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Preface

0.1 Introduction

Let R be a principal ideal domain. Let K := frac(R) be its field of fractions.

0.1.1 Diagonalization
0.1.1.1 Problem

Suppose given A € R™*"™. Then, in particular, A € K™*". By definition, A is K-diagonalizable if there
exists S € GL,(K) such that S~!'AS is diagonal. Furthermore, by definition, A is R-diagonalizable if
there exists T € GL,(R) such that T~*AT is diagonal.

So if A is R-diagonalizable, then A is also K-diagonalizable.
Suppose A to be K-diagonalizable. We ask for conditions on A to be R-diagonalizable.

For instance, ((% _i) is Q-diagonalizable, but not Z-diagonalizable, not even Z,)-diagonalizable; cf. (2)
in §0.1.1.3 below.

0.1.1.2 Diagonalizability over a principal ideal domain

Suppose A € R™"™ to be K-diagonalizable. The intersections of eigenspaces and R"™*! are R-
submodules of R™*! which we call eigenmodules of A. Eigenmodules of A are finitely generated
free R-modules.

After fixing R-linear bases of the eigenmodules of A we can define a matrix S that has in its columns
these basis elements. Then we obtain the following; cf. Lemma 47.

A is R-diagonalizable <= det(S) is a unit in R

This allows us to state a characterization of R-diagonalizability that is independent of the choice of
the bases of the eigenmodules; cf. Corollary 48.(1). Let o(A) be the set of eigenvalues of A. We have
o0(A) C R; cf. Remark 37. Let E4(A) be the eigenspace of A to the eigenvalue A\ € o(A). Then we
have the following equivalence.

A is R-diagonalizable <= GB (Ea()) ﬂR”Xl) _ prxl (1)
Aea(A)

In practice, we start with a K-linear basis of an eigenspace of A to find an R-linear basis of the
corresponding eigenmodule of A using the elementary divisor theorem; cf. Lemma 49 and Algorithm 50.

Thus we can decide algorithmically whether A is R-diagonalizable.

0.1.1.3 Diagonalizability of linear combinations

Recall that K-linear combinations of commuting K-diagonalizable matrices are again K-diagonalizable.

We observe that R-linear combinations of commuting R-diagonalizable matrices are again R-diagonal-
izable; cf. Corollary 54.

Given commuting K-diagonalizable matrices, we ask which R-linear combinations of these are
R-diagonalizable.



We consider the following two matrices in Z?;f and their eigenmodules as submodules of Zéx)l.

921 1 1
A1¢:<0 4) EA1(2)0Z?§>1:Z<2><(0>> EA1(4)“Z?2X>1:Z<2><(—2>>

0 1 1 L
Ay = (0 —2) E4,(0)N Z?zx)l - Z<2><(0>> Ba(=2)0 Z?Qx)l B Z<2><(—2>>

Here we have A; - Ay = A9 - A;. But both A; and A, are not Z(Q)—diagonalizable since the direct sum

of their respective eigenmodules is a proper submodule of Z?QX)l.

(2)

But we have A1 + As = (% 8), which is a diagonal matrix, so in particular a Z)-diagonalizable matrix.

Suppose given a tuple ® := (Ay,..., Ax) of commuting K-diagonalizable matrices in R™*". We define
the diagonalizability locus of ® as follows; cf. Definition 56.

Cop := (ai)ie[l,k] c RF*1 Z a; A; is R-diagonalizable (3)
1€[1,k]

This is an R-submodule of R¥*!: ¢f. Lemma 57.

Suppose given a := (a;)icn i € RF*1 We write A := > iei k] @iAi- So Aq is R-diagonalizable if and
only if a € Ceg.

In order to determine Cg, we aim to find an R-linear basis of Cg. But testing all linear combinations of
the matrices of ® would lead to an infinite task. Our reduction to a finite test for the R-diagonalizability
of A, makes use of the fact that the eigenmodules of A, are closely related to the eigenmodules of the
matrices Ay, ..., Ax. We want to make use of (1) which requires the eigenvalues of A,.

Since Aj,..., A are commuting K-diagonalizable matrices, we find S € GL,(K) such that all con-
jugates ST'A;S are diagonal matrices. By multiplying with a common denominator, we can achieve
that S € R"*". We denote the columns of S by s1,...,s, and the eigenvalues of A; by Ai;,..., A\,
taken with multiplicities. So the following identities hold.

AZ'S]' = )\j,iSj for i € [1,]€] and j € [1,7”L]

We say that a tuple p := (g1, pio, ..., pux) € RVF is an eigenvalue tuple of ® if there exists a non-zero
x € R"! such that A;z = px for i € [1,k]; cf. Definition 52. For such an eigenvalue tuple u we define
the simultaneous eigenmodule for ® as the following R-submodule Eg(p) of R™¥!.

Eo(u) :={x € R" | Ajx = pzx for i € [1,k|}
So the tuples (Aj1,...,Aj %), where j € [1,n], are the eigenvalue tuples of ®, possibly with repetitions,
and s; € R™ is an element of the corresponding simultaneous eigenmodule Eg ((Aj1,...,Ajk))-

Note that Eg (1) € R™*! is an R-submodule whereas E 4, (1;) € K™*! is a K-subspace.

Denoting by o(A,) the set of eigenvalues of A,, we obtain the following relation between eigenvalue
tuples of the A; and the eigenvalues of A,; cf. Remark 60.

O‘(Aa) = Z Oéi/\jﬂ‘ ] € [l,g]
1€[1,k]

Herein, different values of j may yield the same eigenvalue Zie[l,k} a;Nj;. To what extent this effect
occurs depends on A. For example, if & = 0, then A, has only the eigenvalue 0.
We resume the example with the matrices 4; and As from (2).

Writing ® := (41, A2), we have the simultaneous eigenvalue tuples (2,0) and (4, —2) for ®.



Let @« = (1,—1). Then Ay, = A1 — Az = (3‘%) and hence 0(A,) = {2,6}. The matrix A, has two
eigenmodules each of which is of rank 1. More precisely, we have

BN 25! =20, {(p )) = Ba(2.0)

and

1

B4, (6) N 22! = Z(Q)<< 2>> — Eo((4,-2)).

So the eigenmodules of Aj, of As and of A} — As are the same.

Let & = (1,1). Then A5 = A1 + Ay = (38) and hence 0(As) = {2}. The matrix Az has only one

eigenmodule E4_(2) N Z?;)l, viz. Z?;)l. Note that

BaeN 25! =251 3 20{(g) + ( L,)) = Bal(2.0) 0 Eal(4,-2).

So in a sense, the simultaneous eigenmodules for @, i.e. of A1 and As, have fused to a single eigenmodule
of Ay + As.

We want to describe this behavior by using partitions of finite sets.
Denote by Py, the set of partitions of the set {1,2,...,n} =[1,n]. So e.g. ({1,4},{2,5},{3}) € Ps.
We define three maps dependent on ® and the number ¢ of different eigenvalue tuples for ®; cf.

Definitions 65, 77 and 78.

W

RFX1 Rt I, p, 2% Subg(N)

To this end, let Ap € R be the matrix containing the distinct eigenvalue tuples of ® as rows; cf.
Definition 77. The map we sends o € RF*! to Agpa € R*!, containing the eigenvalues of A,. Then
7o maps 3 € R to the partition containing those subsets of [1, /4] where (3, considered as a map from
[1,4] to R, is constant.

So under the map 7y o wg, the coefficient vector « is sent to the partition P = (py,...,py) in Py such
that j; and jo are in the same subset p; of [1,/] if and only if the simultaneous eigenmodules to row
j1 of Ag and to row jo of Ag are contained in the same eigenmodule of A,. So in a sense, this map
describes the fusion behavior of the simultaneous eigenmodules for ® to eigenmodules of A,.

Suppose given P = (p1,...,pu) € Pp. Let V; € K™ be the sum of the simultaneous eigenspaces to
the eigenvalue tuple in row j of Ag where j runs through p,. Then we set

M@,P = @ (‘/;HRTLXI) g RnX1.
1€[1,u]
The map ve sends the partition P to the R-module Mg p.

Consider the image of o under the map vg o 7y o we. This is exactly the R-module occurring on the
right hand side of (1) for A = A,. So if we want to decide whether A, is R-diagonalizable, we may
test whether the image o under the map vg o 7 o we equals R

In other words, the preimage (vp o 7 o wg) L (R™ ') equals the diagonalizability locus Cg of ®.

Now we benefit from the fact that P, is finite: We can determine algorithmically the preimage
vg(R™1) C Py For every P € vz'(R™1) we define a matrix Df@. This matrix is formed by
row operations and row removals from Ag which depend on the partition P; cf. Definition 82.

Using these matrices, we obtain the following description of Cg; cf. Lemma 91.

U ker (qu)) =Co (4)

Pevg!(Rnx1)



The advantage here is that, since Py is finite, the preimage vg 1(R”Xl) is finite and so we have a finite
union. After determining the kernels of the matrices involved, we are able to establish an R-linear
basis of Cg.

Moreover, we are able to reduce vg 1(R"Xl) to the subset of the finest partitions in this preimage, using
the fact that if a partition P is finer than a partition @, then Mg p C Mg g; cf. Lemma 68. This
allows us to skip the calculation of Mg p for certain partitions P when looping over Py, resulting in a
speed improvement.

So in total, we establish an algorithm that calculates an R-linear basis of the diagonalizability locus
Co for a given ® = (Ay,..., Ax) as above. This algorithm is presented on the one hand as pseudocode
in Algorithm 94, on the other hand as Magma code in §3.5.5 where it is part of the file “partalgo”, cf.
pages 69 — 73.

The theory presented here can be applied to commuting tuples of K-diagonalizable R-endomorphisms
of a finitely generated free R-module. However, to use the implementation of the algorithm, one has
to make the passage to describing matrices.

0.1.2 Tori

Let R be a principal ideal domain. Let K := frac(R) be its field of fractions.

In the theory of Lie algebras over C, toral subalgebras are used to classify semisimple Lie algebras. We
recall that toral subalgebras, also known as tori, consist of elements whose adjoint endomorphisms are
semisimple. A maximal torus of a finite dimensional Lie algebra yields the root space decomposition
of the Lie algebra and thus the root system.

Let g be a Lie algebra over R and let t C g be a Lie subalgebra over R. We say that t is a rational
torus of g if for ¢ € t, the adjoint endomorphism adg(t) is K-diagonalizable; cf. Definition 97. We say
that t is an integral torus of g if for t € t, the adjoint endomorphism adg(t) is R-diagonalizable; cf.
Definition 97.

It follows that every integral torus is a rational torus.

We say that a rational torus t of g is a mazimal rational torus in g if for every rational torus t' of g
such that t C ¥ C g, we have t = t'; cf. Definition 97. Similarly we define maximal integral tori of g;
cf. Definition 97.

We will see that rational tori are abelian; cf. Lemma 107. Moreover, we will see that if a rational torus
t equals its centralizer in g, then t is a maximal rational torus in g; cf. Lemma 112.

We can use a maximal rational torus t of g to find a decomposition of the t-module g into indecom-
posables.

Let I" be a direct product of matrix rings over R. Let 2 be a subalgebra of I' such that K®p (F/Q) =0.
Let A C T be the subalgebra consisting of those tuples that contain only diagonal matrices.

Then 2N A is a maximal commutative subalgebra of €2; cf. Lemma 121. The commutator Lie algebra
(2N A) is our standard example for a maximal rational torus in [(£2); cf. Lemma 120.

However, maximal rational tori are in general not unique, not even unique up to conjugation; cf.
Remark 125.

Suppose that t is a rational torus in [(2). We define the integral core of t in [(2) by
Cory(q)(t) = {tet ’ adyq)(t) is R-diagonalizable} ;

cf. Definition 130. This is an integral torus in [(2); cf. Lemma 131. In general, the integral core
Coryq) (t) is contained properly in t. However, in general it is not a maximal integral torus in [(2); cf.
Remark 152.(7). Any integral torus of [(2) that is contained in t is also contained in Cory(q).

To determine an integral core algorithmically, we make use of the algorithm introduced in §0.1.1.3. To
that end, we choose an R-linear basis (b1,...,bx) of t. Then we can apply the algorithm to the tuple



P := (adyq)(b1),--.,adyq)(br)). This gives us an R-linear basis of the diagonalizability locus of ®
which suffices to determine the integral core Coryq)(t) of t in [(£2).

We say that a torus t in [(Q2) is a primitive torus in [(2) if it is a maximal rational torus in [(Q2) and
if there exist idempotents ei,...,e, € t that are primitive in €, such that e;e; = 0 for i # j and
Zie[l’n] e; = 1g and e;Qe; is local for @ € [1,n]; cf. Definition 146.

Suppose given two primitive tori t and ¥ in [(£2). We choose associated idempotents e; € t (i € [1,m])
and e, € ¥ (i € [1,n]) as required in the definition of primitive tori. Then we have m = n and there
exists a unit u in Q such that P,y , eifle; = ut <@ie[1,n} eéQeQ) u; cf. Lemma 149.

However, we also do not achieve uniqueness of primitive tori, not even uniqueness up to conjugation

with units in 2, as Remark 150 shows.

We illustrate this situation with the following diagram.

' ' conjugate Tyt
@ie[l,j\z} eifde; via u € U(Q) @ieuj:] e;$de;
t t

In particular, we consider the group rings Zs) S3, Z(2) S4 and Z9) Ss.
In §1 we will consider the group ring Z) S3. We use a Wedderburn embedding

~ 2%2

Z(g) Sg — Q - Z(g) X Z(BS X Z(g)
The standard torus [(2 N A) is both a maximal rational torus and a maximal integral torus in [(€2).
So in particular, the integral core Coryq)(I(£2N A)) equals [(£2 N A) here.

In §6 we will consider the group ring Z) S4. Using a Wedderburn embedding

~ 2%2 3x3 3x3
Z(Q) S4 — - Z(2><) X Z(% X Z(2><) X Z(Q) X Z(Q),
we obtain the Zy)-algebra 2. As a Zy)-module,  is of rank 24. The torus t := [(2NA) is a maximal
rational torus in [(£2), but it is not an integral torus in [(2). The integral core Corq) t is, considered
as a Zz)-module, of rank 7, whereas t is of rank 10.

In §7 we will consider the group ring Z) S5. We use a Wedderburn embedding

~O 0 4x4 4x4 5x5 5x5 6x6
Z(Q)S5 — Q - Z(Q)XZ(Q)XZ(;) XZ(2><) XZ(2>3 XZ(2X) XZ(2><) .

We consider a Z)-algebra

2%2 2%2 3x3
QC Z(Q) X Z(Q) X Z(Q) X Z(Q) X Z(2><) X Z(2><) X Z(2><)
that is Morita equivalent to Q. Asa Z9)-module, Q is of rank 21. The torus t := [(2NA) is a maximal
rational torus in [(Q2) of rank 13. Its integral core Corygq) t is, considered as a Z)-module, of rank 8.

In all three examples we observe that the integral core of the standard torus is generated by the center
and by certain primitive idempotents; cf. Question 135.

Moreover, in each of these three examples we use the standard torus to find a decomposition of
() into indecomposable t-submodules of [(2). We compare such a decomposition to the Peirce
decomposition of (). In the examples 2 ~ Z3)S3 and Q =~ Z,) Sy, the standard torus t is a direct
sum of such Peirce components. The components contained in t decompose into t-submodules of
rank 1, whereas the other Peirce components remain indecomposable. In the example of Zy) S5, the
standard torus t is not a direct sum of such Peirce components. There exists one Peirce component
of rank 8 that contains elements of t and non-diagonal elements. This component decomposes into
six indecomposable t-submodules, two of which are of rank 2. The other non-zero Peirce components
remain indecomposable.



Since the standard torus T := QN A is also a commutative subalgebra of €, we decompose the T-T-
bimodule €2 into indecomposables. In the three examples under consideration, viz. those in §1, §6 and
§7, the indecomposable summands coincide with the non-zero Peirce components. In general, however,
this is not necessarily the case; cf. Remark 172.
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0.2 Conventions

Let R be a commutative ring.

Let X be a set. We write “for £ € X7 if we mean “for all z € X"

We write Z for the set of integers. We denote by N the set of positive integers and we denote by
Np the set of non-negative integers. We denote by Fy the Galois field of two elements.

Let a,b € Z. Then [a,b] is defined as {z € Z | a < z < b}.
For a finite set X, we write |X| for its cardinality.

We write 0 for Kronecker’s delta. Suppose given elements x,y of the same set. Then d, , is defined

as follows.
1 ifz=y
Opy = ]
0 ifex#y

Suppose given s € N. We say that a tuple P = (p1,...,pg) of subsets of [1, s] is a partition of [1, s]
if the following conditions hold.

® Uie[l,k] pi = [1,]
pi # 0 for i € [1,k]
e p;Np;j =0 fori,j € [1,k] where i # j

e minp; < minp; for i,j € [1, k] where ¢ < j
We write Ps for the set of partitions of [1, s].

Let A be an abelian group, written additively. If unambiguous, we often write 0 for the zero
element 04 of A. We often write A := A\ {04}.

For a ring S, we denote by U(S) the group of units in S, i.e. the set of all invertible elements
associated with the multiplication of S.

Suppose that R is a discrete valuation ring with maximal ideal (7). Then we define the valuation
function at 7 as follows.

ve: R = Ny

mHmaX{kGNO‘HyGRSuCh thatxzwky}

(10) Suppose given a,b, s € R. We write a =4 b if there exists r € R such that a—b =rs,i.e. a—b € sR

(11) Let m > 0. We denote by R*™ the direct product R x ... x R.
—_—

m times

(12) We often call the endomorphism R-algebra of an object simply endomorphism ring.

(13) Suppose given m,n € N. The R-module of m x n-matrices over R is denoted by R™*". We often

identify R = R'!,
When writing down a matrix, omitted matrix entries are supposed to be zero.
If unambiguous, we denote the i-th standard basis vector in R™*! by e; for i € [1,m].

Suppose given i € [1,m] and j € [1,n]. We define E; j := (6(; j), (k1) )k € R™*™. This is the matrix
in R™*™ that has the entry 1 in the position (,7) and the entry 0 in all other positions.

We say that
(Ei1, B, s EByp, Eon, Eao, .oy By Ep1, Epa, ..o, Epy)

is the standard basis of R™*". We often denote it by &, .

11



(14) Suppose given finitely generated free R-modules M and N. Let m := rkg M and n = rky N.
Suppose given an R-linear map f: M — N. Let B = (by,...,by) be an R-linear basis of M. Let
C = (c1,...,¢p) be an R-linear basis of N. We say that a matrix (a; ;)i c (1,n], j e 1,m] € B"™ is
the describing matrix of f with respect to the bases B, C if

f(bj) = Z a; jCi for j € [1,m}.
i€[1,n]
In this case, we denote the matrix (a; ;)i e 1,n), j € [1,m] DY fes € R™*™.
If f is an endomorphism of M, then we simply call fz s the describing matrix of f with respect
to the basis B.

(15) Let A= (aij)ic(1,m],jen,n € R™" be amatrix. We say that A is a diagonal matriz if a; ; = 0
for i # j.

(16) By ties we mean congruences between matrix entries. For example, let (‘;S) € Z>*2. The
condition a =2 d on this matrix is a tie. The matrix ((1)(1)) fulfills the tie, but ((1)8) does not.

(17) Suppose given an R-algebra A and k € N. We say that Zie[l,k} e; = 14 is an orthogonal decom-
position (of 14) into idempotents in A if the following conditions are satisfied.

e 0#e¢; € Aforic[l,k]

o ciej=0fori,je[l,k]andi#j

o c? =¢; forie 1,k
We say that Zz’e[l,k] e; = 14 is an orthogonal decomposition (of 14) into primitive idempotents in
Aif 3 e i = 1a is an orthogonal decomposition (of 14) into idempotents and if for i € [1, k],

there are no elements ¢’,e” € A\ {04, ¢;} such that e; = ¢/ + € and /¢ = €”¢/ = 0 and (¢/)? = ¢’
and (e)? = ¢”.

Note that if Zz’e[Lk] e; = 14 is an orthogonal decomposition into primitive idempotents in A, then

D ie[LA] (u=leju) = 14 also is an orthogonal decomposition into primitive idempotents in A for
u € U(A).

(18) Modules are supposed to be left modules.

(19) Let T be a commutative R-algebra. We often write 7 := Hom(T', R) for the R-module of R-linear
maps ¢: T — R.

(20) Let A be an R-algebra and let B be an R-subalgebra of A. We often write C4(B) for the
centralizer of B in A, i.e.
Ca(B)={zx € A|zy = yx for y € B}.
(21) For an R-module M we write Subgr(M) for the set of R-submodules of M.

(22) Let M be an R-module. Suppose given z; € M for ¢ € [1,s]. We write r(z1,...,xs) for the
R-submodule of M that is generated over R by z1, ..., zs.
We also write g((x1,...,25)) := gr(z1,...,Ts)-

(23) Suppose that R is a principal ideal domain. Denote by K its field of fractions. Suppose given
R-modules M and N and an R-linear map ¢: M — N. Then the map

K®rp: KQp M — K @r N
l®gm— 1®gz @(m)
is a K-linear map. We often write K¢ := K®@rp and KM := K®r M as well as KN := K®prN.

If M is a finitely generated torsion free module over R, the embedding ¢pr: M — KM that sends
an element m € M to tpr(m) :=1®m € KM is an injective map. We identify M and tpr(M) via
LM-
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(24) Suppose that R is a principal ideal domain. Denote by K its field of fractions. An R-algebra that
is finitely generated free as an R-module is said to be an R-order.

Suppose given a finite dimensional K-algebra A. Suppose given an R-subalgebra 0 C A. We say
that an R-subalgebra 2 C A is an R-order in A if ) is an R-order such that KQ = A.

For example, if G is a finite group and A = K|[G] is its group algebra over K, then R[G] is an
R-order in A.

We say that I" is a completely split R-order if I" is isomorphic to a finite direct product of matrix
rings over R. In other words, there exist k € N and n; € N for 7 € [1, k] such that

1€[1,k]
We identify KT = Hie[l,k] K ixXng
(25) Suppose that R is a principal ideal domain. Denote by K its field of fractions. Let M be a finitely

generated free R-module. Let V' be a vector space over K. Let ¢: M — M be an R-linear map.
Let ¢: V — V be a K-linear map.

We say that m € M is an eigenvector of ¢ to the eigenvalue A € R if 1 ®p m is an eigenvector of
the K-linear map K ®p ¢ to the eigenvalue A as defined by linear algebra.

We say that ¢ is diagonalizable as an R-linear endomorphism (or short: diagonalizable over R) if
there exists an R-linear basis of M consisting of eigenvectors of .

We define the eigenmodule to the eigenvalue A € R as the submodule of M that consists of all
eigenvectors of ¢ to the eigenvalue A\ and the zero element, i.e. all elements x € M satisfying
o(z) = M.

We denote the set of all eigenvalues of the R-endomorphism ¢ by o(¢). We denote the set of all
eigenvalues of the K-endomorphism ¢ by o(v).

We denote the eigenmodule to the eigenvalue A of the R-linear map ¢ by E, ().
We denote the eigenspace to the eigenvalue p of the K-linear map 1 by Eqy(u).
Note that then we have E,(\) = Ex,(X) N M for X € o(yp).

(26) Suppose given a matrix A € R™*™. Then eigenvalues and eigenvectors of A are to be calculated
over K := frac R, i.e. we consider the eigenvalues and eigenvectors of A € K"*".
For an eigenvalue A of A, we denote the eigenspace of A to the eigenvalue A by E4()\).

(27) Suppose given a field K and a vector space V over K. Suppose given ® = (g1, ..., ¢x) such that
¢; € Endg (V) is diagonalizable for ¢ € [1,k] and such that p;p; = @;p; for i,j € [1,k]. We say

that A = (\i)iepn € K'F is an eigenvalue tuple of ® if there exists v € VX such that o;(v) = \v
for i € [1,k].

Suppose given an eigenvalue tuple A = (\;);c x) of @. Its simultaneous eigenspace Eg () is given
by
Eg(A\) ={v e V|gi(v) = N\v fori e [1,k]}.

Note that Eg(X) # 0.

A simultaneous eigenspace for ® is a simultaneous eigenspace for ® for some eigenvalue tuple of ®.
(28) Let A be an R-algebra. Let [(A) := A as R-modules. Define the map
[—=]: W4) xU(4) —1(4)
(z,y) [yl =2y —yz

which is a bilinear map. Then [(A) together with the Lie bracket [—, =] becomes a Lie algebra
over R, called the commutator Lie algebra of A.

So we write A whenever we are in the context of associative algebras and we write [(A) whenever
we are in the context of Lie algebras.

13



(29) Let g be a Lie algebra over R. Let M be an R-module. Let ¢: g — gl(M) be a morphism of Lie
algebras. Then for g € g, m € M, we define [g,m] := (¢(g))(m). We say that M = (M, p) is a
g-Lie module. We also write ada/(g) := ¢(g) = gl(M) = Endg(M) for g € g.

Denoting by 0 the zero map g % gl(M), we call M = (M, 0) a trivial g-Lie module. Then we have
[g,m] =0forgeg, me M.

0.3 List of Magma codes

We make use of the computer algebra system Magma; cf. [BCP97].

Magma Code 1  z3s3Initl page 31

Magma Code 2 z3s3Init2 page 31

Magma Code 3 pre page 66

Magma Code 4  definitions page 67

Magma Code 5  partalgo page 69

Magma Code 6  z3s3Example page 88

Magma Code 7 counterex page 98

Magma Code 8  Lbbasis page 111
Magma Code 9  L6basis page 115
Magma Code 10 L7blocks page 117
Magma Code 11 L7 page 121
Magma Code 12 z2s4FigenmoduleBasis page 130
Magma Code 13 z2s4RDiagldempotents page 132
Magma Code 14 z2s4IntegralCore page 132
Magma Code 15  z2s4IntegralCore2 page 133
Magma Code 16 z2s4Initl page 146
Magma Code 17  z2s4Init2 page 146
Magma Code 18 z2s5NonDiagonalizableElement page 155
Magma Code 19  z2s5EigenmoduleBasis page 157
Magma Code 20 z2s5RDiagldempotents page 158
Magma Code 21  z2s5IntegralCore page 158
Magma Code 22  z2s5IntegralCore2 page 160
Magma Code 23  z2s5Initl page 169
Magma Code 24  z2s5Init2 page 170
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0.4 List of counterexamples

Remark 24
Remark 36
Remark 42

Remark 45

Example 100
Remark 101

Remark 104

Remark 118

Remark 125

Remark 128

Remark 150

Remark 152

A finitely generated free module over an infinite principal ideal domain that can
be written as a finite union of proper submodules. Cf. also Lemma 23.

An indecomposable object X in a preadditive category such that the endomor-
phism ring End(X) contains a non-trivial idempotent. Cf. also Lemma 35.

A discrete valuation ring R and a matrix A € R?*? such that A is diagonalizable
over frac(R), but A is not diagonalizable over R.

A discrete valuation ring R, finitely generated free R-modules ¥ C X and
an R-module endomorphism on X that is R-diagonalizable but that is not R-
diagonalizable when restricted to Y. Cf. also Lemma 43 and Corollary 44.

A Lie algebra g over a principal ideal domain and an integral torus t C g that is
not pure in g.

A discrete valuation ring R, an R-algebra A and an integral torus t in the Lie
algebra [(A) over R such that t is not an R-subalgebra of A.

A discrete valuation ring R with field of fractions K, a Lie algebra g over R and
a maximal torus t C Kg such that t N g is not an integral torus in g. Cf. also
Lemma 103.

A discrete valuation ring R, a completely split R-order I' and an element x € [(T")
with an adjoint endomorphism ady)(z) that is not diagonalizable over R but over
frac R.

A discrete valuation ring R, a completely split R-order I" and two maximal rational
tori in [(T") that are not conjugate via a unit in T

A discrete valuation ring R, a split R-order 2, an element = € [(Q2) and an or-
thogonal decomposition 1 = e + €’ of 1g into primitive idempotents in Q such
that adyq)(z) is diagonalizable over R but adygq)(exe’) is not diagonalizable over
frac R.

A discrete valuation ring R, a split R-order 2 and two primitive tori of [(Q2) that
are not conjugate via a unit in Q.

A discrete valuation ring R and a split R-order §2 isomorphic to RG for a finite
group GG and R-subalgebras T" and 71 of {2 such that the following occur.

e T and T3 are maximal commutative subalgebras of {2 that are not isomorphic
as R-algebras.

e T and T) are not conjugate via a unit in KQ but [(T") and [(T}) are two
maximal rational tori of [(§2).

e [(T1) C () is a non-primitive maximal rational torus and [(T") C I(Q2) is a
primitive torus.

e A completely split g%—overorder I' O Q with full diagonal A and u € U(I")
such that, writing  := u™'Qu, the lengths of the R-modules A/(Q N A)

and A/ (2N A) are different.

e [(T7) C () is a maximal rational torus and 1lq is primitive in 77, but not
primitive in €.

e [(T) and [(T}) are maximal rational tori in [(2) such that the integral cores
of (T') and [(T7) in [(2) have, considered as R-modules, different ranks.

e A completely split R-overorder I' O Q with full diagonal A and u € U(T")
such that [(2 N A) is a maximal integral torus in [(£2), but, writing  :=
u~1Qu, the integral core of the rational torus [(2 N A) C [(2) is not a

o

maximal integral torus in [(€2).
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Remark 169

Remark 172

A discrete valuation ring R, a split R-order 2, an element z € Q) and a primitive
idempotent e €  such that adygq)(z) is R-diagonalizable, but adyq)(exe) is not
R-diagonalizable. Moreover, an integral core C' of a maximal rational torus in [(£2)
such that C' is not an R-subalgebra of Q2. Cf. also Remark 101.

A discrete valuation ring R, a split R-order Q' in a completely split R-order T
such that, letting A’ be the full diagonal in I" and T" := Q' N A/, the following
holds.

There exists an orthogonal decomposition of 1o/ = e; + eg into primitive idempo-
tents in € such that e;,es € T’ and such that e;Qes is a decomposable T"-T"-
bimodule.

0.5 List of open questions

Let R be a principal ideal domain.

Question 93

Question 135

Question 145

Question 151

Question 173

Given a cd-tuple @ on a finitely generated free R-module N; cf. Definition 51. We
have the map wvg; cf. Definition 65. Is there exactly one maximal element in the
preimage vy (N)?

Is the integral core of a maximal rational torus always generated by the primitive
idempotents and central elements that are contained in the torus?

Suppose that € is a Wedderburn image of a group ring Z,) S,. Denote by
[(T) the standard torus in [(2). Suppose given an orthogonal decomposition
1lg = Zie[l,é} e; into primitive idempotents in ) where e; € T. Is e;{de; inde-
composable as a T-T-bimodule for ¢ # j7

Suppose that €2 is a split R-order. Is a maximal rational torus in [(£2) always an
R-subalgebra of Q7

Suppose given an R-order ' and an orthogonal decomposition of 1¢ into primitive
idempotents by Zie[l,n] e;. Suppose that e;QVe; # 0.

Is €;QYe; indecomposable as a bimodule over the Peirce diagonal @ie[l’n] e;Ve;?

16



Chapter 1: Example Z3) S3

1.1 Wedderburn: Z)S; —

As a first example, we consider R := Z3) = {% ‘ a €L, beZ*, b#s 0} which is a discrete valuation
ring with maximal ideal generated by 3, viz. 3Z3) = {% € Z) ‘ a€3Z,beZ*, b#s 0}. We often
write K := Q = frac(R) for the field of fractions of R. We consider the Zs)-order

Z(g) S3 = Z TeO |Tg € Z(g) for o € S3

oES3

Since R C Q, we can embed R S3 in Q S3. By Maschke’s theorem, the group algebra QQ Sg is semisimple.
Then, by the Artin-Wedderburn theorem, there exists an isomorphism of Q-algebras

w: QS — ] Q™
1€[1,k]

where k € N and n; € N for ¢ € [1, k] and all these integers are uniquely determined up to permutation
of the n;. In the case of QSs3, we have QS3 ~ Q x Q?*2 x Q.

For the following, we denote by o1 the trivial representation of S3 and we denote by ps the sign
representation of Sg. Moreover, we define g on generators of S3 as follows; cf. [Kiin01, §0.2].

02 : QS3 — Q**?
-2 3
(1,2) — (_1 2>

(1,2,3) — (_f i’)

This defines in fact a representation of S3: Since Sj is isomorphic to the group presented by generators
s and t satisfying the relations s> = 1, 3 = 1 and (st)2 = 1 (via s — (1,2) and ¢t — (1,2,3)), it is
sufficient to verify that the images of (1,2) and (1,2, 3) satisfy these relations.

-0
(2 i’)j(i ‘2);(‘? )=o)
(E2E)) =67 -6

This shows that g2 is in fact a representation of Ss, in particular it is a two-dimensional representation.

So the Q-algebra isomorphism w given by the Artin-Wedderburn theorem may take the form (g1, 02, 03)-
We denote the restriction of w to RS3 by w". We obtain the following diagram.

o (01(0), 02(0), 03(0))
QS; “ QxQ¥*?xQ
RS3\ = Rx R¥>2xR=:T

w'(RS3) =: O

17



We want to verify that w is in fact an isomorphism of Q-algebras. Consider the following Q-linear

basis of the Q-algebra Q Ss and the images of these basis elements under w.

g

o w(o)

id

(1,3) (1, (é

)

(2,3) (1, G

%))

(1,3,2) <1, (}

)

We define the following matrix that has in its rows the entries of all these images.

1
1
1

0 0 1 1
3 -1 2 -1
3 —1 1 1
-3 0 -1 -1
0 1 -1 -1
-3 1 -2 1

We define the standard basis £ := (£1,1,22,€11) of Q x Q**2 x Q = K ® I'. Then we consider the
determinant of the matrix U since this matrix is the describing matrix of w with respect to the basis
E. We have

det(U) = =54 € U(Q).

This shows that w is an isomorphism of QQ-algebras.

We invert this matrix as a matrix in Q%*%. Then the following multiple of U~! is again a matrix in
RGXG.

1 1 1 1 1 1
2 -4 2 2 2 -4
o -2 2 0 2 =2

. 71 -
6-U 0 6 -6 -6 0 6
2 4 -4 -2 -2 2
1 -1 1 -1 -1 1

The ties needed to describe ) are obtained by the columns of this matrix. The factor 6 indicates that
the ties are to be understood as ties modulo 6. Applying elementary column operations on 6-U !, we
obtain the following matrix.

O O O N
O O O o O
O O N OO
O O O O O
N O O OO
O O O O O

300046
Since 2 € U(R) we get the following description of the image of RSs under w, i.e. of Q.

sz(RSg)z{(u, (Z Z),f) €eRx R xR ang,ezgf,cz;:,O}

Sometimes we use a more graphical way to illustrate R-algebras that can be described by ties. In this
example, we have the following illustration of 2.

R (3)

R R
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The number written in a box below a matrix is associated to the position of the respective matrix in
the tuple.

We choose an R-linear basis of 2. Define B := (b1, ba, b3, by, b5, bg) as follows.
1 0 0 0 0 3
(6 ) () (o0 D)
0 0 0 0 0 0
b0 ) (6 D) oo D)

We find an orthogonal decomposition of 1g into idempotents e and €’ in €. Define

(s ) e (00 )

Thus we obtain e + ¢’ = 1g and e/ = ¢e =0 and €2 = ¢ and ¢'? = ¢'.

Using these two idempotents, we get a Peirce decomposition of 2 as follows.
Q= eQe® Qe G eQle’ @ Qe (5)
Using the basis elements of 2 in the basis B, this is the same as

r=ul((o 0) ) (0 o)) est(n o 1)) (46 )9

eQle e/'Qe’

(o3 ) en(o )

eQe’ e'Qe

We want to show that e and ¢’ are primitive idempotents in Q. To see that e is primitive in €, it
suffices to show that eQe is a local ring; cf. Remark 139.(2) below. Similarly, to see that e’ is primitive
in Q, it suffices to show that €’Q¢’ is a local ring.

We have the following isomorphism of R-algebras.

Qe {(ab) e R a=yb)
<a, (8 8) ,0) — (a,0)

The images of by and of by are (1,1) and (3,0) which is an R-linear basis of the right hand side. So we
have in fact an isomorphism of R-algebras.

Applying Lemma 33 below, we conclude that {(a,b) € R*? } a =3 b} is local. Then also eQe is local
and thus the idempotent e is primitive in 2.

For €'Qe’, we have the following isomorphism of R-algebras.

~

e'Qe’ = {(a,b) € R**|a =3 b}

(o, (8 2) ,b) — (a,b)

Using similar arguments as for e2e, we conclude that €’Q¢’ is local. Thus €’ is a primitive idempotent
in Q.

This shows that e and €’ are primitive idempotents in Q; ¢f. Remark 139.(2) below.

Hence 1 = e + ¢’ is an orthogonal decomposition of 1¢ into primitive idempotents in €.
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1.2 The standard torus [(T") in 2

Keep the notation of §1.1.

As an R-algebra, we can intersect {2 with the R-subalgebra A of I' where every matrix is a diagonal
matrix. We denote this intersection by T

T::QOA:{<a,<8 2>,f>eR><RM><R

This is a commutative R-subalgebra of (.
We have the R-linear basis By := (b1, ba, bs, bg) of T. Note that

CLEgb,@ng}

T=eQede'Qe =Ted T€'.

So Q=T @ r(b3) ® r(ba).
We obtain the following illustration of T'.

_— " R 0 "
0 R—3) g

First we will show that T" equals the centralizer Cq(T) of T in Q.

Since T is a commutative R-subalgebra of €2, we have T'C Cq(T).

!
For the other direction T' O Cq(T), let x € Cq(T) and y := (0, <g 8) ,0) € T. Then there
b

exist a,b,c,d,e, f € R with a =3 b, ¢ =3 0 and e =3 f such that x = <a, (d Z) ,f). We have

x-y = y-x leading to the condition 3 (38) =3 <8 3) Since R is free of zero divisors, this is equivalent
to ¢ =d =0, so we conclude that 7' 2 Cq(T).
Altogether, we have shown that 7' = Cq(T).
Let [(2) = Q as R-modules. We equip [(2) with the commutator Lie bracket.
[—,=]: Q) xI(Q) — Q)
(z,y) [zl =2y —yzx
Thus [(2) becomes a Lie algebra over R, the commutator Lie algebra of Q. Likewise we have the Lie
algebra [(T) over R. We have [(T') C [(Q2) as Lie algebras over R, so [(§2) becomes an [(T")-Lie module.
From the theory of Lie algebras, we recall the adjoint morphism adq); cf. [Kiin15, Definition 8]. We
use it now in our context of Lie algebras over R.
ad[(Q): [(Q) — EndR([(Q))
r o adgg(z): Q) — Q)
y = [y

We consider the describing matrices of ad[(Q) (b;) for the basis elements by, by, bs and bg of the basis By
with respect to the basis B.

000 000
14888

(ad[(Q) b1)s5 = 8 8 8_(1) 8 8 (ad[(Q) b2)ss =0
000 000
00 00O00O
TR

(adyq) bs)B.8 = 00 0100 (adyq) be)B,5 =0
00 0000



Note that these matrices are all diagonal. But this is dependent on the choice of the basis B. However,
the property of being diagonalizable is independent of the choice of the basis. In particular, there
exists a matrix S € GLg(R) such that S~! - ((adyq) bi)s,8) - S is a diagonal matrix for i € {1,2,5,6},
viz. S = 1R6><6.

Our aim is to establish a theory of maximal rational tori and maximal integral tori. Once established,
[(T") will be an example of both a maximal torus in [(2) and a maximal integral torus in [(£2).

1.3 Decompositions of ()

Keep the notation of §1.1 and §1.2.

We are now interested in decompositions of €2 into indecomposable submodules. We want to consider
two possibilities of decomposing €.

On the one hand, we will decompose €2 as a T-T-bimodule. On the other hand, we will decompose
[(Q) as an [(T)-Lie module.

To see the indecomposability of the direct summands, we introduce the methods we will also use in
the examples in §6 and §7 below, even though in this small example there might exist shorter ways.

1.3.1 A decomposition of 2 into 7-7T-bimodules

As a T-T-sub-bimodule of Q, we can decompose T into the direct sum T = Te @ Te'. Since T is
commutative, both Te and Te' are in fact T-T-sub-bimodules of Q. Then we have the following
decomposition of 2.

Q = r(b1,b2) ® r(bs,b6) D Rr(b3) ® R(ba)
—_—— ——— M~~~ M~
Te Te! eQle! e/Qe
We will show in the following that this is a decomposition into indecomposable T-T-bimodules, i.e. we
will show that T'e and Te’ are both indecomposable as T-T-bimodules.

Ad Te.

For a better distinction between the basis elements of €2 and the basis elements of the Peirce component
Te, we write z1 := by and za := by. So we have Te = p(x1,x2).

To show the indecomposability of Te as a T-T-bimodule, it suffices to show that the T-T-endomorphism
ring Endp.p(Te) is a local ring; cf. Lemma 35 below. This ring can be written as

Endr.r(Te) = {h € Endg(Te) | h(bjz;) = bih(z;) for i € {1,2,5,6}, j € [1,2] and
h(z;b;) = h(z;)b; for i € {1,2,5,6}, j € [1,2]}.
We obtain the following diagram.

h——m— h(xl,xg),(aﬂhiw)

Endp(Te) o R2%2

~

Endr.p(Te) — ¢1(Endpp(Te)) =: Ey

Here the map ¢;: Endg(Te) — R?*? is the ring isomorphism sending a map h € Endg(Te) to its
describing matrix in the ring of 2 x 2-matrices over R with respect to the R-linear basis (x1,z2) of
Te. We can embed Endp.7(7Te) into the endomorphism ring Endg(Te) and thus we can also apply 1
to Endp.p(Te). We denote the image ¢1(Endp.p(Te)) by Ep. Since ¢ is a ring morphism, F is a
subring of R?*2,
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So in order to show that Endp.p(Te) is a local ring, it suffices to show that Fj is a local ring. To do
so, we need a description of the elements in Ej.

For i € {1,2,5,6} we define M(;, ,,)1 to be the describing matrix of the multiplication by b; on Te
from the left with respect to the basis (z1,72). For j € {1,2,5,6} we define M, .., ;. to be the
describing matrix of the multiplication by b; on T'e from the right with respect to the basis (x1, z2).
Then we can describe E; as follows.

Endrq(Te) ~ Ey = {M € R¥? | M - M, 4,)i1 = M
M - M,

i1- M forie {1,2,5,6} and
- M for j € {1,2,5,6} }

x1,T2)

x1,22),4,r — M(m1,932)7j7r

We determine the matrices My, 4,) i1 and Mz, 4,4, for i € {1,2,5,6}.

i [ bi-wy | biwo | Mg, zyi1 | 21 bi | 22 0i | Mg 20)ix
1| T2 (69) T T2 (01)
2| a9 329 (99) Ty | 3w )
50 0 0 (39) 0 0 (30)
6| 0 0 (39) 0 0 (90)

In this example, we are in the case that we want to show the indecomposability of a submodule of a
commutative R-algebra. Thus we have M, 4,)i1 = Mg, 2,)ix for i € {1,2,5,6}.

Moreover, Te operates trivial on Te’ since T'= Te ® T’ is commutative and we have ee’ = €’e = 0.

Since (88) and ((1)(1)) are central elements in the ring of 2 x 2-matrices, the description of E; shortens

’ (0 )= 9 )

Suppose given M = (‘;3) € R¥? such that M - (18) = (13) - M. Then we obtain

(%) : (?g) = (?g) : <(ZZ> — <Z§Z> = (a-i(-)3cb—i?3d>

<—b=0anda+3c=d

E| = {M € R?*?

which is equivalent to M = (‘ZGJB?,C), so M € R((é?) , (?g)) This shows that

m=nlo 1) G 3))

It remains to show that F is a local ring. We will determine the units in F;. Then we will show that
the sum of two non-units in F; always is a non-unit in E7; cf. Lemma 28 and Remark 30 below. This
will show that F; is a local ring.

Suppose given x € Fp. Then there exist a,c € R such that z = (‘;afgc). Now z is a unit in R?*? if
and only if det z = a® 4 3ac is a unit in R, i.e. if and only if a? is a unit in R. But this is the case if
and only if @ is a unit in R. So the units in E; are

U(Ey) ={r ((1)?) +s(?g) |7 € U(R), s € R};

cf. Lemma 28.

We observe that the sum of two non-units in F; is again a non-unit in Fj since R itself is a local
ring; cf. Remark 30 below. Again by Remark 30, this shows that FE; is a local ring which implies that
Endr.p(Te) is also a local ring.

We conclude that T'e is indecomposable as a T-T-sub-bimodule of €2; cf. Lemma 35 below.
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Alternatively, we could have argued that
Endr.r(Te) ~ Endp(Te) ~ eTe =Te ~ {(a,b) € R X R|a =3 b}

where the latter ring is a local ring.

We can also show by direct calculation that Fy does not contain a non-trivial idempotent; cf. Defini-
tion 31 below. This is also a sufficient condition for the indecomposability of Te as a T-T-sub-bimodule
of ©; cf. Lemma 35 below.

Assume that M = (‘;afgc) is a non-trivial idempotent in E;. Then M? = M, so we have

a? 0 _fa 0
2ac+3c¢* a’+6ac+c?)  \c¢ a+3c)’

This leaves us two cases, either a = 0 or a = 1. If a = 0, then <3gz fz) = (2??0), so ¢ = 0 and hence
M =0. If a =1, then (c(2-1+3c) 1+62+62> = (i 1f3c). But 2+ 3c # 0 for ¢ € Z3), so the only solution is

¢ =0, hence M = 1. This is a contradiction to the non-triviality of M.

Ad Te'.

For a better distinction between the basis elements of {2 and the basis elements of the Peirce component
Te', we write x3 := bs and x4 := bg. So we have Te’' = g(x3,x4).

To show the indecomposability of T'e’ as a T-T-bimodule, it suffices to show that the T-T-endomorphism
ring Endp.p(T€') is a local ring; cf. Lemma 35 below. This ring can be written as

Endr.r(T€') = {h € Endg(T€') | h(biz;) = bih(x;) for i € {1,2,5,6}, j € [3,4] and
h(zjb;) = h(z;)b; for i € {1,2,5,6}, j € [3,4]}.

We obtain the following diagram.

hi

h(x:s,x4),(ar3,ar4)

Endp(Te') o R2x2

El’ldT_T (Te’) —= P2 (EndT_T (Te’)) = EQ

Here the map @2: Endg(Te’) — R?*? is the ring isomorphism sending a map h € Endg(T¢’) to its
describing matrix in the ring of 2 x 2-matrices over R with respect to the R-linear basis (x3,z4) of
Te'. We can embed Endy.p (7€) into the endomorphism ring Endg(7'¢’) and thus we can also apply
2 to Endp.p(Te’). We denote the image ¢o(Endr.r(Te’)) by Es. Since ¢9 is a ring morphism, Es is
a subring of R?*2.

So in order to show that Endp.p(T€¢’) is a local ring, it suffices to show that Es is a local ring. To do
so, we need a description of the elements in Ej.

For i € {1,2,5,6} we define My, ;)1 to be the describing matrix of the multiplication by b; on T'¢’
from the left with respect to the basis (z3,74). For j € {1,2,5,6} we define M(,, ;. to be the
describing matrix of the multiplication by b; on T¢’ from the right with respect to the basis (3, z4).
Then we can describe Ey as follows.

Endpp(Te') ~ Ey = {M € R¥* | M - M,
M- M,

i1 M forie {1,2,5,6} and
e M for j €{1,2,5,6}}

M($379€4)

x3,24),i,] —
x3,%4),J,¢ x3,%4),

We determine the matrices Mg, 5,1 and Mg, 4,y for i € {1,2,5,6}.
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i bixs | b wa | Miggayin | @300 | 21 b | Mizge0)in
1] 0 0 (50) 0 0 (80)
21 0 0 (50) 0 0 (80)
S| w3 x4 ((13(1]) x3 x4 ((1)(1))
6| x4 | 314 (99) xy | 3wy (1%)

In this example, we are in the case that we want to show the indecomposability of a submodule of a
commutative R-algebra. Thus we have M 1= Mgy 2,),ix for i € {1,2,5,6}.

Moreover, Te’ operates trivial on Te since T'= Te ® T’ is commutative and we have ee’ = e’e = 0.

3,%4),0,
Since (88) and ((1)(1)) are central elements in the ring of 2 x 2-matrices, the description of E5 shortens

’ (0 )= (9w

But this is the same as E;. We have already seen that F; is a local ring, so E5 is a local ring as well.

@:{MGR“2

Using the same arguments as for Endy.p(Te) this shows that Endpp (7€) is indecomposable as a
T-T-sub-bimodule of €2.

We summarize.

We get the following decomposition of €2 into indecomposable T-T-bimodules.

Q = g(b1,b2) ® r(bs, bs) ® r(b3) ® R(bs)

But this is exactly the Peirce decomposition we found in §1.1; cf. equation (5).

There are two more endomorphism rings we can have a look at, viz. Endp.p(eQe’) and Endp.p(e'Qe).
Both of them are isomorphic to R which is a local ring.

So for all direct summands in the decomposition, we have seen that their respective T-T-endomorphism
ring is a local ring.

We will show one more thing: Each of the direct summands is not isomorphic as a T-T-bimodule to
any of the other direct summands. To see this we will show that the annihilator in € of each summand
is different from the annihilators of the other summands; cf. Lemma 26 below.

We have the following.

e ¢(Te)e # 0, but e(Te')e = 0, e(ele')e = 0, e(e'Qe)e = 0. This shows that Te is not isomorphic
to any of the other direct summands.

o /(Te)e # 0, but €(eQe)e =0, e(e'Qe)e’ = 0. This shows that T¢’ is neither isomorphic to
eQe’ nor to e'Qe.

o c(eQe')e’ #0, but e(¢/Qe)e’ = 0. This shows that eQe’ 2 €' Qe.

This shows that all direct summands of €2 in the Peirce decomposition are pairwise non-isomorphic as
T-T-bimodules.
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1.3.2 A decomposition of [(2) into [(T)-Lie modules

Now we want to decompose [(€2) into a direct sum of indecomposable [(T")-Lie submodules. We abbrevi-
ate T; := g(b;) for ¢ € [1,6]. We have seen that T" is commutative. We conclude that [(T) is an abelian
Lie algebra over R. Thus T is a trivial [(T)-Lie module. We could decompose T into submodules of
rank 1, but this corresponds to the task of decomposing R®?* into R-submodules of rank 1.

We see that T3 and T} are in fact [(T")-Lie submodules because both are T-T-bimodules as well. In
fact we have [bl,bg] = 63, [b5,b3] = —b3 and [bg,b3] = [bﬁ,b;),] =0 and [bl,b4] = —b4, [b5,b4] = b4 and
[ba, ba] = [bs, ba] = 0.

So we have a decomposition of [(£2) into a direct sum of indecomposable [(T")-Lie submodules of rank 1

given by
Q=& .
i€[1,6]

If we keep T in the decomposition because it is a trivial [(T)-Lie module, then we get
(Q)=TdTs Ty

Next we consider the [(T')-endomorphism rings End7)(7;) for i € [1,6].

We know that Endgr(T;) = g(idr,) for i € [1,6]. Since already idy, € Endyq(T;) € Endg(T;), we
conclude that Endg(T;) = End7)(T;) ~ R for i € [1,6].

This shows that the endomorphism ring Endy1(7}) is a local ring for 7 € [1, 6] since R itself is local.

In §1.3.1 we have shown that all summands in the T-T-bimodule-decomposition of () are pairwise
non-isomorphic.

As [(T')-Lie submodules of [(€2), we have T} ~ T, ~ T5 ~ T as trivial [(T')-Lie modules of rank 1 over
R, so all summands of T are isomorphic. The [(T)-Lie submodules T3 and Ty are not trivial [(T)-Lie
modules.

Furthermore, we can show that T3 is not isomorphic to T}.

Assume that there exists an [(T)-linear isomorphism f between T3 and Ty. Each element of T3 is a
multiple of b3. This has to be sent to a multiple of by. So there exists u € U(R) such that

fiT3L>T4
0 3z 0 O
(.G ) 0) = (0 0)0)
for x € R.

Since f is [(T')-linear, we have f[t,x -bs] = [t, f(x - b3)] for t € [(T') and = € R.
We have

(<{<<<> 85»)@(8 )oN)=1((6 )
<[4 9 o060 P66 D) (D)
(2 D)o

These two expressions are equal, thus u - by = —u - by and hence u = —u. So u = 0 which is a
contradiction to u € U(R).

