6, 2>, <3, 3, 2>> 1>,
<[1, 2,3,417, [ <1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 2> 1>, <[ 1, 2, 37, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> 1>,
L[ <1, 1>, <2, 2>, <3, 2>, <4, 3> 1, [ <1, 1, 3>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <3, 4, 4>, 6 <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <<4, 6, 3>, <3, 3, 2>> 1>,
<[1, 2,3,417, [ <1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 3> 1>, <[ 1, 2,31, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> 1>

> [x[2] : x in L];

<[1, 2,3,47, [<1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 2> 1>

<[ 1, 2, 3,41, [ <1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 3> 1>

<[ 1, 2, 3,41, [ <1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 2> 1>

<[ 1, 2,3,41, [ <1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>,
<4, 6, 3> 1>



186

Gli 2 GQI 2

1% Nﬁl 10Z3 N yil
N A N

Yl X Yl
N A N A

Note that G; ~ G4 and G5 ~ G3, with isomorphisms respecting the morphisms to H.

Since our sufficient condition is satisfied the graph morphisms are quasiisomorphisms; cf. Propo-
sition 210.

Cf. also g : K — H in Example 216, where K is isomorphic to G .
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Example 218 We consider the following graph morphisms.

ail
G . /e 4/
: -
@13 Q12
as a10
) — =\ /
~— 3 ag 4
a7 Qg
ai 4 A
—
1 ~—— 2 a3 3
ag
f
Y10
6 5 9
Y1 Y4 8
=\
~ —“~_ Y9~ -
2 V3 i
g
B1 B2 B3
A\ — A\ —\
H 17227 >3 >4
Be Bs Ba

Here, the graph morphisms f : G — K and ¢g : K — H map the vertices and the edges in a
vertical way, where 2'V; =2',2V; =2,3"V; =3, 3'Vy =3 and 3V; = 3.

We will verify that the graph morphisms f, g and fg are etale fibrations that satisfy (Uni).
This will show that f, g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function trygraph by setting n := 4.

The graph K can be obtained with the function idtrygraph by setting n := 4.

The graph H can be obtained with the function c2chain by settingn := 4.

The graph morphism f can be obtained with the function tryfactorization by settingn := 4.
The graph morphism g can be obtained with the function idtryacyclic by settingn := 4.
The graph morphism fg can be obtained with the function tryacyclic by settingn := 4.
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So letting

G := trygraph(4);

K := idtrygraph(4);

H := c2chain(4);

f := tryfactorization(4);
g := idtryacyclic(4);

fg := tryacyclic(4);

> G;

<[ 1, 2, 3, 4,5,6, 7,81, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5,
<5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <3, 9, 4>, <4, 10, 1>,

<3, 11, 6>, <6, 12, 7>, <7, 13, 4> 1>

> K;
<[ 1, 2,3,4,6, 7171, [<1,1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>,
<3, 5, 4>, <3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <4, 10, 1>, <7, 13, 4> 1>
> H;
<[1, 2,383,417, [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>,
<4, 4, 3>, <3, 5, 2>, 2, 6, 1> 1>
> f;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6> 1,

[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>>, <<2, 3, 3>, <2, 3, 3>>,
<4, 4, 5>, <4, 4, 3>>, <5, 5, 4>, <3, 5, 4>>, <5, 6, 6>, <3, 6, 6>>,
L7, 7, 8, <7, 7, 6>, <£8, 8, 7>, <6, 8, 7>>, <<L3, 9, 4>, <3, 5, 4>>,
<<4, 10, 1>, <4, 10, 1>>, <<3, 11, 6>, <3, 6, 6>>,

<6, 12, 7>, <6, 8, 7>>, <<L7, 13, 4>, <7, 13, 4>> 1>

> g;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3> 7], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 6, 1>>, <2, 3, 3>, <2, 2, 3>>, 4, 4, 3>, <2, 2, 3>>,

<3, 5, 4>, <3, 5, 2>>, <<L3, 6, 6>, <3, 3, 4>>, K7, 7, 6>, <3, 3, 4>>,

KB, 8, 7>, <4, 4, 3>>, <4, 10, 1>, <2, 6, 1>>, <7, 13, 4>, <3, 5, 2>> ]>

> fg;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4> 1],

[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 6, 1>>, <2, 3, 3>, <2, 2, 3>>,
<4, 4, 5>, <2, 2, 3>>, <5, 5, 4>, <3, 5, 2>>, <5, 6, 6>, <3, 3, 4>>,
L7, 7, 8, <3, 3, 4>>, <<8, 8, 7>, <4, 4, 3>>, <3, 9, 4>, <3, 5, 2>>,
<4, 10, 1>, <2, 6, 1>>, <3, 11, 6>, <3, 3, 4>>, <6, 12, 7>,
<4, 4, 3>>, <7, 13, 4>, <3, 5, 2>> 1>

we get

> IsGraphMorphism(f,G,K);
true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);
true



189

> SuffCond(g,K,H);

<true, true>

> IsEqual (fg,ComposeGraphMorphisms(f,g));
true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

Example 219 We consider the following graph morphisms.

G: et
a19 W
aq
// /—\A

Bs B7 Be Bs

Here, the graph morphisms f : G — K and ¢g : K — H map the vertices and the edges in a
vertical way, where 2V, =2,2'V; =2/ 3V, =3, 3V, =3,3"V; =3,4V; =4, 4V; =4 and
4"V, =4,
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We will verify that the graph morphisms f, g and fg are etale fibrations that satisfy (Uni).
This will show that f, g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function trygraph by settingn := 5.

The graph K can be obtained with the function idtrygraph by setting n := 5.

The graph H can be obtained with the function c2chain by settingn := 5.

The graph morphism f can be obtained with the function tryfactorization by settingn := 5.
The graph morphism ¢ can be obtained with the function idtryacyclic by settingn := 5.
The graph morphism fg can be obtained with the function tryacyclic by settingn := 5.

So letting

G := trygraph(5);

K := idtrygraph(5);

H := c2chain(b);

f := tryfactorization(5);
g := idtryacyclic(b);
fg := tryacyclic(b);

> G;

<[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>,
<4, 4, 5>, <5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <8, 9, 9>,

<10, 10, 11>, <11, 11, 10>, <3, 12, 4>, <4, 13, 1>, <3, 14, 6>,

<6, 15, 7>, <7, 16, 4>, <6, 17, 9>, <9, 18, 10>, <10, 19, 7> 1>

> K;

<[ 1,2, 3,4,6,7,9, 101, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>,
<3, b, 4>, <3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <6, 9, 9>, <10, 10, 9>,

<9, 11, 10>, <4, 13, 1>, <7, 16, 4>, <10, 19, 7> 1>

> H;

<[ 1, 2, 3, 4,57, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 5, <5, 5, 4>,
<4, 6, 3>, <3, 7, 2>, <2, 8, 1> 1>

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6>, <9, 9>,
<10, 10>, <11, 9> 1, [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>>,
<<2, 3, 3>, <2, 3, 3>>, <4, 4, 5>, <4, 4, 3>>, <5, 5, 4>, <3, 5, 4>>,
<<5, 6, 6>, <3, 6, 6>>, <7, 7, 8, <7, 7, 6>>, <8, 8, 7>, <6, 8, 7>>,
<8, 9, 9>, <6, 9, >>, <10, 10, 11>, <10, 10, 9>>,

<<11, 11, 10>, <9, 11, 10>>, <3, 12, 4>, <3, b, 4>>,

<<4, 13, 1>, <4, 13, 1>>, <<3, 14, 6>, <3, 6, 6>>,

<6, 15, 7>, <6, 8, T>>, <<7, 16, 4>, <7, 16, 4>>,

<6, 17, 9>, <6, 9, 9>>, <9, 18, 10>, <9, 11, 10>>,

<10, 19, 7>, <10, 19, 7>> 1>
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> g;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3>, <9, 5>, <10, 4> 1],

[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 8, 1>>, <2, 3, 3>, <2, 2, 3>>,
<4, 4, 3>, <2, 2, 3>>, <3, 5, 4>, <3, 7, 2>>, <L3, 6, 6>, <3, 3, 4>>
L7, 7, 6>, <3, 3, 4>>, <<6, 8, 7>, <4, 6, 3>>, <6, 9, 9>, <4, 4, 5>
<<10, 10, 9>, <4, 4, 5>, <<9, 11, 10>, <5, 5, 4>>,
<4, 13, 1>, <2, 8, 1>>, <7, 16, 4>, <3, 7, 2>>,
<<10, 19, 7>, <4, 6, 3>> 1>

> fg;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>, <9, 5>,
<10, 4>, <11, 5> 1, [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 8, 1>>,
<2, 3, 3>, <2, 2, 3>>, 4, 4, 5>, <2, 2, 3>>, <5, 5, 4>, <3, 7, 2>>,
<5, 6, 6>, <3, 3, 4>>, 7, 7, 8, <3, 3, 4>>, <8, 8, 7>, <4, 6, 3>>,
<<8, 9, 9>, <4, 4, 5>, <10, 10, 11>, <4, 4, 5>>,

<<11, 11, 10>, <5, 5, 4>>, <3, 12, 4>, <3, 7, 2>>,

<4, 13, 1>, <2, 8, 1>>, <<3, 14, 6>, <3, 3, 4>>,

<6, 15, 7>, <4, 6, 3>>, <7, 16, 4>, <3, 7, 2>>,

<6, 17, 9>, <4, 4, 5>>, <<9, 18, 10>, <5, 5, 4>>,

<<10, 19, 7>, <4, 6, 3>> 1>

we get

> IsGraphMorphism(f,G,K);
true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);
true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));
true

> IsGraphMorphism(fg,G,H);
true

> SuffCond(fg,G,H);

<true, true>



192

Example 220 We consider the following graph morphism.

/N
\/

1
2N
Bs , B3
23
Bs

Here, the graph morphism f : K — H maps the vertices and the edges in a vertical way, i.e.
we let

1Vf1:1, 2Vf ::2, 3Vf ::3, 4Vf2:1

and
arEyp =1,
az By =,
azEy = b3,
Qy Ef = p,
as By =y,
ag By =y,
ar By = fs5,
agEf = B .

Then the graph morphism f is an acyclic fibration.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph K can be obtained with the function idTrygraph by setting n := 3.

The graph H can be obtained with the function Doublecyclic by settingn := 3.

The graph morphism f can be obtained with the function idTryacyclic by settingn := 3.
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So letting

:= idTrygraph(3);

Doublecyclic(3);
idTryacyclic(3);

K;

[1, 2,3, 417, [<1,1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,
<4, 7, 1>, <1, 8, 3>, <3, 9, 1> 1>

> H;

<[1, 2,317, [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>,

<2, 4, 1>, <1, 5, 3>, <3, 6, 1> 1>

K
H
f
>
<

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2> 1, [ <1, 1, 2>, <1, 1, 2>>,

<2, 2, 1>, <2, 4, 1>>, <2, 3, 3>, <2, 2, 3>>, <4, 4, 3>, <2, 2, 3>>,
<3, 5, 4>, <3, 3, 2>>, <4, 7, 1>, <2, 4, 1>>, <<1, 8, 3>, <1, 5, 3>>,
<3, 9, 1>, <3, 6, 1>> 1>

we get

> IsGraphMorphism(f,K,H);
true

Every edge of H is unitargeting with respect to f.

We obtain that f is an acyclic fibration, in particular a quasiisomorphism, since it satisfies the
sufficient condition of Proposition 210:

> SuffCond(f,K,H);
<true, true>

We extend Example 220 to a commutative trianlge consisting of three quasiisomorphisms in Ex-
ample 221.
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Example 221 We consider the following graph morphisms.

Here, the graph morphisms f : G — K and ¢g : K — H map the vertices and the edges in a
vertical way, where 2’ V; = 2" and 2V; = 2.

We will verify that the graph morphisms f, g and fg are etale fibrations that satisfy (Uni).
This will show that f, g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function Trygraph by settingn := 3.

The graph K can be obtained with the function idTrygraph by setting n := 3.

The graph H can be obtained with the function Doublecyclic by settingn := 3.

The graph morphism f can be obtained with the function Tryfactorization by settingn := 3.
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The graph morphism g can be obtained with the function idTryacyclic by settingn := 3.
The graph morphism fg can be obtained with the function Tryacyclic by settingn := 3.

So letting

G := Trygraph(3);

K := idTrygraph(3);

H := Doublecyclic(3);

f := Tryfactorization(3);
g := idTryacyclic(3);

fg := Tryacyclic(3);

> G;

<[1, 2, 3,4,51, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>, <5, 5, 4>,
<3, 6, 4>, <4, 7, 1>, <1, 8, 5>, <5, 9, 1>, <3, 10, 1> 1>
> K;
<[ 1, 2,3,47, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,
<4, 7, 1>, <1, 8, 3>, <3, 9, 1> 1>

> H;

<[1,2,31, [<1,1, 2> <2,2, 3>, <3, 3, 2>, <2, 4, 1>, <1, 5, 3>,
<3, 6, 1> 1>

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3> ], [ <1, 1, 2>, <1, 1, 2>>,

<2, 2, 1>, <2, 2, 1>>, <2, 3, 3>, <2, 3, 3>>, <<4, 4, 5>, <4, 4, 3>>,
<5, 5, 4>, <3, 5, 4>>, <3, 6, 4>, <3, 5, 4>>, 4, 7, 1>, <4, 7, 1>>,
<<1, 8, 5>, <1, 8, 3>>, <5, 9, 1>, <3, 9, 1>>, <<3, 10, 1>, <3, 9, 1>> 1>
> g;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2> ], [ <1, 1, 2>, <1, 1, 2>>,

<2, 2, 1>, <2, 4, 1>>, L2, 3, 3>, <2, 2, 3>>, <<4, 4, 3>, <2, 2, 3>>,
<<L3, 5, 4>, <3, 3, 2>>, 4, 7, 1>, K2, 4, 1>>, <1, 8, 3>, <1, 5, 3>>,
<<3, 9, 1>, <3, 6, 1>> 1>

> fg;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3> ], [ <1, 1, 2>, <1, 1, 2>>,

<2, 2, 1>, <2, 4, 1>>, <2, 3, 3>, <2, 2, 3>>, 4, 4, 5>, <2, 2, 3>>,
<5, 5, 4>, <3, 3, 2>>, <<K3, 6, 4>, <3, 3, 2>>, <4, 7, 1>, <2, 4, 1>>,
<<1, 8, 5>, <1, 5, 3>>, <5, 9, 1>, <3, 6, 1>>, <<3, 10, 1>, <3, 6, 1>> 1>

we get

> IsGraphMorphism(f,G,K);
true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);
true

> SuffCond(g,K,H);

<true, true>
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> IsEqual(fg,ComposeGraphMorphisms (f,g));
true

> IsGraphMorphism(fg,G,H);

true

> SuffCond(fg,G,H);

<true, true>

Varying the input n, we obtain further quasiisomorphisms; cf. Examples 222 and 223 below. This
seems to hold independently of n > 3.

Example 222 We consider the following graph morphisms.

G:
f
Y10
K: 23
Y6 Y5 Y9
A AN
T2 3
w
Y11
Y12
g[
B7
H 1\/2\_/3\_/4
Be Bs Ba
Bs
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Here, the graph morphisms f : G — K and g : K — H map the vertices and the edges in a
vertical way, where 2Vy =2, 2"V, =23V, =3,3 Vy; =3 and 3" Vy = 3.

We will verify that the graph morphisms f, g and fg are etale fibrations that satisfy (Uni).
This will show that f, g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph G can be obtained with the function Trygraph by setting n := 4.

The graph K can be obtained with the function idTrygraph by setting n := 4.

The graph H can be obtained with the function Doublecyclic by settingn := 4.

The graph morphism f can be obtained with the function Tryfactorization by settingn := 4.
The graph morphism ¢ can be obtained with the function idTryacyclic by settingn := 4.
The graph morphism fg can be obtained with the function Tryacyclic by settingn := 4.
So letting

G := Trygraph(4);
K := idTrygraph(4);
H := Doublecyclic(4);
f := Tryfactorization(4);
g := idTryacyclic(4);
fg := Tryacyclic(4);
> G;
<[1, 2, 3, 4, 5,6, 7,81, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5,
<5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <3, 9, 4>, <4, 10, 1>, <3, 11, 6>,
<6, 12, 7>, <7, 13, 4>, <1, 14, 8>, <8, 15, 1>, <6, 16, 1> 1>
> K;
<[1, 2, 3,4,6, 7171, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>, <3, 5, 4>,
<3, 6, 6>, <7, 7, 6>, <6, 8, 7>, <4, 10, 1>, <7, 13, 4>, <1, 14, 6>, <6, 15, 1> 1>
> H;
<[1, 2, 3,41, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 3>,
<3, 5, 2>, <2, 6, 1>, <1, 7, 4>, <4, 8, 1> 1>
> £,
<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6> ],
[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>>, K2, 3, 3>, <2, 3, 3>>,
<4, 4, 5>, <4, 4, 3>>, <5, 5, 4>, <3, 5, 4>>, <5, 6, 6>, <3, 6, 6>>,
L7, 7, 8, <7, 7, 6>>, <8, 8, 7>, <6, 8, 7>, <<3, 9, 4>, <3, 5, 4>>,
<<4, 10, 1>, <4, 10, 1>>, <3, 11, 6>, <3, 6, 6>>, <6, 12, 7>, <6, 8, 7>>,
L7, 13, 4>, <7, 13, 4>>, <1, 14, 8>, <1, 14, 6>>, <8, 15, 1>, <6, 15, 1>>,
<6, 16, 1>, <6, 15, 1>> 1>
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> g;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3> 7], [ <<1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 6, 1>>, <2, 3, 3>, <2, 2, 3>, <4, 4, 3>, <2, 2, 3>>,
<<3, b, 4>, <3, 5, 2>>, <3, 6, 6>, <3, 3, 4>>, K7, 7, 6>, <3, 3, 4>>,
<6, 8, 7>, <4, 4, 3>>, <4, 10, 1>, <2, 6, 1>>, <7, 13, 4>, <3, 5, 2>>,
<1, 14, 6>, <1, 7, 4>>, <6, 15, 1>, <4, 8, 1>> 1>
> fg;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4> 1],

[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 6, 1>>, <2, 3, 3>, <2, 2, 3>>,
<4, 4, 5>, <2, 2, 3>, <5, 5, 4>, <3, 5, 2>>, <5, 6, 6>, <3, 3, 4>>,
L7, 7, 8, <3, 3, 4>>, <<8, 8, 7>, <4, 4, 3>>, <3, 9, 4>, <3, 5, 2>>,
<4, 10, 1>, <2, 6, 1>>, <3, 11, 6>, <3, 3, 4>>, <6, 12, 7>, <4, 4, 3>>,
L7, 13, 4>, <3, 5, 2>>, <1, 14, 8>, <1, 7, 4>>, <8, 15, 1>, <4, 8, 1>>,
K6, 16, 1>, <4, 8, 1>> 1>

we get

> IsGraphMorphism(f,G,K) ;
true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);
true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));
true

> IsGraphMorphism(fg,G,H);
true

> SuffCond(fg,G,H);

<true, true>
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Example 223 We consider the following graph morphisms.

G: 4" —=5
a1 a19 a7
a1y
/ "\\jm
// —
N@ cx/
/ /_&
!
Y10
K / P S , k\ /
)
715
Y16
g[
Bo
51 32 53 34
= — =X\ — A\
H 12 22 >3 >4 5
Bs B7 Bs Bs
Bio

Here, the graph morphisms f : G — K and ¢g : K — H map the vertices and the edges in a
vertical way, where 2V, =2,2'Vy; =2/ 3V, =3, 3V, =3,3"V,; =3,4V; =4, 4'V; =4 and
4"V, =4,

We will verify that the graph morphisms f, g and fg are etale fibrations that satisfy (Uni).
This will show that f, g and fg are quasiisomorphisms; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.
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The graph G can be obtained with the function Trygraph by setting n := 5.

