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Chapter 1

Introduction

1.1 Aim

Consider the symmetric group S,, for some n > 1. Let p be a prime dividing |S,,| = n!.
The simple F,S,,-modules are parametrized by p-regular partitions; cf. [5, Th. 11.5].
Let D and D be simple F,Sn-modules. They may be viewed as simple Z,S,-modules.

Let P be the projective cover of D in mod-Z)S, . So P is an indecomposable direct summand of the
regular module Z,)S,, . Let tP C P be the Jacobson radical of P. So we have a short exact sequence

tP — P — D.

Let P be the projective cover of D in mod-Z,)S, . We have a short exact sequence

tP — P — D.

In mod-Z,)S,, , we have the following tensor product.
Given modules M and N, we may form M ® N := M ®z, N and equip it with the diagonal action of
Z(p)Sn , that is, (m®@n)o =mo @no forme M,ne€ N,o €S, .

We consider the canonical right-exact sequence

(2)

tP®P)@®(P®tP) ~% PP — D®D,

where F is the inclusion map from tP ® P to P ® P, and where E is the inclusion map from P @ tP to
P @ P. Since the modules P ® ]5, tP® P and P ® tP are projective, the diagram

(£)

tP® P)&(P®tP) —% PP
is a presentation of D ® D.
Working over Z,) instead of [, , we have
tPQP 2 PRtP 2 PRQP:

cf. Lemma 238. So we may find an isomorphic replacement of the diagram

PoP £ PpopP &£ Porp

in mod-Z,)S,, by a diagram of the form

iv



1.2. SIMPLIFYING THE CANONICAL PRESENTATION v

where () is a projective Z(,)S,-module, and where C' and C are injective endomophisms of Q.
We want to find such an isomorphism replacement with C' and C of a simple shape.
The aim is twofold.

First, we give a list of examples to explore which shape for C' and C can be achieved; cf. Section 1.2 and
the Chapters 3, 4 and 5.

Second, we prove that we can achieve C or C to be diagonal; cf. Corollary 159. In general, it is impossible
to achieve that both C' and C' are diagonal; cf. Remark 16.

1.2 Simplifying the canonical presentation

We keep the notation of Section 1.1.

1.2.1 The simplification procedure

Choose a projective Z,)S,-module () and isomorphisms
PP = Q
PP = Q
PotP = Q,

cf. Lemma 238, Chapter 7. In practice, one chooses @ to be a direct sum of standard indecomposable

projectives.

We obtain a commutative diagram of the form

P®tP

e}
ol
o

PP = Q
| o |
o ~ B

tPQP — Q.

We may simplify Cjy and Co using suitable Z,)S,-linear automorphisms of (), as shown below. Note that
A; affects both Cp and C .

P (i<) tP — Q — Q
B Q Co Q ¢
PeP = Q = Q
E Q Co Q C
Bo B,
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We obtain the resulting isomorphisms A := Ay - Ay, B:= By- By and B:=By-B.

If @ is a direct sum of standard indecomposable projectives, then C' and C are matrices, having Z,)S,-

linear maps between the summands as matrix entries.
We want C and C to be in a simple form — the closer to diagonal form the better. Cf. Construction 33.
It is possible to achieve diagonal form for C' or for C; cf. Corollary 159.

In general, we cannot achieve both C and C to be diagonal, as we will see on the example of P; ® P; of

Z2)S3 ; notation taken from Lemma 14. There, we end up with the endomorphisms
and C =

of @ = Py @ P1, the 2 x 2-blocks describe Z4)S3-linear maps between the summands. These endomor-
phisms cannot be simultaneously transformed into diagonal form by a commutative diagram of the form

above, as we show in Remark 16.

After the simplification, we may then fold our diagram and add cokernels vertically to obtain the following

commutative diagram.

D@[)————:———>Coker<g>
P®P < Q

n O e

(tP® P)® (P ®tP) Qo

1.2.2 The defect-0 case

We will observe that if P belongs to a defect-0 block, then we can achieve diagonal form for both C' and
C simultaneously.

More precisely, in this case we have a direct sum decomposition P @ P —» Q' @ Q" fitting into a

commutative diagram

P ® tP = Q Q"
(8" pidg )
(Lemma 163) PeP = Q aQ"
(pich/ Pi‘?ce” )
PoP—>QaQ".

This is basically a corollary to Theorem 157; cf. also Section 1.5.



1.3. AN ISOMORPHIC REPLACEMENT OF THE COMULTIPLICATION vii
1.3 An isomorphic replacement of the comultiplication

Consider the group ring Z3)S3. Consider the Wedderburn isomorphism

w3y - Z(3)S3 ;> A(3) = {(a, (Zg),f) 62(3) XZ?;)QXZ(:;) |a53 b, € =3 f, dEg O};

cf. Definition 21.
Let A : Z(3)Ss — Z3)S3®%Z(3)S3, 0 — 0 @0 be the comultiplication, where o € Sz ; cf. Definition 37.

We have the commutative diagram of Zs)-algebras

L(3)Ss = L(3)83 @ L(3)S3
1| W) Q U w3)Bw(s)
A A © A -

In Section 3.3, we set out to replace A isomorphically in such a way that the image of an element of A3y

is in the simplest possible form.

As isomorphic replacement of A(3) ® A(3), we obtain a Z3)-subalgebra

2x2 2x2 4x4 2x2 2x2
' C Zg x Z(3X) X L3y X Z(;) X Z(3X) X Z(;) X L3y X Z(3X) X Z3)

described by ties; cf. Lemma 39. We obtain the commutative diagram of Z3)-algebras

Z3)S3 A Z(3)53 ® Z3)S3
L w(@3) Q 1| Q
Ay A’ T,
where
Ag 25T
a000
o (B2 (300 (). (B08) (52) o (42) o)

and where the mapping rule for Q is given in Lemma 38.

Then we will use the ties of ' to calculate and decompose the tensor product S @ S of Specht
modules in Section 3.3.4.

1.4 A Krull-Schmidt argument

Let B be an additive category in which idempotents split; cf. Definition 140. Suppose given X;,..., X, €
obj(B) with local endomorphism rings; cf. Definition 189. Let

e € Endp(X: ®...®X,)\ {0}

be an idempotent. We write it as a matrix e = (eqp)q,b , Where eqp : X, — Xj for a, b € [1,n].

There exist ¢, j € [1,n] such that e;; is an isomorphism; cf. Lemma 139.
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Suppose given Y € obj(B) such that

Yy @X

1€[1,n]
Let Z be a direct summand of Y. Then there exists I C [1, n]
z= @x.
iel
as we will show in Proposition 141.

We will give a construction for this isomorphism. This makes it possible to turn this argument into an

algorithm. We will give an implementation in Magma [3] in Section 6.2.3.1.

In Section 6.2.4, the algorithm will be applied to the case of a tensor product of a lattice and a direct
summand of RG, where R is a localization of the integers at a maximal ideal and where G is a finite
group.

In this case, we may also lift a modular isomorphism between the tensor product in question and a
standard decomposition into indecomposable projectives, obtained using the MeatAxe of Magma, from
the modular to the locally integral case. This lift can be constructed since all modules involved are
projective. Then the lifting method is not as memory consuming as the Krull-Schmidt method. Cf.
Chapter 7.

1.5 A total decomposability

Let R be a discrete valuation ring with maximal ideal (7).

Let G be a finite group split by R, i.e. suppose that A := RG is isomorphic to an R-suborder of a finite
direct product T' of matrix rings over R such that the R-linear factor module I'/; has finite length over R.

Consider the additive category A := (lat-A)®!, having as objects morphisms of lat-A; cf. Definition 153.

We call an object (M TN ) in A totally decomposable if it is isomorphic to a finite direct sum of
objects of the form

0—Q)

(@ —0)

@R ™Q),

for @ € obj(lat-A) an indecomposable direct summand of A; cf. Definition 154.

A variant of Heller’s Lemma is used to show that the endomorphism rings of these objects are local; cf.
Lemmas 231 and 233, used for Lemma 155.

Theorem 157. Suppose given (M N N) in obj(A), i.e. M and N are A-lattices and f is a A-linear
map. Let P be a finitely generated projective A-module.

Then the object (M N N)® P = (M ® P ELLGY ® P) of A is totally decomposable.

For this theorem, we need to apply Lemma 156, which uses the Krull-Schmidt argument explained in
Section 1.4; cf. Proposition 141.

Now suppose f to be injective and rkrp M = rkr N. Then we have a decomposition

ML Nyer = @),

K2

where ; is an indecomposable direct summand of A and «; > 0 for all 7; cf. Corollary 158.

As an application, suppose given finitely generated projective A-modules P and P. Recall that tP denotes
the Jacobson radical of P.
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Then we can find projective A-modules Q and @', and a commutative diagram as follows; cf. Corollary 159.

P®P 5 QaQ
idg 0
0 midgy
tP® P -~ QD Q

1.6 The Jacobson radical

We give a self-contained introduction to Jacobson radicals of orders over discrete valuation rings, collecting

well-known facts in one place; cf. App. C.
Suppose given a discrete valuation ring R. Suppose A to be an R-order.

Suppose A to be stable, i.e. for each primitive idempotent e € A, the idempotent &€ € A to be primitive;
cf. Definition 207 .

Let 1y = > e; be an orthogonal decomposition into primitive idempotents; cf. Remark 216.
i€[1,n]

We define an equivalence relation (~) on the index set [1,n] by letting
’LNj =4 eiA%ejA

for i, j € [1,n].

We write t(e;Aej) = e;Aej - t(ejAe;) = e;t(A)e; = t(eAe;) - e;Aej for 4, j € [1,n] with ¢ ~ j; cf.
Lemma 185.

Then we get
(Proposition 217) tA = ( @ t(eiAe;)) @ ( @ eille;) .
i,5€[1,n] i,5€[1,n]
i~] 1]
Now let 1xp = Y ¢&; be an orthogonal decomposition into central idempotents of KA. Then
i1€[1,0]
(Proposition 222) tA = An P )
1€[1,¢]

as R-submodules of KA.

In practice, we use the latter assertion not to calculate the radical of A as a whole, but rather to calculate
the radical of e;Ae; , as needed for the former assertion. So we only have to actually compute radicals of
the R-orders €;e;Ae; , which are rather small.
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1.7 Conventions

e Maps act on the right. Composition is written in the natural ordering, i.e. — b, @b,

e Suppose given sets A and B and amap f: A — B.
Let X C A and Y C B be such that Xf C Y.

Then we write

f‘; : X — Y for the restriction of f to X in the domain and to Y in the codomain.
So fo =af forx € X.
In addition, if Y = B we also write f|x := f‘f; ,and if X = A we also write f‘y = f‘X.
e Let R be a ring. Unless specified otherwise, by an R-module we understand a right R-module.

e By default, variables without further specification run through the ground ring of the present

context. This default is often used in context of matrix entries.
e The identity on a set M we denote as idy; =id or as 1, = 1.

e Let R be a commutative ring. The identity matrix of R"*" is denoted 1 = 1gnxn or I,,. Given

r € R, we sometimes abbreviate x = x - I, .

e Let a, b € Z with a <b. Let [a,b] :={z € Z|a<z<b} be the integral interval ranging from a
to b.

e Let R be a commutative ring, G a finite group, M, N be RG-modules. Then M ®r N defines an
RG-module via
(m®&grn)-g=mg®@rng.

e If R is the commutative ground ring of the present context, we often write ® := ®p .

e Suppose given a commutative ring R. Suppose given finitely generated free R-modules M and N.

Suppose we have fixed R-linear bases

M = (my,ma,...,my) of M,
N = (n1,n2,...,n) of N.

As basis of M & N, we then fix
MEN = (m1,ma,..., Mk, N1, N2,y ..., Ny) -

As basis of M ®z N, we then fix

MRrN =

(M1 ®@ni,my @ng,..., M1 @ng, My @N1,Me @Ng,...,Ma@Ng, ... |,
| L |

mE @ Ny, Mg @ Na, ..., Mp @ng ) .

Let M —5 N be an R-linear map. Once R-linear bases of M and N are fixed, we often use the

describing matrix of f instead of f without further mention.
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e Let R be a commutative ring. Suppose given A € R"™*™ and B € RP*4. By
A® B € R™P*™

we denote the Kronecker product of A and B, which has as entry at position ((i—1)p+r, (j—1)g+s)
the product of the entry at position (7, ) of A with the entry at position (r,s) of B, for i € [1,m],
jel,n],re[l,p] and s € [1,q].

For example,

1-0 1-1 2.0 2-1 3-0 3-1
(123)@(0 1) [ 101020 20 30 30
4 5 6 0 0 4.0 41 5-0 5-1 6-0 6-1
4-0 4.0 5-0 5-0 6:-0 6-0
010 2 0 3
B 0 00 0O OO
o405 06
0000 OO
e Let M be an object of an additive category. Let & > 0. By M®* we denote the direct sum
M®&...o M.
k times

e Let R be a commutative ring. By an R-order, we understand an R-algebra that is finitely generated
free over R.

Let A be an R-order. By a A-lattice, we understand a A-module that is finitely generated free

over R.

e Congruences are also called ties. Often, congruences describing a subring of a direct product of

matrix rings are referred to as ties.
e Let R be a commutative ring. Let z € R. We often write (x) := xR. We also write 0 := (0).

e Let R be a discrete valuation ring with maximal ideal (7), and X an R-module. Then we denote
X=X/ x .
X

e The ring A is called local, if its set of non-units A \ U(A) is an ideal in A. This is equivalent
to having that Or # 1 and the sum of any two non-units in R is a non-unit; cf. Definition 189,
Remark 192.

For instance, a discrete valuation ring is local.

e Let n > 1. Let S,, denote the symmetric group on the set [1,n].
Let A := (A1, A2, A3,...) be a partition of n. Then the corresponding Specht module over RS,, is

denoted S* = Sy, where R is the ground ring of the present context.

e Let p be a prime. Let P; denote an indecomposable projective Z,)S,-module. By P = Pi/pp. we
denote the indecomposable projective IF,,S,-module belonging to P;. By D; we denote the simple
Z(p)Sn-module (also being a IF,,S,,-module) that belongs to P;, i.e. D; is the head of P;, i.e.

o~ B o~ pl _
D; = P — b

For p odd, we denote the alternating simple module D; and the trivial simple module D .

For p = 2, we denote the trivial simple module D; .
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block 1 block 2

Matrices with blocks as entries are denoted with brackets. For example,
block 3 block 4

block 1 block 2 1

Zero blocks are marked by a dot “.” . For example,
block 4

Let R be a ring.
We denote the set of left-invertible elements in R by

Ulett(R) := {x € R : there exists y € R such that yzx =1} .
We denote the set of right-invertible elements in R by

Uvight (R) = {2 € R : there exists y € R such that zy =1} .
We denote the group of invertible elements (or units) in R by

U(R) := {x € R : there exists y € R such that yr =1 and zy =1} .
Note that U(R) = Ules(R) N Usight (R), as associativity shows.
Let R be a ring. Idempotents e and f of R are called equivalent, written e ~ f, if
eR = fR

as R-modules.

Uniform filenames

All proofs using Magma of the Chapters 3, 4 and 5 (except for Section 3.3) can also be found in Magma

code in the files named Diagram_Sn_locp_PioPj, with P; and P; being indecomposable projective Z,)S,,-

modules, replacing n, p, 4, j in the filename by their actual values.

To check the homomorphisms given in these Chapters, the Magma code can be found in the files named

Homs_Sn_locp for the Z,S,-linear morphisms, replacing n, p in the filename by their actual values.
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Chapter 2

Prologue

Let R be a discrete valuation ring with maximal ideal (7). Let A be an R-order.

Suppose given projective A-modules P and P. Let D and D be the simple modules belonging to P and
to P, respectively.

We denote by tP the Jacobson radical of P.

Denote by
wPeP % PP
PotP L Pop
the respective embeddings.

Denote by
p 2 PrP=D
P % P/itP=D
the respective residue class maps.
Lemma 1 The sequence
7|
5 5 LE 5 PRp =
tP®P & PRtP —— PP — D®D

is right-ezact (1).

Note that
tPRP = PtP = PRP,
which is projective; cf. Lemma 238. So we may consider

g

tPoP ® PotP —> PP

to be the canonical presentation of D ® D.

1Here brackets are synonymous to parentheses, they just fit into the notational context below.
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Proof. Consider the commutative diagram

PtP®tP = PtP®P = PtP®P‘cl5
A2 H2 v2
Potp——spop—"pPal/
A o 2
tP @ tP tPRP tP®~tP

obtained by tensoring inclusion and residue class maps. So E = 1, E = 1 and p® p = pacs = Bavs .
The tensor functors (P®g —), (tP®r—), (—®@gtP) and (—®r P) are exact. So the horizontal sequences
(81, B2) and (71, 72) and the vertical sequences (A1, A2) and (u1, ug) are short exact.

The tensor functors P/tP ®r — and — Qg P/th are right-exact. Thus we know that the sequences
(a1, ag) and (v1, va) are right-exact, but not necessarily short exact.

Now we get the commutative diagram

D®P D®D
B1p2 ‘

2 V2
~ B1 ~ B2 ~
PRtP——————PQQP—>P®D

H1
H1B2
tP®P ,

with (1, po) and (81, B2) short exact sequences and (1102, Vo) a right-exact sequence.

B

tPQP & PotP -2 PoP 222 Deob

According to Lemma 177, the sequence

is right-exact, as asserted. O



Now we set out to find isomorphisms P ® P % Q, tPoP % Q and P ®tP % @ to a direct
sum @ of standard indecomposable projectives in such a way that the diagram

P?tﬁ f Q
JO
P®P = Q
dO
tPU®]5 f Q

commutes and such that C' and C are of a simple shape. This amounts to an analysis of the canonical
presentation of D @ D. For more details of how to actually obtain such a diagram, cf. Construction 33.

Then we can complete to the following commutative diagram.

D®D——————:————>Coker({q})

PP 4 Q

E C

B &
PP ® PotP — QeQ

In this way, we can compare our analysis with the tensor product D @ D we started with.



Chapter 3

On localizations of 753

b
Deﬁnition2LetA::{(a, (d C) ,f) €EZLXT*?xZla=3b,e=3f,d=30,a=s f}.
e

A Z-linear basis of A is given by

Lemma 3 We have the isomorphism of Z-orders

w: ZS3 A, (1,2) (1,<32 21>71)

2.3 = (1, (; 11>,1),

obtained by restriction of a Wedderburn embedding in the codomain to its image; cf.- Remark 239.

Note that A is in fact a Z-suborder of Z x Z>*? x Z as the image of the Wedderburn embedding.
The tuple entries belong to the Specht modules S®), S21 and S0, in the order chosen above.

Proof. We have to calculate the image of the Wedderburn embedding from Remark 239.

With respect to the Z-linear basis (id, (1,2), (2,3), (1,2,3), (1, 3,2),(1,3)) of ZS3 and the standard
Z-linear basis of Z x Z>*? x Z, our Wedderburn embedding is described by the matrix

==
I I
e e R
| |
O R RHREF~RO
|
! !
== e

|
WWWwowo
[ NI NCIS

We see that the image is contained in A.
We have det B = —b4.

With respect to the Z-linear basis of A given above and the standard Z-linear basis of Z x Z2*? x Z, we
see that the determinant of the embedding A — Z x Z2?*2 x Z is 54.