This shows that 73 and Ty are not isomorphic as [(T")-Lie submodules of [(£2).
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1.4 Interlude: Roots and root paths

Let R be a principal ideal domain. Let 2 be an R-order. Let T be a commutative R-subalgebra of .

Definition 1. Let y € T* := Hom(7T, R) be an R-linear map.

If there exists an element x € 2 such that (adyq)t)(z) = x(t)z for t € T', then x is called a root of
Q2. For aroot x € T* of €1, we define the root path €1, to the root x of 2 as follows.

Q= {zeq| (adyq) t)(z) = x(t)z for t € T}

Let x1, xr € T™. If there exists an element z € Q* such that tx = x1(t)r and zt = x,(t)x for t € T', we
call the pair (x1, xr) € T* X T* a biroot of Q. For a biroot X’ = (x1, xz) € T* x T* of Q, we define the
biroot path 0, to the biroot x" of Q as follows.

QO :={z € Q|te = x1(t)x for t € T and at = x,(t)x for t € T'}

Example 2. Let y = 0 € T™ be the zero homomorphism. Then € is the set of all elements x in 2
where tz —axt =0for t € T, i.e. Qy = Cq(T), the centralizer of T in €.

Lemma 3. Let x be a root of ). Then the root path ), is an R-submodule of ).

Proof. We have 0 € Q. Let x,y € §,. Let r,s € R. Suppose given t € t. We calculate.
(adyq) ) (rz + sy) = [t,rx + sy] = [t,rx] + [t, sy] = r[t, z] + s[t, y]
= r(adyq) t)(z) + s(adyq) t)(y) = rx(t)z + sx(t)y
= x(t)rz + x(t)sy = x(t)(rz + sy)
This shows that rz 4 sy € Q. O

Lemma 4. Let x = (x1, Xx) be a biroot of Q. Then the biroot path §, is an R-submodule of Q.

Proof. We have 0 € Q.. Let z,y € §,. Let r,s € R. Suppose given t € t. We calculate.

t(rz + sy) = rtz + sty = rxi(t)x + sxa(t)y
=xi(t)(rz + sy)
(rx + sy)t = rat + syt = rx;:(t)x + sx:(t)y
= x:(t)(rx + sy)
This shows that rz + sy € Q,. O

Lemma 5.

(1) Let Q= @z‘e[l u T be a decomposition of Q into a direct sum of T-T-sub-bimodules of Q. Suppose
given p € [1,u] such that T, is an indecomposable summand of rank 1. Then there exists a unique
biroot x € T* x T* such that T}, C .

2) Let 1(QQ) = P, S; be a decomposition of [(Q) into a direct sum of [(T)-Lie submodules of [(£2).
1€[1,v]
Suppose given q € [1,v] such that S, is an indecomposable summand of rank 1 over R. Then there
exists a unique root x € T™ such that Sq C €2y

Proof. Ad (1). We find an element x € Q* such that T}, = r(x).

For t € T', the element tx is a multiple of  since tx € T),. Thus we can uniquely define a map x; € T
such that tx =: xi(t)x for ¢t € T. This map is independent of the choice of x.

We will show that x is an R-linear map. Suppose given a, o’ € R and t,t' € T. We calculate.

xi(at + 'tx = (at + o't)x = atx + o't'z
= axi(t)z + o x(t)z = (axi(t) + o' x(t)) z
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Since Q is torsion free, we have yj(at + o't') = (axa(t) + o' x1(t’)), so x1 is an R-linear map.

Furthermore, the element xt is a multiple of x for t € T', so we also can uniquely define a map x, € T*
such that xt =: x,(¢)x for ¢t € T'. This map is independent of the choice of x. With similar arguments
as for x; we conclude that y; is an R-linear map.

Taking both together, we obtain the biroot x := (x1, xr) € T x T* of Q.
Suppose given y € T),. We find an element r € R such that y = rx. Suppose given ¢t € T'. We calculate.

ty = tre = rtz = rxa(t)e = xa()rz = x1(t)y
yt = rat =rx;(t)r = xo(O)re = x:(t)y

We conclude that y € Q. This shows that T), C Q,.

Ad (2). We find an element € Q* such that S; = r(x).

For t € T, the element [t,z] is a multiple of « since [¢t,2] € S;. Thus we can uniquely define a map
x € T* such that (adyq)t)(w) = [t, 2] =: x(t)x for ¢ € T" This map is independent of the choice of z.

We will show that y is an R-linear map. Suppose given o, o’ € R and t,t' € T. We calculate.
x(at + o't x = [at + 't 2] = aft, z] + [t/, 7]
= ax(t)z +ao'x(t')z = (ax(t) + o/x(t) «

Since € is torsion free, we have x(at + o/t') = (ax(t) + o'x(t')), so x is an R-linear map. This shows
that x is a root of €.

Suppose given y € S;. We find an element r € R such that y = rz. For t € T', we have

(adyey t)(y) = [t y] = [t,ra] = r[t, 2] = rx(t)z = x(t)rz = x(t)y,
so y € §2y. This shows that S, C Q. O
Example 6. As an example, we provide the biroots and roots of € of §1.1; c¢f. §1.5.1 and §1.5.2 below.

Lemma 7. Let (x1, xr) € T* x T* be a biroot of Q. Then x1 — x: 8 a root of Q and
Q(leXr) C Qy—x-

Proof. Suppose given x € Q* such that tz = x;(t)x and xt = x,(t)x for ¢t € T. Suppose given t € T..

We have (adyq)t)(z) = [t, 2] = tr — 2t = xa(t)z — x»(t)z = ((x1 — x2)(t))z. So x1 — Xxr is a root of €.
Ad C. Let z € Q(,, y,)- Then we have tx = xi(t)z and 2t = x,(t)z for ¢t € t. Suppose given t € t.
Then (adyq) t)(x) = [t,r] = tx — 2t = xa(t)z — x:(t)r = ((x1 — xx)(t))z. So we have x € Qy,—,. O

Example 8. Consider € of §1.1. We will give the roots and biroots of ; cf. §1.5.1 and §1.5.2 below.
Note that for a biroot (1, xr) of © in §1.5.1, the difference x; — xr occurs as a root of Q in §1.5.2.

Lemma 9. Suppose that X and Y are two indecomposable summands of rank 1 in a decomposition
of Q into T-T-bimodules. Let xx = (xx1, Xx,r) be the biroot of the summand X as constructed in
Lemma 5.(1). Let xy = (xv1, Xy,x) be the biroot of the summand Y as constructed in Lemma 5.(1).
Then we have the following equivalence:

XY <= xx =Xy

Proof. Ad = . Suppose given x € X and y € Y such that X = r(z) and Y = r(y). Suppose that
f: X — Y is an isomorphism of R-modules. Since f is surjective, there exists an element r € R such
that y = r- f(x). Moreover, we find an element s € R such that f(z) = s-y. Butnow y = r-f(x) = r-s-y
and since R is torsion free, we have r - s = 1 and thus r, s € U(R). We obtain Y = g(f(x)).

So without loss of generality, we can assume that y = f(x).
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Suppose given ¢t € T'. Then we have tz = xx () - x; cf. Definition 1. Applying f on both sides amounts
to f(t-x) = f(xx,i(t) - ). But now

ft-z)=t -f(x)=t-y=xvi(t) y
FOxxa(®) @) = xxa(t) - f(z) = xxa(t) -y

and we conclude that xy; = xx, -
Using similar arguments we obtain that xy, = xx -
We conclude that xx = xy-

Ad <= . We write xx = xyv =: (X1, xr)- Suppose given z € X and y € Y such that X = gp(x)
and Y = gr(y). Define a map f: X — Y by f(rz) := ry for r € R. This map is well-defined and it
is bijective. It is an R-linear map since (x) is an R-linear basis of X. It remains to show that f is a
T-T-linear map. Suppose given 7,7’ € R and t,t’ € T. Then we have

frz)=r-f(t-z)=r fOa@t) =) =7 xit)- f(z) =7r-x() y
=r-ty=r-tf(z) =t f(rz)

and
fOle -ty =7 flx-t)=r" fOu) z) =1 x:(t) - f(z) =" xe(t') -y
=7yt =1 fa)t = f(r'x) - L.
So f is an isomorphism of T-T-bimodules. We conclude that X ~ Y. ]

1.5 Roots of 0

Keep the notation of §1.1 and §1.2.

1.5.1 Biroots of

In the decomposition of  into a direct sum of indecomposable T-T-bimodules we have found two
direct summands of rank 1 over R, viz. eQe’ = r(bs) and ¢’Qe = g(bs). For each of these, we define
two R-linear maps in 7™ as follows.

X} such that tby = xi(t)bs for t € T
3 such that bgt = x2(t)bs for t € T

T

xi such that tby = x{(t)by for t € T
4 such that byt = xX(t)by for t € T

r

This leads to the following table where we see the images of the basis elements of By under these maps.

i b; XE(0:) | xE(bi) | X (b) | xt(bs)
EDNEEE

2 (3, <8 8),0) 0 0 0 0 »
TeE) o

6 (0, <8 8),3) 0 0 0 0
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We define the pairs x := (x{,x3) € T* x T* and x* := (x{,x}) € T* x T*. Both of these tuples
are biroots of Q; cf. Definition 1. Using (6) we see that x> # x*. The biroot paths Q3 and ()4 are
R-submodules of 2; cf. Lemma 4. We have

Qs = {x e ’ tr = x3(t)z and ot = x> (t)z for t € T}
QX4 = {CC €N ‘ tr = X?(t)l‘ and xt = X?(t)x for t € T} )

In the following we will show that s L Qe = r{(b3) and that Q4 = Qe = Rr{b4).

In the descriptions of (2,3 and of (2,4 it suffices to consider the R-linear basis By of T'.

Qs ={zeQ ‘ tr = x3(t)z and xt = x> (t)z for t € T}

={zx € Q|biz =z and zb5 = x and bz = 0 for i € {2,5,6} and zb; =0 for j € {1,2,6}}
Qu={zeQ|te = xt(t)z and zt = x}(t)z for t € T}

={z € Q|bsz =z and zb; = x and bz =0 for i € {1,2,6} and zb; =0 for j € {2,5,6}}

We want to determine the elements in (2,3 and in 2,4 via direct calculation. We are just considering
the non-zero equations and we will see that this is already enough to determine €2, 3 and Q,4. Note that
this has as a consequence that the following sequences of implications are not completely revertible.

Suppose given y = (yl, (y2 yg) ,y6> € 2. We have
Y4 Y5

yeQs = bhy=yand ybs =y

Y2 Y3 Y2 Y3 0 ys3 Y2 Y3
: ) 70 == ) ) d 07 ) = b )
(yl (0 0) ) <y1 <y4 yB) y6> . ( (0 ys) yG) <y1 (y4 ys) yG)
0 .
— y= (0, <0 %‘>0> — y € pibs)

Additionally, we have that b;bs = 0 for i € {2, 5,6} and that b3b; = 0 for j € {1,2,6}. This shows that
0,3 = eQe’.

Using the same method, we go on with {2, 4.

y€Qu = bsy=yand yby =y

0 0 Y2 y3> > < <y2 0) ) ( <y2 y3> )
é 07 ) — ) ) d ) 70 - b b)
< <y4 y5> y6> <y1 <y4 ys ) Y8 ) NIy 0 oy ys) %
— y= <0,<0 0>,0> — yc piba)
ys 0

Additionally, we have that b;bs = 0 for i € {1,2,6} and that bsb; = 0 for j € {2,5,6}. This shows that

QX4 = €'Qe.

1.5.2 Roots of

In the decomposition of [(€2) into a direct sum of indecomposable [(T)-Lie modules we have found two
direct summands of rank 1 over R that are not contained in [(T"), viz. eQe’ = g(b3) and €’Qe = g(by).

We have a look at the Lie operation of [(T') on e2e’ and €/Qe.

(ad[(Q) bl) (bg) = [b1, b3] = 1. bg (ad[(Q) bl) (b4) = [bl, b4] = -1 b4
(ad[(Q) bg) (bg) = [bg, bd] = 0- bg (ad[(Q) bg) (b4) = [bg, b4] = 0- b4
(ad[(Q) b5) (bg) = [b5, bg] = —1- bg (ad[(Q) b5) (b4) = [b5, b4] = 1- b4
(ad[(Q) b6) (bg) = [bﬁ, bg] = 0- b3 (ad[(Q) b6) (b4) = [b6, b4] = 0- b4
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For each of the summands eQe’ and €’Q2e we define an R-linear map in T* as follows.

X3 such that [t, bg] = Xg(t)bg forteT

x4 such that [t, bs] = xa(t)by for t € T

The R-linear maps ys resp. x4 describe the [(T)-Lie module structure on e2e’ resp. on e’Qle. Further-

more, note that x3 = —y4. We give the images of the basis elements of By under x3 and x4.
x3: T — R xe: T — R
bl — 1 bl — —1
b2 g 0 b2 — 0
b5 — —1 b5 — 1
b6 g 0 b6 — 0

These maps are both roots of €2; cf. Definition 1.

The root paths €2,, to the root x3 and the root path €2,, to the root x4 are R-submodules of {2; cf.
Lemma 3. We have

Qy, ={z € Q|[t,z] = x3(t)x for t € T},
Qy, ={z € Q[t,z] = xa(t)x for t € T} .

In the following we will show that (., = eQ¢’ and that Q,, = ¢'Qe.
In the descriptions of €2,, and of €),, it suffices to consider the R-linear basis By of T

Qy, ={x € Q|[t,z] = x3(t)r for t € T'}

={x € Q| [b1,z] =z and [b5,z] = —x and [b;,z] =0 for ¢ € {2,6}}
Qy, ={z € Q|[t,z] = xa(t)x for t € T}

={z € Q|[by,z] = —x and [bs, x| = z and [b;,x] =0 for i € {2,6}}

We want to determine the elements in €2,, and in €, via direct calculation. We are just considering
the non-zero equations and we will see that this is already enough to determine 2, , and €2,,. Note that
this has as a consequence that the following sequences of implications are not completely revertible.

Suppose given y = <y1, (yg yg) ,yg) € 2. We have
Y4 Y5

y € Qy, = [b1,y] =y and [b5,y] = —y
0 wys3 Yo y3> >
:> 07 70 — b b
< (—y4 0) ) <y1 <y4 ys)
0 —ys Y2 y3> )
d 0, 70 - - ) )
o ( <y4 0 > > <y1 <?/4 Y5 v6

— oy = <0, (8 %”’),0) = y € r(bs)

Additionally, we have that [b;, b3] = 0 for i € {2,6}. This shows that
Qy, = eQe’.
Using the same method, we go on with €2, .

Yy € = [br,y] = —yand [b5,y] =y

0 s Y2 y3> )
e 07 ,0 - — 3 1)
< <—y4 O) ) (yl (y4 Ys v
0 —y3> > ( <y2 ys) )
d 07 70 = bl )
an ( <y4 0 i ys Ys v6

—= Y= <0, <y04 8),0) = y € r(ba)
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Additionally, we have that [b;,bs] = 0 for i € {2,6}. This shows that

Q,, = €Qe.

1.6 Summary

When comparing the two decompositions we have found in §1.3.1 and §1.3.2, we recognize that outside
of T', both decompositions are the same. The only difference occurs in the decomposition of the
commutative subalgebra T of .

In this example, we have found a decomposition of 2 into indecomposable T-T-sub-bimodules two of
which are of rank 1 over R. Both these modules occur again as biroot paths of biroots of €.

In the case of a complex semisimple Lie algebra g, the root space decomposition of g relative to a
maximal toral subalgebra t consists of summands each of which is of dimension 1 except for t itself.
Our example Z3) Sg shows an analogous behavior. However, in another example below we will find
indecomposable summands of rank greater than one; cf. §6.5.1 and §6.5.2. So in order to pursue this
analogy, we consider decompositions into indecomposables instead of mere (bi)root paths, as T-T-
bimodules and as [(T")-Lie modules, respectively.

1.7 Magma

The following two codes are used for calculations with 0 ~ Z3)S3 in Magma. However, note that
initialization files such as “pre” and “definitions” are required; c¢f. Magma Codes 3 and 4.
Magma Code 1: z3s3Init1

// global definitions
Sizes := [1,2,17;

nb := #Sizes; // number of blocks

nt := 3; // number of ties needed to describe Omega
rt := &+Sizes; // rank of torus

rl := &+[Sizes[i]”2 : 1 in [1l..nbll; // rank of Omega
prime := 3; // R is Z localized at the prime number 3
e := 3; // ties that describe Omega are given mod e
RM := RMatrixSpace(Z,rl,rt);

RMQ := RMatrixSpace(Q,rl,rt);

RV := RMatrixSpace(Z,rl,1);

RQV := VectorSpace (Q,rl);

RM2 := RMatrixSpace(Z,nt,rl);

RMB := RMatrixSpace(Z,rl,rl);

RMBQ := KMatrixSpace(Q,rl,rl);

RMVQ := KMatrixSpace(Q,rl,1);

Ties_Omega := // Ties mod e that describe Omega,

//given in the rows of this matrix
RM2 'Matrix ([
(1, -1, o, 0, O, 0],
[ 0, o, o, 0, 1, -11,
[ O, o, 1, 0, O, 0]

Magma Code 2: z3s3Init2

// R-linear basis of Omega
b = [1;
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// e Omega e

b[l] := CoerceGamma([1,1,0,0,0,01);
b[2] := CoerceGamma([3,0,0,0,0,01);
// e Omega e’
b[3] := CoerceGamma([0,0,3,0,0,0171);
// e’ Omega e
b(4] := CoerceGamma ([0,0,0,1,0,01);
// e’ Omega e’
b[5] := CoerceGamma ([0,0,0,0,1,11);
b[6] := CoerceGamma ([0,0,0,0,0,31);

// describing matrices of the adjoint endomorphisms of the elements
// of b with respect to the basis Basis Omega which is defined in
// the file "definitions"

A := [RMBQ'!admatrix(x) : x in b];
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Chapter 2: Preliminaries

Let R be a principal ideal domain and K = frac R its field of fractions, which is not necessarily
algebraically closed. Note that the special case K = R is not excluded. When tensoring over R, we
often abbreviate @ by ®.

2.1 Preliminaries on modules

Let N be a finitely generated free R-module. Let M C N be an R-submodule.

Remark 10. Suppose given k € N. Suppose given R-submodules M; C N and N; C N such that
M; C N; fori € [1,k]. Then the following implication holds.

P M= Ni = M =N, foricl[lk
1€[1,k] 1€[1,k]

Proof. On the one hand, we have
DN/ D M|=0
1€[1,k] 1€[1,k]
On the other hand, we have
@ x|/ @)@
i€[1,k] 1€[1,k] 1€[1,k]
We conclude that N;/M; = 0 for i € [1, k] and thus M; = N; for i € [1,k]. O

Remark 11. Let ¢: N — N be an R-linear bijective map such that (M) C M.
Suppose that N/M 1s finite as a set.

Then g0|% is bijective.

Proof. The map <p|% is injective as it is a restriction of a bijective map.

N N
— M
Since ¢ is an isomorphism, we have N/M ~ o(N)/¢(M). But p(N) =N, s0 N/M ~ N [p(M

In particular, we have

We have the following diagram.

%0|M

[N/M[ = |N/o(M)| = [N/M|-|M/o(M)].
We conclude that }M/@(M)‘ = 1. That is, gp]% is surjective. O

Definition 12. Define cly(M) := {x € N |3r € R* : ra € M} as the pure closure of M in N. We
call an R-submodule M of N pure in N, if M = cly(M). In other words, an R-submodule M C N is
pure in N if for r € R* and x € N such that ro € M, we have x € M.
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Note that cly(M) is an R-submodule of N: We have 0 € cly(M). For z,y € cly(M), we choose
r,s € R* such that rz € M and sy € M. Then for a,b € R, we have rs(ax+by) = as(rz)+rb(sy) € M
since as,rb € R and rx,sy € M. So ax + by € cly(M) since rs € R*.

Moreover, note that M C cly(M) as R-modules.

Example 13.

(1) Suppose M to be a direct summand of N. Then M is a pure submodule of N.

To see that, we write N = M & M’'. Let x € N and r € R* such that rz € M. We have unique
ye M,y € M withz=y+19y'. Nowry+ry =rzx € M and we get ry’ = 0. Since N is finitely
generated free and thus is torsion-free, we obtain that ¢y’ = 0. Thus x =y € M.

(2) More generally, let X be a torsion-free R-module and let f : N — X be an R-linear map. Then
ker f is pure in N.
To see that, suppose given r € R* and n € N such that rn € ker f. Then 0 = f(rn) = rf(n).
Since X is torsion-free, we conclude that n € ker f.

(3) In the case that R is a field, N is a vector space. Then each subspace of N is pure in N.

Remark 14. Suppose given R-submodules M1, My C M. Then the following implication holds.
M, C My — CIN(Ml) - ClN(MQ)

Proof. Suppose given x € clyr(M7). Then there exists » € R* such that ro € M;. Hence rz € M,
since My C M. We conclude that x € cly(Ma). O

Remark 15. Suppose given finitely generated free R-modules My, Mo, M3 such that My C Ms C Ms.
If M1 C Ms is pure, then My C My is pure.

Proof. Suppose given r € R* and m € M, such that rm € M;. Then m € Mj since My C M3. So we
get rm € M3 and since My C M3 is pure, we conclude that m € M. O

Lemma 16. We write m =tk M and n := rkr N. Now R s a principal ideal domain, so by the
elementary divisor theorem, we can choose R-linear bases B = (by,...,bw) of M and C = (c1,...,¢p)
of N such that b; = d;c; for i € [1,m] and for certain d; € R*.

Then we have the following equivalence.

M is a pure submodule of N <= d,...,d,, € U(R)

Proof. Ad <. Let x € N and r € R* with rz € M. We want to show that x é M.

There exist a; € R for ¢ € [1,m] such that rz = Zie[l’m] a;b;. We have b; = d;¢; for i € [1,m],
SO 1T = D e m Gidici- A priori we have a; € R for i € [1,n] such that @ = 37, ) ajc; and we
can compare the coefficients: We get raj = a;d; for i € [I,m] and ra}; = 0, implying a}; = 0, for
j € [m+1,n]. Thus the sum x =3, ,
assumption, aid; ' € R for i € [1,m], so z € M.

}a;ci shortens to z = Zie[l’m] aje; = Zie[l’m] a;di_lb,-. By

Ad =. Suppose given i € [1,m]. Since d; € R* and d;c; = b; , we have ¢; € cly(M) = M by
assumption. So there exist a; ; € R for j € [1,m] such that ¢; = Zje[l,m] a; jb;. Multiplying by d;, we
get b; = d;c; = Zje[l’m] d;ia; jbj. Comparing coefficients, we have 1 = d;a; ;. This shows d; € U(R). O

Corollary 17. Keep the setting of Lemma 16. If M is a pure submodule of N, one can choose an
R-linear basis B of M such that the elementary divisors di,...,dy, are all 1.
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That means that the describing matriz of the inclusion map v: M — N with respect to the basis B takes
the following form.

1
— 1 RTLXm
BB= 1o ... o] €
0 --- 0

Lemma 18. Suppose given m,n € N with m < n. Suppose given A,B € R"™™ and X € R™*™
satisfying the following conditions.

e det(X) #0.
o All elementary divisors of B are units in R.

e BX =A.

Writing A’ for the R-module generated by the columns of A and B’ for the R-module generated by the
columns of B, we have
Can (A/) = B/.

Proof. The situation can be illustrated as follows.

A(-) o

X(-) 4)

Rm

Ad C. First we show that A’ C B’. Suppose given @’ € A’. Thus we find y in R™ such that Ay = d’.
Thus o’ = BXd/, hence o’ € B’.

We obtain that clgn(A") C clgn(B’); cf. Remark 14.

B’ is pure in R" since all elementary divisors of B are units in R; c¢f. Lemma 16. So we obtain
Can (A/) g Can(B,) = B/.

Ad D. Suppose given v/ € B’. We find y € R™ such that By = . Then in K™, we calculate.

V=By=AX "1y = A (X 1det(X))y

det(X)  —_————
eRm

So det(X)b' = A(X1det(X))y € A’ and hence b’ € clgn(4’). O

Remark 19. Suppose that X C KN is a K-subspace. The intersection X "IN C N is again a finitely
generated free R-module. Then the following assertions hold.

(1) The intersection X NN is a pure R-submodule of N.

(2) We have tkr(X N N) = dimg (X).

Proof. Ad (1). Suppose given n € N and r € R* such that rn € X N N. We have to show that
!

! !
n € X N N. It suffices to show that n € X. But X is a K-vector space. Thus we can write
Lrn € X since % € K. This shows that n € X.

n:;
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Ad (2). Ad >. We write k := dimg (X). Choose a K-linear basis (z1,...,z) of X such that x; € N for
i € [1,k]. We have g(x1,...,2r) € XNN. The K-linear basis (z1,...,xy) of X is linearly independent
over R as well, so we have rkp(X N N) > k = dimg (X).

Ad <. We write | := rkgr(X N N). Choose an R-linear basis (y1,...,y;) of the R-module X N N.
We have g (y1,...,y;) € X. The basis (y1,...,y;) is linearly independent over K as well, so we have
I‘kR(XﬂN):lgdimK(X). O

Corollary 20. Suppose that X C KN is a K-subspace. Then we have
K(XNN)=X.

Example 21. Suppose given an R-linear map ¢: N — N. Suppose given an eigenspace X of the
K-linear map K¢. Then X NN is an eigenmodule of . Now Remark 19.(1) shows that X NN is pure
in N.

This shows that eigenmodules of R-endomorphisms on N are pure submodules of N.

Remark 22. As R-modules, we have the following equation.
cdy(M)=KMNN

Proof. Ad C. Let z € cly(M). Then x € N and there exists » € R* such that rz € M. So there
exists m € M such that ro =m. But then z = 1(1@m) =2 @m=1m e KM.

Ad D. Let x €« KMNN. Then z € N and z is a K-linear combination of elements of M. Hence there
exists an element r € R* such that rz € M and hence = € cly(M). O

Lemma 23. Suppose R to be infinite. Let m > 0. Suppose Uy, ..., Uy C N to be pure submodules of
N. Then | Ui CN.

1€[1,m]

Proof. The proof given here follows the proof of Question 42 of [Kiin15].

Without loss of generality, we may assume that U; € Uie[l’m]\{j} U; for j € [1,m], since in the other
case, we could omit U; leaving the union to be the same.

Without loss of generality, we have m > 2.

It suffices to show that UZe (1,m) Ui is not an R-submodule of V.

Assume that | 1 Ui is an R-submodule of V.

Choose o, € R* for k € [1,m — 1] such that |{oy |k € [1,m —1]}| = m — 1. This is possible since
|R| > m. Choose ur € Ur\ U;ep mp (13 Ui- Choose uz € U2\ U1 ) (23 Us-

Suppose given k € [1,m — 1]. Then u1 + aguz € ;e m] U;. But u; + ague ¢ Uy, since in this case,
we would have apus € Uj. Since Uj is pure in N, this would imply that uy € U;. Also we have
u1 + agug ¢ Us, since in this case, we would have u; € Us. So uj + agug € Uie[&m] U;.

i€[1l,m]

Since ug # 0, we have |{u; + aguz |k € [I,m — 1]} | = m — 1. So there exist s,¢t € [1,m — 1] and
J € [3,m] such that s # t and u; + aug € U;j and uy + apup € Uj. The difference (os — ay)us has to
be in Uj, so up € U;. But this is a contradiction to the choice of us. O

Remark 24. There exists an infinite principal ideal domain R and a finitely generated free R-module
N that can be written as a finite union of proper submodules of N.

This shows that the assertion of Lemma 23 does not hold if we omit the condition on the U; to be pure
submodules of N.

Proof. Consider the module N = Z ® Z over the principal ideal domain Z.

Let Uy := (2)®Z, let Uy := Z&(2) and let Us := z((1,1),(0,2)). Then U; C N are proper Z-submodules
for i € [1,3]. Moreover, we have Uy UU;UU3 =Z & Z = N. O
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Lemma 25. Suppose given a commutative R-algebra T'. Suppose given an idempotent e € T'. Consider
T as a T-T-bimodule and as a T'-module, respectively. Then

Endp.p(Te) = Endp(Te).

Moreover, as R-algebras, we have
Te ~ Endp(Te).

Proof. The first claim follows from the commutativity of T'.
For the second claim, define
p: Te — Endp(Te) —
te — pu(te): x — xte o — p(e).
We will show that u is an R-algebra morphism.
We have p(e):  — xe = x which is the identity map in Endp(T).

Suppose given t,t' € T, a,a’ € R. Then p(ate + o’t’e) is the map that sends an element x € Te to
z(ate + o't'e) = axte + o/xt’e. But this is the same map as the sum au(te) + o' u(t’e) which sends
z € Te to (au(te) + o/ u(t'e))(x) = axte + o’ xt'e.

Suppose given t,t' € T. Then u(tet’e) is the map that sends x € Te to xtet'e = xtt’e. But this is the
same as the map pu(te) o u(t'e) which sends x € Te to u(te)(u(t'e)(z)) = p(te)(xt'e) = xt'ete = xtt'e.

This shows that u is an R-algebra morphism.

We will show that o y = idge.
For t € T, we obtain
e(u(te)) = u(te)(e) = ete = te.
We will show that poe < Idgnd,(Te)-
For ¢ € Endp(Te) and for z € Te, we obtain

u(e(w))(x) = ze(p) = zp(e) = p(ze) = ()

and thus ¢ = p(e(p)) = (noe)(p).
This shows that u and e are R-algebra isomorphisms and that e = p~ % O

2.2 Nonisomorphic modules

Let T be a commutative R-algebra.

Lemma 26. Suppose given T-T-bimodules X and Y. If there exists a pair (s,t) € T x T such that
sXt=0 and sYt#0, then X 2Y as T-T-bimodules.

Proof. Assume that there exists a T-T-isomorphism f: X = Y. Choose y € Y such that syt # 0.
Then we obtain

0#syt=sf(f'W)t=Ffsf(y)t)=0
eX

which is a contradiction. O

Lemma 27. Suppose given [(T)-Lie modules X and Y. If there exists an element t € [(T) such that
[t,X] =0 and [t,Y] # 0, then X 2Y as [(T)-Lie modules.

Proof. Assume that there exists an [(T)-isomorphism f: X = Y. Choose y € Y such that [t,y] # 0.
Then we obtain

0#[tyl=[t (T W)=t/ (W) =0
eX

which is a contradiction. O
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2.3 Preliminaries on local rings
Lemma 28. Suppose given k € N and a subset S C R**¥. Define

B = {MeR"*| M- X=X Mfor X €5}.
Then the following implication holds.

(M € E and M € U(Rka)) — M e U(E)

Proof. We have to show that if M € E and M is invertible in R¥** then M~! € E.

Suppose given a matrix X € S. We have X = XMM ! = (MX)M~! since M € E. Also we have
MM™'X = X. Hence MM~'X = MXM~'. We multiply by M~! from the left and thus we obtain
M1X =XM1

This shows that M1 € E. O
Definition 29. Let A be a ring. A is called a local ring, if A\ U(A) is an ideal of A.

Remark 30. A is a local ring if and only if 04 # 14 and for any a1,as € A with a1 + ag € U(A), it
follows that a; € U(A) or az € U(A).

Proof. A proof is given in [Miill3, Remark 192]. O]

Definition 31. Suppose given a ring A. We say that e € A is a non-trivial idempotent in A if e? = e
and e ¢ {04,14}.

Remark 32. Suppose that A is a local ring. Then A does not contain a non-trivial idempotent.

Proof. Assume that e € A is a non-trivial idempotent, i.e. €2 = e and e ¢ {04,14}. Then we have
e-(1—e) =e—e?=0. This shows that e ¢ U(A) and that 1 — e ¢ U(A). Since A is a local ring,
we have the maximal ideal Z := A\ U(A) of A; cf. Definition 29. We have Z # A since 1 € U(A). By
definition of Z we have e € Z and (1 —e) € Z. But e+ (1 —e) = 1 € Z, a contradiction. O

Lemma 33. Suppose that R is a discrete valuation ring with maximal ideal (7). Suppose given an
R-subalgebra © C R*™ =: T for a certain m € N such that F/@ has finite length. Define the following
R-subalgebra of T'. B

I''={(ai)i €T |ai =x aj fori,j€[l,m]} CT

Ife C f, then © is a local ring.

Proof. Since the factor R-module T’ / © is of finite length, O is stable; cf. [Miill3, Definition 207 and
Remark 208|.

For j € [1,m] we define ¢; = (ai)icnm € KO = KI' = K*™ by a; = 1ifi = j and a; = 0
for i € [1,m]\{j}. Then 1xe = > ;e m¢&; is an orthogonal decomposition of 1xe into central
idempotents in KO. So the Jacobson radical Jac(©) of © can be written as

Jac(®)=0n P Jac(e;0);

jeltm]
cf. [Miill3, Proposition 222|. Note that for j € [1,m], we have ;1" = g(e;) C ;0 C ¢;I" and hence
€;0 = ¢,;I' >~ R as R-algebras. So Jac(g;0) = me;0O for j € [1,m], viz. Jac(e10) = (m) x 0 x ... X 0,
oo Jac(em®) =0 x ... x 0 x (7). We conclude that
Jac(®@) =0N(m)* " =0n((r) x...x(r)).

Claim 1. We have f/ ((m)*™) ~ R/(m).
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Define the R-algebra morphism ¢ as follows.

v T/((@)™) = R/(m)
(a;)i + (7)™ — (a1) + (7)

We will show that ¢ is an R-algebra isomorphism.
Suppose given a + (7) € R+ (). Then ¢ ((a); + (7)*™) = a + (7). This shows that 1 is surjective.
Suppose given (a;); + (7)™ € kerv, i.e. ¢ ((a;); + (7)*™) = 0. But then a1 =, 0, so a; =, 0 for
i € [1,m] since (a;); € . Hence (a;); € (7)*™. This shows that ¢ is injective.
So v is an isomorphism.
This proves Claim 1.
Claim 2. We have ©/ Jac(©) ~ R/(r) as R-algebras.
Denote by ¢ the inclusion map of © /(©N(7)*™) into f/(fﬂ(ﬂ)xm) = f/((w)xm) Define the R-algebra
morphism a: R/(m) — ©/Jac(©) by a(r + (7)) := (r); + (© N (7)*™).
We have the following R-algebra morphisms.

R/(r) 5 ©/Jac(®) = ©/©On(m>*m™) 5 f/ ((m)*™) Y R/(m)
r+(m) — (r);+ Jac(©) (ai)i+O©N (@)™ = (a;i)i+ (7)) = a1+ (7)

We know that v is bijective by Claim 1. Moreover, we know that ¢ is injective and that ) ot o« is the

identity map, in particular it is bijective. So we conclude that toa = 1~ is bijective. This entails that
1 is surjective. But since ¢ is injective by definition, ¢ is bijective. So also av = ¢! 09y ~! is bijective.

This proves Claim 2.
But R/(m) is isomorphic to a field, so © / Jac(©) is isomorphic to a field by Claim 2. Then © is a local
ring; cf. [Miill3, Remark 192]. O

Definition 34. Suppose given a preadditive category A. Suppose given X € Ob.A. We say that X is
indecomposable if X # 0 and if for Y, Z € Ob A the implication X ~Y &7 = (X ~0or Z ~0)
holds; cf. [Stel2, Convention (12)].

Lemma 35. Suppose given a preadditive category A having a zero-object 0. Suppose given X € Ob A.
We have the endomorphism ring End(X) = (4(X, X), +,0). Consider the following assertions.

(1) The ring End(X) is a local ring.

(2) The ring End(X) has no non-trivial idempotent and X # 0.

(3) X is indecomposable.
We have (1) = (2). We have (2) = (3).

Proof. Ad (1) = (2). If End(X) is a local ring, then End(X) does not contain non-trivial idempo-
tents; cf. Remark 32. Moreover, in End(X) we have 1 # 0; cf. Remark 30. So in X there are at least
two different objects, in particular, we have X 2 0.

Ad (2) = (3). We will prove this by contraposition. Suppose that X 2 0. Suppose that there exist
Y Z € ObAsuchthat Y 20and Z 20and X Y & Z. let m: Y ®dZ Y andm: Y B Z — Z
be the projection morphisms. Let ¢1: Y — Y @ Z and 19: Z — Y & Z be the inclusion morphisms;
cf. [Stel2, Conventions, (12)].
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Choose an isomorphism ¢: X — Y @& Z. So we are in the situation as described by the following

diagram.

X

We define e := cp*1 o10m 0@ € End(X). Then e? = e is an idempotent in End(X). Moreover, we
have l—e=¢plo t20m O € End(X). We have to show that e ¢ {0,1}, i.e. we have to show that

e 7é 0 and that 1 —e 7é 0. Tt suffices to show that e # 0 because of symmetric reasons.
It suffices to show that ¢1 o 1 # 0 because ¢ is an isomorphism.
Assume that 11 om; = 0, then idy = idy oidy = 7 0 (11 o mp) 013 = 0, so we would have Y ~ 0, a

contradiction. O

Remark 36. There exists an indecomposable object X in a preadditive category such that the endo-
morphism ring End(X) contains a non-trivial idempotent.

This shows that in Lemma 35 we cannot deduce assertion (2) from assertion (3).

Proof. Let R:=C x C. Let A be the preadditive category with one object R and with the endomor-
phism ring End 4(R) = R. Then End 4(R) contains the idempotent e = (1,0) ¢= {Ogr, 1r}.

Assume that R is decomposable, i.e. we find objects Y, Z € Ob A such that R ~ Y & Z. Necessarily
this means that Y = Z = R.

But then R ~ R R. Since in A, there is just one object R, we have R = R & R.

Now on the one hand, we have End 4(R @ R) ~ (End4(R))?>*? ~ (C x C)?*2 ~ C?*2 x C?*2. This is
a non-commutative ring. On the other hand, we have End4(R) = R = C x C. This is a commutative
ring.

But if R = R® R, then the two endomorphism rings have to be the same.

This is a contradiction. O
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Chapter 3: Diagonalizability

Let R be a principal ideal domain. Let K = frac R be its field of fractions. When tensoring over R,
we often abbreviate @ by ®.

3.1 On R-diagonalizability of K-diagonalizable endomorphisms

Let N be a finitely generated free R-module. We write n := rkgr(N). Suppose given an R-linear map
p: N = N.

Remark 37. Suppose given an eigenvalue A € K of ¢. Then X € R.
In particular, we have o(p) = o(Kp).

Proof. Choose an R-linear basis B of N. Let A = ¢ € R"™ " be the describing matrix of ¢ with
respect to the basis B. Then A is a zero of the characteristic polynomial of A. Since all entries in A
are elements of R, the coefficients of this polynomial also are in R. So A is contained in the integral
closure of R in K. But R is integrally closed, hence \ € R. O

Definition 38. We say that ¢ is diagonalizable over K (or short: K-diagonalizable) if the K-linear
map K ® p: K® N — K ® N is diagonalizable (as defined by linear algebra).

Definition 39. We say that ¢ is diagonalizable over R (or short: R-diagonalizable) if there exists an
R-linear basis of N that consists of eigenvectors of .

We say that a matrix A € R™" is diagonalizable over R (or short: R-diagonalizable) if the R-
endomorphism R"™ — R™: x — Az is R-diagonalizable. So A € R"*™ is diagonalizable over R if and
only if there exists S € GL,(R) such that S~'AS € R™" is a diagonal matrix.

Remark 40. Note that if R is a field, then R = K. In this case, the property of being R-diagonalizable
and the property of being K-diagonalizable both coincide with the property of being diagonalizable in
the sense of linear algebra.

Remark 41. If ¢ is diagonalizable over R, then o is diagonalizable over K.

Proof. Suppose that ¢ is diagonalizable over R. Then there exists an R-linear basis B = (bi)ig[1,n)
of N consisting of eigenvectors of . So (1 ® b;)ie[1,,) is @ K-linear basis of K @ N and these basis
elements are eigenvectors of K ® ¢, so K ® ¢ is diagonalizable. By Definition 38, this means that ¢ is
diagonalizable over K. O

Remark 42. There exists a discrete valuation ring R and a matriv A € R**? such that A is diago-
nalizable over frac(R), but A is not diagonalizable over R.

This shows that in general, there is a difference between K-diagonalizability and R-diagonalizability
when R # K; cf. Definitions 38 and 39.

Proof. Let R := Zz) and A := (?8) € R?>*2. We define S := (213(1)) € R?>*?. We have the inverse
1

S = (_f (1]> € GL2(Q) = GLa(frac(R)). Then S~tAS = (37) is diagonal. Note that S ¢ GLa(R).
3

Assume that there exists T € GLa(R) such that T~ AT is a diagonal matrix. Without loss of generality,
we have T~TAT = (30). So AT =T (49)-
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Writing T = (+3) € GLa(R), this amounts to

3u 3v\  (3u O
w v) \3r 0)°
So v =0 and u = 3r whence T' = (%.9). But then det(T) = 3rs ¢ U(R) which is a contradiction. [

Lemma 43. Suppose M to be a pure R-submodule of N such that o(M) C M. If ¢ is diagonalizable
over R, then the restricted map <p|% 1s diagonalizable over R, too.

The proof is a variation of an idea of the user “Zorn” on math.stackexchange.com; cf. [Zor11].

Proof. Denote by A1,...,A\; € R the distinct eigenvalues of ¢. We have the eigenmodules
E,(\i) ={z e N |¢(x) =Nz} C N
of ¢ to the eigenvalues \; for ¢ € [1,1]. Then E,();) is a non-zero submodule of N for i € [1,1]. We
write g; := rkr(Ey(N\;)).
Choose an R-linear basis
(.’ELl, ceny xlygl, e 71'1,17 ceny xl’gl)
of N consisting of eigenvectors z; ; of ¢ to the eigenvalues \; , i.e. p(x; ;) = Nz fori € [1,1], j € [1, gi].
Claim 1. Fori € [1,1], we have
Ew(AZ) = R<$Z’71, e ,xi’gi>

and thus

N =B E,(\).

i€[1,l]

!
We show the first statement. It suffices to show C.

Suppose given k € [1,l] and x € E,(\;). Then p(x) = Ayz. There exist certain ¢; ; € R such that
T =D e 2ojell,g) CiniTig- Now we can write ¢(z) in two ways.

@(x): Z Z ci,jgo(xi,j): Z Z Ci,j)\ixi’j

ie[]‘?l]je[lvgi} ie[lvl]je[]-:gi}
o(r) = M = Z Z Ci iR Ti
i€[L,1] j€[1,9:]

By subtracting both equations, we have 0 = Ez‘e[l,l] Eje[l,gi} ¢i,j(Ni — Ak)wi ;. Now A; — A\, = 0 if and
only if i = k, so we conclude that ¢; ; = 0 for i € [1,]\ {k} and for j € [1, g;]. This shows C.

For the second statement it suffices to show that the sum is direct. Suppose that we may write
x = Zie[l,l] Yi = Zie[l,l] 7; with y;, 9 € Eg(N\;) for 4 € [1,1]. So there exist certain ¢;;,¢; € R for
i € [L1], 5 € (1,9 such that y; = 3",y o1 i@y and §i = 3o ien g, Giiy for @ € [1,1]. This yields
T = Zie[l,l] Zje[l,gi] Cij%ij = Zie[l,l] Zje[l,gi} i jx; ;. Comparing coefficients we get ¢; ; = ¢; ; for
i€ [L,1],j€[l,g] and thus y; = g; for ¢ € [1,]. This proves Claim 1.

Claim 2. Suppose given k € Ny. Suppose given eigenvectors y; € N of ¢ for j € [1,k] to pairwise
distinct eigenvalues pj of o, i.e. y; # 0 and p(y;) = pjy; where p; # pj for j,j' € [1,k] and j # j'.
Ifyi+ye+...+yx € M, theny; € M foric [1,k].

Proceed by induction on k£ > 0. Write y :==y1 +y2 + ... + yx. Then

o(y) — pry = (p1 — i)y + -+« + (k-1 — pg)yx—1 € M.
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By induction we have (u; — ug)y; € M for i € [1,k — 1] and thus y; € M for i € [1,k — 1] since M is a
pure R-submodule of N. So we also get y — (y1 + ...+ ykx—1) = yr € M. This proves Claim 2.
Claim 3. We have

M= B (Ey(\) N M).

€[]

It follows from Claim 1 that the sum is direct.

It suffices to show C. Suppose given x € M. Then we have unique coefficients ¢; ; € R such that
T = Zie[u] ZjE[l,gi] cijxi . Define y; := Zje[l,gi} cijxig for i € [1,1]. If y; # 0, then y; is an
eigenvector to the eigenvalue A\;. So now x = Zie[l’m],y#
y; € M for i € [1,1]. Hence x € ®i€[l,l] (Ex(Ai) N M). This proves Claim 3.

Now R is a principal ideal domain, so we can choose R-linear bases of E,(\;) N M for i € [1,1] and

concatenate these to a basis of M, using Claim 3. We conclude that M has a basis counsisting of
eigenvectors of ¢ and thus the restricted map g0|% is diagonalizable over R. O

o¥i is a sum as in Claim 2. Thus we have

Corollary 44. Suppose M to be a submodule of N such that o(M) C M. If ¢ is diagonalizable over
K, then the restricted map go\% 1s diagonalizable over K, too.

Proof. If ¢ is diagonalizable over K, then K¢ is a diagonalizable K-linear map. Now we can apply
Lemma 43 on the map K¢: KN — KN restricted to the subspace KM of KN. We obtain that
(K@)\Ilg% is diagonalizable. But this map is the same as K(gp]%) and thus <,0|% is a K-diagonalizable
map. O

Remark 45. There exist o discrete valuation ring R, two finitely generated R-modules X and Y and
an R-linear map ¥: X — X such that'Y is an R-submodule of X, the map i is diagonalizable over R
but the restricted map 1,/1|§ is not diagonalizable over R.

This shows that the assertion of Lemma 43 does not hold if we omit the condition on the X and Y to
be pure submodules of N.

Proof. Suppose that R = Z3). Define X := R? and A := (38). Let &€ := (((1)) ) ((1])) be the standard
basis of X. Define ¢): X — X as the R-endomorphism on X given by x — Ax, so A = ¢¢.

Now we restrict ¢ to Y := R((%) ) (_§)> CX. So F:= ((%) , (_g)) is an R-linear basis of Y. Note
that ¥(Y) CY.

Then the describing matrix of @ZJ|}Y/ with respect to the basis F is B := (d)g)ﬁ; = (:1)’8)

We have shown that the matrix B is not diagonalizable over Z) in Remark 42. So wg is not
diagonalizable over R. O

Corollary 46. Suppose given two R-submodules N1, No of N such that N = Ny & Na and such that
©(N1) € Ny and p(N2) C Nay. Then we have the following equivalence:

¢ s diagonalizable over R <= gp]%i and <p|%§ are diagonalizable over R

Proof.
Ad = . N; and Nj are pure submodules of N; cf. Example 13.(1). Then we can apply Lemma 43.

Ad <= . Choose an R-linear basis B; of N; counsisting of eigenvectors of <p|%i Choose an R-linear

basis By of Ny consisting of eigenvectors of gp]%; Then we can concatenate By and Bs to an R-linear
basis B of N. Thus B consists of eigenvectors of ¢. O
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3.2 On R-diagonalizability of K-diagonalizable matrices

Let n € N. Let A € R™ " be a matrix that is diagonalizable over K. We write £ := |o(A)|. We denote
the distinct eigenvalues of A by A; where i € [1,/]. For i € [1,¢], we write g; := dimg (Ea(\;)).

There exists @ € GL,,(K) such that Q' AQ is a diagonal matrix. Without loss of generality, we may
assume that Q € R™*"™.

We establish a method to decide whether there is a matrix Q € GL,,(R) such that Q1AQ is diagonal.

Lemma 47. For i € [1,{], we choose an R-linear basis B; = (vi1,...,vig,) of Ea(A;) N R™L; cf.
Remark 19. We define the matriz

that contains the basis elements of the B; in its columns, ordered by eigenvalues. We have the following
equivalence.

A is diagonalizable over R <= det(V) € U(R)

Proof. Ad <= . Since det(V) € U(R), we have V=1 € R"™"  The fact that V-'AV is diagonal
follows from the theory of vector spaces over fields. Thus A is diagonalizable over R; cf. Definition 39.

Ad = . Suppose that A is diagonalizable over R. Then there exists a matrix 7' € GL,,(R) such that
T~YAT is diagonal; cf. Definition 39.

We find a permutation matrix P € GL,(R) that reorders the columns of 7" such that the j-th column
of TP and the j-th column of V are (considered as elements of R™*!) eigenvectors of A to the same
eigenvalue for j € [1,n]. We write 7" := T P. Then T" takes the following form.

T/ — (6171 e Cl,g1 e cf,l “ e ce’gl>
where Ac; j = N\ j for i € [1,4], j € [1,¢;]. Since T and thus 7" is invertible in R, the columns of T”
form an R-linear basis C = (c1,1,...,C1,g15---5C015---,Ct,g,) Of R

For i € [1,¢], we write C; := (¢j1,...,¢Cig,) for the elements of C that are eigenvectors of A to the
eigenvalue \;.

Claim. For i € [1,4], the tuple C; forms an R-linear basis of R™' NEA()\;).
For i € [1,4], we write X; := r{¢i1,...,Cig,)-

C; is linearly independent over R for i € [1, /] since all columns of 7" are linearly independent over R.
Moreover, we have X; C R"*! N E4()\;) definition of X;.

It remains to show that X; = R"*! 0 Ea(\) fori e [1,4].

We have
P xic @ R nEa(\)) € B

1€[1,4] 1€[1,4]
But we know that @,c( g Xi = im (T') = R"*'. So we conclude that
P xi= P R NEa(\).
i€[1,4] i€[1,0]

Now we can apply Remark 10 and we obtain that X; = R NE();) for i € [1,£].

This proves the Claim.

Suppose given i € [1,£]. The columns (v;1,...,v;4) of V form an R-linear basis of R™*! N E(\;).
By the Claim, the tuple C; = (¢;1,...,¢ig;) also is an R-linear basis of R N EA()\). So we find a
matrix D; € GLg, (R) such that, as matrices, we obtain

(Ci,l R Ci,gi> D, = (Ui,l T Ui,gi) .
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We define the block diagonal matrix D := diag(D1, ..., D) € GL,(R). Thus we obtain

V=TD=TPD.

Since det(P) and det(D) are units in R, we have det(V) € U(R) <= det(T) € U(R). But T is
invertible in R, hence det(V') € U(R). O

Corollary 48. Recall that A € R™" is diagonalizable over K.
(1) We have the following equivalence.

A is diagonalizable over R <= @ (Ea(\) N R™Y) = pme!
A€o (A)

(2) Let N be a finitely generated free R-module. Let ¢ € Endg(N). Suppose that ¢ is diagonalizable
over K. Then we have the following equivalence.

¢ is diagonalizable over R <= @ E,(A\) =N
A€o ()

Proof. Ad (1). The equality on the right hand side is equivalent to the columns of the matrix V in
Lemma 47 being an R-linear basis of R"*!, whence Corollary 48 follows from Lemma 47.

Ad (2). This follows from (1) by passage to describing matrices. O

In the following, we want to find a method which allows us to construct R-linear bases of the eigen-
modules as required in Corollary 48 with matrix operations.

Lemma 49. Suppose given it € [1,£]. Let (w1, ..., wy,) be a K-linear basis of Eo(X\;) that is contained
in R, Define W := (w1 wgi) € R™ 9. By the elementary divisor theorem, we find matrices
S € GL,(R) and T' € GLg, (R) such that

SWT =:D = (di,j)ie[l,n},je[l,gi] € R"*9i (7)

s a diagonal matriz. This can e.g. be achieved using the Smith normal form of W.

Then the first g; columns of S™! form an R-linear basis of Ea()\;) N R™1.

Note that W itself does not necessarily contain an R-linear basis of E4(\;) N R™*! in its columns. We
only know that E4(\;) N R"*! is the pure closure of g{wi,...,w,,) in R™L.

Proof. We define the following matrices.

1
di1 .
D = € R9*9 and U= 0 ol € R"*9i
dg; g; . .
0 ... 0
Note that D’ has only non-zero elements on its diagonal. We have
UD' = D. (8)
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We obtain the following commutative diagram.

Rn><1

-)
S—V

Roix1

R9ix1

%(
(=)

D(-)

44
-)
T-1(-) S(=)||57H=)

Rnxl

D'(-) %

Roix1

Rgixl

The map S~'U is injective because U is injective and S is an isomorphism. The map D'T~! is injective
because D’ is injective and T is an isomorphism.