The graph K can be obtained with the function idTrygraph by setting n := 5.

The graph H can be obtained with the function Doublecyclic by setting n := 5.

The graph morphism f can be obtained with the function Tryfactorization by settingn := 5.
The graph morphism g can be obtained with the function idTryacyclic by settingn := 5.
The graph morphism fg can be obtained with the function Tryacyclic by settingn := 5.

So letting

G := Trygraph(5);

K := idTrygraph(5);

H := Doublecyclic(5);

f := Tryfactorization(5);
g := idTryacyclic(5);

fg := Tryacyclic(b);

> G;

<[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 1, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>,

<4, 4, 5>, <5, 5, 4>, <5, 6, 6>, <7, 7, 8>, <8, 8, 7>, <8, 9, 9>, <10, 10, 11>,

<11, 11, 10>, <3, 12, 4>, <4, 13, 1>, <3, 14, 6>, <6, 15, 7>, <7, 16, 4>,

<6, 17, 9>, <9, 18, 10>, <10, 19, 7>, <1, 20, 11>, <11, 21, 1>, <9, 22, 1> 1>

> K;

<[ 1,2, 3,4,6,7,9, 101, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 3>,

<3, 5, 4>, <8, 6, 6>, <7, 7, 6>, <6, 8, 7>, <6, 9, 9>, <10, 10, 9>,

<9, 11, 10>, <4, 13, 1>, <7, 16, 4>, <10, 19, 7>, <1, 20, 9>, <9, 21, 1> 1>

> H;

<[ 1, 2,3, 4,571, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 5>, <5, 5, 4>,
<4, 6, 3>, <3, 7, 2>, <2, 8, 1>, <1, 9, 5>, <5, 10, 1> I>

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 3>, <6, 6>, <7, 7>, <8, 6>, <9, 9>,

<10, 10>, <11, 9> 1, [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>>,

<2, 3, 3>, <2, 3, 3>>, <4, 4, 5>, <4, 4, 3>>, <<5, 5, 4>, <3, 5, 4>>,

<5, 6, 6>, <3, 6, 6>>, <7, 7, 8, <7, 7, 6>>, <<8, 8, 7>, <6, 8, 7>>,

<8, 9, 9>, <6, 9, 9>>, <10, 10, 11>, <10, 10, 9>>,

<11, 11, 10>, <9, 11, 10>>, <<3, 12, 4>, <3, 5, 4>>,

<4, 13, 1>, <4, 13, 1>>, <<3, 14, 6>, <3, 6, 6>>,

<6, 15, 7>, <6, 8, 7>>, <7, 16, 4>, <7, 16, 4>>,

<6, 17, 9>, <6, 9, 9>>, <9, 18, 10>, <9, 11, 10>>,

<<10, 19, 7>, <10, 19, 7>>, <1, 20, 11>, <1, 20, 9>>,

<11, 21, 1>, <9, 21, 1>>, <9, 22, 1>, <9, 21, 1>> >



201

> g;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <6, 4>, <7, 3>, <9, 5>, <10, 4> ],

[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 8, 1>>, <2, 3, 3>, <2, 2, 3>>,
K4, 4, 3>, <2, 2, 3>>, <3, 5, 4>, <3, 7, 2>>, <<L3, 6, 6>, <3, 3, 4>>,
L7, 7, 6>, <3, 3, 4>>, <<6, 8, 7>, <4, 6, 3>>, <6, 9, 9>, <4, 4, 5>,
<<10, 10, 9>, <4, 4, 5>>, <<9, 11, 10>, <5, 5, 4>>,

<4, 13, 1>, <2, 8, 1>>, <7, 16, 4>, <3, 7, 2>>,

<<10, 19, 7>, <4, 6, 3>>, <1, 20, 9>, <1, 9, 5>,

<9, 21, 1>, <5, 10, 1>> 1>
> fg;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4>, <9, 5>,
<10, 4>, <11, 5> 71, [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 8, 1>>,

<2, 3, 3>, <2, 2, 3>>, <4, 4, 5>, <2, 2, 3>, <5, 5, 4>, <3, 7, 2>>,

<5, 6, 6>, <3, 3, 4>>, <7, 7, 8, <3, 3, 4>>, <L8, 8, 7>, <4, 6, 3>>,

<8, 9, 9>, <4, 4, 5>>, <<10, 10, 11>, <4, 4, 5>>, <<11, 11, 10>, <5, 5, 4>>,
<3, 12, 4>, <3, 7, 2>>, <4, 13, 1>, <2, 8, 1>>,

<3, 14, 6>, <3, 3, 4>>, <6, 15, 7>, <4, 6, 3>>,

L7, 16, 4>, <3, 7, 2>>, <6, 17, 9>, <4, 4, 5>>,

<<9, 18, 10>, <5, 5, 4>>, <10, 19, 7>, <4, 6, 3>>,

<1, 20, 11>, <1, 9, 5>>, <<11, 21, 1>, <5, 10, 1>>,
<<9, 22, 1>, <5, 10, 1>> 1>

we get

> IsGraphMorphism(f,G,K) ;
true

> SuffCond(f,G,K);

<true, true>

> IsGraphMorphism(g,K,H);
true

> SuffCond(g,K,H);

<true, true>

> IsEqual(fg,ComposeGraphMorphisms(f,g));
true

> IsGraphMorphism(fg,G,H);
true

> SuffCond(fg,G,H);

<true, true>
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Example 224 We consider the following graph morphism.

0342

)

2 ~3-2.4
Qg
1 7 _6_ 5
[0%4 ag as

/.
3,4 -

(e 2 o
27 T34
as
a1 s o
1 6. 5
ag

Here, the graph morphism f : C34 — C3, maps the vertices and the edges in a vertical way,
where 1Vf = 1, 2Vf = 2, 4Vf =4 and 6Vf = 0.

We will verify that the graph morphism f is an etale fibration that satisfies (Uni).
This will show that f is a quasiisomorphism; cf. Proposition 210.

Via Magma we may proceed as follows, using the functions given in §10 below.

The graph (54 can be obtained with the function CnCm by settingn := 3 andm :

4.
The graph Cj 4 can be obtained with the function cncm by settingn := 3andm := 4.

The graph morphism f can be obtained with the function cncmgis by setting n := 3 and
m := 4.

So letting

C34 := CnCm(3,4);

Cp34 := cnem(3,4); // "C prime" = C’

f := cncmqis(3,4);

> C34;

<[1, 2,3,4,5,6, 71, [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 5>,

<5, b5, 6>, <6, 6, 7>, <7, 7, 1>, <3, 8, 1>, <7, 9, 4> 1>

> Cp34;

<[ 1, 2, 3, 4, 5,61, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 1>, <3, 4, 4>, <4, 5, 5>,
<5, 6, 6>, <6, 7, 3> ]>



> £

<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, b>, <6, 6>, <7, 3> 1],

[ <1, 1, 2>, <1, 1, 2>>, <<2, 2, 3>, <2, 2, 3>>, <<3, 3, 4>, <3, 4, 4>>,
<4, 4, 5>, <4, 5, 5>>, <5, 5, 6>, <5, 6, 6>>, <<6, 6, 7>, <6, 7, 3>>,
L7, 7, 1>, <3, 3, 1>>, <<3, 8, 1>, <3, 3, 1>>, 7, 9, 4>, <3, 4, 4>> ]>

we get

> IsGraphMorphism(f,C34,Cp34);
true

> SuffCond(f,C34,Cp34);

<true, true>

Varying the input n and m, it is possible to construct further quasiisomorphisms. This seems to
hold independently of n > 2.
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Example 225 We consider the following inclusion morphism f of the subgraph G into the

graph H.
/ELA /Eis
G 1V2 3V4
B2 Bs
f
/Blﬂ B3 b
—=\
17 o3y
B2 Bs

Then the graph morphism f is a quasiisomorphism.

Via Magma, we calculated that the graph morphism f satisfies (Uni) as follows.

G <[1,2,3,4],[<1,1,2>,<2,2,1>,<3,4,4>,<4,5,3>]>;

H := <[1,2,3,4],[<1,1,2>,<2,2,1>,<2,3,3>,<3,4,4>,<4,5,3>]>;
f := IsSubgraph(G,H)[1];

> IsGraphMorphism(f,G,H);

true

> Uni(f,G,H);

true

> IsEtaleFibration(f,G,H);

false

But we can not apply Proposition 210 because f is not an etale fibration.
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Proof. Suppose given the following diagram in Gph.

G
|
Cp——H
We have to show that there exists a unique graph morphism ¢ : C,, — G such that ¢f = p.

Uniqueness. The graph morphism ¢ : C,, — G is unique since the graph morphism f: G — H
is injective, whence (C,, , f)gpn is injective.

Eristence. In order to be able to let q := p|, we have to show that C,,p C G. Le. we have to
show that 5 ¢ E¢, E, .

We assume that 85 € Ec, E, .

So there exists an edge e; € E¢, such that e; E, = f35.

Thus ej11 E, = B4. Thus ej19 E, = B5. Thus e;;3E, = 84. Etc.

We deduce that e; E, € {84, 55} fori € Z/nZ’ contradicting e; E, = 5. o

Example 226 We consider the following inclusion morphism f of the subgraph G into the
graph H.

G: 3 6
v ~
2 B3 Be 5
61\1 4%1

!

H 3=——6
4
2 Bs ,36| 5
AN A

Then the graph morphism f is a quasiisomorphism.

Both G and H are fibrant.
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The graph morphism f is not a fibration.

Via Magma we calculated that the graph morphism f satisfies (Uni), using the functions given in
§10 below.

But we can not apply Proposition 210 because f is not an etale fibration.
With the function CNCN we calculated the graphs G and H and the graph morphism f£.

So letting

@
[

= CNCN(3) [1];
CNCN(3) [2];
= CNCN(3) [3];

H o
o

we get

> IsSubgraph(G,H) [2];

true

> IsGraphMorphism(f,G,H);
true

> Uni(£f,G,H);

true

> IsEtaleFibration(f,G,H);
false

Proof. Suppose given the following diagram in Gph.

G
f
C,—2=H

We have to show that there exists a unique graph morphism ¢ : C,, — G such that ¢f = p.

Uniqueness. The graph morphism ¢ : C, — G is unique since the graph morphism f: G — H
is injective, whence (C,, , f)cpn is injective

Eristence. In order to be able to let q := p|“, we have to show that C,,p C G. Le. we have to
show that 7, s ¢ Ec, E,.

We show that 87 ¢ C,, p, the proof for s being similar.

We assume that 57 € Ec, E, .

So there exists an edge e; € E¢, such that e; E, = [3;.

Thus e;y1 E, = 8. Thus e;12E, = B2. Thus ej;3E, = 5. Thus e; 14 E, = 5. Etc.

We deduce that e; E, € {1, 52, 83} for i € Z/nZ, contradicting e; E, = Pr. o

Varying the input n, it is possible to construct further quasiisomorphisms.
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Example 227 We consider the following graphs.

5 2
\ V
Qg o

1
/ \12
*3 g
3

as

5N1%2
4% Ng

We consider the graph morphism f : G — H with

1Vf 221, 2Vf 222, 3Vf 2:3,
4Vy:=4, 5Vy:=5, 6Vy:=1;

and with the corresponding map on the edges.
The graph morphism f : G — H is an acyclic fibration.

Proof. Via Magma we will calculate that the graph morphism f is an etale fibration that
satisfies (Uni), using the functions given in §10 below.

This will show that f is a quasiisomorphism; cf. Proposition 210.

The graph morphism f together with the graphs G and H can be obtained with Magma with
the function Exflower by settingn := 4 and list := [2,3].
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So letting

G := Exflower(4,[2,3]1)[1];
H := Exflower(4,[2,3])[2];
f := Exflower(4,[2,3])[3];
>
<

[1, 2, 3,4,5,61, [<1, 1, 2>, <1, 2, 3>, <1, 3, 4>, <1, 4, 5>, <6, 5, 2>,
<6, 6, 3>, <6, 7, 4>, <6, 8, 5>, <2, 9, 1>, <3, 10, 1>, <4, 11, 6>,

<5, 12, 6> 1>
> H;
<[1, 2, 3,4,51, [ <1, 1, 2>, <1, 2, 3>, <1, 3, 4>, <1, 4, 5>, <5, 5, 1>,
<4, 6, 1>, <3, 7, 1>, <2, 8, 1> I>
> f;
<[ <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <6, 1> 1, [ <1, 1, 2>, <1, 1, 2>>,
K1, 2, 3>, <1, 2, 3>>, <1, 3, 4>, <1, 3, 4>>, <1, 4, 5>, <1, 4, 5>,

K6, 5, 2>, <1, 1, 2>>, <6, 6, 3>, <1, 2, 3>>, <6, 7, 4>, <1, 3, 4>>,

<6, 8, 5>, <1, 4, B5>>, <<2, 9, 1>, <2, 8, 1>>, <3, 10, 1>, <3, 7, 1>>,

<4, 11, 6>, <4, 6, 1>>, <5, 12, 6>, <5, 5, 1>> 1>

we get

> IsGraphMorphism(f,G,H);
true

> SuffCond(f,G,H);

<true, true>

By varying the input n and list it is possible to construct further quasiisomorphisms using
Exflower(n,list).

The “lower” graph consists of 4 respectively n cyclic graphs Cy glued together at one vertex such
that the form of a flower is visible.
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Example 228 We consider the graph morphism

G 1 2 3
4 5 6
7 8 9
10 ——11———=12
!
H l——2— >3
I ———
I — ——
le——11—>12

where we let

1Vyi=1 2V;:=2 3V;:=3 4V;:=1 5V;:=5 6V;:=6
TVii=1 8V;:=8 9V;:=9 10V;:=1 11V;:=11 12V;:=12.

Here, the graph H has only a single vertex named 1, displayed four times for sake of clarity.
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The graph morphism f : G — H is an acyclic fibration.

Proof. Via Magma we will calculate that the graph morphism f is an etale fibration that
satisfies (Uni), using the functions given in §10 below.

This will show that f is a quasiisomorphism; cf. Proposition 210.

The graph morphism f together with the graphs G and H can be obtained with Magma with
the function Exflower2 by settingn := 4 and k := 3.

So letting

Exflower2(4,3) [1];
Exflower2(4,3)[2];
Exflower2(4,3) [3];

G;
(1, 2, 3, 4,5,6, 7,8, 9, 10, 11, 121, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 1>,
<4, 4, 5>, <5, 5, 6>, <6, 6, 4>, <7, 7, 8>, <8, 8, 9>, <9, 9, 7>,

<10, 10, 11>, <11, 11, 12>, <12, 12, 10>, <1, 13, 5>, <1, 14, 8>, <1, 15, 11>,
<4, 16, 2>, <4, 17, 8>, <4, 18, 11>, <7, 19, 2>, <7, 20, 5>, <7, 21, 11>,

<10, 22, 2>, <10, 23, 5>, <10, 24, 8> 1>
> H;

<[1, 2, 3,4, 5,6, 7,8, 91, [<1, 1, 2>, <2, 2, 3>, <3, 3, 1>, <1, 4, 4>,
<4, 5, b>, <5, 6, 1>, <1, 7, 6>, <6, 8, 7>, <7, 9, 1>, <1, 10, 8>, <8, 11, 9>,
<9, 12, 1> 1>

> £

<[ <1, 1>, <4, 1>, <7, 1>, <10, 1>, <2, 2>, <3, 3>, <5, 4>, <6, 5>, <8, 6>,

<9, 7>, <11, 8>, <12, 9> 1, [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 3>, <2, 2, 3>>,
<3, 3, 1>, <3, 3, 1>>, <4, 4, 5>, <1, 4, 4>>, <5, 5, 6>, <4, 5, 5>>,

<6, 6, 4>, <5, 6, 1>>, K7, 7, 8, <1, 7, 6>, <8, 8, 9>, <6, 8, 7>>,

<9, 9, 7>, <7, 9, 1>>, <10, 10, 11>, <1, 10, 8>>, <11, 11, 12>, <8, 11, 9>>,
<12, 12, 10>, <9, 12, 1>>, <<1, 13, 5>, <1, 4, 4>>, <1, 14, 8, <1, 7, 6>>,
<1, 15, 11>, <1, 10, 8>>, <4, 16, 2>, <1, 1, 2>>, <4, 17, 8>, <1, 7, 6>>,
<4, 18, 11>, <1, 10, 8>>, <7, 19, 2>, <1, 1, 2>>, <7, 20, 5>, <1, 4, 4>>,
L7, 21, 11>, <1, 10, 8>>, <10, 22, 2>, <1, 1, 2>>, <10, 23, 5, <1, 4, 4>>,
<<10, 24, 8>, <1, 7, 6>> 1>

G
H
f
>
<

we get

> SuffCond(f,G,H);
<true, true>

Note that we need to have edges from the vertices 1,4,7 and 10 to the vertices 2,5,8 and 11 to
obtain an etale fibration.

Via Magma, we calculated that we obtain quasiisomorphisms with Exflower2 for input values n
in [1,30] and k in [2, 30].
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Example 229 We consider the graph morphism

G: alc;jlgzzjfi:::tQ:;)a4
as

H 51613ﬂ2

where
1V =1, 2V =1,

a1 Ef =51, asEf=py,
aEr =0, asEf= 0.

Via Magma we will calculate that the graph morphism f is an etale fibrations that satisfies
(Uni), using the functions given in §10 below.

Letting

G :=<[1,2],[<x1,1,1>,<1,2,2>,<2,3,1>,<2,4,2>]>;

H := <[1],[<1,1,1>,<1,2,1>]>;

f o= <[<1,1>,<2,1>], [<<1,1,1>,<1,1,1>>,<<1,2,2>,<1,2,1>>,<<2,3,1>,<1,1,1>>,
<<2,4,2>,<1,2,1>>]>;

we get

> SuffCond(f,G,H);
<true, true>

Example 230 We consider the graph

G alCli>2

and the cyclic graph Cy ; cf. Definition 52.
We consider the graph morphism f : G — C; with

1Vf:V0, OélEf:eg7
2Vf:V0, Ongf:eo.
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G : alc;];—33>2

Cl : €0 CVO

We will calculate that the graph G and the cyclic graph C; are thin and that the graph
morphism f : G — C; does not satisfy (Uni) and f is not a fibration; cf. Definitions 52
and 127.(1) and Proposition 210. But the graph morphism f : G — Cj is a quasiisomorphism;
cf. Definition 115.

Via Magma we may proceed as follows, using the functions given in §10 below.

G := <[1,2],[<1,1,1>,<1,2,2>]>;
> IsThin(G);

true

C1 := C(1);

> IsThin(C1);

true

f := ListGraphMorphisms(G,C1) [1];
> f;

<[ <1, 1>, <2, 1> 7, [ <<1, 1, 1>, <1, 1, 1>>, <1, 2, 2>, <1, 1, 1>> 1>
> Uni(f,G,C1);

false

> IsFibration(f,G,C1);

false

9.2 Some examples of graph morphisms related to the
sufficient condition of Proposition 210

Example 231 We consider the graph morphism f : ) — C; .

Via Magma, we calculated that the empty graph () and the cyclic graph C; =: H are thin and
that the graph morphism f : ) — C; is an etale fibration; cf. Definitions 70, 52 and 127.(2).
But the graph morphism f does not satisfy (Uni); cf. Proposition 210. Moreover, f is not a
quasiisomorphism, since (Cy,0)gpn = 0 # (C1, C1)Gph -
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<[], [>;

= C(1);

f = <[1,[]>;

> IsThin(G);

true

> IsThin(H);

true

> IsEtaleFibration(f,G,H);
true

> Uni(f,G,H);

false

> IsQis_Bound(f,G,H,1);
false

G :
H

Example 232 We consider the graph morphism f: D; — C; .

