Gruppentheorie, SoSe 25

Blatt 3

Hausaufgabe 9

- (1) Gibt es eine einfache Gruppe von Ordnung 83?
- (2) Gibt es eine einfache Gruppe von Ordnung 82?
- (3) Gibt es eine einfache Gruppe von Ordnung 81?
- (4) Gibt es eine einfache Gruppe von Ordnung 80?

Hausaufgabe 10 (A13) Seien G und H Gruppen. Sei $G \xrightarrow{f} H$ ein Gruppenmorphismus. Sei $G^{(1)} := [G, G] := \langle [g, \tilde{g}] : g, \tilde{g} \in G \rangle$ die Kommutatoruntergruppe von G. Man zeige.

- (1) Sei f surjektiv. Es ist $f(G^{(1)}) = H^{(1)}$.
- (2) Es ist $G^{(1)} \leq G$ und $G/G^{(1)}$ abelsch.
- (3) Sei $G \xrightarrow{r} G/G^{(1)}$, $g \mapsto gG^{(1)}$. Sei H abelsch. Es gibt genau einen Gruppenmorphismus $\bar{f}: G/G^{(1)} \to H$ mit $\bar{f} \circ r = f$.
- (4) Sei $N \leq G$. Genau dann ist G/N abelsch, wenn $G^{(1)} \leq N$ liegt.

Hausaufgabe 11 (A14) Sei $G_0 := \langle (1,2)(3,4), (1,2)(3,5), (1,3)(4,5) \rangle \leqslant A_5$. Wir betrachten die G_0 -Menge M = [1,5].

- (1) Man bestimme Erzeuger für $G_1 := C_{G_0}(1)$.
- (2) Man bestimme Erzeuger für $G_2 := C_{G_1}(2)$.
- (3) Man zeige $G_0 = A_5$ unter Verwendung von (1) und (2).

Hausaufgabe 12 (A17) Sei G eine Gruppe. Sei $K \leq G$. Sei $r: G \to G/K$, $g \mapsto gK$. Man zeige.

(1) Wir haben die inklusionserhaltende Bijektion

$$\{ U \subseteq G : K \leqslant U \leqslant G \} \rightarrow \{ V \subseteq G/K : V \leqslant G/K \}$$

$$U \mapsto r(U)$$

$$r^{-1}(V) \leftarrow V .$$

- (2) Seien U und U' aus der linken Seite von (1) mit $U \leq U'$ gegeben. Dann ist auch $r(U) \leq r(U')$ und $U'/U \xrightarrow{\sim} r(U')/r(U)$, $u'U \mapsto r(u') r(U)$.
- (3) Die Bijektion aus (1) schränkt ein zu einer Bijektion von $\{U\subseteq G: K\leqslant U\leqslant G\}$ nach $\{V\subseteq G/K: V\leqslant G/K\}$.

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/gt25/