The matrix D'T~! is invertible in GLy, (K). Moreover, all elementary divisors of S™'U are units in R
by the definition of U and since S € GL,(R). We have the product S~'U - D'T~! = W, so we can
apply Lemma 18 to obtain that the R-module generated by the columns of S™!U is the same as the
pure closure of the R-module generated by the columns of W which is E4()\;) N R™*!. So the columns
of STIU generate E4()\;) N R™*! as an R-module.

But the columns of the matrix product S~!U are the first g; columns of S~ followed by zero columns.
Hence an R-linear basis of E4(\;) N R"*! is given by the first g; columns of S~1.

This completes the proof. O

Algorithm 50. Using Lemma 49, we obtain the following algorithm, written in pseudocode, that
constructs an R-linear basis for every eigenmodule of A. This allows us to decide whether A is diago-
nalizable over R; cf. Lemma 47 and Corollary 48.(1).

More precisely, the algorithm yields a matrix V that has in its columns an R-linear basis for every
eigenmodule of the K -diagonalizable matriz A. Then A is diagonalizable over R if and only if det(V)
15 a unit in R.

for i € [1,/] do
Choose a K-linear basis (wy, ..., wy,) of E4(\;) that is contained in R™*!.
Define the matrix W; := (wl e ng).
Find matrices S; € GL,(R) and T; € GLg, (R) such that S;W;T; is diagonal.
Let C; be the set of the first g; columns of S~1.

end for

Set B=CiU...UCy.

Write the elements of B in the columns of a matrix V.

if det(V) € U(R) then
print A is diagonalizable over R.

else
print A is not diagonalizable over R.

end if

return V

Note that B is an R-linear basis of €, (Ea(X) N R™1).
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3.3 Commuting tuples of K-diagonalizable endomorphisms

Let N be a finitely generated free R-module. We write n :=rkr(NV). Let k € N. Let ® = (¢1,...,¢k)
be a tuple of R-linear endomorphisms of N.

Definition 51. We say that ® is a cd-tuple on N if the following conditions are fulfilled.

e piop;=jop;fori,jellk

e ¢; is K-diagonalizable for i € [1, k.

Here “cd” stands for “commuting and diagonalizable”.

Suppose given a 1= (a;) e,k € RF*1 Then we define

Po,a ‘= Z Q5.

1€[1,k]

If @ is a cd-tuple, we often write K® := (K¢1,..., Kpg).

Note that the property of being a cd-tuple does not depend on the order of the endomorphisms.
Moreover, every tuple that arises from a cd-tuple by omitting some of the endomorphisms is again a
cd-tuple. Also note that all eigenvalues of the endomorphisms of ® are elements of R; cf. Remark 37.

Definition 52. Suppose that ® = (¢1,...,¢%) is a cd-tuple on N. We say that A = (A\;);cp 4 € Rk
is an eigenvalue tuple of ® if there exists a non-zero element € N such that p;(z) = \jx for i € [1,k].

Suppose given an eigenvalue tuple A = (X;);e[1 k) of ®. Its simultaneous eigenmodule E¢(A) is given by

Eo(N\) ={x € N|ypi(z) = N\jz for i € [1,k]}.

A simultaneous eigenmodule for ® is a simultaneous eigenmodule for ® for some eigenvalue tuple of .

3.4 On simultaneous R-diagonalizability of R-diagonalizable endomorphisms

Let N be a finitely generated free R-module. We write n := rkr(N). Let ® = (¢p1,...,¢%) be a
cd-tuple on N. Suppose that ¢; is diagonalizable over R for i € [1, k.

Lemma 53. There exists an R-linear basis B = (bj)jc1,n) of N such that p;(bj) € r(bj) fori € [1, k],
j € [Ln].

In this sense, the maps ¢q, ..., ¢ are simultaneously diagonalizable over R.

Proof. First we need to restrict endomorphisms to eigenmodules.

Claim. Suppose given i € [1,k]. Suppose given an eigenvalue X € R of ¢;. Let E := E, (X). Then
0;(E) C E forj e [1,k].

For x € E, we have ;(p;j(x)) = ¢j(pi(z)) = ¢j(Ax) = Apj(z), so p;(x) € E. This proves the Claim.

Suppose given i € [1, k]. Suppose given R-submodules X, Y of N such that N = X@®Y and ¢;(X) C X
and ¢;(Y) CY. Then golg is diagonalizable over R; cf. Corollary 46.

We proceed by induction on k.

For k = 1, we have that ¢ is R-diagonalizable by assumption. So there exists an R-linear basis of N
that consists of eigenvectors of 1; cf. Definition 39.

Suppose given k£ > 2. Suppose that the statement holds for each cd-tuple on N of length k£ — 1.
Denote the distinct eigenvalues of 1 by A1,...,A\; € R. Denote the corresponding eigenmodules by
E; == Ey () for i € [1,1]. Then N = P,cy £ is a decomposition of N into pure R-submodules
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of N; cf. Example 13.(1) and Corollary 48.(2). By the Claim, we have ¢;(E;) C E; for j € [1, k],
gi are diagonalizable over R for j € [2,k], i € [1,]].

i

i € [1,1]. By Lemma 43, the maps ;]

For i € [2,k], choose an R-linear basis B; := (bij)je[1ky B, Of Ei such that ¢,(bi;) € r(bij;) for
r € [2,k], j € [1,rkg E;] which is possible by induction.

Moreover, ¢1(b; ;) € r(b; ;) for i € [1,k], j € [1,rkg E;| since b; ; € E; which is an eigenmodule of ¢y.
So B := (bij)ic[1,k], je[1,rkr E;] 1S an R-linear basis of V. Thus we obtain a basis that fulfills the required

properties, completing the proof. O

Corollary 54. Suppose given o = (a;) e[,k € RF*1. The R-endomorphism ¢ o = Zje[l,k] Qjpj s
diagonalizable over R.

Proof. Choose an R-linear basis B = (b;)ic[1,, of IV such that ¢;(b;) € r(bi) for i € [1,n], j € [1,k];
cf. Lemma 53.
Suppose given ¢ € [1,n]. We denote the eigenvalue of ¢; to the eigenvector b; by A; € R for j € [1, k],
i.e. (pj(bi) = )\jbi for ] S [1,]@‘].
We obtain

poalbi) = Y ajps | ()= D> ajleb)) = D ajAbi.

JE[LK] JE[L,K] JE[LK]

This shows that b; is an eigenvector of pg o to the eigenvalue Zje[l,k} ajMj € R.

We conclude that B is an R-linear basis of IV consisting of eigenvectors of g o. Thus ¢ is R-
diagonalizable, completing the proof. O

Corollary 55. Denote the ¢ distinct eigenvalue tuples of ® by \; € R™* for j € [1,4].
We obtain the following decomposition of N.

N= P Ea()))

JEL]

Proof. By Lemma 53, there exist an R-linear basis B = (x1,...,z,) of N and p = (4t,i)ie[1,5) € Rkx1
for t € [1,n] such that
i(xt) = peiay fori e [1,k], ¢t € [1,n].

Let A := {u|t € [1,n]}. Write £ := |A|. Write A = {A1,..., \¢} so that A\, # A, for u,v € [1,¢] with
u # v. Write A\j =: (Nji)iep i) € RF*1 for j € [1,4]. After reordering if necessary we may suppose that

B=(bi1s- \bigs-sbets- - big,)
with certain g; € N for j € [1, 4] such that
wi(bjs) = Ajibjs forie[l,k], je[l1,4],se€[l,g;].
We write E} (X)) := g(bjs | s € [1,9;]). Then we obtain that
Es(Aj) C Ea())) for j € [1,4]. (9)

Moreover, we have

P Es()) = N. (10)

JE(1.4]
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Claim. We have the direct sum @;cpy g Ee(A;) € N.

Assume that the sum is not direct. Then there exists a tuple y = (y]‘)je[Lg] where y; € Eg();) for
j € [1, /] satistying the following conditions.

(C1) We have 3y qy; = 0.

(C2) We have {j € [1,4]| y; # 0} # 0.

(C3) There is no tuple z = (2;)eq1,q Where z; € Eg()\;) for j € [1,4] such that
{7 e[, 41z # 0} <{j e fdly # 0}

Choose u,v € [1,/] such that y,, # 0, y, # 0 and u # v. This is possible because of (C1) and (C2).
Suppose given i € [1, k]. We calculate.

Z Aui = Nja)yj = Mg Z Yj — Z Aji¥j

Jjelq Jjel1, Jjel1,g
= i Y Ui—ei | Dy
J€[1,4] Je[1,4]
CIN

We have the following inclusion for i € [1, k].

{7 € LA Awi = Aja)y; # 0F € {j € [1 [ ]y; # 0}
This is a proper inclusion since u is contained in the right hand side but it is not contained in the left
hand side.

Using (C3) we conclude that (A,; — Aj;)y; = 0 for i € [1,k], j € [1,4]. Note that this includes that
(Au,i — Avi)yp = 0 for @ € [1,k]. But y, # 0 by choice, so A, ; = A,; for ¢ € [1,k] since N is torsion
free. But this amounts to A\, = A, which is a contradiction.

This proves the Claim.

Using the Claim, we obtain the following chain of inclusions.

10 9)
N2 P Es(V) € P Ee(V) SN

F€[1,4] 7€)

So we obtain that
P E-() = P Ea(Ny). (11)
el el g

By (9) and (11) we can apply Remark 10 to obtain that Eg(\;) = Ea(\;) for j € [1,k]. O

3.5 On R-diagonalizability of linear combinations of K-diagonalizable endomor-
phisms

Let N be a finitely generated free R-module. We write n :=rkr(NV). Let k € N. Let ® = (¢1,...,¢k)
be a cd-tuple on N.

Denote the ¢ distinct eigenvalue tuples of ® by A\; = (Aji)icpa € RY™¥ for j € [1,£]. Denote the
simultaneous eigenmodules for ® by E; := Eg(A;) for j € [1,4].

We write g; :=rkgr(E;) = dimg (Exa();)); cf. Remark 19.(2). Choose a K-linear basis

B:= (bl,la e 7b17gl7° . -,bZ,h c wa,gg)
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of KN such that
(Kgpi)(bj,s) = )\jﬂ'bj’s for i e [l,k‘],j S [1,6]78 S [ng];
cf. Corollary 53, note that K is a principal ideal domain.

If all ¢; are diagonalizable over R, we know that ¢¢ o is diagonalizable over R for a € RFX1. f,
Corollary 54, Definition 51.

Now we want to investigate the question for which o € RF¥*! the map Yoo i1s diagonalizable over R.
We have the trivial solution a; = 0 for ¢ € [1, k] because the zero map is indeed diagonalizable over R.
But in the general case we just know that ¢s . is diagonalizable over K for a € RFEXT,

If we wanted to test all possible linear combinations ¢¢ o for o € RF*1 this would lead to an infinite
task (provided that R is infinite).

In the following we will develop an algorithm that gives an R-linear basis of an R-module consisting
of all solutions to this problem. Thus we know all R-linear combinations of endomorphisms of ® that
are diagonalizable over R.

In particular, this also allows us to decide whether there is a non-zero solution at all.

3.5.1 Setup and examples

Definition 56. We define the diagonalizability locus of ® as
Co := {a = (i)iepy € RF1 1 0, is diagonalizable over R} )
Lemma 57. Cqo is a pure R-submodule of RF*1.

Proof. We have Cg C RFX1L,

We have Ogrx1 € Co.

Cg is closed under addition: Suppose given o := (ai);e1,k) € Co and B := (Bi)icni 4 € Co. Then pg o
and ¢4 g are diagonalizable over R.

We have to show that a + é Co. It suffices to show that ¢4 o1 g is diagonalizable over R.

Suppose given x € N.

(Pa009008)(@) =vanl| > Bigj@) | = > api| > Bigjx)

JE[1,k] 1€[1,k] JE[1,K]
= > | D Biwiei@) | = D 8| D cwilpi(x))
1€[1,k] JE[1,k] JjE[1,k] 1€[1,k]
=D B D aipilei@) | = D Biwi| D i)
JE[L,K] 1€[1,k] JE[LK] 1€[1,k]
= Z Bj (#j (vo,a(2))) = (92,8 ° ¢a,a) (@)

S
This shows that pe o © Y8 = Yo 50 Yoa. Both po o and e g are R-diagonalizable, so (¢o.q, s 3)
is a cd-tuple on N.
Now ¢ o + po g is diagonalizable over R by Corollary 54. But this is the same as ¢4 o4 3-

Co s closed under scalar multiplication: Suppose given « 1= (Oéi)z‘e[l,k:} € Cp and r € R. Then pg o is

!
diagonalizable over R. We have to show that ra € Cg. It suffices to show that ¢ o is diagonalizable
over R.

50



But we have ¢@ ro = 790 o and this map is diagonalizable over R by Corollary 54.

Co is pure in RF*1: Suppose given a := (@i)iep,h) € RFX1 and r € R* such that ra € Co. Then
Yo ra = TPa o s R-diagonalizable, i.e. there exists an R-linear basis of IV that consists of eigenvectors
of rps o. But each of these basis elements is again an eigenvector of ¢ o. S0 Y¢ o is R-diagonalizable
and thus a € Cg. O

Remark 58. Suppose given j € [1,k]. Suppose that p; is diagonalizable over R for i € [1,j]. Suppose
gwen o = ()ie[1,k) € RF*1. Then we have the following equivalence.

Z ;i 1s diagonalizable over R <— Z ;i 15 diagonalizable over R
i€[j+1,k] i€[1,k]
Proof. We write ¢ := Zie[u] ;. This is an R-endomorphism that is diagonalizable over R; cf.
Corollary 54. Thus we have (Zie[ﬁ_l,k} aigoi> + = Zie[l,k] Q;P;.
Ad = . If Zie[jﬂ,k} a;p; is diagonalizable over R, then (Zie[j+1,k] aicpz) + 1 also is diagonalizable
over R as it is a sum of two commuting R-diagonalizable R-endomorphisms; cf. Corollary 54.
Ad <. If } ;e ) i is diagonalizable over R, then (Zie[l’k] aigoi) + (—%) also is diagonalizable

over R as it is a sum of two commuting R-diagonalizable R-endomorphisms; cf. Corollary 54. O

Remark 59. Suppose given j € [1,k]. Suppose that ¢; is diagonalizable over R for ¢ € [1, j]. Define
®" := (¢j+1,---,¢x) which is also a cd-tuple on N. Suppose given o = (a;)ic1,i] € RF*1 Then we
have the following equivalences.

aeCp <— > ayp; is diagonalizable over R

1€[1,k]
Rem. 58 L :
= > aup; is diagonalizable over R
1€[j+1,k]

= (@i)iglj+1,4] € Cor
So Co = {(cti)iepp) € R¥ | (i)iepjri € RE*1 € Cor}.

Recall that in Corollary 48, we have used eigenspaces to decide whether an R-linear endomorphism
is diagonalizable over R. Therefore we need to know the eigenvalues of linear combinations of the
endomorphisms in ®. This gives reason to the following Remark.

Remark 60. Suppose given o = (ai)ie[l,k] € R**1. Recall that Kog o is a K-endomorphism of KN .
Then

o(Keoa) =4 Y. oudjilje(l,
1€[1,k]
In particular, given p € o(Kpg o), we have

Bpgo (1) = k(bjs - s € [L,gj], 5 € [1,0) with Y a;idji=p) NN
1€[1,k]

- ( S, EK@(M)) NN.
JE[L,]
Die, k) QNG =
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Proof. Recall the K-linear basis B = (b1,1,...,b1,9,---,b01,...,beg,) of KN.
For j € [1,4], s € [1, g;], we obtain

(K¢a,a)(bjs) = Z i (Kgi) | (bj,s) Z (i (Ki) (bj,s))

1€[1,k] 1€[1,k]
= D (aabss) = | D @i
i€[1,k] i€[1,k]

Example 61. Suppose that R = Z and N = Z?*!. We have the standard basis & := €21 of Z?*2.
Let @1, P2 be Z-linear maps on N such that (¢1)ee = ((1) (1)) € Z%% and (P2)ge = ((1)_?) € 72%2,
Let 7 be a Z-linear map on N such that 7¢ ¢ = (1 _1) € GL2(Q). Note that 7¢ ¢ ¢ GLo(Z).

As restricted Q-endomorphisms, we define the Z-endomorphisms ¢ := ((Q771)(Q¢1)(Q7)) |V and
2 1= (@ 1)(@52)(@r)) [§. Then (p1)e.e = (_978) and (¢2)e.e = (_978).

We have @1 0 o3 = @9 0 1 and both ¢; and @9 are diagonalizable over Z by construction. So
® := (1, ¢2) is a cd-tuple on Z2*1,

The matrix (¢1)ge has eigenvalues 1 and —1, the corresponding eigenvectors are b1 1= ( %) and

bo1 = (%), respectively. So we obtain the corresponding eigenspaces are E(,,), . ( ) and
1

E(tpl)s,g(_l) = Q<(1)>

We have

(E(<P1)s,£(1) N Z2) & (E(Wl)s,s(_l) N Z2) = Z<(_%) ) (%)> # 7.

Therefore the matrices (¢1)g e and (p2)g ¢ are not diagonalizable over Z; cf. Corollary 48. So ¢; and
(o are not diagonalizable over Z.

But ¢1 and ¢y are diagonalizable over Q by construction.

For a := (§}) € Z?, the Z-linear combination

(poa)ee = a1(pr)es +ao(p2)ee = (Catay 5 %)
is diagonalizable if a; = —a» since the zero matrix is diagonalizable over Z. Let now a3 = 1 and

oy = —1. In this case, we have By, (1) = Z? and E,,, (1) € E,, (1) as well as By, (1) € By, (—1).
So in a sense, the simultaneous eigenmodules E¢((1,1)) and E¢((—1,—1)) for ® fuse to the eigenmodule
Es%,a(l) of Y -

In this small example, we will have a closer look at the eigenvalues and the eigenvectors b1 1 and ba 1.
We have (p1)ge-bi1=1-b11 and (p1)ge - b1 = —1-ba1. Denote the eigenvalues by A1 :=1 and
Ao = —1. We have (p2)ge-big = 1-b11 and (p2)ge - ba1 = —1-ba1. Denote the eigenvalues by
/\1,2 =1 and )\2,2 = —1.

Note that o(vs ) = 0(K¢s,q); cf. Remark 37. Let v € o(¢a,,). Then we have the eigenmodule
Egg (V) = z(bj1 : j € [1,2] and a1 Aj1 + a2)j2 = v). In order that a fusion of eigenmodules can
happen, we need ay,as € R such that

1Al + 12 = a1A21 + agdao
since we have

(Po,0)ee(br1) = (1(p1)ee + az(p2)ee)(bi1) = (@1 A1 + azi2)bi1,
(Pa,a)e.e(b21) = (a1(p1)ee + aa(w2)ee)(ba1) = (a1A21 + a2)22)ba 1 .

Example 62. Suppose given a cd-tuple ® = (1, ¢2) on R? such that ¢1 and g9 are not diagonalizable
over R. Suppose that Ay = (A1, A12) = (1,—1) and A2 = (A1, A22) = (—1,2) are the eigenvalue
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tuples of ®. Note that this entails that each eigenmodule of (1 resp. of ¢y is an R-module of rank 1.
Recall that we have the simultaneous eigenmodules Ey = Eg(\1) and E2 = Eg(A2) for ®.

We want to find out if there exists a = (g;) € R*>*! such that Yoo is diagonalizable over R.

Let a1 = 5 and ap = 7. Then the eigenvalues of 3 o are agA11 + X2 =5-1+7-(—1) = —2 and
ajAa1 +agdoo =5 (—1) +7-2=9; cf. Remark 60. Thus ¢4 , also has two non-zero eigenmodules,
so each of these has to be of rank 1. Hence every eigenmodule of ¢ o is contained in an eigenmodule
of p1. So by Corollary 48.(2), ¢s o is not R-diagonalizable.

It also can happen that ¢g o has only one eigenmodule which is of rank 2. This would be the case if,
in a sense, Fq and F» fuse to a single eigenmodule of pg . But this can only happen if o = (3;) is
chosen such that

a;-l4+ag-(-1)=a;-(-1)+ay-2
< 2-a1 =3 as.

But we have {(g;) € R?x! ‘ 2011 = 3042} = R<(3)> So once we know that 31 + 29 is diagonalizable
over R, we know that Ce = R((%)>

Note that the eigenmodule of 31 + 22 to the eigenvalue 1 is of rank 2 and it is pure in R?, so it
equals R%. Hence 3p; + 2o = id.

Example 63. Let R = Z. Let ® = (1, 92, p3) be a cd-tuple on R*. Let (b1,1,b2,1,b2.2,b31) be an
R-linear basis of R? such that ¢;(bjs) = Ajbjs for i € [1,3], j € [1,3], s € [1,g;] with g1 = g3 = 1,
g2 = 2 and eigenvalues \;; given as follows.

Aii=1 X1= 1 A31= 0
AM2=1 X2= 2 A32=-1
A3=3 X3z=-1 A33= 4

For j € [1,3], the eigenvalue tuple \; := (Xj1, A2, 3) has a simultaneous eigenmodule E; for &.
These simultaneous eigenmodules are

Ey =Egs(M) = r(b1,1), E2=Eg(X2) = r(b2,1,b22), E3=Eg(A3)=r(b3,1).

o
For some choices of the coefficients o = (3%) € R**1 two or three of the simultaneous eigenmodules
3

for @ fuse to a single eigenmodule of ¢ . We assign a partition of the finite set {1,2, 3} to the tuple «,
describing which of the simultaneous eigenmodules fuse. If P is a partition of the set {1,2, 3}, we will
have {4, j} C p for some p in the tuple P if and only if E; @ E; C E as R-modules for an eigenmodule
E of 3 q.

For certain tuples a = (%5), we obtain the following.
3

a1 | as | as | set of eigenvalues eigenmodules corresponding
of Yoo of Y3 o partition of {1,2,3}
1) 1] 1 {5,2,3} B\, By, B3 ({1}.{2}.{3})
1 4 1 {8,0} CIN(El @Eg),Eg ({1,2},{3})
8| -1 1 {10,5} Eq,cly(Ey @ Es) ({1},4{2,3})
1 1] 1 {3,0} cy(Er @ E3), Es ({1,3},{2})
-7 41 1 {0} cIy(E1 @ Ey @ E3) ({1,2,3})

In this example, all partitions of {1,2,3} have occurred. In general, this will not necessarily be the
case.

Example 64. Suppose given a := (a;)icni € RFXL Suppose that ¢ is not diagonalizable over R.
Consider ¢ := g o. Suppose that for 1 € o(y), the eigenmodule E, (1) of ¢ to the eigenvalue p is
contained in an eigenmodule E,, () of ¢y for some A € o(¢1).
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Since 1 is not diagonalizable over R, we have a proper inclusion ®A€a(<p1) E, (A\) CN.
Taking both together, we get
P E.w< P E,NCN
pea(p) Aea(p1)

and thus ¢ cannot be diagonalizable over R; cf. Corollary 48.(2).

3.5.2 On partitions of finite sets

We will collect some facts on partitions of finite sets as far as it is necessary to understand the Partitions
Algorithm; cf. Algorithm 94 below. We will explain how we handle partitions in Magma and give some
examples.

Definition 65. Recall that £ is the number of distinct eigenvalue tuples of ®. Suppose given a partition
P = (p1,...,py) of the set [1,¢]. We define the following R-submodule of N.

Mq>7p = @ @EKq)(A]) NN| CN
1€]1,u] JEP;

We define the following map.
vg: Py — Subr(N)
P — Mg p
Remark 66. Let P := ([1,/]) = ({1,2,...,¢}) € Pp. Then vg(P) = N. In particular, the preimage
vg () is not empty.
Definition 67. Let s € N. Let P = (p1,...,py) and Q@ = (q1, . .., qy) be partitions of [1, s].

We say that P is finer than Q if for ¢ € [1,u] there exists j € [1,v] such that p; C g;. If P is finer than
Q, we write P> Q. If P> Q and P # @, we write P > Q.

We say that P is coarser than @ if @ is finer than P. If P is coarser than @, we write P < Q. If
P <@ and P # Q, we write P < Q.

The relation =< is a partial order on the set Py of partitions of the set [1, s]. So for every subset L C P
we can define min(L) and max(L) as follows.

min(L) = {P e L|{Q € L|Q % P} = {P}}
max(L) = {P € L|{Q € L|Q = P} = {P}}

Lemma 68. Suppose given s € N. Suppose given P,Q € Ps. Then
P=@Q = MspCMspg-

Proof. We write P = (p1,...,py) and @ = (q1, ..., q,) where u,v € N. We calculate.

Mg p = @ @EK@()\]‘) NN

1€[1,u] JED;

- @ (@]
i€[1,v] jElu] SEP;

PS4

c @ ((@ren)
1€[1,v] J€

:M‘P,Q
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Definition 69. Suppose given n € N. We define
7 ={(1)}.

For n > 2, we recursively define
I, := U {(il,...,in_l,in) ine[l,(‘max Z'j)—l-l}}.
. . j€l,n—1]
(zlz-uﬂnfl)eznfl
Note that this is a disjoint union and that Z,, is a finite set for n € N.
For n € N, the set Z,, equipped with the lexicographic order (<jx) is a linearly ordered set.
Example 70. We have

1, = {(1)}7

Iy = {(1a1)7(172)},

Iy = {(1,1,1),(1,1,2),(1,2,1),(1,2,2),(1,2,3)} an

o= {(1,1,1,1),(1,1,1,2),(1,1,2, 1),(1,1,2,2),(1,1,2,3),
(1,2,1,1),(1,2,1,2),(1,2,1,3),(1,2,2,1),(1,2,2,2),
(1,2,2,3),(1,2,3,1),(1,2,3,2),(1,2,3,3),(1,2,3,4) }.

We have written all elements ordered linearly with respect to (<jex), starting with the smallest element.
For example, we have (1,1,1,1) <jex (1,2, 1,3) <jex (1,2,3,4).

Remark 71. Suppose given n € N and (i1,...,i,) € Z,. Then

{i1,...,in} = [1, ren[?}rcb} ij].

Proof. We proceed by induction on n.
Let n =1. Then (i1) =1 and {i1} = {1} =[1, 1].

Let n > 2. Suppose that the statement holds for n — 1. Suppose given (i1,...,i,) € Z,. Write
m = Max;cp 5. Write m’ := max;cp ,—1)%5. Then (i1,...,in,—1) € Zn—1 and i, € [1,m' +1]; cf.
Definition 69.

By induction we have {iy,...,i,—1} = [1,m]. So we obtain {i1,...,i,} = [1,m']U{i,}.

We proceed by case distinction.

If i, = m' + 1, then {iy,...,in} = [1,m + 1] =[1,m].

If i, € [1,m/], then {i1,... i} = [1,m] = [1,m].

This shows that the statement holds for n € N. O
Remark 72. For n € N, we define the following map.

Vit Ln — Pn

(i1, ...y in) > <{ke[1 n]|ix = s} : s € [1, max z]]>

Jjelin]
Furthermore, we define
e Pn — I,
(D1 Pu) = (i1 -y in)
where j € p;; for j € [1,n].
Then 7y, is bijective. Moreover, we have 7, 1 = +/,.

We identify T, and P, along .. In particular, we have P > Q if and only if v,(P) = v, (Q) for
P,Q e I,.
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Proof. Suppose given n € N.
Yn ts well-defined.

Suppose given (i1, ...,i,) € Z,. We have to show that v, ((i1,...,i)) 6 Pp. Let m 1= maxje[ ) i; -
We write p; := {k € [1,n]| iy = j} for j € [1,m]. Since the index s in the definition of 7, ((i1,...,in))
increases from 1 to m, we obtain v, ((i1,...,n)) = (P1,---,Pm)-

It follows that p; # 0 for i € [1, m]; cf. Remark 71. Moreover, we have p;Np; = 0 if ¢ # j for i, j € [1,m]
by definition of the sets p;. We also obtain that ;e pi = [1, 7).

Assume that there exist ji, jo € [1,m] such that j; < jo and m; := minp;, > minp;, =: my. Then
imy = j1 and i, = jo. Consider the tuple (i1,...,%m,). Recall the recursive definition of the Z,, for
n’ € N; cf. Definition 69. Then (i1,...,%my) = (41, .-, %my—1,J2) € m,. This implies that the number
j1 which is smaller than js is an entry of this tuple; cf Remark 71. So there exists mg < msq such that
ims = j1. Hence mg3 € p;,. But now minpj;, > minp;, = mg > m3 € pj;,, a contradiction.

Thus we have minp;, < minpj, if and only if j1 < js for ji,j2 € [1,m]. This shows that the entries of
(p1,--.,pm) are ordered by their smallest element.

So we have shown that 7, ((i1,...,in)) € Pn.

~h is well-defined.

For n =1 there is nothing to show, so suppose that n > 2.

!
Suppose given (p1,...,py) € Pn. We have to show that +), ((p1,...,pu)) € Zn.

We write v, ((p1,..-,pu)) =t (i1,...,1n). We have iy = 1 since 1 € p;. Moreover, i; € [1,u] for
J € [1,n], in particular ¢; > 1 for j € [1,n]. We have to show that

!
i; < | max 4, |+1forj e [2,n].
refl,j—1]

Assume that there exists j € [2,n] such that i; > (max,ep j_174r)+1. Thenij—1 ¢ {i, |r € [1,5 —1]}.
This entails that 7 ¢ p;;—1 for v € [1,7 — 1]. Moreover, i; — 1 #4;, 50 j ¢ p;j;—1. So we conclude that
minp;;—1 ¢ ([1,7 —1JU{j}) = [L,].

But since minp;; < j by definition of 4/, we obtain minp;; < j < minp;;—1, a contradiction to
(P1,---sDu) € Phn.

This shows that 7], is well-defined.

It remains to show that +/, oy, = idz, and that v, o7/, e idp,, .
Ad 4, o = idz, .
Suppose given (i1, ...,in) € Z,. We write m := max;e[; »)i; . Then

(v 0 ) (its -+ yin) = Yo ({r € [Lin] [ir = j} : j € [1,ml])

= Vé(pl’ s apm) = (51, R ,in).
Here we have j € p;, for j € [1,n].

Suppose given r € [1,n]. We have r € p;, by definition of 4, . Now r € p; by definition of (i1, .-, in).
Since partitions are decompositions into disjoint subsets, we have i, = i, .

We conclude that (iy,...,4,) = (i1,...,in).

This shows that 4], o vy, = idz,.
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Ad v, 09, = idp, .

Suppose given (p1,...,pu) € Pn. Let (i1,...,in) ==, (p1,...,pu). Then we have i; = s if and only if
j €psforje(l,n]and s € [1,ul.

Let (P1, .., Pa) = Yn(i1,. .., in) Where we write ps := {j € [1,n][i; = s} for s € [1, max;c[y ) i;]. Note
that u = maxj¢(y,)i; = @, so & = u. Then we have j € ps if and onmly if 7; = s for j € [1,n] and
s € [1,u].

We conclude that j € p; if and only if j € p, for j € [1,n] and s € [1,u]. Hence we obtain (p1,...,py) =
(B, -+, Pu) = (o) (P15 Pu))-

This shows that 7, o7, = idp, . O

Remark 73. Using Remark 72, we have a bijection -, between the linearly ordered set Z,, and P, for
n € N. This allows us to loop easily over all partitions of the set [1,n] in our algorithm.
In particular, we obtain that |Z,| = |P,| for n € N. The cardinality of P, is called Bell number B,, .

Bell numbers can be calculated as sums of Stirling numbers of the second kind or recursively using
binomial coefficients.

The first few Bell numbers are given by

By =1 By =15 By =877
By =2 Bs =52 Bg = 4140
B3=5 Bg =203 By = 21147.

For further information on this topic, we refer to [Gro07, Chapter 5].
Definition 74. Suppose given P € P,. Write v, }(P) =: (i1, ...,in). We define the following map.
mp: [1,n] = N
j = p(d) =i
Example 75. Let n:=4. Let P:= ({1,3},{2},{4}) € Ps. Then 7, (P) = (1,2,1,3) € Zy.
We obtain the following.

mp(l) =1
( 2
3) =1
mp(4) =3
So the map mp maps i € [1,n] to the number of the set in P in which ¢ is contained.

Remark 76. Suppose given P, @Q € P,. Then we have
P < Q = ’Y{l(P) <lex 77:1(62)

Proof. Write v, 1(P) =: (i1,...,in) and 7, 2(Q) =: (1, - - -, jn)-
We will show that v, }(P) >1ex 7, 1(Q) implies P £ Q.
Suppose that v, 1(P) >1ex v, Q). Assume that P < Q. Define

y:=min{s € [1,n]|is > js}.

In particular, we have i, > j,. Since 7, (P) >1ex 7, (Q), we have i; = j; for t € [1,y — 1], i.e.
(i1, .., Gy—1) = (J1, - - ,jy_l).
Let



This is the minimum of the subset of [1, n] that occurs in the partition @) and that contains the element
y. We have j, = j, since in the partition @, the elements x and y are in the same subset of [1,n].
Moreover, as sets we have ﬁél(jx) = wél(jy).

Claim 1. We have z < y.

We have z < y by definition of x. Assume that £ = y. Then z = min (Wél(jx)> and thus we get

Jz & {js|s € [1,z — 1]}. Note that the latter set is an interval starting from 1; cf. Remark 71. Moreover,
it coincides with the set {is|s € [1,z — 1]}. Since iy > j,, we obtain that i, ¢ {is|s € [1,x —1]}. By
construction of Z,,, we have

L N g
e = (e ) L= pax o) 1=

which is a contradiction. This proves Claim 1.

Claim 2. We have ’/T];l(im) N Wél(jz) # 0.

The element z is contained in both sets, so it is also in their intersection. This proves Claim 2.
Claim 3. We have 71'131(1},;) ) Wél(j:c)-

We have y € Wél(jy) = Wél(]':c) since jy = Jy-

Recall that j, < i,. Note that i, = j, by Claim 1. So we have i, = j, = jy < iy. In particular, i, # i,
which implies that y ¢ 75" (iz).

This proves Claim 3.

By assumption, P is coarser than @, so 77131(%) is a disjoint union of sets of the form wél(js) for

certain s € [1,n]. One of these sets has to be Wél(jx) by Claim 2. Thus we have 75" (i;) 2 Wél(jx)
which is a contradiction to Claim 3.

This completes the proof. O

3.5.3 A description of the diagonalizability locus

Definition 77. Recall that A\j = (Aji)ieq1x) € RYF for j € [1,/] are the distinct eigenvalue tuples of
®. We define the matrix

Ao = (Nja)jepaicnn € B

The multiplication on R¥*! with this matrix from the left defines a map.

W Rle —>R£X1

a— Ao -«

Note that for o € R¥*1 the image we(a) = Ag - has the eigenvalues of Yo o as entries; cf. Remark 60
and Convention (25).

Definition 78. We define the map

Ty R Py

B = ()
where for § € R, we define
7¢(B) :== (T C [1,4] : there exists r € R such that T ={i € [1,{] | B; =1} # D)

such that the entries of 74(/3) are ordered by their smallest element.

That is, 77 = (p1,...,ps), where for j € [1, s], we have

b= {teing

Bt = Bm Wherem::min{ie [Lﬂ‘ﬁzﬁé{ﬁﬂue U pk}}}

kell,j—1]
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Corollary 79. We can compose the maps defined in Definitions 65, 77 and 78 as follows.

W e

RFx1 Ri1 Py =2 Subg(N)
« — A.:p-Oé — Tg(Aq;-Ct) — M@,Tg(Aq,-a)

Then we have the following equivalence for o € RF*1.
©p.o s diagonalizable over R <= (vp o Ty owe)() = N

Proof. Note that (ve 0 7y 0 we) (@) = Mg r,(Ag-a) for v € RF*L,

If @ =0, then ¢g o is the zero map which is R-diagonalizable. Moreover, we have (vg o 7y o we ) (o) =
va(([1,4])) = N.

Suppose given a € R¥*1\ {0}. Note that Ag -« has the eigenvalues of g , as entries; cf. Definition 77.
We write P := (p1,...,pu) = 7e(Ag - @)

Recall that for j € [1,], the tuple \; is a simultaneous eigenvalue tuple of ®. We obtain the following.

Pa,q 1s diagonalizable over R
Cor. 48.(2)

— @ E‘P(I’,oc (u) = N
/1‘60'(90@.04)
Rom- 50 oy D EKQ(A]-)) N N) =N
neo(9a,a) JELL]
ie[1,k] QNG i=H
L @ (| B ExkeN) | NN | =N
1€[1,u] JEP;
PELS Mep=N
= (vpoTypows)(a) =N

O

Remark 80. Using Corollary 79, we want to find all & € R*¥*! such that Yo, 1s R-diagonalizable.
More precisely, we aim to find an R-linear basis of the diagonalizability locus Cg of ®@; c¢f. Definition 56.
Note that Py is a finite set, so we can write an algorithm to determine the preimage U;I(N) of N
under vg .

Later we will use vg'(N) to determine an R-linear basis of Ce.

Lemma 81. The preimage Uq:l(N) of N under vg is a lower set of the poset Py.

Proof. Suppose given P € vq_)l(N). Then for @@ € P, with @ < P we have Mo g 2 Mg p; cf.
Lemma 68. Since P € vg'(N), we have Mg p = N. Thus we get the following chain of inclusions.

N2Mog 2Mep=N
We conclude that Mg g = N. So Q € vg'(N). O

Definition 82. Suppose given P = (p1,...,py) € Pp. For s € [1,u], we write ps =: {p&l, . ,psv‘ps‘}
such that pss < ps¢41 for t € [1, |ps| — 1]. This means that for s € [1,u], we sort the elements in p, in
ascending order. We write m; := max(ps) = ps |p,| for s € [1,u].
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We define the following matrix.

)‘pl,l,l - >‘m1,1 )‘p1,1,2 - >‘m1,2 )‘p1,17k - )‘mhk’
/\p1,2,1 — Amy 1 /\p1,2,2 — Ami2 >‘p1,2,k — Ay k
Apl,‘p1‘7171 - )\mlvl Apl,‘p1‘7172 - )\m172 Ap1,|pl‘—lzk - Aml»k
)‘p2,171 - )‘mz,l )‘p2,1,2 - )‘m2,2 )\pg,l,k - )\mg,k
>\p2,‘p2‘7171 - )\m271 >\p2,‘p2‘7172 - )\m272 )\p2,|p2‘717k - )\m27k
)\pu,lvl - >\mu71 )\pu,l»2 - >\mu72 )\pu,lyk - )\muvk
)\p“»\l’?u|—1’1 B )\mu71 )\pu,\pu|—172 - )\mu72 )‘p%‘pu‘,l,k - )\mu,k

We call this matrix the difference matriz of Ag with respect to (the partition) P.

c R(f—u) xk

Remark 83. Keep the notation of Definition 82. We denote the j-th row of the matrix Ag by
Ajo € RY™ . Then we have

)‘p1,1,° —A

)\pl,Qy. - Apl,‘pﬂz.

P1,|py|®

Apl,|p1‘7l7. - )\pl,‘pﬂv.

)\Pl,h‘ - )‘mh'
)‘pl,z,' - /\mh‘
P1,|py|—1-® - A”7/7/17.

)\pu,l7. - Ap'u,,|pu‘ ,®

Pu,|pu|-1® )\p“w\l’u\’.

)\pu,h. - Amuv.

Du, |pu|—1® Ao

For each s € [1,u], we obtain a block that has in its rows the differences of the row on position ps+
and the row on position p |, | of Ag for ¢ € [1, ps| —

Example 84. We will give examples of difference matrices as defined in Definition 82.

Let R = 7Z. Suppose given ® such that

Sok=4and ¢ =6.

Let Py := (p1,p2,p3) = ({1,3,4},{2,5},{6}). So u = 3. We obtain the following difference matrix of
A with respect to Py .

P _
DA@ =

1— (-
4—-(-1)
9 _

) —2-(-1
2-(-1)
3 —1-1

S W BN =

0-0 2—(
2-0 1-—(-1)
~1-3 0-(-2)

~1)
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Note that the matrix block corresponding to p3s = {6} has zero rows since |p3| = 1.

Let Py := ({1,2,3,4,5,6}). So u = 1. We obtain

1-0 —2—-0 0—-2 2-2 1 -2 -2 0
2-0 —-1-0 —-1—-2 0-2 2 -1 -3 -2

D2 = 4-0 2-0 2-2 1-2 |= 4 2 0 —1 |eR>™ =ROE-xk
-1-0 -1-0 0-2 —-1-2 -1 -1 -2 -3
3-0 1-0 3-2 —2-2 31 1 —4

Let Py := ({1},{2},{3},{4},{5},{6}). Sou=6. Then D}* € R4 = R6-6x4,
Lemma 85. Suppose given o € RF*1. Suppose given Q € Py such that (10 we)(a) < Q. Then
Q _
DAq) «a=0.

Proof. We write P := (p1,...,pu) = (7 owsg)(a). We write Q = (q1,...,¢y). For the sets in the
tuple P, we write p; =: {pi’l, . ,pi,‘m} such that p; s < pi¢41 for t € [1,|p;| — 1]. Similarly, we write
qj =: {qﬂ, .. .,qj7‘qj‘} such that g;; < gj¢41 for t € [1,g;| — 1].

Suppose given t € [1,v]. It suffices to show that we have

! .
> i (Mg = Mgy =0 for j € [L]ar] = 1. (12)
1€[1,k]
There exists s € [1,u] such that ¢; C ps. But since (p1,...,pu) = (72 o ws)(a), we have
S aidii= Y ik for ji,j2 € ps.
i€[1,k] i€[1,k]

This implies that

Z a; (Njyi = Aj,i) =0 for ji1, j2 € ps.
i€[1,k]

So we have the following equation.

Z Q; ()\ps,ylvi - )\psny,i) =0 for Y1,Y2 € [1’ ‘pSH (13)
1€[1,k]

Suppose given j € [1,|q] — 1].

Then there exists y; € [1, |ps|] such that g ; = psy, . Moreover, there exists y2 € [1, |ps|] such that
4t,|q;| = Psyya -

Thus by equation (13) we obtain

Z % ()‘qw‘ﬂ' - )‘fh?\qwi) =0

1€[1,k]
as required in equation (12). O

Lemma 86. Suppose given QQ € Py. Suppose given a € Ker Dg@ C RF*1. Then (rpows)(a) < Q.

Proof. We write a = (a;);e k- We write Q = (q1, ..., qu). We write P := (p1,...,py) == (rows)(a).
Since « € ker Df\?@ C R**1 we have the following equation.

Z ai(AQS,jyi - >‘qs,|qs\7i) =0 for j € [1,]gs| — 1], s € [1, 4]
1€[1,k]
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We write wg (o) =: 8= (Bi)icp,q € R™1. By the previous equation we have the identities
Baoy = 2 @ilhguyi) = Y @ilAgy i) = Bayyy  for 5 € [1]gs| — 1], for s € [1,4]
i€[1,k] i€[1,k]

and thus we obtain
{Bilj€qgstl =1 for s € [1,u].
This shows that for s € [1,u], there exists ¢ € [1,v] such that ¢s C p; and hence (77 owg)(a) < Q. O

Note that we do not know whether there exist ji,j2 € [1,u], ¢ € [1,v] such that j; # j2 and ¢;,Ug;, C p;.
Thus we cannot conclude that P = Q.

Corollary 87. Suppose given Q € Py and o € RF*Y. We have the following equivalence.

Dg@-a:0<:>(7'gow§)(oz) <Q

In particular, we have DE\ZW‘I’)(Q) ca=0.
Proof. This is a combination of Lemma 85 and Lemma 86. O

Corollary 88. Suppose given P € Py. Then the following assertions hold.
(1) If tk(D},) =k, then P & (7 0 we)(R1\ {0}).
(2) If rk(Df@) < k, then there exists Q € (17 o we)(R*1\ {0}) such that P = Q.

Proof. Ad (1). Suppose that P € (7 0 wg)(R**\ {0}). Then there exists a non-zero a € R**! such
that DE\T;;DW@)(O&) - = 0; cf. Corollary 87. Hence, in particular, rk(qu)) is smaller than k.

Ad (2). If rk(qu)) < k, then keerq) # 0. Choose a € ker(qu))\{O}. Let Q := (pows)(a) €
(70 0 wa) (R**1\ {0}). Then P = Q; cf. Corollary 87. O

Corollary 89. We have the following inclusion of sets containing minimal elements with respect to <.
min {P € Py | rk(D,i)) <k} C min {(Tg o we)(RFM\ {O})}
Proof. We have { (7 0 we)(R*M\ {0})} € {P € P | rk(Df@) < k} by Corollary 88.(1). Then we can
apply Corollary 88.(2). O
Lemma 90. Let s € N. Suppose given P,Q € Ps. Then
P =XQ = kerDf, CkerDf, .
Proof. We write P =: (p1,...,pu) and @ =: (q1,...,qv). For i € [1,u] there exists j € [1,v] such that
gi C pj since P <X Q. Suppose given « € ker Df@. We have to show that ng a=0.
Suppose given s € [1,v]. By definition of Dg@ it suffices to show that
!
Z ;i (Agi —Ayi) =0 for x,y € gs.
1€[1,k]

There exists p; € [1,u] such that ¢s C p;. But we have

Z Q; ()\gm — >\y,i) =0 for xT,Y € Pt
1€[1,k]

since « € ker Df@. In particular, this equation holds for x,y € ¢s.

This completes the proof. O
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Lemma 91. We have the following description of Cg.

U ker (DII\D(P) =Csp
Pevz(N)

Proof. Ad C. Suppose given P € ’U;l(N). It suffices to show that ker (Df@) C Cg. Suppose
given a € ker (Dip), SO DK@ ‘«a = 0. Then (7 o wg)(a) = P; cf. Lemma 86. This implies that
(vp 0Ty owa)(a) D ve(P) = N; cf. Lemma 68. So (vg o7 ows)(a) = N. By Corollary 79 the map
Y& o is R-diagonalizable. We conclude that a € Cg.

Ad D. Suppose given a € Cp. Then pg¢ o is R-diagonalizable; cf. Definition 56. By Corollary 79 we
obtain that (ve o 7y o we)(a) = N. In particular, we have P := (17 0 wg)(a) € vy (N). Applying
Corollary 87 shows that « € ker (Df@), completing the proof. O

Theorem 92.

(1) We have

U ker (D},) = Cq.
Pemax(vgl(]\f))

(2) Suppose R to be infinite. There ewists Py € max(vgy'(N)) such that
Co = ker (Df‘;) .

Proof. Ad (1). This is a combination of Lemma 90 and Lemma 91.

Ad (2). The diagonalizability locus Cg of ® is pure in R¥*!; ¢f. Lemma 57. Suppose given a partition
P € max(vg'(N)). Then ker(Df@) is pure in R¥*1; cf. Example 13.(2). Thus we obtain that ker(Df@)
is pure in Cg; cf. Remark 15.

By Lemma 23 we obtain that there exists Py € max(vg'(N)) such that Ce = ker <Df?b> O

Question 93. Recall that @ is a cd-tuple on the finitely generated free R-module N; cf. Definition 51.
We have the map vg; cf. Definition 65.

We ask whether | max(vg!(N))| = 1.

3.5.4 Algorithm

Here we use pseudocode to describe an algorithm to determine an R-linear basis of the diagonalizability
locus for a given cd-tuple @ consisting of matrices. That is, we still use mathematical expressions in
the procedure. In §3.5.5 below, we provide the Magma code of our implementation.

Algorithm 94 (Partitions Algorithm). Suppose that ® = (p1,...,pk) is a cd-tuple on R™ where
wi € R™™ for i € [1,k]. The following algorithm written in pseudocode returns an R-linear basis of
the R-module Cg.
so := (i € [1,k] : ¢; is not R-diagonalizable).
Dy := (p; 7 in o).
s1:= (i € [1,k] : ; is R-diagonalizable).
®y := (p; 1 in s7).
Define kg to be the length of sq.
if @y is empty then
print All elements of ® are R-diagonalizable.
D:=(e; € RF:i € [1,k)).
else
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Choose S € GL,(K) N R™™ such that SpS~! is diagonal for ¢ € ®y.
D; = SgoiS_l for 7 in sg.
Define jN\qJO = (Xj,i)je[l,n}, ie[k] € R™F guch that X]Z = (D;); ;-
Ag, := RemoveDuplicateRows(Ag,).
¢y := NumberOfRows(Ag, ).
P:=(1:i€[1,4)]) € Zy,.
Leg =]
Lypaq =[]
while P # (1,2, ...,4y) do
if 3Q € Lyaq : P = Q then
Skip P.
else
if rk(DfA’%) < ko then
if M<I>0,P = R" then
Remove all elements from L.g that are coarser than P.
Append P to Leg.
else
Append P to Ly.g.
end if
end if
end if
P:=minc,_ {Q €Zy, | P <jex Q and P # Q}.
end while
Choose an R-linear basis B of R(ker(DK%) : Pin Leg).
Let so =: (i1,...,ik,). Define the R-linear map &: R* — RF by ej — e;; for j € [1, ko].
B:= () € Rk Y in B).
C:=(e; € R*:iin s1).
Define D as the concatenation of B and C.
end if
return D.

Proof. We have to show that

Claim 1. If B is an R-linear basis of Cg,, then D is an R-linear basis of Cg.

Note that both B and C are linearly independent. Moreover, the non-zero entries of elements of B only
are in positions where the elements of C have zeros and vice versa. So D is linearly independent.

It remains to show that Ce = r(D). But since (e; € RF7%0 :4 € [1,k — ko)) is an R-linear basis of Cg,,
the tuple D is a generating set of Cp as we see using Remark 59 after reordering the elements of ®.

This proves Claim 1.
By Claim 1, it suffices to show that

Cay = r(B) = plker(DY, ) : P'in Leg).

Note that Leg only depends on ®g.

So for the rest of this proof we may assume that ®; is the empty tuple and thus & = ®q. Hence the
map £ is the identity map on RF, the tuple C is empty and B = B’ = D. Then we also have k = k.
Furthermore, let £ be the number of rows of the matrix Ag. Then also ¢ = /.
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So we need to show that ‘
Co = r(B) = g(ker(D},) : P in Leg).

Ad D. It suffices to show that for P in the list L.g, we have ker(DK@) C Cg. So suppose given
P € I, that is an element of Leg. Suppose given a = (i)ig[1,k € ker(qu)). We have to show that the
R-endomorphism Zie[l’ K] QP is R-diagonalizable.

By construction of Leg we have Mg p = R™. Moreover, we know that (77 owg)() = P; cf. Lemma 86.
This means that, in a sense, if one defines a partition (7, o ws)(a) that indicates how the simultaneous

eigenmodules of the endomorphisms of ® have fused to the eigenmodules of ¢4 «, this partition is coarser
than or equal to P. So in a sense, one can say that ¢e, . shows “at least the fusion behavior P”.

But from (7y o we)(a) = P we conclude that Mg (r0wp)(a) 2 Ma p; cf. Lemma 68. We already have
Mg p = R", so we conclude that Mg (7,004)@) = B
This shows that ¢ , is R-diagonalizable; cf. Corollary 79.
Ad C. Suppose given a = (;)iei1 1) € Ca \ {0}. Then 3,y 4y aigp; is R-diagonalizable.
We write
P := (1 ows)(a)
which we view as an element of Z; cf. Remark 72.

Consider the while-loop that iterates over Zy, ordered lexicographically. At some point, the loop reaches
the partition P.

Claim 2. P is not skipped in the first if-statement in the while-loop under consideration

Assume that P is skipped in the first if-statement. Then there exists Q € Ly,q such that P > (). Since
Q € Lpaq, we have Mg o C R". Since g o is R-diagonalizable, we have Mg p = R"; cf. Corollary 79.
Using Lemma 68, we obtain R" = Mg p C Ms g C R", a contradiction.

This proves Claim 2.
Since P € (1 0 wg)(R¥*1\ {0}), we have rk(D}, ) < k; cf. Corollary 88.(1).

Since pg o is R-diagonalizable, we have Mg p = R"; cf. Corollary 79. We conclude that P is appended
to Leff.

We proceed by case distinction.

Case 1. At the end of the algorithm, P is still an element of Leg.

We have o € ker(Df@); cf. Corollary 87.

Case 2. At the end of the algorithm, P is no longer an element of Leg.

The only way to remove an element of the list Log is to replace it with a finer partition. So at the end
of the algorithm there exist s > 1 and a chain Qs = Qs—1 = ... = Q1 = P where Q; € Z, for i € [1, s]
such that Qs is a member of L.g.