Via Magma, we calculated that the direct graph D; and the cyclic graph C; are thin and that
the graph morphism f : D; — C; satisfies (Uni); cf. Definitions 56 and 52 and Proposition 210.
But the graph morphism f is not a fibration; cf. Definition 127.(1). Moreover, f is not a
quasiisomorphism, since (Cy,D1)gpn = 0 # (C1, C1)apn -

G :=D(1);

> IsThin(G);

true

H := c(1);

> IsThin(H);

true

> f := ListGraphMorphisms(G,H) [1];
> £

<[ <0, 1>, <1, 1> ], [ <<0, 0, 1>, <1, 1, 1>> I>
> Uni(f,G,H);

true

> IsFibration(f,G,H);

false

Example 233 We consider the graphs

and Cs.
Let f: G — Cy be the graph morphism with

1Vf:V1, 2Vf:V2, 3Vf:V1,

O[l]iﬂ/f:el7 O(QEf:GQ, Ongf:el’ a4Ef:eg.
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Via Magma, we calculated that the graph G and the cyclic graph C, are thin and that the graph
morphism f : G — Cy satisfies (Uni); cf. Definition 52 and Proposition 210. Moreover, f is a
fibration; cf. Definition 127.(1). But the graph morphism f is not an etale fibration; cf. Defi-
nition 127.(2). And f is not a quasiisomorphism since |(Cy, G)apn| = 4 # 2 = |(Ca, Ca)cpnl;
cf. Definition 115

G := c2chain(3);
> G;
<[1, 2,317, [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> 1>
> IsThin(G);
true
H := C(2);
> H;
<[1, 271, [ <1, 1, 2>, <2, 2, 1> 1>
> IsThin(H);
true
> f := ListGraphMorphisms(G,H) [2];
> f;
<[ <1, 1>, <2, 2>, <3, 1> 1],
[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 3>, <2, 2, 1>>,
<3, 3, 2>, <1, 1, 2>>, <2, 4, 1>, <2, 2, 1>> I>
> Uni(f,G,H);
true
> IsFibration(f,G,H);
true
> IsEtaleFibration(f,G,H);
false
> IsQis_Bound(f,G,H,2);
false
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Example 234 We consider the following graph morphism, mapping the vertices and the edges
in a vertical way.

G 1<2
3

f
D1 . \Af(]ﬁ'éo \71

Via Magma, we calculated that the graph morphism f : G — D; satisfies (Uni) and that f is
a fibration; cf. Proposition 210 and Definition 127.(1). But the graph morphism f is not an
etale fibration; cf. Definition 127.(2). However, f is a quasiisomorphism, since (C,,, G)gpn =

0 = (C,,D1)gpn for n € N.

G := <[0,1,2],[<0,1,1>,<0,2,2>]>;
H := D(1);

f := ListGraphMorphisms(G,H) [1];
> f;

<[ <0, 0>, <1, 1>, <2, 1> ], [ <<0, 1, 1>, <0, 0, 1>>, <0, 2, 2>, <0, 0, 1>> 1>
> IsFibration(f,G,H);

true

> Uni(f,G,H);

true

> IsEtaleFibration(f,G,H);

false

So the converse to Proposition 210 does not hold, even for fibrations satisfying (Uni).

Example 235 Suppose given n € N.
We consider the graph morphism f :=t¢, ¢, : C1UC, = C;.

The graph morphism f is an etale fibration. The edge e of the target C; is not unitargeting.
In fact, the edges mapping to ey have n + 1 > 2 distinct targets.

The graph morphism f can be calculated via Magma with the function exampleforbadbound?2
given in §10.8.
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E.g., setting n := 3, we get

> exampleforbadbound2(3);
«[1, 2,3, 417, [<1, 1, 1>, <2, 2, 3>, <3, 3, 4>, <4, 4, 2> 1>,
<[ 1171, [ <1, 1, 1> 1>, <[ <1, 1>, <2, 1>, <3, 1>, <4, 1> ],
[ <1, 1, 1>, <1, 1, 1>>, <2, 2, 3>, <1, 1, 1>>, <3, 3, 4>,
<1, 1, 1>>, <4, 4, 2>, <1, 1, 1>> 1>

The map (Cy, f)apn is bijective for 1 < k < n since there are unique graph morphisms
C, — CUC, and C, — C;.

But the map (C,, , f)gpn is not bijective since we may have p,q : C,, — C, UC,, with C,,p = C;
and C,q=0C,,.

In particular, f is not a quasiisomorphism.

E.g., we get

f := exampleforbadbound2(3) [3];
G := exampleforbadbound2(3) [1];
> Isle Bound (f,G,C(1),2);

true

> IsQis_Bound(f,G,C(1),3);
false

and

f := exampleforbadbound2(10) [3];
G := exampleforbadbound2(10) [1];
> Isle Bound(f,G,C(1),9);

true

> IsQis_Bound(f,G,C(1),10);
false

9.3 Some inequalities of subsets of Mor(Gph)
We consider subsets of Mor(Gph).

Remark 236 We have AcFib C Fib.
Proof. We consider the graph morphism ¢; : Dy — Do U C;y .

Note that the map E,, ¢, : § — 0 is surjective. Thus the graph morphism ¢; : Dy — Do C;
is a fibration; cf. Definition 127.(1). But ¢; is not a quasiisomorphism; cf. Definitions 115
and 127.(1).

So 11 € Fib\ AcFib. o
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Remark 237 We have AcFib C Qis.
Proof. Let

We consider the acyclic cofibration g : D; — P mapping é; to ay; cf. Assertion 254 below.

The graph morphism ¢ : D; — P is an acyclic cofibration and thus a quasiisomorphism; cf.
Lemma 175. But g is not a fibration and thus not an acyclic fibration; cf. Definitions 115,
127.(1), 138.

> P :=<[1,2,3],[<1,1,2>,<1,2,3>]>;
> g := VtoE(D(1),P, [<0,1>,<1,3>]);
> IsAcCofib(g,D(1),P);

true

So g € Qis\ AcFib. .

Remark 238 We have AcCofib C Cofib.

Proof. We consider the cofibration tc, : ) — Cjy; cf. Remark 151.

The graph morphism (¢, : ) — C; is not a quasiisomorphism; cf. Definition 115.

So ¢, € Cofib \ AcCofib. o

Remark 239 We have AcCofib C Qis.
Proof. We consider the acyclic fibration tp, : @ — Dy ; cf. Example 158.(1).
The graph morphism tp, : ) = Dq is an acyclic fibration and thus a quasiisomorphism.

But tp, is not a cofibration; cf. Example 158.(2). Thus it is not an acyclic cofibration; cf.
Lemma 175.

Alternatively, the graph morphism tp, : ) — Dy is not an acyclic cofibration because it does

not satisfy (AcCofib 3) since Vp, \ Vy # 0, but Ep, = 0.
So tp, € Qis\ AcCofib. .

Remark 240 We have ?Qis C ¥ AcFib Def 44

In fact, we have AcCofib \? Qis # 0.

Cofib.

Proof. We consider the graph morphism ¢p; : Dy — Dj; cf. Definition 56. It is an acyclic
cofibration; cf. Remark 166. Thus it is a cofibration and a quasiisomorphism; cf. Lemma 175.
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We consider the following commutative quadrangle.

idp,

D0—>D0

|
L0,1l nto,1
¥
Dy ——D,
idp,

Since Ep, = {&} and Ep, = 0, there does not exist a graph morphism ¢: D; — Dy

idp,

D0—>D0

e
Lo,1l ﬂ 2to,1

D, —=D

idp,

So the graph morphism ¢ ; : Dy — Dy is in AcCofib \? Qis. o

Note that we also have ?Fib C ¥ AcFib since

Remark 238

2 pip bemma 191 A Cofib Cofib Pefinition 144 @ A g,

=

Remark 241 We have ?Qis \ AcCofib "2 ! 2 Qis \ @Fib # ().
Proof. We consider the graph morphism f :=tc, : ) — Cs.
First, we show that f is in P Qis.

Suppose given a commutative diagram as follows.

@—”>c|:
f R
j v
CQ—q>H

Since the graph morphism g : G — H is a quasiisomorphism, there exists a graph morphism
h : Co — G such that hg = q.

Thus we have the following commutative diagram.

fT

Co

@

.G
}
v

H

N\

So the graph morphism f : ) — Cy is in ? Qis.
In particular, f is a cofibration; cf. Remark 195.(3) and Definition 138, or Remark 151.
Secondly, we show that f is not in 2Fib.
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We consider the following commutative diagram.

@$‘C4

| e

C2T_C2>Cl

Note that the graph morphism ¢, : C4 — Cj is a fibration; cf. Example 137.
But there does not exist a graph morphism h : Co — Cy4 at all.
So f is not in ?Fib.

Lemma 191

Alternatively, using ?Fib
satisfy (AcCofib 5).

So f € PQis \ ?Fib. -

AcCofib, f is not an acyclic cofibration since it does not

Remark 242 We have ?Fib \ 2Qis "2 "' AcCofib \? Qis # 0.
Proof. We consider the acyclic cofibration f := 91 : Dg — Dy ; cf. Remark 166.

We consider the following commutative diagram.

idp,

Dy — Do

ik
¥
Dle)Dl

There does not exist a graph morphism A : D; — Dy .
So f is not in P Qis.

So f € AcCofib \2Qis. o

Lemma 192

Remark 243 We have Qis? C AcCofib?
In fact, we have AcFib\ Qis? # ().

Fib.

Proof. We consider the graph morphism f :=¢; : Dy — Do U Dy, where ¥ Vy = (1, ¥).

The graph morphism f : Dy — DoUDy is a quasiisomorphism since (C,,,Do)gpn = 0 =
(Cn ) DO U DO)Gph .

The map E;¢, : 0 — 0 is surjective. So the graph morphism f : Dy — Do U Dy is a fibration.
So the graph morphism f : Dy — Dy LI Dy is an acyclic fibration.

We consider the following commutative quadrangle.

id
Dy al Dy
i |
V
DoUDg — DoUDg

idpg uDg
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A~ A

There exists the unique graph morphism ¢ : Do U Dy — Dy, having (1,%¢) V. = (2,V¢) V. = V¢
But we do not have c¢f = idp, p, since (2,%o) Ver = (1,V¢) # (2,V0) = (2,%0) Vi

dDOLJDO .
id

Dy o N

f2|l B jf

v ,.......H
DouU Dy — .
' Do UDg

So the graph morphism f : Dy — Do LDy is in AcFib \ Qis?. D

Note that we also have Cofib? C AcCofib? since

Remark 236

Cofib? bemma 193 A i, Fib "™ 192 A (Cofib?.

Remark 244 We have Cofib? \ Qis? "2 % AcFib\ Qis? # 0.
Proof. We consider the acyclic fibration f : ) = Dy ; cf. Example 158.(1).

We consider the following commutative diagram

There does not exist a graph morphism A : Dy — ().
So the graph morphism f is not in Qis?.
So f € Cofib?\ Qis?. o

9.4 Counterexamples for model categories

Recall that Gph is a Quillen closed model category; cf. Proposition 204.
Recall that the label Assertion indicates an assertion that we falsify by a counterexample.

Some of the following assertions are dual to each other, leading to further possibilities to falsify
them.

9.4.1 Elementary counterexamples

Assertion 245 In a Quillen closed model category, each acyclic fibration is a retraction.
This assertion is false.

Counterexample 1 wn Gph.

We consider the acyclic fibration f : ) — Dy ; cf. Example 158.
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But f is not a retraction since there does not exist a graph morphism g : Dy — 0.
Counterexample 2 in Gph.

Consider the graph morphism f : G — H as in Example 215.

The acyclic fibration f is not a retraction.

We assume that f is a retraction.

Let g : H — G be a corresponding coretraction, i.e. g - f = idy .

So 1V, =1. Thus 1 E; = a;. So 2V, = 2. Thus o E;, = 3. So 3V, = 3. Thus 83E;, = ay.
So 2V, =2

Contradiction. o

Assertion 246 The subset of fibrations in a Quillen closed model category satisfies (2 of 3).
This assertion is false.
Counterexample in Gph.

Consider the following graphs.

Y : a1Cli>2

We consider the unique graph morphisms f: X — Y and g := 1y : Y — X, as well as their
composite fg =idx : X — X.

The graph morphisms idx and g are acyclic fibrations.

But f is not a fibration; cf. Definition 127.

X :=CQ1);

Y :=<[1,2],[<1,1,1>,<1,2,2>]>;
f := VtoE(X,Y, [<1,1>]);

> £
<[ <1, 1> 7], [ <1, 1, 1>, <1, 1, 1>> 1>
> IsFibration(f,X,Y);

false
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Assertion 247 In a Quillen closed model category, each acyclic cofibration is a coretraction.
This assertion is false.

Counterezample in Gph.

We consider the acyclic cofibration ¢y ; : Dy = Dy ; cf. Remark 166.

But ¢ is not a coretraction since there does not exist a graph morphism ¢ : D; — Dy o

Assertion 248

(1) The subset of acyclic cofibrations in a Quillen closed model category satisfies (2 of 3).

(2) The subset of cofibrations in a Quillen closed model category satisfies (2 of 3).

The assertions (1) and (2) are false.
Counterezample in Gph.

We consider the following graph morphisms.

Doi \Afo
f
Y 1— 2 .9

We consider the graph morphisms f : Dg = Y, g: Y — D; and fg = ¢; : Dg — Dy, where
Vo V¢ :=1 and g mapping the vertices and the edges in a vertical way.
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The graph morphisms f and fg are acyclic cofibrations; cf. Remark 166.
But ¢ is not an acyclic cofibration since it does not satisfy e.g. (AcCofib 2).

<[1,2,3],[<1,1,2>,<1,2,3>]>;

= VtoE(D(0),Y, [<0,1>]);

:= ListGraphMorphisms(Y,D(1)) [1];

> IsAcCofib(£f,D(0),Y);

true

> IsAcCofib(ComposeGraphMorphisms(f,g),D(0),D(1));
true

> IsAcCofib(g,Y,D(1));

false

0a Hh o<
i

Since ¢ is a quasiisomorphism, we infer that ¢ is not a cofibration; cf. Lemma 185.

Assertion 249 Consider the following assertions (1-6) in a Quillen closed model category.

1) Each quasiisomorphism that is a retraction is a fibration.
q D
(2) Each quasiisomorphism that is a coretraction is a cofibration.

(3) Suppose given a commutative diagram as follows.
Y
N
X — Z
Then f:Y — Z is a fibration.

(4) Suppose given a commutative diagram as follows.
Y
N
X—n——~7
af
Then f Y — Z is an acyclic fibration.

(5) Suppose given a commutative diagram as follows.

N

gf

X A

Then g : X —'Y s a cofibration.
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(6) Suppose given a commutative diagram as follows.

Y
N
—

g

X

Then g : X — Y s an acyclic cofibration.

The assertions (1-6) are false.
Counterexample in Gph.

We consider the following graph morphisms.

9.3

Here, the graph morphisms f : Y — Z and g : X — Y map the vertices and the edges in a
vertical way, where 1V, := 2,2V, :=3 and 3, E; := o .

So we have ¢f = idy.

So the graph morphism f : Z — Y is a retraction and the graph morphism g : X — Z is a
coretraction.

Since (Cg, X)aph = (Ck,Y)gpn = 0 for k > 1, the graph morphisms f and g are quasiisomor-
phisms.

X :=D(1);

Z :=D(1);

Y := <[1,2,3],[<2,1,3>]>;

g = VtoE(X,Y, [<0,2>,<1,3>]);

f := VtoE(Y,Z, [<1,0>,<2,0>,<3,1>]);
Ad (1).

The graph morphism f : Y — Z is a retraction and a quasiisomorphism but not a fibration.
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> IsFibration(f,Y,Z);
false

Ad (2).

The graph morphism ¢ : X — Z is a coretraction and a quasiisomorphism but not a cofibration.

> IsAcCofib(g,X,Z);
false

The graph morphism ¢ is not an acyclic cofibration since g does not satisfy (AcCofib 3, 5).

Since ¢ is a quasiisomorphism and since AcCofib = CofibN Qis, ¢ is not a cofibration; cf.
Lemma 185.

Alternative proof for (2). We have Cofib = 2 AcFib; cf. Definition 144. The graph morphism g
is an acyclic fibration since it is a quasiisomorphism and a fibration; cf. Definition 138.

> IsFibration(g,X,Y);
true

We consider the following commutative diagram.

idx

X——X

Q
Q

Y —Y

idy

But there does not exist a graph morphism h : Z — X such that gh = idx and hg = idx since
g is not a graph isomorphism.

So g is not a cofibration.

Ad (3).

We have gf =idx : X ——= Z , but f is not a fibration.

Ad (4).

We have gf =idy : X ——= Z , but f is not an acyclic fibration since it is not a fibration.

Ad (5).

We have gf =idy : X —e—= Z , but g is not a cofibration.

Ad (6).

We have gf =idx : X ——= 7, but ¢ is not an acyclic cofibration. o

Remark 250 Using Gph°?, we can falsify the assertions dual to Assertions 245 — 249.
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9.4.2 Counterexamples for pushouts and pullbacks

The following assertions take place in a Quillen closed model category.

Assertion 251 In a Quillen closed model category, a pushout of a quasitsomorphism along a
cofibration is a quasiisomorphism.

This assertion is false.

Counterexample in Gph.

A counterexample is given in Remark 205. o

Assertion 252

Consider the following assertions (1-4) in a Quillen closed model category.

1) A pushout of a fibration is a fibration.

2) A pushout of an acyclic fibration is a fibration.

(1)
(2)
(3) A pushout of an acyclic fibration is a quasiisomorphism.
(4)

4) A pushout of an etale fibration is a fibration.

The assertions (1), (2), (3) and (4) are false.
Counterexample in Gph.
We consider the following graphs.

o1

X 1//;\w

Y 1< 9 3

/. /0/2“ /

X' 1\_},230‘1
ol

Let f = (Vy,Ef) : X =Y be the graph morphism with
1V, =1, 2V; =1, 3V, =2

and with
(0%} Ef = 51 .

Then the graph morphism f is an etale fibration as we calculated with Magma [2].
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X <[1,2,3],[<3,1,1>]>;
Y :=<[1,2,3],[<2,1,1>]>;

f = <[<1,1>,<2,1>,<3,2>],[<<3,1,1>,<2,1,1>>]>;
> IsFibration(f,X,Y);

true

> IsEtaleFibration(f,X,Y);

true

Moreover, f is a quasiisomorphism since (C,,, X)gpn = 0 = (C,,,Y)gpn for n € N.
In conclusion, f is an acyclic fibration.

Let g = (Vg, Ey) : X — X’ be the graph morphism with

1V, =2, 2V, =1, 3V, =2

and with
aE, =af.
We calculated a pushout with Magma.
f
X —-=Y
At
|
X —Y
f/
We obtained the pushout Y.
B3
Y,
Y’ 217 2
We have
1Vp =1, 2Vp =1,
O/lEf/ = ﬁi, O/QEf/ = Bé, OzéEf/ = 5{;}
and

1Vh:1, 2Vh:1> 3Vh:2,
BBy = B,
The graph morphism f is an etale fibration but the graph morphism f’ is not.