So the image of our Wedderburn embedding equals A. O
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The congruences describing the Z-suborder A inside Z x Z2?*2 x Z can also be read off the matrix
120021
14 6-2 4-1
1120221 66
6B =1126021]| €?
126 241
1-46-221

To wit, each column is a congruence modulo 6. The system of these congruences can be simplified by column
operations over Z to the defining system of congruences for A given above. Such congruences are also called
ties.

3.1 The Localization Z)S3

The localization Z2)S3 is more of a warm-up. First observations can be made, for instance on defect-0
blocks. To get an insight into the construction techniques used later on, this example is still too small,
though.

Write
R = Z(Q) .

3.1.1 Idempotents and projectives

Remark 4 The localization of A at (2) is given by

b ¢
A(g) = {(a, (d e>7f)EZ(2)XZ?2X)2XZ(2) | a =9 f}
b c 2%2 —
= {(a, d e ) ERXR¥™2 xR | a=, f}.

The isomorphism of R-orders

w(g) : Z(g)Sg = RSg L> A(Q), (1,2)

= 3
2,3) — (1, (3

is obtained by localization of the isomorphism w of Lemma 3.

e = (1, <8 8),1), €y = (0, <é 8),0), ez = (0, (8 ?)ao)v

we have an orthogonal decomposition

Letting

1/\(2) = e1+ey+es
into idempotents of A(). They fall into the equivalence classes {e1}, {ez2, e3}.

Remark 5 There are 2 primitive central idempotents of Ay, namely

0 0 1 0
Cc1 = (1, (O O),l) = €1, Cy = (0, <0 1),0) = e t+e3 .

The idempotent co generates a block of defect 0.

Remark 6 Let F:={(a,b) € RXxR | a=2b}.
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We have the following isomorphisms of R-orders.

E = eAger
(@f) — (@(00).9):
R = eaAz)er

b — (0.(80).9),
R eshmes

e — (0.(02).0

Lemma 7 We have an orthogonal decomposition 1A, = €1+ €2 + e3 into primitive idempotents.

Proof. We have to show primitivity of e;, e; and es.

First we show that e; and 0 are the only idempotents of 61A(2)61 . By Remark 6 it remains to show that
(0,0) and (1,1) are the only idempotents of E. Let (a,b) € £~ {(0,0)} be an idempotent. Since Z ) is
local, Corollary 134 gives a € {0,1} and b € {0,1}. Since a =3 b, we conclude that a = b = 1. Therefore,

using Lemma 136, the idempotent e; is primitive.

We show primitivity of e;. Primitivity of es follows analogously.

We show that e; and 0 are the only idempotents of ez A(2yez . By Remark 6 it remains to show that (0)
and (1) are the only idempotents of R. Let 0 # a € R be an idempotent. Since Z ) is local, Corollary 134

gives a = 1. Therefore, using Lemma 136, the idempotent es is primitive.

Corollary 8 Up to isomorphism, we have the Peirce decomposition

e1Ngyer e1l(gea  erh(zyes
Aoy = elp Delp) Beshp = eah2ye1  eal(aye2  ealoyes
eshz)e1  esAje2  ezAges
e1l(2yer 0 0
= 0 eaMoye2  eal(zyes
0 eshyea  esh(g)yes
~ 2 ~ (e1h2ye) ™ (e1h(g)ea)'*?
= el @62Ag) - ( (€2AE2;€1)2X1 (€2AE2§€2)2X2 )

( (€1A(2)€1)1X1

0
0 (62A(2)€2)2x2 ) .

Lemma 9 We have the following Jacobson radicals of e1Aaye1, eaN(z)ez and ezA(ayes .

terhaen) = <<2>,<g g>,<2>)

t(€3A(2)63) = (O, (8 (g) ) ,0)

O

Proof. By Remark 6, it suffices to show that v(E) = 2R x 2R, resp. t(R) = 2R. The latter was remarked

in Example 179.(i).

Since E is a commutative R-order, we have, by Proposition 212, ¢(E) = {z € E | 2™ € 2E for some n > 0}.

Note that 2F = {(a,b) € RX R|a=30,b=20,a =4 b}.
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Ad D. Given (a,b) € 2R x 2R, we have (a,b)? € 2F, whence (a,b) € t(E).

Ad C. Suppose given (a,b) € E and n > 0 such that (a,b)” € 2E. Then a™ =3 0 and " =2 0 in R.
Hence a =5 0 and b =5 0 in R. Therefore (a,b) € 2R x 2R.

We could also have used Example 223. O

Lemma 10 We have the Jacobson radical t(A(2)) = ((2), ( 8% g; ) (2)) of Aw).

Proof. We use Lemma 9 together with Proposition 217, which is possible by Remark 208, to find the

Jacobson radical as follows. Cf. also Corollary 8.

'C(A(Q)) = t(elA(g)Bl) S t(egA(g)eg) SY t(GQA(Q)eg) S t(egA(g)eg) Y ‘C(€3A(2)62)

(@.(80)-@) @0 (B @) .00 09 @)

—
~—~
[N}
S~—
7 N
SN
N DN
—_
—~
[\ )
N
~
—
[\
S~—
S—

For notation cf. Lemma 185. O

Definition 11 Let Py := e;A(3) and P := eaA(2) = e3A (o) represent the isoclasses of the indecomposable
projective modules of Ay ; cf. Remark 208, Lemma 220. So

A ow () e mxmnfoz )
B o= {(0’(88>’0)€RXR2XZXR}.
We abbreviate
[(a), ()] = (a,(gg),f) c P
b = (0.(§5).0 € P,
and get
P = H{l(a),(f)]eRxR|la=2 f} — SB) @ §(L.L1)
Py = {[b,c € R"*?} .y g2,

The radicals of Py and P; are given by tPy = ejtA(z) and vP, = eatA (). Via Lemma 10, we obtain

P = {[(20),(2f)] € R x R}
tPy = {[2b,2c] € R**?}.

We choose the Z3)-linear bases
([(1), W], [(0),(2)]) of P
(1, 0], [0, 1]) of P
([(2),(0)], [(0),(2)]) of P
([2a 0]7 [0 ,2]) of 'CPQ.

Remark 12 The projective module P, belongs to the defect-0 block and is indecomposable, so we have
the Loewy layer
D,

For P, we have the following Loewy layers.
D,
D,
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Remark 13

0 0
0 0

(e1, A1) = ((1, (8 8) 1), (o, (8 8) ,2)).

Via the canonical isomorphism from ejA(z)e; to Homgs, (P1, P1), it is mapped to the R-linear basis

== ((31)-(22))

of Homps, (P1, P1), using the fixed R-linear basis of P; given in Definition 11.

Recall that e;A(2)e1 = {(a7 ( > ,f) ERx R”2 xR ‘ a =, f}, for which we fix as R-linear basis

b 0
An R-linear basis of eaA(g)e0 = {(07 (O O> ,0) € R x R?*2 x R} is given by

e = (05 ) 0)

Via the canonical isomorphism from 62A(2)62 to Hompgsg, (P2, P2), it is mapped to the R-linear basis

<1>:<1p2>:=(<; f))

of Homps, (P2, P2), using the fixed R-linear basis of P, like above.

0 0

Because e1A(g)ea = ea(g)e1 = (O, ( 0 o

) ,0) , we have Hompgsg, (P1, P2) = Homps, (P2, P1) =0.

The operating matrices can be found in the file main_S3_loc2, the homomorphisms in Homs_S3_loc2.
They can e.g. be used to check the Z3)Ss-linearity of the maps between P, and P, derived above.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P, are denoted
rhoP1, rhoP2, respectively.

E.g. for the operating matrices on P;, call
rhoP1(S3P!sigma) ;

for an element sigma of S3. Analogously for Ps.

To check that the matrices found above represent RSs-linear maps between the respective projective
modules, follow these steps:

load main_S3_loc2;

load Homs_S3_loc2;

[rhoP1(sigma)*Hom_P1P1[i] eq Hom_P1P1[il#*rhoP1(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}, i in [1..2]];
[rhoP2(sigma)*Hom_P2P2[i] eq Hom_P2P2[i]*rhoP2(sigma):sigma in {S3P!(1,2),53P!(1,2,3)}, 1 in [1..1]1];
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3.1.2 The tensor product P, ® P,

Lemma 14 Let E be the embedding tP, ® P, — Py ® Py, and E be the embedding Py @ P, — P ® Py.
We have a commutative diagram of Z3)S3-linear maps

P1®tP1 f Pl@Pl
: O :
PeP 4 Pop
1ok
P ® P f P o P
with A, B, B isomorphisms, and the describing matrices
1 1 1 0 1 0 1 0 1 0 1 O
e 011 0 B 01 0 1 B 0 01 0 ’
021 0 01 1 0 01 0 1
00 2 -1 0 0 2 -1 0 0 2 -1
2 0 -1 0 2 -1 0 0
9 B .
5. 0 0 -1 o 0 1.0 O ’
0 0 1 O 0 0 2 -1
0 0 0 1 0 0 0 1
2 0 0 0 I | T [
2-1 ‘ 2
O 0 2 00 _ 777?7‘7777 _
0010 | ’
000 1 I e ] I 1
2.0 00 [ | T [
C": 0 2 0 0 = —?71f17:———— = 2
. 0 1 10 1,1 : 1,1
0 2 0 1 i hy™ 1k | i hy 1

We indicate with brackets that the matrices are to be read blockwise.
Recall that R = Zy) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

We have to show local invertibility and RSs-linearity of the maps A, B, B, the RS3-linearity of F, E, C
and C, and the commutativity of the diagram. The functions and operating matrices necessary to prove
the local invertibility, the RSs-linearity and the commutativity can be found in the file main_S3_loc2,
the matrices for this diagram in the file Diagram_S3_loc2_P1oP1 .

The embedding F is defined as the Kronecker product of the embedding i, : tP; — P; and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding E is defined
as the Kronecker product of idp, and the embedding ¢; : tP; — Pj.
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The representations, i.e. the maps sending group elements to operating matrices, on P;, P» are denoted
rhoP1, rhoP2, respectively. The representations on tP;, tP» are denoted rhorP1, rhorP2, respectively.

The representations on P ® Py, tP; ® P, P, ® tP; are denoted op_plopl, op_rplopl, op_plorpl, re-
spectively. The operating matrix of a group element on such a tensor product is defined as the tensor

product of the operating matrices on the tensor factors.

For example, for the operating matrices on P; ® P; call
op_plop1(S3P!sigma);

for an element sigma of S3. The other maps work the same way.

The representation on the direct sum P; @ P; is denoted op_proj_sum_pipl. The operating matrix of a
group element is defined as the block diagonal matrix containing the operating matrices of the summands.
The maps A, B, C, E are denoted A, B1, C1, E1, respectively; the maps B, C, E are denoted B2, €2, E2,

respectively.

To verify the Lemma, follow these steps:

load "main_S3_loc2";

load "Diagram_S3_loc2_PloP1";

[rhorP1(sigma)*il eq il*rhoP1(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}];

E1l KroneckerProduct(il,MatrixRing(Rationals(),2)!1);
E2 := KroneckerProduct(MatrixRing(Rationals(),2)!1,i1);

[op_rplopil(sigma)*El eq El*op_plopl(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}];
[op_plorpi(sigma)*E2 eq E2%op_plopl(sigma):sigma in {S3P!(1,2),53P!(1,2,3)}]1;

//commutativity:
E1*A eq B1xC1;
E2*A eq B2xC2;

//RS3-linearity
[op_plopl(sigma)*A eq A*op_proj_sum_plpl(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}];
[op_rplopl(sigma)*Bl eq Bl*op_proj_sum_plpl(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];
[op_plorpi(sigma)*B2 eq B2*op_proj_sum_plpil(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];
[op_proj_sum_plpl(sigma)*Cl eq Cl*op_proj_sum_plpl(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];
[op_proj_sum_plpl(sigma)*C2 eq C2*op_proj_sum_plpl(sigma):sigma in {S3P!(1,2),S53P!(1,2,3)}];

//local invertibility; loc_inv see "main_S3_loc2"
loc_inv(A,2);
loc_inv(B1,2);
loc_inv(B2,2);

Remark 15 Using Magma, we verify that Coker(

C
(? ) 2DiD=D;.

Furthermore, Coker(C) = Coker(C) = Dy ® P, = P, with Loewy layers already known.

Remark 16 The matrix

g 1 of Lemma 14 cannot be transformed into a matrix of the form [ ? 1

with F and F both diagonal matrices, i.e. there is no diagram as in Lemma 14 such that
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P1®'CP1 = Pl@Pl

[eshl
Sht

P®P = PehP
1o )
u B’

tP1®P1 = Pl@Pl

is commutative with F, F' diagonal matrices.

Proof. The cokernel of

E
P ] is isomorphic to Py @ P, /(tPL @ P+ PL @tP1) 2 D1 ® D1 &2 D,

Assume that there exists a commutative diagram as in the Remark. Then the cokernel of P ] is

isomorphic to Dy, too. In particular, dimp, Coker =1.

The elementary divisors of E are (1,1,2,2), for P,®@P; /tPy®P; = D;®P; = Py, which is of dimension 2.

So F' is a diagonal matrix with two diagonal entries having valuation 1 at 2 and two diagonal entries
having valuation 0 at 2. Since the upper left 2 x 2-block of F'is an RSs-linear endomorphism of P;, we
conclude that

F e {diag(u,u,2v, 2v), diag(2u, 2u,v,v) | u,v € U(R)} .
Likewise, we have

F € {diag(@, @, 29, 20), diag(24, 2@, 9,9) | 4,5 € U(R)} .

F
So dimp, Coker [ P ] € {0,2}, which is a contradiction. O

3.1.3 The tensor product P, ® P

Lemma 17 Let E be the embedding tP; @ P, — Py ® Ps, and E be the embedding Py @tPo — P ® Ps.
We have a commutative diagram of Z3)S3-linear maps

B

P1®'CP2 = P2EBP2
: O :
A
P ® P — P, Py
G

- B
tP1®P2 = PQ@PQ
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with A, B, B isomorphisms, and the describing matrices

10 2 1 10 1 0 10 2 1
A;:Ol’?”l,B;:OlOl,B 01 -3 -1
00 3 2 00 3 2 00 3 2
00 6 -3 00 6 3 00 6 3
2 0 1 0 2 000
9 - 5
s |0 01,E:202007
00 1 00 20
00 0 00 0 2
200 0 r 1 r 1
0010 | :
000 1 i - Lp, I 1
2.0 0 0 I 1 r 1
2.1p, |
g 0200 I e _ 2
0020 |
00 0 2 I 2 1p, I 2|

The matrices C' and C being block diagonal matrices, with blocks of the form idp, and 2idp,, confirms
the expected result, shown in Remark 163, for P, belongs to a defect-0 block.

Recall that R = Z(y) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and
the commutativity can be found in the file main_S3_loc2, the matrices for this diagram in the file
Diagram_S3_loc2_P1oP2.

The maps and matrices are denoted analogously to those for P; ® Py, see proof of Lemma 14 .

To verify the Lemma, follow these steps:

load "main_S3_loc2";

load "Diagram_S3_loc2_P1loP2";

[rhorP1(sigma)*il eq il*rhoP1(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}];
[rhorP2(sigma)*i2 eq i2*rhoP2(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];

E1l
E2

i

KroneckerProduct(il,MatrixRing(Rationals(),2)!1);
KroneckerProduct (MatrixRing(Rationals(),2)!1,i2);

[op_rplop2(sigma)*El eq El*op_plop2(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}];
[op_plorp2(sigma)*E2 eq E2*op_plop2(sigma):sigma in {S3P!(1,2),53P!(1,2,3)}]1;

//commutativity:
E1*A eq B1xC1;
E2%A eq B2x%C2;

//RS3-linearity
[op_plop2(sigma)*A eq A*op_proj_sum_plp2(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}];
[op_rplop2(sigma)*Bl eq Bl*op_proj_sum_plp2(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];
[op_plorp2(sigma)*B2 eq B2*op_proj_sum_plp2(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];
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[op_proj_sum_plp2(sigma)*C1l eq Cl*op_proj_sum_plp2(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];
[op_proj_sum_plp2(sigma)*C2 eq C2%op_proj_sum_plp2(sigma):sigma in {S3P!(1,2),83P!(1,2,3)}];

//local invertibility; loc_inv see "main_S3_loc2"
loc_inv(4,2);
loc_inv(B1,2);
loc_inv(B2,2);

Remark 18 Using Magma, we verify that

IR
&

C _
Coker([é]) & D1®Dy = Di®P

Coker(C)
Coker(C)

1%

p27
PP ~ Paob.

1

D ® fé
Py ® Do

1%
1%

3.1.4 The tensor product P, ® P

Lemma 19 Let E be the embedding tPo @ P, — P, ® Ps, and E be the embedding Po @tPy — Po® Ps.
We have a commutative diagram of Z(2)Ss-linear maps

P, @ths E PP
) O
A
P, ® Py = P o P
I
o B
tfﬁ @)fﬁ = }ﬂ @)fﬁ
with A, B, B isomorphisms, and the describing matrices
2 -1 1 0 2 -1 1 0 2 -1 1 0
Ao 31 -3 -1 B 31 -3 -1 B 31 -3 -1 7
3 02 -3 -1 3 02 3 -1 302 -3 -1
6 -3 6 3 6 -3 6 3 6 -3 6 3
2 0 0 0 2 0 00
5. 0 2 0 0 ’ B 0 2 00 7
0 0 2 0 0 0 2 0
0 0 0 2 0 0 0 2
2 000 [
2-1
0 2 00 Py
C:= = =
0 0 2 0
000 2 i 2-1p,
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o N O O
N OO O

S O O N
S O N O

The matrices C' and C being block diagonal matrices, with blocks of the form 2 idp, and 2idp,, confirms
the expected result, shown in Remark 164, for P, belongs to a defect-0 block.

Recall that R = Zy) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and
the commutativity can be found in the file main_S3_loc2, the matrices for this diagram in the file
Diagram_S3_loc2_P20P2.

The maps and matrices are denoted analogously to those for P; ® P, see proof of Lemma 14 .

To verify the Lemma, follow these steps:

load "main_S3_loc2";
load "Diagram_S3_loc2_P20oP2";

[rhorP2(sigma)*i2 eq i2*rhoP2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

E1l
E2

KroneckerProduct(i2,MatrixRing(Rationals(),2)!1);
KroneckerProduct (MatrixRing(Rationals(),2)!1,i2);

[op_rp2op2(sigma)*El eq El*op_p2op2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_p2orp2(sigma)*E2 eq E2*op_p2op2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

//commutativity:
E1*A eq B1xC1;
E2%A eq B2xC2;

//RS3-linearity
[op_p2op2(sigma)*A eq A*op_proj_sum_p2p2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_rp2op2(sigma)*Bl eq Bl*op_proj_sum_p2p2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_p2orp2(sigma)*B2 eq B2*op_proj_sum_p2p2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)1}];
[op_proj_sum_p2p2(sigma)*Cl eq Cl*op_proj_sum_p2p2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}]1;
[op_proj_sum_p2p2(sigma)*C2 eq C2*op_proj_sum_p2p2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

//local invertibility; loc_inv see "main_S3_loc2"
loc_inv(4,2);

loc_inv(B1,2);
loc_inv(B2,2);

Remark 20 Using Magma, we verify that

Coker(

C ~ _ _ _ _
C~’ ) = COkeI'(C) = Coker(C) = Dg X D2 = PQ ® PQ = P1 D Pg .
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3.2 The Localization Z3)S3

In this section, construction techniques are explained in more detail; cf. Construction 33.