But then o € ker Dip C ker Dg;; cf. Corollary 90. O
3.5.5 Magma Code
In the following we provide the Magma codes including certain definitions and functions and our

implementation of the Partitions Algorithm; cf. Algorithm 94. The file “partalgo” requires initialization
files such as “pre”, “z3s3Init1” and “definitions”; cf. Magma Codes 3, 1, 4 and 5.

The files provided here are used in the examples Z o) Sy and Z9) Ss; cf. §6.4 and §7.4.
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Magma Code 3: pre

Z := Integers();
Q := Rationals();
kernel := function (A)

// INPUT: integer matrix A
// OUTPUT: integer matrix B that has in its columns a Z-linear basis
// of ker (A)

n := NumberOfColumns (A7) ;
D,S,T := SmithForm(A);
1 := #[x : x in Diagonal (D) | x ne 0];

return SubmatrixRange(T,1,1+1,n,n);
end function;

sim_diag := function (L)
// INPUT: 1list L of commuting Q-diagonalizable square matrices over Q
// of the same size
// OUTPUT: matrix S such that SxL[i]*S"-1 is diagonal for i in [1..#L]
size := NumberOfRows (L[1]);
blocks := [1, size+l];
J,S := JordanForm(L[1]);
D := Diagonal (S*L[1]*S"-1);
for j in [1 : 1 in [2..size] | D[i-1] ne D[i] and not i in blocks] do
Include (~blocks, j);
end for;
Sort (~blocks);
for i in [2 .. #L] do
Matrix := S*L[1]*S"-1;
T 1= <>;
for i in [1 .. #blocks - 1] do
J,U := JordanForm(SubmatrixRange (Matrix,blocks[i],blocks[1i],
blocks[i+1]-1,blocks[i+1]1-1));
Append (~T, U) ;

end for;

S := DiagonalJoin (T) xS;

D := Diagonal (SxL[i]*S"-1);

for j in [1 : 1 in [2..size] | D[i-1] ne D[i] and not i in blocks]
do
Include (~blocks, j);

end for;

Sort (~blocks);

end for;

return S;
end function;

intmatrix := function (A)
// INPUT: matrix A
// OUTPUT: integer matrix A where every column is multiplied by its lcm

noc := NumberOfColumns (A7) ;
nor := NumberOfRows (A);
for i in [1..noc] do
lcm := LCM([Denominator (A[j,i]) : J in [1l..norl]);

if lcm ne 1 then
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MultiplyColumn (~A, lcm, i) ;
end if;
end for;
return RMatrixSpace (Z,nor,noc) !'A;
end function;

Magma Code 4: definitions

Gamma := CartesianProduct ([MatrixRing(Z,1i) : i in Sizes]);

OGamma := CartesianProduct ([MatrixRing(Q,1i) : i in Sizes]);

sp := [&+([0] ecat [Sizes[i]”2 : i in [1..3-11]) + 1 : j in [1..nbl];
// starting positions of the blocks

ep := [&+[Sizes[i]”2 : i in [1..3]1 : j in [1..nbl];

// ending positions of the blocks

CoerceGamma := function (v);
// INPUT: tuple v with rl entries in R
// OUTPUT: element of Gamma that has the entries of v in its matrices.
// matrices are filled row—-wise
return Gamma!<MatrixRing(Z,Sizes[J])![vI[i] : 1 in [sp[jl..ep[]Jl11] : 7
in [1..nbl>;
end function;

ProdTup := function (x);
// INPUT: nonempty list x of tuples of the same format
// OUTPUT: product of all elements in x
return < &+ [x[J][1] : J in [1..#x]] : 1 in [1..#(x[1])]1 >;
end function;

AddTup := function (x);
// INPUT: nonempty list x of tuples of the same format
// OUTPUT: sum of all elements in x
return &+[x[]j] : J in [1..#x]];
end function;

SubTup := function(x,Vy);
// INPUT: tuples x,y of the same format
// OUTPUT: difference x-y

return < x[i] - yI[i] : 1 in [1..#x] >;
end function;

InvTup := function (x);
// INPUT: tuple of invertible rational matrices
// OUTPUT: multiplicative inverse of x
return < x[1i]7-1 : 1 in [1..#x] >;
end function;

ConjTup := function (x,s);
// INPUT: tuple x of rational matrices and tuple s of invertible rational
// matrices
// OUTPUT: conjugate tuple 1nv(s) *xX*s
return ProdTup ([InvTup(s),x,s]);
end function;
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LieTup := function(x,yVy);

// INPUT: tuples x,y of the same format

// OUTPUT: Lie bracket [x,y] = xy — yx as tuple
return SubTup (ProdTup ([x,y]),ProdTup ([y,x]1));

end function;

ScalMultTup := function(x, c)
// INPUT: tuple x of matrices and scalar value c
// OUTPUT: tuple c*x

return < x[i] * Parent (x[i])!c : i in [1..#x]>;
end function;

Ties_to_Basis := function (Ties,e);
// INPUT: a matrix Ties and a divisor e
// OUTPUT: calculates a matrix that has in its columns an R-linear basis
// of the module generated by the ties modulo e in the rows of Ties
D,S,T := SmithForm(Ties);
k := Rank (D);
return T % DiagonalMatrix([Z! (e/Gcd(D[i,1i],e)) : i in [1..k]] ecat [1
i din [k+1..rl111);
end function;

Basis_Omega := Ties_to_Basis (Ties_Omega,e);
invBasis_Omega := (RMBQ!Basis_Omega)"-1;
Omeganull := CoerceGamma ([0: i in [1..r1]1);

admatrix := function (x)

// INPUT: x an element of Gamma

// OUTPUT: matrix ad(x) with respect to the basis Basis_Omega
pre_ad := RMBQ!O;
for j in [1..rl] do

v_tup := LieTup (x,CoerceGamma ([Basis_Omegali,3j] : i in [1..rl]1]1));
v_vec := &cat[ElementToSequence (v_tupl[i]):i in [1..#Sizes]];
for i in [1..rl] do
pre_adl[i, j] := v_vecl[il];
end for;
end for;

return RMB! ( (RMBQ!Basis_Omega) "-1lxpre_ad);
end function;

rdiag := function (ad, p)

// INPUT: ad a square Integer Matrix

// p an integer prime number or 0

// OUTPUT: boolean if ad is diagonalizable over Z localized at p
// (over Q if p=0)

// if no then the reason is printed
nor := NumberOfRows (ad) ;
eigval_set := Eigenvalues (Transpose (ad));
if not &+ ([0] cat [Dimension (Eigenspace (Transpose (ad),x[1])) : x in
eigval_set]) eq nor then

print "Not _diagonalizable_ over _Q";
return false;
end if;
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if p eq 0 then
return true;
end if;
// matrix over ground ring is required for SmithForm

R := MatrixRing(Z,nor) !0;
i :=1;
for x in eigval_set do
Espace := Eigenspace (Transpose(ad),x[1l]);
D,S,T := SmithForm(Transpose (intmatrix (BasisMatrix (Espace))));
invS := S"-1;
for j in [1..x[2]] do
for k in [1..nor] do
R[k,1i] := invS[k, jl;
end for;
i = i+1;
end for;
end for;

if Valuation (Determinant (R),p) eq O then
return true;
else
// print "Valuation at", p, "equals ", Valuation (Determinant (R),p);
return false;
end if;
end function;

Magma Code 5: partalgo
ispartition := function(p);
// INPUT: integer sequence p of length n
// OUTPUT: boolean whether p can be interpreted as a partition of [1..n]
return (p[l] eq 1) and &and[p[i] in [1 .. (Max([p[3j] : J in [1,i-1]])
+1)] : 1 in [2..#pl];
end function;

increasepartition := function (p);

// INPUT: integer sequence p of length n, interpreted as a

// partition of [1..n]

// OUTPUT: integer sequence p of length n, interpreted as a

// partition of [1..n] which is input partition increased by 1.
// Maximal partition is returned unchanged.

s = #p;
active := true;
while s ge 1 and active do
if p[s] 1t Max([0] eat [p[i] : i in [1l..s-1]])+1 then
pls] +:=1;
active := false;
else
pls] = 1;
s +:= -1;
end if;

end while;
return p;
end function;
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diffmatrix := function (A, p);
// INPUT: integer matrix A of size r x k, partition p of [1..r]
// OUTPUT: difference matrix of A with respect to the partition p

k := NumberOfColumns (A) ;
max := Max(p);
C := RMatrixSpace(z, 1, k)!'0;
occ := [[1 : 1 in [1 .. #p] | pli] eq j] : j in [1 .. max]];
for i in [1 .. max] do
if #occli] gt 1 then
B := Submatrix (A, occ(i], [1 .. kIl);
for j in [1 .. #occ[i] - 1] do
AddRow (~B, -1, #occl[il, 7J);
end for;
C := VerticalJoin (C, RemoveRow (B, #occ[1]));
end if;
end for;

return RemoveRow (C,1);
end function;

isfiner := function(p,q);
// INPUT: integer sequences p, q of the same length n, interpreted
// as partitions of [1..n]
// OUTPUT: boolean whether p is a finer partition than g

maxp := Max(p);

maxqg := Max(q);

if maxp le maxg then

return p eq g;

end if;

n := #p;

return sand(#{g[t] : t in [1..n] | pl[t] eqg s} eq 1 : s in [1l..maxpl];
end function;

Partalgo := function (Phi);

// INPUT: List Phi of commuting rational square matrices of the same

// sizes each of which is diagonalizable over Q

// OUTPUT: matrix that has 1in its rows an Z_ (p)-linear basis of C_Phi
kQ := #Phi;

// Check whether the requirements on Phi are fulfilled or not

if #SequenceToSet ([Parent (Phi[i]) : i in [1..k0]]) ne 1 then
print "Error: Elements in_the given_list_do_not have_the same

parents.";

return false;

end if;

if NumberOfRows (Phi[l]) ne NumberOfColumns (Phi[1l]) then
print "Error: Elements_are_no_square matrices.";
return false;

end if;

JF := [JordanForm(Phi[i]) : i in [1..k0]7];

if not &and|[JF[i] eq DiagonalMatrix (Q, #Diagonal (JF[i]),Diagonal (JF[i])
) : 1 in [1..k0]] then
print "Error: Not_all matrices ,are_diagonalizable_ over 0.";
return false;
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end if;

if not &and[Phi[i] % Phi[]j] eq Phi[j] = Phi[i] : i in [1..kO0], J in
[1..k0] | 1 gt j] then
print "Error: Not_all pairs_of _matrices_are_commuting.";
return false;

end if;

rdiagendos := [];
for i in [1l..#Phi] do
if rdiag(Phi[i],prime) then
Include (~rdiagendos, i) ;
end if;
end for;
nonrdiagendos := [i : i1 in [1..k0] | not i in rdiagendos];

if #nonrdiagendos eq 0 then
print "All given _matrices_are diagonalizable_over 7 localized_at",
prime,".";
print "The diagonalizability, locus_is_spanned by the_columns_of the
_following matrix.";

K2 := RMatrixSpace(Z,k0,k0)!0;
for i in [1 .. kO] do
K2[i, rdiagendos[i]] := 1;

end for;

print K2;

return true;
end if;
Phi := [Phi[i] : 1 in nonrdiagendos];
k := #Phi;
m := NumberOfRows (Phi[1l]);
S := sim_diag (Phi);
invsS := $"°-1;
Evalues := [Diagonal (S*MxS”-1) : M in Phil];
tupEvalues := [[Evalues[i][]Jj] : i1 in [1..#Phi]] : J in [1..m]];
matEvalues := Matrix(Z, #tupEvalues, #tupEvalues[1l], [<i, J,tupEvalues]|

i][31> : 1 in [1l..#tupEvalues], Jj in [1..#tupEvalues[1]]11);

// in the rows of S$"-1 we have a K-linear basis of the simultaneous
// eigenspaces of the matrices.

// we need to bring each basis vector into Z’'m

invS := RMatrixSpace(Z,m,m) !intmatrix (invS);

// Remove duplicate rows of matEvalues, store the result in A

A := Submatrix (matEvalues, [i : i in [1l..NumberOfRows (matEvalues)] | &
and[matEvalues[i] ne matEvalues[Jj] : j in [1..i-1111,I[1.
NumberOfColumns (matEvalues) ]);

1 := NumberOfRows (A);

Belllist := [1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570,

4213597, 27644437, 190899322, 1382958545, 10480142147];
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if 1 le 16 then

print "1 = ",1,", _there_are", Belllist[l],"partitions_to_check.";

end if;

// start with the coarsest partition

partition := [1 : i in [1..1]17];
running := partition[l] ne 1;
Listeff := [];

Listbad := [];

while running do

skip_partition := false;

ip := 1;

while not (skip_partition or (ip eq (#Listbad + 1))) do
skip_partition := isfiner (partition,Listbad[ip]);
ip +:= 1;

end while;
if not skip_partition then
if Rank(diffmatrix (A,partition)) 1t k then
// 1f Rank = k then we can skip the partition

occ := [[1 : i in [1 .. #partition] | partition[i] eq jl:j in
[1 .. Max(partition)]];
cols := <>;
for tup in occ do
colindices := [s : s in [l..rl] | &or[matEvalues[s] eq A[i
] i in tupll;
D,U,T := SmithForm(Submatrix (invS, [1l..rl],colindices));

Append (~cols,ColumnSubmatrix (U"-1, #colindices));

end for;

if Valuation (Determinant (HorizontalJoin (cols)),prime) eq O

then
for P in Listeff do
if isfiner (partition,P) then
Exclude (~Listeff,P);
end if;
end for;
Include (~Listeff, partition);
else
Include (~Listbad, partition);
end if;
end if;
end if;

running := partition[l] ne 1;
// we are done if the last entry is 1
if running then
partition := increasepartition (partition);
end if;
end while;

print "List of _finest_partitions_ contains", #Listeff, "element (s).";
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if #Listeff ge 1 or #rdiagendos ge 1 then
basis_list := RMatrixSpace(Z,k0,0)!0;

for partition in Listeff do

B := Transpose (KernelMatrix (Transpose (diffmatrix (A, partition))))
Bl := RMatrixSpace (Z,k0,NumberOfColumns (B)) !0;
for i in [1l..k] do
for 7 in [1 .. NumberOfColumns (B)] do
Bl [nonrdiagendos[i]][]j] := B[ilI[]]l;
end for;
end for;
basis_list := HorizontalJoin(basis_list,Bl);
end for;
B2 := RMatrixSpace(Z,k0,k0-k)!0;
for i in [1 .. #rdiagendos] do
B2 [rdiagendos[i], 1] := 1;
end for;

if #Listeff eq 0 then

print "There is_no_non-trivial linear_combination ,of_the_ given,
matrices _that_is_Z_(p)-diagonalizable.";

else
print "Partitions_in L _eff:";
print Listeff;

end if;

// The diagonalizability locus is spanned by the

// columns of the following matrix.

B := HorizontalJoin(basis_list,B2);

D,S,T := SmithForm(B) ;

print "A Z_(p)-linear _basis_of, the diagonalizability, locus is, given
_by_the_columns_of the following _matrix.";

return ColumnSubmatrixRange (5*-1%xD,1,Rank (D)) ;

else

print "There_is_only_the_zero_solution.";

print "C_Phi_is the_zero_module";

return 0;

end if;
end function;
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Chapter 4: Tori

Let R be a principal ideal domain with the maximal ideal (7). Let K = frac R be the field of fractions
of R. We often abbreviate ®p by ®.

4.1 Maximal tori of Lie algebras over R

Let g be a Lie algebra over R that is finitely generated free as an R-module. Let n = rkpg.

Remark 95. Recall that

Kg=K®g= Zci@)gik‘ENO,ciGK,ngQfori,je[l,k:]
1€[1,k]

We can shorten this description to

1
ng{@g
S

SGRX,geg}.

Moreover, for s,s’ € R* and g,¢' € g, we have in Kg, that

1 _1 / /Y
g®g—?®g <~ Sg=358g.

Proof. 1t suffices to show C. Suppose given an element g = Zie[l K Ci ®gi € K ®g. Then we can
write g = > ;e 4 5 ® gi, Where 1 € R, s; € R* for i € [1,k]. Define s as a common denominator
i
s

of these fractions (e.g. s := s1s2---s;). Then g = Zie[l,k} ® g; for certain r; € R. So we get
g= % ® Zie[l’k] ) g; where Zie[l’k] g € g.

Thus we have

1
Kg:{s®g SGRX,QEQ}.
For the second claim, we have to show two implications.
Ad <= . Wehave l@g=1lodg=1Lasy/ =L wy.
Ad = . Suppose that % ®g = é ® ¢ in Kg. We multiply by ss’ from the left and we obtain
ss'(1 ® g) = ss'(& ® ¢). The left side calculates to ss'(2 ® g) = §/(1® g) = 1 ® s'g and for the right
side, we have ss'(% ® ¢') = s(1® ¢') = 1 ® sg’. Thus we get 1 ® s'g = 1 ® sg’. Since the embedding
g — Kg that maps an element g € g to 1 ® g is injective, we conclude that s'g = sg’. O

Definition 96. Recall that Kg = K ® g is a K-vector space. We define a multiplication on Kg by
[—,=]: Kgx Kg — Kg
1 1 1
s t st

This operation is well-defined:

Suppose given 1 ®g = L ®¢' and 1 ®h = F®h' with s, s, t,¢' € R and g, ¢/, h, ' € g. Then sg’ = s'g
and th' = t'h; cf. Remark 95. We have to show that

1 1 1
[S®g,t®h] :*®[g,h];

1 1
/ / / /
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i.e. we have to show that '
s't'[g, h] = stlg’, h]

But s't'[g, h] = [¢'g,t'h] = [sq’, th'] = st[g’, }].

Since g is a Lie algebra over R, this operation satisfies [% ® g, % ®g] = S%[g,g] =0 for s € R* and
g € g. Similarly, it satisfies the Jacobi identity.

Thus Kg becomes a Lie algebra over K.

Definition 97 (cf. [Kiin01, Definition 82|). A Lie subalgebra t C Kg is said to be a torus in Kg if the
adjoint endomorphism adg4t € gl(Kg) is diagonalizable over K for ¢ € t.

A torus t C Kg is said to be a mazimal torus if t Ct C Kg and t' is a torus in Kg implies that t = t'.

Since 0 C Kg is a torus, there always exists a maximal torus for dimensional reasons.

We define a torus of the Lie algebra g over R similar to Definition 97.
Definition 98. A Lie subalgebra t C g is said to be a rational torus in g if the adjoint endomorphism
adgt: g —> g
y — [t,y]
is diagonalizable over K for t € t; cf. Definition 38.

A rational torus t C g is said to be a mazimal rational torus if for all rational tori ' C g we have that
t Ct C g implies that t =t'.

A Lie subalgebra t C g is said to be an integral torus (over R) in g if the adjoint endomorphism
adgt: g —> g
y— [t,y]
is diagonalizable over R for t € t; cf. Definition 39.

An integral torus t C g is said to be a mazimal integral torus if for all integral tori ' C g we have that
t Ct C g implies that t =t'.

Remark 99. The following remarks are immediate consequences of Definition 98.

(1) Every integral torus in g is a rational torus in g.

(2) Since R is a Noetherian ring, g is Noetherian as an R-module. Thus it satisfies the ascending chain
condition on its submodules. We conclude that in g, every rational torus is contained in a maximal
rational torus and each integral torus is contained in a maximal integral torus.

(3) The zero Lie algebra 0 C g is an integral torus in g. Thus there always exists a maximal integral
torus in g contained in a maximal rational torus in g.

(4) We recall the definition of pure submodules and the pure closure of a submodule; cf. Definition 12.
For a rational torus t in g, the pure closure clg(t) of t in g is given by

cg() ={geg|Ire R :rget}.
Moreover, t is pure in g if t = cly(t).

Example 100. Let g := glo(Z) and t := Z<(38) , (89)) C g. We write & for the standard basis

Suppose given t € t. Then there exist x,y € R such that t = (26 72). We get
0 0 0 0
|10 2z—Ty 0 0
agMee=1o 0 " 752 0
0 0 0 0
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This matrix is diagonal, in particular it is diagonalizable over R.
This shows that t is an integral torus in g.
For the pure closure of t in g, we get
clg(t) = {(Z Z) cg|IreZ” :r <CCL Z) €Z<<§ 8) , <8 2>>}
10 0 0
- Z<<0 0) ’ (0 1>>'

So we have proper inclusions t C clg(t) C g. This shows that t is not pure in g.

Remark 101. There ezxist a discrete valuation ring R, an R-algebra A and an integral torus t in the
Lie algebra [(A) over R such that t is not an R-subalgebra of A.

Proof. Suppose that R := Z). Consider the R-algebra A := R3*3. We have the commutator Lie
algebra [(R3*3) = gl3(R) =: g.

1 1
Define the elements t; := ( 01> € g and ty = ( 10) € g. We have the finitely generated free
R-module t := gr(t1,t2) in g. Then t is an abelian Lie subalgebra of g.
Let £ := £33 be the standard basis of g.

Suppose given i, j € [1,3]. Then E;; is an element of £. The product ¢, F; ; is either E; ; or 0 since ¢;
is a diagonal matrix with 0 and 1 on its diagonal. Similarly we have E;;t; € {FE;;,0}. We conclude
that [tl, E@j] S {O, E;;, —E@j}.

Similarly we obtain that [tg, EZ'J‘] € {0, Ei,j, _Ei,j}-

Therefore the matrices (adg(t1))e,e and (adg(t2))e e are diagonal. In particular, the R-linear maps
adg(t1) and adg(t2) are diagonalizable over R.

Now [t1,t2] = 0. Since ady is a morphism of Lie algebras over R, also adg(t1) and adg(t2) commute.

Suppose given 11,72 € R. Applying Corollary 54, we get that ry adg(t1)+r2 adg(t2) is R-diagonalizable.
But this map is the same as adg(rltl + rota).

We conclude that t is an integral torus in g.

1
But t is not an R-subalgebra of R3*3 since t1t5 ¢ t. Moreover, ( 1 1) ¢t O

Remark 102. Suppose given a Lie subalgebra t C g. Then t is a rational torus in g if and only if Kt
15 a torus in Kg.

Proof. Ad = . Suppose that t is a rational torus in g. The subspace Kt is a Lie subalgebra of Kg;
cf. Definition 96. We have to show that the map ang(% ® t) is diagonalizable over K for t € t and
s € R*; cf. Remark 95.

Suppose given ¢ € t and s € R*. By assumption, the map adgt: g — g is diagonalizable over K
for ¢t € t. Therefore the K-linear map K adgt: Kg — Kg is diagonalizable; cf. Definition 38. Thus
adgy(L ®t) = Ladgy(1®t) = 1K adyt is diagonalizable.

Ad <= . Suppose that Kt is a torus in Kg. Then for ¢t € t, the map adgy(l ®t): Kg — Kg is
diagonalizable. But this map is the same as K adgt. We conclude that ady? also is diagonalizable over
K fortet

Thus t C g is a rational torus. O

Lemma 103. Suppose given a torus t C Kg. Then tNg is a rational torus in g.

Proof. Consider Kg as a Lie algebra over R. Recall that we identify g as a Lie subalgebra of Kg via
g — Kg, g— 1®g. Since t and g are Lie subalgebras of Kg, the intersection tN g is a Lie subalgebra
of g. Suppose given g € tNg. Then g € t. Since t is a torus in Kg, we have that adxyg = Kadgg is
diagonalizable. This shows that tN g C g is a rational torus. Ul
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Remark 104. There exists a discrete valuation ring R with field of fractions K, a Lie algebra g over
R and a mazimal torus t C Kg such that tN g is not an integral torus in g.

This shows that Lemma 103 does not hold when replacing “rational torus” by “integral torus”.

Proof. Consider R = Z3) and K = frac(R) = Q. We have the Lie algebra g := gly(R) over R. Define
t:= K<(58) ) (8[1))) C gly(K) = Kg. This is a maximal torus in Kg. Let v := ((1);13) € GLy(K) and
consider the conjugate Lie subalgebra t := vty~! of Kg.

S GHEYEDEEIE DG DY

Then tis also a maximal torus in Kg since conjugation with v is a Lie algebra automorphism. Inter-

secting with g = gly(R), we get
1 -1 0o 1
3 3
CI1<O 0>+Q2<0 1) cg

1 1
<:>Q1€R7Q2€R7§Q1*§QQ€R

< q1,q2 € Rand q1 =3 ¢

and thus

0 0 1 0

0 1 -1 -3 0 1
d<< )) _ !

TRy

Assume that A is diagonalizable over R, i.e. there exists S € GL4(R) such that S~1AS is a diagonal
matrix. Then also over K, the columns of S are eigenvectors of A. The following four vectors form a
K-linear basis of K**! since these are linearly independent eigenvectors of A.

3 1 0 3
V1 = -1 Vo = 0 V3 = 1 V4 = -1
0|’ 0’ 0’ 9
0 1 0 -3

We have Av; = Avg = 0, Avg = —3vs and Avy = 3vy. By assumption there exist ¢1,...,c6 € R such
that (c1v1 + cova, c3v1 + 409, C5v3, Cvy) is an R-linear basis of R¥*!. In particular, there is an R-linear
combination of these vectors that equals e3. This is a contradiction.

So A is not diagonalizable over R. Note that we also can apply Corollary 48.(1) here.
Thus tN g is not an integral torus in g. O

Lemma 105. Suppose given a mazimal rational torus t in g. Then Kt is a maximal torus in Kg.

Proof. Ktis a torus in Kg; cf. Remark 102.

Assume that Kt C Kg is not a maximal torus. Then there exists a maximal torus t' C Kg such that
Kt c t C Kg. By intersecting t and g, we get again a Lie subalgebra of g. This intersection is a
rational torus in g; cf. Lemma 103.

But then, as vector spaces, we have dimg ' > dimg Kt, but

tkr(t Ng) = dimg t' > dimg Kt =rkgt;
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cf. Remark 19.(2). Thus we get
tctngCay.

This is a contradiction to the maximality of t as a rational torus in g. O

Lemma 106. Suppose given a mazimal torus t C Kg. Then tN g is a mazimal rational torus in g.

Proof. The intersection tN g is a rational torus in g; ¢f. Lemma 103.
It remains to show the maximality of tN g as a rational torus in g.

Assume that tN g is not a maximal rational torus in g. Then there exists a maximal rational torus t'
in g such that

tngct Cg.
We have K(tNg) C Kt:

Assume that K(tNg) = Kt'. Choose z € t'\(tNg). Then we find y € tN g and r € R* such that
x = % ®y, i.e. re =y. Sorx € tNg. Since tNg C g is pure by Remark 19.(1), we have x € tN g, a
contradiction.

We know that Kt' is a maximal torus in Kg; ¢f. Lemma 105.
We have K (tNg) = t; cf. Corollary 20.

So we have the chain of inclusions

t=K(tng) c Kt C Kg.

max

But this is a contradiction to the maximality of t in Kg. O

Remark 107. Let t be a rational torus in g. Then t is abelian.
This proof follows the idea of [Hum?72, §8.1, Lemma).

Proof. Define g := Kg and t := Kt as Lie algebras over K. Flrstly, we show that t is abelian. Suppose
given ¢ € {. Since t C g is a torus, the endomorphlsm adg t is diagonalizable over K; cf. Remark 102.

By Lemma 43, the restricted map adg t|{ = ad{t is diagonalizable over K, too.

We want to show that ad;t~ L 0.

Assume that ad;t # 0. Then ad;¢ has an eigenvalue A € K* with corresponding eigenvector u € t<,
ie. (ad;t)(u) = Au. Since u € f, the map adju is also diagonalizable over K, so there exists a K-
linear basis (b1,...,bg) of t such that (ad;u)(b;) = pb; for certain p; € K, where i € [1,k]. Write
t= Ziep,k] v;b; in this basis with v; € K. Then

0# M= [t,u] = —[u,t] = — Z vi[u, b;] Z v;pib;

i€[1,k] i€[1,K]

so that we find j € [1, k] such that v; # 0 and p; # 0. But then

0= [u,\u] = — Z Vi [u, bl Z Vi 3b;

i€[1,k] 1€[1,k]

which is #mpossible since VjM? # 0 and (by,...,bg) is linearly independent.
So ad; = 0 for € t, showing that t is abelian.

Now given ¢,t' € t, we get that the embedding t — t maps [t,#'] € tto 1@ [t,{] =[1®@t,1®t] =0
since t is abelian. The injectivity of the embedding gives us [¢,#'] = 0. Thus t is abelian, completing
the proof. ]
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Lemma 108. Let t C g be an abelian Lie subalgebra over R. Let (t1,...,t;) be an R-linear generating
tuple of t.

(1) Suppose that ady(t;) is diagonalizable over R for i € [1,k]. Then ady(t) is diagonalizable over R
fortet.

(2) Suppose that adg(t;) is diagonalizable over K for i € [1,k|. Then ady(t) is diagonalizable over K
fortet

Proof. Ad (1). Suppose given t,t’ € t such that adg(t) and ady(t’) are R-diagonalizable. Suppose given
r € R. It suffices to show that the map ady(rt + t’) is R-diagonalizable. This map is the same as
radg(t) + adg(t').

Now [t,t'] = 0 since t is abelian. Since adg is a morphism of Lie algebras over R, also ady(t) and adg(t')
commute.

So we conclude that radg(t) + adg(t') is R-diagonalizable; cf. Corollary 54.

Ad (2). Suppose given t,t € t such that ady(t) and adg(t') are K-diagonalizable. Suppose given
r € R. It suffices to show that the map adg(rt + t’) is K-diagonalizable. This map is the same as
radg(t) + adg(t').

Now [t,t'] = 0 since t is abelian. Since adg is a morphism of Lie algebras over R, also ady(t) and adg(t')
commute. Hence K ady(t) and K ady(t") commute.

So we conclude that K (radg(t) +ady(t')) = r (K (ady(t))) + K (ady(t')) is K-diagonalizable; cf. Corol-
lary 54. O

Remark 109. Let t C g be a Lie subalgebra. Then cly(t) C g is a Lie subalgebra.

Proof. We have 0 € clg(t).

Let z,y € cly(t) and a,b € R. Then there exist r,s € R* such that rz € t and sy € t. Note that
rs € R*. Then azx + by € clyg(t) since rs(ax + by) = sa(rz) + rb(sy) € t. Furthermore, we have
[z,y] € cly(t) since rs[z,y| = [rz, sy] € t and tis a Lie subalgebra of g. O

Lemma 110.

(1) Let ty be a rational torus in g. Then cly(ty) is a rational torus in g.

2) Let 1 be an integral torus in g. Then cly(t1) is an integral torus in g.
9

Proof. Ad (1). cly(tp) is a Lie subalgebra of g; cf. Remark 109. It remains to show that for = € clg(to),
the R-linear map adg(z) is diagonalizable over K.

Suppose given x € clg(tg). Choose r € R* such that rz € ty, then ady(rx) is diagonalizable over K.
So there exists a K-linear basis B of Kg such that (K ® adg(rz))ss € K"*" is a diagonal matrix. But
(K ®adg(rz))ss = r((K ®adg(x))s,5), so the matrix (K ®adg(x))p s is diagonal, i.e. the map adg(x)
is diagonalizable over K.

Ad (2). cly(t1) is a Lie subalgebra of g; cf. Remark 109. It remains to show that for « € cly(t1), the
R-linear map adg(x) is diagonalizable over R.

Suppose given x € clg(t;). Choose r € R* such that rz € t;, then adg(rz) is diagonalizable over R. So
there exists an R-linear basis B of g such that adg(rz)g s € R"*" is a diagonal matrix. By linearity of
this map, we have adg(rz)s s = r(adg(x)s,5). Since R is free of zero divisors, adg(x)s 5 is a diagonal
matrix with entries in R, i.e. the map ady(x) is diagonalizable over R. O
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Corollary 111.

(1) A mazimal rational torus in g is a pure R-submodule of g and thus a pure rational torus.

(2) A mazimal integral torus in g is a pure R-submodule of g and thus a pure integral torus.

Proof. This follows from Lemma 110. O

Lemma 112. Let t be a rational torus in g. If t = ¢4(t), then t is a mazimal rational torus in g.

If t C g is a mazimal rational torus and an integral torus, then t is a mazimal integral torus in g.

Proof. Assume that t = ¢4(t) and t is not a maximal rational torus in g. Then we find a rational torus
t' C g such that t C ¢ C g. By Remark 107, ¥ is abelian, so t C t' C ¢g(t') C ¢4(t), hence t # ¢4(t), a
contradiclion. O

4.2 Maximal tori of split orders over R
4.2.1 Definitions for R-orders

Definition 113. Suppose given an R-order I'. We say that I' is a completely split R-order if T" is
isomorphic to a finite direct product of matrix rings over R. In other words, there exist £ € N and
n; € N for ¢ € [1, k] such that

r~ [[ rrm

1€[1,k]

Definition 114. Suppose given an R-order 2. We say that ) is a split R-order if there exist a
completely split R-order I' and an injective R-algebra morphism ¢: 2 — I such that

K ®g (T'/4(Q)) =0.

Example 115. Suppose given a completely split R-order I'. Let © be an R-subalgebra of I'. If
K ®g (I'/Q) =0, then Q is a split R-order.

Remark 116. Let Q be an R-order such that there exists a K-algebra isomorphism

p: KQ 5 H KnMixmi
i€[1,k]

for certain k € N and n; € N for ¢ € [1,k]. Then Q is a split R-order.

Proof. We write ¢ := go\é(ﬂ). Then we have ¢(Q) C [];epy K" where the right hand side is a
separable K-algebra. So there exists a maximal R-order I' such that ¢(Q2) C T" C Hie[l’k] Kmixni
cf. [CR81, Theorem 26.5|.

ThenT' = [];cpy 4y ' where I'; is a maximal order in K™*™ for i € [1, k]; cf. [CR81, Theorem 26.20(i)].
Thus I' is a completely split R-order.

For i € [1, k], T'; is conjugate to R™*™; cf. [CR81, Exercise 26.10].

We define 7: ¢(2) — I to be the embedding map. We define ¢: © — I' to be the composite map 7o @.
Then ¢ is an injective R-algebra morphism.

We can illustrate this situation as follows.
QO %@(Q) CLope s J[ Kmxm

1€[1,k]
L

Now rkr(Q2) = rkr(«(Q)) = rkr(T") = Zie[l,k} n?. We conclude that K ®g (I'/u(Q2)) = 0. O
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Definition 117. Let € be a split R-order. Then there exists a completely split R-order I' and an
injective R-algebra morphism ¢:  — I" such that K¢ is an isomorphism. There exist £ € N and n; € N
for i € [1, k] and an R-algebra isomorphism 1

T 5 H RMixni
1€[1,k]
So we get a K-algebra isomorphism
0= (K)o (Ki): KQ= H Jonixni
1€[1,k]

Since ¢ is an R-algebra morphism and since 2 is an R-algebra, +(Q2) is an R-subalgebra of I'. We define

A=< (x1,...,28) € H R™>™ | ; is a diagonal matrix for ¢ € [1, k]
1€[1,k]

We say that A is the full diagonal in Hie[l,k] R™>"i_This is in fact a subalgebra of T" since 0 € A and
1 € A and sums and products of diagonal matrices are again diagonal.

The intersection ¢(2) N A = ¢(:(2)) N A is the full diagonal of 1(c(Q)) (with respect to v and ).

This will often be used in the case where ¢ is the identity and ¢ is an embedding of a subalgebra. In
this case, the full diagonal of Q2 in I' is given by Q2 N A.

4.2.2 Tori of split R-orders

Let k € N and n; € N for i € [1,k]. Define the completely split R-order I' := [,y 5 R""™. Let Q be

an R-subalgebra of I' such that K @g (I'/Q) = 0. So Q is a split R-order. Let A be the full diagonal
in I

Recall that [(€Q) is the commutator Lie algebra of €. Similarly, we have the commutator Lie algebra
[(T) of T

First we want to illustrate that even in the special case of completely split R-orders, there is a difference
between diagonalizability over R and diagonalizability over K.

Remark 118. There exist a discrete valuation ring R, a completely split R-order I' and x € T such
that adyry(w) is diagonalizable over frac(R) but adry(z) is not diagonalizable over R.

Proof. Let R = Zy and K = frac(R) = Q. Let I' be the completely split Z,)-order Z?ZX)Q. Let
& = &9 be the standard basis of I'. Let z := ((1)[1)) erl.
We have

A= adyr)(z)ee =

and o(A) ={0,2, —2}. The eigenspaces of A are given by

1 0 1 1
B =ol[o| |1 [ Ba@=ol] T} | Ea2=o | |
1 0 -1 -1

We have the following intersections.

1 0 1 1
-1

0 1
Ea(0)N Z?Q) = Z(2)< ol |1 ), Ea(2)n ZZ(12) = Z(2)< 1 ), Ea(=2)N ZZ(12) = Z(2)< 1 )
1 0 -1 -1
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1 0 0 0
0 1 0 0
4\ _ 4
@ (EA()\) N Z(Z)) - Z(g)< ol’l11]° 2 10 > - Z(2)7
Aco(4) 1) \o ) 4
so A is not diagonalizable over Z). But the matrix

10 1 1
01 -1 1
5= 01 1 -1
10 -1 -1

is invertible as a matrix in Q*** and we have the diagonal matrix

0
STl A.8=

showing that A is diagonalizable over Q. O

Lemma 119. For x € I(2), we have the following equivalence.

adyq) () is diagonalizable over K <= adyr)(z) is diagonalizable over K

Proof. By Definition 38, the R-linear map adq)(z) is K-diagonalizable if and only if the K-linear
map K ® adq)(z): K ® [(2) = K ® [(Q) is diagonalizable.

In the same way the R-linear map adr(v) is K-diagonalizable if and only if the K-linear map
K ®@adyry(z): K®[(T) - K ® [(T) is diagonalizable.

We have the embedding ¢: 2 — I' which is an injective R-algebra morphism. The following diagram

commutes.
K®ad[(1"> (Z’)
_—

K @(T) K @(T)
K®LTZ ZTK®L
K®ad T
K& 1(Q) @0 g o 1(0)

So we have shown that K ®ad(r) is K-diagonalizable if and only if K ®adq)(z) is K-diagonalizable.
This completes the proof. O

Lemma 120. The full diagonal (2N A) of (2) in (T') is a maximal rational torus in ().

Proof. We divide the proof into three steps.
Step 1. The full diagonal (2N A) is a Lie subalgebra over R of [(2).

Both [(A) and [(£2) are Lie subalgebras over R of [(I'). Thus [(2N A) also is a Lie subalgebra over R
of [(T"). Since (2N A) C(Q2) C [(T), we have that [(Q2N A) is a Lie subalgebra over R of [(€2).

Step 2. Suppose given x € (QNA). Then adyq)(z) is diagonalizable over K.

Define ¢ := min {r € N|#"T" C Q}. This number ¢ exists since I'/Q is a torsion-R-module and thus
there exists § € N such that 79(I'/Q) = 0 and hence 7T C ().

We define the following elements of I'.

o= () ) By (D)) it e

position 4
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Recall that the matrices without entries are to be understood as zero matrices.
We have 7in;.;, € Q for i € [1,k], j,l € [1,n;]. We have 79n;,;; € A for i € [1,k], j € [1,n4].
Then for i € [1,k], j € [1,n;], we have 79n;,;; € QN A.

Since for the K-diagonalizability of an element, a constant factor in K* does not play a role, we have
adyq) () is diagonalizable over K <= adq)(7? - r) is diagonalizable over K.

Now 77 -z is a linear combination of the 7 - n;; ;. Thus it suffices to show that adgq)(7? - Nisjj) 18
K-diagonalizable for i € [1,k], j € [1,n;]; cf. Lemma 108.(2). By Lemma 119, it suffices to show that
adyry (7 - ni;57) is K-diagonalizable for i € [1,k], j € [1,n;]. This is the case if and only if adyr)(7:5,5)
is diagonalizable over K for i € [1,k], j € [1,n].

Denote by
E = (M1, s Mg s MG2,05 - Minanas - - o s Mhimg, 1o - - - 5 Mg )
the standard basis of I'.
Then it suffices to show that adyr)(7:,),5)e.e is a diagonal matrix for 7 € [1,k], j € [1,n;].
But given ¢ € [1,k], j € [1,n;], we have that

(adyry(Misjg)) (Mrisit) = i - (85,5 — 0jit) - Meyse for v € [1 k], s,t € [1,n,].

This shows that adyr)(7:;5,7)e.e is a diagonal matrix for i € [1,£], j € [1,n4].
Step 3. The full diagonal of I(Q) in (T") is a mazimal rational torus in [(Q).
By Lemma 112, it suffices to show that ¢;q)((2NA)) = (2N A).

Ad D. We have shown that [(2 N A) is a rational torus in step 1 and step 2. So it is abelian and thus
ae (N A)) D 12N A); cf. Remark 107.

Ad C. We have the standard basis £ of [(I'). We have {n%n;;;|i € [1,k], j € [1,n]} C (QNA).
Suppose given z € ¢(q)(I(2NA)). Then zy = yx for y € {wn;;;|i € [1,k], j € [1,n4]}.

Suppose given r € [1,k]. Then - (799, ;) = (7, ;) - « for j € [1,n,]. Let the r-th component of
be given by the matrix (Ts)s te[1,n,]-

Let L be the r-th component of x - (79n,.; ;). Then for u,v € [1,n,] and j € [1,n,], we have

(Ll)u,v = Tyw - 51},]' -,

Let Ly be the r-th component of (79,.; ;) - . Then for u,v € [1,n,] and j € [1,n,] we have

(LQ)u,v = Ty, - 5u,j -md.

Now it follows from Li = Lg that @y - 0y j = Zue - 0y, for u,v € [1,n,] and j € [1,n,].

Consider the j-th row of these matrices, i.e. let v = j. Then x,, = 0 or j = v = u. This means that
there can be at most one non-zero entry in the j-th row and this entry is on the position (7, 7). Since
this holds for j € [1,n;], the r-th component of x is a diagonal matrix.

This holds for r € [1, k], so every component of x is a diagonal matrix.

This shows that « € [(A) and since x € [(2) by assumption, we have x € [(Q2 N A). O

Lemma 121. The intersection Q N A is a mazimal commutative R-subalgebra of Q.

Proof. In the case that ' is a direct product of copies of R, then 2N A = Q is a commutative algebra
itself. So suppose that there exists i € [1, k] with n; > 1.

Assume that there exists a commutative R-subalgebra C of €2 such that QNA C C. Then, in particular,
we have C' € A. This entails that KC' € KA. From QNA C C C Q, we conclude that

K(QNA)=KACKCCKQCKT.
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Note that the inclusion KA C KC is a proper inclusion since KA = KC would be a contradiction to
KC g KA.

Since C'is commutative, also K C' is commutative. Choose an element € KC\KA. Then there exist
io € [1,k] and j1,j2 € [1,n4,] such that j; # jo and in the ip-th component of z, there is an entry
z € K* on position (ji,j2).

Using the notation as in the proof of Lemma 120, we have the K-linear basis
(771;1717 51,25 -+ -5 MLma TG2,15 - - -5 NMma,mas - - - Mkegng, 1y -+ - )ﬁk;nk,nk)

of KT'. Moreover, we have the K-linear basis

(771;1,1, 152,25« - -5 Msma,ma s 12,115+« -5 M2ima,ng s » - o5 Ty 1,15 - - - ,nk;nk,nk,)

of KA. So we can write
—1
Niosjrge = & _ " Thogigr “E_ " Thosje.gz -
X KC
€EK* cxacko € cKACKC
We conclude that 7,5, j, € KC.

But then we have
Niojr,g1 * Miosgnge = Thosji,gz #0
Miosjrga * Miosjr.jr = O-
This shows that KC' is not commutative, a contradiction. O

Remark 122. Let T be an R-subalgebra of 2. Then as R-submodules of €2, we have
ce) ((T)) = Ca(T).
Proof. We have

) ((T)) = {z € (Q) | [2,t] = 0 for t € (T)}
={zxeQ|at—te=0fort €T}
={zeQlat=txforteT}
= Cq(T).

Lemma 123. Suppose given x € Q. Suppose given u € U(KQ). We write Q:=uQu C KQ.

(1) The map adyq)(x) is diagonalizable over R if and only if ad[(Q) (u™t

zu) is diagonalizable over R.
(2) The map adq)(z) is diagonalizable over K if and only if ad[(m (u=tau) is diagonalizable over K.

Proof. We have the conjugation isomorphism of Lie algebras

©: () — ()
Yy — u_lyu.

We have the R-linear maps

adyo)(7): [(2) — Q)
Yy— Yy —Yyxr

84



and

ad[(m(uflxu): 1(Q) — ()

Y — uilxuy — yuflxu.
We verify the commutativity of the following diagram.

- ad[(fz)(u’la:u) -

[(Q) ———= ()

il e 1l

ad T
[( ) I(sz)( )
For y € [(2), we have

(ad[(Q)(u_lxu) op)(y) = (ad[@) (™ zw)) (u yu)

1 1

=u af;uu_lyu — u_lyuu_ U
=u Nzy — yz)u
= p(zy — yz) = (¢ o adyq)(2)) (¥).
This shows (1). After tensoring with K, this shows (2). O

Corollary 124. Suppose given u € U(KQ). We write Q := v~ 1Qu C KQ.
Suppose given a commutative subalgebra T C Q. We write T := u'Tu C Q.
(1) UT) is an integral torus in [(Q) if and only if (T) is an integral torus in ().

(2) UT) is a rational torus in () if and only if (T) is a rational torus in ().

Proof. This follows from Lemma 123. Ul

Remark 125. There exist a discrete valuation ring R, a completely split R-order I' and two mazximal
rational tori in (') one of which is an integral torus in [(I') and the other is not. In particular, they
are not conjugate via a unit in 1.

Proof. Let R = Zy) and K = frac(R) = Q. Let I' be the completely split Z,)-order 72X2. We define

000 2'

This is a commutative R-subalgebra of I'.

We have seen that adyr) ((1)(1)) is not Zy)-diagonalizable, but Q-diagonalizable; cf. Example 118. So
[(T") is not ans integral torus in [(T"). In I", the matrix (é?) is a central element, thus adr) ((1)(1)) =0.

This shows that [(T") is a rational torus in [(I'); cf. Lemma 108.(2).

We use the commutativity of rational tori to show that [(T") is a maximal rational torus. Suppose
given M = (‘;g) € [(T") such that [M, (9§)] = 0. Then

0 0y |[fa b 0 1\|_ (b—c a—d
0 0/ |\c d)’\1 0)J|] \d—a c—bd
and we conclude that b = ¢ and a = d. So M = (%2) € I(T'). This shows that [(T) = ¢;r)(I(T')), so

[(T) is a maximal rational torus in [(I'); cf. Lemma 112.
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Furthermore, we have the full diagonal A = Z(2)<((1)8) , (8?)) in I The describing matrices of

ad[(p)(((l) 8)) and ad[(p)((g (1))) with respect to the standard basis £ 9 of I are diagonal, so [(A) C [(T') is
an integral torus; cf. Lemma 108.(1). But [(A) is also a maximal rational torus in [(I'); cf. Lemma 120.
So I(A) is a maximal integral torus in [(T"); cf. Lemma 112.

Assume that there exists ug € GL2(Z9)) = U(T') such that uy 'Tug = A. Note that uy 'Tug = T
Since [(A) is an integral torus in [(T), its conjugate upAuy' = T also is an integral torus in [(T); cf.
Corollary 124.(1). But this is a contradiction.

Thus we have found two maximal rational tori [(7") and [(A) in [(I") that are not conjugate via a unit
in I'. Moreover, [(A) is an integral torus in [(I") whereas [(T) is not. O

Lemma 126. Suppose given an orthogonal decomposition 1g = e1 + ... + ey of lq into primitive
idempotents in ). Then adyq)(e;) is diagonalizable over R for i € [1,n].

Proof. For i,j € [1,n] we choose an R-linear basis B, ; of the Peirce component e;Qe; of Q. Denote
the R-linear basis of [(€2) that we obtain by concatenating these bases by B.

Suppose given k € [1,n]. We consider the describing matrix of ady(q)(ex) with respect to the basis B.
Suppose given ¢,j € [1,n] and an element x of B; ;. In particular, we have x = e;xe;.

Then eyx — wep, = ep(eswe;) — (eswej)er, = 6 px — 951w € {0, 2, —x}.

But this implies that (ad[(Q)(ek))B’B is a diagonal matrix with entries in {0,+1,—1} on its diagonal.

In particular, adyq)(ex) is diagonalizable over R. O

Lemma 127. Suppose given an orthogonal decomposition 1g = e1 + ... + ey of lq into primitive
idempotents in Q0 such that e; € A for i € [1,n]. Then for x € I(Q N A), the following equivalence
holds.

e;Qe;

adyq) () is diagonalizable over R <= (adyq)(x)) e
i82€5

is diagonalizable over R fori,j € [1,n]

Here we have adq) (:E)’Zlg? = ady(¢,0¢,) (€ime;) for i € [1,n].
Proof. We have the Peirce decompositions 2 = €D, jep o) €i€2¢; and QN A = P,y €(2N A)es.

Suppose given an element z € (2N A). Then z = Zie[l,n] e;re;. Suppose given 7,1 € [1,n] and
y € e;Qe;. We calculate.

[yl = || D emer |, ejue
1€[1,n]

= | D (eimer) - (ejyer) | = | D (ejyer) - (eimes)

i€[1,n] i€[1,n]
= Z e;xd; jeiye; | — Z e;jy0; ie;xe;
i€[1,n] i€[1,n]

= (ejzejyer) — (ejyerxer)

= ej(zejy —yew)e = ej(vy — yx)e = ejlx, yle € e;Qey
This shows that (adyq)(x))(e;Qe;) C e;Qe for j,1 € [1,n]. Applying Corollary 46 iteratively shows
the equivalence.
Moreover, for i € [1,n] and y € ¢;Qe;, by the calculation above we have

(adm) (z)

€e; Qei

eiQEz‘) (y) = [Z‘,y] = 67;(51767;3/ - yeix)ei = [eixeia y} = (adl(eiﬂei)(eimei)) (y)
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Remark 128. There exist a discrete valuation ring R, a split R-order , an element x € () and
an orthogonal decomposition 1 = e + €' of 1 into primitive idempotents in Q such thal ady(q) (x) is
diagonalizable over R but ad[(Q)(exe’) s not diagonalizable over frac R and thus in particular it is not
diagonalizable over R.

€Z'Q€j

in the assertion of Lemma 127 by the
eiQe]-

This shows that we cannot replace the maps (adyq)(z))

maps ady(q)(eize;).

Proof. Consider the setting of §1 with the Zsy-order ) ~ Z3)S3. We have the Peirce decomposition
Q = eQe @ eQe’ d e'Qe @ e'Qe’ with

(699 66

since 1 = e + €’ is an orthogonal decomposition of 1 into primitive idempotents in €.

Let x := <1, <(1] g) ,0> € 2. Then adyq)(7) is diagonalizable over R.

In fact, we have

0 0 O 3 00
0 00 -1 00
-1 0 1 01 0
(adr(Q)(iU))B,BZ 000 —1 0 0
000 =3 00
0 00 1 0 0
Let
-2 0 2 -6 2 0
1 0 0 6 —1 0
0 0 0 1 01
1 0 0 3 0 0
0 00 1 0 0

Then S - (adyq) )55 - S~ is a diagonal matrix.

0 3
ea:e':b3:<0, (0 0),0)

and ady(q)(b3) is not Q-diagonalizable:

But we have

We have b3 = exe’ € eQle’ and

000 300
000 100
100 010
A= (adioy (b3)) g s = 000 000
000 —30 0
000 100

We have A% = 0 € R6%6 hence A is nilpotent.

Assume that A is diagonalizable over Q. Then there exists T € GL,(Q) such that T~'AT = D where
the matrix D is diagonal and nilpotent. So D is the zero matrix, thus 0 = TDT~! = A which is a
contradiclion.

Alternatively we can use Magma to see that ad[(Q)(bg) is not Q-diagonalizable.
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Magma Code 6: z3s3Example

load pre;

load z3s3Initl;
load definitions;
load z3s3Init2;

rdiag (admatrix (b[3]),3);

Not diagonalizable over Q
false

For a further counterexample in this context, see Remark 169 below.

4.2.3 The integral core

Keep the notation of §4.2.2.

Lemma 129. Suppose given an orthogonal decomposition 1q = Zie[l n] €i of 1q into primitive idem-
potents in Q, where e; € QN A fori € [1,n]. Let Z(Q) := Cq () be the center of Q. Define

to := r(e1, ..., en, Z(Q))

as an R-submodule of QN A. So ty is a Lie subalgebra of (QNA).
Then ty is an integral torus in [(Q).