Xp := <[1,2],[<2,1,2>,<1,2,2>,<1,3,2>]>; // "X prime" = X’
g := ListGraphMorphisms(X,Xp) [1];

> g,

<[ <1, 2>, <2, 1>, <3, 2> ], [ <3, 1, 1>, <2, 1, 2>> 1>
> IsGraphMorphism(g,X,Xp);

true
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PO := PushoutGraphs(X,Y,Xp,f,g);

> PO;

«<[1, 27, [ <1, 1, 1>, <1, 2, 1>, <1, 3, 1> 1>,

<[ <1, 1>, <2, 1> 7, [ <2, 1, 2>, <1, 1, 1>>, <1, 2, 2>, <1, 2, 1>>,
<1, 3, 2>, <1, 3, 1>> 1>,

<[ <1, 1>, <2, 1>, <3, 2> 1, [ <2, 1, 1>, <1, 1, 1>> I>>

Yp := PO[1]; // "Y prime" = Y’

fp := PO[2]; // "f prime" = £’

h := PO[3];

> IsFibration(fp,Xp,Yp);

false

> IsQis_Bound(fp,Xp,Yp,1);

false

Here, the pushout f': X’ — Y’ of the acyclic fibration f : X — Y is neither a fibration nor a
quasiisomorphism, as we calculated with Magma. We can also directly see that

|{6 cEx esxy = 2}| =1 753: |{€ € Eyriesyr = 2Vf/ = 1}|

and that [(Cy, X )gpn| =1# 3 = [(C1,Y")cpnl- o

Assertion 253 In a Quillen closed model category, a pullback of an acyclic cofibration is a
cofibration.

This assertion is false.
Counterexample in Gph.

We consider the following graphs.

Let f = (Vy,Ef) : X =Y be the graph morphism with
1V = 1.

Then the graph morphism f is an acyclic cofibration, as we calculated with Magma [2].
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Let ¢ = (V,,E,) : Y/ = Y be the graph morphism with

1V, =1,

2V, =2,

3V, =2,
and with

aB, =4.

Let f': X’ — Y’ be the pullback of f: X — Y along q.
X =X
r
fl %f
Y/ T> Y .
Via Magma, we obtain Vx = {1} and Ex, = §) and
1V =1,

and
1V, =1.

X' 1

The graph morphism f is an acyclic cofibration, but the graph morphism f’ is not, as we
calculated with Magma:

X :=<[1],[>;

Y = <[1,2],[<1,1,2>]>;

Yp := <[1,2,3],[<1,1,2>]>; // "Y prime" = Y’

f = <[<1,1>],[1>;

q = <[<1,1>,<2,2>,<3,2>],[<<1,1,2>,<1,1,2>>]>;
> IsGraphMorphism(f,X,Y);

true

> IsAcCofib(£f,X,Y);

true

> IsGraphMorphism(q,Yp,Y);

true

PB := PullbackGraphs(X,Y,Yp,f,q);

> PB;

<[ 1171, [O>, <[ <1, 1>17, >, <[ <1, 1> 17, [O>;
Xp := PB[1]; // "X prime" = X’

fp := PB[2]; // "f prime" = f’

q := PB[3];
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> IsAcCofib(fp,Xp,Yp);
false

> AcCofiblto4(fp,Xp,Yp);
false

> AcCofib5(fp,Xp,Yp);
false

We can see that the vertex 3 € Vy \ Vx/p does not have an edge e € Ey» such that ety = 3.
So the graph morphism f': X’ — Y’ does not satisfy (AcCofib 3). Hence it is not an acyclic
cofibration.

The pullback f' : X’ — Y’ of the acyclic cofibration f : X — Y is not a cofibration since
first, it is not an acyclic cofibration, and second, it is a quasiisomorphism as (C, ,Y”")gph = 0 =
(Cry X')Gpn , for n € N, or by Remark 125; cf. Lemma 185.

Alternatively, to show that f’ is not a cofibration, we can consider the commutative diagram

X’—p>Cl

1k

Y/T'ClL]D(),

where 1V, := vy, 1V, = (1,vg), 2V, = (1,vo) and 3V, := (2,%).

The graph morphism ¢; is in fact a quasiisomorphism since (Cy,¢1)gpn 1S injective and
[(Ck, Ci)apn| =1 = [(Cy, C1 UDg)apnl-

Moreover, ¢ is a fibration, as we will verify with Magma. So ¢; is an acyclic fibration.

The unique graph morphism A : Y’ — C; maps the vertex 3 to v .

So we have 3V, = (2,v¢) # (1,vo) =vo V,, =3 Vy,, .

Thus hty # 7.

So f’ does not have the left lifting property with respect to the acyclic fibration ¢; .

So f': X" = Y’ is not a cofibration; cf. Definition 144. o

Xp := <[1],0>; // "X prime" = X’

p := VtoE(Xp,C(1), [<1,1>]);

> p;

<[ <1, 1> 17, [I>

Yp := <[1,2,3],[<1,1,2>1>; // "Y prime" = Y’
fp := <[k1,1>1,0>; // "f prime" = £’

C1D0 := <[0,1],[<0,1,0>]>;

r = <[<1,0>,<2,0>,<3,1>],[<<1,1,2>,<0,1,0>>]>;
iota_1 := VtoE(C(1),C1DO, [<1,0>]);

> iota_1;

<[ <1, 0> 1, [ <<1, 1, 1>, <0, 1, 0>> ]>

> IsFibration(iota_1,C(1),C1D0);

true
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> Lift(Xp,C(1),Yp,C1D0,p,r,fp,iota_1);
false

Note that in Gph, a pullback of an acyclic cofibration is a quasiisomorphism; cf. Remark 176.
Assertion 254 Consider the following assertions (1-2) in a Quillen closed model category.
(1) Suppose given a commutative diagram as follows.

Xty

I
AN

A

Then the graph morphism w : Y’ — Z is an acyclic cofibration.

(2) Suppose given a commutative diagram as follows.

x—d.vy

9' h
,

X/ Y/ q

-

A

Then the graph morphism w : Y’ — Z is a cofibration.

The assertions (1) and (2) are false.
Ad (1). Counterexample in Gph.

We consider

where ¢, Ey, = ey and & Ey, := ey; cf. Remarks 166 and 171.

Magma gives

€1

P 1——=2

N

3
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We now consider

Do —o—= Dy
to,1 g1
- id
D, —%-p XM
\\ h
0.
Dy
We have
h: P — D1
A/ 1 — {70
2 = \71
3 =
Eh e = éo
€y > éo

Note that the graph morphism idp, : D; = Dy is an acyclic cofibration; cf. Remark 165.

But the graph morphism h : P — D; is not an acyclic cofibration, since neither Vj, nor E; are
injective; cf. Definition 162.

DO := D(0);

D1 := D(1);

f := VtoE(DO,D1, [<0,0>]); // iota_{0,1}
> DO;

<[o0171, [O>

> D1;

<fo, 11, [<0, 0, 1> 1>

> f;

<[ <0, 0> 1, [1I>
PO := PushoutGraphs(D0,D1,D1,f,f);

> PO[1];

<[1, 2,31, [<1,1, 2>, <1, 2, 3> 1>

> PO[2];

<[ <0, 1>, <1, 2> 1, [ %<0, 0, 1>, <1, 1, 2>> ]I>
> PO[3];

<[ <0, 1>, <1, 3> 1], [ <<0, 0, 1>, <1, 2, 3>> I>

> IsAcCofib(Identity(D1),D1,D1);

true

h := VtoE(PO[1],D1,[<1,0>,<2,1>,<3,1>]);

> h;

<[ <1, 0>, <2, 1>, <3, 1> ], [ <1, 1, 2>, <0, 0, 1>>, <1, 2, 3>, <0, 0, 1>> 1>
> IsEqual (ComposeGraphMorphisms(PO[2],h),Identity(D1));

true
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> IsEqual (ComposeGraphMorphisms (PO[3],h),Identity(D1));
true

> IsAcCofib(h,P0[1],D1);

false

> IsFibration(h,PO[1],D1);

true

Note that h is a quasiisomorphism by (2 of 3).
Thus h is not a cofibration.
By the way, h is an acyclic fibration as it is a quasiisomorphism and a fibration.

Ad (2). Counterexample in Gph.

We consider
L0,1

LO,I} tgl
J
Dy ——P
where ¢y Eg, := e and ¢ Ey, := ey as above; cf. Lemma 185 and Remark 148.

We now consider
0,1

as above.
Note that the graph morphism idp, : D; = Dy is a cofibration; cf. Remark 145.
But we will show that the graph morphism A : P — D; is not a cofibration.

Since (C,,,P) = 0 = (C,, D;) the graph morphism h : P — D; is a quasiisomorphism; cf.
Definition 115.

But the graph morphism h is not an acyclic cofibration since it does not satisfy (AcCofib 1)
since 2V, =v; =3V,,.

Since we have AcCofib = CofibNQis the quasiisomorphism h is not a cofibration; cf.
Lemma 175. 0

Assertion 255 Suppose given a pushout as follows.

x—1.vy

|k

X —=Y
f/
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If Y and X' are cofibrant, then Y’ is cofibrant.
This assertion is false.
Counterezample in Gph.

We consider the following graph.

B1 B2
/X0 /X0
H : IVQV?)

Ba B3

The graph H is not cofibrant; cf. Definition 150.

Assume that H is cofibrant. Consider f : G—+= H from Example 215. Then we obtain a
commutative diagram as follows

) —G
L1
H e H .
But f: G — H is not a retraction; cf. Counterexample 2 to Assertion 245.

However, Magma yields a pushout as follows.

DO_>CZ

|

CQ—>H

Note that C, is cofibrant; cf. Remark 151.

DO := D(0);

C :=C(2);

f := VtoE(DO,C, [<0,1>]);

> DO;

<to1l, [I>

> C;

<[1, 217, [ <1, 1, 2, <2, 2, 1>]1>
> f;

<[ <0, 1> 1, [I>
PO := PushoutGraphs(DO,C,C,f,f);

> PO[1];

<[1, 2,317, [<1, 1, 2>, <2, 2, 1>, <1, 3, 3>, <3, 4, 1> 1>

> PO[2];

<[ <1, 1>, <2, 2> 7, [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>> 1>
> PO[3];

<[ <1, 1>, <2, 3> 17, [ <1, 1, 2>, <1, 3, 3>>, <2, 2, 1>, <3, 4, 1>> 1>
We obtain that PO[1]~ H.

Remark 256 Using Gph?, we can falsify the assertions dual to Assertions 251 — 255.
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9.5 Counterexamples in Gph
Assertion 257

(1) Suppose given an acyclic fibration f: G —+= H .
Suppose given n € Zsy . Suppose given graph morphisms C, 5Gand C, L G,
IfCopnNC,q=0, then C,pfNC,qf =0.

(2) Suppose given an acyclic fibration f: G —+= H .
Suppose givenn € Zxy . Suppose given graph morphisms C, 5a C,L5GandC, S G.

If C,p, C,q and C,r are pairwise disjoint, so are C,pf, C,qf and C,rf.

The assertions (1, 2) are false.

Counterezamples.

Ad (1). We consider the graph morphism ¢ : K — H from Example 216.
We let n :=2

We consider the graph morphisms p,q : C; = K, where vq V, :=1, v1 V, := 2, vo V, := 2’ and
vi Vg i=3.

Then we have Cop N Cyq =0, but Cypf N Cyqf consists the vertex 2.
Ad (2). We consider the graph morphism ¢ : K — H from Example 218.
We let n =2

We consider the graph morphisms p,q,r : C; = K where vV, :=1, v1 V, := 2, vy V, := 2/,
viVy:=3,vV,:=3 and v; V, :=4.

Then we have Cop N Cyq =0, but Cypf N Cyqf consists the vertex 2.
And we have CoqN Cor =0, but Cyqf NCyrf consists the vertex 3. n

Assertion 258

(1) Suppose given a graph morphism f: G — H.
If for each n > 1 and each graph morphism u : C,, — H such that E, s injective there

exists a unique graph morphism u : C, — G with uf = u, then f is a quasiisomorphism.

(2) Suppose given m € N such that there does not exist an injective graph morphism
g: C, = G forn > m and such that there does not exist an injective graph mor-
phism h : C,, = H forn > m and such that the map (C,,, f)apn is bijective for n € [1,m].

Then the graph morphism f : G — H is a quasiisomorphism.

The assertions (1, 2) are false.
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Counterexample.

We consider the following graph morphism.

G: (1 2 e 3.4

H: 51@1352

Here, f : G — H is the graph morphism with

1V;=1 2V;=1 3Vy=1 4V;=1
OllEfzﬁl (12Ef:52 043Ef:51 Oé4Ef=52

Ad (1).

There are two graph morphisms p,q : C; — H with E, , E, injective, having ey E, = 8; and
€ Eq = 62 .

For each of these injective graph morphisms there exists a unique graph morphism p,g: C; - G
such that pf = p and ¢f = q.

There are two graph morphisms p, ¢ : C; — H with E, and E, injective. In particular, we have
epE, =08 and e E, = B2

For each of these injective graph morphisms exists a unique graph morphism p,g : Co — G
such that pf = p and ¢f = q.

But the graph morphism f : G — H is not a quasiisomorphism.

Let g : C3 — G be the graph morphism with

voVg=1, viVy=1, vyV,=1,
0By =01, erEg =02, exEp =0 .
There does not exist a graph morphism g : C3 — G such that gf = g¢.
So the graph morphism f : G — H is not a quasiisomorphism.
Ad (2).

We have m = 2 since there does not exist an injective graph morphism g : C, — G for n > 2
and there does not exist an injective graph morphism h : C,, — H for n > 2. Furthermore,
(Ch s f)apn 1s bijective for n € [1,2], but (Cs, f)gph is not bijective since it is not surjective. o
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Assertion 259 Suppose given
/

X —Y
|
J
X —=Y
f/
in Gph.

(1) If (Cy, f)apn s surjective for n > 1, then (C,,, f')cpn is surjective for n > 1.

(2) If f is a retraction, then f' is a retraction.

The assertions (1) and (2) are false.

Counterexample.

Let X :=CoUUCy. Let Y :=Cy. Let f:=dc, : CoUCy = Cy.

Then f is a retraction. In particular, (C,,, f)gpn is surjective for n > 1.

Let

o1 a5
X' 17 o B3 %M. 47 5

[eD) (073

Let g : Co LU Cy — X be defined by

(L,vo)V, =1, (1,v1)V, =2,
(2,vo) Vg :=5, (2,v1)V,:=4
This defines g since Cs LI Cy is thin; cf. Remark 77.

We form the pushout
!

X—Y
|

X/ !

f/

via Magma.

X := DUC([2,2]);

Y := C(2);

Xp := <[1,2,3,4,5],[<1,1,2>,<2,2,1>,<2,3,3>,<3,4,4>,<4,5,5>,<5,6,4>]>;
// "X prime" = X’

f := VtoE(X,Y, [<1,1>,<2,2>,<3,1>,<4,2>]);
g := VtoE(X,Xp, [<1,1>,<2,2>,<3,56>,<4,4>]);
PO := PushoutGraphs(X,Y,Xp,f,g);

Yp := PO[1]; // "Y prime" = Y’

fp := PO[2]; // "f prime" = £’

h := PO[3];
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We have obtained

/51N /53\.\
/.
Y| 17 27 3

B2 Ba

We verify that (C,, , f')cpn is not surjective.

listXp := ListGraphMorphisms(C(2),Xp);

listYp := Sort(ListGraphMorphisms(C(2),Yp));

listXpfp := RedSeq([ComposeGraphMorphisms(k,fp) : k in listXp]l);
// set of images

> #listYp;

4

> #listXpfp;

2

In particular, f’ is not a retraction.
We verify this again independently as follows.

We search for a coretraction to f’; i.e. a graph morphism ¢ : Y’ — X’ such that ¢f - f' = idy~ .

> Identity(Yp);

<[ <1, 1>, <2, 2>, <3, 3> ], [ <<1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2, 1>>,
<2, 3, 3>, <2, 3, 3>, <3, 4, 2>, <3, 4, 2>> ]>

list := ListGraphMorphisms(Yp,Xp);

> #list;

4

Cf := [ComposeGraphMorphisms(l,fp) : 1 in list];

> Cf;

[
<f<1, 1>, <2, 2>, <3, 1> ], [ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2,
1>>, <<2, 3, 3>, <2, 2, 1>>, <<3, 4, 2>, <1, 1, 2>> 1>,
<[ <1, 2>, <2, 1>, <3, 2> ], [ <1, 1, 2>, <2, 2, 1>>, <2, 2, 1>, <1, 1,
2>>, <<2, 3, 3>, <1, 1, 2>>, <<3, 4, 2>, <2, 2, 1>> 1>,
<[ <1, 2>, <2, 1>, <3, 2> ], [ <<1, 1, 2>, <2, 2, 1>>, <2, 2, 1>, <1, 1,
2>>, <<2, 3, 3>, <1, 1, 2>>, <3, 4, 2>, <2, 2, 1>> 1>,
<[ <1, 1>, <2, 2>, <3, 1> 1, [ <1, 1, 2>, <1, 1, 2>>, <2, 2, 1>, <2, 2,
1>>, <<2, 3, 3>, <2, 2, 1>>, <<3, 4, 2>, <1, 1, 2>> 1>

Cfid := [1 : 1 in 1list | IsEqual(ComposeGraphMorphisms(1l,fp),Identity(Yp))];
> #Cfid;
0

So f": X’ = Y’ is not a retraction since there does not exist a coretraction. o
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Assertion 260 Suppose given an acyclic fibration f: G—— H .
Suppose giwven n € N and an injective graph morphism ¢ : C, — G.
Then the graph morphism ¢ - f is injective.

This assertion is false.

Counterexample.

We consider the graphs GG, H and the acyclic fibration f as in Example 215. Consider the
injective graph morphism ¢ : C4 — G given by

VIVL:17 VQVL:27

v3V, =3, vaV, =2,

and by
et B, =ar, eE =a;,
egEL = Q4 , e4EL = 7 .
Then (v9) V,y =2 = (v4) V,s. So the graph morphism ¢ - f is not injective. o

Assertion 261 Suppose given n € N and a graph morphism f : C, — G. Then there exists
k € N and a graph morphism g : C, — G such that E4 is injective and C,, f = Cy g.

This assertion is false.
Counterezample.

We consider the following graph.

We consider the graph morphism f : C; — G with
voVyi=1, viVpi=2, voVpi=1, v3Vpi=3, vy Vpi=2
ey =a1, etEfi=ay, ebBf:=a3, esBy:=ay, esEf =0y
Assume that there exists £ € N and an injective graph morphism ¢ : C, — G such that
Cpnf=Crg.
Since C,, f = G, we have k = |E¢g | = 4.
Without loss of generality, we have eg By = o .
Hence e; E; = ay .
Hence e; E; = a3, using injectivity of Ey .
Hence es E;, = ay .
Hence e E; = e, E; = ap .

Contradiction. o



Chapter 10

Algorithmic treatment of graphs

We use Magma [2] to codify finite graphs and graph morphisms in order to perform calculations.

10.1 Implementation of graphs

In the following functions we calculate graphs and graph morphisms as introduced in Defini-
tion 45 and 54.

In our implementation, a graph is a tuple consisting of its list of vertices as first entry and its
list of edges as second entry.

An edge is a triple consisting of its source vertex as first entry, its name as second entry and
its target vertex as third entry.

For instance, in Example 49 we consider the graph

a1
G: ar (C1 223 4
ag

It has the following codification.

G :=<[1,2,3,4],[<x1,1,2>,<1,2,2>,<3,3,2>,<1,4,1>]>;
> G;
<[1, 2, 3,417, [ <1, 1, 2>, <1, 2, 2>, <3, 3, 2>, <1, 4, 1> 1>

Note that the edges are codified by their indices, so e.g. 1 ——=>2 is codified as <1,2,3>, and
1 -1 is codified as <1,4,1>.