Write
R = Z(3) .

3.2.1 Idempotents and projectives

Definition 21 The localization of A at (3) is given by
b ¢
A(g) = {(CL, (d e)’f) EZ(g)XZ?BX)QXZ(g) | a =3 b, e =3 f, d =3 O}

= {(a,<b c>7f)eR><R2X2><R|a—3b, e=sf, d=30}.
e

The isomorphism of R-orders

w3 - Z(3)Sg = RSg = A(3), (1,2) — 3
1

is obtained by localization of the isomorphism w of Lemma 3.

e = (0, (g ?),1), er = (1,((1) g) 0)

we have an orthogonal decomposition

Letting

1/\(3) = e1+ e
into idempotents of A(3). They fall into two equivalence classes {e1}, {e2}.
Remark 22 Let F := {(a,b) € R x R|a =3 b}.

We have the following isomorphisms of R-orders.

E — elA(g)el
(e.f) — ((0.(32).5)
EFE — 62A(3)62

(@t — (@ (50).9)

Lemma 23 We have an orthogonal decomposition 14, = e1 + ez into primitive idempotents.

Proof. We have to show primitivity of e; and es.
We show that e; is primitive. Primitivity of ey follows analogously.

First we show that e; and 0 are the only idempotents of e;A(3)e; . By Remark 22 it remains to show that
(0,0) and (1,1) are the only idempotents of E. Let (a,b) € E'\ {(0,0)} be an idempotent. Since Zs) is
local, Corollary 134 gives a € {0,1} and b € {0,1}. Since a =3 b, we conclude that a = b = 1. Therefore,

using Lemma 136, the idempotents e; and es are primitive.

Since this is a finite problem in E, we can use Magma [3] instead to list all possible pairs (a,b) € R x R
with a, b € {0, 1} and to test the ties defining E in a last step. To do so, we call
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{<a,b> : a,b in {0,1}| (a mod 3) eq (b mod 3)};
and get the following output.

> {<a,b> : a,b in {0,1}| (a mod 3) eq (b mod 3)};
{ <1, 1>, <0, 0>}

Therefore, using Lemma 136, the idempotent e; is primitive.

In this example such a Magma procedure is not necessary, but we can use this trick later on, when the
ties are of a complicated shape. O

Corollary 24 We have the Peirce decomposition

A A -
A(3) = elA(3)@62A(3) = (el (31 €1 (5)€2>.

€2A(3)€1 62/\(3)62
Lemma 25

We have the Jacobson radicals
00
t(elA(?))el) = (Ov (O (3)) ’(3)) ’
3)0
teaer) = (@ (F0).0).

Proof. By Remark 22, it suffices to show that t(FE) £ 3R x 3R. Since E is a commutative R-order, we
have, by Proposition 212, v(E) = {x € E | 2™ € 3E for some n > 0}.

Note that 3F = {(a,b) € RXx R| a=50,b=30,a =9 b}.
Ad D. Given (a,b) € 3R x 3R, we have (a,b)? € 3E, whence (a,b) € t(E).

Ad C. Suppose given (a,b) € E and n > 0 such that (a,b)” € 3E. Then a™ =3 0 and " =3 0 in R.
Hence a =5 0 and b =3 0 in R. Therefore (a,b) € 3R x 3R.

We could also have used Example 223.

Lemma 26 We have the Jacobson radical v(As)) = ((3), ( ES) i ) ,(3)).

Proof. With Proposition 217, applicable because of Remark 208, and the Peirce decomposition from
Corollary 24, the radicals from Lemma 25 yield

t(A(g)) = t(elA(g)el) D t(egA(3)62> D elA(g)eg D egA(g)el

- o)) e (Y0 ve0 (g0 ne0(]h) o

O

Definition 27 Let P := e;A(3) and P := ezA(3) represent the isoclasses of the indecomposable projec-
tive modules of A(s); cf. Remark 208, Lemma 220.
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So

€

P, = {(a,((l; g),o)eRxRMxR‘ang}.
(07<2 2>7f) € Pl

b ¢

[a,(bc)] = (a, (0 O),O) e P,

o= {(07<2 0>’f)€RXR2X2XR‘d—307 6_3f}

We abbreviate

ISH
[g)
S~—r
=
I

and obtain

Pl = {[(d e)?f] ERIXQ XR|dE3 0, e =3 f} [SEEEEN 5(271)@8’(1,1,1)
P, = {la,(be)] € Rx RY? |a=30b} 8B g g,

The radicals of P, and P are given by tP; = e t(A(3)) and tP = eat(A(3)). Via Lemma 26, we obtain

I'Pl = {[(d@),f]€R1X2XR‘d530,BE3f530}
tPy = {[a,(be)]€ Rx RY? |a=3b=30}.

We choose the R-linear bases

([17(1 O)]? [07(3 0)]7 [07(0 1)]) OfP2
([(30),0], [(03),0], [(00),3]) ofrP
([37(0 0)]7 [0,(3 O)]7 [07(0 1)]) OftP2~
Remark 28 The projective modules P; has the Loewy layers
D,
Dy
D,
and P, has the Loewy layers
D,
Dl .
D,
0 0

Remark 29 Recall that e;Azje; = {(0, ( ) ,f) € Rx R”*? xR ’ e =3 f} , for which we fix as

0 e

i) = (0 (g g) .0 (g g) ).

Via the canonical isomorphism from ejA(3ye; to Homgs, (P1, P1), it is mapped to the R-linear basis

R-linear basis

o O O
w = O
—

1
(LA = (e, ki) = (| 0
0

S = O
—_ O O
o O O

of Homps, (P1, P1), using the fixed R-linear basis of P given in Definition 27.
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b 0
0 0

(62, h22) = ((1, ((1) g) 0), (0, (2 8) ,0)).

Via the canonical isomorphism from esA(3)ea to Homgs, (P2, P»), it is mapped to the R-linear basis

An R-linear basis of eaA(5)es = {(a, ( ) ,0) € Rx R**? xR ’ a=3 b} is given by

100 01 0
(Lh2) = (tp, i) = (| 0 1 0 || 03 0])
00 1 00 3

of Hompg, (Ps, P»), using the fixed R-linear basis of P, like above.

0 0

For a basis of Homps, (P, P1) we consider eiAz)es = {(O7 < 70

),O)GRXR2X2XR’dEg,O},

therefore an R-linear basis is given by

i = (0.3 7))

Via the canonical isomorphism from €1A(3)62 to Hompgg, (Ps, P1) it is mapped to

(h21) = ( ;, 8 8 )
21 .
0 3 -1

Now eaA(3ye; = {(0, ( 0 ¢ ) ,0) € R x R?*? x R}, therefore an R-linear basis is given by

0 0
(h12) = ((o, (8 é) ,o)).

Via the canonical isomorphism from €2A(3)€1 to Hompg, (P1, P2) it is mapped to

01 0
(h{“):z( 00 1 )
00 0

The operating matrices can be found in the file main_S3_loc3, the homomorphisms in Homs_S3_loc3.
They can e.g. be used to check the Z3)Ss-linearity of the maps between P, and P, derived above.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P, are denoted
rhoP1, rhoP2, respectively.

E.g. for the operating matrices on P;, call
rhoP1(S3P!sigma) ;

for an element sigma of S3. Analogously for P.

To check that the matrices found above represent RSs-linear maps between the respective projective
modules, follow these steps:

load main_S3_loc3; // load file containing rhoP1 and rhoP2
load Homs_S3_loc3;

[rhoP1(sigma)*Hom_P1P1[i] eq Hom_P1P1[i]*rhoP1(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}, i in [1..2]];
[rhoP2(sigma)*Hom_P2P2[i] eq Hom_P2P2[i]*rhoP2(sigma):sigma in {S3P!(1,2),53P!(1,2,3)}, i in [1..2]];

[rhoP1(sigma)*Hom_P1P2[i] eq Hom_P1P2[i]*rhoP2(sigma):sigma in {S3P!(1,2),S3P!(1,2,3)}, i in [1..1]1];
[rhoP2(sigma)*Hom_P2P1[i] eq Hom_P2P1[i]*rhoP1(sigma):sigma in {S3P!(1,2),53P!(1,2,3)}, i in [1..1]1];
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3.2.2 The tensor product P, ® P,

Lemma 30 Let E be the embedding tP, ® P, — Py ® Py, and E be the embedding Py @ P, — P ® Py.
We have a commutative diagram of Z3)S3-linear maps

B
P, ®th = PoPoh
M
A
P ® P = PP, ® P
5 D o
o B
'CP1®P1 = PQ@PQEBPl
with A, B, B isomorphisms, and the describing matrices
2-1 0000000 2-1 0000000 2-1 0000000
1 0-10121 2-1 -1 0-1000 1 2-1 3210000 0-1
0240 3 6 3 6-2 0240 00 3 6-2 0240123 6-2
111000-1-2 1 321000001 - 111000-1-2 1
A= 0001-1-1 000 , B = 201000-2-31 , B := 222000 2 3-1 ,
22 23-3-3-2-3 1 046000-6-93 2221-1-12-3 1
01200 0-3-62 01201 2-3-62 01200 0-3-6 2
2 0-13-1 02 3-1 2 0-11-1-1 2 3-1 0-2-30 0 0 6 9-3
620930000 6 203-10000 6203-10000
100000000 10 000 0000
010000 0 0 0
03-100 0000
001000 0 0 0
00 100 0000
000300-1 0 0 -
_ _ | ooo010 0000
FE:=1]0000300-10 E =
) 00 003-1000 | »
000003 0 0-1
00 000 1000
000000 1 00
00 000 0100
000000 0 10 00 000 0001
000000 0 0 1
100'000[00 100'000[000
01000000 010'000[000 1
0011000/00 0011000/000
0001300[00 - 0001300[000
C := | o000030[00 = , C:= 000030000 | := 3
000,003[00 000,003[000
000,010[10 000000100
000,001[01 000,000[010 1
000,000[00 000000001

Recall that R = Zs).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

We have to show local invertibility and RSs-linearity of the maps A, B and B, the RS;-linearity of E, E,
C and C, and the commutativity of the diagram. The functions and operating matrices necessary to prove
the local invertibility, the RSs-linearity and the commutativity can be found in the file main_S3_loc3,

the matrices for this diagram in the file Diagram_S3_loc3_P1oP1 .

The embedding F is defined as the Kronecker product of the embedding i1 : tP; — P; and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding F is defined
as the Kronecker product of idp, and the embedding ¢; : tP; — P;.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P, are denoted

rhoP1, rhoP2 respectively. The representations on tPj, tP, are denoted rhorP1, rhorP2, respectively.

The representations on P; ® Py, tP; ® P, P, ® tP; are denoted op_plopl, op_rplopl, op_plorpl re-
spectively. The operating matrix of a group element on such a tensor product is defined as the tensor
product of the operating matrices on the tensor factors.
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For example, for the operating matrices on P; ® P, call
op_plop1(S3P!sigma) ;

for an element sigma of S3. The other maps work the same way.

The representation on the direct sum PQE‘92 @ P, is denoted op_proj_sum_plpl. The operating matrix of a
group element is defined as the block diagonal matrix containing the operating matrices of the summands.
The maps A, B, C, E are denoted A, B1, C1, E1, respectively; the maps B, C, E are denoted B2, C2, E2,

respectively.

To verify the Lemma, follow these steps:

load "main_S3_loc3";

load "Diagram_S3_loc3_PloP1";

//RS3-Linearity of %1
[rhorP1(sigma)*il eq il*rhoPi(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

//generating the embedding E: (tP1 ® P1) — (PL® P1) as (tP1— P1)®1p,
El := KroneckerProduct(il,MatrixRing(Rationals(),3)!1);
//generating the embedding E : (P ®tP;) — (P1 ® P1) as 1p, @ (tP1 — Pp)
E2 := KroneckerProduct(MatrixRing(Rationals(),3)!1,i1);

//RS3-linearity of F, E
[op_rplopi(sigma)*El eq El*op_plopil(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_plorpil(sigma)*E2 eq E2*op_plopl(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

//commutativity:
E1*A eq B1xC1; //upper quadrangle
E2*%A eq B2xC2; //lower quadrangle

//RS3-linearity of A, B, B, C, C
[op_plopl(sigma)*A eq A*op_proj_sum_plpl(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_rplopl(sigma)*Bl eq Bl*op_proj_sum_plpi(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_plorpi(sigma)*B2 eq B2*op_proj_sum_plpi(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)1}];
[op_proj_sum_plpl(sigma)*Cl eq Cl*op_proj_sum_plpl(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_proj_sum_plpl(sigma)*C2 eq C2*op_proj_sum_plpl(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}]1;

//local invertibility of A, B, ]::$’; loc_inv see '"main_S3_loc3"
loc_inv(4,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 31 Using Magma, we verify that

[
S
®
S
I

S

C
Coker( o )

Coker(C) >~ (Coker(C) = D, ®P,

I
e

with Loewy layers already known.
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3.2.3 The tensor product P, ® P

Lemma 32 Let E be the embedding tPo ® P, — P, ® Ps, and E be the embedding Po @tPy — Po® Ps.
We have a commutative diagram of Z3)S3-linear maps

B

~

P2®'CP2 P2@P2@Pl

[eshl
o]

A
P, ® Py = P,o P, o P
Ok
S B
tfﬁ @)fﬁ = fE @)fﬁ @)fﬁ
with A, B, B isomorphisms, and the describing matrices
200 4 -20-200 200000200 200000-100
40012 -5 0-50 0 020000600 400 400-500
200 -6 31310 002000062 200200310
1 40012 6 0400 1 400420400 - 1 020000-300
A:=-]112203-150900 |, B:=—-]12-2012-50-900 |, B:=—|122012-20-9 00 | |
2|1 6 02-18 939 9-2 2|1 602-63199-2 21 602-60-299-2
200 -6 303 2-1 200-21032-1 0020000-31
6 0-2-18 9 3 9 9-4 6 0-2-6319 9-4 6 0-2-6 02 9 9-4
40212 6-3-6-9 3 402 4-2-16-9 3 402 402-6-9 3
300-1 0 0000 3-10000000
030 0-1 0000 010000000
003 0 0-1000 001000000
000 100000 - 000310000
E:=]000010000|, E:=(000010000],
00000 1000 000001000
000000100 0000003-10
000000010 000000010
000000001 000000001
100'000[000 100'000[000
010000000 010'000[000
0011000[000 0011000000
0001300[000 - 0001300[000
C:=1000030[000 = , C:=1000030000 =
000003000 000003000
000,000[I00 000010[I00
000,000[010 000001010
000,000/001 000,000/001

Recall that R = Zs).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and
the commutativity can be found in the file main_S3_loc3, the matrices for this diagram in the file
Diagram_S3_loc3_P20P2.

The maps and matrices are denoted analogously to those for P; ® P, see proof of Lemma 30.

To verify the Lemma, follow these steps:

load "main_S3_loc3";
load "Diagram_S3_loc3_P20P2";

//RS3-Linearity of i2
[rhorP2(sigma)*i2 eq i2*rhoP2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

//generating the embedding F: (tP2 @ P) — (P2 @ P2) as (tPo — P) ® 1p,
El := KroneckerProduct(i2,MatrixRing(Rationals(),3)!1);
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//generating the embedding E: (P2 ®@tP) — (P2 ® P2) as 1p, ® (tPo — P2)
E2 := KroneckerProduct(MatrixRing(Rationals(),3)!1,i2);

//RS3-linearity of E, E
[op_rp2op2(sigma)*El eq El*op_p2op2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_p2orp2(sigma)*E2 eq E2*op_p2op2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];

//commutativity:
E1*A eq B1xC1; //upper quadrangle
E2%A eq B2%(C2; //lower quadrangle

//RS3-linearity of A, B, B, C, C
[op_p2op2(sigma)*A eq A*op_proj_sum_p2p2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_rp2op2(sigma)*Bl eq Blxop_proj_sum_p2p2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_p2orp2(sigma)*B2 eq B2*op_proj_sum_p2p2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_proj_sum_p2p2(sigma)*Cl eq Cl*op_proj_sum_p2p2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_proj_sum_p2p2(sigma)*C2 eq C2*op_proj_sum_p2p2(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];

//local invertibility of A, B, B; loc_inv see '"main_S3_loc3"
loc_inv(4,3);
loc_inv(B1,3);
loc_inv(B2,3);

O

Construction 33 Pars pro toto, we will have a closer look at the method how to construct the commu-
tative diagram for P, ® Ps.

The MeatAxe methods implemented in Magma [3] allow to find an isomorphism
P2®P2<N7P2@p2@pl.
Since P, @ P, ® P is projective and the residue class map P, ® P, — P, ® P, is surjective, we may lift

as follows.
PbPh<—-———-P PP

PeP<~——PoPoP
A practical solution to let Magma construct such a lift is given in Chapter 7.

Any such lift is an isomorphism; cf. Lemma 214. So we have an isomorphism P, @ Po — Po & P, & P,

at our disposal.

Now we do the same for tP, ® P,. By Lemma 238, we obtain an isomorphism to the same direct sum,
i.e. an isomorphism from tP, ® P, to Po & Po ® Py .

Going back from P, ® P> @ P; to tP, ® P», embedding into P, ® P, and going forward to P, @ P, ® Py
again, we obtain an RSs-linear embedding of P> @ P, @ Py into Py @ P, @ Py, which is isomorphic to the
embedding of tP, ® P» into P, ® Ps.

Po@Py————>P,oPd P
A

() O

|
tP2®P2 PQ@PQ@Pl

~

This embedding of Po @ P> ® Py into P> ® P> ® Py is now given by a 3 X 3-matrix consisting of RSs-linear
maps between the indecomposable projectives P; and P, that occur. This already forces the matrix
describing this embedding to be of a not too complicated shape.



3.2. THE LOCALIZATION Z3)S3 23

Now we do the same for P, ® vPs, yielding another embedding of P, & P, & P into P> & P, & Py, this
time isomorphic to the embedding of P, ® tP; into P, ® Ps.

Altogether, we have RS3-linear maps

(i) (PP P) — (PP, dP) «— (Po®Pyd Py).

This diagram is isomorphic to the diagram

(iii) (PR P) — (PR P) «— (PRth).

The essentially arbitrary choice of the horizonal isomorphisms in (i) entails that its vertical right hand

side map is usually not in a particularly simple shape. So also (ii) is not in a particularly simple shape.

We aim to simplify further, searching for a diagram isomorphic to (ii), hence also to (iii), but with

matrices in a simple form.

We may take the two maps in (iii) together to form the map
(iiil) (tPa® Py) ® (P2 RtPy) — (Ph®Ps).

The cokernel of this map is isomorphic to Dy ® Dy by Lemma 1.

We may also take the two maps in (ii) together to form the map
(ii") (PP, dP )@ (PP P) — (RLOP®P).

The cokernel of this map (ii’) is then of course also isomorphic to Dy ® Da.

Further simplification steps, applied to (ii), can also be applied to (ii’) if we use suitable RSs-linear

automorphisms of P, @ P, @ P; on the right and direct sums of two such automorphisms on the left.

