Gruppentheorie, SoSe 25

Lösung 3

Hausaufgabe 9

- (1) Gibt es eine einfache Gruppe von Ordnung 83?
- (2) Gibt es eine einfache Gruppe von Ordnung 82?
- (3) Gibt es eine einfache Gruppe von Ordnung 81?
- (4) Gibt es eine einfache Gruppe von Ordnung 80?

Lösung.

Ad (1). Ja. Die zyklische Gruppe C_{83} ist einfach. Denn wegen 83 prim kann keine Untergruppe $1 \neq U < C_{83}$ existieren, was wegen C_{83} abelsch gleichbedeutend ist mit der Einfachheit von C_{83} .

Ad (2). Nein. Sei G eine Gruppe mit |G| = 82. Es ist $|\operatorname{Syl}_{41}(G)| \equiv_{41} 1$ und $|\operatorname{Syl}_{41}(G)|$ ein Teiler von $\frac{82}{82[41]} = 2$. Also ist $|\operatorname{Syl}_{41}(G)| = 1$. Somit ist die einzige 41-Sylowuntergruppe ein Normalteiler in G von Ordnung 41. Folglich ist G nicht einfach.

Ad (3). Nein. Sei G eine Gruppe mit |G| = 81.

 $Fall\ G$ abelsch. Dann gibt es ein Element x von Ordnung 3 in G. Es ist $1 \neq \langle x \rangle \triangleleft G$. Folglich ist diesenfalls G nicht einfach.

 $Fall\ G$ nichtabelsch. Es ist $\mathbf{Z}(G) < G$. Um zu zeigen, daß G nicht einfach ist, genügt es also zu zeigen, daß $\mathbf{Z}(G) \neq 1$ ist.

Es operiert G via Konjugation auf G. Es ist $1 \leq |\mathbf{Z}(G)| \equiv_3 |G| = 81$; cf. Hausaufgabe 6.(1). Folglich ist $|\mathbf{Z}(G)| \geq 3$ und damit tatsächlich $\mathbf{Z}(G) \neq 1$.

Ad (4). Nein. Sei G eine Gruppe mit |G| = 80. Annahme, es ist G einfach.

Es ist $|\operatorname{Syl}_5(G)| \equiv_5 1$ und $|\operatorname{Syl}_5(G)|$ ein Teiler von $\frac{80}{80[5]} = 16$. Also ist $|\operatorname{Syl}_5(G)| \in \{1, 16\}$. Wegen G einfach ist $|\operatorname{Syl}_5(G)| = 16$.

Es ist $|\operatorname{Syl}_2(G)| \equiv_2 1$ und $|\operatorname{Syl}_2(G)|$ ein Teiler von $\frac{80}{80[2]} = 5$. Also ist $|\operatorname{Syl}_5(G)| \in \{1, 5\}$. Wegen G einfach ist $|\operatorname{Syl}_2(G)| = 5$.

Da $|\operatorname{Syl}_5(G)|=16$ und da der Schnitt je zweier 5-Sylowgruppen gleich 1 ist, haben wir in G zusammen $(5-1)\cdot 16=64$ Elemente der Ordnung 5.

Da $|\operatorname{Syl}_2(G)| > 1$, haben wir in G mehr als 16 Elemente, deren Ordnung eine Potenz von 2 ist.

Insgesamt haben wir in G mehr als 64 + 16 = 80 Elemente. Wir haben einen Widerspruch zu |G| = 80.

Hausaufgabe 10 (A13) Seien G und H Gruppen. Sei $G \xrightarrow{f} H$ ein Gruppenmorphismus. Sei $G^{(1)} := [G, G] := \langle [g, \tilde{g}] : g, \tilde{g} \in G \rangle$ die Kommutatoruntergruppe von G. Man zeige.

- (1) Sei f surjektiv. Es ist $f(G^{(1)}) = H^{(1)}$.
- (2) Es ist $G^{(1)} \leq G$ und $G/G^{(1)}$ abelsch.
- (3) Sei $G \xrightarrow{r} G/G^{(1)}$, $g \mapsto gG^{(1)}$. Sei H abelsch. Es gibt genau einen Gruppenmorphismus $\bar{f}: G/G^{(1)} \to H$ mit $\bar{f} \circ r = f$.
- (4) Sei $N \leq G$. Genau dann ist G/N abelsch, wenn $G^{(1)} \leq N$ liegt.

Lösung.