Here,

> G[1];
[1, 2, 3, 4]

239
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is the list of the four vertices in the graph G and

> G[2];
[ <1, 1, 2>, <1, 2, 2>, <3, 3, 2>, <1, 4, 1> ]

is the list of the four edges in the graph G.

The following function SetGraphExample gives us a random graph with exactly e edges and v
vertices.

SetGraphExample := function(v,e) // v: number of vertices, e: number of edges
edges := [];
for j in [1..e] do
edges cat:= [<Random([1..v]),j,Random([1..v])>];
end for;
return <[i : i in [1..v]],edges>;
end function;

For example the following graph has been obtained by this function.

> SetGraphExample(3,4);
<[1,2,31, [<1,1, 2, <2,2, 3>, <3, 3, 1>, <, 4, 3> 1>

Given n in N, with the function CyclicGraph we calculate the cyclic graph C, .

CyclicGraph := function(n) // returns cyclic graph with n edges
return <[i : i in [1..n]],[<i,i,i+1> : i in [1..n-1]] cat [<n,n,1>]1>;
end function;

For example, we get

> CyclicGraph(1);

<117, [<1,1, 1> 1>

> CyclicGraph(2);

<[1, 271, [ <1, 1, 2>, <2, 2, 1> 1>

> CyclicGraph(3);

<[ 1, 2,371, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 1> I>

> CyclicGraph(4);

<[1,2,3,471, [<1, 1, 2>, <2, 2, 3>, <3, 3, 4>, <4, 4, 1> 1>
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€2
—
C4 . Vo V3

Note that we have v, = vy and e4 = ¢y.

For further use, we abbreviate
C := CyclicGraph; // %h
Given n in N, with the function DirectGraph we calculate the direct graph D, .

DirectGraph := function(n)
return <[i : i in [0..n]],[<i,i,i+1> : i in [0..n-1]1]>;
end function;

For example, we get

> DirectGraph(0);

<f o1, [I>

> DirectGraph(1);

<fo, 11, [<0, 0, 1>1>

> DirectGraph(2);

<0, 1,21, [ <0, 0, 1>, <1, 1, 2> 1>

> DirectGraph(3);

<[ 0, 1, 2,31, [<0, 0, 1>, <1, 1, 2>, <2, 2, 3> ]>

D3 : Vo Vi Vo V3

For further use, we abbreviate
D := DirectGraph; // %h
With the function IsThin we can test if a given graph G is thin.

IsThin := function(G)

E := {<e[1],e[3]> : e in G[2]};
return #E eq #G[2];

end function;

For example, given the graph G from above we get

> IsThin(G);
false

> IsThin(C(4));
true
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10.2 Implementation of graph morphisms

In our implementation, a graph morphism f : G — H is a tuple consisting of the map V; as
first entry and the map E; as second entry.

Such a map on vertices is a list of tuples with each vertex vg € Vg of the graph G as first entry
and its image vg Vy € Vy as second entry.

Such a map on edges is a list of tuples with each edge eq € Eg of the graph G as first entry
and its image eq Ey € Ey as second entry.

Given graphs G and H as shown below, for example f is a graph morphism from G to H.

G:=<[1,2,3,47, [<1, 1, 1>, <1, 2, 2>, <3, 3, 2> 1>;
H:=<[1,2,31, [<1, 1, 2>, <2, 2, 2>, <3, 3, 2> 1>;
f = <[ <1, 2>, <2, 2>, <3, 1>, <4, 1> 1],

[ <1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>> <<3, 3, 2>, <1, 1, 2>> 1>;

We have the map on the vertices

> f[1];
[ <1, 2>, <2, 2>, <3, 1>, <4, 1> ]

and the map on the edges

> f[2];
[ <<1, 1, 1>, <2, 2, 2>>, <<1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>> ]

We have
aq
G 4 1
-
3.9
£
B2
()

and the graph morphism f: G — H with

1Vf:2 2Vf:2 Sszl 4Vf:1
o Er = By 042Ef:52 ag B :51-



243

With the function IsGraphMorphism we can test if a given pair of maps m from a given graph
G to a given graph H is a graph morphism.

IsGraphMorphism := function(m,G,H) // m = <v,e>

v :=m[1];

e := m[2];

// test, if v is a map:

if not SequenceToMultiset([x[1] : x in v]) eq SequenceToMultiset(G[1]) then
return false;

end if;

if not SequenceToSet([x[2] : x in v]) subset SequenceToSet(H[1]) then
return false;

end if;

// test, if e is a map:

if not SequenceToMultiset([x[1] : x in e]) eq SequenceToMultiset(G[2]) then
return false;

end if;

if not SequenceToSet([x[2] : x in e]) subset SequenceToSet(H[2]) then
return false;

end if;

// test, if v and e are compatible concerning source and target:

for x in e do
if not &and[<x[1][1],x[2]1[1]1> in v, <x[1]1[3],x[2][3]> in v] then

return false;

end if;

end for;

return true;

end function;

We can confirm that the graph morphism f above actually is a graph morphism.

> IsGraphMorphism(f,G,H);
true

Moreover, we give an example of a pair of maps g

g = <[<1,2>,<2,2>,<3,2>,<4,1>],
[<<1,1,1>,<2,2,2>>,<<1,2,2>,<2,2,2>>,<<3,3,2>,<1,1,2>>]>;

for which

> IsGraphMorphism(g,G,H);
false

Using the following functions we calculate the list of all graph morphisms from a given graph
G to a given graph H.
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IsRightUnique := function(u) // u: relation, e.g. u := [<1,3>,<1,4>,<2,3>],
// or u := {<1,3>,<1,4>,<2,3>}
right_unique := true;
left_elements := {x[1] : x in u};
for y in left_elements do
if #{x[2] : x in u | x[1] eq y} ge 2 then
right_unique := false;
break y;
end if;
end for;
return right_unique;
end function;

CompletionsToMaps := function(D,C,u)

// D/C: list of elements in the domain/codomain,

// u: right unique relation

// e.g. D :=1[1,2,3,4]; C := [1,2,3,4,5]; u := {<1,3>, <3,5>};

to_be_mapped := [x : x in D | not x in {y[1] : y in u}];
list := [ul;

for i in to_be_mapped do

list_new := [];

for v in list do
for j in C do
list_new cat:= [v join {<i,j>}];
end for;
end for;
list := list_new;
end for;
return list;
end function;

RelationOnVerticesFromPartialMapOnEdges := function(x);
// x: partial map on edges from graph G to graph H (G, H not required as data)

return {<z[1][1],z[2][1]> : z in x} join {<z[1][3],z[2][3]> : z in x};
end function;

For further use, we abbreviate
RVPME := RelationOnVerticesFromPartialMapOnEdges; // %k

ListGraphMorphisms := function(G,H)

list := [[1];
for z in G[2] do
list_new := [];

for w in H[2] do
for x in list do
x_test := x cat [<z,w>];



e

if IsRightUnique(RVPME(x_test)) then // %%
list_new cat:= [x_test];

end if;
end for;
end for;
list := list_new;
end for;
list_mor := [];
for y in list do
list_completions_to_maps_on_vertices := [Sort(SetToSequence(x)) : x in

CompletionsToMaps (G[1],H[1],RVPME(y))1; // %%
list_mor cat:= [<x,y> : x in list_completions_to_maps_on_vertices];
end for;
return list_mor;
nd function;

For example, we can list all graph morphisms between the graphs G and H given above.

>

[

]

>

[

]

ListGraphMorphisms(G,H) ;

<[ <1, 2>, <2, 2>, <3, 1>, <4, 1> 1,

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <1, 1,
<[ <1, 2>, <2, 2>, <3, 1>, <4, 2> 1],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <1, 1,
<[ <1, 2>, <2, 2>, <3, 1>, <4, 3> 1],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <1, 1,
<[ <1, 2>, <2, 2>, <3, 2>, <4, 1> 1],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <2, 2,
<[ <1, 2>, <2, 2>, <3, 2>, <4, 2> ],

[ <1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <L3, 3, 2>, K2, 2,
<[ <1, 2>, <2, 2>, <3, 2>, <4, 3> 1],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <2, 2,
<[ <1, 2>, <2, 2>, <3, 3>, <4, 1> 1],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <3, 3,
<[ <1, 2>, <2, 2>, <3, 3>, <4, 2> ],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <3, 3,
<[ <1, 2>, <2, 2>, <3, 3>, <4, 3> 1],

[ <<1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <3, 3,

ListGraphMorphisms (H,G);

<[ <1, 1>, <2, 1>, <3, 1> ], [ <1, 1, 2>, <1, 1, 1>>,
<2, 2, 2>, <1, 1, 1>>, <3, 3, 2>, <1, 1, 1>> 1>

Note that the graph morphism f: G — H from above

2>>

2>>

2>>

2>>

2>>

2>>

2>>

2>>

2>>
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> £
<[ <1, 2>, <2, 2>, <3, 1>, <4, 1> 1,
[ <1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <KL3, 3, 2>, <1, 1, 2>> ]>

is the first entry in ListGraphMorphisms(G,H).
Given a graph GG, we can get the identity idg with the following function Identity.

Identity := function(G);
return <[<x,x> : x in G[1]], [<x,x> : x in G[2]]>;
end function;

For example, for G as above we get

> G;
<[1,2,3,471, [<1, 1, 1>, <1, 2, 2>, <3, 3, 2> 1>
> Identity(G);
<[ <1, 1>, <2, 2>, <3, 3>, <4, 4> 17,
[ <1, 1, 1>, <1, 1, 1>>, <1, 2, 2>, <1, 2, 2>>, <3, 3, 2>, <3, 3, 2>> ]>

With the function Is_Injective we can test if a given graph morphism f from a given graph
G to a given graph H is injective.

With the function Is_Surjective we can test if it is surjective, with the function Is_Bijective
we can test if it is bijective.

Is_Injective := function(m,G,H)

// m: G -> H: <morphism_on_vertices,morphism_on_edges>

return #SequenceToSet([u[2] : u in m[1]]) eq #m[1] and
#SequenceToSet ([u[2] : u in m[2]]) eq #m[2];

end function;

Is_Surjective := function(m,G,H)

// m: G -> H: <morphism_on_vertices,morphism_on_edges>

return #SequenceToSet([u[2] : u in m[1]]) eq #H[1] and
#SequenceToSet ([ul2] : u in m[2]]) eq #H[2];

end function;

Is_Bijective := function(f,G,H)
return Is_Injective(f,G,H) and Is_Surjective(f,G,H); // %h
end function;

For example, given G, H and f as above, we get

> Is_Injective(f,G,H);
false
> Is_Surjective(f,G,H);
false
> Is_Bijective(f,G,H);
false
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With the function ComposeGraphMorphisms we can compose given graph morphisms

G-Lt-pg-2.7.

ComposeGraphMorphisms := function(p,q)
v := [1; // v for vertices
for x in p[1] do

v cat:= [<x[1],y[2]> : y in q[1] | x[2] eq y[11];

end for;
e := []; // e for edges
for x in p[2] do

e cat:= [<x[1],y[2]> : y in q[2] | x[2] eq y[11];

end for;
return <v,e>;
end function;

For example, let

p := ListGraphMorphisms(G,H) [8];
q := ListGraphMorphisms(H,H) [1];
Then we get

> ComposeGraphMorphisms(p,q) ;
<[ <1, 2>, <2, 2>, <3, 1>, <4, 2> ],

[ <1, 1, 1>, <2, 2, 2>>, <1, 2, 2>, <2, 2, 2>>, <<3, 3, 2>, <1, 1, 2>> I>

The result equals ListGraphMorphisms (G,H) [2].

With the function IsIsomorphic we can test if given graphs G and H are isomorphic.

In case of isomorphic graphs, we additionally give a graph isomorphism as output.

IsIsomorphic := function(G,H) // G, H: graphs
if #G[1] ne #H[1] or #G[2] ne #H[2] then
return <0,false>;

end if;

list := ListGraphMorphisms(G,H); // %k
for m in list do
if Is_Bijective(m,G,H) then // %%

return <m,true>;

end if;

end for;

return <0,false>;

end function;

For example:

> IsIsomorphic(G,H);
<0, false>
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With the function IsSubgraph we can test if a given graph G is a subgraph of a given graph H.

If so, we additionally give the inclusion morphism as output.

IsSubgraph := function(G,H) // returns true if G is a subgraph of H
for v in G[1] do
if not v in H[1] then
return <0,false>;
end if;
end for;
for e in G[2] do
if not e in H[2] then
return <0,false>;

end if;
end for;
m := <[<v,v> : v in G[1]], [<e,e> : e in G[2]]>;

return <m,true>;
end function;

A test whether G is a full subgraph of H:

IsFullSubgraph := function(G,H);
if not IsSubgraph(G,H)[2] then // %%
return false;
end if;
return not &or[e[1] in G[1] and e[3] in G[1] and not e in G[2] : e in H[2]];
end function;

For example, for

Gl :=<[ 1,217, [<1, 1, 1>, <1, 2, 2> 1>;
H1 = [ H 2, 8 ]3 [<1, 1, 1>’ <1, 2, 2>: <2, 3, 1>: <2, 4, 2>3 <3, 5, 2> ]>;
we get

> IsSubgraph(G1,H1);

<[ <1, 1>, <2, 2> 7, [ <1, 1, 1>, <1, 1, 1>>, <1, 2, 2>, <1, 2, 2>> 1>, true>
> IsFullSubgraph(G1,H1);

false

With the function VtoE we can complete a given map on vertices from a given graph G to a
given thin graph H to a graph morphism.

If such a graph morphism does not exist, the function prints this out and returns <0,0>.

VtoE := function(G,H,Vf) // H thin, Vf = [<1,2>,<2,5>,<3,1>,<4,2>] map on
// vertices
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for e in G[2] do
if #[h : h in H[2] | h[1] eq [v[2] : v in Vf | v[1] eq e[1]][1] and
h[3] eq [v[2] : v in Vf | v[1] eq e[3]]1[1]] eq O then
print "graph morphism does not exist";
return <0,0>;
end if;
end for;
Ef := [<e,[h : h in H[2] | h[1] eq [v[2] : v in Vf | v[1] eq e[1]]1[1] and
h[3] eq [v[2] : v in Vf | v[1] eq e[3]1]1[1]][1]> : e in G[2]];
return <Vf,Ef>;
end function;

E.g. the graph morphism f from above can be obtained as
> VtoE(G,H,f[1]);

With ListGraphMorphisms_partial we get the list of graph morphisms f: G — H that obey
given partial mapping rules, without having to calculate the whole list of graph morphisms
from G to H.

This is useful for the search for quasiisomorphisms.

ListGraphMorphisms_partial := function(f,G,H)

// returns all graph morphisms that obey given partial mapping rule f
vertices_partial := f[1];

vl := [n[1] : n in f[1]1];

edges_partial := f[2];

el := [n[1] : n in £[2]];

list := [[1];
for z in G[2] do
list_new := [];

if z in el then
H_edges := [n[2] : n in f[2] | n[1] eq z];

else

H_edges := H[2];

end if;

source := [v : v in H[1] | #[e : e in H[2] | e[1] eq v] ge 1];
target := [v : v in H[1] | #[e : e in H[2] | e[3] eq v] ge 1];

if z[1] in v1 then
[n[2] : n in £f[1] | n[1] eq z[1]];

source :
end if;
if z[3] in v1 then

target := [n[2] : n in f[1] | n[1] eq z[3]];

end if;
H_edges := [h : h in H_edges | h[1] in source and h[3] in target];
for w in H_edges do

for x in list do
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X_test := x cat [<z,w>];
if IsRightUnique(RVPME(x_test)) then // %%
list_new cat:= [x_test];

end if;

end for;

end for;

list := list_new;
end for;
list_mor := [];
for y in list do

list_completions_to_maps_on_vertices := [Sort(SetToSequence(x)) : x in

CompletionsToMaps(G[1],H[1] ,RVPME(y)
join SequenceToSet (£[11))]1; // Wh
list_mor cat:= [<x,y> : x in list_completions_to_maps_on_vertices];
end for;
return list_mor;
end function;

For example, for

G:=<[1,2,3,417, [<1, 1, 1>, <1, 2, 2>, <3, 3, 2> 1>;
H:=<[1, 2,31, [<1, 1, 2>, <2, 2, 2>, <3, 3, 2> 1>;

b b

as above, we get

> ListGraphMorphisms_partial (<[<4,1>],[]>,G,H);

[
<[ <1, 2>, <2, 2>, <3, 1>, <4, 1> ], [ <1, 1, 1>, <2, 2, 2>>,
K1, 2, 2>, <2, 2, 22>, <3, 3, 2>, <1, 1, 2>> 1>,
<[ <1, 2>, <2, 2>, <3, 2>, <4, 1> 7, [ k1, 1, 1>, <2, 2, 2>>,
<1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <2, 2, 2>> ]>,
<[ <1, 2>, <2, 2>, <3, 3>, <4, 1> ], [ <1, 1, 1>, <2, 2, 2>>,
K1, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <3, 3, 2>> 1>

]

The function DisjointUnionCycles produces a graph isomorphic to a disjoint union of cycles.
E.g. for 1ist := [2,4,5], it returns a graph isomorphic to C, LI C4LIC5.

DisjointUnionCycles := function(list) // e.g. list := [2,4,5]
Gl := [1 : i in [1..&+1listl]; // vertices
lists := [[u : u in [1..1ist[1]]]] cat [[u : u in

[&+[1ist[k] : k in [1..i-111+1..&+[1ist[k] : k in [1..i1111 : i in [2..#1listl];
edges := &cat[[<t[i],t[i+1]> : i in [1..#t-1]1] cat [<t[#t],t[1]1>] : t in lists];
edges_numbered := [<edges[i] [1],i,edges[i][2]> : i in [1..#edges]];
G := <G1,edges_numbered>;
return G;

end function;
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We abbreviate as follows.

DUC := DisjointUnionCycles; // %h

E.g. we get

> DUC([2,4,5]);

<[1, 2, 3, 4, 5,6, 7,8, 9, 10, 111, [ <1, 1, 2>, <2, 2, 1>, <3, 3, 4>,
<4, 4, 5>, <5, 5, 6>, <6, 6, 3>, <7, 7, 8>,

<8, 8, 9>, <9, 9, 10>, <10, 10, 11>, <11, 11, 7> 1>

With the function DCN we calculate the diagonal graph morphism d¢, : C,UC,, — C, for a
given n.

DCN := function(n)

G := DUC([n,nl); // %%
H :=C); // %h
f := VtoE(G,H,Sort([<i,i mod n> : i in [1..2*%n-1] | not i eq n] cat

[<n,n>,<2%n,n>]));
return <G,H,f>;
end function;

E.g. we get
> DCN(3) [3];
<[ <1, 1>, <2, 2>, <3, 3>, <4, 1>, <5, 2>, <6, 3> 1],

[ <1, 1, 2>, <1, 1, 2>>, <2, 2, 3>, <2, 2, 3>>, <3, 3, 1>, <3, 3, 1>>,
<4, 4, 5>, <1, 1, 2>>, <<5, 5, 6>, <2, 2, 3>>, <<6, 6, 4>, <3, 3, 1>> ]>

10.3 Calculating a pushout and a pullback of graphs

10.3.1 Calculating a pushout of graphs

The following functions return the equivalence relation that is generated by a given relation R
on M. Here a relation on M is a list of pairs with both entries in M.