There is no general recipe how to simplify. So this has to be done by hand, often using evident simplifi-

cation steps, but sometimes also using more intricate sequences of steps.

The result of our simplification is the following matrix, where 1 is the identity on P; resp. on P, and

where hi? is as given in Remark 29.

_1 - -
3 .
C 1
C’ = 1 . — : (PQ@PQEBPl)@(PQEBPQEBPl) — (PQ@PQ@Pl)
3
BN

The cokernel of this map is then of course also isomorphic to Dy ® Dy . But it can also be calculated
directly to be D5 . So as a consequence, we get Do ® Do = Do .

Of course, in this example, we know that D5 is the trivial module. So Dy ® D> is also the trivial module.
This is confirmed by our calculation — which thus serves mainly to illustrate the method.

Remark 34 Using Magma, we verify again that
C
Coker( o ) ¥ Dy®Dy Dy,

Coker(C) > Coker(C) = Dy@Py = Py,

with Loewy layers already known.
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3.2.4 The tensor product P, ® P;

Lemma 35 Let E be the embedding tPo ® Py — P, ® Py, and E be the embedding P, @tP;, — Po® Py.

We have a commutative diagram of Z3)S3-linear maps

Py @ P, E PoP oGP
RS T
P, ® Py A PBaPoP
: ) :
P, ® P 5 PBaoPoP

with A, B, B isomorphisms, and the describing matrices

2-1 01000 00 0-1 01001 00 2100000 00
10-1010 1 2-1 00-10100 1-1 3110001 2-1
0-1-2001 2 4-2 0000010 0-2 0-1-2-1-2 1 2 4-2
6-2 0000-1 0 0 6-2 0000-1 0 0 . 6-20000-100
A:=]|30=2000352|, B:=|302000352|, B:=]930000332],
0-3-6000 6124 0-3-6000 6124 0-3-6-3-62 6124
3100001 10 3100001 10 3100001 10
201000-2-3 1 201000-2-3 1 6-20000-2-31
023000-4-6 2 023000-4-6 2 023231462
300-1 00000 10 000 000 0
030 0-1 0000 03-100 000 0
003 00-1000 00100 000 0
000100000 - 00010 000 O
E:=|oo00010000]|, E:=|00003-1000],
000001000 00 000 100 0
000000100 00 000010 0
000000010 00 000 003-1
000000001 00 000 000 1
100[000'000 100J-1 00'00
010[000'000 010[-3 0000
001000000 001/0-31100
000[3001000 ~ 000[3 0000
C:=|o000/030000 | := , C:=|o000/03000 =
000[003,000 000]/0 0300
000[000,100 0000 00,100
000000010 000[0 00,010
000/000,001 000/0 00001

Recall that R = Zs).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and
the commutativity can be found in the file main_S3_loc3, the matrices for this diagram in the file
Diagram_S3_loc3_P20P1 .

The maps and matrices are denoted analogously to those for P; ® Pp, see proof of Lemma 30.

To verify the Lemma, follow these steps:

load "main_S3_loc3";
load "Diagram_S3_loc3_P20P1";

[rhorP1(sigma)*il eq il*rhoPi(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];
[rhorP2(sigma)*i2 eq i2*rhoP2(sigma): sigma in {S3P!(1,2), S3P!(1,2,3)}];

E1l KroneckerProduct (i2,MatrixRing(Rationals(),3)!1);
E2 := KroneckerProduct(MatrixRing(Rationals(),3)!1,i1);
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[op_rp2opi(sigma)*El eq El*op_p2opi(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_p2orpi(sigma)*E2 eq E2*op_p2opl(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];

//commutativity:
E1*A eq B1xC1;
E2*A eq B2xC2;

//RS3-linearity
[op_p2opl(sigma)*A eq A*op_proj_sum_p2pl(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_rp2opi(sigma)*Bl eq Blxop_proj_sum_p2pl(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_p2orpi(sigma)*B2 eq B2*op_proj_sum_p2pl(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_proj_sum_p2pl(sigma)*Cl eq Cl*op_proj_sum_p2pl(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];
[op_proj_sum_p2pl(sigma)*C2 eq C2*op_proj_sum_p2pl(sigma):sigma in {S3P!(1,2), S3P!(1,2,3)}];

//local invertibility; loc_inv see "main_S3_loc3"
loc_inv(4,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 36 Using Magma, we verify that

C
Coker( C~' ) = D2 ® D1 = D1
Coker(C’) = D2 X pl = Pl
Coker(C) ~ PpeD = P

with Loewy layers already known.

3.3 An isomorphic replacement of the comultiplication on Z3)S3

3.3.1 Replacing A by A’

Definition 37 Let = := Zg) x Z33% X Zz) x L3352 x it x L35 x Ly x L35 x L) -

A basis of A is given by

Consider the following injective morphism of Zs)-algebras.

AL

ho = = 000
a
@ (55).n — (a(59).2.(5¢) (8)%%? (59)n(58) )

Let w(3) be the Wedderburn isomorphism given in Definition 21.

Let A be the comultiplication
A
Z(g)Sg — Z(g)Sd ® Z(g)Sg
2 00 > ) a;0®0,

oES3 o€ES3
where a, € Z3), which is a morphism of Z3)-algebras.
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Definition 38 The morphism of Zs)-algebras (= is given on generators by

(1]

Q=
Z(3)Sg ® Z(S)S3 —

0-1-1 0
(1,2)®id — (1, (5?)1(%%)% (g) § §é (%%)1(6?)1)
: 10 11y 1 3(2)(1)}1) 1-1\ 4 (10}
2,3)@id — (1, <01)a1»<071>»2 100 2 »(0 1), 17(071)7 1),
0-1-1 0
sy o (31).1 (3.1 (§§§§, (A9 (20).
0210
sty — o (310101 (§§ §%) (A3
Note that
Q= 2-1 0910\ (21 (21
(L2)e1,2) 5 (1L(33) 1 EEEY: (33)..(3))
0= 11y (11 (1)(1”1)8 11 4 (11
(2,3)®(2,3) 5 (1,(071), 1,(071), 001 0 ,(071), 1,(071),1)

Lemma 39 Let I := Im Q= C Z, which is a Z3)-subalgebra.

We have the following description by ties.

b11 0 a0y [ eeao 0 et 0
r = {(all’(610>’0’(610)7 e§1e§288 7(]%10)707(610)’1-11)6

a11 —bi1 =9 di1 +e11 —2e12 +e21 —2e22 =30, @11 =3 diy,

(1]

hi1 —i11 =9 2e11 — 2e12 +e21 —e22 — f11 =30,  fi1 =3 11,

€11 =3 €22, €12 =3 621}

2]

000 O
{(07(81)(2)2),011’(8(;;2)’ 88623624 7(8]‘82)7911’(8}1(;2),0) € = |
00 e43 eqq
bog — €11 =9 —e33 + 2e34 — €43 + 2e44 — foo =30, c11 =3 foo,

g11 — ho2 =g dao — 2e33 + 234 — €43 + €44 =3 0, da2 =3 g11,

€33 =3 €44, €34 =3 643}

0012 0di2 8 8 23 gi 0 f12 0hi2 =
{(0’(0 0>’0’<0 0 ) 0000 ’(0 0 )’0’(0 0 )0) €E|

bia =3 €13 + €14 + €23 + €24,

S

d12 =3 €13 — e14 + €23 — €24,
J12 =3 —e13 — e14 + €23 + €4,

hi2 =3 —e13 +e14 + ea3 — 624}
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00 00 L 00 00
@ {<O’ (bm 0) 0, <d21 0) ’ egl 62288 ’ <f21 0) 0, <h21 0) ’0> €E|
€41 €42 0
ba1 =9 €31 — 2e32 + eq1 — 2e42 =3 0,
do1 =9 —2e31 + 4ezz — eq1 + 2e40 =3 0,
fo1 =9 —e31 +e32 —ea1 +eq2 =30,

ha1 =9 2e31 — 2e32 + €41 — €42 =3 0}

Moreover, Q= is injective.

Proof. Let I be the Z3)-submodule of = occurring as the right hand side of the assertion.

Write elements of = as row vectors with entries in Z(3) , i.e. identify = = Z23><)36

Let T € Z?g)XZS be such that for £ € =, we have £ € I if and only if €T € 9 - Z(IBX)QS. Le. the columns of

T contain the coefficients of the ties defining IV, written as congruences modulo 9.
The chosen Z3)-linear basis of A(3) in Definition 37 yields a Zs)-linear basis of Z3)S3 via wz?l)) . Tensoring
this basis with itself, we obtain a Zs)-linear basis of Z3)S3 ® Z(3)S3 , which we choose.

Let M € Z?g)X36 be the describing matrix of the Zs)-linear map Q= of Definition 38, with respect to the

chosen basis of Z3)S3 ® Z3)S3 and the standard basis of Z.

Then

36x28
M- T €9z

which shows that ImQz C I'. The index of I equals the index of ImQ=, so that InQz = I". In
particular, I'" is a Zs)-subalgebra of Z.

To verify the details using Magma [3], we proceed as follows.
load "Ties_replacement”;

//M-T e 9Z3)
//loc_int verifies that a matrix has entries in Z(3), see file "Ties_replacement"
loc_int(1/9%M*T,3);

//index of ImQxz is 336
Valuation(Determinant(M),3);

//elementary divisors of T’
[SmithForm(RMatrixSpace(Integers(),36,28)!T)[i,i]:i in [1..NumberO0fColumns(T)]];

The elementary divisors of T are 1% - 320, Therefore, the elementary divisors of the embedding of I in =
are 9% - 320, Hence the index of I in = is 32:8+20 = 336,

Finally, I‘kZ(3) (Z(g)Sg ® Z(g)Sg) =6-6=36= rkZ(3) == I‘kz(s) Im Q= , SO that Q= is injective. [

Denote the embedding of T" in E by

r——=

— .

Remark 40 By restricting 2= in the codomain to I', we get an isomorphism
Q = QE|F : Z(g)S3 ® Z(g)Sg = T.

S/Q\

Z3)S3 @ Z(3)S3 r =

~
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Remark 41 We have Im AL C T, so that we may write

A= ALY D Ay — T

=
@

~
m

Note that the Zz)-algebra morphism A’ is only injective.

Proof. We check the ties of I given in Lemma 39 for an element of the form

a000
(o (@) 2 () \pact ) (a2)- 7 (ac) o),
where (a, (2 g) , f) € Ay, ie. where a =3 b, d =30 and e =3 f. O

Proposition 42 We have the commutative diagram of Zs)-algebras

L(3)Ss - L(3)S3 @ L(3)S3
| w3) Q L Q
A 2 r.

Proof. We only have to prove commutativity on generators of S3. We verify that

1000

(1,2) Di>37 (1,2) ® (1,2) D%s (1,(%%),1,(%%),(%%%? (%%)1(%%)1)
1000

w0 g e (3 g o -(H) an e
1000

23) 5 @23ee3) o 0(01) (1) §é%§ (o1) 1 (61)

€

10
@ 11 A’ 11 11 01
(233) 5 (13(0,1)a’1) ]’;; (13(071>a’1a (0,1)a 00-

Equality of the respective images shows that AQ = w3)A’; cf. Remarks 40, 41. O

o
N

Lemma 43 We have the orthogonal decomposition
Ir = e1+e2+e3+¢4

into primitive idempotents of I', where

2100
o (380 68). (Fa88) (49)0.(38) 1)
-1-100
a e (0080 (88). (F388) (39)0.88) o)
._ 00 00 8888 00 00
RN L R
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0000
o e (0302 (80).(1191)-(80)0.88) o)

In the process, this orthogonal decomposition has been used to decompose the ties of I'.

Proof. We show that e5 is primitive. Primitivity of €1, €3 and &4 follows similarly.

A possible orthogonal decomposition of €3 necessarily lies in eoI'ep . Since, for z, y, 2z, w € Z3), we have

(22) (%) (22) € ((diou) | wezZwd,

each element of e5I'es is of the form

e;; e 00
b11 0 dy1 0 -2e11-2€110 0 (OO) (00) )
(a11;<0 0>307< 0 0>7 0 0 00 V00 703 00 30 ’
0 0 00

where a1, bi1, di1, e11 € Z(3) :

We obtain the list of ties
a11 —bi1 =g di1 +e11 =30,

a1 =3 dq1 -

For T'gs :={(a,b,d,e) € Zé‘; | a—b=9gd—e=30, a=3d}, define the Z)-linear isomorphism - by

eollen N Tys
-e-e00
(« (89).0.(49). 2828§§ (99).0.(39).0) — @hde).

Now 7 is a Z3)-algebra isomorphism.
It remains to show that 1r,, = (1,1,1,1) is a primitive idempotent in I's,.

Let
1r, = (1,1,1,1) = (w,v,w,2) + (1 —u,1 —v,1 —w,1 — x)

be an orthogonal decomposition into idempotents.

Suppose (u, v, w,x) # (0,0,0,0). Then u? = u, i.e. u(u—1) =01in Z3). Therefore u € {0,1}. Repeating
the argument, we obtain v, w,z € {0,1}.

Without loss of generality, let w = 0. Because u =3 v =3 w =3 «x it follows that u = v = w =z = 0.
Therefore (u,v,w,x) = 0r,, , and (1,1,1,1) is a primitive idempotent. O

Remark 44 There are infinitly many orthogonal decompositions into primitive idempotents of " of the form

a a 0
0.68).0.G8). (58 00 (080

1r

N——
/
oot T
)

|
s}
cocoo

[Slenlen] oo

oo

1

COOoO OOoO0oOo
OO0 COO0O0oOo
T
(=
T
o

SROCHRYEON

for any a, b € Z(3) with a =3 —1 and b =3 —1. But there does not seem to exist a simpler looking orthogonal

0
54) 9600

decomposition than 1p =€ +e2 +¢e3+¢€4.
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Remark 45 The idempotents e; and ez of A3y given in Definition 21 are mapped to the idempotents

f=0.(89) 0 — (0(80)1.(89).

a0 (180 — (L(49)0. (),

of T under the map A’ given in Definition 37.

OO OO
OOrRO OO0
SOoOOoOo OoOroo
OO0 Oo HROoOOoOOo

Orthogonal decompositions of é; and és into the primitive idempotents of Lemma 43 are given by

é1 = €e3+éy
€s = €1+¢éo.

3.3.2 Side remarks on the construction

Definition 46 Let
A(g) ® A(g) £ =
b Y
(av (dg)af) ® (a/7 (d/g/)af/) —
@ed.ace(Yo)aer, (b)ed (b)) e (be) (h)erredre(he).rep
bb’ bc’ cb’ cc’
ab’ ac’ ba’ ca’ bd’ be' cd’ ce’ bf’ cf’ b fc
= (aa/’ (ad' ae/) ’af/’ (da' ea/> ) <db' dc’ eb’ ec’) ’ (d:)]ccl eji/) ,f(l/7 (;d/ ;a') 7ff/) '
dd’ de' ed’ ee’
This is an injective Z3)-algebra morphism.

Further, let
Oz = (w(3) ®W(3)) N V= Z(g)Sg & Z(g)Sg — =.

It is an injective morphism of Z3)-algebras mapping the generators as follows.

(1]

Q=
Z(g)Sg ® Z(g)Sg —

amon ()2 (33)(§888) (3D (3
even o 0 ()06 (). 6D (4D
asan o (36 (1) 69
ase o o346 (HE) (5916

Definition 47 Let
A = wzé) A (w(g) ®w(3)) : A(g) — A(g) X A(g) .

Let
A/E = UJE%)AQ: = A-pus : A(g) — =.

—
@D
=3
=
1l
—
g
o}l
[1
N
[1]
=
=
e}
o}l
Il
o}l
&
Ll
I
=]
o,
>
i
>
i~
Ll
Q0
=
oL
=
I
=
[11
L
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We obtain the commutative diagram of Zs)-algebras

L(3)Ss = L3)S3 @ L(3)S3

AN

W) w(3)@w(3z) [
Ag) A @A@) 14
AI
2B
/

Y ¥

I

Remark 48 We obtain

€11 €12 €13 €14
= {(on (o) e (@a2)- |G enenar ) () on (i) ) <=1

€41 €42 €43 €44

a11 +e11 =g b1y +di1, a1 =3 b1 =3 €11 =3 di1,

bao + f11 =9 c11 + €22, ba2 =3 c11 =3 f11 =3 €22,

dag + h11 =9 e33 + g11, daz =3 €33 =3 h11 =3 911,

eqq +i11 =9 foo + hoo, eqq =3011 =3 fo2 =3 hoo,

ba1 =9 €21 =30,

da1 =g e31 =30,

e42 =9 f21 =30,

€43 =9 ho1 =30,

b1z =3 e12,
di2 =3 e13,
e2s =3 f12,
e34 =3 h12,
e23 =30,

ez =30,

€41 =9 O} .

Note that the ties of I’ are very simple, but that (a, (de) f)A’ is of a complicated shape; cf. Remark 49
below.

Proof. Let T be the Z3)-submodule of = occurring as the right hand side of the assertion.
1x36
=Lz
Let T € Z?g;m be such that for ¢ € 2, we have ¢ € I if and only if 7 € 9 - Zz?)x)?’l Le. the columns of
T contain the coefficients of the ties defining I, written as congruences modulo 9.

Write elements of = as row vectors with entries in Z3) , i.e. identify =

The chosen Z3)-linear basis of A(3) in Definition 37 yields a Zs)-linear basis of Z3)S3 via wé) . Tensoring
this basis with itself, we obtain a Z3)-linear basis of Z3)S3 ® Z3)Ss , which we choose.

Let M € Z?%X?’G be the describing matrix of the Z3)-linear map Q= of Definition 46, with respect to the

chosen basis of Z3)S3 ® Z3)S3 and the standard basis of =.
Then

T 36x31
M- T e 923"

which shows that ImQ= C I’. The index of I equals the index of ImQz=, so that InQ= = I'. In
particular, [V is a Z3)-subalgebra of =.
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To verify the details using Magma, we proceed as follows.

load "Ties_replacement_2";

/IM - T € 9Z3)
//loc_int verifies that a matrix has entries in Z(S), see file "Ties_replacement_2"
loc_int (1/9*M*T,3);

//index of Im) is 336
Valuation(Determinant(M),3);

//elementary divisors of T
[SmithForm(RMatrixSpace(Integers(),36,31)!T)[i,i]:1i in [1..Number0fColumns(T)]];

The elementary divisors of T are 19 - 3'8. Therefore, the elementary divisors of the embedding of I” in =
are 99 - 3'® Hence the index of I” in E is 32°9+18 = 336, O

Remark 49 Consider (a, (gg) , f) € Ay . We have

@ (ac). 7 (a2).

2a —b a—b+c a—b+c %a—%b—l—c
—3a+3b+d —3a+3b—3c+d—e+3f —Sa+3b-3c+d—e—Lif —a+20-3c+2d—e
—3a+3b+d —3a+3b—3c+d—e—L1f —3a+3b—3c+d—e+3f —a+2b—3ct+id—e |
6a — 6b — 3d 3a — 6b+ 6¢ — 3d + 3e 3a —6b+46¢c —3d+3e 2a—4b+ 6¢c—2d 4+ 3e

—3b+6c—2d+4e —2b+3c— 3d+ 2 g bt 6e—2d+de —2b+43c— 3d+2e
s I a).
6b—12c+3d —6e  4b— 6¢c+ 2d — e 6b—12c+3d —6e  4b— 6¢c+ 2d — e

Remark 50 We may now conjugate the matrices from the left to receive a simpler form.