Proof. Since tg is a Lie subalgebra of [(2 N A), it is also a Lie subalgebra of [(£2).

It remains to show that the maps adyq)(e;) and adygq)(c) are diagonalizable over R for i € [1,7n] and
for ¢ € Z(12); cf. Lemma 108.(1). By Corollary 126, we know that adq)(e;) is R-diagonalizable for

€ [1,n]. Suppose given ¢ € Z(2). Then cx = xc for z € Q, so [c,z] = 0 for x € 2. Thus we have
adyo)(c) = 0. In particular, the map adq)(c) is diagonalizable over R. O

Definition 130. Let t be a rational torus in [(Q2). We define
Coryoy(t) := {t € t| adyq)(t) is diagonalizable over R}
as the integral core of t in [(£2).

Lemma 131. Let t be a rational torus in (). Then Coryq)(t) is an integral torus in [(€2).

Proof. We have Coryq)(t) C t C [(Q2) by definition of the integral core; cf. Definition 130.

The rational torus t is abelian by Lemma 107, whence it suffices to show that for ¢,t' € Coryq)(t) and
r € R, we have (rt 4 t') € Coryq)(t). In fact, we can write adyq)(rt +t') = radyq)(t) + adyq)(t')
which is R-diagonalizable since [adyq)(t), adyq)(t')] = adyq)([t,t']) = 0; cf. Corollary 54. Thus we have
rt +t" € Coryg)(t). O

Corollary 132. Let t be a rational torus in (). Let t' be an integral torus in [(Q) such that ¥ C t.
Then t' C Cory(t).

Example 133. In §1.2, where 2 >~ Z3 S3, we find that the integral core of the full diagonal [(T) of
[(Q) in (T') equals (7).

In §6.4 below, where Q =~ Z ) S4, we find that the integral core of the full diagonal [(T) of [(€2) in I(T')
is a proper Lie subalgebra of [(T'). In §7.4 below, where €2 is Morita-equivalent to Z) S5, we also have
a proper inclusion.
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Remark 134. For an integral torus t C [(2) satisfying t C [(T'), we have t C Corq)((T)).

However, in general the integral core Coryq)((T)) is not a maximal integral torus in [(Q); cf. Re-
mark 152.(7) below.

Moreover, in general the integral core Coryq)(I(7) is not an (associative) R-subalgebra of €2; cf.
Remark 169 below.

Question 135. Suppose that T is the full diagonal Q N A of Q in T.

Suppose given an orthogonal decomposition 1o = Zie[l’n} e; of 1q into primitive idempotents in 2,
where e; € T for i € [1,n]. Let Z(£2) := Cq () be the center of Q.

Define ty := glei,...,en, Z(Q)) as an R-submodule of T. Then ty is an integral torus in [(2); cf.
Lemma 129.

Then tg is contained in Coryq)(I(T')) since to C [(T') and to is an integral torus in [(2); cf. Lemma 129.

We ask if we have equality here.
?
tg = Coryq)((T))

4.3 Decompositions of R-orders

Let €2 be an R-order. Let T' C ) be a commutative R-subalgebra.
Definition 136. We write T as a direct sum of non-zero ideals of T.
7= 1
JE[L,K]

This is also a decomposition of T into T-submodules of T" and it is as well a decomposition of T into
T-T-sub-bimodules of T

For j € [1, k], we define the T-linear maps
T 5T
where 7; is the projection morphism and ¢; is the inclusion morphism. For j € [1, k], we define
(5 0mj)(1) =: ¢
and thus the composed map ¢j om;: T" — T is given by multiplication by e;.
Lj O : T—T
11— €;
t-1—1¢t- €;

So on the one hand, we have im (¢j o m;) = I; because ¢;(I;) = I;. On the other hand, we can write
the image of ¢j o m; as T'ej. This shows that I; = Te;.

Remark 137. For j € [1,k], let I; and e; be defined as in Definition 136. We have an orthogonal
decomposition of 17 into idempotents as follows.

1= Z €
JE[LK]
Proof. We have 1 =id(1) = (Zje[l,k] Ljo 7rj> (1) = Zje[l’k} e;j.
For j € [1, k] we have
ef =ejej- 1= (4 0m)((¢j 0m) (1))
= (¢j o (mjot5) 0om;)(1)
~——

=idy,
I]

= (¢ omy)(1) = e;.
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For j,j' € [1,k] and j # j', we have

ejey = eje - 1= (1 0m;) (1 0 my(1))

= (Lj o (w) o 7rj/) (1) =0.
=0

Remark 138. Suppose given an idempotent e € T'. Then the following equivalence holds.

Te is indecomposable as a T-T-bimodule <= ¢ is primitive in T'

Proof. Ad <= . Assume that Te is decomposable as a T-T-bimodule. Then we find T-T-sub-
bimodules T” # 0 and T” # 0 of Te such that Te =T & T".

We define the projection maps 7/, 7" and the inclusion maps ¢/, /" as follows.

L/

Te v

o’ Te Te ‘or” Te
N N A
Tl Tl/

We define (/o 7’)(e) =: ¢’ and (V" o7”)(e) =: €".
2

We have ee’ = ¢’: Using the map ¢/ o7, we get (/' on’)(e) = €’ and (/' o7’)(ee) = ee’. But since e = e?,
we have ee/ = €.

Likewise we get ee” = €.

Furthermore, we can write the identity map on Te as idp. = (/' o 7’') + (¢ o 7”). Applying this map
to e, we obtain the decomposition e = (({/ o 7’) + (" o ")) (e) = € + €.

Now

d?=¢%e=({on)(/on'(e)) = (/o (@ o)on)(e)

:idTe
!/ / /
— (for')(e) =e
and similarly we get €’ 2 = ¢”. Moreover, we have
! n / / / / / /
e =cle—é)=¢ee—€e?=¢ —€¢ =0.

So e = €’ + €” is an orthogonal decomposition of e into idempotents.

Since Te¢' = im (/' o7’) = im (7') = T’ and T" # 0, we conclude that ¢/ # 0. Similarly, we have
Te" =im (" on”) =im (") = T" and T" # 0, so we conclude that e” # 0.

This is a contradiction to the primitivity of e in T.

Ad = . Assume that e is not primitive in 7.

We find an orthogonal decomposition of e into idempotents e = €’ + €” with ¢/,¢” € T*.
We have ¢ = e'e’ +e'e” =¢€'(e/ +¢") =¢e'e € Te, s0o Te' C Te.

Similarly we conclude that Te” C Te.

Suppose given x € Te' NTe”. From x € Te', we conclude that x = ze¢’. From z € T¢”, we conclude
that © = ze”. Now we calculate © = ze’ = (ze”)e’ = z(e'e’) = 0.

This shows that Te’ NTe” = 0.
Suppose given x € Te. Then we have © = ze = x(¢/ + €’) = ze’ + ze”.
This shows that T¢’ + Te” = Te.

We conclude that T is decomposable as T-T-bimodule, a contradiction. O
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Remark 139. Suppose given an idempotent e € Q). Then the following assertions hold.

(1) The idempotent e is primitive in Q if and only if e is primitive in eQe.

(2) If eQe is local, then the idempotent e is primitive in ).

Proof. Ad (1).

Ad = . Suppose that e is not primitive in eQe. Then we find non-zero idempotents €', e” € eQe
such that ¢’ +¢” = e and €/’ = 0 = €”¢’. In particular, we have €, e’ € Q, so e is not primitive in Q.

Ad <= . Suppose that e is not primitive in 2. Choose non-zero idempotents €', e” € € such that

e +e" =eandee =0=¢e"e. We have

/ / " / / Vi 1N !N n_r 1 n_r_n !/
eee= (e +e)ele +e)=cecee +eee +eee +eee =e€.
( )e'( ) ge +e'ee +e'e

=0 =0 =0

This shows that ¢/ € eQe. Similarly we can show that ¢’ € eQe. So e = ¢’ + ¢’ is a non-trivial
orthogonal decomposition of e into idempotents in efQde. Hence e is not primitive in eQe.

Ad (2). The idempotent e is primitive in eQe; cf. Remark 32. Hence e is primitive in Q by (1). O]
Lemma 140. Suppose that 1 = Eie[l’k} e; 15 an orthogonal decomposition of 1q into idempotents in

Q such that e; € T for i € [1,k]. Suppose given | € [1,k|. Suppose that T' is a mazimal commutative
subalgebra of Q and that e;Qe; is commutative.

Then the following assertions hold.

(1) We have e/Qe; = Te;. We have Endp.p(e;Qe;) =~ ¢,Qe; as R-algebras.

(2) Consider the T-T-sub-bimodule Te; of 2.

If €;Qey is local, then Te; is indecomposable as a T-T-bimodule.

Proof. We write f := ey.

Ad (1). We have T' = @,y gy Tei- Let T = (@z’e[l,k]\{l} Tez-) ® eQe;. This is a commutative
subalgebra of Q. Note that T'f = Te; = e/T'e; C ¢/Q2¢; = fQf. Since T is a maximal commutative
subalgebra of 2 and T is a commutative subalgebra that contains T, we conclude that T = T and

hence fQf =Tf.

By Lemma 25, the R-algebra Endp.7(7'f) is isomorphic to T'f.

But this is the same as to say that Endp.p(fQf) ~ fQf as R-algebras.

Ad (2). By (1), the endomorphism ring Endp.7(f€Qf) is isomorphic to fQf. Since fQf is local, the
endomorphism ring Endpr.7(fQf) also is local. Again by (1), we obtain that Endp.p(Tf) is local.
Then we can apply Lemma 35 to conclude that T'f is indecomposable as a T-T-bimodule. O

Lemma 141. Suppose that Ty C () is a summand in a decomposition of ((2) into a direct sum of
(T')-Lie submodules of (Q). If Ty is a T-T-sub-bimodule of Q and Ty is indecomposable as an [(T)-Lie
module, then Ty is indecomposable as a T-T-bimodule.

Proof. We will prove this by contraposition. Suppose that Ty is decomposable as a T-T-bimodule.
Choose non-zero T-T-sub-bimodules 11,75 C Ty such that Ty = Ty © T5. We have tT1t' C T and
tTQt/ C T, for t,t/ eT.

Suppose given ¢t € T'. Since 1 € T, we have tT} C Ty and Tt C T1, so [t,T1] C T. Likewise we have
[t,T5] C Ts.

This shows that T3, 75 are [(T)-Lie submodules of Tp, so Ty = 11 @ T5 is also a decomposition of Tj
into [(T)-Lie submodules. O
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Example 142.

(1) The implication of Lemma 141 can be illustrated with the example of Q >~ Z3) S3 in §1.

The example of 0 ~ Z3)S3 also shows that it can happen that a decomposition of [(£2) into
[(T')-Lie submodules contains a summand such as r(b;) that is not a T-T-sub-bimodule of €2, so
we cannot apply Lemma 141 here; cf. §1.3.1 and §1.3.2.

Furthermore, in the example of {2 ~ Z3) S3 the reverse implication of Lemma 141 does hold for
all summands that are not contained in 7"

All summands in the decomposition of [(2) into indecomposable [(T')-Lie submodules that have
trivial intersection with 7" are in fact 7-T-bimodules and as such, they are also indecomposable;
cf. also Lemma 143.(2) below.

(2) Consider the example Z) Sy in §7 below. In the decomposition of [(£2) into indecomposable [(T')-
Lie submodules, there exist summands such as Tr = Z2) (b7, c) that are not contained in T, but
have non-trivial intersection with T’; cf. §7.5.2.

Lemma 143. Suppose that 1 = Zle[l,k] e; 15 an orthogonal decomposition of 1q into primitive idem-
potents in Q such that e, € T for 1 € [1,k].
Suppose given i,j € [1,k] such that i # j. Then the following assertions hold.

(1) eiQe; is a T-T-sub-bimodule of Q.
(2) eiQe; is indecomposable as T-T-bimodule if and only if e;Qe; is indecomposable as [(T')-Lie module.

(3) We have Endr.7(eifde;j) = Endy7)(eif2e;) as subrings of Endg(e;f2e;).

Proof. Recall that T is commutative. We have esTe; = T'(ese;) = 0 for s,t € [1,k] with s # t. We
conclude that T = @le[l’k] eTe; C @le[l’k} e Qe;.

Ad (1). Note that Te; = ¢/Te; = ¢T for | € [1, k.
Thus we have

Teier = €¢TQ€j Q 62‘Q€j
and also

eierT = eiQTej - eier.
So e;Qe; is a T-T-sub-bimodule of .
Ad (2). Ad <= . This is Lemma 141, using (1).

Ad = . We will prove this by contraposition. Suppose given a decomposition e;{2e; = My @ M> into
non-zero [(T')-Lie submodules. It suffices to show that M; and My are T-T-sub-bimodules of e;Qe;.
Because of symmetric reasons it suffices to show that M; is a T-T-sub-bimodule of e;{2e;.

Suppose given u,v € [1,k] and t € e, Te, and t' € e,Te,. It suffices to show that tM;it’ C M;. Recall
that M C e;Qej, so tMit' =0 if u i or v # j.

But if v = ¢ and v = j, then Mt = 0 and M; = 0 because of i # j. So we have tM; = [t, M;]
and we have Mt = [My,t']. Now M; and My are [(T')-Lie submodules of e;Qe;j, so [t, Mi] C M; and
(M, t'] € M.

We obtain that (¢M7)t' C Mit' C My, completing the proof.
Ad (3). Suppose given x € e;Qe; and t € ¢/Te; = Te; for some [ € [1,k]. We obtain the following.

0 iflé¢{ij}
[t,x] =qte ifl=1
—xt ifl=j
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Suppose given h € Endg(e;€e;). Applying this map, we obtain the following.

0 if 1 ¢ {i,j} 0 if 1 ¢ {i,j}
h([t,x]) = < h(tz)  ifl=1i and  [t,h(2)] = th(z) ifl=i (14)
h(—xt) ifl=j —h(z)t ifl=j

Using this equation, we calculate.

Endr.r(eiQej) = {h € Endg(e;,Qe;)| h(tz) = th(z) for z € ¢;Qe; and t € T and
(

at') = h(z)t' for x € e;Qej and ¢’ € T'}.

= {h € Endg(e;Qe;) | h(tx) = th(z) for z € €;Qe; and t € T for | € [1,k] and

h(
h(
h(
h(zt') = h(z)t’ for z € €;Qe; and ¢’ € Te; for | € [1,k]}.
h(
h(

= {h € Endg(e;Qe¢;) | h(tz) = th(z) for z € €;Qe; and ¢ € Te; and
/

zt') = h(z)t' for z € e;Qe; and t’ € Te;}
W {h € Endg(e;Qe;) | h([t,z]) = [t, h(x)] for = € e;Qe; and ¢ € Te; for | € [1,k]}
= {h € Endg(e;Qe;j) | h([t,z]) = [t, h(z)] for € e;Qe; and t € T}
= Endy)(eif2e;)
O

Lemma 144. Suppose that 1 = Zie[l k] €i is an orthogonal decomposition of 1q into idempotents in
T. Suppose given i,3,4,j" € [1,k| such that e;Qe; # 0.
Then e;Qe; and eyQejr are isomorphic as T-T-bimodules if and only if (3,7) = (¢, 7).

Proof. If (i,7) = (7, j'), then e;Qe; = eyQe;s and we obtain the identity isomorphism.
If (1,7) # (7, 7'), then e;e;; = 0 or ejre; = 0 and thus e;(eyQejr)e; = 0. We apply Lemma 26 and we
conclude that e;Qde; and ey {dej are not isomorphic as T-T-bimodules. O

Question 145. Consider the group ring Z,) S, for some n > 1 and some prime p dividing n!.
T XNy

Suppose given a Wedderburn embedding w: Z,) S, — Hie[l,l} Z(p) =: I’ such that its image

admits an orthogonal decomposition of 1g into primitive idempotents in 2 by 1 = Zie[l’k} e; where e;
is contained in the full diagonal of Q in T for ¢ € [1, k].

Writing 7' := QN A, we ask whether e;Qe; is indecomposable as a T-T-bimodule for 4, j € [1, k] with
i# 7.

However, cf. Remark 172 below.

4.4 Primitive tori

Let I" be a completely split R-order. Let £ be a split R-order in I'. Let A be the full diagonal in T'.

Definition 146. Suppose given a maximal rational torus t in [(2). We say that t is a primitive torus
in [(§2) if there exists an orthogonal decomposition 1g = };cqy 4 €i into primitive idempotents in £
such that e; € t for i € [1, k] and such that e;Qe; is local for i € [1, k].

Example 147. The rational tori considered in our examples in §1.2, in §6.3 and in §7.3 are primitive.

Remark 148. Suppose given an idempotent e € A that is primitive in 2. Then e is primitive in
QNA.

However, in general, the reverse implication does not hold; cf. Remark 152.(5).
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Lemma 149. Suppose given two primitive tori t and t' of (). Choose an orthogonal decomposition
lo = Zie[l,m] e; of 1q into primitive idempotents in Q such that e; € t and such that e;Qe; is local for
i € [1,n]. Choose an orthogonal decomposition of 1o into primitive idempotents 1 = e; in Q
such that e; € t'.

Then m = n and there exists u € U(Q) such that

-1 'O
u @ e;Qe; | u= @ eifde;.

i€[1,n] i€[1,n]

i€[1,n]

We illustrate this situation with the following diagram.

conjugate

. . / /
Dicpi n e via u € U(Q) Dicpn €82

J J

t t

Note that it might happen that the vertical inclusions are strict; cf. §7. In Remark 150 we see two
primitive tori in a split R-order () that are not conjugate via a unit in €.

Proof. By Lemma 176, we have m = n and there exist u € U(Q) and o € S,, such that u™tefu = €o (i)
for i € [1,n]. Now conjugation with v € U(Q2) is an R-algebra automorphism of Q. So we have

u! @ eiQel | u= @ ueuQuteu
1€[1,n] 1€[1,n] eoi) eoti)

which equals @ 1,n] e;Qe;. O

€|
Remark 150. There ezist a discrete valuation ring R, a split R-order  and two primitive tori of [(Q)
that are not conjugate via a unit in €.

_ a b 2% 2
Q_{<c d)eR

Then Q is a split R-order in I' := R?>*2. Let u := ((1) -
u ¢ U(2). We define t := (88) and ¢ := v ltu = ()

=y 5) (5 1) = nte

= ni(y ) (5 V)= atto:

Then T is the full diagonal of Q in I', so [(T") is a maximal rational torus in [(Q2); cf. Lemma 120.
Moreover, the describing matrix of ady(q) (8(2)) with respect to the R-linear basis

B:=((o1)-(02): (00) - (20))

of Q is a diagonal matrix. So [(T) is also an integral torus in [(Q2); cf. Lemma 108.(1).

Proof. Let R = Z3) and let

aZQdaHdCZQO}.

) € U(KQ). Note that u ¢  and, in particular,

). Furthermore, we define

N o=

and
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BB’

0 00 -2

01 0 00 2

A= (ad‘(ﬂ)((()?)))[g,s = 0 -2 9 0

0 00 -2

The eigenspaces of A are the following.
1 0 0 2
0 1 0 -2
EaO) =of|l 5 |+| 1 | Ea@ =0l | |)» Eal=2)=ol[ _| [

0 0 0 2

These four vectors form a Q-linear basis of Q**!, hence [(T”) is a rational torus in [(Q2). Intersecting

the eigenspaces with Z?Qx)l, we obtain the eigenmodules of A. But e.g. the element e4 is not contained

in an eigenmodule of A. So we conclude that A is not R-diagonalizable; cf. Corollary 48.(1). Thus
[((T") is not an integral torus in [(£2).

Suppose given (‘0‘3) € Q such that (“ b) t =1t (ab> Then <8SI§3> = (2662‘2), so ¢ = 0 and
a + 2b = d. We conclude that (cd> e r((0)),(82)) =1"

This shows that [(T”) is a maximal rational torus in [(€).

Suppose given A € Q. There exist a,b,c,d € R such that A = <2w+b2d>. The determinant of A is

a? +2ad — 2bc. We conclude that det(A4) € U(R) if and only if a € U(R). Moreover, if det(A4) € U(R),
then (det A)~1 <“+2d _b> € Q.

—2c a

This shows that A = <2C a+2d) € U(Q) if and only if a € U(R).

Suppose given A, A" € Q\ U(Q2). Then there exist a,b,c,d,d’,b’,,d" € R such that A = (2@6 and) and

/

A = <2“C/ a,i;d,) We conclude that a,a’ ¢ U(R). Since R is local, we conclude that a + o’ ¢ U(R).
But then det(A+ A') = (a +a')(a+2d +a' +2d') — (b+ ) (2c + 2¢') =2 (a +a’)? ¢ U(R).

This shows that € is local.

So 1 = ((1)(1)) is a primitive idempotent in  and it is contained in 7" and in 7".

Thus [(T') and [(7") are primitive tori in [(2)

Suppose given £ € T. Then we find u,v € R such that (0 ufgv)

Assume that there exists w € U(Q) such that w™'w = . We find a,b,c,d € R such that we have
w = (2ca+2d) € U(Q2). Then a =2 1. We have

a b 101 a b (u 0
2¢ a+2d 0 2)\2c a+2d) \0 u+2v
— 01 a b _(a b U 0
0 2/ \2 a+2d) \2¢ a+2d)\0 u-+2v
— 2¢c a+2d\ [au bu + 2bv
4¢ 2a+4d)  \2cu au+ 2av + 2du + 4dv
We conclude that au =2 0 from position (1,1). Since a =5 1, we have u =5 0. The equation on position

(1,2) is a+ 2d = bu + 2v. But a 4+ 2d =3 a =2 1 and bu + 2v =3 bu =5 0 since u =2 0. This is a
contradiction.

This shows that there is no u € U(Q) such that u=!7"u = T. We conclude that primitive tori are not
unique, not even unique up to conjugation with units in €. O

Question 151. We ask whether every maximal rational torus in [(2) is a subalgebra of 2.
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4.5 A counterexample

Remark 152. There exist a discrete valuation ring R and a split R-order 2 isomorphic to RG for a
finite group G such that the assertions (1) —(7) hold.

(1) There exist two mazimal commutative R-subalgebras T and Ty of Q0 that are not isomorphic as
R-algebras.

(2) There exist two maximal commutative R-subalgebras T and Th of Q such that (T) and (11) are
mazimal rational tori of (), but T and Ty are not conjugate via a unit in K.

(3) There exist two maximal commutative R-subalgebras T and Ty of Q such that [(Th) C () is a
non-primitive mazimal rational torus and [(T) C () is a primitive torus.

(4) There exist a completely split R-overorder I' O Q with full diagonal Aoand u € U(T") such that,
writing 0 == u"Qu, the lengths of the R-modules A/(QN A) and A/(QXN A) are different.

(5) There exists a mazimal commutative R-subalgebra T1 of 0 such that (T1) C [(Q) is a mazimal
rational torus and lq is primitive in T1, but not primitive in €.

(6) There exist two maximal commutative R-subalgebras T and Ty of Q such that (T) and [(T1) are
mazimal rational tori of () and such that the integral cores of (T) and of (T1) in () have,
considered as R-modules, different ranks.

(7) There exists a completely split R-overorder I' O Q and u € U(T") such that the full diagonal of 1(£2)
in (T') is a mazimal integral torus in (), but, writing Q = u”1Qu, the integral core of the full
diagonal of [(2) in [(T') is not a mazximal integral torus in ().

Proof. Let R:=Zy and T':= R x R**? x R.

We have seen in §1 that QSs is isomorphic to Q x Q?*2 x Q. By the Artin-Wedderburn-Theorem, we
have uniqueness of the skew fields and of the sizes of the matrix rings over these skew fields. But we
can choose different isomorphisms.

We will use the following two Wedderburn isomorphisms in this example.

w: QS3 — QxQ**2xQ w: QS35 — QOxQ*™2xQ

(1,2) +— (1,(:? g),—1> (1,2) +— (1,(? é),—1>
(1,2,3) — <1, <:f i’)l) (1,2,3) +— <1, <j é>,1>

Recall that w is the morphism we used in §1 where we also showed that it is an isomorphism of Q-
algebras. The morphism w is obtained by conjugating w with u := (1, (% _é) ,1) € U(T") from the right.
So also w is an isomorphism of QQ-algebras.

Using the notation of §1.1, we have

sz(RS;;)z{(@,(Z z)f> €ERx R*”?xR

We determine the images of the elements of S3 under w. Since S5 is an R-linear basis of Q S3, we can thus
determine the ties needed to describe the image of RS3 under w. Each element (a, (32) ,f) € w(S3)

CLEgb,@ng,CEgO}.

yields a row (a,b,¢,d, e, f) in the matrix Uy € Q%% with entries in R. Thus we obtain

1 1 0 o0 1 1 11 1 1 1 1
1 0 1 1 0 -1 2 0 -2 0 2 -2
-1 o0 211 -1 2 o 2 -2 2 o -2
V=11 1 1 1 o 1 and 6-U," = g 5 o 9 o o
1 1 -1 0 -1 -1 2 0 2 -2 -2 0

1 0 -1 1 -1 1 1 -1 -1 1 -1 1
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The ties modulo 6 needed to describe € are given by the columns of 6 - U, 1 Applying elementary
column operations on 6 - Ugl we obtain the following matrix. From its columns we get another set of

ties that also describe ().

10 00 0O
020000
246 000
000200
200 460
340 2 06

Since 2 € U(R), this results in the following.
Q:=O(RSs3) = {<a (Z Z) ,f) e Rx R”?x R

e have the tull diagona = 4 (a, , ) € c=0,d= m 1. en we define the followin
We have the full diagonal A bed fyer 0,d=0pin . Th define the following

intersections.

T;:QmA:{<a,<8 2),f>eR><R2X2><R

T::ﬁmA:{<a,<8 2),f>eR><RM><R

By Lemma 120 we know that [(7) is a maximal integral torus in [(Q) and that [(T) is a maximal

o

rational torus in [(€2). Moreover, in §1.1 we have found idempotents e, e’ € T' that are primitive in Q
and such that 1o = e + ¢’ and eQe and €'Qe’ are local. So [(T) is a primitive torus in [(£2).

We choose R-linear bases By of T and B of T.

(Y D YA N I YRS B
(Y AR N B

Note that A/(QNA) is an R-module of length 2 and A/(Q N A) is an R-module of length 3.

This shows (4).

By Lemma 33, T is a local ring. In particular, in T there are only the idempotents (0, (88) ,0) and
(1, (01) . 1)-

But in 7', we have the non-trivial idempotents (1, ((1)8) ,0) and (0, (8(1)) ,1) and thus 7T is not a local
ring.

This shows that 1" 2 T as R-algebras.

We conclude that 1" cannot be obtained by conjugating T" with an element in U(KT') and in particular
not with an element in U(I") or in U(Q).

azgc+e,bz3c+f,ezgd+f}

a:357€:3f}

azge,bzgf,ezgf}

An R-linear basis C of € is given as follows.
0 0 11 10
e=((+0 D0 (6 )0 (%))
30 0 0 0 0
(06 9006 9006 5))
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We consider the rational torus [(T) C (). We calculate.

-3 0000 0
0 30000

3 0 3 -3 000 0

(st (6 0)0))) o= = 00000
’ 0 1000 0

-1 0000

3 00000

0 -3 00 0 0

0 0 -3 300 0 0

(w00 (00 3)9)))..=| T 60000
’ 0 -1 00 0 0

1 =100 00

These matrices are not diagonalizable over R as we see e.g. using Magma.

Magma Code 7: counterex

load pre;
load z3s3Initl;
load definitions;

Basis_Omegacirc := Matrix ([

1)

admatrix := function (x)
// INPUT: x an element of Gamma
// OUTPUT: matrix ad(x) with respect to the basis Basis_Omegacirc

pre_ad := RMBQ!O;
for j in [1..rl] do
v_tup := LieTup (x,CoerceGamma ([Basis_Omegacirc[i,j] : i in [1..rl
11))3
v_vec := &cat[ElementToSequence (v_tupl[i]):i in [1..#Sizes]];
for i in [1..rl] do
pre_adl[i, j] := v_vecl[i];
end for;
end for;

return RMB! ( (RMBQ!Basis_Omegacirc) *—1xpre_ad);
end function;

rdiag(admatrix (CoerceGamma ([0,3,0,0,0,01)),3);
rdiag (admatrix (CoerceGamma ([0,0,0,0,3,01)),3);

This shows that [(T) is not an integral torus of €.

But since (0, (§5),0)+ (0, (53),0) = (0, (§3)
particular it is diagonalizable over R. So ( (
We conclude that

Cor[(é)([(f)):R((l, ((1) (1)),1),(0, (g g),o),(o, (8 8),3)). (17)

98

,0) is central in Q its adjoint endomorphism is zero, in
gg) is an element of the integral core Cor[(ﬁ)( (T)).



Recall that €2 is obtained by conjugating € with u = (1, (% _(1)) ;1) from the right, so Q = v~ 1Qu. We
define the conjugate R-algebra

Ty :=uTu ' CuQu™t =Q.
Then [(77) is a rational torus in [(€2); cf. Corollary 124.(2).

An R-linear basis of T} can be obtained by conjugating the elements of By, with u from the left. This
yields the following.

et a(u(3 9)- 00 66 )9 0.6 )

Note that T3 € A. We show the maximality of the torus [(77) C [(2) by direct calculation.
Suppose given t := <a + 3b, (Z 3;) ,e+ 3f> € Q where a,b,c,d, e, f € R such that ¢ commutes with

(0, (g _06> ,0) € Ty. Then, in particular, we have

3a —6a\ (a 3c\ (3 —6\ 1! (3 =6\ [a 3c\ (3a—6d 9c— 6e
3d —6d) \d e 0o 0/ \0 O d e) \ 0 0o )
We conclude that d = 0 and —6a = 9¢ — 6e. But this implies that ¢ € T1.
This shows that [(T7) C [(2) is a maximal rational torus.
Moreover, [(T1) is not a primitive torus in () since 1o = (1, (§7),1) is not primitive in Q but 1q is

primitive in 73 since T} is conjugate to T which is local.
This shows (3).

Recall that uQu=! = Q. In ), the idempotents e := (1, (é 8) ,0> and € := (O, (8 (1)> ,1> are

primitive. Its sum is 1 and we have ee’ = e’'e = 0, so 1 = e + € is an orthogonal decomposition of
1 into primitive idempotents in Q. In particular, 1o is not primitive in €.

Buto we have seen that T is local, so its conjugate T also is local. We conclude that 1g is primitive
in 7Tj.

This shows (5).

Note that the following products are in T7.

(6 3)0) (6 ))
(06 W) 0) = ()
(06 90) (06 D))=

Moreover, we have 1g € T7. This shows that 77 is an R-subalgebra of 2. We conclude that T} is a
maximal commutative R-subalgebra of ().

Note that 71 # T'. So we have found two maximal rational tori [(77) and [(T") in Q. Moreover, both
T and 77 are maximal commutative R-subalgebras of ). As R-algebras, they are not isomorphic since
T is not local while T as conjugate of the local R-algebra T is local.

This shows (1) and (2).
We determine the integral core of I[(T7) in [(2). This is obtained by conjugating Cor[(ﬁ)([(f)) with u

from the right. But we observe that Cor[(ﬁ)([(f)) consists of elements that are central in KT'. So we
conclude that

Cory g (1)) = Coryqy (T1)).
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In particular, as an R-module, this is of rank 3 whereas Corq)(l(T")) as an R-module is of rank 4.
This shows (6).
We consider ¢ := (1, ((1)(1)) ,0) € Q. Note that ¢ ¢ A. We have

100 0 00
100 -3 3 0
000 3 -30
(adygy(c))ec = 000 0O 00
000 -1 10
000 -1 10

This is a matrix that is diagonalizable over Z ).

Recall that Cor[(ﬁ)([(j'“)) is central in Q; cf. equation (17). Denote by T the R-algebra generated by
T and c. Then [(T5) is an integral torus in [(€).

So the integral core Cor[(ﬁ)([(f)) is maximal as an integral torus in 7. But it is not maximal as an
integral torus in [(Q) since [(T3) D Cor[(ﬁ)([(flo’)) is a proper inclusion and T3 is an integral torus in

o

[(2). This shows (7). O
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Chapter 5: Certain local Z)-algebras

Let R := Z(g)

In the following we will collect some Z)-algebras. Some of these algebras are given as matrix algebras,
others are given by descriptions using ties.

We will show that the Zj)-algebras under consideration are local Zs)-algebras. For this purpose we
will use two different approaches:

The first one will use the definition of a local ring and verify the required properties ad hoc.

The second one will use further arguments on Jacobson radicals and factor algebras. However, the
Jacobson radicals are just used in the proof of Lemma 33. We will make use of this Lemma without
determining Jacobson radicals here.

Moreover, for some of these Z3)-algebras we will give descriptions as polynomial factor rings.

The local Z)-algebras covered here will occur in the context of Z) Sy and of Z3) Ss; cf. §6 and §7
below.

Recall the following characterizations of the units in R.

Remark 153. For r € R, the following assertions are equivalent.

1) r e U(R)
2(’/“) =0
r %20

4) r € R\2R

2

<

(1)
(2)
(3)
(4)

Lemma 154. Suppose given R-algebras A and B such that A C B is a subalgebra. Suppose that A is
generated R-linearly by x1,...,x, € A. Then we have the following equality.
Cp(A) ={be B|bx; = z;b for i € [1,n]}

Proof. Ad C. Suppose given b € Cg(A). Then ba = ab for a € A, in particular bx; = x;b for i € [1,n).

Ad D. Suppose given b € B such that bx; = z;b for i € [1,n]. Suppose given a € A. There exist
T1,...,7n € R such that a = ) | T We obtain

i€ln
ab = Z rix; | b= Z (r;2:b)
1€[1,n] i€[1,n]
= Y (ri(@ib) = D (ri(bay))
i€[1,n] i€[1,n]
= > (b)) =b| > rwi | =ba,
1€[1,n] 1€[1,n]
showing that b € Cp(A). O
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5.1 The Z)-algebra L,

We define the R-subalgebra A; of R?*? as follows.

el (D6 ) e

To determine Cg2x2(A;) it suffices to consider the R-linear generators of Ap; cf. Lemma 154. Note
that (é?) is a central element in R?*2. It suffices to consider the R-linear generators of A; that are
not central in R2*2.

Suppose given a matrix M = (‘é 3) € R**2. Then we have the following equivalences.

a b 0 0 00 a b
M e CRQXZ(Al) <~ <C d) . (1 2> = <1 2> . <C d>
b 2b\ 0 0
d 2d) \a+2c b+2d
<— b=0anda+2c=d

Hence we obtain the following description of Cpgexz(A1).

Lii= Cpoa(Ar) = 1 < ((1, 2) () g)> (19)
—_—

=:51,2
Note that in this case, we have A; = Ly. In general, this will not necessarily be the case.

Moreover, we want to set L; in relation to a factor ring of the polynomial ring R[X] in one indetermi-

nate X. We calculate.
0 0
S%,Z - <2 4) = 251,2

— 5%72 — 251,2 =0
Denoting by 77 := (X2 — 2X) the ideal generated by X2 — 2X in R[X], we get

~

wli R[X]/Il — L1

0 0

The map ; is surjective since L; as a module over R is generated by 5?12 and 51172. Since L is free
of rank 2 over R like R[X]/Z; is, we see that ¢ is an isomorphism.

5.1.1 L, is local: ad hoc method

Remark 155. The units in Ly are given as follows.

a 0
Ul = {(b a+2b> € B>
0

Proof. Ad C. Suppose given M € U(L1). Then there exist a,b € R such that M = (Z a+25). Moreover,

we have det(M) = a? + 2ab. So det(M) =5 a®. Since det(M) € U(R), this entails that a? is a unit in
R. But if a? is a unit in R, then «a is also a unit in R.

This shows that M is an element of the right hand side.

Ad D. Suppose given M := (Zafgb) € R**2 where a € U(R). Then det(M) = a® + 2ab #5 0 and so

det(M) € U(R). Now, by definition, Ly is the centralizer of a matrix algebra, viz. of A;. So we can
apply Lemma 28 and we obtain that M € U(Ly). O

a € U(R), beR}
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Remark 156. Lq is a local ring.

Proof. Suppose given My, My € Ly such that My ¢ U(L;) and My ¢ U(Ly). It suffices to show that
|

M + My ¢ U(Ly); of. Remark 30.

There exist a1,b1,a2,b2 € R such that M; = (‘g; &1—821)1) and My = (‘gg @f%z). Moreover, we have

a1 ¢ U(R) and a2 ¢ U(R); cf. Remark 155. Consider the sum

a1+ a2 0
M+ M, = <b1+b2 a1+261+a2+2b2> €L

Since R is a local ring and both a; and ao are non-units in R, we conclude that a; 4+ a2 also is a
non-unit in R; cf. Remark 30.

This shows that M; + My ¢ U(L1); cf. Remark 155.
This completes the proof that L; is a local ring. O

5.1.2 L, is local: using the radical
Define the R-algebra morphism

e L — RxR

a 0
<b a+2b> —  (a,a+2b).

This is the R-algebra morphism that maps a matrix in L; to the tuple of its diagonal entries. Note
that pq is an injective R-algebra morphismi.

Its image in R*? can be described by ties. We get the ties needed to describe the image by inverting
the matrix that contains in its rows the entries of the images of the R-linear generators of Li; cf.
equation (19). So we define the matrix U; that has the entries of the elements (1,1) and (0,2) as rows

and we invert this matrix.
(11 (2 -1
Ul._<02> 2U1—<0 1)

The ties are given by the columns of Ufl. The factor 2 indicates that the ties are to be read modulo 2.
An element (r1,72) € R x R fulfills the ties if the following identities hold.

27“1 =92 0
—r1 +r9 =9 0

The first tie can be skipped since it is always fulfilled. We obtain the following description of p;(Lq).
pi(L1) = {(a,b) € R x R|a =3 b}

Since py is injective, this results in the following illustration.

o - (R R)

a 0
(b a+2b> — (a,a + 2b)

We can apply Lemma 33 on the Z)-algebra p;(L1) which shows that p1(L;) is local. We conclude
that Lq is local.
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5.2 The Z)-algebra L,

We define the R-subalgebra Ay of R3*3 as follows.

a 0 0
Ag = b a+2b 0 a,b,ce R (20)
c b—2c a—2b+ 8¢
1 00 00 O 0 00
:R< 010}, 12 o01],{0 00 >
0 0 1 01 -2 1 -2 8

To determine Cgaxs(Asg) it suffices to consider the R-linear generators of As; cf. Lemma 154. Note

00
that (0(1]0) is a central element in R3*3. It suffices to consider the R-linear generators of Ay that are

not central in R3%3.

b
Suppose given a matrix M = (3 ¢ ]? ) € R3*3. Then we have the following equivalences.
g 7

a b ¢ 00 O 00 O a b c
M € Cpaxs(A2) <= [d e f|-|1 2 0 ])=(1 2 0|-|d e f] and
g h i 0 1 -2 0 1 -2 g h i
a b c 0 0 O 0 0 a b c
(d e f (O 0 0] =10 0 (d e f
g h 1 1 -2 8 1 2 8 g h 1
b 2b+c —2c 0
= e 2e+f Qf) =|a+2d b—|-26 c—|—2f and
h 2h+4+1 —2 d—2g e—2h f—2
c —2c¢ 8¢ 0 0 0
f —2f 8f) = 0 0 0
i =2t 8 a—2d+8g b—2e+8h c—2f+8i
0 0 0 0 0 0
< b=c=f=0and (e 2e 0 =|a+2d 2e 0 | and
h 2h+1 -2 d—2g e—2h —2i
0o 0 0 0 0 0
0 0 0]= 0 0 0
1 —21 8 a—2d+8g b—2e+8h 8i

Now we have to solve a system of linear equations and we get that

M € Cpraxs(Ay) <—

—

b=c=f=0and

e = a+2d,
h = d-2g,
2h+1 = e—2h,
it = a—2d+8g,
—2i = —2e+8h
b=c=f=0and
a = —2d+e,
d = 2g+h,
e = 4h—+1,
it = —4d+e+8g
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In the last term we can skip the condition on . We can write the entries a, d and e in dependency of
the entries g, h and 1.

MECR3><3(A2) <~ b:c:f:Oand

a = —4g+2h+1,
d = 2g+h,
e = 4h+1
—4g +2h +1 0 0
— M= 29+ h 4h+1i 0
g h 1
Hence we obtain the following description of Cgsxs(Az2).
1 0 0 —4 0 0 2 00
LQ::CRSXB(A2>:R< 01 0], 200,11 40 > (21)
0 0 1 1 00 010
=:521 =:75'r2,2 =:S23
In fact we have
00 O
1 2 0 |=-2-S1+953
0 1 =2
0 00
0 0 0 | =8-Sy1+8520—2-523
1 -2 8
and
1 00 0 0 0 0 0 0
Sop=-4-10 10 |+2-{12 o]+[0 00
0 01 01 =2 1 -2 8
1 00 00 0
Sos=2-[010])+[12 o
0 01 01 =2

This shows that Ay = Lo.

We obtain the following multiplication table of Ls.

Soi-Sej|j=1 j=2 j=3
t=1]| S21 S22 Sa3
i=2| S22 —4522 2529
i =3 S23 2529 S22+ 4523

(22)

In equation (21) we have seen R-linear generators of Lo. But we have
2

-4 0 0 200 2 00
Soo = 200 |=|140]| —-4(1 40 |=53—45%3.
100 010 010
200
So as an R-algebra, Lo is generated by <(1)41:8> =523.

Moreover, we want to set Ly in relation to a factor ring of the polynomial ring R[X] in one indetermi-
nate X. Using (22), we obtain the following.

5573 = S22 +4S53
= Sp2 =533 — 453

S35 =523 (S22 +4S23) = 6522 + 16523 = 655 5 — 8553
= 933 —6555+853=0
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Denoting by Zp := (X3 — 6X? 4 8X) the ideal generated by X3 — 6X? + 8X in R[X], we get

~

1/)21 R[X]/IQ — L2

2 0
X+7Zy — 1 4
0 1

o O O

The map v is surjective since Lo as a module over R is generated by SS’S, 5573 and S%,3~ Since Lo is
free of rank 3 over R like R[X]/Z; is, we see that 1 is an isomorphism.

5.2.1 L5 is local: ad hoc method
Remark 157. The units in Lo are given as follows.

a—4b+ 2c¢ 0 0
U(Ly) = 2b+c a+4c 0| € R¥3|acU(R), bcc R
b c a

a—4b+2¢ 0 O
c a)’

Proof. Ad C. Suppose given M € U(Lg). Then there exist a,b,c € R such that M = ( 2bl;kc a+4c0
Moreover, we have det(M) = a3 —4a?b+6a%c— 16abc+8ac?. So det(M) =5 a3. Since det(M) € U(R),
this entails that a® is a unit in R. But if ¢ is a unit in R, then a is also a unit in R.

This shows that M is an element of the right hand side.

. . a—4b+2c 0 0 3%3 .
Ad D. Suppose given a matrix M := 2bte atdcd | € R>*° such that a € U(R). Then we obtain

C a
det(M) = a® — 4ab + 6ac — 16abc + S8ac? #50 and so det(M) € U(R). Now, by definition, Ly is the
centralizer of the matrix algebra As. So we can apply Lemma 28 and we obtain that M € U(Ly). O

Remark 158. Lo is a local ring.

Proof. Suppose given My, My € Lo such that My ¢ U(Ly) and Ms ¢ U(Lg). It suffices to show that
!
Mi + M, ¢ U(LQ), cf. Remark 30.

There exist a1, b1, c1, a3, b2, co € R such that

a1 — 4b1 + 21 0 0 as — 4by + 2¢9 0 0
M; = 2b1 + 1 a1 +4c; 0 and My = 2bg + o as +4co 0
by cl a1 bo (6)) ag

Moreover, we have a; ¢ U(R) and as ¢ U(R); cf. Remark 157. Consider the sum

a1 — 4by + 2¢1 + a9 — 4by + 2¢9 0 0
M; + My = 2b1 + ¢ + 2by + ¢ a1 +4c1 + as + 4eo 0 € Lo.
by + by c1+ e ay + as

Since R is a local ring and both a; and ag are non-units in R, we conclude that a; + a2 also is a
non-unit in R; cf. Remark 30.

This shows that M; + Ms ¢ U(L2); cf. Remark 157.
This completes the proof that Ls is a local ring. O
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5.2.2 L, is local: using the radical
Define the R-algebra morphism

U L2 — RX3

a—4b+ 2c 0 0
2b+c a+4c 0| +— (a—4b+2c,a+ 4c,a).
b c a

This is the R-algebra morphism that maps a matrix in Lo to the tuple of its diagonal entries. Note
that pg is an injective R-algebra morphism.

Its image in R*3 can be described by ties. We get the ties needed to describe the image by inverting
the matrix that contains in its rows the entries of the images of the R-linear generators of Lg; cf.
equation (21). So we define the matrix Us that has the entries of the elements (1,1,1), (—4,0,0) and
(2,4,0) as rows and we invert this matrix.

111 0 -2 0
Uy:=| =4 0 0 §-U;'=(0 1 2
2 40 8§ 1 -2

The ties are given by the columns of U2_1. The factor 8 indicates that the ties are to be read modulo 8.
An element (ry,72,73) € R*3 fulfills the ties if the following identities hold.

8’/”3 =8 0
=2ry +ry  +r3 =g 0
2r9 —2rg3 =g 0

The first tie can be skipped since it is always fulfilled and the third one can be written as a tie modulo 4.
We obtain the following description of pa(Ls).

pa(Lo) = {(a,b,c) € R*? |2a=gb+cand b=y c} (23)

Since uso is injective, this results in the following illustration.

Lo ~

a—4b+ 2c 0 0
2b+c a+4c 0 (a —4b+2c,a+ 4c,a)
b c a

We have shown that us(Ls) is described in R*3 by ties. Note that from 2a =g b+ ¢ and b =4 ¢ we can
deduce that 2a =4 b+ c and 0 =4 b — ¢. Adding these two ties yields that 2a =4 2b, so @ =2 b. Since
b =4 ¢, we have in particular that b =5 ¢. So together, we have a =4 b =5 c.

So now we can apply Lemma 33 on the Zy)-algebra pz(L2) which shows that pz(L2) is local. We
conclude that Lo is local.
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5.3 The Z)-algebra L;

We define the R-subalgebra L3 of R*3 as follows.
Ls :={(a,b,c) 6RX3‘a+bzg 2c and b =5 c} (24)
Remark 159. We have Lo ~ Ls.

Proof. Suppose given (a,b,c) € L. Then we have a+b =g 2c and b =5 ¢. We conclude that a+b =4 2¢
and 2b =4 2¢. The difference of these two ties is a — b =4 0.

This shows that for (a,b,c) € L3, we have a =4 b.

Suppose given (a,b,c) € R*3 such that a +b =g 2c and b =4 a. Then we have a + b =4 2c and
b—a=40. The sum of these two ties is 2b =4 2¢, so b = c.

Together we have shown that
Lz = {(a,b,c) € R"®|a+b=g2cand a=4b}.

After permutation of the tuple entries, the right hand side equals the image uo(Ls2) of Lo under the
R-algebra monomorphism pug; cf. equation (23). So as R-algebras, Ly and L3 are isomorphic. Ul

Corollary 160. L3 is a local ring.

Proof. This follows from Remark 158 and Remark 159. OJ

5.4 The Z)-algebra L,

We define the R-subalgebra Ly of R** as follows.
Ly:={(a,b,c,d) € R**|a=sband b—d=ga—c=40} (25)
We choose the following R-linear basis of Ly.
((1,1,1,1),(0,2,0,2), 0,0,4,4),(0,0,0,8) )
—_— N
Sa1 S4,2 Sa,3 Sa,4

This is a commutative R-algebra. We obtain the following multiplication table of Ly.
Syi-Saj|7=1 j=2 j=3 j=4

i=1| Sq41  Si2 Siz  Sia

i=2| Sio 2512 Sasa 2514 (26)

t=3| Sa3 Sisa 4513 4S5s4
1 =4 54,4 25474 454’4 854,4

We have
Saa = S42S43.

So as an R-algebra, Ly is generated by S42 and Sy 3.

Moreover, we want to set L4 in relation to a factor algebra of the polynomial algebra R[X,Y] in two
indeterminates X, Y. Using (26), we obtain the following.

S3o—2842=0
Siz—4S43=0

Denoting by Z; := (X2 — 2X,Y?2 — 4Y) the ideal generated by X? — 2X and Y? —4Y in R[X,Y], we
get
va: R[X)/Ty Ly

X+, — (0,2,0,2)
Y+, +— (0,0,4,4)

The map 4 is surjective since Ly as a module over R is generated by 5272, Sig, Si73 and Siﬂsi,?)'
Since Ly is free of rank 4 over R like R[X,Y]/Zy4 is, we see that ¢4 is an isomorphism.
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5.4.1 L4 is local: ad hoc method
Remark 161. The units in Ly are given as follows.
U(Ly) = {(a,a+2b,a+ 4c,a +2b+4c + 8d) € R**|a € U(R), b,c,d € R}
Proof. Ad C. Suppose given M € U(Ly4). Then there exist a, b, ¢,d € R such that
M = (a,a+ 2b,a + 4c,a + 2b + 4c + 8d).

Since M € U(Ly), every entry of M is invertible in R. We conclude that a € U(R).

Ad D. Suppose given M = (a,a + 2b,a + 4c,a + 2b + 4c + 8d) € R** such that a € U(R). Then every
entry of M takes the form a + 2r for a certain r € R. In particular, every entry of M is congruent to
a modulo 2 and thus M is invertible in R**.

We apply Remark 11 to the multiplication by M on R**, which is a bijective Zz)-linear map mapping
L4 to Ly. Note that ‘RX4/L4‘ = 2-4-8. So this map restricts to a bijective linear maps from L4 to Ly4.

This shows that M € U(Ly). O

Remark 162. Ly is a local ring.

Proof. Suppose given M, My € Ly such that My ¢ U(Ly) and My ¢ U(Ly). It suffices to show that
|

M + My ¢ U(Ly); cf. Remark 30.

There exist a1, b1, c1,d1,a9,bo,ca,do € R such that My = (al, a1 + 2b1,a1 + 4c1,a1 + 2b1 + 4e1 + 8d1)
and My = (ag, ag + 2ba, as + 4ca, as + 2bg + 4ca + 8dz). Moreover, we have a1 ¢ U(R) and ag ¢ U(R);
cf. Remark 161. The first entry of the sum M; + Ms equals ay + as. This is a sum of two non-units
in R. Since R is a local ring, we conclude that a; 4+ as also is a non-unit in R; cf. Remark 30. This
shows that My + My ¢ U(Ly); cf. Remark 161. O

5.4.2 L, is local: using the radical

The R-algebra L, is described in R*4 by ties. From the ties a =2 b and a — ¢ =4 0 we conclude that
a =2 b =5 c. Together with the tie b —d =4 0, we have a =9 b =2 c =2 d.

So now we can apply Lemma 33 on the Zy)-algebra L4 which shows that Ly is local. We obtain the
following illustration of Ly.
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5.5 The Z)-algebra L;

We define the R-subalgebra As of R*** as follows.

a 0 0 0
L 2c a4+ 4c 0 0
As = bt e 0 @42+ 2 0 a,bc,de R (27)
—c —2c+2d 0 a+4d
1 0 00 0 0 0O 0 0 00 0 0 0O
_ 01 00 0 0 0O 2 4 0 0 0 0 0O
R 001 0}’ 102 0 |’ 1 02 01})1’Looo0o0
0 0 0 1 0 0 0O -1 -2 0 0 0 2 0 4
=:M1 =:M> =:M3

To determine Craxa(As) it suffices to consider the R-linear generators of As; cf. Lemma 154. Note
that 1gaxs is a central element in R**#. It suffices to consider the R-linear generators of A5 that are
not central in R4*4,

Suppose given a matrix M € Craxa(A5). We write M = (ai j); jen,4) With a;; € R.

We calculate.

a1,3 0 2&173 0 0 0 0 0
azz 0 2az3 0 0 0 0 0
MM = |9 : - =M M
! azgz 0 2a33 0 a1 +2a31 a1+ 2a32 a3+ 2a33 ajg+2a34 !
as3 0 2a43 0 0 0 0 0

We conclude that a13 = 0, ag3 = 0 and as3 = 0. Furthermore, we conclude that a; s + 2a32 = 0,
a4 + 2a3,4 =0 and ass3 = a1 + 2(1371.

Using that a1 3 = a2 3 = as3 = 0, we calculate.