RedSeq := function(S); // S: sequence, to be reduced and sorted
return Sort(SetToSequence(SequenceToSet(S)));
end function;

Equivclasses := function(R,M) // R: relation on set M
Rinv := [<r[2],r[1]> : r in R];
Diag := [<m,m> : m in M];

RR := [r : r in R cat Rinv | not r[1] eq r([2]];
equivclasses := [];
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Mtodo := [m : m in M];
while not #Mtodo eq O do
k := Mtodo[1];
kclassold := [];

kclassnew := [k];
while not #kclassnew eq #kclassold do
kclassold := kclassnew;

kclassnew cat:= [j[2] : j in RR | j[1] in kclassold];
kclassnew := RedSeq(kclassnew); // %%

end while;

equivclasses cat:= [kclassnew];

Mtodo := [u : u in Mtodo | not u in kclassnew];
end while;

return equivclasses;
end function;

Equivrelation := function(R,M) // R: relation on set M
equivclasses := Equivclasses(R,M); // %h

return Sort(&cat[[<k,1> : k, 1 in x] : x in equivclasses]);
end function;

With the following functions we calculate a pushout in Set.

DisjointUnionSets := function(X,Y); // X, Y lists
return [<1,x> : x in X] cat [<2,y> : y in Y];
end function;

PushoutSets := function(X,Y,X2,f,g); // £ : X > Y, g : X -> X2 maps
M := DisjointUnionSets(X2,Y); // %%

R := [ [<<1, g_elt[2]>, <2, f_elt[2]>> : g_elt in g, f_elt in f |

g_elt[1] eq x and f_elt[1] eq x][1] : x in X];

equiv := Equivclasses(R,M); // %%

u = [ [<x2,t> : t in equiv | <1,x2> in t][1] : x2 in X2];

v := [ [<Ky,t>: t in equiv | <2, y> in t]J[1] : y in Y];

return <equiv, u, v>; // pushout, u : X2 -> pushout, v : Y -> pushout
end function;

With the following function we calculate a pushout in Gph.

PushoutGraphs := function(X,Y,X2,f,g); // f : X > Y, g : X -> X2
// graph morphisms, returns the pushout
vertices := PushoutSets(X[1],Y[1],X2[1],£[1],gl11); // %%
edges := PushoutSets(X[2],Y[2],X2[2],f[2],g[2]); // %k
i : i in [1..#vertices[1]]];
i in [1..#edges([1]]]; // edges without source and target

N := [
E := [i
EE := [ <Index(vertices[1], [n : n in vertices[1] | <edges[1][e] [1][1],
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edges[1] [e] [1] [2] [1]> in n][1]),e, Index(vertices[1], [n :
n in vertices[1] | <edges([1][e][1][1],edges[1][e]l[1][2][3]> in n][1])> :
e in EJ;
// edges with source and target
PP := <N,EE>;
uN := [<x2, Index(vertices[1], [n[2] : n in vertices[2] | x2 eq n[1]11[1]) > :
x2 in X2[1]1]1; // <p,p@v>
uE := [<x2, Index(edges[1], [e[2] : e in edges[2] | x2 eq e[1]1]1[1]) > :
x2 in X2[21]; // <p,p@v>, second entry is number of edge
uEE := [ <x[1], <[ee[l] : ee in EE | ee[2] eq x[2]]1[1],x[2],[ee[3] : ee in EE |
ee[2] eq x[2]1[1]>> : x in uE]l; // <p,pQu>
// second entry with source and target
u := <ulN,uEE>;
vN := [<y, Index(vertices[1], [n[2] : n in vertices[3] | y eq n[1]1]1[1]) > :
y in Y[11]; // <p,p@v>
vE := [<y, Index(edges[1], [e[2] : e in edges[3] | y eq e[111[1]1) > :
y in Y[2]]; // <p,p@v>, , second entry is number of edge
VEE := [ <x[1], <[ee[l] : ee in EE | ee[2] eq x[2]][1],x[2],[ee[3] : ee in EE |
ee[2] eq x[2]1[1]>> : x in VvE]; // <p,p@u>
// second entry with source and target
v := <vN,vEE>;
return <PP,u,v>; // pushout, u : X2 -> pushout, v : Y -> pushout
end function;

E.g. we get

> PushoutGraphs(G,H,H,f,f);
<<[1,2,3,41, [ <1, 1, 2>, <2, 2, 2>, <3, 3, 2>, <4, 4, 2> 1>,
<[ <1, 1>, <2, 2>, <3, 3> 1, [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 2>, <2, 2, 2>>, <3, 3, 2>, <3, 3, 2>> ]>,
<[ <1, 1>, <2, 2>, <3, 4> ], [ <<1, 1, 2>, <1, 1, 2>>,
<2, 2, 2>, K2, 2, 2>>, <3, 3, 2>, <4, 4, 2>> I>>

10.3.2 Calculating a pullback of graphs

With the following function we calculate a pullback in Set.

PullbackSets := function(X,Y,Y2,f,g) // f: X -> Y, g: Y2 -> Y, maps between sets
// given as a list of tuples, e.g. f = [<x_1,y_1>,...,<x_n,y_n>]
P := Sort([<x,y2> : x in X, y2 in Y2 | #[<s,t> : s in f, t in g | x eq s[1] and
y2 eq t[1] and s[2] eq t[2]] eq 11);
return P;
end function;
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With the following function we calculate a pullback in Gph.

PullbackGraphs := function(X,Y,Y2,f,g)

// f: X -> Y, g: Y2 -> Y graph morphisms

vertices := PullbackSets(X[1],Y[1],Y2[1]1,£[1]1,gl11); // %h
edges := PullbackSets(X[2],Y[2],Y2[2],f[2],g[2]1); // %%

N :=[1 : i in [1..#vertices]];
E :=[1i : i in [1..#edges]]; // edges without source and target
EE := [<Index(vertices,<edges([e] [1][1],edges[e] [2][1]>),e,

Index(vertices,<edges[e] [1] [3],edges[e] [2] [3]>)> : e in E];
// edges with source and target

PP := <N, EE>;

VE := [<ee,edges[ee[2]][1]> : ee in EE]; // <p,p@v>
uE := [<ee,edges[ee[2]][2]> : ee in EE]; // <p,pCu>
vN := [<n,vertices[n][1]> : n in N]; // <p,p@v>

uN := [<n,vertices[n][2]> : n in NJ]; // <p,p@u>

v := <vN,vE>;

u := <ulN,uE>;

return <PP,u,v>; // pullback, u: pullback -> Y2, v: pullback -> X
end function;

E.g. we get

> PullbackGraphs(G,H,G,f,f);

<<[1, 2, 3,4, 5,6, 7,81, [ <1, 1, 1>, <1, 2, 2>, <1, 3, 3>, <1, 4, 4>,
<5, 5, 4> 1>,

<[ <1, 1>, <2, 2>, <3, 1>, <4, 2>, <5, 3>, <6, 4>, <7, 3>, <8, 4> ],
[ <1, 1, 1>, <1, 1, 1>>, <1, 2, 2>, <1, 2, 2>>, <1, 3, 3>, <1, 1, 1>>,

<1, 4, 4>, <1, 2, 2>>, <5, 5, 4>, <3, 3, 2>> 1>,

<[ <1, 1>, <2, 1>, <3, 2>, <4, 2>, <5, 3>, <6, 3>, <7, 4>, <8, 4> ],
[ <1, 1, 1>, <1, 1, 1>>, <1, 2, 2>, <1, 1, 1>>, <1, 3, 3>, <1, 2, 2>>,
<1, 4, 4>, <1, 2, 2>>, <5, 5, 4>, <3, 3, 2>> ]>>

10.3.3 Calculating induced morphisms of pushouts and pullbacks of
graphs

With the following functions we calculate the induced morphism of a given pushout respectively
pullback.

InducedMorphismSetsP0 := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X > X2, u2: X2 > Y2, v: X > Y, v2: Y > Y2

T := <Y2,u2,v2>;

P := PushoutSets(X,Y,X2,v,u); // %%

x2 := [<i,[t[2] : t in T[2] | t[1] in [r[1] : r in P[2] | r[2] eq i]]> :
i in P[1]];

y = [<i,[t[2] : t in T[3] | t[1] in [r[1] : r in P[3] | r[2] eq ill> :
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i in P[1]1];

c := [<r[1],r[2]1[1]> : r in x2 | not #r[2] eq 0] cat [<r[1],r[2][1]> :
r in y | not #r[2] eq 0];

return RedSeq(c); // %h

end function;

InducedMorphismGraphsPQ := function(X,X2,Y,Y2,u,u2,v,v2)
// u: X > X2, u2: X2 > Y2, v: X > Y, v2: Y -> Y2
T := <Y2,u2,v2>;
P := PushoutGraphs(X,Y,X2,v,u); // %h
x2_vertices := [<i,[t[2] : t in T[2]1[1] | t[1] in [r[1] : r in P[2][1] |
r[2] eq ill> : i in P[1][1]];
x2_edges := [<i,[t[2] : t in T[2][2] | t[1] in [r[1] : r in P[2][2] |
r[2] eq i]]1> : i in P[11[2]];
y_vertices := [<i,[t[2] : t in T[3][1] | t[1] in [r[1] : r in P[3][1] |
r(2] eq i]1> : i in P[1]1[1]1];
y_edges := [<i,[t[2] : t in T[3][2] | t[1] in [r[1] : r in P[3][2] |
r[2] eq i]l1> : i in P[1][2]1];
c_vertices := [<r[1],r[2][1]> : r in x2_vertices | not #r[2] eq O]
cat [<r[1],r[2][1]> : r in y_vertices | not #r[2] eq 0];
c_edges := [<r[1],r[2][1]> : r in x2_edges | not #r[2] eq 0]
cat [<r[1],r[2][1]> : r in y_edges | not #r[2] eq 0];
c := <RedSeq(c_vertices) ,RedSeq(c_edges)>; // %%
return c;
end function;

This allows us to decide whether a given commutative quadrangle is a pushout:

IsPushoutGraphs := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X > X2, u2: X2 > Y2, v: X > Y, v2: Y > Y2

p := InducedMorphismGraphsP0(X,X2,Y,Y2,u,u2,v,v2); // %h
return Is_Bijective(p,PushoutGraphs(X,Y,X2,v,u) [1]1,Y2); // Wh
end function;

With the following functions we calculate the induced morphism of a given pullback.

PullbackSets_num := function(X,Y,Y2,f,g) // f: X > Y, g: Y2 > Y
// maps between sets
// given as a list of tuples, e.g. f = [<x_1,y_1>,...,<x_n,y_n>]
P := Sort([<x,y2> : x in X, y2 in Y2 | #[<s,t> : s in f, t in g |
x eq s[1] and y2 eq t[1] and s[2] eq t[2]] eq 11);
PP := [i : i in [1..#P]];
v := [<i,P[i][1]> : i in PP]; // <p,pQ@v>
u := [<i,P[i][2]> : i in PP]; // <p,p@u>
num := [<i,P[i]> : i in [1..#P]];
return <PP,u,v,num>; // pullback PP, u: PP -> Y2, v: PP -> X
end function;
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PullbackGraphs_num := function(X,Y,Y2,f,g) // f: X > Y, g: Y2 -> Y
// graph morphisms

vertices := PullbackSets(X[1],Y[1],Y2[1]1,£[1]1,g[11); // %h

edges := PullbackSets(X[2],Y[2],Y2[2],f[2],g[2]1); // %%

N :=[1 : i in [1..#vertices]l];

E :=[i: i in [1..#edges]]; // edges without source and target

EE := [<Index(vertices,<edgesl[e] [1][1],edges[e] [2][1]>),e,
Index(vertices,<edges[e] [1] [3],edges[e] [2] [3]>)> : e in E];
// edges with source and target

PP := <N, EE>;

vE := [<ee,edges[ee[2]][1]> : ee in EE]; // <p,p@v>

uE := [<ee,edges[ee[2]][2]> : ee in EE]; // <p,pQu>

vN := [<n,vertices[n][1]> : n in N]; // <p,pQv>

uN := [<n,vertices[n][2]> : n in N]; // <p,p@u>

v := <vN,vE>;

u := <ulN,ukE>;

numvertices := [<i,vertices[i]> : i in [1..#vertices]];
numedges := [<i,edges[i]> : i in [1..#edges]];

num := <numvertices,numedges>;

return <PP,u,v,num>; // pullback PP, u: PP -> Y2, v: PP -> X
end function;

InducedMorphismSetsPB := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X => X2, u2: X2 > Y2, v: X > Y, v2: Y -> Y2

T := <X,v,u>;

P := PullbackSets_num(Y,Y2,X2,v2,u2); // %%

c_uncode := [<t,<[r[2] : r in T[2] | r[1] eq t]1[1],[r[2] : r in T[3]
r[1] eq t][1]>> : t in T[1]];

¢ := [<r[1],Index([p[2] : p in P[4]],r[2])> : r in c_uncode];

return c;

end function;

InducedMorphismGraphsPB := function(X,X2,Y,Y2,u,u2,v,v2)
// u: X > X2, u2: X2 > Y2, v: X > Y, v2: Y —> Y2
T := <X,v,u>;
P := PullbackGraphs_num(Y,Y2,X2,v2,u2); // %%
c_uncode_vertices := [<t,<[r[2] : r in T[2][1] | r[1] eq tl[1],[r([2] :
r in T[3]1[1] | r[1] eq t1[1]1>> : t in T[11[1]1];
c_uncode_edges := [<t,<[r[2] : r in T[2][2] | r[1] eq t]l[1], [r([2]
r in T[3]1[2] | r[1] eq t]1[11>> : t in T[1][2]];
c_vertices := [<r[1],Index([p[2] : p in P[4][1]],r[2])> :
r in c_uncode_vertices];

c_edges := [<r[1],Index([p[2] : p in P[4][2]],r[2])> : r in c_uncode_edges];

c := <c_vertices,c_edges>;
return c;
end function;
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This allows us to decide whether a given commutative quadrangle is a pullback:

IsPullbackGraphs := function(X,X2,Y,Y2,u,u2,v,v2)

// u: X > X2, u2: X2 > Y2, v: X > Y, v2: Y > Y2

p := InducedMorphismGraphsPB(X,X2,Y,Y2,u,u2,v,v2); // %h

return Is_Bijective(p,X,PullbackGraphs_num(Y,Y2,X2,v2,u2)[1]1); // %k
end function;

10.4 Calculating tree graphs

With the following functions we calculate the graph Tree(z, X) at a given vertex = € Vy of a
given graph X if Tree(x, X) is finite.

The function CyclesFromVertex returns true if cycles in a given graph G exist that contain a
given vertex x.

CyclesFromVertex := function(x,G) // G graph, x vertex in G
if #[a : a in G[2] | all] eq x] eq O then
return false;

end if;
S := {}; // S: set of vertices to achieve
Snew := {x};
while not #Snew eq #S do
S := Snew;

Snew join:= {a[3] : a in G[2] | al[1] in S};
if x in {al3] : a in G[2] | a[1] in S} then
return true,;
end if;

end while;

return false;

end function;

For example, for the graph
G2 :=<[1,2,31], [<2,1, 2>, <3, 2, 2>, <2, 3, 3>, <1, 4, 2> ]>;
the function yields

> CyclesFromVertex(1,G2);
false
> CyclesFromVertex(2,G2);
true
> CyclesFromVertex(3,G2);
true
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Given a graph G and a vertex r of G, the function VerticesToAchieve returns the list of vertices
v in G for which there exists a path from r to v.

VerticesToAchieve := function(G,r) // G: graph, r vertex in G
if #[a : a in G[2] | al1l] eq r] eq O then
return [];
end if;
S := {}; // S: set of vertices to achieve
Snew := {r};
while not #Snew eq #S do
S := Snew;
Snew join:= {al[3] : a in G[2] | a[1] in S};
end while;

return Sort(SetToSequence(Snew));
end function;

E.g. we get

> VerticesToAchieve(G2,1);

[1, 2, 3]

> VerticesToAchieve(G2,2);

[ 2, 3]

> VerticesToAchieve(G2,3);

[ 2, 3]

The following function CyclesInPathFromx returns true if some path from a given vertex x in
a given graph G can be restricted to a graph morphism to a cyclic graph C,, for some n.

CyclesInPathFromx := function(x,G)
return &or[CyclesFromVertex(v,G) : v in VerticesToAchieve(G,x)];
end function;

E.g. we get

> CyclesInPathFromx(1,G2);
true

The function Paths returns the list of paths in G starting in x if there are finitely many. Such
a path is given as a list of edges.

Paths := function(x,G) // G graph, x vertex in G[1],
if not CyclesInPathFromx(x,G) then // %%
Listofpaths := [[[1]];
if not #[[[e] : e in G[2] | e[1] eq x]] eq O then
Listofpaths cat:= [[[e] : e in G[2] | e[1l] eq x1];
else
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return &cat(Listofpaths);
end if;
newpaths := [<p,[e : e in G[2] | e[1] eq pl#p] [31]> :
p in Listofpaths[#Listofpaths] | not #[e : e in G[2] |
e[1] eq pl#pl [3]1] eq 0];
while not #newpaths eq O do
Listofpaths cat:= [&cat[&cat[[n[1] cat [n[2][i]]] : i in [1..#n[2]]]
n in newpaths]];
newpaths := [<p,[e : e in G[2] | e[1] eq pl#p][3]]> :
p in Listofpaths[#Listofpaths] | not #[e : e in G[2] |
e[1] eq pl#pl [3]1] eq 0];
end while;
return Listofpaths;
end if;
return "infinite";
end function;

The function TreeOfPaths returns the graph Tree(x, ) in case it is finite, for a given graph G
and one of its vertices x.

TreeOfPaths := function(x,G) // G graph, x vertex in G
if not CyclesInPathFromx(x,G) then // %%

P := Paths(x,G); // %h
V := &cat(P);
E := [<[0,<0,pl1],p>,p> : p in P[2]1];

E cat:= [<[p[i] : i in [1..#p-1]]1,<[pli] : i in [1..#p-11],pl[#pl.p>,p> :
p in V | #p ge 2];
return <V,E>;
end if;
return "infinite";
end function;

For example, for

G3 :=<[ 1, 2, 31, [ <1, "a", 2>, <2, "b", 3>, <1, "c", 3> 1>;
Cc(3);

we get

> Paths(1,G3);
[
[
(]
1,
[
[ <1, "a", 2> ],
[ <1, "c", 3> ]
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1,
[
[ <1, "a", 2>, <2, "b", 3> ]
]
]
> Paths(1,C(3));
infinite
> TreeOfPaths(1,G3);
<[
1,

[ <1, "a", 2> 1,
[ <1, "c", 3> 1,
[ <1, "a", 2>, <2, "b", 3> ]

1, [
<[], <0, <1, "a", 2>, [ <1, "a", 2> 1>, [ <1, "a",
<[, <0, <1, "c", 3>, [ <1, "c", 3> 1>, [ <1, "c",
<[ <1, "a", 2> 1,

<|: <1’ llall’ 2> ]’ <2, llbll, 3>, I: <1’ llall’ 2>, <2, |lbl|, 3> ]>’

[ <1, uan, 2>, <2, "b", 3> ]>]>
> TreeOfPaths(1,C(3));
infinite

With the function IsTreeDef we can calculate whether a given graph G is a tree using Defini-

tion 108.

IsTreeDef := function(G)
for r in G[1] do // searching root
if #[v : v in [g : g in G[1] | not g eq r] | not #[e :
e[3] eq v] eq 1] eq O then // (Tree 1)
if #[e : e in G[2] | e[3] eq r] eq O then // (Tree 2)

e in G[2]

if &and[v in VerticesToAchieve(G,r) : v in G[1]] then // (Tree 3) // %%

return true;
end if;
end if;
end if;
end for;
return false;
end function;

Cf. the function IsTree in §10.5 below.
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10.5 Testing properties of graph morphisms

With the following functions we test properties of graph morphisms as discussed in §3.