Conjugation with

o (38) 1 ()

from the left defines the Q-algebra isomorphism

cooo
oW
@é‘:@w
oclmxw
—~
Ses
e
N——
-
—
Ses
dors
~—
N

K = KQEIE T = T
cf. Remark 48, Lemma 39.
For (a, (gg) , f) € Ay, we obtain
o (5. Do =
a000
(o (G) 2 (@) \ et | (a) 7 (3) )

So A’k = A’; cf. Remark 41, Definition 37.

In fact, the map (2 introduced in Remark 40, Definition 38 has originally been obtained as Q2 = Q - k.
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So altogether, we have a commutative diagram of Z3)-algebras

Z(g)Sg A Z(3)83 ® Z(3)83
\

w3) [ w(3)Qw(3)

cf. Definitions 46, 47.

3.3.3 Multiplicities via A’

Remark 51 Suppose given a ring A and an idempotent e of A. Let u € U(A). Then we have the A-linear

isomorphism
eA = weulA

ea — uea = ’U/G’Lfl ua

1

euld = ulueuld <+— weuld.

Remark 52 Let ¢; be the primitive idempotents of A3y given in Definition 21 for ¢ € {1,2}. Suppose
given any idempotents e, f of A(3), not necessarily primitive, and write eA(3) ® fAz) = P Pj@”j.
J
We want to calculate the multiplicities 41, using A'.
Let C := (c¢;5)i,; be the Cartan matrix defined in Chapter E.
We have the restriction functor that restricts a A3y ® A(s)-module along A to obtain a A(3)-module.

Conversely, we have the tensor functor — @, (A@) ® A(3)), which applied to a A(3)-module yields a
A3y ® Asy-module.

This tensor functor is left adjoint to this restriction functor.

In the following calculation (only), we shall distinguish between the A3y ® A(3)-module eA(3) ® fA(3) and
the A(z)-module (eA(z) ® fA3))|A ) -

We have
Z Cijlbj = Z rkZ(s) HomA(s) (Pi ) Pj) i
J J
Dy
= r1kg,, Homy , (P;, @Pj )
j
= rtkg,, HomA(3>(eiA(3) , (eAs) ® fA(3)>|A<3))
= tkg, Homa, ga 0, (€ild3) @ng) (As) ® M), eA) @ fA)
= kg, HomA(3)®A<s>(eiA(3) O (A3 @A@E), (e® f)(Ag ® A))
= tkg, Homa g on ) (€id(Am) @A), (e® (A ® Aw))
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= rkg, Homp(eiﬁumf‘7 (e ® f)uxl)
= rkg, Homp(e; AT, (e @ f)uxl)
= dimg Homgr(e; A’QT, (e ® f)uxQr)
= dimg Hom@g(eiA’(@E, (e® f)/mQE)
=" dimg Homgz(e;A'QE, (e ® f)uQE)
= dimg ((e® flu- Q- ¢A') .
Example 53 We can choose e and f in Remark 52 to be the primitive idempotents given in Definition 21,

and calculate the multiplicities of P; and P; in the tensor products P, ® P;, P, ® P, and P, ® P, using
the calculation from Remark 52 and the notation from Remark 45.

For P, ® P;, we have to consider

dimg((ex1 ® e1)p - Q= - e1A)

=dimg((e1 ® e1)p - Q= - &1)
0000 0000
= aimat (0 (38) 0 (38) (488} (3) 0 (32) ) 0=(0(89) . 82). (3431 (69) 32
= aimat (0 (3)(32) (1841 ) (32) o (82) )
=4
for i = 1, and analogously
dimg((e1 ® e1)p - QE - ex A')
= dimg((e1 ® e1)p - Q= - &2)
0000 1000
= gt (0 (38)(38) (488} (3).(32) ) 0= (32) o (38). [ B482) (32) .38
= aimal (0 (3).(38).( £458)(88) (88) )
=5
for i = 2. Thus, with C7, s, = ( j ; ), we obtain

-1
m (21 4\ (1
L2 - 12 5 B 2 )
So P, ® P, = PP @ PP = PP @ P2, in accordance with Lemma 30.
For P, ® Py, we get
dimg((e2 ® e2)Ze1A’) =4

dimg((e2 ® e2)ZeaA’) =5

() - () () - ()

So P, ® Py = PP* @ Py*? = PP @ PP?, in accordance with Lemma 32.

and therefore

FOI‘P1®P2 (%P2®P1),weﬁnd
dimQ(<61 ® 62)561A/) =5

dimQ((el (24 ez)EegA/) =4
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() - G2 () - ()

So P, ® P, = PP" @ Py = PP? @ P, in accordance with Lemma 35.

and thus

3.3.4 Using A’ and I' to tensor Specht modules

Remark 54 We can also use the ties of I' of Lemma 39 to decompose tensor products. We will consider
the example of SV @ (1),

Consider the rational idempotents

00
i = (1L(00).0 € QAw),
10
@b = (0»<00>>0) € QAg,
00
77(1’1’1) = (0,<00)71) € QAg.
Note that they are not contained in A3 .
We obtain the Specht modules
SG = p®Ag, C QAg
SED = pEDAG C QAg,
S(l,l,l) _ 77(171’1)/\(3) C QA(g).

An element of S shall be abbreviated (u v) := (0 x (gg) x 0), where u, v € Zz). Likewise for

elements of S®) and SH11),
Tensoring with Q, we obtain a map Q(ux) : QA(3) ® QA3 — QI' = Q=.

With the maps given in Definition 47 and Remark 50, we define

2-1
2-1
100
00

O

¢ = (77(2,1) ®n(211))(@(w§) = (0, (88) 0, (8

jevlenlenlen)
SOoOOoOO

Note that ¢’ is not contained T.

As A3y ® Az)-modules, we have

SED @ SED  — DAL @A
= @YV @n@Y). (Ag ©As)

=~ (D @) Quk) - (A@) @ Ag) Quk)
(@Y @ nED)Q(uk) - (A@) ® Ags))pk
T,

K

1%

1%

on which an element of A(3) ® A(3) acts via k.

Let = = (0,(90) .0, (00)

belonging to the fifth entry.

)
000
ég§ , (88) ,0, (88) ,0) € = be the primitive central idempotent

SoOoH

We fix the following Zs)-linear basis B of eI", which we sort according to “regions” of Z‘(lgx)‘l, and of which
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we denote only the nontrivial, fifth entry.
1000 0100 0010 0001
0100 1000 0000 0000
0000 |° 0000 |~ 0000 |~ 0000 |
0000 0000 0000 0000
0000 0000 0000 0000
3000 0300 0010 0001
0000 |~ 0000 |~ 0000 | 0000 |~
0000 0000 0000 0000
B =
0000 0000 0000 0000
0000 0000 0000 0000
3000 |~ 0300 |~ 0010 |~ 0001 |>
0000 0000 0001 0010
0000 0000 0000 0000
0000 0000 0000 0000
0000 | 0000 | 0000 |~ 0000
3000 0300 0030 0003

To construct B, we first use the ties describing I' given in Lemma 39 to obtain a Zs)-linear basis of I',
then cut out the relevant block and reduce the resulting generating tuple to a basis. Using the basis B,

we then fix a Zs)-linear basis of €’cI' = €'T" as

2-100 0300 0010 0001
( 2-100 0300 0010 0001 )
0000 |~ 0000 > 0000 )~ 0000
0000 0000 0000 0000
=: (u, v, w, x),

obtained by multiplying the elements of the basis B with ¢’ from the left and then reducing the resulting
generating tuple to a basis.

Restricting the A(3) ® Asy-module ¢'T' to A via A, an element (a, (Zg) ,f) € Ay acts on €T via
Apk = A’. So on the fifth entry it acts from the right by multiplication with

A=

SOoOoe
OO
oo 0o
OO O

Note that a =3 b,e=3 f and d =3 0.

We calculate the action of (a, (cblg) ,f), i-e. of A, in the basis fixed above.

u- A au—&-“gbv
v-A = bv+3cw

w-A = ngrew

- A fx .

Notice that all occurring coefficients are in fact contained in Z s .

Let
0 = {(m, (n p),q) € S® & 52D @ SOLD |y 4 p =, o} C S® @ s g g1y

having the Z)-linear basis ((2,(—1 0),0), (0,(3 0),0), (0,(0 1),0), (0, (0 0),1)) = (0w, 7).
Now © is a Ag)-submodule of S© & §ZD ¢ §(LLY Tt is isomorphic to e'T' via
p: el =50 u—d, v=d, w=u, z—=a,

since (a, (Zg) , f) acts on (u,v,w,x) as on (v, v, z).
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By multiplication with —1 on S®) we get the description

© = {(m (n p),g) € S® @S2 @I |m4n=, 0}
{(m’, (n p),q) € S® @ 5D @ SOLD | ! =4 n}
{(m’, (n p),0) € S® g 2D @ SOLY |/ =4 n}

o {(o, (00),q) € S® @ 5@V @ ALY | ! =, n}
132 @ S(l,l,l) ,

1%

1%

where m, m/, n, p € Zg); cf. Definition 27.

Altogether, as A(3y-modules we have
SN @S2 = T = @ = ppg St

In particular, we have S @ §21 =~ p, ¢ S(LLD which we can compare with the result obtained by
Magma as follows.

load "main_S3_loc3";

F := GF(3);
G := S3P;
S21  := GModule(G, [Matrix(F,[[-1,1]1,[-1,011),Matrix(F,[[0,1]1,[1,011)1);

S111 := GModule(G, [Matrix(F,[[1]1]),Matrix(F,[[-111)1);
// generating P» :
PP2 := GModule(G, [MatrixRing(F,3)!rhoP2(S3P!(1,2,3)),MatrixRing(F,3)!rhoP2(S3P!(1,2))]1);

IsIsomorphic(TensorProduct(521,521) ,DirectSum(PP2,5111));

We get

> IsIsomorphic(TensorProduct(S21,S21) ,DirectSum(PP2,S111));

true



Chapter 4

On localizations of ZS4

Definition 55

Let b did
€11 €12 €1 :
v G (B (B5) (21m)
31 d32 d33
a1 =3 ez, b1 =zen, e =30,
€31 =4 C32 =4d31 =4d32 =40,
a11 —c33 =g by1 —ds3 =4 0,
c11 =4 di1, c12 =4di2, co1 =4dor, ca2 =4doa,
c13 =2 d13, €23 =2 do3, c33 =2 d33,
c31 =g d31, €32 =g d32,
ci1 +di1 =g 2e11, ci2 +di2 =g 2e12, co1 + do =g 2ea1,
Co2 + dao =5 2e22}

CZxZx T x 733 x 7**2.
The tuple entries belong to the Specht modules 5(14), S@ gL 9B and §32) in the order chosen
above.

The Z-order A is the image of the Wedderburn embedding of Remark 240.

4.1 The Localization Z3)S,

Here, a block of Z)S, is isomorphic to Z3)S3 . Also the behaviour of the canonical presentations over
Z(3)S4 parallels that over Z3)S3; cf. Remark 72.

Write
R:= Z(g) .

4.1.1 Idempotents and projectives

Definition 56 The localization of A at (3) is given by
€11 C12 C13 dy1 di2 dis
Agy = {(a11,bu1, <C21 C22 C23> o | do1doadas |, (%% %g)) | a1 =3 €22, bii =3 e, ex =30}
€31 C32 €33 d31 dz2 d33

3x3 3x3 2X2
- Z(3) X Z(g) X Z(3><) X Z(3><) X Z(3><)

R x R x R3*3 x R3%3 x R?*2

38
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Consider the following idempotents of A3 .

Remark 57 Let E :={(a,b) e RxR| a=3b}.

We have isomorphisms of R-orders

E — €1A(3)61
000 000
00
a,b) +— (a,0,{000),1000]), ,
(@) ( <ooo> (000) (08)
E — 62A(3)62
000 000
b0
a,b) — (0,a,{000),(000 ), ,
(@0) ( (000) (000) (63)
R — 63A(3)63
00 000
00
a — (0,0,{000),(000], ,
( ( 00) (000) (63)
R — 64A(3)€4
00 a00
00
a — (0,0,{000),(1000 ],
( ( 0) (000> (00))

Lemma 58 The idempotents e1, ea, €3 and e4 are primitive.

They represent the equivalence classes of the primitive idempotents of A(z).

Proof. First we have to show primitivity of e; . Primitivity of e, follows analogously.

To this end, we show that e; and 0 are the only idempotents of e;A(3)e; . By Remark 57 it remains to
show that (0,0) and (1,1) are the only idempotents of E. Let (a,b) € E be an idempotent. Since Zs) is
local, Corollary 134 gives a,b € {0,1}.

Since this is a finite problem in F, we can use Magma [3] to list all possible pairs (a,b) € R x R with
a, b € {0, 1} and to test the ties defining E in a last step. To do so, we call
i := {<a,b> : a,b in {0,1}| (a mod 3) eq (b mod 3))};

and we get the following result.

> i
{ <0, 0>, <1, 1>}

Therefore, using Lemma 136, the idempotent e; is primitive.

Now we show primitivity of es. Primitivity of e4 follows analogously.

To this end, we show that ez and 0 are the only idempotents of e3A(3)e3. By Remark 57 it suffices to
show that 0 and 1 are the only idempotents of R. Since Zs is local, this follows from Corollary 134.
Therefore, using Lemma 136, the idempotent e is primitive.

Finally, there exists an orthogonal decomposition 1 = e; + es + e3 + €5 + €4 + e4 + €} + €} into primitive
idempotents, which fall into the equivalence classes {e1}, {e2}, {es,e5,e4}, {es, e}, el}. Here e} and ef
are obtained from e by “shifting along the main diagonal”. Similarly ¢} and e . O
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Corollary 59 Up to isomorphism, we have the Peirce decomposition

(e1hzyen) ! (erA(zyen) ! 0 0
A 61)1X1 (€2A362)1X1 0 0
AgA@A@A@A%:(eQ(g) ®)
(3) = €14(3) @ €244(3) © €30 (3) W €44l (3) 0 0 (38 (3)e3)3<3 0
0 0 0 (64A(3)€4)3X3
Lemma 60
We have the radicals
000 000 00
A = 000 000 A
t(e1A(z)er) ((3) x 0 x (888> X (8 8 8) x (0 (3))) N eiAgyer,
= (3)0
t(eah(s)e2) ) x 888) x (888) < (®0)) neatges,
(3)00 000 00
t(esA(3ye = O><O>< 000]x1000])x N esA3es,
(eahaea) (000) (000) (89))  estaes
000 (3)00 00
= 000
t(esh(3yeq) 0 x 0 x <OOO) X ( 8 88) X (O O)) N esA(3yeq
Proof. This follows by Proposition 222; cf. Remark 208, Example 223. [
Lemma 61 We have the Jacobson radical
B 3)(3) (3 3)(3) (3 3) R
t(A@) = ((3) x 3) x { (3) (3) (3) | x [ (3)(3) (3) | x R (3) ) N Ag)
(3) (3) (3 3)(3) (3
Proof. This follows by Lemma 60, using Proposition 217 and Remark 208; cf. Corollary 59. O

Definition 62 Let P, :=e; - A3y, P2 = ex-Ag), P3:=e3-A@) and Py := ey - A3y represent the

isoclasses of the indecomposable projective modules of A(3); cf. Lemma 220, Remark 208.

So we obtain

r= oo (§0)- (800) - (A2 1o =0

r= (o (308) . (888). (5D on = amao)
Py = {(O,(L(C(l)lc(l)gcé?,)7 §§§),(88))}7

= oo (). (3°5) o

where all entries are to be read as running through R.

We abbreviate

{an, €91 622} = (a11,0,<888>,(888),(631622)) e Py,
0004 /000
{511, et 612} = (O7b11,<888)7(888>’(e(1)1€(1)2)) € Py,
C11 €12 €1
[011 c12 013} = (0,07( él éQ gs),(§§§>7(88)) € P,
dy1 dia d
o] = 00 (8- (YY) 08 <n

So we have P, — S @822 p, <y §4) ¢ 522 p <y 2L and p; s SGI),
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Using Lemma 61, we fix the following R-linear bases.

([1,(0 1), ([3,(0 0)], ([1,(1 0)], ([3,(0 0)],

[0, (1 0)], [0, (1 0)], [0, (3 0)], [0,(3 0)],

[0,(0 3)]) of P, [0,(0 3)]) of Py, [0,(0 3)]) of Pz, [0,(0 3)]) of tPs,
([(1 00, ([(300)], ([(100)], ([(3 0 0)],

[(0 1 0)], [(0 3 0)], [(0 1 0)], [(0 3 0)],
[(001)]) of P, [(003)]) ofthPs, [(001)]) of Py, [(003)]) ofthy

Remark 63 Using Magma, we can verify that the indecomposable projective modules P3 resp. P, have
the Loewy layers D3 resp. D, . For P, we have the Loewy layers

D,

Dy

Dy,
and for P, we find

Dy

Dy

Do .

Remark 64 Recall that

OO O

00\ /000
00
00 —
88> ’ <800) ’ (0622)) ’ a1 =3 e}
= [a117€22]
= {lai,e2] | a1 =3 ex},

erth@zer = {(a11,0,<

for which we fix the R-linear basis
(61 ) B%l) = {[1,1], [073} } .

Via the canonical isomorphism from e; A(sye; to Hompgs, (P1, Py), it is mapped to the fixed R-linear basis

100 00 1
(1p, bt = (o 10 ][ 030
00 1 00 3

of Homps, (P1, P1), using the fixed R-linear basis of P, given in Definition 62.

Recall further that

000 000
0 _
eahzyea = {(0,1711, (888) ) (888) ) (6(1)1 0)) ‘ b1 =z en }

=: [b11, e11]
= {[bi,en] | buu=sen},

for which we fix the R-linear basis
(62’ iﬁg) = { [17 1]7 [073] } )

abbreviating analogously.

Via the canonical isomorphism from ez A(3yes to Hompgs, (P2, P»), it is mapped to the fixed R-linear basis

10 0 010
(1p,, h22) = ( o010 ]|.[o0o 30 )
00 1 00 3
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of Hompgs, (P2, P2), using the fixed R-linear basis of P, given in Definition 62.

01100 000
00
e3A(3)e3 = {(0507< 8 88) P (888) ) (00)>}

Moreover,

=: [e11]
= {lenl},
therefore an R-linear basis is fixed by
(es) == {[1]}.
Via the canonical isomorphism from e3A3ye3 to Hompgs, (P, P3), it is mapped to the R-linear basis
1 00
(ir) = (|0 1 0])
0 0 1

of Hompgg, (Ps, Ps), using the fixed R-linear basis of P5 given in Definition 62.