0 2&1’4 0 40,174 0 0 0 0
o 0 2@274 0 4@274 o 0 0 0 0 .
M-Ms=1, 2a34 0 dazs | 0 0 0 0 =M M
0 2@474 0 4a474 2@271 + 4(1471 20,272 + 4(1472 0 2&274 + 4(14,4

We conclude that a1 4 = 0, a4 = 0 and a3 4 = 0. Furthermore, we conclude that 2a4 4 = 2a22 + 4a4
and 20,271 + 4&471 =0.

Using that a13 = as3 = as3 = a1,4 = as s = az4 = 0, we calculate.

2@172 4a1,2 0 0
2a22 dag o 0 0
M - My = ’ ’
2 2a3,2 + as3 4a3,2 2a3,3 0
2042 — a4y 4ago — 2044 0 0
0 0 0

2a1,1 + 4a271 2a1,2 + 4a2,2 0
a1 +2a31 a2 +2a32  2a33
—a11 —2a21 —ai12—2a22 0

=M, M

o O O O

We conclude that a12 = 0 and a3o = 0. Furthermore, we conclude that 2a22 = 2a11 + 4ao 1,
2a32 +a3z3 = a1 + 2a31, 2a42 — agq = —a11 — 2az1 and 4ago — 2a44 = —ai2 — 2az 2.

Taking into account the vanishing conditions, we see that M takes the following form.
ai,1 0 0 0
M= az1 azz 0 0
as 1 0 a3 3 0
ag1 as2 0 agq
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Moreover, the vector of the remaining coefficients of M satisfies the following equation.

ai,1
-1 0 0 -210 0 O ag,1
0 0 -2 000 —4 2| |az
0 2 0 004 0 0ffas|_,
-2 —4 2 0 0 O 0 0 a3.3
1 2 0 0 0 O 2 -1 Q4.1
0 0 2 000 4 —2) |as
4.4

A Z-linear basis of the kernel of this matrix can be obtained for example using Magma. This basis also
is a Zg)-linear basis of the kernel of this matrix. Note that the elements are row vectors in Magma,
so we need to transpose the result.

Magma Code 8: Lbasis

M := Matrix ([

[-1, 0, 0,-2,1,0, 0O, 01,
([ 0, 0,-2, 0,0,0,-4, 271,
([ 0, 2, 0, 0,0,4, 0, 01,
(-2,-4, 2, 0,0,0, 0, 01,
(1, 2, 0, 0,0,0, 2,-11,
[ 0, 0, 2, 0,0,0, 4,-2]
1)

Kernel (Transpose (M) ) ;

RSpace of degree 8§,
Echelonized basis:

dimension 4 over Integer Ring

(1 o 1 o0 1 0 0 1)
(0 2 4 0 0-1 0 4
(0 0 0 1 2 0 0 0)
(0 0 0 0O 0 0 1 2)

Hence we obtain the following description of Cpraxa(As).

1 000 0 00O 0 00O 00 0O
01 0 0 2 4 0 0 0 0 0 O 00 00
L5'_CR4“(A5)_R<0010’ 0000’1020’0000>(28)
0 0 01 -1 0 0 4 0 0 0 O 01 0 2
=:551 =:S52 =:553 =:554
We obtain the following multiplication table of Ls.
S50 955 |j=1 j=2 j=3 j=4
1=1 5571 S5,2 55,3 55,4
i=2| S50 4855 0 4S54 (29)
i=3| Ss5 0 2S5 0
1 =4 55,4 45574 0 255,4
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Moreover, we want to set Ly in relation to a factor ring of the polynomial ring R[X,Y, Z] in three
indeterminates X,Y, Z. Using (29), we obtain the following.

S59—4952=0
85,2553 =0
S5255.4 — 4554 =0
S35 —2953=0
S53554 =0
S54—2954=0

Denoting by Zs := (X2 — 4X,Y2 —2Y,2? —2Z XY, YZ, X7 — 47) the ideal generated by X2 — 4X,
Y2 -2Y, 2227, XY,YZ and XZ —4Z in R[X,Y, Z], we get

~

¢53 R[X]/Ig, — L5

00 0 O

2 4 0 0

-1 0 0 4

00 0O

00 0O

Y+I5 — 102 0
00 0O

00 0O

00 0O

Z+1Is — 000 0
01 0 2

The map 95 is surjective since Ly as a module over R is generated by Sg’g, Sgg, 55173 and 35174. Since
Ls is free of rank 4 over R like R[X,Y, Z]/Z5 is, we see that 15 is an isomorphism.

5.5.1 L5 is local: ad hoc method

Remark 163. The units in Ly are given as follows.

a 0 0 0
_ 2b a+4b 0 0 Ax4
U(Ls) = 0 a2 0 € R¥*|a € UR), bc,d€ R
b d 0 a+4b+2d

Proof. Ad C. Suppose given M € U(Ls). Then there exist a, b, c,d € R such that

a 0 0 0

2 oata 0 0

M= c 0 a+2c 0
—b d 0 a-+4b -+ 2d

Moreover, we have

det(M)=a-(a+4b) - (a+2¢) - (a+ 4b+ 2d)
= a* + 8ab + 2a%c + 2a3d + 16a°b? + 16a%be + 8abd + 4a’cd + 32ab*c + 16abed
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So det(M) =5 a*. Since det(M) € U(R), this entails that a* is a unit in R. But if a* is a unit in R,
then a is also a unit in R.

This shows that M is an element of the right hand side.
Ad D. Suppose given

a 0 0 0
. 2b a+4b 0 0 Ax 4
M = . 0 o+ 2 0 € R*™* such that a € U(R).
—b d 0 a+4b+ 2d

Then det(M) =5 a*, but since a #2 0, we have det(M) #20. So det(M) € U(R). Now, by definition,
Ly is the centralizer of a matrix algebra, viz. of As. So we can apply Lemma 28 and we obtain that
M € U(Ls). O

Remark 164. Ly is a local ring.

Proof. Suppose given M;, My € Ls such that My ¢ U(Ls) and My ¢ U(Ls). It suffices to show that
!

M + My ¢ U(Ls); cf. Remark 30.
There exist a1, b1, c1,d1, as,bs, ca,do € R such that

al 0 0 0 as 0 0 0
_ 2b1 a1+4b1 0 0 _ 2bo as+4bs 0 0
Ml - c1 0 a1+2cy 0 al’ld M2 - c2 0 ags+2ca 0 .
—-b1  dq 0 a1+4b1+2d1 —by  da 0 as+4bs+2do
Moreover, we have a; ¢ U(R) and as ¢ U(R); cf. Remark 163. Consider the sum
a1+az 0 0 0
_ 2b1+2bo a1+4b1+as+4bo 0 0
M+ My = c1+c2 0 a1+2c1+az+2ce 0 € Ls.
—b1—b2 di+da 0 a1+4b14+2d1+az+4ba+2d2

Since R is a local ring and both a; and ag are non-units in R, we conclude that a; + a2 also is a
non-unit in R; cf. Remark 30.

This shows that M; + Ms ¢ U(Ls); cf. Remark 163.
This completes the proof that Ls is a local ring. O

5.5.2 Ls is local: using the radical

Define the R-algebra morphism

H5 Ls — R
a 0 0 0
2b a+4b 0 0
¢ 0 a4 2c 0 — (a+2c, a, a+4b, a+4b+ 2d).
—b d 0 a+4b+ 2d

This is the R-algebra morphism that maps a matrix in Ls to the tuple of its diagonal entries in a
specific order. Note that us is an injective R-algebra morphism.

Its image in R*? can be described by ties. We get the ties needed to describe the image by inverting the
matrix that contains in its rows the entries of the images of the R-linear generators of Ls; cf. equation
(28). So we define the matrix Us € Q*** that has the entries of the elements (1,1,1,1), (0,0,4,4),
(2,0,0,0) and (0,0,0,2) as rows and we invert this matrix.

1111 0 0 2 0
o0 44 4 |4 -1 =2 o
Us=19 00 0 LU= 1 0 9

00 0 2 0 0 0 2
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The ties are given by the columns of Ugl. The factor 4 indicates that the ties are to be read modulo 4.
An element (rq,72,73,74) € R** fulfills the ties if the following identities hold.

4rg =4 0

—r9  +rs =4 0

27”1 —27‘2 =4 0
—2r3 +2ry =4 0

The first tie can be skipped since it is always fulfilled. The third and the fourth tie can be written as
ties modulo 2. We obtain the following description of jus(Ls).

ps(Ls) = {(a,b,¢,d) € R**|a=3b, c =3 d and b= c}

Since ps is injective, this results in the following illustration.

a 0
2b a+4b
c 0
—b d

Ls

0
0

a—+ 2c

0

~

0

0

0
a+4b+ 2d

(rg @ rs@—rs@—n,)

(a+2c, a, a+4b, a + 4b + 2d)

We have shown that us(Ls) is described in R** by ties. From the ties a =2 b, ¢ =2 d and b =4 ¢ we
conclude that a =9 b =9 ¢ =5 d.

So now we can apply Lemma 33 on the Z)-algebra us(Ls) which shows that us(Ls) is local. We
conclude that Ly is local.

5.6 The Z)-algebra L

We define the R-subalgebra Ag of R*** as follows.

a 0 0 0
. —2¢ a+4c 0 0
Ag = . b—c a4 242 0 a,bc,d € R (30)
—2d 0 0 a—+4d
1 0 0 O 00 0O 0 0 00 00 00
_ 01 0O 0 0 0 O —2 4 0 0 00 0 0
R 001 oO0|’lo0o1 20} 1 -1 2 0|’ 00 0O
0 0 0 1 00 0 O 0 0 0 0 -2 0 0 4
=:My :?]\715 =:Mg

To determine Craxa(Ag) it suffices to consider the R-linear generators of Ag; cf. Lemma 154. Note
that 1gaxs is a central element in R***. It suffices to consider the R-linear generators of Ag that are
not central in R4*4,

Suppose given a matrix M € Craxa(Ag). We write M = (aij); jen,a) With a;; € R.

We calculate.

0 (I173 2&173 0 0 0 0 0
0 a3 2&2 3 0 0 0 0 0
M- My = ’ ’ = =My -M
4 0 a3z 2a33 0 as1+2a31 asp+2a32 az3+2a33 ass+ 2a34 !
0 a4.3 2@4’3 0 0 0 0 0

We conclude that a1 3 = 0, ag3 = 0 and as3 = 0. Furthermore, we conclude that ag 1 + 2a3; = 0,
a3z = a2+ 2@372 and a4 + 2a3,4 =0.
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Using that a3 = a3 = as3 = 0, we calculate.

—2(1174 0 0 4CL174 0 0 0 0
—2a24 0 0 4CL24 0 0 0 0
M - Mq = g A = = M- M
67| —2a34 0 0 4azq 0 0 0 0 6
72a4,4 0 0 46L4,4 *2&171 + 4&471 *2@172 + 40,472 0 *20/1,4 + 4a474
We conclude that a1 4 = 0, ag4 = 0 and a3 4 = 0. Furthermore, we conclude that —2a44 = —2a;1 +
4a471 and —201172 + 4&4’2 =0.
Using that a1 3 = a23 = as3 = a14 = a4 = az 4 = 0, we calculate.
—2(1172 4a172 0 0
—2a9 9 4as o 0 0
M - My = ' '
° —2a32 +ass 4azz —aszz 2az3 0
—20,472 4CL4,2 0 0
0 0 0 0
_ —2(11,1 + 4a271 —2(1172 + 4&272 0 0 — M- M
a1 —a21 +2a31 a2 —az2+2a32 2a33 0
0 0 0 0
We conclude that a12 = 0 and as2 = 0. Furthermore, we conclude that —2aso = —2a11 + 4ao 1,

—2a32 +az3 = ai,1 — a1 + 2a31 and 4azs —azz = a1 2 — az2 + 2a32.

Taking into account the vanishing conditions, we see that M takes the following form.

a171 0 0 0

a a 0 0
M= 2,1 Q22

a1 azz azz 0

a4.1 0 0 a4.4

Moreover, the vector of the remaining coefficients of M satisfies the following equation.

a1l
0 1 02 0 00 0\ [an
0 0 10 -2 10 0 |[az
20 00 0 042 []an|_,
—2 4 20 0 00 0 |/|ass
1 =1 02 2 -1 0 0 ||ass
0 0 10 2 —-10 0/ [as

Q4.4

A Z-linear basis of the kernel of this matrix can be obtained for example using Magma. This basis also
is a Zo)-linear basis of the kernel of this matrix. Note that the elements are row vectors in Magma,
so we need to transpose the result.

Magma Code 9: L6basis

M := Matrix ([

( 0, 1, 0,2, 0, 0,0,01,
([ 0, 0,-1,0,-2, 1,0,01,
[-2, 0, 0,0, 0O, 0,4,271,
[-2, 4, 2,0, 0O, 0,0,01,
(1,-1, 0,2, 2,-1,0,01,
([ 0, 0, 1,0, 2,-1,0,0]
1)

Kernel (Transpose (M) ) ;
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RSpace of degree 8, dimension 4 over Integer Ring
Echelonized basis:

(1 o0 1 o0 o0 1 0 1)
(0 2 -4-1 0-4 0 0)
(0 0 0 0 1 2 0 0)
(0 0 0 0 0 0 1 -2

We turn the sign of the second and of the last basis element. Moreover, we swap the last two basis
elements.

Hence we obtain the following description of Cpgaxa(Ag).

1000 000 0 00 0 0 000 0
0100 2 4 0 0 000 0 000 0
LG'_CR4X4(A6)_R<0010’ 10 40| 0000’0120>
000 1 00 0 0 10 0 2 000 0

::SG,I ::SG’Q 2156,3 2186,4

We obtain the following multiplication table of Lg.

SeiS6j |J=1 j=2 j=3 j=4
i=1] Se1  Se2 Se3  Sea
1=2| Se2 4562 0 4564 (32)
i=3| 865 0 2S5 O
1 =4 S6,4 456,4 0 256,4

But this is the same multiplication table as the one of Ls; cf. equation (29).

So we conclude the following.
Remark 165. We have Ly ~ Lg.

Corollary 166. Lg is a local ring.

Note that a matrix

a 0 0 0
—9b a+4b 0 0

b d  a+dbt2d o |ETe
—c 0 0 a+ 2c

has the entries of the tuple (a, a + 4b, a + 4b + 2d and a + 2¢) on its diagonal. These are exactly the
same as those of a general matrix of Ls; cf. the image of us in §5.5.2. So we can proceed exactly in the
same way as in §5.5.2 when projecting a matrix to the tuple of its diagonal entries just by permuting
the entries.
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5.7 The Z)-algebra L,

We define the R-subalgebra A7 of R8*® as follows.

10000000 0 0 0 0O 00O 0O
01000000 1 4 0 0 00 2 O
00100000 0 00 000 0-1

A = 00010000 0 0 0 0 00 0-1

7 —R 00001000 | » 0-2 2 2 20-2 2 |»

00000100 0 1-1-1-10 1-1
00000010 0 0 0 0O 00 0O
00000001 0 0 0 0O 00 0 2
0 0 0 OO0 0O 0 0 0 0 000 O 0 0 0 0 00 0O
14 0 0 00 1 O 0 0 0 0 000 O 0 0 0 0 00-10
0 0 0 0O 00O 0 O 1 0 4 0 000 1 1 0 4 0 00 02
0 0 0 0 00 1 O 0 0 0 0 000-1 0 0 0 0 00 10
0-2 2 2 20-2 2 |>» 0 2-2 2 200 O[> 0 2-2 2 20 00 |>
0 1-1-1-10 1-1 0-1 1-1-100 O 0-1 1-1-10 00
0 00 0O 00 2 0 0 0 0 0 000 O 0 0 0 0 00 20
0 0 00O 00O 0O 0 0 0 0 000 2 0 0 0 0 00 0O
0 0 0 0 00 0 O 0 0 0 0 00 OO0 0 0 0 000 O O
0 0 0 0 00 0 O 0 0 0 0 00-10 0 0 0 000-1 O
0 0 0 0 00 0-1 0 0 0 0 00 00 0 0 0 000 O0-1
1 0 0 4 00-2 1 1 0 0 4 00-12 0 0 0 000 1-1
0 2 2-2 20 2 0> 0 2 2-2 20 201> 1 2 2 220 0 2 |»
0-1-1 1-10-1 0 0-1-1 1-10-10 0-1-1-102 0-1
0 0 0 0O 00 0O 0 0 0 0 00 20 0 0 0 000 2 O
0 0 0 0 00 0 2 0 0 0 0 00 OO 0 0 0 000 0 2
0 0 0 000 0 O 000000 00 0000000 O
0 0 0 000-1 O 000000-20 0000000 O
0 0 0 000 O0-1 000000 0O 0000000—-2
0 0 0 000 1-1 000000 20 0000000-2
1 2 2 220 0 2|~ 000000 00 | > 0000000 O
0-1-1-102 0-1 100024 00 1000240 0
0 0 0 000 2 O 000000 40 0000000 O
0 0 0 000 O 2 000000 0O 0000000 4

To determine Cgsxs(A7) it suffices to consider the R-linear generators of A7; c¢f. Lemma 154. Note
that 1ps«s is a central element in R®*8. Tt suffices to consider the R-linear generators of A7 that are
not central in R3*8.

We define
L7 := Cpsxs(Ay). (33)

5.7.1 Ly is local: a Magma calculation

We use Magma to calculate generators of Ly. To see these eight generators, print the variable gen of
the Magma code “L7” in §5.7.2 below.

Next we consider the associative Fo-algebra (denoted by A in the Magma code “L7” in §5.7.2 below)
generated by these eight elements. This is the same as the factor ring L7/(2- L7) treated as an algebra.

We let Magma determine the structure constants, thus we can define the Fp-algebra in Magma. Its
Jacobson radical is an algebra of dimension seven over Fy which is one less than the algebra itself.
Thus the factor algebra A modulo its Jacobson radical has dimension one, hence it is a field.

This shows that the Fa-algebra under consideration is local; cf. [Miil13, Remark 192]. We conclude the
following.

Remark 167. The R-algebra L7 is local.

5.7.2 The Magma code

Magma Code 10: L7blocks

ConvertMatToVec := function () ;
// row-wise
vec := &ecat[[A[Jj][i] : 1 in [1l..NumberOfColumns(A)]] : Jj in [1..
NumberOfRows (A) ]1]1;
return RMatrixSpace (Z, #vec, 1) !vec;
end function;
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blowup := function (A)
// A integer square matrix

m := NumberOfRows (A);
B := RMatrixSpace (Z,mxm, mxm) !0;
I := DiagonalMatrix ([l : i in [1..m]]);

for i in [0..m-1] do
for 7 in [0..m-1] do
InsertBlock (~B, IxA[i+1, j+1],1+i*m, 1+j*m);
end for;
end for;
return B;
end function;

blowupId := function (A)
// A Iinteger square matrix
At := Transpose (A);
m := NumberOfRows (A) ;
B := RMatrixSpace (Z,mxm,mxm) !0;
for i in [0..m-1] do
InsertBlock (~B,At, 1+i*m, 1+ixm) ;
end for;
return B;
end function;

M1l := Matrix ([
(1,0,0,0,0,0,0,071,
(0,1,0,0,0,0,0,071,
(0,0,1,0,0,0,0,071,
(0,0,0,1,0,0,0,07,
(0,0,0,0,1,0,0,071,
(0,0,0,0,0,1,0,07,
(0,0,0,0,0,0,1,071,
(0,0,0,0,0,0,0,1]
1)

M2 := Matrix([

(o, o, o, o, 0,0, 0, 01,
(1, 4, 0, 0, 0,0, 2, 01,
(o, o, o, o, 0,0, 0,-11,
([, o, o, o, 0,0, 0,-17,
(0,-2, 2, 2, 2,0,-2, 21,
(6, ,-1,-1,-1,0, 1,-11,
(o, o, o, o, 0,0, 0, 01,
(6, 0, 0, 0, 0,0, 0O, 2]
1)

M3 := Matrix ([

(o, o, o, o, 0,0,0, 01,
(o, o, o, o, 0,0,0, 01,
(., o, 4, 0, 0,0,0, 11,
(o, o, o, o, 0,0,0,-171,
(o, 2,-2, 2, 2,0,0, 01,
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0],

1,-1,-1,0,0,

[OI_]—I

:= Matrix ([

—/ o/ o/ — o/ o/ o/

:= Matrix ([

— — — — — — — —

~ ~ ~ ~ ~ ~ ~ ~
O O O O O N O o
N N Y N N N
O O O O N O o o
N N NN
O O O O N 1 O O
|
NN Y Y N N
O O O O N 1 O O
|
NN N N NN NN
O O O O N —+H O O
|
N N N O R TN
O O O O +H O O O ~

:= Matrix ([

—/ — o/ o/ — o/ o/

O O O O O O o o
~ ~ ~ ~ ~ ~ ~ ~
O N O N O O I O
|
NN Y Y N N
O O O O O I O O
N N N N N
O O O O O N o o
NN Y N N
O O O O O O o o
N N N N
O O O O O O o o
~ ~ ~ ~ ~ ~ ~ ~
O O O O O O o o
~ ~ ~ ~ ~ ~ ~ ~ N
O O O O O+ O O ~

:= Matrix ([

M7

— —/ o/ o/ o/ /o

O O O O O o o
N N N N
O O O O O O+ O
NN Y Y N N
O O O O O 1 O O
N N N N
O O O O+ O o o
NN Y N N
O O O +H O O O O
N N N NN
O O +H O O O O O
~ ~ ~ ~ ~ ~ ~ ~
O +H O O O O O o
~ ~ ~ ~ ~ ~ ~ ~ N
— O O O O O O O ~
[[[[[[[[[

:= Matrix ([

M8
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2,0,-2, 27,
1,-11,

0

0

2[
1,-1,-1,-1,0,
0
0

e e e

:= Matrix ([

— — o/ — — — o/ —

O O N O O O o o
N N
O —H O 1 O O N O
|
N N N
O O O O O O o o
N Y N N
O O O O N+ O O
|
N N N N N
O O O O N 1 O O
|
N N
O O ¢ O N 1 O O
|
N N N
O O O O N +H O O
|
NN N N NN NN e
O O +H O O O O O ~

VA U S U,

1= Matrix ([

M10

— — — — — — o/ —

L L L o

:= Matrix ([

M11

— — o/ — o/ — o/ —

N N N N TN

O O O O O N O o

L N Y N TN

O O O O N O O o

N N N TN

O O O O N +H O O
|

L N N N N

O O O O N +H O O
|

L N Y N TN

O O O O N +H O O
|

N N N TN

O O O O+ O O O ~

e e e e e e

:= Matrix ([

M12

— o/ o/ o/ o/ o/ o/

O O NN O o o«
| |
N Y T N
O O O O O o o o
L N NN
O O O O O ¢ o o
L N N N NN
O O O O O N O o
N N N
O O O O O o o o
L N N N NN
O O O O O o o o
~ ~ ~ ~ ~ ~ ~ ~
O O O O O o o o
~ ~ ~ ~ ~ ~ ~ ~ N
O O O O O +H O O ~

VS S T U,

[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12];

Mtup

[1..#Mtupl];

i in

[ConvertMatToVec (Mtup[i]) :

Mvec

.#Mvecl]);

[1.

i in

HorizontalJoin ([Mvec[i]

Mvecmatrix
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M := VerticalJoin ([blowupId (Mtup[i])-blowup (Mtup[i]) : 1 in [1..#Mtupl]l);

D,S,T := SmithForm (M) ;

k := #[1 : 1 in [1..#Diagonal(D)] | Diagonal (D) [i] ne 0];

// The following matrix has in its columns a Z-basis of the kernel of M

Ker := SubmatrixRange(T,1,k+1,64,64);

// We extract the columns of Ker

colKer := [RMatrixSpace(Z,64,1) !'ElementToSequence (SubmatrixRange (Ker, 1,1,
NumberOfRows (Ker),1)) : i in [1..NumberOfColumns (Ker)]1];

D1,S81,Tl := SmithForm (Mvecmatrix);

D2,S82,T2 := SmithForm(Ker) ;

// We are looking for U such that Mvecmatrix =! Ker . U

// < = > s2.81~-1.p1 =! pz2 . (r2~-1 . U . T1)

U := T2xTranspose (Solution (Transpose (D2),Transpose (S2xS1"-1xD1)))*T1"-1;

D3,S83,T3 := SmithForm(U) ;

// Then Ker.S3"-1 has in its columns a basis of the module generated
// by the columns of Ker. Manually we create a matrix B3 that uses
// as many columns of Mvecmatrix as possible.

B := Ker*xS3"-1;

// columns 4 and 6 of B add up to Mvec[Z2]

Bl := HorizontalJoin (RemoveColumn (B, 6),Mvec([2]);

// columns 6 and 8 of Bl add up to Mvec[8]

B2 := HorizontalJoin (RemoveColumn (Bl,6),Mvec([8]);

// (column 5) + 2#(column 3) of B2 add up to Mvec[11]

B3 := HorizontalJoin (RemoveColumn (B2,5),Mvec([11]);
Ul := Transpose (Solution (Transpose (B), Transpose (B3)));
U2 := Transpose (Solution(Transpose (Ker), Transpose(B3)));

// both are invertible over R, thus we found a change-of-basis-matrix

// only column of Ker which is not generated by columns of Mvecmatrix
v := ElementToSequence (SubmatrixRange (B3,1,6,64,6));
vMat := RMatrixSpace(Z,8,8)!v;

Magma Code 11: L7
load pre;
load L7blocks;

// B3 is basis matrix

gen := [RMatrixSpace (Z,8,8) !ElementToSequence (SubmatrixRange (B3,1,1,
NumberOfRows (B3),i)) : 1 in [1..NumberOfColumns (B3)]];

// structure constants modulo 2

Coeff := [[ElementToSequence (Transpose (Solution (Transpose (B3), Transpose (
ConvertMatToVec (gen[i]l*gen[J]))))) : J in [1..#gen]] : i in [1..#gen
113

A := AssociativeAlgebra<GF (2), #gen | Coeff>;
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print A;
Associative Algebra of dimension 8 with base ring GF (2)

print JacobsonRadical (A);
Associative Algebra of dimension 7 with base ring GF (2)

print PrimitiveIdempotents (MatrixAlgebra (A));
[

coocoooor
O O O O O o+ o
O O O O O+ O O
O O O O OO o
O O O OO o o
O O OO O o o
O P O O O o o o
P O O O O O O O
L e e e e e

]

In the last line of the latter code we ask Magma for the idempotents in A. The only output is the
identity matrix (Magma omits the zero matrix which is the second idempotent in A). This also shows
that A does not contain non-trivial idempotents.
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5.8 Overview

We summarize the results from §5.1 to §5.7 in a table. We provide the description of the Zy)-algebras
by ties and an isomorphic factor algebra as far as we have determined them.

N N
< <
| |
. N N
o o >~ e e
% % N AN AN
sl + + 2 o> o>
| I I % g -l et
() - - -
200 © © k ><><~ Kk\
S | | N <+ N <+ N
5l < P 2 ! (AN N
| = S < L o | o |
g = = = = R 1
= = = < AN AN
> = > - -
= = = N N
>~ >~
> >
~ et
A =
=
=
= A ~
5]
)
©
=
E
=
= A =
S
A =
/\
P D
— |2 oo
Sooa
como
cooco
co—o
co o~
co oo
~ cocooco | —|
— ~— —_— - )
o o o - /_\g_;
~
o <~ Soococ|feea I:.:h
N - O como |92
~— [}
> - cooco |O°922 |3
~
=S — comc|®2°7 0
3 coo N~ s
[OR IR - N~———— E
%ov coo - =
- - ~ Gy
]
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= cooco | T2
o ~
E1= - cwoo|oeTo &
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N~ — o
— o o - ~ | %
~— — N =
~——" ©C oo | _—m— @
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co—o
co—o
c—~oo
o—- oo
— o oo
~— | oo o
—— | < 2
e -
<
(5]
E — o~ o) sl 10 © -
3 ~ ~ ~ ~ ~ ~
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Chapter 6: Example Z ) S,

Let R := Z). We have frac(R) = Q. We define ' := R**? x R¥® x R*3 x R x R. We denote the
full diagonal in I" by A.

6.1 Wedderburn: Zx) Sy — Q

We now want to look at the group algebra Zy) S4 of the symmetric group Sy over the ground ring
Zz) which is a discrete valuation ring, in particular a principal ideal domain as requested for the
construction of tori. By Maschke’s theorem, the group algebra Q S, is semisimple. The isomorphism
given by the Artin-Wedderburn theorem may take the following form; cf. [Kiin01, p. 22f].

w: QS4 :> Q2><2 X Q3><3 ><@3><3 XQXQ
—11-24 2 1 00

L2 = (). (T ). (3.1 1)
B 26 57 2\ /—-210

234 = (G2, (2244) (1) - )

Since w is a Q-algebra isomorphism and ((1,2),(1,2,3,4)) = Sy, this characterizes w uniquely. The
last factor corresponds to the trivial representation. The last but one factor corresponds to the sign
representation.

We define w" as the map w restricted in the domain to Zy) S4 and in the co-domain to I. We obtain
the following diagram.

QS4 : @2><2 % Q3><3 % Q3><3 % @ % @

J J
RS, \RS4 /F

Note that € is an isomorphic copy of RSs. Choosing w as above, the image = w"(RSy4) has the
following description in I' via ties, i.e. via congruences of matrix entries; cf. [Kiin01, p. 22].

a1 ais big b1 b3 €11 C12 €13
Q= <a271 a272> s b21 b22 baz|,|c21 c22 c23|.,de] €l
’ ’ bs1 b32 b33 €31 €32 €33
2(11'7]' — bi,j —Cij =8 0 fori,je {1, 2}
b@j —Cij =4 0 for i,j S {1, 2}
bz‘73 —Ci3 =2 0 forie {1, 2, 3}
b3’j —C3; =8 0 forje {1,2}
bgd =4 0 forje {1,2} (34>
cz; =4 0 forje{l,2}
b373 —d =4 0
€33 — € =4 0
d—e =9 0 }
b3,3—C3’3—d+€ =3 0
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All these conditions we can visualize as in the example Z3) S3 in §1. Then we obtain the following
illustration of €.

4
~1

0- RR+28
R R 1

-

8

The boxed numbers on the bottom right of each block indicate the order of the blocks when writing
them in the description as above (i.e. as a tuple of matrices).

The intersection 2 N A is a maximal commutative R-subalgebra of €2; cf. Lemma 121.

In QN A, we have the idempotents

S [(r 0
—\\o o)’

1,1

) )

O OO OO oo OO+
DO OO OO OO o
_ o o OO o O oo
O OO OO o O o
O OO OO O oo
_ O o O O o O oo

=

o

Note that we have
ece/ =cde=cf =fe=¢€f=f =0

We will see later that e, ¢’ and f are primitive in ; cf. Remark 168.(2) below. So the sum 1 = e+e’'+ f
is an orthogonal decomposition of 1o into primitive idempotents in {2 which is contained in QN A. We
obtain the following Peirce decomposition of 2.

D=eQe® Qe D fQf DeQe' DeQf Qe Qf © fQed fQ (35)

We give an R-linear basis of the R-algebra 2 sorted by the Peirce components with respect to the
idempotents e, e’ and f.
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We define the R-linear basis B := (b; : i € [1,24]) of Q.

6.2 Primitivity of certain idempotents in (2

Keep the notation of §6.1.

Remark 168.

(1) The Z3)-algebras eQe, ¢'Qe’ and fQf are local.

(2) The idempotents e, €' and f are primitive in .

Proof. Ad (1). Consider the Peirce component eQ2e. We have the following isomorphism of R-algebras.

s c}

-y

a bO CO 0.0
( 0) ) 0/’ ( 0) » Uy —
Recall that (b1, be,bs) is an R-linear basis of eQe.

eQe

gb+candb

{(a,b,c) € R*3|2a

(a,b,c)

The images of these three elements form the R-

linear basis ((1,1,1),(0,2,—-2),(0,0,8)) of the right hand side. So this is in fact an isomorphism of

R-algebras.

The right hand side equals p2(L2) of §5.2.2 where we have shown that this Z)-algebra is local. So

eQe also is local.
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Consider the Peirce component ¢'Qe’.

particular it is local.

As an R-algebra, this component is isomorphic to efe, in

Consider the Peirce component fQf. We have the following isomorphism of R-algebras.

fQf N {(a,b,c,d)eRXﬂaEQb,aE4canda+dEgb+c}
0 0 00 b
( 0)7( 0(1)7 b 7Cad — ((I, 7C>d)

Recall that (b7, bs, by, b1g) is an R-linear basis of fQf. The images of these four elements form the
R-linear basis ((1,1,1,1),(0,2,0,2),(0,0,4,4),(0,0,0,8)) of the right hand side.

To verify that this is an isomorphism using the description of 2 in (34), note that if (a,b,c,d) is
contained in the right hand side, than (a, b, ¢, d) also satisfies the ties b =4 d and ¢ =2 d.

So the right hand side equals L4 of §5.4; cf. (25). We have shown that L4 is local; c¢f. Remark 162. So
fQf also is local.

Ad (2). By (1), the R-algebras eQe, ¢/Qe¢’ and fQf are local. Applying Remark 139.(2), we obtain
that e, ¢’ and f are primitive in Q. O

6.3 Tori in [(Q2)

Keep the notation of §6.1.

An R-linear basis of Z(£2), the center of €, can be chosen as follows.

basis element expressed in the basis B of 2
1 1 1 _
(( 1)7( ll)a( 11)7171> - b1+b4+b7
0 2 -2
(o), (2,) (T 2,).2-2) = batbs+ 26— 2y
0 0 8 (36)
(( 0)7( OO>7< 88))0)8> = b3+bb+4b8
0 0 0 _
(o) (o) Cog)ota) = o
0 0 0 _
(( O)7< 00>7< 00)7078> - blO
Recall the Peirce decomposition 1g = e + ¢’ + f from §6.1. Note that e = by, ¢/ = by and f = b7.
As an R-submodule of Q N A, define
to := R(b1 + ba + b7, ba + bs + 2b7 — 2bs, b3 + bg + 4bs, by, bio, ¢, €', f).
Then tg is a Lie subalgebra of [((Q2 N A).
We obtain that ty is an integral torus in [(€2); cf. Lemma 129.
We can shorten this generating set to an R-linear basis of {y as follows.
to = R(b1, ba, b7, b2 + b5 — 2bs, b3 + b + 4bs; by, b1o) (37)

By intersecting © with A, we get the full diagonal of © in I'; cf. Definition 117. Then [(Q N A) is a
maximal rational torus in [(£2); cf. Lemma 120. So we define

T:=QNA.

This is a maximal commutative subalgebra of ; cf. Lemma 121.

An R-linear basis of the R-algebra T is given as follows.

B := (b1, b2, b3, ba, bs, bs, b7, bg, by, bio)
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Note that e, ¢/, f € T and the Peirce components eQe, €’Qe’ and fQf are commutative. So T is a direct
sum of Peirce components of €; cf. also Lemma 140.(1).

T=eQede® fQUf =TedTe &Tf (38)
We can describe elements of T' as tuples of matrices with ties; cf. equation (34).
a 0 1)171 0 0 C1,1 0 0
T = ((1)1 ) ) 0 bo 0], 0 2 0],de]er
22 0 0 b3z 0 0 ¢33

2a;; — bi; —ci; =g 0 forie{l,2}

)

bm’ —Cii =4 0 forie {1,2}

b33 —c33 =2 0
b373 — d =4 0
c3z3—e =4 0
d—e =9 0 }
b33 —c33—d+e =g 0

This leads to the following illustration of T" where we omit the tie b33 — c33 =2 0 since this tie is
already implied by the other ties for T

R 0] 0

0 R 0

0l0 R

1

T—ana=| |® 423 @

0 R 5
i

R 0] 0

0 R 0

0 0 R

By identifying [(Q2) := Q as R-modules and equipping [(2) with the commutator Lie bracket
[—,=]: Q) x(Q) — Q)
(z,y) = [zy] =2y -y,
[(2) becomes a Lie algebra over R. Similarly we obtain the Lie algebra [(T") over R.

We want to verify the maximality of the rational torus [(T') C [(Q2), using Lemma 112. It suffices to
show that

¢y (U(T)) = UT).

!
Ad ¢ )(I(T)) € (T). Suppose given

a1 ais big bi2 b3 c1,1 €12 €13
€T = <a2’1 a2’2> s b271 b272 b2,3 | €2,1 €22 €23 7d7 el e C[(Q)([(T))
’ ’ bs1 b3z b33 €31 €32 €33
We obtain
0 —a 0 b2 —bi3 0 —c12 —c3
0= [,b1] = zby — b = <a21 01’2) b2 0 0 |l 0O 0 ],00],
’ b3,1 0 0 C3,1 0 0
0 a 0 1)172 0 0 C1,2 0
0= [x, 54] =xby — byx = ( a (1)’2) s —b271 0 —52,3 , | —¢2.1 0 —C23 ,0, 0
—az1
’ 0 5372 0 0 C3,2 0



This shows = € [(T).

!
Ad ¢y (I(T)) 2 UT'). Since elements of T" are tuples of diagonal matrices, [(T') is an abelian Lie
algebra over R, showing I(T") C ¢y q)(I(T)).

So we have shown that ¢q)([(T")) = ((T') and thus we have verified the maximality of the rational
torus [(T') C [(Q) by direct calculation.

Now we want to show that [((7") C [(€2) is not an integral torus.

We have the element
0 0 000 0 00
bg = < ), 00 0},{0 0 0],0,2]€UT).
0 0 0 0 0 2

We want to determine the describing matrix (adyq) bs)s,5 of the adjoint endomorphism adq) bs with
respect to the R-linear basis B of [(2). This requires the Lie brackets [bg,b;] for j € [1,24]. The
matrix (adyq)bs)s,s contains on position (i,j) the coefficient a;; € R for 4,5 € [1,24] such that
[bg,bj] = Zi€[1,24] am-bi for j S [1,24].

We have bge = ebg = 0 and e’bg = bge’ = 0 and fbg = bgf. This means that there are only zeros in the
columns corresponding to the basis elements of eQe, eQe’, €'Qe, €/Qe’ and fQf.

For the remaining basis elements of eQf, €'Qf, fQe and fQe’, we obtain the following.

[bs,b14] = —bis
[bg,b15] = —2b15
[bs,b19] = —bao
[bg,b2o] = —2ba
[bg,ba1] = bao
[bs,b22] = 2b2
[bg, ba3] = bay
[bs,bos] = 2byy

Thus we obtain

(adyq) bs)B,5 =

[elelelelelelelelel jelelelolelolelololelelole o]

[elelololelelelele] Velolelelolelelolelelolololo)

[elelolel dolelelolelelolelelelelelolelololeolaolo)

[elelele) Veleleleleleleleleleleleloelalololelaol]

[elelololeleleleleleleleleleloeleloloelalololelolo)
[slelelolelelelelelelelolelelolelelolaloloolol)
[elelolelelelelelelelelolelelolelelolelololelolo)
[elelololelolelelolelelolelelelelelolelololololo)
[elelelelelelelelelelelelelelelelelolaloloelol]
[elelelelelelelelelolelelelelolelololelelolelol)
[elelolelelelelelelelelolelelolelelolelololeololo)
[elelolelelolelelolelelelelelelelelelelololololo)
[elelololelelaleleleleleleleleleleloelalolo)elal)
[elelelelelelelelelelelelelelololelolelololelola)
[slelololelelelelolelelolelelolelelolelelolelolo)
[elelolelelolelelelelelelelelelelelelelololololo)
[slelelolelelalelelelelolelelelelelolaloloelol]
[elelelelelelelelelelelelelelolelelolalololelolo)
[slelelolelelelelelelelolelelolelelolaol oo olol)
[elelolelelelelelelelelolelelolelelolelololelolo)
[slelielelelelelelelelolelelolalelolaloloolol]
[e=le] Vielelelelelelelelelelelolelelolelololelolo)
[ elelololololelelolelelolelelolelelolelololol]
|Nelelelelelelelelelelelelelelelaleloleloloalo]
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This matrix is diagonalizable over Q, e.g. we have the diagonalizing matrix Y € GL24(Q) as follows.

OO0 OOHNOODOODODODODOODOOOO

[elelelely Vielelelelelelelelelelelolalololelol]

>.<
I
[elelolelelelelelelelelolelelolelelolelelolololg
[elelololololelelolelelolelelolelelelelelolal o]
[elelelelelelalelelelelelelelelelelelalala)olale]
[elelelelelelelelelolelelelelolelelolelel o felel)
[slelololelelelelolelelolelelolelelole) lolelele]
[elelolelololelelelelelolelelolelele) jololololo]
[elelelolelelalelelelelelelelelelel ol ololelole]
[elelelelelelelelelelelelelelole) jolelelolelel]
[slelololelolelelolelelolelelol jololelelolelolo)
[elelololelelelelelelelelelel lelelelolololololo)
[elelelolelelalelelelelelel lolalelolaloloelol]
[slelslelelolelelslelelel dololeleloelalelolelol]
[elolololelelelololelel doleleleleloleloelololol]
[slelelelelelalelielelelelelolelelolaloloel o)
[elelolelelelel delelelelelelolelelolelololeolol)
[eleloleleleol delolelelolelelolelelolelololololo)
[=lelg Vielelelelelelelolelololelelolololo ol o]
LMOOOOOOOOOOOOOOOOOOOOOO
[slelolelelelelelel delelelelelelelelelololololo)
[elelelel delelelelelelelelalolelelolaloloelolo)
[elelielelelelelelelelelelelololelolelelolelal)
=l=lelolelololelolelelolelelolelelolelololel]

We have det(Y) = —16. This implies that vo(det(Y)) = 4 # 0. In particular, Y ¢ GLgy(R) since
—16 is not a unit in Zy). We write A := (adyq)bs)ss. The first twenty columns of YV form an
R-linear basis of (E4(0)) N R2**! the twenty-first and twenty-second column form an R-linear basis
of (Ea(—2)) N R***! and the two rightmost columns form an R-linear basis of (E4(2)) N R?**! which

we will confirm with the following Magma code.

We will construct matrices W, D, S and T using the notation of Lemma 49. For A € {0,—2,2} a Z-
linear basis and thus also a Zy)-linear basis of the eigenmodule EA(A) = E(aq g, bs)5 5(A) can then be

obtained from the first twenty (for A = 0) resp. two (for A = —2 or A = 2) columns of the corresponding

matrix S~!'. Change the considered eigenvalue in the first line of the Magma code.

Magma Code 12: z2s4FigenmoduleBasis

lambda := 0; // eigenvalues are 0, -2 and 2.

A := RMatrixSpace (Rationals(),24,24)!0;

A[15,14] := -1; A[15,15] := -2;

A[20,19] := -1; A[20,20] := -2;

A[22,21] :=1; A[22,22] := 2;

A[24,23] :=1; A[24,24] := 2;

W := Transpose (BasisMatrix (Eigenspace (Transpose (A),lambda)));

for i in [1..NumberOfColumns (W)] do

MultiplyColumn (~W, 2" (=1 (Minimum ([Valuation(W[j][i],2):3 in [1..

NumberOfRows (W) 11))), 1i);
end for;
D,S,T := SmithForm (W) ;
print S*-1;
By Corollary 48.(1) we conclude that A = (adq) bs)5 5 is not diagonalizable over Z ).
We conclude that [(T") is not an integral torus in [(€).
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For the sake of completeness, we give Y ~! and the matrix product Y1 - (adyq) bs)s,5 - Y. We have

y=

[eNeBeoNoloNoNolololololoRoloolololoRoloBoloRoll 5

[eNeloNoBoNoNoNololololoNolooloBoloNoNoNoNal =

[eNeNeNoleNoNoNoNelololoNoleoNoloNeoloNoNeNol S k=]

[eNeBeBoloNoNololeoh=RoleolslololololaoRal o =l ==}

[eNeoleoNoloNoNolololololoRololololo ool o =l =R =]

QOO OO OO0 OO+HOOOOO

[eNeNoeNoleNoeNoNoNelololoNoleNoloNaell S = l=Nololoio]

OO OO OO0 O0DODODO0OO0OO0DO0OO0OOHOOOOOOO

OO OO OO0 OOHOODOOOOOO

QOO OO OO0 OHODODODOOOOOO

[=NeBolBoleBeoBoBololoBoBoRol ===l ool o]

O OO0 OO0 O0OOHOODODODOOODOOO OO

[cNoNoNeoNeNoNoNoNoeNeNoll oo NolloNololololNolo ool

[=NeNellloNoNoNeNeNolMHoNoloNoNoNoNoNoNoNoNoNoNo)

O OO HFHR OO ODO0ODODODODODODODODODODO0OODOOOOOO

O O OO OO0 OODDODODDODODODODOOOOOO0O

OO OO OO0 OHOODODODOODODODOODOOOOOO

QOO OO OO OHOODODODODODODOODODOOOOOOOO

O ONHFO OONFO OO OO0 OOO

OO H O OO ODODODODODODODODODODOODOOOOOO

ONFO O ONFO OO0 0000000

ORF OO 00000000000 OOOOOO

MO O ONFO O 000 0000000000000 O

H O OOOOO0ODO0OOO0OOO0OO0OOOOO0OOOOCOOOCO

S GL24 (Q) .

We have

Y~ (adyq) bs)pp - Y = 0

Alternatively we can use the function “rdiag” from Magma Code 4.

6.4 The integral core of the standard torus [(T) in [(12)

Keep the notation of §6.1 and §6.3.

Since we found out that [(7") is not an integral torus in [(€2), the question for a maximal integral
torus in [(§2) arises. We recall the definition of the integral core of a rational torus [(T") in [(Q); cf.
Definition 130.

We have an orthogonal decomposition of the identity element of €2 into primitive idempotents in {2, viz.
1 =e+e + f. By Corollary 126, we know that adyq)(e), adq)(€¢') and adq)(f) are R-diagonalizable.
In fact, the describing matrices of these three maps with respect to the R-linear basis B of {2 are
already diagonal.
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Alternatively, to verify the R-diagonalizability in Magma, type the following instructions.

Magma Code 13: z2s4RDiagldempotents
load pre;
load z2s4Initl;
load definitions;
load z2s4Init2;

rdiag(admatrix(b[1]),2);
rdiag(admatrix(b[4]),2);
rdiag (admatrix(b[7]),2);

To determine the integral core of [(T) in [(Q2), we use Magma.

Calculating the integral core starting with an arbitrarily chosen basis
Recall that By = (b1, ba, b3, ba, bs, bg, b7, bs, by, b1o) is an R-linear basis of T'. For i € [1,10], we denote
by A; := adq)(bi)s,s the describing matrix of the adjoint endomorphism adyq)(b;) with respect to
the basis B. Let A = (A1, Ao, As, Ay, A5, Ag, A7, As, Ag, A10) be the tuple of these ten matrices. We
will start the Partitions Algorithm 94 using this cd-tuple on R?4*24,

Since the calculations lasted several hours, we give the output here. However, the duration strongly
depends on the choice of the basis.

Magma Code 14: z2s4IntegralCore
load pre;
load z2s4Initl;
load definitions;
load z2s4Init2;
load partalgo;

time Partalgo (A);
1 = 13 , there are 27644437 partitions to check.

List of finest partitions contains 1 element (s).
Partitions in I_eff:

A Z_(p)-linear basis of the diagonalizability locus 1is given by the
columns of the following matrix.

[1 O O 0O 0 0 0]
[ O 0O O O 0O 0 1]
[ O 0O O O O 1 0]
[ O 1 0O 0 0 0 0]
[ O O O O 0O 0 1]
[ O 0O O O O 1 0]
[ O 0O 1 0 0O 0 0]
[ O 0O O 0O 0 4 -2]
[ O 0O O 1 0 0 0]
[ O 0O O O 1 0 0]
Time: 41690.534

This is to be interpreted as follows.

COI“[(Q)([(T)) = g(b1, b4, by, by, b1o, b3 + bg + 4bg, by + bs — 2bg) (40)
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We want to show that Corq)(I(T)) = to.

We have
= (0 () (1) 00)
e (0. (1). (1) 00) ¢
e (0 (o). () )
by = <(00) ’ (000) ’ (000> ’4’4> € Z(Q)
= (0 (o) () 05) 20
by + b + 4bs = ((00) , (000) : (888) ,0,8) € 7(Q)
by + bs — 2bg = <(°0) , (220) , (_2—2 4) .0, 4)

Note that bs + b5 — 2bg + 2f is a central element in §2, so by + bs — 2bg € 9.
This shows that Coryq)(I(T)) C to.

!
To see that Coryq)(I(T')) 2 to, note that e,e’ and f and the elements of the R-linear basis of Z(2) of
(36) are contained in Coryq)(I(T')); cf. (36) and (40).

Hence we obtain Coryq)(I(T)) = to. This means that in this example, we have equality in Question 135.

Moreover, note that the list of finest partitions found in the algorithm consisted of one element. So
here we have an affirmative example for Question 93.

Calculating the integral core using Remark 59

We will use Remark 59 to achieve a better runtime of the algorithm and to show that the duration
strongly depends on the choice of the basis. This time we start with the R-linear basis of tg we found
in equation (37). We extend it to an R-linear basis of T

C := (b1, ba, bz, by + bs — 2bg, bg + bg + 4bg, by, bio, bs, be, bg)

In our implementation of the Partitions Algorithm, the matrices of the cd-tuple under consideration
that are R-diagonalizable are considered separately; cf. Algorithm 94. So using the cd-tuple that
contains the describing matrices of the elements of C with respect to the basis B of [(2), the main part
of the algorithm is executed only for the describing matrices of the adjoint endomorphisms ad[(Q)(b5),
ady()(bs) and adyq)(bs). The following Magma code shows the results.

Magma Code 15: z2s4IntegralCore2
load pre;
load z2s4Initl;
load definitions;
load z2s4Init2;
load partalgo;

C := [b[1l],b[4],b[7],SubTup (b[2]+b[5]

AddTup ([b[3],b[6],ScalMultTup (b[8
List := [RMBQ'!'admatrix(X) : X in C];
time Partalgo(List);

/o [8]+b[8]),
1,4)]

1 = 9 , there are 21147 partitions to check.
List of finest partitions contains 0 element (s).
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There is no non-trivial linear combination of the given matrices that is
Z_(p)—-diagonalizable.

A Z_(p)-linear basis of the diagonalizability locus is given by the
columns of the following matrix.

00 0 0]

o

O O O O O o o o o
O O O O O O o o+ o
O O O O O O o+ O
O O O O O O Fr OO
U O O O O O O o o o
O O O O OO o O
O O O OO O O
L e e e e e e e

(
(
(
(
(
[
(
(
[
(
T

N

ime: 5. 7

Here the choice of the basis reduced to runtime by a factor of about 7900.

0 8
Remark 169. We have the element x := ((00) , ( 00> , < 88) ,0,0) = b3y + bg + 4bg — b1g € Z(Q2).
So we obtain adq)(z) = 0.

We project « on the Peirce component ef2e of {2. Then we have

ere = <(00) , (000> , (800> ,0,0) = b3.

But we see that adq)(exe) is not diagonalizable over R since b3 € [(T') but b3 ¢ Coryq)(I(T)) as we
see e.g. using the R-linear basis of Coryq)(I(T)) we found in equation (40).

This shows that in general, for a discrete valuation ring and an R-order €2, the R-diagonalizability of
ady)(x) does not imply the R-diagonalizability of adq)(exe) for x € Z(£2) and an idempotent e in a
orthogonal decomposition of 1g into primitive idempotents where every idempotent is in A.

Note that e and x are elements of Corq)(I(T')), but ex is not. So Coryq)(I(7')) is not an R-subalgebra
of Q.

6.5 Decompositions of (2

Let Q be defined as in §6.1. Let T be defined as in §6.3. Let the R-linear basis B of 2 be defined as
in §6.1. Let the R-linear basis By of T be defined as in §6.3. Let the primitive idempotents e, e’ and
f be defined as in §6.1.

We are interested in a decomposition of €2 into indecomposable submodules. On the one hand, we will
decompose Q as a T-T-bimodule. On the other hand, we will decompose [(2) as an [(T)-Lie module.

6.5.1 A decomposition of () into T-T-sub-bimodules

Recall the Peirce decomposition of ; c¢f. (35). In the following we will show that this decomposition
of Q) is already a decomposition into indecomposable T-T-sub-bimodules of 2.

The Z,)-algebras eQde, ¢'Qe’ and fQf are commutative, so the T-T-bimodules Te = eQe, Te' = €'Qe’
and T'f = fQf are indecomposable; c¢f. Lemma 140.(2), using Lemma 121 and Remark 168.(1).

So it remains to show the indecomposability of the T-T-bimodules where two different idempotents
are involved.
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Ad e'Qf.
We want to show that €’Qf is indecomposable as a T-T-bimodule.
Define By := (b1g, bag) which is an R-linear basis of €/Qf.