 $\begin{array}{lll} \mathrm{Da}\ [h,\tilde{h}] = [f(g),f(\tilde{g})] = f([g,\tilde{g}]) \ \mathrm{ist}\ \mathrm{f\"{u}r}\ h,\,\tilde{h} \in H \ \mathrm{und}\ g,\,\tilde{g} \in G \ \mathrm{mit}\ f(g) = h \ \mathrm{und}\ f(\tilde{g}) = \tilde{h} \ \mathrm{und}\ \mathrm{da} \\ H^{(1)} = \langle\, [h,\tilde{h}] : h,\,\tilde{h} \in H \,\rangle \ \mathrm{ist},\, \mathrm{ist}\ f(G^{(1)}) \geqslant H^{(1)}. \end{array}$

Ad~(2). Da $^x[g,\tilde{g}]=[^xg,^x\tilde{g}]\in G^{(1)}$ ist für $x,\,g,\,\tilde{g}\in G$ und da $G^{(1)}=\langle\,[g,\tilde{g}]:g,\,\tilde{g}\in G\rangle$ ist, folgt $G^{(1)}\leqslant G$. Seien $g,\,\tilde{g}\in G$ gegeben. Es wird $[gG^{(1)},\tilde{g}G^{(1)}]=[g,\tilde{g}]G^{(1)}=1$. Also ist $(G/G^{(1)})^{(1)}=1$, i.e. $G/G^{(1)}$ ist abelsch. Ad~(3). Der Gruppenmorphismus $\bar{f}:G/G^{(1)}\to H$ mit $\bar{f}\circ r=f$, i.e. mit $\bar{f}(gG^{(1)})=f(g)$ für $g\in G$, ist wegen r surjektiv eindeutig bestimmt. Wir haben nur seine Existenz zu zeigen.

Dazu ist $f(G^{(1)}) \stackrel{!}{=} 1$ zu zeigen. Seien $g, \tilde{g} \in G$ gegeben. Es genügt, $f([g, \tilde{g}]) \stackrel{!}{=} 1$ zu zeigen. Aber $f([g, \tilde{g}]) = [f(g), f(\tilde{g})] = 1$, da H abelsch.

Ad (4). Ist $G^{(1)} \leq N$, dann haben wir den surjektiven Gruppenmorphismus $G/G^{(1)} \to G/N$, $gG^{(1)} \mapsto gN$, so daß mit (2) aus $G/G^{(1)}$ abelsch auch G/N abelsch folgt.

Ist umgekehrt G/N abelsch, so haben wir $G^{(1)} \stackrel{!}{\leqslant} N$ zu zeigen. Seien $g, \, \tilde{g} \in G$. Wir haben $[g, \tilde{g}] \stackrel{!}{\in} N$ zu zeigen. Da G/N abelsch ist, wird aber $[g, \tilde{g}]N = [gN, \tilde{g}N] = 1$.

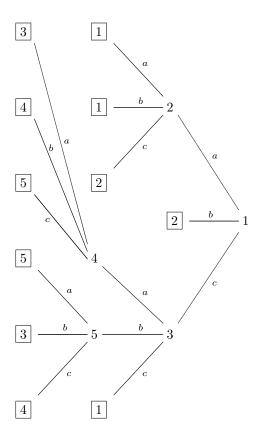
Hausaufgabe 11 (A14) Sei $G_0 := \langle (1,2)(3,4), (1,2)(3,5), (1,3)(4,5) \rangle \leqslant A_5$. Wir betrachten die G_0 -Menge M = [1,5].

- (1) Man bestimme Erzeuger für $G_1 := C_{G_0}(1)$.
- (2) Man bestimme Erzeuger für $G_2 := C_{G_1}(2)$.
- (3) Man zeige $G_0 = A_5$ unter Verwendung von (1) und (2).

 $L\ddot{o}sung.$

Ad (1). Wir schreiben a := (1,2)(3,4), b := (1,2)(3,5) und c := (1,3)(4,5).

Zur Berechnung von Erzeugern von $C_{G_0}(1)$ erstellen wir folgenden Baum von rechts nach links.

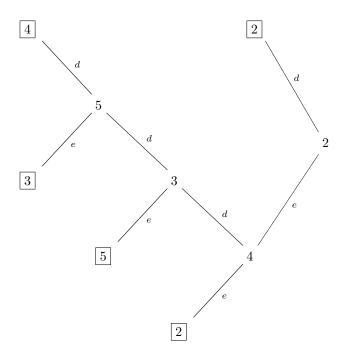


Die Elemente nicht in Kästchen geben die Bahn $G_0 \cdot 1 = \{1, 2, 3, 4, 5\}.$

Die Elemente in Kästchen liefern folgende Erzeuger von $C_{G_0}(1)$.

Wir schreiben d := (3, 5, 4) und e := (2, 4)(3, 5). Es wird ${}^d e = (2, 3)(4, 5) =: g$, ${}^g d = (2, 4, 5)$. Also ist $G_1 = C_{G_0}(1) = \langle d, e \rangle$.

Ad (2). Zur Berechnung von Erzeugern von $C_{G_1}(2)$ erstellen wir folgenden Baum von rechts nach links.



Die Elemente nicht in Kästchen geben die Bahn $G_1 \cdot 2 = \{2, 3, 4, 5\}$. Die Elemente in Kästchen liefern folgende Erzeuger von $C_{G_1}(2)$.

Also ist $G_2 = C_{G_1}(2) = \langle d \rangle = \langle (3, 4, 5) \rangle$.