For the idempotent e, we get

000 d1100 00
64A(3)€4 = {<0707 (888) y < 8 88) ) (00))}

= [dll]
= {ldul},
therefore an R-linear basis is fixed by
(ea) = {[1}.
Like before, via the canonical isomorphism from e4A(3)e4 to Hompgs, (P, Py), it is mapped to the R-linear
basis
1 0 0
(ir) = ([0 10])
0 0 1
of Hompgs, (P4, Py), using the fixed R-linear basis of P, given in Definition 62.
Recall that 000 000
_ 00 ‘ _
e = (00 (§89) (88)-(8)) [ ea =0
= [621]
= {lea1] | e21 =30},
for which we fix the R-linear basis
(hi') = {[1}.
Via the canonical isomorphism from e;A(zyes to Homgs, (P2, P1), it is mapped to the R-linear basis
0 1 0
) = (|03 0])
0 0 1

of Hompgs, (P2, Py), using the fixed R-linear bases.

Finally, the homomorphisms from P; to P, we get by considering

o0 (488)- ().

= [612]

62A(3)€1

= {lew2]}
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for which we fix the R-linear basis
(h1*) == {[3]}.

Via the canonical isomorphism from €2A(3)€1 to Hompgs, (P1, P2), it is mapped to the fixed R-linear basis

) = (

o o O
S = O
w O =
N———

of Hompgs, (P1, P2), using the fixed R-linear bases.
The operating matrices can be found in the file main_S4_loc3, the homomorphisms in Homs_S4_loc3.
They can e.g. be used to check the RSy-linearity of the maps between Py, P», P3 and P, derived above.

The representations, i.e. the maps sending group elements to operating matrices, on P, P5, P; and P,
are denoted rhoP1, rhoP2, rhoP3, rhoP4, respectively.

E.g. for the operating matrices on P, call
rhoP1(S4P!sigma) ;

for an element sigma of Sy. Analogously for P,, P3 and Pjy.

To check that the matrices found above represent RS,-linear maps between the respective projective
modules, follow these steps:

load main_S4_loc3;
load Homs_S4_loc3;

[rhoP1(sigma)*Hom_P1P1[i] eq Hom_P1P1[i]*rhoP1(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}, i in [1..2]];
[rhoP2(sigma)*Hom_P2P2[i] eq Hom_P2P2[i]*rhoP2(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}, i in [1..2]];

[rhoP1(sigma)*Hom_P1P2[i] eq Hom_P1P2[i]*rhoP2(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}, i in [1..1]];
[rhoP2(sigma)*Hom_P2P1[i] eq Hom_P2P1[i]*rhoP1(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}, i in [1..1]];

[rhoP3(sigma)*Hom_P3P3[i] eq Hom_P3P3[i]*rhoP3(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}, i in [1..1]];
[rhoP4(sigma)+*Hom_P4P4[i] eq Hom_P4P4[i]*rhoP4(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}, i in [1..1]];

Remark 65 Let S(1:1:1') be the alternating Specht module of A(z). Then we get the isomorphisms of
projective modules of A3

p = SGLLY @ pyoand Py = SOLLD g py .

Therefore, by applying Remark 176, we can reduce our problem to the cases P, ® P;, P ® P; and P3® Ps.
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4.1.2 The tensor product P, ® P,

Lemma 66 Let E be the embedding tP, ® P, — Py ® Py, and E be the embedding Py @ P, — P ® Py.
We have a commutative diagram of Z3)Ss-linear maps

B

P ?tP1 ~ P, & P?
E Q e}
PP A P @ P2
p Q ¢
B

Recall that R = Z3).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

We have to show local invertibility and RS,-linearity of the maps A, B, and B, the RSy-linearity of E, E,
C and C, and the commutativity of the diagram. The functions and operating matrices necessary to prove
the local invertibility, the RS4-linearity and the commutativity can be found in the file main_S4_loc3,
the matrices for this diagram in the file Diagram_S4_loc3_P1oP1 .

The embedding E is defined as the Kronecker product of the embedding 41 : tP; — P; and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding F is defined
as the Kronecker product of idp, and the embedding i; : tP; — Pj.

The representations, i.e. the maps sending group elements to operating matrices, on Py, P,, P5, P3 are
denoted rhoP1, rhoP2, rhoP3, rhoP4, respectively. The representations on tPy, tFPs, tP3, tPy are denoted
rhorP1, rhorP2, rhorP3, rhorP4, respectively.

The representations on P} ® P, tP; ® P, P| ® tP; are denoted op_plopl, op_rplopl, op_plorpi,
respectively. The operating matrix of a group element on such a tensor product is defined as the tensor
product of the operating matrices on the tensor factors.

For example, for the operating matrices on P; ® P; call
op_plopl(S4P!sigma) ;

for an element sigma of Sy. The other maps work the same way.

The representation on the direct sum Pl651 P P2692 is denoted op_proj_sum_pilpl. The operating matrix
of a group element is defined as the block diagonal matrix containing the operating matrices of the
summands. The maps A, B, C, E are denoted A, B1, C1, E1, respectively; the maps B, C, E are denoted
B2, C2, E2, respectively.
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To verify the Lemma, follow these steps:

load "main_S4_loc3";

load "Diagram_S4_loc3_PloP1";
[rhorP1(sigma)*il eq il*rhoPi(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];

E1l
E2

KroneckerProduct(il,MatrixRing(Rationals(),3)!1);
KroneckerProduct (MatrixRing(Rationals(),3)!1,i1);

[op_rplopi(sigma)*El eq El*op_plopi(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];
[op_plorpi(sigma)*E2 eq E2*op_plopl(sigma):sigma in {S4P!(1,2),S4P!(1,2,3,4)}];

//commutativity:
E2%A eq B2x%C2;
E1*A eq B1xC1;

//RSs-linearity:
[op_plopl(sigma)*A eq A*op_plpl_sum(sigma):sigma in {S4P!(1,2),S4P!(1,2,3,4)}];
[op_rplopi(sigma)*Bl eq Bl*op_plpl_sum(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}]1;
[op_plorpil(sigma)*B2 eq B2*op_plpl_sum(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];
[op_plpl_sum(sigma)*C1l eq Cl*op_plpl_sum(sigma):sigma in {S4P!(1,2),S4P!(1,2,3,4)}];
[op_plpl_sum(sigma)*C2 eq C2*op_plpl_sum(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];

//local invertibility; loc_inv see "main_S4_loc3"
loc_inv(4,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 67 Using Magma, we can verify

1%

C
Coker( o ) = Di®D Do,

Q2

Coker(C)

Il

Coker(C) = Dy ® P

I
e

with Loewy layers already known.

4.1.3 The tensor product P, ® P;

Lemma 68 Let E be the embedding tP; @ Ps — P; ® Ps, and E be the embedding P, ® tPs — P; ® Ps.

We have a commutative diagram of Z3)Ss-linear maps

B

P @thPy = Py @ Pf*
: O :

A @2
P ® P = Ps ¢ Py
[ o |
tfﬁ,@>fﬁ = Ps @)fﬁ
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with A, B, B isomorphisms, and the describing matrices

The matrices C' and C' being block diagonal matrices, with blocks of the form id and 3 - id, confirms the
expected result, shown in Remark 163, for P3 belongs to a defect-0 block.

Recall that R = Z3).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RS4-linearity and
the commutativity can be found in the file main_S4_loc3, the matrices for this diagram in the file
Diagram_S4_loc3_P1oP3.

The maps and matrices are denoted analogously to those for P, ® P, see proof of Lemma 66 .

To verify the Lemma, follow these steps:

load main_S4_loc3;
load "Diagram_S4_loc3_P1oP3";

[rhorP1(sigma)*il eq il*rhoP1(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];
[rhorP3(sigma)*i3 eq i3*rhoP3(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];

E1l
E2

KroneckerProduct(il,MatrixRing(Rationals(),3)!1);
KroneckerProduct (MatrixRing(Rationals(),3)!1,13);

[op_rplop3(sigma)*El eq El*op_plop3(sigma):sigma in {S4P!(1,2),S4P!(1,2,3,4)}];
[op_plorp3(sigma)*E2 eq E2*op_plop3(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];

//commutativity:
E2*A eq B2xC2;
E1*A eq B1xC1;

//RSs-linearity:
[op_plop3(sigma)*A eq A*op_plp3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_rplop3(sigma)*Bl eq Bl*op_plp3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_plorp3(sigma)*B2 eq B2*op_plp3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}]1;
[op_plp3_sum(sigma)*Cl eq Cl*op_plp3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}]1;
[op_plp3_sum(sigma)*C2 eq C2*op_plp3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

//local invertibility; loc_inv see "main_S4_loc3"
loc_inv(A4,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 69 Using Magma, we can verify

1%

C _
Coker(l & ]) D1 ® D3 = D ® P; = Dy ~ P,

Coker(C) ~ P®Dy = D3®Dy®Dy = Psd PPy,

Coker(C) ~ Di®P; Dy = Py,

1

1%

with Loewy layers already known.
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4.1.4 The tensor product P53 ® P;

Lemma 70 Let E be the embedding tPs ® P3 — P3® P3, and E be the embedding P3 @ tP3; — P3® Ps.

We have a commutative diagram of Z3)Ss-linear maps

f% @3tf§ E Ié @3}% €>f2
. O :
P @ Ps f P, ®Ps® Py
10
tf%%8>fﬁ f }E €5f% €5fﬁ
with A, B, B isomorphisms, and the describing matrices
3 . . 3 .
C=|.3 .|, C=|. 3
3 3

The matrices C' and C being block diagonal matrices, with blocks of the form 3-id, confirms the expected
result, shown in Remark 164, for P; belongs to a defect-0 block.

Recall that R = Z3).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RS4-linearity and
the commutativity can be found in the file main_S4_loc3, the matrices for this diagram in the file
Diagram_S4_loc3_P3oP3.

The maps and matrices are denoted analogously to those for P; ® P, see proof of Lemma 66 .

To verify the Lemma, follow these steps:

load "main_S4_loc3";

load "Diagram_S4_loc3_P3oP3";

[rhorP3(sigma)*i3 eq i3*rhoP3(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];

E1l := KroneckerProduct(i3,MatrixRing(Rationals(),3)!1);
E2 KroneckerProduct(MatrixRing(Rationals(),3)!1,i3);

[op_rp3op3(sigma)*El eq El*op_p3op3(sigma):sigma in {S4P!(1,2),S4P!(1,2,3,4)}];
[op_p3orp3(sigma)*E2 eq E2*op_p3op3(sigma):sigma in {S4P!(1,2),54P!(1,2,3,4)}];

//commutativity:
E2*A eq B2xC2;
E1*A eq B1xC1;

//RS4-linearity:
[op_p3op3(sigma)*A eq A*op_p3p3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_rp3op3(sigma)*Bl eq Bl*op_p3p3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_p3orp3(sigma)*B2 eq B2*op_p3p3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
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[op_p3p3_sum(sigma)*Cl eq Cl*op_p3p3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_p3p3_sum(sigma)*C2 eq C2xop_p3p3_sum(sigma): sigma in {S4P!(1,2), S4P!(1,2,3,4)}]1;

//local invertibility; loc_inv see "main_S4_loc3"
loc_inv(4A,3);

loc_inv(B1,3);
loc_inv(B2,3);

Remark 71 Using Magma, we can verify

Coker(

C - L
& ]) >~ Coker(C) = Coker(C) = D3 ® D3 = P P

1

pg@DgEBD4 = ]52@]53@1547
with known Loewy layers.
Remark 72 Consider the surjective R-algebra morphism

@ : RS, —» RSg, (1,2) — (1,2)
(1,2,3,4) — (1,3).

Since
S; < Sy £, S
(1,2) —  (1,2) — (1,2
(1,2,3,4) — (1,3)

1
(1,3) — (1,3) —  (1,3),

the map ¢ restricts to the identity on RSs. Since P; and P, over RS, are obtainable by ‘“restricting”
indecomposable projective modules over RS3 along ¢ , their behaviour with respect to the tensor product
parallels the behaviour of the projective indecomposable RS3-modules.

RSy

R R R R R R

3R R4—" R R R| |R R R

RS defect-0 block defect-0 block

As a consequence, the Cartan matrices look very similar:

2 1
CR33:<1 2)7 CRS4:

S O =N
S O N =
o = O O
_ o O O

4.2 The Localization Z(Q)S4

In this section, we will meet an indecomposable summand of a tensor product of two simple modules that
is neither simple nor projective nor Specht. The corresponding canonical presentation does not simplify
as far as it does in the other examples over Z)Sy ; cf. Section 4.2.3.
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4.2.1 Idempotents and projectives

Write
R = Z(g) .
Definition 73 The localization of A at (2) is given by
C11 C12 C13 dyy di2 dy3
A = ai1,b11, | Ca1C22Ca3 |, | doy doo d ,(611 612)
@ {( 1, (Cgl C32 ng) (dgi d;; dig) €21 €22 ) |

€31 =4 C32 =4 d31 =4d32 =40,

a1l —c33 =g byy —d33 =4 0,

c11 =4di1, c12=4d12, c21 =4do1, C22 =4doo,

€13 =2 d13, C23 =2 da3, €33 =2 d33,

c31 =g d31, c32 =g d32,

c11 +di1 =g 2e11, ci2 +di2 =g 2e12, co1 + doy =g 2ea1,

Coo + dog =g 2e22}

3x3 3x3 2x2
- Z(2)XZ(2)XZ(2X) XZ(2><) XZ(ZX)

R x R x R3*3 x R3%3 x R2x2

Letting
0 00 0 00
0 0
er:=(L1L,[ 0 0 0|, 000 ,<00>),
0 0 1 0 0 1
0 0 1 0 0
e2:=(0,0,] 0 0 0 [,] 0 0 O ’<oo>)’
0 00 0 00
0 00 0 00
0 0
es:=(0,0,] 0 1 0 [,] 0 1 0 ’(o 1>),
0 00 0 00
we have an orthogonal deomposition
1A(2) = e1+ey+es

into idempotents of A(y). They fall into the equivalence classes {e1}, {e2, e3}.
We choose e and ey as representatives of the equivalence classes of the idempotents of Ay).
Remark 74 Let

E = {(a,b,c,d) e RxRXRXR|a—c=gb—d=40,c=2d}

F = {(a,b,c) ERXRXxR|a=4b,a+b=g2c}.

We have the following isomorphisms of R-orders.

EF — 61A(2)€1

00 0 00 0 0
(a,b,c,d) — (a,b,[ 0 0 0 |, 0 0 0 |, )
00
0 0 ¢ 0 0 d
F—>€2A(2)€2
a 0 0 b 0 0 0
C
(a,b,c) — (0,0, 0o 0o 0o [,] 0 0 0 [, )
00
00 0 0 0 0
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Lemma 75 We have an orthogonal decomposition 14, = €1+ e2 + ez into primitive idempotents.

Proof. We have to show primitivity of e; and e,.

First we show that e; and 0 are the only idempotents of e;Az)e; . By Remark 74 it remains to show
that (0,0,0,0) and (1,1,1,1) are the only idempotents of E. Let (a,b,c,d) € E be an idempotent. Since
Z9) is local, Corollary 134 gives a,b, ¢, d € {0,1}.

Since this is a finite problem in F, we can use Magma [3] to list all possible pairs (a,b,¢,d) € Rx Rx RxR
with a, b, ¢, d € {0, 1} and to test the ties defining F in a last step. To do so, we call

i := {<a,b,c,d> : a,b,c,d in {0,1}| (a-c mod 8) eq (b-d mod 8)
and (b-d mod 4) eq O and (c mod 2 eq d mod 4)};

and we get the following result.

> i
{<0, 0, 0, 0>, <1, 1, 1, 1>}

Now we show that e; and 0 are the only idempotents of eaA(zje2. By Remark 74 it remains to show
that (0,0,0) and (1,1,1) are the only idempotents of F. Let (a,b,c) € I be an idempotent. Since Z )
is local, Corollary 134 gives a, b, c € {0,1}.

Since this is a finite problem in F', we can use Magma [3] to list all possible pairs (a,b,¢) € R x R x R
with a, b, ¢ € {0, 1} and to test the ties defining E in a last step. To do so, we call

i := {<a,b,c> : a,b,c in {0,1}]|
(a mod 4) eq (b mod 4) and (at+b mod 8) eq (2*c mod 8)};

and we get the following result.

> i
{ <0, 0, 0>, <1, 1, 1>}

Therefore, using Lemma 136, the idempotents e; and es are primitive. O

Corollary 76 Up to isomorphism, we have the Peirce decomposition

(61A(2)€1)1><1 (€1A(2)62)1X2 >

Ay = e1A(a) ® (e2l(2))®* =
(2) Ze1l(g) @ (e2(2)) ((621\(2)61)2“ (e2A(2)e2)?*?

Lemma 77 We have the radicals

Aer) = (@%@ (000 )5 (000 )5 (00} nesn
t(erAz)er) ((2) x (2) x <00(2)> x (00(2)> x <00>) e1A)er,

(2)00 (2)00
t(eaAzye2) = (0x0x < 8 88> X ( 8 88) X (((2))8>) N eaAzyes .

Proof. This follows by Proposition 222; cf. Remark 208. O

Lemma 78 We have the Jacobson radical

(2) (2) R (2) (2) R
= (2) (2)
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Proof. This follows by Lemma 77 and Proposition 217, usable by Remark 208; cf. also Corollary 76. [

Definition 79 Let P := e1-A(2), P2 := ea-A(g) = e3-A(2) represent the isoclasses of the indecomposable
projective modules of A(s); cf. Remark 208, Lemma 220. So,

P {( b<880><888> 00 | biy — daz =4 0
1 = a11,011, ) 7( ) a1p — €33 =8 011 —a3zz3 =4 U,
€31 €32 €33 d31 d3z d33 00

c31 =g d31, c32 =g d32, €33 =2 d33, €31 =4 C32 =4 d31 =4 d32 =40 ¢,

€11 €12 €13 dy1 dia di3 e
0,0, 0 00 ),[ 0 0 o],(% %
{( (000><ooo>(00>)|

c11 =4 di1, c12 =4 di2, c13 =2 di3, c11 +d11 =5 2e11, ci12 +di2 =3 2612} ,

e

where all entries are to be read as running through R.

We abbreviate

a1, b, ( ), (ds1 dsz dss)| (b<888)<888)<00))p
a1, bin, (cs1 32 c33), (da1 ds2 dss = (a11,b11, ; ; €h
€31 €32 €33 ds1 ds2 dgs 00
€11 €12 €13 di2 dip dy3 €11 €12
[(cu ci2 c13), (di dia diz), (en 612)} = (0,07< 8 8 8 );( 8 8 8 >7( 0 0 )) €r;.

So we have P| «— S g 84 g §21.1) g §B1) and Py — S@L1 g gB3.1) g 5(2.2),

Using Lemma 78, we may fix the R-linear bases

([1,1,(0 0 1),(0 0 1)], ([(100),(100),(10)
[0,2,(0 0 0),(0 0 2)], [(010),(010),(01)]
[0,0,(4 0 0),(4 00)], [(001),(00 1),(00)]
[0,0,(0 4 0),(0 4 0)], [(000),(4 00),(20)]
[0,0,(0 0 4),(0 0 4)], [(000),(040),(02)]
[0,0,(0 0 0),(8 00)], [(000),(002),(00)]
[0,0,(0 8 0),(0 8 0)], [(000),(000),(4 0)]
[0,0,(0 0 0),(0 08)]) of P, [(000),(000),(04)]) of P,
(12,0,(0 0 2),(0 0 0)], (1(2 0 0),(2 0 0),(2 0)]
[0,2,(0 0 0),(0 0 2)], [(020),(020),(0 2)]
[0,0,(4 0 0),(4 0 0)], [(001),(001),(00)]
[0,0,(0 4 0),(0 4 0)], [(000),(400),(20)]
[0,0,(0 0 4),(0 0 4)], [(000),(040),(02)]
[0,0,(0 0 0),(8 00)], [(000),(002),(00)]
[0,0,(0 8 0),(0 8 0)], [(000),(000),(4 0)]
[0,0,(0 0 0),(008)]) ofthy, [(000),(000),(04)]) ofths.
Remark 80 Using Magma, we can verify that the projective module P; has the Loewy layers
D,
Dy Dy
Dy Dy
D,y
and P, has the Loewy layers
Dy
Dy D,
Dy

Dy
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Remark 81 Recall that

000 000
€1A(2)€1 = {(a,b,<882>7<882)7(88))‘CEQd,a—CEgb—dE40}

=: [a,b,c,d]
= {la,b,¢,d] | c=2d, a—c=sb—d=40}.