For a better distinction between the basis elements of {2 and the basis elements of €/Qf, we write

000 000 000 000
me= o= ((6), (388) - (688)00) =2 o=t = ((85). (885) - (883) -0.0)-

Thus we obtain By = (21, z2).
It suffices to show that the endomorphism ring Endyp(e/Qf) is a local ring; cf. Lemma 35.

First we will give a description of this ring and then we will determine all elements in this ring.
Afterwards we will see that Endr.7(€/Qf) is local.

We have

Endp.p(e'Qf) = {h € Endg(e'Qf) | h(bizj) = bih(z;) for i € [1,10], j € [1,2] and
h(%ﬂ)z) = h(%ﬂbz for i € [1, 10}, JjE [1,2]}.
For ¢ € [1,10] we define Mg, ;1 to be the describing matrix of the multiplication by b; on €/Qf from

the left with respect to the basis B;. For j € [1,10] we define Mp, ;. to be the describing matrix of
the multiplication by b; on €’Qf from the right with respect to the basis B;.

Furthermore, we have the following diagram.

ht hBl,Bl

Endg(e'Q2f) 2 R?x2

~

EndT_T(e’Qf) — Y1 (EndT_T(e’Qf)) =: F

Here the map ;: Endg(e’Qf) — R?*? is the R-algebra isomorphism sending a map h € Endg(e’Qf)
to its describing matrix in the algebra of 2 x 2-matrices over R with respect to the basis By. Since ¢
is an R-algebra morphism, F; is a subalgebra of R2*2.

Then we have

Endp.r(e’Qf) ~ Ey = {M € R*? |M - Mp, ;1 = Mg, ;) - M for i € [1,10] and (41)
M - Mp, j. = Mg, j.- M for j € [1,10]}.
First we will give the products b; - #; and z; - b; where i € [1,10] and j € [1,2].
We use the results to calculate the matrices Mg, ;1 and Mp, ;. for i € [1,10].

i bi-w1 | bi-wa | Mg,y |@1-b; | 22 b; | Mp, i
1,2,3 0 0 (80) 0 0 (80)
1 1 2 | (o1) | O 0 | (00)
5 |2z —2x0| —2z2 [ (L3.9)] 0 0 (60) 2
6 Az 8y | (39) | 0 0 | (89)
7 0 o | @B | = | = | G
8 0 0 | B9 | = | 22 | (99)
9,10 0 o | 39 | o 0 | (89)
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Note that (8 8) and ((1] (1]) are central elements in R2*2, so we can omit these matrices in the description
of Eq. Also note that Mp, 61 = 4-Mp, 8, 50 we have just to consider one of these two matrices. Thus

we have
2 0 2 0 00 0 0
()= (8 o) arman () = (7 5) .
59) + (=2) - (19) where (§9) is a central element in R?>*2. Thus for M € R?*? we
(99) - M if and only if M - (_5_9) = (_3_9) - M and so

00 00
M.<1 2>—<1 2>-M}. (43)
But this is Cr2x2(A1) of §56.1. So E; = Ly; cf. (19) in §5.1. We have shown that L; is local; cf.
Remark 156. So we conclude that Fj is local and thus €’Q)f is indecomposable as a T-T-bimodule.

E, = {M € R?*?

But (_% _8)
have M - ((1)

= (
) =

0
2

E| = {M € R?*?

Ad eQf.
We want to show that e€)f is indecomposable as a T-T-bimodule.
Define By := (b14, b15) which is an R-linear basis of e} f.

We write
001\ /001 000\ /002
rai= b= ((88). (853) - (888)0:0) o= us = ((88). (385) - (388) 00)
Thus we obtain By = (z3, z4).

It suffices to show that the endomorphism ring End7.7(e2f) is a local ring; cf. Lemma 35.
We have

Endr.r(eQ2f) = {h € Endgr(eQ)f) | h(biz;) = bh(x;) for i € [1,10], j € [3,4] and
h(xjb;) = h(z;)b; for i € [1,10], j € [3,4]}.
For i € [1,10] we define Mp, ;) to be the describing matrix of the multiplication by b; on eQ f from the

left with respect to the basis Ba. For j € [1,10] we define Mg, j, to be the describing matrix of the
multiplication by b; on e€Q2f from the right with respect to the basis Bs.

Furthermore, we have the following diagram.

ht hlg%lgz

Endpg(e€2f) - R2x2

~

EndT_T(GQf) — P2 (EndT_T(le)) =: F»

Here the map oo: Endg(ef2f) — R?*? is the R-algebra isomorphism sending a map h € Endg(eQf)
to its describing matrix in the algebra of 2 x 2-matrices over R with respect to the basis By. Since (o
is an R-algebra morphism, Fj is a subalgebra of R?*2.

Then we have

EHdT—T(BQf) >~ EQ = {M S R2><2 ’M . MBQ,i,l = MBz,i,l M foric [1’ 10] and (44)
M - Mp, jr = Mg, jr - M for j € [1,10]}.
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We determine the matrices Mg, ;1 and Mg, ;, for i € [1,10].

i bi-xs | bi-wa | Mpyiy |@3-bi | 24 b; | Mpyix
1 T3 T4 (09) 0 0 (30)
2 |23 —2x4 | —2z4 | (53.9)| O 0 | (80)
3 x4 8z4 | (12) 0 0 | (80)
(45)
4,5,6 0 o | 39 | o 0 | (30)
7 0 0 | B | s | w | (9
8 0 0 | (80) | =a | 224 | (93)
9,10 0 o | (80) | o 0 | (80)

But these matrices are (up to permutation) exactly the same as the ones for Ey; cf. (42). So we obtain

00 0 0
(1) =)y @
cf. equation (43). But this is Cpex2(A1) of §5.1. So Ey = Ly; cf. (19) in §5.1. We have shown that

L is local; cf. Remark 156. So we conclude that Fs is local and thus e€)f is indecomposable as a
T-T-bimodule.

Ey = {M € R?*?

Ad fQe.
We want to show that fQe is indecomposable as a T-T-bimodule.
Define Bs := (b1, ba2) which is an R-linear basis of fQe.

We write
000 000
v i= b= ((85).(888)  (468) 0.0) o= = ((85) .

Thus we obtain B3 = (x5, z6).

oo
[cefeten]
()l

06)-(£58) 0.0)-

It suffices to show that the endomorphism ring End7.7(fQe) is a local ring; cf. Lemma 35.
We have
Endp.r(fQe) = {h € Endg(fQe) | h(biz;) = bh(x;) for i € [1,10], j € [5,6] and
h(xzjb;) = h(z;)b; for i € [1,10], j € [5,6]}.
For i € [1,10] we define Mg, ;1 to be the describing matrix of the multiplication by b; on fQe from the

left with respect to the basis Bs. For j € [1,10] we define Mp, ;. to be the describing matrix of the
multiplication by b; on fQe from the right with respect to the basis Bs.

Furthermore, we have the following diagram.

ht h33733

Endg(fQe) s R2x2

~

EndT_T(fQG) —<> Y3 (EndT_T(fQB)) =: E3

Here the map 3: Endg(fQe) — R?*? is the R-algebra isomorphism sending a map h € Endg(fQe)
to its describing matrix in the algebra of 2 x 2-matrices over R with respect to the basis Bs. Since @3
is an R-algebra morphism, Fj3 is a subalgebra of R?*2.
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Then we have

Endrr(fQe) ~ By = {M € R*? |M - Mp, ;1 = Mg, ;) - M for i € [1,10] and (47)
M - Mg, j» = Mg, jr - M for j € [1,10]}.

We determine the matrices Mg, ;1 and Mg, ;, for i € [1,10].

i | biows | biowe | Mgy | wsobi | @6-bi | Mpy
1 0 o | (99) x5 ze | (49)
2 0 0 | (80) |2w5— 22| —236 | (_5_9)
3 0 0 | (89) dze 8z¢ | (12) .
4,56 0 0 | (89) 0 0 (69)
Tl e | o | (6)) 0 0 | (o0)
8 | @ | 2w | (19) 0 0 | (0)
9,10 | 0 0 | (30) 0 0 (69)

But these matrices are (up to permutation) exactly the same as the ones for Ey; cf. (42). So we obtain

0 0 0 0
e 3a) =) g @
cf. equation (43). But this is Cgex2(A41) of §5.1. So Es = Ly; cf. (19) in §5.1. We have shown that

L is local; cf. Remark 156. So we conclude that Fj is local and thus fQe is indecomposable as a
T-T-bimodule.

Es = {M e R?*?

Ad fQe'.
We want to show that fQe’ is indecomposable as a T-T-bimodule.
Define By := (ba3, bag) which is an R-linear basis of fQe’.

We write

Thus we obtain By = (27, z3).
It suffices to show that the endomorphism ring Endyp(fQe’) is a local ring; cf. Lemma 35.
We have
Endr.p(fQe’) = {h € Endg(fQe’) | h(bjzj) = bih(z;) for i € [1,10], j € [7,8] and
h(z;b;) = h(z;)b; for i € [1,10], j € [7,8]}.
For ¢ € [1,10] we define Mg, ;1 to be the describing matrix of the multiplication by b; on fQe’ from

the left with respect to the basis B4. For j € [1,10] we define Mp, ;. to be the describing matrix of
the multiplication by b; on fQe’ from the right with respect to the basis By.

Furthermore, we have the following diagram.

hi h34,34

Endg(fQe) o R2x2

~

EndT_T(er’) —<= ¥4 (EndT_T(er’)) = E4
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Here the map 4: Endg(fQe’) — R?*? is the R-algebra isomorphism sending a map h € Endg(fQe’)
to its describing matrix in the algebra of 2 x 2-matrices over R with respect to the basis Bs. Since ¢4
is an R-algebra morphism, Fj is a subalgebra of R2*2.

Then we have

EDdT-T(er/) ~ E4 = {M = R2><2 ’M . MB4,i,l = MB4,i,1 .M fori e [1’ 10] and (50)
M - Mg, jr = Mpg, ;- M for j € [1,10]}.

We determine the matrices Mg, ;1 and Mg, ;, for i € [1,10].

i | birxr | bicws | Mpyaa | x7-bi | wsbi | Mgy
1,2,3] 0 0 | (99) 0 0 (69)
4 0 0 | (50) w7 zs | (oY)
5 0 0 | (80) |2v7—2zs| —235 | (_53_9) -
6 0 0 (60) 4xg 8zs | (19)
T e | oas | (6Y) 0 0 | (o)
8 vs | 2zg | (1) 0 0 (60)
9,10 | 0 0o | (89) 0 0 (00)

But these matrices are (up to permutation) exactly the same as the ones for Ey; cf. (42). So we obtain

0 0 0 0
1) =) e
cf. equation (43). But this is Cpex2(A1) of §5.1. So E4 = Ly; cf. (19) in §5.1. We have shown that

Ly is local; cf. Remark 156. So we conclude that Fj is local and thus fQe’ is indecomposable as a
T-T-bimodule.

E, = {M € R?*?

Ad eQe.
We want to show that eQe’ is indecomposable as a T-T-bimodule.

Define Bs := (b11, b2, b13) which is an R-linear basis of eQe’.

We write
010 010 020 0-20
roe=bu = ((80). (356) - (398) 0.0)  ewos=ba = (), (335) (3 33) 0.0)
00 000 080
e = b = ((38)-(685) - (889) -00)-

Thus we obtain 85 = ($9,$10, :L‘H).
It suffices to show that the endomorphism ring Endp.p(eQe’) is a local ring; cf. Lemma 35.

We have

Endr.r(eQe’) = {h € Endg(eQe’) | h(bjz;) = bih(z;) for i € [1,10], j € [9,11] and
h(zjb;) = h(z;)b; for i € [1,10], j € [9,11]}.
For i € [1,10] we define Mp, ;) to be the describing matrix of the multiplication by b; on efe’ from

the left with respect to the basis Bs. For j € [1,10] we define Mp, j, to be the describing matrix of
the multiplication by b; on eQe’ from the right with respect to the basis Bs.
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Furthermore, we have the following diagram.

hi h55755

Endg(efe’) o R3*3

Endy.p(eQe’) —= ¢5(Endr.r(eQe)) =: E5

Here the map ¢5: Endg(eQe’) — R3*3 is the R-algebra isomorphism sending a map h € Endg(eQ2e’)
to its describing matrix in the algebra of 3 x 3-matrices over R with respect to the basis Bs. Since 5
is an R-algebra morphism, Fj is a subalgebra of R3*3.

Then we have

Endr.r(ee) ~ E5 = {M € R3%3 |M - Mg, ;1 = Mp, ;- M for i € [1,10] and (53)
M ) MBs,j,I‘ = MB57.j7r ’ M for J € [17 10]}'

We determine the matrices Mg, ;) and Mg, ;, for i € [1,10].

[ bi-xg| bi-xi0 |bi-win| Mpgiy |29-bi| x10-bi | w11-bi | Mpg iy
1 010 0 0 0 000
9 10 1 (001) <000>
2 2 2 12 0) | o 0 0 000
10 T10 + X11 | —22%11 (01_2) (000>
; 58 i
T11 —21‘11 85611 <1728> 0 O 0 <000>
(54)
000 100
S B I R B &) I O I 3
000 00 0
) 0 0 0 (888) 10 | 2210 + 211 | —2711 <(1)%_(2))
000 0 00
6 0 0 0 (888) T11 —2x11 8x11 (?_82)
000 000
7.8,9.10| 0 0 0 (ooo) 0 0 0 (ooo)
000 000
We omit the matrices that are central in R®*3. It remains
353 00 0 00 0 0 00 0 00
E5:{M€R M-<12 0):(12 0).MandM.<o 00):(0 00>.M}, (55)
01-2 01-2 1-28 1-28

But this is Crex2(Az) of §5.2. So E5 = Lg; cf. (21) in §5.2. We have shown that Lo is local; cf. Remark
158. So we conclude that Ej is local and thus eQe’ is indecomposable as a T-T-bimodule.

Ad €'Qe.
We want to show that €’Qe is indecomposable as a T-T-bimodule.

Define Bg := (b1, bi7, b1g) which is an R-linear basis of ¢'Qe.

We write
000 000 000 000
me=hio = (1), (308). (388).0.0) o= bir = (36), (388)  (-388) 0.0)
00 000 000
zia=bis = ((36), (200) . (500) ,0,0).

Thus we obtain Bg = (212, 13, T14).
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It suffices to show that the endomorphism ring Endp.p(e'Qe) is a local ring; cf. Lemma 35.
We have

Endy.p(e'Qe) = {h € Endg(e'Qe) | h(biz;) = b;h(x;) for i € [1,10], j € [12,14] and
h(ijz) = h(l‘j)bl for ¢ € [1, 10], Jje [12, 14]}.
For ¢ € [1,10] we define Mp, ;) to be the describing matrix of the multiplication by b; on €'Qe from

the left with respect to the basis Bg. For j € [1,10] we define Mp, ;. to be the describing matrix of
the multiplication by b; on €'Qe from the right with respect to the basis Bs.

Furthermore, we have the following diagram.

hy his B

Endg(e'Qe) A R3x3

Endr.7(e'Qe) —= ps(Endr.r(e'Qe)) =: Eg

Here the map @g: Endg(e’Qe) — R3*3 is the R-algebra isomorphism sending a map h € Endg(e'Qe)
to its describing matrix in the algebra of 3 x 3-matrices over R with respect to the basis Bg. Since g
is an R-algebra morphism, Fg is a subalgebra of R3*3.

Then we have

Endy.r(e'Qe) ~ Eg = {M € R*3 |M - Mg, ;) = Mg, ;) - M for i € [1,10] and (56)
M - Mpg jr = Mpg jr- M for j € 1, 10]}.
We determine the matrices Mp, ;) and Mg, ;r for i € [1,10].
bi-wi2| bi-x13 | b4 | Mpgiy | T12-bi | w13-b; | 2140 | Mpgix
000 100
0 0 0 (888) 12 13 T14 (86?)
000 00 0
0 0 0 (888) w13 | 2w13 + 21 | 2214 (ég_g)
000 0 00
0 | o o [ (88) | me | e | sma (9 90)
(57)
100 000
4 T19 x13 T14 (8(1)(1)) 0 0 0 (888)
00 0 000
13 | 2713 + 714 | —2714 (é%_g) 0 0 0 (888)
0 00 000
X14 —2x14 814 (? _gg) 0 0 0 (888)
000 000
7.8,9,10| 0 0 0 (ooo) 0 0 0 (ooo)
000 000

But these matrices are (up to permutation) exactly the same as the ones for Es; cf. (54). So we obtain
00 0 00 0 00 0 00

M.(12 0):(12 0)~MandM~< 00):(0 00>.M},
—28 1-28

0
0
01-2 01-2 1
cf. equation (55). But this is Cpex2(A2) of §5.2. So Eg = Lo; cf. (21) in §5.2. We have shown that
Ly is local; cf. Remark 158. So we conclude that Fg is local and thus ¢’Qe is indecomposable as a
T-T-bimodule.

&Z{MGR“3

(58)
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We summarize.

We obtain the following decomposition of ) into a direct sum of T-T-sub-bimodules of 2.

= (((68). (558) - (388)-0.0) ((88). (888) . ("839).0.0).
(69)- (358)- (358) - 0.0)»
o n(((69), (528). (820)0.0), ((59). (820) . (5-22) 0.0).
(39)-(365) - (85) -0.0)
@ n(((39). (888) . (388) . 1.0). ((59). (B83) . (£88) .0.2).
(38)-(398) - (388)-4.4)- (B9 (339) - (588) 0.8)
@ al((39). (381)- (381) .0.0). (188). (£83) . (88%) .0.0))
@ n(((89). (330) . (880) .0.0).(39). (B33) . (832 .0.0))
@ n(((99). (835) . (385) .0.0). (39). (33) . (238 .0.0))
@ n(((89). (345) . (355) .0.0). (39). (£33 . (885 .0.0))
@ nl((38). (388) - (389)0.0) ((83). (858) . (8 88) -0.0).
(69 (358)- (358) - 0.0)»
o r(((98). (300) . (102),0.0). ((88)- (268) . (-208) .0.0).
(39)-(368) - (388) -0.0)

In this decomposition, all summands but 7" are indecomposable as T-T-sub-bimodules of 2.

This decomposition is the same as the following decomposition where we write the indecomposable
T-T-bimodules as Peirce components.

Q=eQe® Qe © fQAf DOf D eQUf D fQe D fQ D eQle @ e'Qe (59)

By applying Lemma 144 we conclude that all summands in this decomposition are non-isomorphic to
each other.

So we have found out that the Peirce decomposition of §6.1 is already a decomposition of € into
indecomposable T-T-sub-bimodules of §2; cf. equation (35) on page 125.

Recall that Te = eQe, Te' = €'Qe’ and Tf = fQf are local; cf. Remark 168.(1). By Lemma 25, the
T-T-endomorphism rings Endy.7(eQe), Endp.p(e'Qe’) and Endpp(fQf) also are local.

So we were able to show that all indecomposable summands have local T-T-endomorphism rings.

6.5.2 A decomposition of [(2) into [(T)-Lie submodules

Keep the notation of §6.5.1.

We consider the Lie algebra [(2) as an [(T)-Lie module over its Lie subalgebra [(T"). We are interested
in a decomposition of the [(T")-Lie module [(£2) into indecomposable [(T)-Lie submodules.

Recall that T' is commutative. We conclude that [(7) is an abelian Lie algebra over R, hence T is a
trivial [(T')-Lie module. This entails that 7" decomposes into [(T")-Lie submodules of rank 1 over R.
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Let X C T be such a summand of rank 1 over R. Then X is a trivial [(T")-Lie module and so
Endy7)(X) = Endg(X) ~ R. This shows in particular that the endomorphism ring End)(X) is a
local ring.

It remains to decompose the Peirce components where two different idempotents are involved. The
calculations and arguments are similar to those in §6.5.1.

Ad €'Qf.
We want to show that €/Qf is indecomposable as an [(T')-Lie module.
Recall that By is an R-linear basis of ¢/Qf.
It suffices to show that the endomorphism ring Endy7)(e’$2f) is a local ring; cf. Lemma 35.
We have
Endyr(¢'Qf) = {h € Endg(e'Qf) | h([bi, z;]) = [bs, h(x;)] for i € [1,10], j € [1,2]}.

For ¢ € [1,10] we define Mg, ; to be the describing matrix of the Lie bracket with b; on ¢/Qf with
respect to the basis By, i.e.

Mg, i = (adeqasbi) g, g, € R for i€ [1,10].

Furthermore, we have the following diagram.

ht hBl,B1

Endp(¢/Qf) 7 R>¥2

s

Endyp(e/Qf) —= &1(Endy)(e'2f)) =: E1

Here the map @1: Endg(e’Qf) — R?*2is the isomorphism of R-algebras sending amap h € Endg(e/Q1f)
to its describing matrix in the R-algebra of 2 x 2-matrices over R with respect to the basis B;. Since
©1 is a morphism of R-algebras, F is an R-subalgebra of R?*2.

Then we have
Endyry(¢'Qf) ~ Ey = {M € R¥?| M - Mg, ; = Mg, ;- M for i € [1,10]} . (60)
Now note that (adeqf bi)(x) = [bi, x] = bjx — xb; for x € €’Qf. So we obtain the following identity.
Mg, i = (adear bi) g g = Mp,,i) — Mp,ix for i € [1,10] (61)
Recall that for i € [1,10] we have Mg, ;1 = 0 or Mp, ;» = 0; cf. (42). Thus we conclude that
Mp, i€ {Mp,i1,—Mg, i1, Mg, ir,—Mps, ir}- (62)

Using (41), (60), (61) and (62) we obtain that E; = E;. But E; = Cpex2(A)) = Ly; cf. (18) and
(19) in §5.1. We have shown that L; is local; cf. Remark 156. So we have shown that FEj is local. In
particular, Endyy(e’Qf) is local; cf. (60).

Ad eQf.

We want to show that e€2f is indecomposable as an [(T")-Lie module.

Recall that By is an R-linear basis of e€1f.

It suffices to show that the endomorphism ring End7)(ef2f) is a local ring; cf. Lemma 35.
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Define the isomorphism of R-algebras ¢;: Endg(eQf) — R*? by @a(h) = hp,, € R*? for
h € Endg(eQf). Define the R-subalgebra Ey := @2(Endy7)(eQf)) of R**2. Define

Mg, ; = (adeqy bi)g, 5, € R¥* for i € [1,10].
Then Mp,; = Mp, i1 — Mp, ir for i € [1,10]. We have
Endy7(eQUf) ~ Ey = {M € R*?| M - Mg, ; = Mp, ;- M for i € [1,10]} . (63)

Recall that for i € [1,10] we have Mg, ;1 = 0 or Mp, ;» = 0; cf. (45). We conclude that Ey=Ey = Ey;
cf. (43), (44), (46) and (63). But Ey = Cpax2(A;) = Ly; cf. (18) and (19) in §5.1. We have shown that
Ly is local; cf. Remark 156. So we have shown that Ey is local. In particular, Endyr)(eQf) is local;
cf. (63).

Ad fQe.

We want to show that fQe is indecomposable as an [(T)-Lie module.

Recall that B3 is an R-linear basis of fQe.

It suffices to show that the endomorphism ring End)(f€2e) is a local ring; cf. Lemma 35.

Define the isomorphism of R-algebras (pg' Endg(fQe) — R*? by ¢3(h) := hp,p, € R¥? for
h € Endg(fQe). Define the R-subalgebra Ej := @3(Endy7)(fQe)) of R**2. Define

Mg, i = (adjoe bi)g, 5, € R for i € [1,10].
Then Mp, ; = Mp, i1 — Mp, i, for i € [1,10]. We have
Endyr)(fQe) ~ E3 = {M € R¥?| M - Mg, ; = Mg, ;- M for i € [1,10]} . (64)

Recall that for i € [1,10] we have Mp, ;1 = 0 or Mp, ;» = 0; cf. (48). We conclude that Ey = B3 = Ey;
cf. (43), (47), (49) and (64). But Ey = Cpgex2(A;) = Ly; cf. (18) and (19) in §5.1. We have shown that
L is local; cf. Remark 156. So we have shown that E3 is local. In particular, End[(T)(er) is local;
cf. (64).

Ad Q€.

We want to show that fQe’ is indecomposable as an [(T)-Lie module.

Recall that By is an R-linear basis of fQe’.

It suffices to show that the endomorphism ring Endy)(f€¢') is a local ring; cf. Lemma 35.

Define the isomorphism of R-algebras ¢4: Endg(fQe’) — R*2 by @4(h) = hp,p, € R**? for
h € Endg(fQe’). Define the R-subalgebra Ey := @4(Endy7)(fQe’)) of R**2. Define

MB4,i = (adfgel bi)84,84 S R**2 for i S [1, 10].
Then Mg, ; = Mp, i1 — Mp, i, for i € [1,10]. We have
Endyry(fQe') ~ E; = {M € R¥?| M - Mg, ; = Mg, ;- M for i € [1,10]} . (65)
Recall that for i € [1,10] we have Mp, ;1 = 0 or Mp, ;» = 0; cf. (51). We conclude that E,=E,= Eq;

cf. (43), (50), (52) and (65). But Ey = Cgex2(A1) = Ly; cf. (18) and (19) in §5.1. We have shown that
Ly is local; cf. Remark 156. So we have shown that Ej is local. In particular, Endyqp(fQe’) is local;

cf. (65).

144



Ad eQe’.

We want to show that eQe’ is indecomposable as an [(T')-Lie module.

Recall that Bs is an R-linear basis of eQe’.

It suffices to show that the endomorphism ring Endyz)(e€2¢’) is a local ring; cf. Lemma 35.

Define the isomorphism of R-algebras @5: Endg(eQe’) — R3*3 by @5(h) := hpsBs € R3%3 for
h € Endg(eQe’). Define the R-subalgebra E5 := @5(End1)(eQe’)) of R**3. Define

Mp, ;i := (adeqe bi)g, 3, € R¥*® for i € [1,10].
Then Mg, ; = Mp, i1 — Mgy, for i € [1,10]. We have
Endry(eQe’) =~ Es = {M € R¥3| M - Mg, ; = Mg, ;- M for i € [1,10]} . (66)

Recall that for i € [1,10] we have Mp, ;1 = 0 or Mg, ;» = 0; cf. (54). We conclude that Es = Es; of.
(53) and (66). But E5 = Cpsxs(Az2) = Lg; cf. (20) and (21) in §5.2. We have shown that Ls is local;
cf. Remark 158. So we have shown that Ej is local. In particular, Endyy(eS2e’) is local; cf. (66).

Ad €'Qe.

We want to show that €/Qe is indecomposable as an [(T')-Lie module.

Recall that Bg is an R-linear basis of €/Qe.

It suffices to show that the endomorphism ring Endyr) (e'Qe) is a local ring; cf. Lemma 35.

Define the isomorphism of R-algebras gg: Endg(e'Qe) — R33 by @¢(h) = hpgps € R¥3 for
h € Endg(e’2e). Define the R-subalgebra Eg := o6(Endr)(e'Qe)) of R3*3. Define

MBG,i = (ade/Qe bi)Bg,Bg S R3X3 for ¢ € [1, 10].
Then Mg, ; = Mpg.i1 — Mpg,ir for i € [1,10]. We have
Endry(¢'Qe) =~ Eg = {M € R¥3 | M - Mg, ; = Mg, - M for i € [1,10]} . (67)

Recall that for i € [1,10] we have Mp, ;1 = 0 or Mp;r = 0; cf. (57). We conclude that E¢ = Eg = Es;
cf. (53), (55), (58) and (67). But E5 = Cgsxs(Aa) = La; cf. (20) and (21) in §5.2. We have shown that
Ly is local; cf. Remark 158. So we have shown that Ep is local. In particular, Endyp)(e'Qe) is local;
cf. (67).

We summarize.

We obtain the following decomposition of [(§2) into a direct sum of [(T")-Lie submodules of [(€2).
(Q) =T ®eQe ©eQlf ©e'QedQf ® fQed Qe
In this decomposition, all summands but 7" are indecomposable as [(T)-Lie submodules of [(2). The

summand 7" is a trivial [(7)-Lie submodule of [(2).

Note that outside of the rational torus [(T") resp. T, the decomposition of [(2) into indecomposable
[(T')-Lie submodules and the decomposition of € into indecomposable T-T-sub-bimodules coincide; cf.
equation (59) on page 142.

In addition we have shown that in a decomposition of [(2) as an [(T")-Lie module into indecomposable
summands, all these summands have local [(T")-endomorphism rings.
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6.6 Magma

The following two codes are used for calculations with @ ~ Z)Ss in Magma. However, note that

initialization files such as “pre” and “definitions” are required; cf. Magma Codes 3 and 4.

Magma Code 16: z2s4Initl

// global definitions

// sizes of blocks

// number of blocks
// number of ties needed to describe Omega

(2,3,3,1,11;

#Sizes;
19;

Sizes
nb
nt
rt
rl

// rank of torus

&+Sizes;
&+[Sizes[1i]"2

// rank of Omega

// R 1s Z localized at the prime number 2

.nbl];
// ties that describe Omega are given mod e

[1.

i in

= 25

prime
e 8;

:= RMatrixSpace(Z,rl,rt);

RM

:= RMatrixSpace(Q,rl,rt);
:= RMatrixSpace (Z,rl,1);

RMQ
RV

:= VectorSpace(Q,rl);
:= RMatrixSpace (Z,nt,rl);

ROV
RM2

:= RMatrixSpace(Z,rl,rl);

RMB

KMatrixSpace (Q,rl,rl);
:= KMatrixSpace(Q,rl,1);

RMBOQ

RMVOQ

// Ties mod e that describe Omega,

ga :=

Ties_Ome

// given in the rows of this matrix

RM2 !'Matrix ([

—/ o/ o/ o/ —/ o/ o/ o/ o/ /o e e

N Y S S
eNeoNeoNeoNeoNolNolNoNolNolNeolNolNolNolNo ool o)
[ S
O OO O OO OO OO0 O OO0 OO I - N
N S S
O OO NO 40O OO0 OO0 0O o o OO
|
NS S
O O N O+ O OO0 OO0 OO oo o o
|
N S
eNeoNeolNeoNeoNolNolNoNolNolNeolNolNolNeolNol o llolNo)
SN
O OO OO O OO0 10O O0ONOOO O O
|
N Y S S
O OO0 OO0 OO 40O O0OO0ONOOOOO O
|
NS S
O OO OO O OO0 OO0 OO T O o o O o~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~+=
O OO OO OO+ O O o Q O OO O o o o =
—
Y S S T eS M
O OO O OO O OONOOOO OO OO Oo N
| N
Y S S ..
O OO OO O OO0 OO0 OO OO I O I~
| i
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [¢b)
O N O OO d O OO OO0 OO0 oo o o s}
N S o
N O OO 1O OO0 OO0 OO0 oo o o O
N SN e
O OO OO O OO0 OO0 OO OO I O o o g
[ O S
O O O O OO OO0 10O ONOOOO O %
SN
O OO0 OO0 OO 4000 NOOOOO O M
N S
O OO O OO OO0 OO0 OO T O o o o
NSO
O OO OO OO +HOOONOOOOO O O
NS YN
O OO O OO 1 OO ONOOO©OOO OO O
SO O S
O OO O OO O OO NOO OO0 O oo o
|
Y S S
O OO OO O OO NOOOOOO OO o OO
|
NS S
O OO OO OO NOOOOOOO O oo o
|
N S S
O O O O OO NOOOOO OO oo o o
L DR
o
—_
—

// R—-linear basis of T

// e Omega e

CoerceGamma((1,o0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,01);

CoerceGamma((0,0,0,0,2,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,01);
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CoerceGamma((o0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,01) 5

Omega e’

coerceGamma((0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,01) 5

.=

CoerceGamna((o0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,-2,0,0,0,0,0,07);

CoerceGamma(([(o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,071);

// f Omega f

CoerceGamma((0,o0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,11);

CoerceGamnma((0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,21);

CoerceGamma((o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,41);
:= CoerceGamnma((o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81) 5

b[10]

// describing matrices of the adjoint endomorphisms of the elements
// of b with respect to the basis Basis Omega which is defined in

"definitions"

[RMBQ!admatrix (x)

// the file

A

x in b];
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Chapter 7: Example Z,) S5

Let R := Z). We have frac(R) = Q. We define I' := R x R X R x R x R?*? x R¥? x R¥3. We
denote the full diagonal in T by A.

7.1 The Morita-reduced version () of Z) S5

This example is about the group algebra Z ) S5 over the ground ring Zy) which is a discrete valuation
ring. By Maschke’s theorem, the group algebra QS, is semisimple. The isomorphism given by the
Artin-Wedderburn theorem may take the following form; cf. [Kiin01, p. 291].

w: QS5:> @ XQX @4><4 % Q4><4 % Q5><5
X Q5><5 X Q6><6
3 4 2 4-4
1.0 0-1 100 1
1,2 1, 1 0-1 0 1 0101 0010 0
(L,2)—| -1, 1, 0 0-1-1)> 001 1) I O I
000 1 000—1 1-1-1-2 1
~5 1850 —294 —860 —600 —110
—53-61 4z-12-28 2 1025 161 476 328 64
o = 09 ~1-1680 —265 —780 —540 —100
9 za-1 o0 0, —5 2627 —413 —1220 —841 —164
3 6r—al 10 21 3 1419 224 659 456 86
0 134 21 62 42 9
34 6 6-2
AR Y TN R
(1,2,3,45)~( 1, 1, 0-1 0 1) 0-1 0 1) N S A
0 0-1-1 0 0-1-1 0 0-1-1-1
11 2 2-1
73540 —560 —1644 —1138 —212
5 60381022 8 4408 698 2049 1422 270
2 4028 e ~13 —6987 —1103 —3246 —2243 —426
5962, —18 —9984 —1581 —4641 —3221 —612
1104 —732358 7 3861 610 1794 1241 236
3 1668 263 775 535 103

Since w is a Q-algebra isomorphism and ((1,2),(1,2,3,4,5)) = Ss, this characterizes w uniquely.
The first factor corresponds to the sign representation. The second factor corresponds to the trivial
representation.

We write
Fl = Rx Rx R4><4 % R4><4 % R5><5 > R5><5 % RGXG

Using the Wedderburn embedding w, we get that RS; ~ w(RS;5) C I'1. As rings, w(RSs) is Morita
equivalent to the Morita reduced ring w(R S5)™ =: Q which can be described as follows.

148



g11 912 913
Q- a.b.c.d, <€1,1 61,2) 7 <f1,1 f1,2> B cT
€21 €22 foq1 fo2
931 g32 9g33
a =9 b
cC =2 d
€2+ fin =8 2gi72 for ¢ € {1, 2}
f2j =2 92 for j € {1,2}
ekl — fe1 =4 Gks for k € {1,2}
fi2 =14 2g32
€11 =2 933
b—fi1 =4 2¢31 (68)
at+bterr+fi1r =s 2911+ 2933
g11+9g33 =2 0
e1p =2 0
fiz =2 0
gig =2 0 for l € {2,3}}
923 =2 0

The intersection 2 N A is a maximal commutative R-subalgebra of €2; cf. Lemma 121.

In 2N A, we have the idempotents

1 0 0
e = 1,1,0,0,((1) 8),((1) 8), 0 0 O ,

0 0 1

0 0 O
fi= 0,0,0,0,<8 ?)(8 2) 01 0],

0 0 O

0 0 O
g:= 0,0,1,1,(8 8),(8 8), 0 0O

0 0 O

Note that we have
ef =eg=fe=fg=ge=gf=0.

We will see later that e, f and g are primitive in §2; cf. Remark 170.(2) and Remark 171.(2) below. So

the sum 1g = e+ f + g is an orthogonal decomposition of 1 into primitive idempotents in  which

is contained in Q2 N A. We obtain the following Peirce decomposition of €2.
Q=eQed fQf ®gQlg P eQf ®eQlg® fQed fQg D gQle B gQUf (69)

We give an R-linear basis of the R-algebra (2 sorted by Peirce components with respect to the idem-
potents e, f and g.
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Peirce component R-linear basis of Peirce component
Qe b= (1.1.0.0,(38). (88). (339))  bae= (0.4.0.0.(38).(88). (339))
200 200
bs = (0,0,0,0,(8). (89). (388))  bu:=(0.0,0,0.(88).(49). (838))
200 000
bs = (0,0,0,0,(58), (36), (909))  bo = (0,0,0,0,(86) . (86) . (890))
b= (0.2,0,0,(88),(738).(888)) b= (0,0,0,0,(38), (36). (487))
00y 00y (200 00y 00y (999
fof by := (0,0,0,0,(01),(01),(353)) bio := (07070707(00)3(04%(838))
000
bll - (07070707(88)7(88)7(8%8))
000 000
99 b= (0,0,1,1,(38) (68) . (909))  bus = (0,0,0,2,(68), (88) (902))
000 000
f90 b= (0,0,0,0,(38),(98) . (109))  b1s:= (0,0,0,0,(85) (38 (392))
000 000
bis = (0,0,0,0,(38), (68). (209))  bur = (0,0,0,0,(68), (88) . (904))
0 00 020
eQf bis == (0,0,0,0, (88),(673) (3793)) big = (0707070, (66), (60) » (888))
040 000
bao = (0,0,0,0,(88) (88) . (209))  bar = (0.0.0,0,(88) . (88 (392) )
eQlg =0 —
fQg=0 -
g§2e =0 —
g =0 -

We define the R-linear basis B := (b; : i €

[1,21]) of Q.

Omitting the zero components we obtain the following Peirce decomposition of ; cf. equation (69).

Q=eQed fQf O gQ2g B eflf © fQe

(70)

Note that the Peirce component efle is not commutative, e.g. bybg # bgbr. In the previous examples
in §1 and in §6, all considered Peirce components of the form xQx for a primitive idempotent x were

commutative.

So in Q we have the primitive idempotent e such that eQle is not commutative. This entails that
there cannot exist an orthogonal decomposition 1 = zie[l,l] e; such that e;Qe; C A for i € [1,1]; cf.
Lemma 176 below, using Remark 170.(1) and Remark 171.(1) below.

The reason for this phenomenon is that at the prime 2 there exists a decomposition number for S; that
is bigger than 1, viz. 2.

7.2 Primitivity of certain idempotents in )

Keep the notation of §7.1 and of §7.3.

Remark 170.

(1) The Zy)-algebras fQf and gSdg are local.

(2) The idempotents f and g are primitive in Q.
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Proof. Ad (1). Consider the Peirce component fQf. We have the following isomorphism of R-algebras.

fQf = {(a,b,c)ERXB"a—i—bESQcandbEQc}
—

(0.0,0,0,°.). (%) ("<,)) (a,b,c)

Recall that (bg,b1g,b11) is an R-linear basis of fQf. The images of these three elements form the
R-linear basis ((1,1,1),(0,4,2),(0,0,4)) of the right hand side. So this is in fact an isomorphism of
R-algebras.

The right hand side equals L3 of §5.3; cf. (24). We have shown that this Z,)-algebra is local; cf.
Corollary 160. So fQf also is local.

Consider the Peirce component g€lg. We have the following isomorphism of R-algebras.

~

9Qg . = {(a,b) € R*?|a =5 b}
<O,O,a,b,(00),(00),( 00>) — (a,b)

Recall that (b12,b13) is an R-linear basis of g€2g. The images of these two elements form the R-linear
basis ((1,1), (0,2)) of the right hand side. So this is in fact an isomorphism of R-algebras.

The right hand side equals p1(L1) of §5.1.2 where we have shown that this Z,-algebra is local. So
g€Qg also is local.

Ad (2). By (1), the R-algebras fQf and ¢g€g are local. Applying Remark 139.(2), we obtain that the
idempotents f and g are primitive in €. O

Remark 171.

(1) The Z3)-algebra eQe is local.

(2) The idempotent e is primitive in Q.

Proof. Ad (1). We define the following injective morphism of R-algebras.
o0: efle — RXRxRxRx R>?
fl,l 0 f173
a,b,0,0, <C 0) 7 (d 0)7 0 0 0 - <a,b,c,d, <f1,1 f1,3>>
00 00 f31 f33
f3,1 0 f373

We write p(efe) =: Z. To show that eQe is local, it suffices to show that Z is local. = has the R-linear
basis (& : @ € [1,8]) where x; := o(b;) for i € [1,8]. These elements are

)
51 = <1>1>1717 <é (1)>> 52 = (07470707 (3 8))
o)) o (i)
oY) e (en)

57 = <072707 727 (8 g)) 58 =

We choose an orthogonal decomposition of 1x= into centrally primitive idempotents in K=. We have
1= = Zie[l 5] €i with g; defined as follows for i € [1, 5].

0 0 0 0 0 0

g1 = (1;0;0,07 <0 0)) &g 1= <O) 170505 <0 0>> €3 1= (0’0’ 1707 (O 0>>
0 0 1 0

54 o <O’O’O’ 17 (O 0)) 55 o (0, 07 O’O’ (0 1))
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We obtain the following R-subalgebras of R x R x R x R x R?*2,

Note that for i € [1,4] we have ;2 ~ R. So we obtain Jac(g;Z)

determine Jac(esZ).

We write

2
sz ()
~ R R

2@ _
R (2)

We have the R-algebra morphism

TGR}: R 0

T’ER}: 0 R

0 0

0
m 0 0
0

0
0
0

0
0
0

R
0

r,s,t,u € Rand r =5 u and s = 0}

~—

R (2
R R
Bl

[]

-l 0.0 2

where 7 is the projection on the last component. Note that

w=n(( ).

We define the following R-subalgebra of F.

R

(

a 2b

Cc

0
4

2
0

d

) 0)-(2 0))

(A1 =:As —:Asg

E—>F2XF2

> — (a+(2),d+(2)).

~ (2) for i € [1,4]. We want to

2
0 )

0 0
1 0

=:Ay

£ 0)-s

6262606)-

Note that I is the kernel of this R-algebra morphism and thus [ is an ideal of E.
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We have the following multiplication table of I.

A A [j=1
1=1 2A, 0 2A3 0
1=2 0 245 0 244
i=3 | 0 | 245 ] 0 | A
1=4 | 244 0 Ao 0

{0969 60 60)-(50)

—2A3=:A5 =2A4=:A¢

<
Il
[N}

.
Il

<
Il
S

This shows that

To determine I, we multiply each of the basis elements of I? with each of the basis elements of I. It
suffices to consider A; - A; for i € [1,4] and j € {1,2,5,6} since [ - [? =[?-1 = I3.

A A;[j=1]j=2]j=5]j=6
i=1 | 24; | 0 | 245 | 0
i=2 | 0 |24y | 0 | 2A4g
i=3 ] 0 As 0 | 24;
i=4 | Ag 0 | 245 | 0

B 4 0 00 0 4 0 0\\ [ @(®H
—®\\o o)7\o 1) 0 0/ \2 0)/ "\ (29 )
In particular, we obtain that I? C 2F; cf. equation (71). Now we can apply [Miill13, Lemma 213.(ii)].
This shows that I C Jac(E).

Since |E/I| =2 and Jac(E) C E, we conclude that already I = Jac(E); cf. [Miill3, Lemma 187].

Then the ideal (1) =: I is the Jacobson radical of e5Z.
Now Jac(Z) = EN ;e 5 Jac(eiE); cf. [Miill3, Proposition 222], that is

=) Jin fie -
Jac(2) = {(a,b, ¢, d, <f271 f2,2)> =

Note that the entries of the elements s, ..., &s are all divisible by 2. So Jac(Z) has the R-linear basis

This shows that

a,b,c,d, fi1, fa2 € (2)}

(2 ' 617 527 537 §47 657 567 577 68)

Thus E/ Jac(E) is isomorphic to Fy, in particular it is a field. So by [Miill3, Lemma 192] we see that
= is local.

Since g is an isomorphism of R-algebras, we conclude that eQe is local.

Ad (2). By (1), the R-algebra e2e is local. Applying Remark 139.(2), we obtain that the idempotent e
is primitive in Q. O
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7.3 Tori in [(Q2)

Keep the notation of §7.1.

An R-linear basis of Z(f2), the center of €, can be chosen as follows.

basis element expressed in the basis B of Q2
1 1 1 _
(Llaovov( 1)7( 1)7( 11>) - b1+b9
4 0 2 _ _ _
(0,4.0,0,(*4),(°0)+ (2,)) = b2+ bs— b5+ b+ by — b
4 4 4 _
(0,0.0,0,(*4) . (*4) . (T1,)) = byt bt b+ by
0 72
(0,0.0,0,(°0), (%) (70,)) = 2ba = 2b5 + bg + 2b10 — bus i
0 0 4 _
(0.0,0,0.(%) ("), ("4,)) = 2b5+bu
0 0 0 _
(07071717( 0)7( 0)7< 00>> - bl?
0 0 0
(0a0a0525( 0)7( O)a( OO)) = b13
Recall the Peirce decomposition 1g = e + f + ¢ from §7.1. Note that e = by, f = bg and g = by
As an R-submodule of QN A, define
to := R<b1 + by, by + bg — b5 + bg + 4bg — big, bg + bgy + bg + 4bg, 2b4 — 2bs + bg + 2b1g — b11,
2b5 + b11, bi2, bis, e, f, g).
Then g is a Lie subalgebra of [(Q2 N A).
We obtain that ty is an integral torus in [(Q2); cf. Lemma 129.
We can shorten this generating set to an R-linear basis of tg as follows.
tg = R<b1> by, b2, b13, ba — by — b5 — b1g, b3 + by + bg, 2by + bg + 2b1g, 2b5 + b11> (73)

By intersecting 2 with A, we get the full diagonal of Q in I'; cf. Definition 117. Then (2N A) is a
maximal rational torus in [(£2); cf. Lemma 120. So we define

T:=QnNA.

This is a maximal commutative subalgebra of ; cf. Lemma 121.

An R-linear basis of the R-algebra T is given as follows.
By := (b1, b2, b3, b, bs, bg, bg, b1o, b11, b12, b13)

Note that fQf and ¢g€lg are contained in A, in particular, fQf and ¢g{lg are commutative R-algebras.
So Tf = fQf and Tg = gQg; cf. Lemma 140.(1). But note that

T CeQed fQf @ gQdg

is in fact a proper inclusion.

For example, we have the element
00y (—20y (902
br = (0,2,0,0,(36) ., (36). (200)) € coe\T.

Furthermore, the matrix (ad[(g)(b7)) s 18 not even diagonalizable over Q. To verify this, type the
following instructions in Magma.
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Magma Code 18: z2s5NonDiagonalizableElement

load pre;

load z2s5Initl;
load definitions;
load z2s5Init2;

rdiag (admatrix(b[7]),0);

We can describe elements of 7' as tuples of matrices with ties; cf. equation (68).

g1 O 0
T = a,b,c,d, <681 0 ) , <f81 fO > 1 0 g22 O el
€2,2 2,2 0 0 gus
a =92 b
cC =39 d
€22+ fo2 =g 2022
fo2 =2 G292
€11 =4 f1,1
€1,1 =2 g33
b =4 fi1
a+b+ei1+ fin =8 2011+ 2033
2911 +2933 =4 0 }
g1 =2 0

Recall that [(2) and [(T) denote the commutator Lie algebras over R of Q and 7', respectively.

We want to verify the maximality of the rational torus [((T') C [(2), using Lemma 112. It suffices to
show that

¢y (UT)) = UT).

!
Ad ¢ y(I(T)) € (T). Suppose given

€11 €12 fi1 fio 91,1 912 913
o a’b’cjd( ’ >( ’ ) 92,1 922 923 € oy (I(T)).
€21 €22 f21 fo2
931 932 933

We obtain
0 —g12 O
0 = [[E, bl] = J,’bl — bll‘ = 0, 0, 0, 0, ( 0 6172) y ( 0 f172> 5 g2.1 0 ga2.3 5
e21 O foi O ’ ’
0 —g32 O
_ 0 2912 —2013
0 = [, ba] = wbs — baz = | 0,0,0,0, (8 8) , <4]9 4{“) 2920 0 0
21 29371 0 0

This shows = € [(T').

!
Ad ¢y)((T)) 2 KT). Since elements of T" are tuples of diagonal matrices, [(T) is an abelian Lie
algebra over R, showing [(T") C ¢;q)(K(T)).

So we have shown that ¢q)([(T")) = (T) and thus we have verified the maximality of the rational
torus [(T) C [(Q) by direct calculation.

Now we want to show that [(T") C [(2) is not an integral torus.

2
0 0 0 0
b2 - 074701(]) <O 0> ) <0 0> 9 8

155

We have the element

o O O

0
0 e [(T).
0



We want to determine the describing matrix (adyq) b2)5 5 of the adjoint endomorphism adq) b2 with
respect to the R-linear basis B of [(2). This requires the Lie brackets [by,b;] for j € [1,21]. The
matrix (adyq) b2)s,5 contains on position (7, j) the coefficient «;; € R for i,j € [1,21] such that
[bQ, bj] = Zie[l,Ql] Oém‘bi for j e [1, 21].

We have bs f = fby = 0 and gbs = bog = 0 and eby = boe. This means that there are only zeros in the
columns corresponding to the basis elements of fQf, g{lg and eQe.

Recall that eQ2g, gQe, fQg and g f are all zero.

For the remaining basis elements of e2f and f(Qe, we obtain the following.

[b2,b14] = —big
[bg, 615] = 0
[b2,b16] = —2big
[b2,b17] = 0
[bz, blg] = 0
[b2,b19] = ba2o
[b2,b20] = 2by
[ba,b21] = 0

Thus we obtain

(adyq) b2)B8 =

[eleleleleljelelelelelolelelolelolelelole)

[elelelele] Vielelelelelelelolelelolelelolo)

[elelolelelelelelelelelelelolelelololelolo)
[slelolalelelelelelelelelelelelelolalelol)
[eleleleleleleleleolelelolelelolelolelelol)
[elelolelelolelelelelelolelelelelolelelole)
[elelelelelelelelelelelelelelelalalolelolo)
[slelolalelelelelelelelolelelelalolalelolo)
[elelolelelolelelelelelelelelolelololelole)
[elelolelelolelelelelelelelelelelolelelole)
[elelolelelelelelelelelelelelelalalalelolo)
[eleleloelelelelelelelelolelelolelolelelol)
[elelolelelelelelelelelolelelolelololelol)
[elelololelolelelolelelelelolelelololelole)
[slelelalelelelelelelelelelolelalolalelolo)
[elelolelelolelelelelelolelelelelololelole)
[slelelalelelelelelelelelelelolelolalelol)
[elelelelelelelelelelelolelelolelololelole)
(=l Jololeloleleloleleleleleloelelololelole)
(=) Vielelelelelelelelelelelelelalolalelolo)
[slelelalelelelelelelelolelelelelolalelol)

This matrix is diagonalizable over Q, e.g. we have the diagonalizing matrix Y € GL21(Q) as follows.

(74)

COOOOHONOOOOOOOOOOOOO

~
I
(=l Jelelelelelelelelelelelelolelolelelole)
[slelolelel eleloleleleleleleleloloelelole)
[elelolelelelelelelelelelelolelalalelela) o
[slelelalelolelelolelelolelelelelolalel o)
[slslslolslalslslolelelslslolelelsla) lele]
[elelolelelolelelolelelolelolelelol jolole)
[elelolalelelelelelelelelelelelellelelolo)
SO0 OO0 OO0OO+HOOOO0O
OO0 OHOOOOOO
[elelololelolelelelelelelel jolelololelolo)
[slelelalelelelelelelele)l Jolelalolalelole)
OO0 OO0OOOOHOOOOOOOOO
[elelslolololalelslal Holololelelolelelole]
[elelolelelelelelel dolelelelelelololelolo)
[slelolalelelalelHelelolelolelalolalelol)
[elelolelelol dolelelelelelelelelolelelole)
[elelelel dolelelelelelelelolelalalolelolo)
[sleleldelelelelolelelolelelelelolalelole)
(=) Vielelelelelelelelolelelolelololelole)
i =l=lelolelolelelolelelolelelelelololelo)

We have det(Y) = 4. This implies that vo(det(Y)) = 2 # 0. In particular, Y ¢ GLo;(R) since 4 is
not a unit in Zy). We write A := (adq)b2)p,s- The first column of ¥ forms an R-linear basis of
(EA(2)) N R?1X1 the second column forms an R-linear basis of (E4(—2)) N R21*! and the columns
number three to twenty-one form an R-linear basis of (E4(0)) N R?'*! which we will confirm with the
following Magma code.