Ad (3). Zu zeigen ist nur $|G_0| \stackrel{!}{=} 60$. In der Tat wird

$$|G_0| \stackrel{\text{L.20}}{=} |G_0 \cdot 1| \cdot |\mathcal{C}_{G_0}(1)| \ = \ 5 \cdot |G_1| \stackrel{\text{L.20}}{=} \ 5 \cdot |G_1 \cdot 2| \cdot |\mathcal{C}_{G_1}(2)| \ = \ 5 \cdot 4 \cdot |\langle (3,4,5) \rangle| \ = \ 5 \cdot 4 \cdot 3 \ = \ 60 \ .$$

Hausaufgabe 12 (A17) Sei G eine Gruppe. Sei $K \leq G$.

Sei $r: G \to G/K$, $g \mapsto gK$. Man zeige.

(1) Wir haben die inklusionserhaltende Bijektion

$$\left\{ \begin{array}{ccc} \{U \subseteq G \,:\, K \leqslant U \leqslant G \} & \to & \{V \subseteq G/K \,:\, V \leqslant G/K \} \\ & U & \mapsto & r(U) \\ & r^{-1}(V) & \longleftrightarrow & V \;. \end{array} \right.$$

- (2) Seien U und U' aus der linken Seite von (1) mit $U \leq U'$ gegeben. Dann ist auch $r(U) \leq r(U')$ und $U'/U \xrightarrow{\sim} r(U')/r(U)$, $u'U \mapsto r(u') r(U)$.
- (3) Die Bijektion aus (1) schränkt ein zu einer Bijektion von $\{U \subseteq G : K \leqslant U \leqslant G\}$ nach $\{V \subseteq G/K : V \leqslant G/K\}$.

Lösung.

Ad (1). Wir zeigen die Wohldefiniertheit der beiden angegebenen Abbildungen.

Ist $U \in \{U \subseteq G : K \leq U \leq G\}$, dann ist $r(U) \in \{V \subseteq G/K : V \leq G/K\}$, da das Bild einer Untergruppe unter einem Gruppenmorphismus eine Untergruppe der Zielgruppe ist.

Ist umgekehrt $V \leqslant G/K$, dann ist zum einen $r^{-1}(V) \leqslant G$ als Urbild einer Untergruppe. Ferner folgt aus $1 \leqslant V$, daß $K = r^{-1}(1) \leqslant r^{-1}(V)$ ist.

Wir müssen zeigen, daß sich die beiden angegebenen Abbildungen gegenseitig invertieren.

Sei $U \in \{U \subseteq G : K \leqslant U \leqslant G\}$. Es ist $U \subseteq r^{-1}(r(U))$. Wir haben $U \stackrel{!}{\supseteq} r^{-1}(r(U))$ zu zeigen. Sei $g \in G$ mit r(g) = r(u) für ein $u \in U$. Dann ist $r(gu^-) = r(g) \cdot r(u)^- = 1$ und also $gu^- \in K \leqslant U$. Somit ist auch $g = gu^- \cdot u \in U$.

Sei $V \in \{ V \subseteq G/K : V \leqslant G/K \}$. Da r surjektiv ist, ist $V = r(r^{-1}(V))$.

Ad (2). Seien $U, U' \in \{U \subseteq G : K \leqslant U \leqslant G\}$. Sei $U \leqslant U'$.

Wir zeigen $r(U) \stackrel{!}{\leqslant} r(U')$. Sei $u \in U$. Sei $u' \in U'$. Da $u'u \in U$, wird auch $r(u')r(u) = r(u'u) \in r(U)$.

Wir zeigen den Gruppenisomorphismus $U'/U \xrightarrow{\sim} r(U')/r(U)$, $u'U \mapsto r(u')\,r(U)$. Schreibe $\tilde{r}: r(U') \to r(U')/r(U)$, $r(u') \mapsto r(u')r(U)$ für den Restklassenmorphismus.

Wir haben den surjektiven Gruppenmorphismus $f:=\tilde{r}\circ r|_{U'}^{r(U')}:U'\to r(U')/r(U),\ u'\mapsto r(u')\,r(U)$. Da $\mathrm{Kern}(f)=\{\,u'\in U':r(u')\in r(U)\,\}=U'\cap r^{-1}(r(U))=U'\cap U=U,\ \mathrm{induziert}\ f\ \mathrm{den}\ \mathrm{Gruppenisomorphismus}\ U'/U\overset{\sim}{\to} r(U')/r(U),\ u'U\mapsto f(u')=r(u')\,r(U)\,.$

Ad (3). Ist $K \leq U \leq G$, dann ist auch $r(U) \leq r(G) = G/K$ gemäß (2).

Ist umgekehrt $V \leq G/K$, dann ist auch $r^{-1}(V) \leq G$ als Urbild eines Normalteilers unter einem Gruppenmorphismus. In der Tat wird für $g \in G$ und $x \in r^{-1}(V)$ dann $r(x) \in V$ und also auch $r({}^gx) = {}^{r(g)}r(x) \in V$, i.e. ${}^gx \in r^{-1}(V)$.

Also schränken beide Abbildungen aus (1) auf die angegebenen Teilmengen ein. Diese Einschränkungen invertieren sich gemäß (1) gegenseitig und sind daher insbesondere bijektiv.

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/gt25/