For this set we fix the R-linear basis
(ex, by', k4, h3') = {[1,1,1,1], [0,2,0,2], [0,0,4,4], [0,0,0,8] } .

Via the canonical isomorphism from e;Azye; to Hompgs, (P1, Py), it is mapped to the fixed R-linear basis

1
10000000 010000O0O0
010000O00O0 02000000
001000O00O0 00000100
000100O00O0 0000O0OO0OT10O0
11 11 11 ——

(1P1’h1’h2’h3)'_<00001000’ 00000O0OO0T1 )
00000100 00000200
0000O0OO0OT10O0 00000020
00000O0O0T1 0000O0O0OO02
0000O1O0O0O0 00000O0OO0T1
00000O0O0T1 0000O0O0OO?2
00400000 00000400
00040000 0000004())
00004000’ 0000O0OOA“4
00000400 00000800
00000040 00000080
0000O0OOA4 0000O0O0O0S8

of Hompgs, (P1, P1), using the fixed R-linear basis of P; given in Definition 79.
A R-linear basis of

A { 600).(000).(¢0 d, c+d }

easNioyes = (00 000 ( ))’024 c+d=g2e

@ " \000/ " \00oo/ \00 ’
=:[e, d, €]

= {le,d,e] | c=4d, c+d=g2e}
can be fixed as
(ez, K32, h3%) := ([1,1,1], [0,4,2], [0,0,4] ).

Via the canonical isomorphism from esA(g)ea to Homgs, (P2, P»), it is mapped to the R-linear basis

V)

100000O00O0 000100 O O
010000O00O 000010 O O
001000O00O 000002 O O
92 1991 _ (| 00010000 000400-1 0

(l’hl’h2)'_<00001000’ 000040 0-1]°
000001O00O0 000004 0 O
0000O0O0O1O0 000000 2 O
00000O0O0T1 000000 O 2
00000010
00000O0O01
00000O0OO0OO
00000020)
00000002
00000O0O0O
00000040
00000O0O0H4

of Hompgs, (P2, P2), using the fixed R-linear basis of P, like above.

Moreover, we have that

eaNger = {(0’07 <§§§> ’ <§§§) ’ (88))
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Therefore an R-linear basis is given by

Via the canonical isomorphism from esA(g)e; to Homgs, (P1, P2), it is mapped to

(h32, nd?) = (

Finally,

€1 A(2)62

Therefore an R-linear basis

Via the canonical isomorphism from e;A(yez to Hompgg, (Pe, P1), it is mapped to

(n3t, m3h) = (

The operating matrices necessary to prove the RS4-linearity can be found in the file

is

(i&27 E%Q) = { [171]a [0’2} } :

OO OO O ROO
QOO O KR OO

S OO RO OOO
OO NO O OO

0

ONO O OO OO

000
),(000
d00

0
1
0
0
0
0
0
4

0
0

0
0

-1 0
0 -1

0

0 )

-1 0
0 -1

0

0

[=NeleloNoNoNo Nl
[l il oo o Nl
[ el NN lNo Nl
OOk OONOO
OBk OO NO OO
WO O OO N

given by

{le,d] | c=4d=40, c=sd}.

=:[c,d]

(8%, 51) o=

[eNeNololoNoNeNel
[l Mol oMol

0

[cleNeNoloBolS
[eNeNoNoNoNell ")

0

[=NeNeNoll ==l
SO OO NO OO

0

{[4.4], [0,8] }.

OO NOOOO
[Nl =N elole]

0

0

[eNeNololoeNoNe el
[l ool No N Nol
[cleNololeoNoleNel
[N elNoNoloNoNeNol
[eleoleoleNol=Nel
S OO KOO
OO KR OO

0

main_S4_loc2, the homomorphisms in the file Homs_S4_loc2 .

00
00
-1 0
0 -1

O O N O

[=3 VEeNel Nl

0

o N OO

):

)a(88>)‘054d540,058d}

93

The representations, i.e. the maps sending group elements to operating matrices, on P;, P5 are denoted

rhoP1, rhoP2, respectively.

For the operating matrices on P; , call

rhoP1(S4P!sigma) ;

for an element sigma of S;. The operating matrices on P, are called analogous.

To check that the matrices found above represent RSs-linear maps between the respective projective

modules, follow these steps:

load main_S4_loc2;

load Homs_S4_loc2;

[rhoP1(sigma)*Hom_P1P1[i] eq Hom_P1P1[i]*rhoP1(sigma):
[rhoP2(sigma)*Hom_P2P2[i] eq Hom_P2P2[i]*rhoP2(sigma):

[rhoP1(sigma)*Hom_P1P2[i] eq Hom_P1P2[i]*rhoP2(sigma):
[rhoP2(sigma)*Hom_P2P1[i] eq Hom_P2P1[i]*rhoP1(sigma):

A file on how to construct those isomorphisms can be found in the digital appendix and is

generate_Homs_S4_loc2.

sigma

sigma

sigma

sigma

in

in

in

in

{S4pP!(1,2), S4P!(1,2,3,4)}, i
{S4pP!(1,2), S4P!(1,2,3,4)}, i

{S4pP!(1,2), S4P!(1,2,3,4)}, i
{S4P!(1,2), S4P!(1,2,3,4)}, i

in

in

in

in

1.
[1.

[1.
[1.

.411;
.311;

.211;
.211;

named
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4.2.2 The tensor product P, ® P;

Lemma 82 Let E be the embedding tP, ® P, — Py ® Py, and E be the embedding Py @ P, — P ® Py.

We have a commutative diagram of Z3)S4-linear maps

ool

P ®tP = PP g PPt
O
P ®P = P&t @ POt
: O :
tP1U®P1 f PfB4@P2@4
with A, B, B isomorphisms, and the describing matrices
it L
T S,
—h%l...l... B B .
S 1.
L 1] 1

Recall that R = Zy).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

We have to show local invertibility and RS,-linearity of the maps A, B, and B, the RSy-linearity of E, E,
C and C, and the commutativity of the diagram. The functions and operating matrices necessary to prove
the local invertibility, the RS4-linearity and the commutativity can be found in the file main_S4_loc2,

the matrices for this diagram in the file Diagram_S4_loc2_P1oP1 .

The embedding F is defined as the Kronecker product of the embedding i1 : tP; — P; and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding FE is defined
as the Kronecker product of idp, and the embedding ¢; : tP; — P;.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P, are denoted
rhoP1, rhoP2, respectively. The representations on tPj, tP, are denoted rhorP1, rhorP2, respectively.

The representations on P; ® Py, tP; ® P, P, ® tP; are denoted op_plopl, op_rplopl, op_plorpl re-
spectively. The operating matrix of a group element on such a tensor product is defined as the tensor
product of the operating matrices on the tensor factors.

For example, for the operating matrices on P; ® P; call
op_plop1(S4P!sigma) ;

for an element sigma of Sy. The other maps work the same way.

The representation on the direct sum P1694 P P§e4 is denoted op_proj_sum_plpl. The operating matrix

of a group element is defined as the block diagonal matrix containing the operating matrices of the
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summands. The maps A, B, C, E are denoted A, B1, C1, E1, respectively; the maps B, C, E are denoted
B2, C2, E2, respectively.

To verify the Lemma, follow these steps:

load "main_S4_loc2";

load "Diagram_S4_loc2_PloP1";
[rhorP1(sigma)*il eq il*rhoP1(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

El :
E2

KroneckerProduct(il,MatrixRing(Rationals(),8)!1);
KroneckerProduct (MatrixRing(Rationals(),8)!1,i1);

[op_rplopl(sigma)*El eq Elxop_plopl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_plorpl(sigma)*E2 eq E2*op_plopl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

//commutativity
El1*A eq B1xC1;
E2*A eq B2xC2;

//RSs-linearity
[op_plopl(sigma)*A eq A*op_proj_sum_plpl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_rplopl(sigma)*B1l eq Bl*op_proj_sum_plpl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_plorpl(sigma)*B2 eq B2xop_proj_sum_plpl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_proj_sum_plpi(sigma)*Cl eq Cl*op_proj_sum_plpl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_proj_sum_plpl(sigma)*C2 eq C2*op_proj_sum_plpl(sigma):sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

//local invertibility; loc_inv see "main_S4_loc2"
loc_inv(A,2);

loc_inv(B1,2);
loc_inv(B2,2);

Remark 83 Using Magma, we can verify
C
Coker( & ) & DD = Dy,

Coker(C) >~ Coker(C) = Dy®@P = Pp.

with Loewy layers already known.

4.2.3 The tensor product P, ® P

Lemma 84 Let E be the embedding tPo @ P, — P, ® Ps, and E be the embedding Po @tPy — Po® Ps.
We have a commutative diagram of Z(3)S4-linear maps

B

P, ® P, = P®3 g pPPS
B Q ¢

Py ® Py < PP @ PF°
5 Q ¢

tP,® Py B P g pos
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with A, B, B isomorphisms, and the describing matrices

2 2 T
B T DR R R,
1l S 17 S
2. A .2
Ci= 1.1 I VN
1 h3t. .. .1
1. N S
i 1] L : .

Recall that R = Zy).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RS4-linearity and
the commutativity can be found in the file main_S4_loc2, the matrices for this diagram in the file
Diagram_S4_loc2_P20P2.

The maps and matrices are denoted analogously to those for P; ® P, see proof of Lemma 82 .

To verify the Lemma, follow these steps:

load "main_S4_loc2";

load "Diagram_S4_loc2_P20P2";

[rhorP2(sigma)*i2 eq i2*rhoP2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

E1l
E2 :

KroneckerProduct(i2,MatrixRing(Rationals(),8)!1);
KroneckerProduct (MatrixRing(Rationals(),8)!1,i2);

[op_rp2op2(sigma)*El eq El*op_p2op2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_p2orp2(sigma)*E2 eq E2*op_p2op2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

//commutativity
E1*4 eq B1xC1;
E2*A eq B2xC2;

//RS4s-linearity
[op_p2op2(sigma)*A eq A*op_proj_sum_p2p2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_rp2op2(sigma)*B1l eq Bl*op_proj_sum_p2p2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}]1;
[op_p2orp2(sigma)*B2 eq B2*op_proj_sum_p2p2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_proj_sum_p2p2(sigma)*Cl eq Cl¥op_proj_sum_p2p2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_proj_sum_p2p2(sigma)*C2 eq C2*op_proj_sum_p2p2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

//local invertibility; loc_inv see "main_S4_loc2"
loc_inv(A,2);
loc_inv(B1,2);
loc_inv(B2,2);

Remark 85 Using Magma, we can verify

C
Coker(lé]) > Do®Dy = Do®X

Coker(C) = COkeI‘(C) = D2 & pQ = Pl D PQ s
with X a module of rank 2 and with the following Loewy layers.

D,
D,
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As operating matrices on X we get

4.2.4 The tensor product P, ® P

Lemma 86 Let E be the embedding tP ® P, — Py ® Ps, and E be the embedding Py @tPo — P ® Ps.

We have a commutative diagram of Z9)S4-linear maps

B

Ptk = Iﬁ$2 b f%?ﬁ
: O ;
PL®P, - PE? g PP
G
t]jfzg fﬁ E fﬁEQ 63})@6
with A, B, B isomorphisms, and the describing matrices
1N
oy
C:= g
! 2T
N 1..
1.
.1

Recall that R = Zy).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RS4-linearity and
the commutativity can be found in the file main_S4_loc2, the matrices for this diagram in the file
Diagram_S3_loc2_P1oP2.

The maps and matrices are denoted analogously to those for P; ® P, see proof of Lemma 82.

To verify the Lemma, follow these steps:

load "main_S4_loc2";

load "Diagram_S4_loc2_P1loP2";

[rhorP1(sigma)*il eq il*rhoP1(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[rhorP2(sigma)*i2 eq i2*rhoP2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

El := KroneckerProduct(il,MatrixRing(Rationals(),8)!1);
E2 KroneckerProduct(MatrixRing(Rationals(),8)!1,i2);

[op_rplop2(sigma)*El eq El*op_plop2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_plorp2(sigma)*E2 eq E2*op_plop2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
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//commutativity
E1*A4 eq B1xC1;
E2*A eq B2xC2;

//RS4-linearity
[op_plop2(sigma)*A eq A*op_proj_sum_plp2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}]1;
[op_rplop2(sigma)*B1l eq Bl*op_proj_sum_plp2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_plorp2(sigma)*B2 eq B2*op_proj_sum_plp2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_proj_sum_plp2(sigma)*C1 eq Cl*op_proj_sum_plp2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];
[op_proj_sum_plp2(sigma)*C2 eq C2*op_proj_sum_plp2(sigma) : sigma in {S4P!(1,2), S4P!(1,2,3,4)}];

//local invertibility; loc_inv see "main_S4_loc2"
loc_inv(A,2);
loc_inv(B1,2);
loc_inv(B2,2);

Remark 87 Using Magma, we can verify

I

C
Coker( C’ ) = D1 & DQ D2 s

Coker(C)

I

DyoP = Py,

Coker(C)

1%

Pl Dy = P& Py,

with Loewy layers already known.



Chapter 5

On localizations of Z5Ss

5.1 The Localization Z3)S;

Two blocks of Z3)S5 are Morita-equivalent to Z3)Ss, but the behaviour of the tensor product is not
parallel; cf. e.g. Remark 105.

Let
R = Z(g) .

5.1.1 Idempotents and projectives

Definition 88 Let

€11 €12 €13 C14 dq1 d12 dis dia €11 €12 €13 €14 €15

C21 €22 C23 C24 do1 dog das day €21 €22 €23 €24 €25

A = {(allv bit, | 2 ! €31 €32 €33 €34 €35

31 C32C33C34 | ° | d3q d3a das d ’ ’

Ca1 Ca2 C43 Ca4 31 ©32 €33 €34 €41 €42 €43 €44 €45

3 41 da2 dy3 dyg €51 €52 €53 €54 €55
fi1 fi2 fas fia fis g11 912 913 914 915 J16
f21 foo fo3 fou fos5 921 922 923 G24 925 G26

fa1 f32 fa3 faa f3s5 931 932 933 934 935 936 |

Far faz fas faa f > | 941 942 943 Ga4 945 J46
41 /42 /43 J44 J45 951 952 953 954 955 956
f51 f52 f53 f5a f55 ge1 962 963 Je4 Jes Jee

a11 =3 f11, b1 =3 e11,
C11 =3 €22, C12 =3 €23, C13 =3 €24, Ci4 =3 €25,
C21 =3 €32, (22 =3 €33, C23 =3 €34, C24 =3 €35,
C31 =3 €42, (32 =3 €43, (33 =3 €44, (34 =3 €45,
C41 =3 €52, C42 =3 €53, C43 =3 €54, C44 =3 €55,
di1 =3 fa2, di2 =3 fo3, di3 =3 fo1, di14 =3 fo5,
da1 =3 f32, doz =3 f33, doz =3 f31, d2a =3 f35,
d31 =3 fao, d32 =3 faz, d3z =3 faa, d34 =3 fas,
dy1 =3 fs2, dao =3 fs53, diaz =3 f54, daa =3 f55,
e21 =3 €31 =3 €41 =3 51 =3 0, fo1 =3 f31 =3 fa1 =3 f51 =3 0}
C  Zg) x L X Z‘(*?’X)‘l X Z‘g)‘* X 2555 X Z?3X)5 X ng)ﬁ
— Rx R X R4><4 % R4><4 % R5><5 % R5><5 X RGXG .

The Z3)-order A3y is the image of Z3)Ss under the Wedderburn isomorphism of Remark 241.

The tuple entries belong to the Specht modules S(15), S06) §2LLL g1 g2:2.1)  G(3.2) apd §G.L1) ip
the order chosen above.
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Consider the following idempotents of As).

(evleslenlenlaien)
QOO OoOO
[eslenlen]enjenian]
OO OOoOO
[esleslen]evjenies]
[eslesles]ev]evies)

SOOOO
SOOOO
SOOOoOO
SOOOO
—OO0O0O

SOOOO
SOOOO
SOOOO
SOOOO
SOOOO

[es]enlenlas]
[esjenjanlan)
[esjenjanlan)
(esles)enlan)

[esjen)enlan)
[esjenleslan)
[eslenleslan)
OOoOOoO

el 1= (1,0, (

— — —
OO OO ODO OOoooCoC0o
SOOI OTO OO OO oo0o
SOOI OO OO oooo0o
SOOI OO OO oo0o
SOOI OO OO oo0o
SOOI OO OO Ooo0o
~_ _ _—

~/— -~ /-~
[esienlenlenlas) [es)enlenlen]an] [es)enlenlenlen)
[eslenlenlenlen) [es)evlenlenan] [es)enlenlen]lan)
[ev]es]eslenlen) [esleslenlevlen] [es]eslenlelen)
[ev]les]eslenlen) O—HOOO [es]eslenlevlean]
[ev]es]enlenlen) [eslenlenlevjen] [es]enlenlenlean]
N~~——— SN~~——— SN————
— — —
[ev]en]enlenlan) [eslenlenlenjen] [ev]enlenlenlean]
[ev]en)enlenlan) [eslenlenlevlan] [es]enlenlenlean]
[evjen)enlenlan) [eslenlenlevlan] [es]enlenlenlen]
[evlenlenlenlan) [es}enlenlenlan] O—HOOO
—OoOOoOoOOo [eslenlenenlan) [es]enlenlenlan)
o — —
[elen)enlan) [enlenlenlan] [eslen)enlan)
[eslen)anlan] [en)enlenlan] [en)enlenlan]
[eslen)anlan] [es)enlenlan] [en)en)anlan]
[eslen)anian] —OOoO [es)enanlan]
~—_ — ~_ ~—__ —
~/ / ~//
[es]en)anlan] SO oOoO ([es)enanlan]
[es)en)anlan] [es)enlenlan] ([es)enanlan]
[eslen)anlan] [es)evlenlan] ([es)enanlan]
[esen)enlan] OO O —AO0OoO
— =} =)
=) =) =3
~— ~~ ~—
I I I
™ ™ <
L (8] [\S]

[e=jerlen]enlenjen]
[e=jeslen]enlenjan]
[e=jeslen]elenjen]
[ejeslen]elenjan]
[e=jelen]elenjan]
—OoOOoOoOoOo

[eslen]enjenien]
[esles]enlenien]
[esles]enlevien]
[esles]enlevien]
[esles]evlevies]

SOOoOoO
SOOoOOO
SOOOO
SOOoOOoOO
SOOOO

SoOoo
SOooOo
SOoOOoOo
SOoOOoOo

[es]enjen]as}
[esjenjan)an)
[esjen)anlan)
[ejen)enlan)

es 1= (0,07 (

Remark 89 Let E:={(a,b) e RxR | a

5b}.