List0fnCycles := function(G,n) // G: graph
return ListGraphMorphisms(C(n),G); // %%
end function;

The function Cnf_Bij returns true if (C,, f)gpn is bijective for a given graph morphism
f: G — Hand for a given number n.

Cnf_Bij := function(f,G,H,n) // G, H: graphs, f: G -> H: graph morphism
if not #ListO0fnCycles(G,n) eq #ListOfnCycles(H,n) then // %%
return false;
end if;
if SequenceToSet ([ComposeGraphMorphisms(List0fnCycles(G,n) [i],f) : i in
[1..#List0fnCycles(G,n)]]) eq SequenceToSet(List0fnCycles(H,n)) then
return true; // %h
end if;
return false;
end function;

Given a graph morphism f: G -> Hand an upper bound ub, the function IsQis_Bound returns
true if the map (Cy, f)cpn is bijective for k& < ub.

IsQis_Bound := function(f,G,H,ub) // ub: upper bound
i:=1;
while Cnf_Bij(f,G,H,i) and i le ub do // %%
i = i+1;
end while;
return i eq ub+l;
end function;

With the function IsFibration we can calculate whether a given graph morphism f: G -> H
is a fibration or not; cf. Definition 127.(1).

IsFibration := function(f,G,H) // G, H: graphs, f: G -> H graph morphism
for x in G[1] do
y := [a[2] : a in f[1] | a[1] eq x][1];
for b in [h : h in H[2] | h([1] eq y] do
if #[0 : a in G[2] | <a,b> in f[2] and al[l] eq x] eq O then
return false;
end if;
end for;
end for;
return true;
end function;
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With the function IsEtaleFibration we can calculate whether a given graph morphism
f: G -> His an etale fibration or not; cf. Definition 127.(2).

IsEtaleFibration := function(f,G,H) // G, H: graphs, f: G -> H graph morphism
for x in G[1] do
y := [a[2] : a in £[1] | al1l] eq x][1];
if not #[e : e in G[2] | e[1] eq x] eq #[h : h in H[2] | h[1] eq y] then
return false;
elif not Sort([a[2] : a in f[2] | al[1][1] eq x])
eq Sort([h : h in H[2] | h[1] eq y]) then
return false;
end if;
end for;
return true,
end function;

For example, given

G := <[1,2,3],[<1,1,2>,<1,2,3>]>;
f := VtoE(G,D(1),[<1,0>,<2,1>,<3,1>]);
we get

> IsFibration(f,G,D(1));

true

> IsEtaleFibration(f,G,D(1));
false

With the function IsFibrant we can calculate whether a given graph X is fibrant or not; cf.
Definition 135

IsFibrant := function(X)
return &and[not #[e : e in X[2] | e[1] eq v] eq O0: v in X[1]];
end function;

For example, we get

> IsFibrant(C(2));
true
> IsFibrant(D(2));
false

With the functions AcCofiblto4 and AcCofib5 we can check if a given graph morphism
f: G -> H satisfies the properties (AcCofib 1-4) respectively (AcCofib 5).

The function IsAcCofib checks all properties (AcCofib 1-5), i.e. it decides whether f is an
acyclic cofibration.
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AcCofiblto4 := function(f,G,H) // f: G -> H graph morphism
if #[0 : x in H[1] | #[0 : a in G[1] | <a,x> in f[1]] ge 2] ge 1 then
// (AcCofib 1)
return false;
end if;
if #[0 : x in H[2] | #[0 : a in G[2] | <a,x> in f[2]] ge 2] ge 1 then
// (AcCofib 2)
return false;
end if;
HH1 := [x : x in H[1] | #[0 : a in G[1] | <a,x> in f[1]] eq O];
HH2 := [x : x in H[2] | #[0 : a in G[2] | <a,x> in f[2]] eq O];
if #[0 : x in HH1 | not #[a : a in H[2] | a[3] eq x] eq 1] ge 1 then
// (AcCofib 3)
return false;
end if;
if #[0 : x in HH2 | not x[3] in HH1] ge 1 then
// (AcCofib 4)
return false;
end if;
return true;
end function;

AcCofib5 := function(f,G,H)
HH1 := [x : x in H[1] | #[0 : a in G[1] | <a,x> in f[1]] eq 0];
max := #H[2];
L := [1;
for i in [1..max] do
L cat:= [ListGraphMorphisms(D(i),H)]1; // %%

end for;
for v in HH1 do
list := [1;

for i in [1..max] do
list cat:= [1 : 1 in L[i] | not 1[1][1]1[2] in HH1 and 1[1] [#1[1]1]1[2] eq v];
end for;
if #list eq O then
return false;
end if;
end for;
return true;
end function;

IsAcCofib := function(f,G,H)
return AcCofiblto4(f,G,H) and AcCofib5(f,G,H);
end function;
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For example, for £ := VtoE(D(0),D(2), [<0,0>]);

we get

> IsAcCofib(£f,D(0),D(2));
true

For example, for

G := <[], [1>;
f =<0, [1>;
we get

> AcCofiblto4(f,G,C(1));
true

> AcCofib5(f,G,C(1)); // %h
false

With the function IsTree we can calculate whether a given graph G is a tree using Remark 178.

IsTree := function(G)

for x in G[1] do
if IsAcCofib(VtoE(D(0),G, [<0,x>]1),D(0),G) then // %k
return true;
end if;

end for;

return false;

end function;

10.6 Testing the sufficient condition of Proposition 210
for graph morphisms

The function Unitargeting returns the unitargeting edges in H with respect to £.

Unitargeting := function(f,G,H)
return [e : e in H[2] | #RedSeq([ee[1][3] : ee in f[2] | ee[2] eq el]) eq 1];
/7 W

end function;
For example, using functions from §10.7, for
G := trygraph(3);

H := c2chain(3);
f := tryacyclic(3);
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we get

> G;
<[1, 2, 3,4,51, [ <1, 1, 2>, <2, 2, 1>, <2, 3, 3>, <4, 4, 5>, <5, 5, 4>,
<3, 6, 4>, <4, 7, 1> 1>

> H;

<[1, 2,317, [<1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> ]>

> f;

<[ <1, 1>, <2, 2>, <3, 3>, <4, 2>, <5, 3> ], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 1>, <2, 4, 1>>, <2, 3, 3>, <2, 2, 3>>, <4, 4, 5>, <2, 2, 3>>,
<5, 5, 4>, <3, 3, 2>>, <<L3, 6, 4>, <3, 3, 2>>, 4, 7, 1>, <2, 4, 1>> 1>

> Unitargeting(f,G,H);

[ <1, 1, 2>, <3, 3, 2>, <2, 4, 1> ]

The function Uni tests if the property (Uni) holds for the given graph morphism f: G -> H.

Uni := function(f,G,H)

U := Unitargeting(f,G,H); // %%

HH := <H[1],[e : e in H[2] | not e in UJ]>; // H without unitargeting edges
n := Minimum([#HH[1] ,#HH[2]]);

return &and[#ListGraphMorphisms(C(i),HH) eq O : i in [1..nll; // %%

end function;

With the function SuffCond we test if our sufficient condition for a morphism to be a quasi-
isomorphism holds; cf. Proposition 210.

SuffCond := function(f,G,H)
return <IsEtaleFibration(f,G,H),Uni(f,G,H)>; // %%
end function;



266

For example, we get

> Uni(f,G,H);

true

> SuffCond(f,G,H);
<true, true>

For

<[ 1, 2,37, [ <2, 1, 2>, <3, 2, 1>, <3, 3, 1> ]>;
=<[1, 2, 3], [ <2, 1, 2>, <3, 2, 1>, <1, 3, 3> 1>;
ListGraphMorphisms(G,H) ;
ListGraphMorphisms (H,G) ;

=M - @
"

we get

> M;
[
<[ <1’ 2>, <2’ 2>, <3’ 2> ]’ [ <<2, 1, 2>3 <2, 1, 2>>,
<<3, 2, 1>, <2, 1, 2>>, <1, 3, 3>, <2, 1, 2>> ]>

<[ <1, 2>, <2, 2>, <3, 2> 1, [ <2, 1, 2>, <2, 1, 2>>,
<<3, 2, 1>, <2, 1, 2>>, <<3, 3, 1>, <2, 1, 2>> 1>,
<[ <1, 1>, <2, 2>, <3, 3> 1, [ <<2, 1, 2>, <2, 1, 2>,
<<3, 2, 1>, <3, 2, 1>>, <<3, 3, 1>, <3, 2, 1>> 1>,
<[ <1, 3>, <2, 2>, <3, 1> 1, [ <<2, 1, 2>, <2, 1, 2>>,
<<3, 2, 1>, <1, 3, 3>>, <<3, 3, 1>, <1, 3, 3>> ]>
]
> SuffCond(M[1],H,G);
<true, false>
> SuffCond(L[1],G,H);
<false, false>
> SuffCond(L[2],G,H);
<false, true>
> SuffCond(L[3],G,H);
<false, true>

10.7 Functions to calculate examples in §9.1

With the following functions we calculated the examples mentioned in §9.1.
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c2chain := function(n)

edges := [<i,i,i+1> : i in [1..n-1]] cat [<i+1,2%n-1-i,i> : i in [1..n-1]];
edges_tosort := Sort([<e[2],e[1],e[3]> : e in edges]);

edges := [<e[2],e[1],e[3]> : e in edges_tosort];

return <[i : i in [1..n]],edges>;

end function;

trygraph := function(n) // n geq 3
edges := [<3#n-5,3%n-5,3*n-4>,<3%n-4,3*n-4,3*n-5>,<3%n-5,6*n-11,3%n-8>,
<3*n-6,6*n-12,3*n-5>] ;
edges cat:= &cat[[<3xk-2,3%k-2,3*k-1>,<3xk-1,3xk-1,3%k-2>,<3xk-1,3xk, 3xk>]
k in [1..n-2]]; // innerhalb der Stufen
&cat [ [<3*xk+1,3*n-5+3*k,3*¥k-2>,<3*k, 3*n-6+3*k, 3xk+1>,
<3*k,3*n-4+3%k,3*k+3>] : k in [1..n-3]];
edges_tosort := Sort([<e[2],e[1],e[3]> : e in edges]);

edges cat:

edges := [<e[2],e[1],e[3]> : e in edges_tosort];
G :=<[i : i in [1..3%n-4]],edges>;
return G;

end function;

tryacyclic := function(n) // trygraph -> c2chain
vertices := [<1,1>,<2,2>,<4,2>,<3*%n-6,n>,<3*n-4,n>];
vertices cat:= &cat[[<3*k-6,k>,<3*k-4,k>,<3*k-2,k>] : k in [3..n-1]];
if n eq 3 then
edges := [<<1,1,2>,<1,1,2>>,<<2,2,1>,<2,2*n-2,1>>,<<2,3,3>,<2,2,3>>,
<<4,4,5>,<2,2,3>>,<<5,5,4>,<3,2%n-3,2>>,
<<3,3%n-3,4>,<3,2*n-3,2>>,<<4,3%n-2,1>,<2,2*n-2,1>>] ;
else
edges :

[<<1,1,2>,<1,1,2>>,<<£2,2,1>,<2,2%n-2,1>>,<<2,3,3>,<2,2,3>>,
<<4,4,5>,<2,2,3>>,<<5,5,4>,<3,2*%n-3,2>>,
<<3,3%n-3,4>,<3,2*n-3,2>>,<<4,3%n-2,1>,<2,2*n-2,1>>,
<<L7,3*n+1,4>,<3,2%n-3,2>>,<<3*n-7,3*%n-6,3*n-6>,<n-1,n-1,n>>,
<<3%n-5,3*n-5,3*n-4>,<n-1,n-1,n>>,
<<3%*n-4,3*n-4,3*n-5>,<n,n,n-1>>,
<<3#%n-9,6*n-13,3*n-6>,<n-1,n-1,n>>,
<<3*n-6,6*n-12,3*n-5>,<n,n,n-1>>] ;
edges cat:= &cat [[<<3*k-4,3%k-3,3xk-3>,<k,k,k+1>>,
<<3xk-2,3*%k-2,3*%k-1>,<k,k,k+1>>,<<3*xk-1,3*%k-1,3*%k-2>,<k+1,2*%n-1-k ,k>>,
<<3%k-6,3%n-10+3x%k, 3xk-3>, <k, k,k+1>>,
<<3%k-3,3*n-9+3*k, 3*k-2>,<k+1,2*n-1-k,k>>,
<<3*k+1,3%n-5+3xk,3*¥k-2>,<k+1,2*n-1-k,k>>] : k in [3..n-2]];
end if;
edges_tosort := Sort([<<e[1][2],e[1][1],e[1]1[3]>,e[2]> : e in edges]);
edges := [<<e[1][2],e[1][1],e[1]1[3]>,e[2]> : e in edges_tosort];
return <Sort(vertices),edges>;
end function;
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glue_vertices := function(G,list) // e.g. list := [[2,3],[1,4,5]] list
// sublists of vertices to glue
list := [RedSeq(l) : 1 in list | #RedSeq(l) ge 21; // %
vertices_to_glue := RedSeq(&cat(list)); // %%

vertices_left_over := [n : n in G[1] | not n in vertices_to_gluel;
vertices := Sort([1[1] : 1 in list] cat vertices_left_over);
edges_1 := [e : e in G[2] | not e[1] in vertices_to_glue

and not e[3] in vertices_to_glue];
edges := [];
for e in G[2] do
if not e[1] in vertices_to_glue and not e[3] in vertices_to_glue then
edges cat:= [e];
else if not e[l1l] in vertices_to_glue then
edges cat:= [<e[1],e[2],[1[1] : 1 in 1list | e[3] in 1][1]1>];
else
edges cat:= [<[1[1] : 1 in 1list | e[1] in 1]1[1],e[2],e[3]1>];
end if;
end if;
end for;
edges_named := [];
for e in edges do
if e[1] in &cat(list) then
el new := [1 : 1 in list | e[1] in 1]1[1]1[1];
else
el_new := e[1];
end if;
if e[3] in &cat(list) then
e3_new := [1 : 1 in 1list | e[3] in 1][1][1];

else

e3_new := e[3];

end if;

edges_named cat:= [<el_new,e[2],e3_new>];
end for;

return <vertices,edges_named>;
end function;

glue_vertices_including_edges := function(G,list)
// e.g. list := [[2,3],[1,4,5]] list of sublists of vertices to glue
G := glue_vertices(G,list); // %%
edges := [];
for g in G[2] do
if #[e : e in edges | e[1] eq gll] and e[3] eq gl3]] eq O then
edges cat:= [g];
end if;
end for;
return <G[1],edges>;
end function;
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For example, for

G := <[1,2,3],[<1,1,2>]>;
H :=<[1,2,3],[«1,1,2>,<1,2,2>,<2,3,3>,<2,4,3>]>;
we get

> glue_vertices(G, [[1,2]]1);

<[1, 37, [<1, 1, 1> 1>

> glue_vertices(H, [[1,2]]);

<[1,31, [<1,1, 1>,<1, 2, 1>, <1, 3, 3>, <1, 4, 3> 1>
> glue_vertices_including_edges(H, [[1,2]]);

<[1, 371, [ <1, 1, 1>, <1, 3, 3> 1>

try_id_vertices := function(n) // n ge 3
return [[3*1,3*i+2] : i in [1..n-2]];
end function;

idtrygraph := function(n)
return glue_vertices_including_edges(trygraph(n),try_id_vertices(n));
/1 Wh

end function;

tryfactorization := function(n) // trygraph --> idtrygraph
T := try_id_vertices(n); // %%
G := trygraph(n); // %%
vertices := Sort([<t[2],t[1]> : t in T] cat [<i,i> : i in [1..3*n-4] |
not i in [t[2] : t in T11);
edges_to_map := trygraph(n) [2];
edges_images := idtrygraph(n) [2];
edges := [];
for e in edges_to_map do
if e in edges_images then
im_e := e;
else
im_el := [n[2] : n in vertices | n[1l] eq e[1]][1];
im_e3 := [n[2] : n in vertices | n[1] eq e[3]]1[1];
im_e := [edge : edge in edges_images |
edge[1] eq im_el and edgel3] eq im_e3][1];

end if;

edges cat:= [<e,im_e>];
end for;
return <vertices,edges>;
end function;
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idtryacyclic := function(n) // idtrygraph -> c2chain
T := try_id_vertices(n); // %h
T2 := [t[2] : t in try_id_vertices(n)]; // %%
G := idtrygraph(n); // %h
f := tryacyclic(n); // %h
vertices := [n : n in f[1] | n[1] in G[1]];
edges := [];
for e in f[2] do
if e[1] in G[2] then
edges cat:= [e];

else
el := e[1]1[1];
e3 := e[1][3];

if e[1][1] in T2 then

el := [t[1] : t in T | t[2] eq e[11[11]1[1];
end if;

if e[11[3] in T2 then

e3 := [t[1] : t in T | t[2] eq e[1]1[3]1[1];

end if;

edges cat:= [<<el,e[1][2],e3>,e[2]>];
end if;
end for;
edges2 := [];

for e in edges do
if not <e[1][1],e[1][3]> in [<e[1][1],e[1][3]> : e in edges2] then
edges2 cat:= [e];
end if;

end for;

return <vertices,edges2>;

end function;

Doublecyclic := function(n)

C := c2chain(n); // %%

return <C[1],C[2] cat [<1,#C[2]+1,#C[1]1>] cat [<#C[1],#C[2]+2,1>]1>;
end function;

Trygraph := function(n)

T := trygraph(n); // %h

return <T[1],T[2] cat [<1,#T[2]+1,#T[1]>, <#T[1],#T[2]+2,1>, <#T[1]1-2,#T[2]+3,1>]1>;
end function;

Tryacyclic := function(n) // Trygraph -> Doublecyclic
T := Trygraph(n); // %h

t = #T[2];

D := Doublecyclic(n); // %%
d := #D[2];

f := tryacyclic(n); // %h



return <f[1],f[2] cat [<T[2][t-2],D[2][d-1]>,
<T[2] [t-1],D[2] [d]>, <T[2][t],D[2][d]>]>;
end function;

idTrygraph := function(n)
T := idtrygraph(n); // %h
= [r[2] : r in T[2]];
return <T[1],T[2] cat [<1,t[#t]+1,T[1] [#T[1]-1]>]
cat [<T[1]1[#T[11-11,t[#t]1+2,1>]1>;
end function;

Tryfactorization := function(n) // Trygraph -> idTrygraph
T := trygraph(n); // %h

TT := idtrygraph(n); // %h

t := [r[2] : r in TT[2]];

f := tryfactorization(n); // Wh

return <f[1],f[2] cat [<<1,#T[2]+1,#T[1]1>,<1,t[#t]1+1,TT[1] [#TT[1]1-11>>]

cat [<<#T[1],#T[2]+2,1>,<TT[1] [#TT[1]-1],t[#t]1+2,1>>]
cat [<<#T[1]-2,#T[2]+3,1> ,<TT[1] [#TT[1]-1],t[#t]+2,1>>]>;
end function;

idTryacyclic := function(n) // idTrygraph -> Doublecyclic

f := idtryacyclic(n); // %h

T := idtrygraph(n); // %%

t := [r[2] : r in T[2]];

C := c2chain(n); // %%

return <f[1],f[2] cat [<<1,t[#t]+1,T[1] [#T[1]1-1]1>,<1,#C[2]+1,#C[1]>>]
cat [<<T[1] [#T[1]-1],t[#t]1+2,1>,<#C[1],#C[2]+2,1>>]>;

end function;

cncm := function(n,m) // cn glued to cm at vertex n

=[i: idin [1..n+m-1]];
= [

<i,i,i+1> : i in [1..n-1]] cat [<n,n,1>] cat [<n+i,n+i+1,n+i+1> :

i in [0..m-2]] cat [<n+m-1,n+m,n>];
return <V,E>;
end function;