We will construct matrices W, D,S and T using the notation of Lemma 49. For A € {2,-2,0} a
Z-linear basis and thus also a Z)-linear basis of the eigenmodule E4(A) = E(aq, g b5)5 5(A) can then
be obtained from the first column (for A = 2 or A\ = —2) resp. from the first nineteen columns (for
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A = 0) of the corresponding matrix S~!. Change the considered eigenvalue in the first line of the
Magma code.

Magma Code 19: z2s5FEigenmoduleBasis

lambda := 2; // eigenvalues are 2, -2 and 0.
A := RMatrixSpace(Rationals(),21,21)!0;
A[l6,14] := -1; A[l6,16] := -2;

A[20,19] := 1; A[20,20] := 2;

W := Transpose (BasisMatrix (Eigenspace (Transpose (A), lambda)));
for i in [1..NumberOfColumns (W)] do
MultiplyColumn (~W, 2" (=1 (Minimum([Valuation(W[Jj][i],2):3 in [1..
NumberOfRows (W) ]11))), 1i);
end for;
D,S,T := SmithForm (W) ;
print sS*-1;

By Corollary 48.(1) we conclude that A = (adq) b2)s,5 is not diagonalizable over Z ).
We conclude that [(T") is not an integral torus in [(€2).
For the sake of completeness, we give Y ~! and the matrix product Y1 - (adyq) b2)B,5 - Y. We have

y~l= € GLog; (Q)

OO0 0000000000000 OOHOO
OO0 0000000000000, OOO
eNoNoNoNoNoNoNoNoNoNo oo oo el N =R=N=)
oNeNoNoNoNoNoNoNoNoNoNoN ool el - k=R=Nelo)
000000000000 OHROOODOO O
000000000000 OHOODOOO OO
OO0 0000000000 ROOO0OOOO DO
00000000000 OOO0OO0OO0OO O
CO0O00000O00OOHROOOOODOOOO O
OO0 0000000 HOOOOODODOOO OO
OO0 0000000000000 DO
CO0O000O0OOHOOOOOODOODOOO OO
CO0O000O0OHOOO0O0ODO0OOO0OOODOOO OO
[eNoNeNeNeltloNoNoNeNoNololoNoNoloNoNol o)
OO0 O0OHOO0OOO0OODO0OOOODOO0OOOO DO
eNeNoNoNoNoNoNoNoNoNoNolollolololoiel el i)
CO0OO0OHRO0OO0O0O00O0O0O0OO0O0OOODODOO OO
OO HO0OO0OO0O0OO00O0O0O0O0O0OODODOOO OO
el deNeNoNeNoNoNoNeNoNoNoNoNeNoNoNoNo N L
eNoNoNoNoNoNoNoNoNoNoNoNoN oo N ol ol ol o ol
HO OO0 OO OO

We have

Y~ (adyq) b2)Bp - Y = 0,

Alternatively we can use the function “rdiag” from Magma Code 4.
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7.4 The integral core of the standard torus [(T") in [(2)

Keep the notation of §7.1 and §7.3.

Since we found out that [(7T") is not an integral torus in [(€2), the question for a maximal integral
torus in [(€2) arises. We recall the definition of the integral core of a rational torus [(T) in [(£2); cf.
Definition 130.

We have an orthogonal decomposition of the identity element of 2 into primitive idempotents in {2, viz.
1l =e+ f+g. By Corollary 126, we know that adq)(e), adq)(f) and adyq)(g) are R-diagonalizable.
In fact, the describing matrices of these three maps with respect to the R-linear basis B of 2 are
already diagonal.

Alternatively, to verify the R-diagonalizability in Magma, type the following instructions.

Magma Code 20: z2s5RDiagldempotents
load pre;
load z2s5Initl;
load definitions;
load z2s5Init2;

rdiag (admatrix(b[1])
rdiag (admatrix (b[9])
rdiag (admatrix (b[12]

To determine the integral core of [(T) in [(Q2), we use Magma.

Calculating the integral core starting with an arbitrarily chosen basis

Recall that By = (b1, ba, bs, ba, bs, bg, by, b10, b11, b12, b13) is an R-linear basis of T'. For i € [1,6]U[9, 13],
we denote by A; := adyq)(b;)s,s the describing matrix of the adjoint endomorphism adyq)(b;) with
respect to the basis B. Let A = (Aj, Ag, A3, Ay, As, Ag, Ag, A1o, A11, A12, A13) be the tuple of these
eleven matrices. We will start the Partitions Algorithm 94 using this cd-tuple on R21*2!,

The code together with its output is as follows.

Magma Code 21: z2s5IntegralCore

load pre;

load z2s5Initl;
load definitions;
load z2s5Init2;
load partalgo;

time Partalgo([A[1l],A[2],A[3],A[4]1,A[5],A[6],A[9],A[10],A[11],A12],A
(1311);

1 = 11 , there are 678570 partitions to check.
List of finest partitions contains 1 element (s).
Partitions in I_eff:

A Z_(p)-linear basis of the diagonalizability locus is given by the
columns of the following matrix.

[1 O O 0O O 0 0 0]

[ 0O O O 0O 2 0 0 -1]

[ 0O O O O 0 -1 2 1]
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ime: 32 7

This is to be interpreted as follows.

Coryq)((T)) = r(b1, by, b12, b13, 2b2 + bs + b11, —b3 + by + 2b10, (75)
2b3 + bg — 2b1g, —ba + b3 + b5 — b10>

We want to show that Corq)(I(T')) = to.

We have
by = (1,1,0,0,(10),(10),(101)) S
bo = (0,0,0,0,(°). (). ("1,)) =7
b= (0,0,1,1,(%), (%) ("0,)) =9
s = (0,0,0,2,(%), (°0) ("0,)) € Cumy (1))
203 + b + b = (0,8,0,0, (%), (0) . (444)) € Cyay (1())
~by +ba+ 200 = (0,0,0,0,(74), (*4), ("1,))
2b; -+ b — 2b10 = (0,0,0,0, (*0) , (°_s) (4—44>)
by by b5 — bio = (0,-4,0,0, (), (°_a) . (*-2,))

Moreover, we have

by + by + 2byo = (4,4,0,0, (%), (%%). (444>) _ (4,4,0,0, (*0). (%0), (404>) € to,

€01y (1) =t
25+ bs — 2610 = (0,0,0,0,(*5) (°0), ("1,)) = (0,0,0,0,(°) . (%) . ("s,)) € o,
€01y (1) RY
by + by 45— bio = (0,-4,0,0,(44), (%), ("2,)) = (0,0,0,0,(°4) . (°0) . ("1,)) € o
€C (1) =i

Altogether we have shown that the R-linear basis of Coryq)(I(7')) given in (75) is contained in to; cf.
equation (73).

This shows that Coryq)(I(T')) C to.
!
To see that Coryq)(I(T)) 2 to, note that e, f and g and the elements of the R-linear basis of Z(€2) of
(72) are contained in Corq)(I(T')); cf. (72) and (75).
Hence we obtain Coryq)(I(7')) = to. This means that in this example, we have equality in Question 135.

Moreover, note that the list of finest partitions found in the algorithm consisted of one element. So
here we have an affirmative example for Question 93.

159



Calculating the integral core using Remark 59

We will use Remark 59 to achieve a better runtime of the algorithm and to show that the duration
strongly depends on the choice of the basis. This time we start with the R-linear basis of tg we found
in equation (73). We extend it to an R-linear basis of T.

C := (b1, by, b1, b1z, by — by — bs — b1, b3 + by + bg, 2bs + bs + 2b10, 2b5 + b1, ba, b3, bs)

In our implementation of the Partitions Algorithm, the matrices of the cd-tuple under consideration
that are R-diagonalizable are considered separately; cf. Algorithm 94. So using the cd-tuple that
contains the describing matrices of the elements of C with respect to the basis B of [(2), the main part
of the algorithm is executed only for the describing matrices of the adjoint endomorphisms ady(q)(b2),
ady)(bs) and adyq)(bs). The following Magma code shows the results.

Magma Code 22: z2s5IntegralCore2
load pre;
load z2s5Initl;
load definitions;
load z2s5Init2;
load partalgo;

C := [b[1],b[9],b[12],b[13],SubTup(b[2],b[4]+b[5]+b[10]),
b[3]1+b[4]+b[6],b[4]+b[4]+b[6]+b[10]+b[107],
b[5]+b[5]+b[11],
b[2],b[3],b[5]];

List := [RMBQ'!'admatrix(X) : X in C];

time Partalgo(List);

1 = 9 , there are 21147 partitions to check.

List of finest partitions contains 0 element (s).

There is no non-trivial linear combination of the given matrices that is
Z_(p)—-diagonalizable.

A Z_(p)-linear basis of the diagonalizability locus is given by the
columns of the following matrix.

[L 0OO0OO0OO0O0 0 0]
[01 0000 0 0]
[00O1 000 0 0]
[000O1 00 0 0]
[00O0O 0100 0]
[000OO0O01 0 0]
[00OOO0OO0O0 1 0]
[00O0OO0O0O0O0 1]
[00O0O OO0 0 0]
[00O0OO0O0O0 0 0]
[00O0OO0OO0O0 0 0]
Time: 5.741

Here the choice of the basis reduced to runtime by a factor of about 57.

7.5 Decompositions of ()

Let Q be defined as in §7.1. Let T" be defined as in §7.3. Let the R-linear basis B of 2 be defined as
in §7.1. Let the R-linear basis By of T be defined as in §7.3. Let the primitive idempotents e, f and g
be defined as in §7.1.

We are interested in a decomposition of €2 into indecomposable submodules. On the one hand, we will
decompose Q2 as a T-T-bimodule. On the other hand, we will decompose [(2) as an [(T)-Lie module.
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7.5.1 A decomposition of () into T-T-sub-bimodules

Recall the Peirce decomposition of Q; cf. (70). In the following we will show that this decomposition
of 2 is already a decomposition into indecomposable T-T-sub-bimodules of €.

The Zy)-algebras fQf and g{2g are commutative, so the T-T-bimodules T'f = fQf and Tg = g{lg
are indecomposable; cf. Lemma 140.(2), using Lemma 121 and Remark 170.(1). Since efle is not
commutative as a Z)-algebra, we cannot show the indecomposability of ef2e in the same way.

The methods to show the indecomposability of the T-T-bimodules fQe, eQ)f and eQ2e will be the same
as those we applied in §6.5.1.

Ad fQe.
We want to show that fQe is indecomposable as a T-T-bimodule.
Define By := (b14, b15, big, b17) which is an R-linear basis of fQe.

For a better distinction between the basis elements of €2 and the basis elements of fQe, we write

000
002))
000
000
004)) .
000
Thus we obtain By = (1, 22, T3, T4).

It suffices to show that the endomorphism ring Endp.p(fQe) is a local ring; cf. Lemma 35.
We have

Endp.p(fQe) = {h € Endg(fQe) | h(bjz;) = b;h(x;) for i € [1,6] U [9,13], j € [1,4] and
h(l‘jbl) = h(l’])bz fori e [1,6]U[9,13], 5 € [1,4]}.
For i € [1,6] U [9, 13] we define Mg, ;1 to be the describing matrix of the multiplication by b; on fQe

from the left with respect to the basis By. For j € [1,6] U [9, 13] we define Mp, ;. to be the describing
matrix of the multiplication by b; on f{le from the right with respect to the basis Bj.

Furthermore, we have the following diagram.

ht hBl,B1

Endp(fQe) a R4

Endp.p(fQe) — o1 (Endpp(fQe)) =: Ey

Here the map ¢;: Endg(fQe) — R** is the R-algebra isomorphism sending a map h € Endg(fQe)
to its describing matrix in the algebra of 4 x 4-matrices over R with respect to the basis Bj. Since ¢
is an R-algebra morphism, F; is a subalgebra of R**4.

Then we have

Endp.p(fQe) ~ By = {M € R"* |M - Mp, ;1 = Mg, ;- M fori € [1,6]U[9,13] and  (76)
M - Mg, jr = Mg, jr- M for j € [1,6]U[9,13]}.

First we will give the products b; - z; and z; - b; where ¢ € [1,6] U [9,13] and j € [1,4].
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We use the results to calculate the matrices Mg, ;1 and Mp, ; for i € [1,6] U [9,13].

i b; - x1 bi-wa | b;i-x3| b1y Mg, i1
0000
1,2,3,4,5,6 0 0 0 0 (0000>
0000
1000
9 o o e | a | (B009)
0001
0 000
10 209 +x3 — x4 | 4o — x4 | 223 2x4 ( % 338) =: M,
~1-102
0000
11 2:B3 21’4 4.’,173 4.%'4 <8828> = M2
0204
i
12,13 0 0 0 0 (0000>
0000
{ x1-b; To-by | x3-b; | 1405 Mg, iy
1000
1 T T2 3 T4 (80?8)
0001
0000
2 3 0 213 0 <1020 =: M3
0000
4000
3 Azy — 2x9 — 23 + T4 0 213 0 (:?888) = M,
1000
0 000
4 2x9 + T3 — x4 4xo — 214 | 223 0 ( % 388) =: M5
~1-200
0000
5 3 Ty 2wy | 214 <1020> =: Ms
0102
0000
6 0 20a | 0| 4 (gggg) M
0204
0000
9,10,11,12,13 0 0 0 0 <OOOO>
0000

Note that we have the following equalities.

oM, = 2Ms + M
M, = 2Ms + M
My =4+ 1pixa — Ms — My

2Mg = 2Ms + M

(77)

(78)

Thus we can skip My, Ms, My and Mg in the description of Fq. Moreover, we omit the matrices that
are central in R**4. It remains

Ey={M e RY| M -M;=M; M for j € {3,5,7}}.

(79)

But this is Craxa(As) of §56.5. So E; = Ls; cf. (28) in §5.5. We have shown that Ls is local; cf.
Remark 164. So we conclude that Fj is local and thus fQe is indecomposable as a T-T-bimodule.
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Ad eQf.
We want to show that eQ2f is indecomposable as a T-T-bimodule.
Define By := (b1s, big, b2, b21) which is an R-linear basis of e2f.

We write
0
) we =t = (0.0,0,0,(88). (53). (o
0
0
0

) wse= b = (0.0,0,0,(88). (88) . (

Thus we obtain By = (w5, z6, 7, T3).
It suffices to show that the endomorphism ring Endp.p(e€)f) is a local ring; cf. Lemma 35.
We have
Endp.p(eQf) = {h € Endg(eS2f) | h(biz;) = b;h(x;) for i € [1,6] U [9,13], j € [5,8] and
h(zjb;) = h(z;)b; for i € [1,6]U[9,13], j € [5,8]}.
For i € [1,6] U [9,13] we define Mg, ;1 to be the describing matrix of the multiplication by b; on eQf

from the left with respect to the basis By. For j € [1,6] U [9,13] we define Mp, ;. to be the describing
matrix of the multiplication by b; on e€)f from the right with respect to the basis Bo.

Furthermore, we have the following diagram.

ht hlg%lgz

Endp(eS2f) - R4x4

EndT_T(QQf) — P2 (EndT_T(le)) =: F»s

Here the map o: Endg(ef2f) — R*** is the R-algebra isomorphism sending a map h € Endg(eQf)
to its describing matrix in the algebra of 4 x 4-matrices over R with respect to the basis Ba. Since (2
is an R-algebra morphism, Fy is a subalgebra of R¥*%.

Then we have
Endp.r(eQf) ~ By = {M € R** |M - Mp, ;1 = Mg, ;- M fori € [1,6]U[9,13] and  (80)
M - Mp, jr = Mp, .- M for j € [1,6]U[9,13]}.
We determine the matrices Mp, ;1 and Mpg, ;. for i € [1,6] U [9,13].

{ bi - x5 bi-xe |bi-x7|bi-x8 Mg, i1
0100
1 x5 x6 x7 xg <0010)
0001
0000
) 0 v | 2w | 0 <3933) Y
0000
4000
3 dxs + 2x¢ — 7 + 228 X7 2x7 0 (_%?gg) =: My
2000
0 000 1
4 —2x6 + 7 drg —x7 | 227 0 <% Z11(2)8> =: My ( )
0 000
0000
5 —xg x7 2r7 | 2w ( 8988) =: Mn
-1002
0000
6 —2ug 0 0 Axg ( 8888> =: M,
—2004
0000
9,10,11,12,13 0 0 0 0 (8888)
0000
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i x5 - b; x6-bi | w7-b; | x8-0b; Mg, ix
0000
1,2,3,4,5,6 0 0 0 0 <8888)
0000
Snes
9 x5 Zg x7 g <0010>
0001
0 000 ]2
10 —2x¢+x7 —x8 | dog — 27 | 227 2xg <% 1‘38) =: M3 (82)
-1 002
0000
11 —21’8 2l‘7 4$7 433‘8 < 8328> =: M14
—2004
0000
12,13 0 0 0 0 (8888)
0000

Note that we have the following equalities.

Mg =4 -1 pixs — Myg — Mis
2My1 = 2Mg + Mo
2My3 = 2Myg + Mo

My = 2Mg + M2

Thus we can skip Mg, My1, M3 and M7, in the description of E5. Moreover, we omit the matrices
that are central in R**%. It remains

={M e R"*| M- M; = M; - M for i € {8,10,12}} . (83)

But this is Craxa(Ag) of §6.6. So Ey = Lg; cf. (31) in §5.6. We have shown that Lg is local; cf.
Corollary 166. So we conclude that Fs is local and thus e€)f is indecomposable as a T-T-bimodule.

Ad eQe.
We want to show that efle is indecomposable as a T-T-bimodule.

Define Bs := (b1, ba, b3, by, bs, bg, b7, bg) which is an R-linear basis of eQe.

We write

== (1,1,0,0,(58).(38), (580)) w10 =12 = (0,4,0,0,(88), (38), (50¢))

00 200 00\ (40 200
T11 :b (07070707( 7(00)7(888)) T2 = b4: (0’0’0’0’(00)’(00)7<888>>

200 000
r13 —b5 (07070707( 7(88)7(888)) T1q4 = bGZ (07070707(88))(88)7(882))

002 200
w15 = br = (0,2,0,0,(88) . (78) (000)) e =05 = (0,0,0,0,(36), (3) (000)).

Thus we obtain B3 = (x9, 210, %11, T12, £13, 14, £15, £16)-
It suffices to show that the endomorphism ring Endr.r(e€e) is a local ring; cf. Lemma 35.
We have

Endy.7(eQe) = {h € Endg(eSQe) | h(bjz;) = bih(z;) for i € [1,6] U [9,13], j € [9,16] and
h(z;b;) = h(z;)bi for i € [1,6]U[9,13], j € [9,16]}.
For i € [1,6] U [9,13] we define Mp, ;) to be the describing matrix of the multiplication by b; on eQe

from the left with respect to the basis Bs. For j € [1,6] U [9, 13] we define Mp, ;. to be the describing
matrix of the multiplication by b; on efle from the right with respect to the basis Bs.
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h33 B3

I

Endpg/(efe)
End7.r(efe)
Here the map ¢3: Endg(eQe) — R8*® is the R-algebra isomorphism sending a map h € Endg(efle)

to its describing matrix in the algebra of 8 x 8-matrices over R with respect to the basis Bs. Since 3

is an R-algebra morphism, F3 is a subalgebra of R®*8.

Furthermore, we have the following diagram.

R&@
©3 (EndT_T (696)) =: E3

®3

R
~

(84)

(85)

MB3,i,l

~

OO OOoO—H
[elelelolalelole)
OO OoOoO—HOO
OO0 OoHOOO
OO —HOOOO

-~
00002400
01019,?120
ococoocoo0oo
00002400
cococoN—HOO

OONOOOCOO

0_|_A010020

[elejelelelola)]

00002400

OO ON—HOO
I

cooNoooOo

OHOHNHNO
I [

cocooooo

00002400

ocooYN—HOO
|

cCOoO—~H—N—HO™
I |

04010020

coocooNoco

coocomooco

cococom—HoO
|

[slejelolelola)]
OO IFOO
SO OoONOO
[slejlelelelela)e]

M - Mg, jr = Mg, j - M for j € [1,6]U[9,13]}.

N%&m

co—ocoocoo |
oo | cocom—oo 00404100 00002400 00002400 coococoocoo
mi=l=l=l=l=l=Y=} | cocococoooo
-
~ _ 04004100 00002400 00002400 00002400 cocococo—HoO
crcococoon | OO—~0O0000 | OOO—HO000 | OO00—O0O
(\
R — —
= i —
00,,2_02 001%0002 00_ cocom 004%2402
—
~ ~ — —
coococococo— 02004 °° | cococoooo 00042_00 O—HO—O0ONO | OCO000O00O
coococoo—0O | coococOoOo0O MMMW%NMM cococococooco 0%000200 04020040
Co0C0oOHOO | CoooON—HOO coocoN—OO

OO0 HOOO
OO —HOOOO

OO ON—HOO

I
coocoN—=HOO

coodFN—HOO

COOoOoNOOO
COooOoN—HOO

OO OOIFOO
OO OOoONOO

Es={M € R¥®|M - Mg, ;1 = Mp,;1- M for i € [1,6]U[9,13] and

~

| | coococococoo
co~Oo0oO00O | |
OHOO000O | coocom—~oO 00404100 coocom—oO 00002400 CO00000O
joeeeeee ! coocoN—OO ! coocoN—OO Mwwwwwwm
— —— 04004100 | coocoN—HOO |
| ~—
oroococooo | 29TCPCCCC | cooroooo | 2PPCTCeS
N~——— SN~———
— [a\] (ap] <t 0 Nej

Endr.r(ef2e)
the first six columns of Mp, ; and Mg, ;. coincide since b; € T for j € [1,6] and T" is commutative.

We use it to calculate the matrices Mp, ;1 and Mg, ;, for i € [1,6] U [9,13]. Note that for i € [1,6],

A multiplication table for the products b; - b; for 4, j € [1,13] is given in Appendix B.

Then we have
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We omit the matrices that are central in R3*®. It remains

Ey={M € R¥® |M - Mg, ;) = Mg, ;) - M for i € [2,6] and (86)
M ) MBS,j,I’ = MBg,j,I‘ ’ M for ] E [27 6]}'

But this is Cgsxs(A7) of §5.7. So E3 = Lz; c¢f. (33) in §5.7. We have shown that L7 is local; cf.
Remark 167. So we conclude that Fj3 is local and thus eQ2e is indecomposable as a T-T-bimodule.

We summarize.

We have shown that the Peirce decomposition
Q=eQe® fQUf & gQg D elf & Qe (87)

as of (70) is a decomposition of  into indecomposable T-T-sub-bimodules.

By applying Lemma 144 we conclude that all summands are non-isomorphic to each other as T-T-
bimodules.

Moreover, we have seen that T itself is not a sum of indecomposables in this decomposition.

Recall that T'f = fQf and Tg = gQg are local; cf. Lemma 140.(1) and Remark 170.(1). By Lemma 25,
the T-T-endomorphism rings Endp.r(fQf) and Endr.7(gQ2g) also are local.

So we were able to show that all indecomposable summands have local T-T-endomorphism rings.
Remark 172. There exists a discrete valuation ring R, a split R-order Q' in a completely split R-order
I such that, letting A’ be the full diagonal in T and T' := Q' N A/, the following holds.

There exists an orthogonal decomposition 1 = ey + es of 1gs into primitive idempotents in € such
that e1,es € T' and such that e1Q ey is a decomposable T'-T'-bimodule.

00y 00y (A90 :
Proof. Define € := (0,0,0,0, (0 0) , (0 0) , (86?)) € K. Then, letting e; := ¢f and ey := €e, the sum

1.0 = e1 + es is an orthogonal decomposition of 1 into primitive idempotents in Q' := Q. We have
T =T = R(el, €9, €b2>.

As a T"-T’-bimodule, we can decompose e1€) es as follows.

e1Q ea = rlebia) ® r(ebis)

This shows that e1 ey is decomposable as a T'-T’-bimodule; cf. Question 145. O

Moreover, consider the Peirce diagonal T = e1Ve; @ eaWVey. Then e (K )eq is a simple KT-KT-
bimodule, whence e1€Yes is an indecomposable T-T-bimodule.

Question 173. Suppose given an R-order ' and an orthogonal decomposition 1o/ = Eie[l,n] e; of
1o into primitive idempotents in €. Suppose given i, j € [1,n] such that ¢;Q'e; # 0.

We ask whether ;€ e;j is indecomposable as a bimodule over the Peirce diagonal @ie[l,n] e;Ve;.

7.5.2 A decomposition of [(Q2) into [(T)-Lie submodules

Keep the notation of §7.5.1.

We consider the Lie algebra [(2) as an [(T')-Lie module over its Lie subalgebra [(1T"). We are interested
in a decomposition of the [(T")-Lie module [(£2) into indecomposable [(T)-Lie submodules.

In contrast to the examples Z3) Sz in §1 and Z9) Sy in §6, there exists an indecomposable projective
Q)-module with a non-commutative endomorphism ring.
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As we will see in the following, one consequence is that the decomposition of [(2) into [(T')-Lie sub-
modules is not as closely connected to a decomposition of €2 into indecomposable T-T-bimodules as it
has been in the previous examples.

We know that fQf and gQg are contained in T, so fQf and gQg are trivial [(T)-Lie modules. Hence
fQf and gQg decompose into [(T)-Lie submodules of rank 1 over R.

Let X C fQf be such a summand of rank 1 over R. Then X is a trivial [(7)-Lie module and so
Endy1)(X) = Endgr(X) ~ R. This shows in particular that the endomorphism ring End7)(X) is a
local ring. Similarly we see that the endomorphism ring End7)(X) is a local ring for a summand
X C ¢gQg of rank 1 over R.

We will show first that fQe and e€)f are indecomposable as [(T)-Lie modules.

Then it remains to decompose e€2e. As an R-module, efQe is of rank 8. We will find a decomposition
into six indecomposable [(T")-Lie submodules.

Ad fQe.

We want to show that fQe is indecomposable as an [(T)-Lie module.

Recall that Bj is an R-linear basis of fQe.

It suffices to show that the endomorphism ring End7)(f€2e) is a local ring; cf. Lemma 35.

Define the isomorphism of R-algebras ¢1: Endg(fQe) — RY by @1(h) := hg, 5, € RV for
h € Endg(fQe). Define the R-subalgebra E := @1(End1)(fQe)) of R**%. Define

Mg, ; = (adjoc bi)g, 5, € R for i € [1,10].
Then Mg, ; = Mp, i1 — Mp, iy for i € [1,10]. We have
Endyr)(fQe) ~ Ey = {M € R™*| M - Mg, ; = Mg, ;- M for i € [1,10]} . (88)
Recall that for i € [1,10] we have Mp, ;1 =0 or Mp, ;» = 0; cf. (77) and (78). So we obtain By = Eq;

cf. (76) and (88). But Ey = Cpaxa(A5) = Ls; cf. (27) and (28) in §5.5. We have shown that Lj is local;
cf. Remark 164. So we have shown that F is local. In particular, End)(f€2e) is local; cf. (88).

Ad eQ)f.

We want to show that e€f is indecomposable as an [(7)-Lie module.

Recall that Bs is an R-linear basis of e€)f.

It suffices to show that the endomorphism ring End)(ef2f) is a local ring; cf. Lemma 35.

Define the isomorphism of R-algebras @2: Endg(eQf) — R*** by @a(h) = hg,5, € R¥* for
h € Endg(e€2f). Define the R-subalgebra Eo := ¢2(Endr)(e€2f)) of R**%_ Define

Mg, ; = (adeqy bi)g, 5, € R for i € [1,10].
Then Mg, ; = Mg, i1 — Mg, for i € [1,10]. We have
Endyq)(eQf) =~ By = {M € R | M - Mg, ; = Mp, ;- M for i € [1,10]} . (89)
Recall that for i € [1,10] we have Mp, ;1 = 0 or Mp, ;r = 0; cf. (81) and (82). So we obtain Ey = By;

cf. (80) and (89). But Fz = Cpaxa(Ag) = Lg; cf. (30) and (31) in §5.6. We have shown that Lg is local;
cf. Corollary 166. So we have shown that Ej is local. In particular, Endz)(e€2f) is local; cf. (89).
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Ad eQle.

Recall the R-linear basis By = (b, be, b3, by, bs, bg, by, b10, b11, b12,b13) of T. The [(T)-Lie submodule
eQe of Q is generated by the elements by, ..., bg. In the following we will show that a decomposition
of eQe into a direct sum of indecomposable [(T')-Lie submodules of [(£2) is given as follows.

eQe = R<b1> 8P, R<b2> 8P, R<b5> D R<b6> D R<b7, —by + by + 2b7> S, R(bg, —bg — by + 2b8> (90)

In fact we will show that all these summands have local [(T')-endomorphism rings.
First we will show that all these summands are in fact [(T")-Lie modules.

The summands r(b1), r(b2), r(bs) and r(bs) are contained in the torus 7'. Since T is commutative, we
obtain that [b;,t] = 0 for i € {1,2,5,6} and for t € T. Hence these four summands are in fact [(T)-Lie
submodules.

We consider T7 := r(b7, —ba + by + 2b7). We write ¢ := —bg + by + 2b7. We calculate the Lie brackets
[b7,b;] and [c, b;] for i € [1,6] U [9,13].

1 [1)7, bz] [C, bz}
1 0 0
2 —c| —2c
3 —c| —2c¢
4 —c| —2¢ (91)
9 0 0
6 2c 4c
9,10,11,12,13 0 0

Note that [c, b;] = [—ba + ba, b;] + [2b7,b;] = 0+ 2[b7, b;] for i € [1,6] U [9, 13] since T is commutative.
This shows that 77 is an [(T')-Lie submodule of [(Q2).

Next we consider Ty := gr(bsg, —bs — by + 2bg). We write d := —bg — by + 2bg. We calculate the Lie
brackets [bs, b;] and [d, b;] for i € [1,6] U [9,13].

i | [bs, 0i] | [, bi]
1 0 0
2 d 2d
3 d| 2d
4 d 2d (92)
5 0 0
6| —2d| —4d
9,10,11,12,13 0 0

Note that [d, b;] = [~b3 — ba, b;] + [2bs, b;] = 0 + 2[bg, b;] for i € [1,6] U [9, 13] since T' is commutative.
This shows that T is an [(T')-Lie submodule of [(Q).

To see that (90) is in fact a decomposition of e€2e, we have to show that the right hand side contains
ef2e. But we have

bg = —(—bg — by + Zbg) + 2b8 — (—bQ + by + 2b7) + 2b7 — by
by = (—ba + by + 2b7) — 2b7 + by

and for i € {1,2,5,6,7,8}, the element b; is one of the generators of the right hand side of (90).

Note that the [(T)-endomorphism ring of an [(T")-Lie module of rank 1 over R is isomorphic to R and
thus, in particular, is local. So it remains to show that the [(7)-Lie modules T and Ty have local
[(T')-endomorphism rings.

We consider the [(T)-Lie module Ty = r(b7, c).
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The [(T')-endomorphism ring Endy7)(7%) is isomorphic to the ring of 2 x 2-matrices that commute with

(99); cf. (91). But this is Cpex2(A1) = Ly; cf. (18) and (19) in §5.1. We have shown in Remark 156
that Ly is local. Hence Endy)(T7) >~ L1 is local.

We consider the [(T)-Lie module Ty = r(bs, d).

The [(T')-endomorphism ring Endy7)(7%) is isomorphic to the ring of 2 x 2-matrices that commute with

(99); cf. (92). But this is Cgex2(A1) = Li; cf. (18) and (19) in §5.1. We have shown in Remark 156
that Ly is local. Hence Endp)(Ts) =~ L is local.

We summarize.

We obtain the following decomposition of [(€2) into a direct sum of [(T")-Lie submodules of [(£2).
() = r(b1) ® r{b2) © r(bs) @ R(bs) ®Tr ©Ts © eQUf © fQed fQf @ gQyg

In this decomposition, all summands but fQf and ¢gQg are indecomposable as [(T")-Lie submodules of
[(Q). The summands fQf and ¢gQg are trivial [(T)-Lie submodules of [(2).

Note that the Peirce components of €2 that have trivial intersection with T are indecomposable as
[(T)-Lie submodules of [(2) and as T-T-sub-bimodules of §; cf. equation (87) on page 166.

In addition we have shown that in a decomposition of [(2) as an [(T)-Lie module into indecomposable
summands, all these summands have local [(T")-endomorphism rings.

7.6 Magma

The following two codes are used for calculations with  ~ Z)Ss in Magma. However, note that
initialization files such as “pre” and “definitions” are required; cf. Magma Codes 3 and 4.

Magma Code 23: z2s5Init1l
// global definitions

Sizes := [1,1,1,1,2,2,3]1; // sizes of blocks

nb := #Sizes; // number of blocks

nt := 18; // number of ties needed to describe Omega
rt := &+Sizes; // rank of torus

rl := &+[Sizes[i]”2 : i in [1..nb]l]; // rank of Omega
prime := 2; // R is Z localized at the prime number 2
e := 8; // ties that describe Omega are given mod e
RM := RMatrixSpace(Z,rl,rt);

RMQ := RMatrixSpace(Q,rl,rt);

RV := RMatrixSpace (Z,rl,1);

RQV := VectorSpace (Q,rl);

RM2 := RMatrixSpace (Z,nt,rl);

RMB := RMatrixSpace(Z,rl,rl);

RMBQ := KMatrixSpace(Q,rl,rl);

RMVQ := KMatrixSpace(Q,rl,1);

Ties_Omega := // Ties mod e that describe Omega,

// given in the rows of this matrix
RM2 !'Matrix ([

(o, o,4,-4,0,0,0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0O, O, O, 01,
(o, o,0, o0,0,1,0,0, 0,1, 0,0, 0,-2, 0, O, 0, O, O, O, O],
(o, o,0, o,0,0,0,1, 0,0, 0,1, 0, 0, 0, 0,-2, 0, O, O, 01,
(o, o,0, o0,0,0,0,0, 0,0, 4,0, 0, 0, O0,-4, 0, 0, O, 0, O],
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Magma Code 24: z2s5Init2

// R-linear basis of Omega

// e Omega e,

diagonal part

~ e~~~ o~~~

— o/ o/ — o/

[ TR S T ('

—_— — — — ~— ~—

— — o/ — o/

[ TR S S W'

agonal part

// e Omega e,

CoerceGamma([(0,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0,0,0,1,0,01);

.= CoerceGamma([(0,2,0,0,0,0,0,0,-2,0,0,0,0,0,2,0,0,0,0,0,01);
// £ Omega f

CoerceGamma((0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,01);
.= CoerceGamma([(o0,o0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,2,0,0,0,01);

b[10]
b[11]

.= CoerceGamma((0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,01);

// g Omega g

CoerceGamma((0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,07);

bl[12]
b[13]

CoerceGamma((0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01);

// £ Omega e

CoerceGamma((0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,01);
.= CoerceGamma([(o0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,01);

bl[14]
b[15]
b[16]
b[17]

.= CoerceGamma([(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,01);

.= CoerceGamma((0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,01);

// e Omega f

.= CoerceGamma([(o0,o0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,-1,01);

b[18]
b[19]
b[20]
b[21]

.= CoerceGamma((0,0,0,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,01);

.= CoerceGamma((0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,01);

:= CoerceGamnma((o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,07);

// describing matrices of the adjoint endomorphisms of the elements
// of b with respect to the basis Basis Omega which is defined in

// the file

A

"definitions"

[RMBQ!admatrix (x)

x in b];

// the center of Omega is generated by the following

// seven elements
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Chapter A: On Krull-Schmidt for projectives

Let A be a ring and let B be the category of A-modules.

Proposition 174. Let X,Y € ObB such that X ~ Y. Suppose given direct summands X' of X
and Y' of Y and an isomorphism ¢: X = Y. Denote by wx: the projection map from X onto X'
and denote by vx: the inclusion map from X' into X. Likewise we define wy: and vy+. Suppose that
Y = Tyr 0w oLxs 1S an isomorphism.

Then we have the maps

7 kermyr — X/ X'

y— o (y) + X
and

o: X/ X" — ker my
4+ X' —s o(z) — (pouxs 01/;71 omys o p)(x).

Moreover, To o = idX/X/ and coT = idkemy,,

X' = Y’
(]
WX/( )LX’ Tryl( )/Lyl
X = Y
%
o
X/X/ ~ kerﬂ'y/
T

Proof.
o is well-defined.
!
We have to show that ¢(z) — (¢ o tx o p™ L omyr 0 p)(z) € ker my+ for z € X.

Suppose given x € X. We calculate.

’ — o sohto ;0 = /O — 70O yorh Lo e)
Ty (p(z) = (poixi o™ omyr 0 p)(x)) = (myr 0 p)(x) — (myr 0 p o txs o™ H o yr 0 ) ()
=v
= (my+ 0 9)(x) — (idyr omyr 0 9)(x) = 0
This shows that o(z) € kermy- for x € X.

Moreover, we have to show that o(z) Z0forze X', Suppose given z € X’. Then
(txromxr)(x) = .

Since ¢ is bijective, it suffices to show that

(txromx)(z) == L (txr o Y lomyro ©)(x).

|
Because of the injectivity of tx-, it suffices to show that mx/(x) = (¢! o mys 0 ¢)(x). Since ¥ is an

!
isomorphism, it suffices to show that (¢ o wx/)(z) = (my 0 ) ().
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But now we have

(Yomx)(x) = (myr o pouixromx:)(x) = (myr 0 p)(txr o mx/(z)) = (myr 0 p)(z).

Taking both together, we have shown that o is well-defined.

We have T oo =idx/x -
Suppose given x + X’ € X/X’. We calculate.

(roo)(z+X') =7(p(z) — (poix o™ omyr 0 p)(z))
= ¢ (p(x) = (poixr o™ omyr o) () + X
=2 — (ix 0 omys 0 p)(x) +X’
ex’

=r+ X

We have o o7 = idger ry, -

Suppose given y € ker mys . We calculate.

(cor)(y) =o(e ' (y) + X
=(pop )(y) — (pouix o tomy op) (o (y))
=y —(poix ot omy)(y)
=0

=Y
O
Lemma 175. Suppose given m > 0 and indecomposables X; € ObB for i € [1,m]. Suppose given

n > 0 and indecomposables Y; € Ob B for j € [1,n] such that Endg(Y;) is local for j € [1,n]. Suppose
that

Then m = n and there exists a permulalion p € Sy, such that X; ~ Y, fori € [1,n].

Proof. Choose an isomorphism ¢: @ie[l’m} X, — @je[l,n} Y;. We denote the projection map from
@ie[l,m} X; onto X; by 7y, for i € [1,m] and we denote the inclusion map from X; into @ie[l’m] X;
by vx,. Likewise we define 7y, and ty; for j € [1,n].

Claim 1. Idempotents split in B; cf. [Miil13, Definition 140]

Suppose given V' € ObB. Suppose given an idempotent ¢ € Endp(V). Define W := im(e) and

W' := ker(e). We have the inclusion maps ¢: W' — V and é: W — V. We denote by 2: V. — W the
map € restricted in the codomain to W. Then the following diagram commutes.

|4 £ |4
X /
w

w’ -
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We obtain the identities

EOCE=¢ (93)
and
cor=20 (94)
Since ¢ is an idempotent, we have
o (93 o (93 . _ .. _
EOEO0EO0E = €“=¢g = €0 =¢oidy o¢.

Since € is surjective and € is injective, we have
goé =idy. (95)

We define u := (1—¢) ["', i.e. u is the map 1 — ¢ restricted in the codomain to W’. Then the following
diagram commutes.

Thus we have the following equation.
tou=1-—¢e. (96)

Moreover, we have touoe () (1 —€) oe =0 and by the injectivity of ¢, we obtain
uoe =0. (97)

Now we can construct maps between W & W' and V as follows.

(9

Wew — =V

o)

We have (Z) o (5’ L) = idwegw-

We will determine the entries of the matrix (S) o (¢:). We have

g . Eoc Eou
u UOE wuoL
i _ . (95) .
For the entry on position (1,1), we have €0 ¢ =" idy = 1.

93) (

94 . e . .
For the entry on position (1,2), we have éo0Z o (8 gou ) 0. Using the injectivity of €, we obtain
gor=0.

93),(96 . S _
For the entry on position (2,1), we have touogo# (93),(96) (1 —¢e) oe = 0. Using the surjectivity of &

and the injectivity of ¢, we get uoe = 0.

96 94 . e
For the entry on position (2,2), we have touo (29) (1—¢€)or % t = toidy. Using the injectivity of
L, we get uor=idys = 1.

Putting the matrix together, we have shown that

g .)_€05'50L_10_.d
u O(E Y7 \uoe wou) " \o 1) T Wen
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We have (5' L) o <2> = idy.

We calculate.
()0 (3)=coztiou ™ ci(1-e)=1=1dy.

This shows that we found an isomorphism between V and W & W’. We obtain the following diagram.

W W' (98)

~

5
U
Diagram (98) commutes.
We have (5) o — (igi) (93)£(97) (Eog’oé) (9:5) (g)

We have (90) o (5) = (§)-

This shows that Diagram (98) commutes.

w oW

Altogether, this proves Claim 1.
Claim 2. There exists k € [1,n] such that wy, o p o 1x,, is an isomorphism.

Define e := @ o1y, omx, o . This is an idempotent on Djcpn Yi since mx,, o x,, = idx,,.

Furthermore, we have e # 0 since X, # 0 and thus tx,, o 7x,, # 0. We write e = (e;5); je[1,n] 88
a matrix such that e; ;: ¥; — Y; for i,5 € [1,n]. Then there exist k,l € [1,n] such that e;; is an
isomorphism; cf. [Miil13, Lemma 139] and Claim 1. We write ¢ := 7y, o p 0 tx,,.

We can write the map ey as follows.

€k, = Ty, © €O Ly,
-1
=Ty, 0OPOLX,, OTX, 0@  Oly

= w © (7TXm © go_l © [’Yl) :

: : -1 -1
Thus v is a retraction of mx,, o ™" owy; o €1 SO

. -1 —1
idy, =¢omx, 09 owoe;.

It follows that v is surjective, ¢ is injective and 1o} is an idempotent on Xp,. Thus im(qﬂoqﬁ) = 1m(zﬂ2
is a summand of X,,. Since X,, is indecomposable and Y}, # 0, we obtain that ¥ (Y;) = X,,. Thus ¢
has to be surjective.

We conclude that 1 is bijective. The same holds for ¢ = iy
This proves Claim 2.
We proceed by induction on n.

For n = 0, we have that 0 ~ €,y ,,) Xi as modules. Since X; is indecomposable for i € [1,m], we
conclude that m = 0. The trivial permutation on the empty set p = 1g, = idy satisfies the required

property.
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Suppose now that n > 1 and the claim is known for n — 1. Then, by Claim 2, we find k£ € [1,n] and
an isomorphism ¢: X,,, = Y;. We are in the following situation.

~

Xm Yk

P
WXm( )Lxm 7"Yk< )LYk

D Xi—— DY

i€[l,m] J€[1,n]

Here we can apply Proposition 174. Thus we find an isomorphism o: €

We need to show that
S x~ @ v

ic1,m] Xi/Xm =5 ker(my, ).

i€[1,m—1] jel,n]\{k}
But we have the following.
b Xi— D Xi/Xm —F—ke(my)= @
i€[l,m—1] i€lm] JE[1,n]\{k}
(i)ie[t,m—1) = (T1, -+ -, Tm-1,0) + Xpp,

Then we let p(m) := k and we define p on all integers between 1 and m — 1 as given by induction. [

Lemma 176. Suppose given an orthogonal decomposition 14 =
potents in A. Suppose given an orthogonal decomposition 14 =
potents in A. Suppose that e;Ae; is local for i € [1,n].

icin] (il- of 14 into primitive idem-

ic[t,m) €i of 14 into primitive idem-

Then m = n and there exist u € U(A) and o € S,, such that u~'é;u = eo() for i € [1,n].

Proof. Since e; is a primitive idempotent for ¢ € [1,n], the A-module Ae; is indecomposable for
i € [1,n]. Likewise we get that the A-module A¢; is indecomposable for i € [1,m]. Moreover, we know
that End 4 (Ae;) ~ e; Ae; is local for i € [1,n].

Since @z‘e[l,n] Ae; ~ A ~ @ie[l’m] Aé; ~ A we can apply Lemma 175. We obtain that m = n and
we find a permutation o € Sy, such that Aé; ~ Ae, ;) for i € [1,n]. Thus we get isomorphisms ¢; for
i € [1,n] such that
@iz Aé; — Ae,y(;
éi — gpi(ei).

We define
U= Z @z(él) and wv:= Z 80;1(60(2'))'

i€[1,n] 1€[1,n]

Furthermore, we have €;p;(€;) = ¢;i(€:€;) = ¢i(€;) and thus u € & Ae,(; for i € [1,n]. Similarly we
can show that v € e,(;)Aé; for i € [1,n].
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Step 1: We have uwv =1 and vu = 1.

We have
w = Z Z wi(éi)%—l(e”(j))
i€[ln) jeln] — g
€[1,n] j€[1,n] €€ Aeg(i)€q(j)AE;
- Z #i(e)e;  (eo(n)
i€[1,n]
— Z 901 901 61 eg(i))
N——
i€[1,n] €€;Aes(s)
= Y ¢ (pi@) =1
i€[1,n]
and

VU = Z Z 80] %(61)

j€[l,n] i€[1,n] Eeq(j)AEjEiAey(;)

= D ¢ (eot)wil@)
i€[1,n]

= > wile; eow) &)
i€[1,n] W

€ea<i)A€l

— Z il (esm)) = 1.

i€[1,n]

This completes Step 1. In particular, this shows that u is a unit in A.
Step 2: We have u™'é;u = eo() for i € [1,n].
It suffices to show that é;u = ue,(;) for i € [1,n]. Suppose given i € [1,n]. We calculate.

Gu= Y & 9ij(&) =wil@)

jE[l,n} EéjAeg(j)

uesiy = Y 9i(E) eop) = i(é)
JE€[1,n

’ ] GéjAeo.(j)

This shows that é;u = ue,(; for 7 € [1,n]. This completes Step 2.
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1 of the Morita-

iagona

d

irce

table for the Pe

10n

1cat

1

1p

Mult

Chapter B

£l9g £lq 0 0 0 0 0 0 0 0 0 0 0|er=¢
tlg elq 0 0 0 0 0 0 0 0 0 0 0|cr="1
0 0| 'gv qg q 0 0 0 0 0 0 0 0|11="1
0 0| 'qg|tq—0y | Ol 0 0 0 0 0 0 0 0|0T=1¢
0 0 g 01q 6q 0 0 0 0 0 0 0 0|6=1
8qg+ 8qg+
Lqg+ 99 — “9g+ 89z+ 8qz+ | 99 — “qg+
0 0 0 0 0 8z | 9+ %q— 0| "—%—| Yq+%— | Pq—%tq| Vq—Eq— 8g |8 =1
99— | 99+ “qz— Lo+ Lqg+ 99— 9+
0 0 0 0 0| g+ 79— Yq+%q | "9z +%q5— | YQ+%q— | %g + Tqg— 0| €g—°%g q|L=1
Sqp+
0 0 0 0 0| "9 — ®qg— 0 997 9qg 0 0 0 9919=1
8qg+
99 — “9z+ L+
0 0 0 0 0| Y9—*%—| "q+%q— 99z 9z 9 — 99z | 99 — <qg 99 — 9qg Q| g=1
Lqg+
99 — Qg+ 99+
0 0 0 0 0 Yoz | T —%q— 0 9 — %z | “qzc—Tqy | 99— 4qg 99 — %qg qly=1
L9z+ 99+
0 0 0 0 0 g9z | Y9+ %q— 0| 9% —9g 99 — 997 | “9z — fq¥ | 99 — 9qg B le=1
Lqz+
99 + “qg— 99+
0 0 0 0 0 9 — “qg 7q +%q 0 99 — %qg 99— %9z | %9—9g | 9 — %y qlg="1
0 0 0 0 0 8q X % q ¥q £q & lgl1=1
cr=Cller=C|11=" or=Cl|6=" g=" L= 9=" g="/ =1 ¢=/ c=C]1="0]|"9-%

(b; : i € [1,13]) is an R-linear basis of the Peirce diagonal eQe® fQf @ gQg. We give the multiplication

Let €2, the idempotents e, f,g € 2 and the R-linear basis B of 2 be defined as in §7.1. Then the tuple
table of this Peirce diagonal.

reduced version of 7, Ss
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Zusammenfassung

In der Theorie der Lie-Algebren werden Tori dazu verwendet, die halbeinfachen komplexen Lie-Algebren
zu klassifizieren. Dabei haben die Elemente eines Torus die Eigenschaft, dass der zugehorige adjungierte
Endomorphismus halbeinfach, d.h. diagonalisierbar ist.

Wir verallgemeinern die bekannten Begriffe der Lie-Algebren iiber (algebraisch abgeschlossenen) Kor-
pern nun auf Lie-Algebren iiber Hauptidealbereichen.

Im Folgenden sei R ein Hauptidealbereich mit Quotientenkdrper K, es sei M ein endlich erzeugt freier
R-Modul und ¢: M — M eine R-lineare Abbildung.

Der Begriff der Diagonalisierbarkeit von ¢ spaltet sich in zwei unterschiedliche Definitionen auf: Es
heifse ¢ diagonalisierbar iiber R, falls es eine R-lineare Basis von M gibt, die aus Figenvektoren von ¢
besteht. Wir sagen, dass ¢ diagonalisierbar iiber K ist, falls es eine K-lineare Basis von K ®p M gibt,
die aus Eigenvektoren von K ®p ¢ besteht. Hier impliziert die erste Variante der Diagonalisierbarkeit
die letztere.

Sei g eine Lie-Algebra iiber R. Dann heifse t C g ganzzahliger Torus, falls der adjungierte Endomorphis-
mus adg(t) fiir alle t € t diagonalisierbar iiber R ist. Es heifse t C g rationaler Torus, falls der adjungierte
Endomorphismus adg(t) fiir alle ¢ € t diagonalisierbar iiber K ist. Somit ist jeder ganzzahlige Torus
auch ein rationaler Torus.

Analog zur Theorie der halbeinfachen komplexen Lie-Algebren zeigen wir, dass jeder rationale Torus
eine abelsche Lie-Algebra iiber R ist. Zudem ist ein rationaler Torus in g maximal in g, falls er seinem
Zentralisator in g gleicht. In Beispielen zeigen wir, dass maximale rationale Tori im Allgemeinen nicht
eindeutig sind.

Wir kénnen einen maximalen rationalen Torus t in g dazu verwenden, den t-Modul g in unzerlegbare
Teilmoduln zu zerlegen.

Sei nun I ein direktes Produkt von Matrixringen iiber R. Sei 2 eine Teilalgebra, fiir die K®g(I'/Q) =0
gilt. Ein solches Q bezeichnen wir als Split- R-Ordnung.

Sei A die Teilalgebra von I', die aus Tupeln von Diagonalmatrizen besteht. Dann ist A N Q eine
kommutative Teilalgebra von Q. Wir bilden die Kommutator-Lie-Algebren [((2 N A) und [(€2). Unser
Standardbeispiel fiir einen maximalen rationalen Torus in [(€2) ist dann die Lie-Algebra [(Q2 N A).

In dieser Arbeit untersuchen wir beispielhaft die Gruppenringe Z3) Ss, Z(2) Sa und Z ) Ss. Das Bild ei-
nes solchen Gruppenrings RG unter einem Wedderburn-Isomorphismus ist dann eine Split- R-Ordnung.
So kénnen wir Tori in isomorphen Kopien der betrachteten Gruppenringe untersuchen, wobei wir im
Falle Z2) S5 auf eine Morita-reduzierte Version zuriickgreifen. Im Beispiel Z3) S3 ist der Standardtorus
bereits ein ganzzahliger Torus. In den Beispielen Z ) Sy und Z ) S5 ermitteln wir einen ganzzahligen
Torus, der im Standardtorus maximal ist.

Dazu wihlen wir eine R-lineare Basis des rationalen Torus und bestimmen, welche R-Linearkombinatio-
nen von diesen Basiselementen wieder adjungierte Endomorphismen haben, die {iber R diagonalisierbar
sind. Dies ist von vornherein ein unendliches Problem. Wir stellen jedoch fest, dass die Eigenmoduln
des adjungierten Endomorphismus einer solchen Linearkombination eng mit den Eigenmoduln der ad-
jungierten Endomorphismen der Basiselemente zusammenhangen. Daher kénnen wir die Untersuchung
auf eine endliche Menge beschrinken.

Wir konstruieren einen Algorithmus, der fiir eine endliche Liste von k& kommutierenden, iiber K dia-
gonalisierbaren Matrizen eine Basis des R-Teilmoduls von RF ausgibt, der die Koeffizientenvektoren
enthélt, deren zugehdrige Linearkombination der Matrizen iiber R diagonalisierbar ist.
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