CnCm := function(n,m)
V:=1[1i:1in [1..n+m]];
E := [<i,i,i+1> : 1 in [1..n+m-1]] cat [<n+m,n+m,1>]

cat [<n,n+m+1,1>,<n+m,n+m+2,n+1>];
return <V,E>;
end function;
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cncmgis := function(n,m)
return VtoE(CnCm(n,m),cncm(n,m), [<i,i> : i in [1..n+m-1]] cat [<n+m,n>]);
YY)

end function;

CNCN := function(n)

G := DUC([n,nl); // W%
H := <G[1],G[2] cat [<n+1,2*n+1,1>,<2%n,2*n+2,n>]>;
f := VtoE(G,H, [<i,i> : i in [1..2%nl]l); // %%

return <G,H,f>;
end function;

c2graph := function(list) // list e.g. [<1,3>,<2,4>,<6,6>] list of tuples
// of vertices

n := Maximum([x[1] : x in list] cat [x[2] : x in list]);
edges := [];

for x in list do

i := Index(list,x);

edges cat:= [<x[1],1i,x[2]>,<x[2],2*#1list-i+1,x[1]>];
end for;
edges_tosort := Sort([<e[2],e[1],e[3]> : e in edges]);
edges := [<e[2],e[1],e[3]> : e in edges_tosort];

return <[i : i in [1..n]],edges>;
end function;

Exflower := function(n,list) // list := [2,3,5] contains vertices
// that are connected with "upper" vertex 1 in G
edges_G := Sort(&cat[[<1,i>,<n+2,i>] : i in [2..n+1]1]);
if #list eq O then // alle unten
edges_G cat:= [<i,n+2> : i in [2..n+1]];
edges_G := [<edges_G[i][1],i,edges_G[i][2]> : i in [1..#edges_Gl];
else
edges_G cat:= [<i,1> : i in list];
edges_G cat:= [<i,n+2> : i in [2..n+1] | not i in 1list];
edges_G := [<edges_G[i][1],i,edges_G[i][2]> : i in [1..#edges_Gl];
end if;
flowerG := <[i : i in [1..n+2]],edges_G>;
flowerH := c2graph([<1,i> : i in [2..n+111); // %h
flowerf VtoE(flowerG,flowerH, [<i,i> : i in [1..n+1]] cat [<n+2,1>]);
/] Hh
return <flowerG,flowerH,flowerf>;
end function;

Exflower2 := function(n,k)

// n: number of "petals", k: size of "petals"
G :=DUC([k : i in [1..n11); // %h

VG := G[1];
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EG := G[2];

V := [1+ixk : i in [0..n-1]1]1;

EG2 := &cat[[<v,vv> : vv in [vv+l : vv in [vv : vv in V | not vv eq v]]]
v in V];

EG2 := [<e[1l],#EG+Index(EG2,e),e[2]> : e in EG2];
flowerG := <VG,EG cat EG2>;
VH := [1 : i in [1..n*x(k-1)+1]];
EH := [<1,1+ixk,2+i*(k-1)> : i in [0..n-1]];
if not k eq 2 then
for i in [1..n] do
EH cat:= [<1+(i-1)*(k-1)+1,1+(i-1)*k+1,2+(i-1)*(k-1)+1> : 1 in [1..k-2]1];
end for;
end if;
EH cat:= [<k+ix(k-1),k*x(i+1),1> : i in [0..n-1]];
EH_sort := [<e[2],el[1],e[3]> : e in Sort([<e[2],e[1],e[3]> : e in EH])];
flowerH := <VH,EH_sort>; // %%
VtoE_vertices := [<v,1> : v in V] cat &cat[[<1+(i-1)*k+1,2+(i-1)*k+1-i> :
1 in [1..k-1]] : i in [1..n]];
flowerf := VtoE(flowerG,flowerH,VtoE_vertices); // %%
return <flowerG,flowerH,flowerf>;
end function;

10.8 Functions to calculate more examples

exampleforbadbound := function(n) // (c_2n,f) first not to be bijective
V:=[1i:1in [1..2%n+1]];

E := [<i,i+1,i+1> : i in [3..2%n]];

E cat:= [<1,1,2>, <2,2,1>, <1,3,3>, <2*n+1,2*n+2,1>];

X := <V,E>;

f := ListGraphMorphisms(X,C(2))[2]; // %k

return <X,f>;

end function;

exampleforbadbound2 := function(n) // (c_n,f) first not to be bijective
G :=DUC([1,nl); // %h

f := <[<v,1> : v in G[1]],[<e,<1,1,1>> : e in G[2]]>;

return <G,C(1),f>;

end function;

exampleforbadbound3 := function(n) // n even, n ge 4
G := DUC([2,n-2,nl1); // %%
H:=<[i: iin [1..n-1]1],[<i,i,i+1> : i in [1..n-2]1]
cat [<n-1,n-1,n-2>,<n-2,n,1>]>;
u_vertices := [<1,n-1>,<2,n-2>] cat [<i,i-2> : i in [3..n]]
cat [<i,i-n> : i in [n+1..2%n-1]] cat [<2*n,n-2>];
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u_edges := [<c,[h : h in H[2] | h[1] eq [ul[2] : u in u_vertices
ul1] eq c[1]]1[1] and h([3] eq [ul2] : u in u_vertices |
ul1l] eq c[3]1]1[1]1]1[1]> : ¢ in G[2]];

u := <u_vertices,u_edges>;

return <G,H,u>;

end function;

DTB := function(n) // decimal to binary
A :=1[1;
if n eq O then
return [0];
end if;
while n gt 0 do
A cat:= [n mod 2];
n := Integers()!((n-(n mod 2))/2);
end while;
return A;
end function;

DTO := function(list) // decimal to other, e.g. list := [2,4,3]
W:=[[1 :1idin [1..1ist[1]1]1];
for i in [2..#1list] do
W cat:= [[u : u in [W[#W] [#Wl#W]]+1. Wl#W] [#W#W]1+1ist[i]111];
end for;
n := #list;
A = [1;
for i in [0..&*1list-1] do
j =1,
AN = [];
for 1 in [list[#list-i] : i in [O..#list-1]] do
AA cat:= [j mod 1];
j := Integers()!'((j-(j mod 1))/1);
end for;
A cat:= [[AA[#AA-i] : i in [0..#AA-1]11;
end for;
return A;
end function;

With the function Thins we list all thin graphs that have n vertices.

Thins := function(n)
PV := [<i,j> : i,j in [1..n]]; // pairs of vertices for one edge
LG := []; // list of thin graphs
for i in [0..27(n"2)-1] do
A :=DTB(1); // Wh
E := [PV[i] : i in [1..#A] | A[i] eq 1];
E := [<e[1],Index(E,e),el[2]> : e in E];
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LG cat:= [<[1i : i in [1..n]],E>];
end for;

return LG;
end function;

With the function Thins2 we list all thin graphs that have n vertices and that do not have an
edge that has the same vertex as source as as target.

Thins2 := function(n)
PV := [<i,j> : i,j in [1..n]]; // pairs of vertices for one edge
LG := [1; // list of thin graphs

for i in [0..2°(n"2)-1] do

A :=DTB(i); // hh
E := [PV[i] : i in [1..#A] | A[i] eq 1];
E := [e : e in E | not e[1] eq e[2]];

E := [<e[1],Index(E,e),e[2]> : e in E];
LG cat:= [<[1i : i in [1..n]],E>];

end for;

return RedSeq(LG); // Wk

end function;

For a graph H and a list F of prescribed cardinalities, the function EFU gives the list of etale
fibrations £: G -> H satisfying (Uni) such that the cardinalities of the fibres of the vertices of
H under V; are listed in F.

EFU := function(H,F) // returns all etale fibrations f: G -> H that
// satisfy (Uni)
// F: sizes of fibres in list, e.g. F := [1,2,1]
n := #H[1];
VG := [i : i in [1..&+F]1];
W:=[[i:1iin [1..F[111]1];
for i in [2..#F] do
Wcat:= [[u : u in [W#W] [#W#W]I]1+1. . W[#W] [#W[#W]I+F[i]1]1]1];
end for;
VEf := [<i,Index(W,[a : ain W | i in alJ[1])> : i in [1..&+F]];
EG_all := [[<i,j> : i in W[e[1]], j in W([e[3]]] : e in H[2]];
Ef_all_sort := &cat([[<[e : e in EG_all[i] | e[1] eq v],H[2][i]> :
i in [1..#EG_allll: v in VG]);
Ef_all_sort := [e : e in Ef_all_sort | not #e[1] eq 0];
Ef_poss := [[<Ef_all_sort[i] [1][d[i]+1],Ef_all_sort[i][2]> : i in [1..#d]]
d in DTO([#e[1] : e in Ef_all_sortl)]; // %%
Ef_poss_numbered := [[<<Ef_poss[i] [j][1][1],j,Ef_poss([i][j][1][2]>,
Ef_poss[i] [j]1[2]> : j in [1..#Ef_poss[i]]l] : i in [1..#Ef_poss]];
EF := [<<Vf,Ef_poss_numbered[i]>,<VG, [Ef_poss_numbered[i] [jI[1] : j in
[1..#Ef_poss_numbered[i]]]>,H> : i in [1..#Ef_poss_numbered]];
// <f,G,H> all possibilities that f is an etale fibration
return [f : f in EF | &and[SuffCond(f[1],f[2],f[31)[i] : i in [1,2]1]1];
end function;
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For example, given

H := c2chain(3);
F :=[1,2,1];
we get
> EFU(H,F);
[
<[ <1, 1>, <2, 2>, <3, 2>, <4, 3> ], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>,6 <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <4, 6, 2>, <3, 3, 2>> 1>, <[ 1, 2, 3, 417,
[ <1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 2> 1>,
<[1, 2,31, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> ]>>,
<[ <1, 1>, <2, 2>, <3, 2>, <4, 3> ], [ <1, 1, 2>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, KK2, 3, 1>, <2, 4, 1>>, <3, 4, 4>, <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <4, 6, 3>, <3, 3, 2>> 1>, <[ 1, 2, 3, 41,
[ <1, 1, 2>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 3> 1>,
<[1, 2,31, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> 1>>,
<[ <1, 1>, <2, 2>, <3, 2>, <4, 3> ], [ <1, 1, 3>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>,6 <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <4, 6, 2>, <3, 3, 2>> 1>, <[ 1, 2, 3, 417,
[ <1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 2> 1>,
<[1, 2,31, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> ]>>,
<[ <1, 1>, <2, 2>, <3, 2>, <4, 3> ], [ <1, 1, 3>, <1, 1, 2>>,
<2, 2, 4>, <2, 2, 3>>, <2, 3, 1>, <2, 4, 1>>, <<3, 4, 4>,6 <2, 2, 3>>,
<3, 5, 1>, <2, 4, 1>>, <4, 6, 3>, <3, 3, 2>> 1>, <[ 1, 2, 3, 41,
[ <1, 1, 3>, <2, 2, 4>, <2, 3, 1>, <3, 4, 4>, <3, 5, 1>, <4, 6, 3> ]>,
<[1, 2,31, [ <1, 1, 2>, <2, 2, 3>, <3, 3, 2>, <2, 4, 1> I>»
]

10.9 More useful functions

IsEqual := function(f,g) // returns true if graph morphisms
// £, g: G -> H are equal
// returns true if graphs f, g are equal
return (SequenceToSet(f[1]) eq SequenceToSet(gl[1]))
and (SequenceToSet(f[2]) eq SequenceToSet(g[2]));
end function;
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IsoRepresentatives := function(T,n); // returns representatives of isoclasses
TT := [T[1]];
for i in [1..n] do
if not &or[IsIsomorphic(T[i],t)[2] : t in TT] then // %h
TT cat:= [T[il];
end if;
end for;
return TT;
end function;

Is_Comm_Quad_Graphs := function(X,Y,X2,Y2,f,f2,g,h)
// £ X > Y, £f2: X2 -> Y2, g: X > X2, h: Y -> Y2

if IsEqual(ComposeGraphMorphisms(f,h),ComposeGraphMorphisms(g,f2)) then // %%
return true;

end if;

return false;

end function;

The function Lift returns a lift of a given commutative quadrangle if existent.

Lift := function(X,Y,X2,Y2,f,f2,g,h) // f: X -> Y, £2: X2 -> Y2,
// g X -> X2, h: Y -> Y2

L := ListGraphMorphisms(X2,Y); // Wh

L_comm := [1 : 1 in L | IsEqual(ComposeGraphMorphisms(g,1l),f) and

IsEqual (ComposeGraphMorphisms(1,h) ,£2)1; // %h

if not #L_comm eq O then
return L_comm[1];

end if;

return false;

end function;

remove_edges := function(G,list)
return <G[1],[e : e in G[2] | not e in list]>;
end function;

remove_vertices := function(G,list)

return <[n : n in G[1] | not n in list],[e : e in G[2] |
not e[1] in list and not e[2] in list]>;

end function;

graph_op := function(G); // functor, reverses the direction of arrows in graph
// exchanges source and target of edges in graph

return <G[1],[<e[3],e[2],el[1]> : e in G[2]]>;

end function;
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connection := function(G) // returns the list of connected components
list := [];

G_done := {};
while not #G_done eq #G[1] do

S := {}; // S: set of vertices to achieve

r := [g : g in G[1] | not g in G_done] [1];

Snew := {r};

while not #Snew eq #S do

S := Snew;

Snew join:= {a[1] : a in G[2] | a[3] in S} join {al3] : a in G[2]
end while;
G_done join:= Snew;
Snew := Sort(SetToSequence(Snew)) ;
edges := Sort([a : a in G[2] | a[l] in Snew or a[3] in Snew]);
list cat:= [<Snew,edges>];

end while;

return list;

end function;

| a[1] in S};



Appendix A

Explanation for electronic appendix

On the memory stick attached there is a file called electronic_appendix.txt. It contains
all functions in Magma code that are mentioned in this master thesis. It can be loaded into
Magma with

load "electronic_appendix.txt";
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Zusammenfassung

Graphen. Ein Graph G besteht aus einer Menge von Knoten Vg und einer Menge von Kanten
E¢, zusammen mit einer Startabbildung s : Eq — Vg und einer Zielabbildung t4 : E¢ — Vg,
welche einer Kante ihren jeweiligen Start- bzw. Zielknoten zuordnen.

Graphmorphismen. Ein Graphmorphismus f : G — H zwischen Graphen G und H besteht
aus einer Abbildung Vy : Vg — Vg auf den Knoten und einer Abbildung E; : Eq — Ep auf
den Kanten derart, dass Efsy = sq Vy und Eftyg = tg Vy ist.

Zum Beispiel bildet der folgende Graphmorphismus f : G — H die Knoten und Kanten vertikal
ab.

a6

G 2 =y
ar as

B1 B2
=0 X\
H : 1v2v3

Ba B3

Die Kategorie der Graphen bezeichnen wir mit Gph. Die Menge der Graphmorphismen von G
nach H bezeichnen wir mit (G, H)gph. Zu einem Graphmorphismus f : G — H und einem
Graphen K haben wir die Abbildung

(K, fepn : (K, G)aph = (K, H)gpn : g — gf .
Eine Modellkategorienstruktur auf Gph. BissoN und TSEMO definieren Daten fiir eine
Modellkategorienstruktur auf Gph wie folgt.
Ein Graphmorphismus f : G — H ist ein Quasiisomorphismus, wenn
(Ck, e : (Cr s G)aph = (Ck, H)pn
bijektiv ist fiir £ > 1. Wir bezeichnen die Menge der Quasiisomorphismen mit Qis C Mor(Gph).

Fiir einen Knoten v € Vg bezeichnen wir mit G(v,*) := {e € E¢ : esqg = v} die Menge der
Kanten mit Start v. Wir haben die Abbildung
H(vVy %)
E;, = Ey |G(v’*)f :G(v,%) — H(vVy,x)

e — eEjs.
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Ein Graphmorphismus f : G — H heif}t eine Faserung, wenn die Abbildung
Efy: G(v, %) — H(v Vg, %)

surjektiv ist fiir v € Vi . Wir bezeichnen die Menge der Faserungen mit Fib C Mor(Gph).
Ein Graphmorphismus f : G — H heif}t eine etale Faserung, wenn die Abbildung

Efy: G(v,%) = H(v Vg, %)

bijektiv ist fiir v € Vg . Dies wird fiir ein hinreichendes Kriterium fiir Quasiisomorphismen
bendtigt.

Ein Graphmorphismus f : G — H heifit eine azyklische Kofaserung, wenn die Eigenschaften
(AcCofib 1-5) erfiillt sind; cf. Definition 162. Anschaulich erhalten wir eine azyklische Ko-
faserung f : G — H, wenn der Graph H durch Ankleben von Baumen an den Graphen G
entsteht. Wir bezeichnen die Menge der azyklischen Kofaserungen mit AcCofib € Mor(Gph).

Die Menge der azyklischen Faserungen bezeichnen wir mit AcFib := QisNFib C Mor(Gph).
Wir schreiben G —+= H fiir eine azyklische Faserung.

Ein Graphmorphismus f : G — H heifit eine Kofaserung, wenn wir zu einem kommutativen
Viereck

G—=X

T

H T‘ Y s
immer einen Lift h : H — X so finden, dass zwei kommutative Dreiecke entstehen. Die Menge
der Kofaserungen bezeichnen wir mit Cofib C Mor(Gph).

Nun wird Gph zusammen mit Qis, Fib und Cofib zu einer geschlossenen Quillen-
Modellkategorie; cf. [3, Cor. 4.8].

Zusatzlich gilt AcCofib = Cofib N Qis.

Beweis, dass Gph eine Modellkategorie ist. Zum Beweis folgen wir BISSON und
TSeEMO [3]. Beim Nachweis der Faktorisierung eines gegebenen Morphismus in eine Kofaserung,
gefolgt von einer azyklischen Faserung verwenden wir eine iterierte Pushout-Konstruktion.

Ein hinreichendes Kriterium fiir Quasiisomorphismen. Sei f : G — H ein Graphmor-
phismus. Eine Kante e € Eg heifit einzielig, wenn das Urbild der Kante e unter E; einen
eindeutigen Zielknoten besitzt.

Wir betrachten folgende Eigenschaft.

(Uni) Fir n > 1 und jeden Graphmorphismus u : C, — H gibt es ein ¢ € Z/nZ so, dass
e; B, € Epy einzielig ist.

Nach Entfernung der einzieligen Kanten aus H darf es also keinen Zykel mehr darin geben,

damit (Uni) erfiillt ist.

Wenn eine etale Faserung f : G — H die Eigenschaft (Uni) erfiillt, ist sie ein Quasiisomorphis-
mus.
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Z.B. ist der Graphmorphismus f : G — H von oben ein Quasiisomorphismus, wie damit
iiberpriift werden kann.

Beispiele und Gegenbeispiele. Wir geben eine Reihe von Beispielen fiir Quasiisomorphis-
men, berechnet mit Magma [2] mithilfe unseres hinreichenden Kriteriums.

Wir zeigen, dass Quasiisomorphismen nicht stabil sind unter Pushouts entlang Kofaserungen.
Wir zeigen, dass Kofaserungen nicht stabil sind unter Pullbacks.

Wir geben ein Beispiel f : G — H so, dass (Cy, f)gpn und (Cz, f)gpn bijektiv sind und es
keinen injektiven Graphmorphismus C, — G oder C, — H fiir k > 3 gibt, bei welchem jedoch
f kein Quasiisomorphismus ist.
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