We have isomorphisms of R-orders

61/\(3)61

E —

62/\(3)62

(byen) — (0,@(

E —

[es]eslenleslenlan)
OO OoOOoO
OOOoOOOoO
OOOoOOoOOoO
OOOoOOoOOoO
OOOoOOoOOoO

SOOoOoOO
SOOoOoOO
SOOoOO
SOOoOO
SOOoOOO

S oooOo
S oooOo
S oooo
S oooOo

—
\njeslenlenlan)
L

[e>jenlenjen]
[e=jenlenjen]
[e=jenlenjen]
[e=jelenjen]

SOoOOoO
[evleslenlen]
[evleslenlen]
[eleslelen]

63/\(3)63

E —

64/\(3)64

E —

jeejerlenjerlanian]
jenjerlenjenlenian]
jenjenlenjerlanian]
jeejerlenjenjenian]
je=jerlenjen]enian]
je>jerlenjenjenien]

[eslenlenlanjan]
[esleslenlanjan)
[esleslenlenjan)
[esleslenlenjan]
[eslesleslejan)

OO OOoOO
OO OOO
SO OoOO

N
o @OOO
OO OOO

[evlenlenlen]
[evlenlenlan)
SOoOOoO
SOOoO

S Oooo
S ooo
S ooo

fococo
—
QO

(c11,€22) +—> (070,(
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Lemma 90 The idempotents ey, ea, €3, e4 and es are primitive.

They represent the equivalence classes of the primitive idempotents of A(s).

Proof. We have to show primitivity of e;. Primitivity of es, es and ey follows analogously.

To this end, we show that e; and 0 are the only idempotents of e;A(z)e; . By Remark 89 it remains to
show that (0,0) and (1,1) are the only idempotents of E. Let (a,b) € E be an idempotent. Since Zs) is
local, Corollary 134 gives a,b € {0, 1}.

Since this is a finite problem in F, we can use Magma [3] to list all possible pairs (a,b) € R x R with
a, b € {0, 1} and to test the ties defining F in a last step. To do so, we call
i := {<a,b> : a,b in {0,1}| (a mod 3) eq (b mod 3))};

and we get the following result.

> i
{ <0, 0>, <1, 1> }

Therefore, using Lemma 136, the idempotent e; is primitive.

Now we show primitivity of es.

To this end, we show that e5 and 0 are the only idempotents of esA(3)e5. By Remark 89 it suffices to
show that 0 and 1 are the only idempotents of R. Since Zs is local, this follows from Corollary 134.

Therefore, using Lemma 136, the idempotent e5 is primitive.
Finally, there exists an orthogonal decomposition

" "

l=e1+testestes+es+ey +estey+ey+e) +es+es+er+e

" "
5 tTes

into primitive idempotents, which fall into the equivalence classes

{61}7 {62}3 {6336376;/3,76;/3”}7 {647621562{562{,}7 {6576/536g36g/76/5”/}

Here €5, €4 and e}’ are obtained from es by “shifting along the main diagonal”. Similarly e}, e and e},

/ 1 " "
and also ey, e5, e5’ and ef"”. O

Corollary 91 Up to isomorphism, we have the Peirce decomposition

A = e1h(s) @ eshs) ™ @ eal(s) @ eal) ™ @ esA(5)®°
(e1hzyen)™ ! (e1A(gyes)™* 0 0 0
(63A(3)€1)4X1 (63A(3)63)4X4 0 0 0
= 0 0 (eaAzyea)t ! (eaA(z)eq)t™? 0
0 0 (ealzyex) ™t (eal(zyeq)™* 0
0 0 0 0 (€5A(3)€5)6X6
Lemma 92
Recall that R = Z3y. We have the following radicals.
t(elA(S)el): 000000
0000\ /0000\ (D950 (3)8888 000000
0000 0000 000000
e1(zyer N (3)x0x X x| 00000 x| 0 0000 |x
(3) 0000 0000 00000 00000 000000
0000 0000 00000 00000 000000
000000
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62

OOOoOOoOOoO
OOOoOOoOoO
OOOoOOOoO
OO OoOO
OOOOoOoOO
[esleslen]ev]evlen]

[eslesleslenjean]
[eslesleslevjean]
[esleslesleviean]
[ssleslen]evjean]
[esleslenlevjen)

[eseslesleslan)
OOoOOoOOoOOo
OOoOOoOOoOOoO
ODOoOOoOOO

—
MNOOoOOoOO
~

SOoOOoO
SOoOOoO
SOoOOO
SOOO

SOoOOoO
SOoOOoOO
SOoOOoO
SOOO

62/\(3)62 n (0><(3)>< (

t(eg A(3) 62)

t(e3A(3)e3)

[ejesleslenlanlan)
[e]esleslenlanlan)
[e]leslesleslenlan)
OO OoOOoOO
[ev]lesleslenlelan)
[ev]lesleslenlenlean]

SO OoOOoOO
SO OoOOO
SO OoOOoOO

—
SMNOOoO
N
SO ooo

[evjevlenienjen]
[evjevjenienjen]
[evjerlenienjen]
[evjerlenlenjen]
[evjerjenlenjen]

[elenlenjan]
[eenlenjan]
[erenlejan]

—
NOoOOO
N

SooOo
Sooo
SOooo
SOoOOoo

63A(3)63 n (OXOX (

t(64A(3) 64)

[eslenlen]enjenian]
[esleslen]evjenian]
[esleslen]evjenias]
[eslesles]ev]enias]
[eslesles]ev]evias]
[eslesles]ev]evies)

[esles]enjenien]
[ssles]enlevien]
[esles]evlevien]
[esles]evlenies]
[esles]ev]ev]es]

SO OoOOO
SO OoOOoOO
SO OoOOO

on)
SMNOOO
=
SO ooo

SOooo
Sooo
SOoOoo
SOoOooO

S OoOoO
S OoOoO
S OoOoO

—
NOoOOO
=

64/\(3)64 n (OXOX (

t(esAs)es)

[esjeslesleslenlan)
O OoOOoOOoOOoOO
O OOoOOoOOoO
[eseslesleslenlan)
SO OooO

—~
NOOOOO
=

SOOOoOO
SOOOO
SOOOO
SOOOO
SOOOO

SOOOO
SOOOO
SOOOO
SOOOO
SOOOO

SOooo
SOoOoOo
SOoOoOo
SOoOOoOo

SOoOoOo
Sooo
SOoOoOo
SOoOOoOo

65/\(3)65 N (OXOX (

O

€5 - A(3)

€4 - A(g) and P5

e3 - Ny, Py

ez - N3y, P3

e1- Ay, P

t(A@m) =
Proof. The first follows by Proposition 222; cf. Remark 208. The latter then follows by using Proposi-

tion 217 and Remark 208; cf. Corollary 91.
represent the isoclasses of indecomposable projective modules of A(s); cf. Remark 208, Lemma 220.

Altogether, we obtain the Jacobson radical

Definition 93 Let P;

SO OoOOoOO
SO OoOOoOO
SO OOoOO
SO OOoOO
[evjeslenlenlanien)
SOOoOOO

)

SOoOoOo

SOooOo

SOooo

[eslen}eslen)

[esjen)enlan)

fi1 fiz fis fia fis

)

00
00
00
00
00

[evjerlenienjen]
[evjerlenlenjen]
[evjevlenlenjen]

Sooo
SOooOo
SOoOoo
SOoOOoOo

[esjenlenlan)
[esjeslenlan)
[eslenleslan)
OOoOOoO

[

P =

I
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P3:{(o,o,(

5.1.

[e=jerleslenlejen]
SOOoOOoO
[e=jenlen]enianlan]
[e=jerlen]erlenlan]
[e=jerlenjenlenjan]
[e=jerlen]enlenlen]

)
O NOOO
=

<

S oo o
)

S oo o

N
N
OfOOO

—
O NOOO
N

SOOOO
SOOOO
SOOOO
SOOOO
SOOOO

di d12d13d14) (
3 fo3, dis
0000
0000
»1 0000 | >
0000

)

[evlevlevlen]
SOooo
SOoOoOo

)

3 foa, dia =3 fos }

3 faz, di2

307 dll

Jo1
P4:{(O,O, (

(evleslen]enlan)en)
(evleslenlenlas)en)
OO OoOO
OOOOoOOoOO
OOOoOoOOoOO
OO OOoOO

[es]jen}enlesjan)
[ev]es}ensleslan)
[ev]esleslenlen)
[es]en]eslenian)
[es]en]enlen)an)

jle}

O AOOoO
\8]
<

O NOOO
N8l
el

O NOOO
NSl
N

O AOOooO
(8]

o docoo
NS}

C11 €12 C13 C14
0 0 O
0 0 O
0 0 O

0
0
0

)

=3 €25

Ci4

3 €24,

C13

3 €23,

C12

=30, c11 =3 €22,

€21

)

where all entries are to be read as running through R.

We abbreviate

[au, (f11 fiz f13 fia f15)}

)

[esjenleslan)

SOoOOoOo

SOooOo

fi1 fiz f13 fia fis

Sooo

)

€11 €12 €13 €14 €15

[esjenjenlanjan)
[esjes}enlenjan)
[esjes}enlenjan)
[esjes}enlesjan)
[es]eslenlesjan)

OOoOOoO
OOoOOoO
SO O
SO O

SOoOoOo
SOoOoOo
SooOo
SOoOoOo

(an,O, (

[blh (611 €12 €13 €14 615)}

0 0 0 O
0 0 0 O
0 0 0 O
00 0 0

0
0
0
0

}

I

[(du diz dig dia), (fa1 fo2 foz foa fos)

[(011 C12 C13 Cl4)a(621 €22 €23 €24 625)}

))ea

[e=jenlenlelenjan]
[e=jenlenlelenjan]
[e=jenjenlenlenjan]
[e=jenjen]enlenjan]
[e=jesjen]enlenjan]
[e=jejenlelenjen]

[es]en]enlenjen)
[es]en]enlanian)
[ejenjenlanjan)
[ejes)eslenjan)
[esjesleslenjan)

0

S AOooOo
NS]
<

S oo Oo

e %000
NS]

=] ﬂooo
NS]

—
O NOOO
N8l

[esjenleslan)
[eslenlenlen)

00
00
00
00

00000\ /00000
0000N  F0000N 50000\ (00000
0000| {0000
0,0, : .1 00000 |,[00000 |,
0000 1\ 00bb 100000 ] | 00000
00000/ \00000

So we have P, — S @862 p, « 3 §6) ¢ 5221 p o« gA1) g gB32)

0
0
0

Py —— SGLLD g gR221) and p5 —— SGLY,

C11 C12 C13 C14
0 0 O
0 0 O
0 0 O

o

{(911 gi12 913 914 915 916)]
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Using Lemma 92, we may fix the following R-linear bases.

([L,(1 00 0 0)], ([3,(0 0 0 0 0)],
0,(30000), 0,(3 000 0),
0,(0 100 0)], 0,(0 100 0)],
0,(0 010 0)], 0,(0 010 0),
0,(0 001 0)], 0,(0 001 0)],
[0,(0000 1)]) of P, and of P, [0,(0000 1)) of tP; and of tPs,
([(1000),(01000)] ([(3000),(00000)]
[(0100),(00100) [(0300),(00000)]
[(0010),(00010) [(0030),(00000)
[(0001),(00001)] [(0003),(00000)
[(0000),(30000) [(0000),(30000)
[(0000),(03000) [(0000),(03000)
[(0000),(00300) [(0000),(00300)
[(0000),(00030)] [(0000),(00030)]
[(0000),(00003)]) of Pyand of Py, [(0000),(00003)]) oftPs;and of tFPy,
((1 000 00), (I(3 0000 0)],
(01000 0), [(030000),
[(001000), [(003000),
[(000100), [(000300),
(00001 0), [(000030),
[(000001)]) of Ps, [(000003)]) of Ps,
Remark 94 Using Magma we verify that the indecomposable projective module P5 has the Loewy layer
Dy Dy
D5, for P, we obtain the Loewy layers Dj , for P, we find D, , the Loewy layers of Ps are calculated
D, Do
Ds Dy
tobe D; ,and for Py we get Dy .
Ds D,
Remark 95 Recall that
0000 000000
v~ {ion () ) (B (1 5) (D 0
0000 0000 guo00 00000 000000
=:[a11, f11]

= {la11, f11] | a11 =3 f11}

for which we fix as R-linear basis
(617 h%l) = { [17 1]7 [073] } .

Via the canonical isomorphism from e;A(3ye; to Hompgs, (P, P1), it is mapped to the R-linear basis

(e Al = (

w o o oo
w o oo oo
~—

)
1
3
0
0
0
0

[=NeNoNoNelS
eleoleNoN -
OO O+ OO
[=Ne o No Nl
(=N oo NNl
OO0 oo
[N elolNoNeNol
O OO wWoo
OO wWwWo oo

[e=]

of Hompgs, (P1, P1), using the fixed R-linear basis of P; given in Definition 93.



65

THE LOCALIZATION Z3)Ss
An R-linear basis of

5.1.

3 ell}

o

[lelelolal]
[jelelolale]
[]elelelele]
[]elelelele]
(el lelelen]
[lelelelele]

[elelelela)
[elelelela)
[e]elelele)
[e]elelele)
[elelelele)

[eRelelalo]
(R elelele]
(=R elelele]
(=R elelele]

—
jni=jelerlen}]
L3}

SOoOoO
SOoOoO
SOoOoO
SOoOOoO

SoOOoO
[ejelelen)
[ejelelen)
SoOOoO

_ {(o,bu,<

62A(3) (D)

|

010000
030000
003000
000300
000030
000003

1

: [b11, e11]

) = ([171]7 [033])'

Via the canonical isomorphism from esA(3yez to Hompgs, (Pz, %), it is mapped to the R-linear basis

22

1
100000

010000
001000
000100
000010
0000O01

(e2, h
([

of Homps, (P2, P2), using the fixed R-linear basis of P, like above.

3e1n}

(17 h%Z) .

{[b11,e11] | b

As an R-linear basis of

is given by

3f22}

))\dn

[e]ejelele )
[e]ejelele )
[e]elelele )
[e]ejelele )
[e]ejenlenle o)
[]ejelele o)

SO OoOo
SO OCoOo
[e=jeelenjen]

N
[=Nalelele)
[efelelel]

[]ejelela)
SooOoo
Sooo0o
[e]elelel)
[e]e]elela)

[=Relelen}
[=Relele}
[=Relele}

1000
—
]

[ejelel)]
[e]elele)]
[ejelele)
SOoOoO

_ {(O,o,(

egA(3>63

}

0000010O00O0
Via the canonical isomorphism from e4A(3ye4 to Hompgs, (Py, Py), it is mapped to the R-linear basis

000000100
00000O0O0OT1IO0
000000001
000030000
000003000
000000300
000000030
00000O0O0O03

)

=: [d11, f22]

(es, ];':1))3) = ([171]5 [0’3} )

Via the canonical isomorphism from ezA(3ye3 to Homgs, (Ps, P3), it is mapped to the R-linear basis

100000000
010000000O0
001000000O0
000100000
000010000O0
000001000
000000100
000000010
000000001

3 fa2}

(

(1, h?)

{[d11, fo2] | d11

of Hompgg, (Ps, Ps), using the fixed R-linear basis of Ps.

An R-linear basis of

we fix

3 322}

b

[lelelelele]
[]elelelele)
[]elelelele)
[e]elelelelen]
[]elelelelen]
[=jelelele o]

[ejelelelo)
[eelelele)
[eelelele)
[elelele)
Soooo

[e]eRelelen]
[e]eRelelen]
(] Relelm]

N
[en] @.000
SO OOoO

SOoOoO
[ejelel]
SOoOoO
SoOOoO

S ooo
[N elelo)
(=N elelo)

—
Infeslenlen)
Q

_ {(O,o,<

64/\(3) €4

}

000001000
000000100
000000O010O0
00000O0O0OO0T1
000030000
000003000
000000300
000000030
00000O0O0OO03

)

:[e11, e22]

) = ([171]7 [073])'

44
1

(64,h
10000000O0O

010000000
001000000
000100000
000010000
000001000
000000100
00000O0O010O0
000000001

=3 ean}

(

(1, hi")

{[ec11, e22] | c11

of Hompgs, (P4, Py), using the fixed R-linear basis of Pj.

is given by
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An R-linear basis of

66

[N esjelejen}en)
[N elelele])
[N elelolo])
[N elaololol)
[N elelolol)

Cocoococo
5

SoOoOoOo
[e]elelala)
[e]elelela)
[e]elelala)
[e]elelala)]

[e]ejelela)
[e]elelela)
[e]elelala)
[e]elelala)
[e]elelala)

SOoOOoO
(elelelo)
(elelelo)]
SOoOOoO

SOoOoO
SOoOoO
SOoOoO
[=]elel)

{(0,0, (
{lgnn I}

55A(3)e5

=:[g11]
100000
010000
001000 )
000100
000010
000O0O0T1

<[

of Hompgs, (Ps, Ps), using the fixed R-linear basis of Ps.

(es) = ([1]).
Via the canonical isomorphism from esA(3yes to Hompgs, (Ps, Ps), it is mapped to the R-linear basis

1) :

is given by

Now

[]elelelelen)
[=elelelelen]
[e]enlenlenlenjen]
[e]enjeslenlenjen]
[e]esjeslenlenjen]
(]l ]l

[e]elelele)
[ejelelelen)
SoOooOo
SoOooo
[ejelelelo)

[ Relelele]
(=R elelelm]
[eRelelelo]

N
—O0O000o
(8]
(=R elelele]

SOoOoO
SOoOoO
SOoOoO
SOoOoO

SOoOoO
SOoOoO
[ejelel]
SOoOoO

{(0, 0, (
{lex2]}

therefore an R-linear basis is given by

621\(3) €4

=:[e12]
001000
000100
000010
000001
010000
003000
000300
000030
000O00O0S3

(r1?)

Via the canonical isomorphism from ezA(3ye4 to Hompgs, (P, P2) it is mapped to

Further

[ejejelelenlen)
[ejerjelelenlen)
[ejelelelelon)
[ejelelelelen)
[ejelelelo i)
[e]elelalol]

O oooOo
O oooOo
O oooO

o~
—O0O00O
S oCo0oO

[e]ejerlelen)
[e]ejelelen)
[e]elelelo)
[e]elelelo)
[e]elelelo)

SooOo
SooOo
SooOo
[=lelele)

SooOo
SooOo
SooOo
SooOo

_ {(0,0,<

e1lA(zyes

=: [ f12]
001000
000100
000010
0000O0OT1
010000O0
003000
000300
000030
000O0O03
=:[fo1]

(hi") -

{[fi2]},

therefore an R-linear basis is given by

{[fa1]},

Via the canonical isomorphism from e;A(3ye3 to Hompgs, (P, P1) it is mapped to
63A(3)61

Moreover,
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therefore an R-linear basis is given by

713y ._
(i) = {13)}.
Via the canonical isomorphism from ezA(3ye; to Hompgs, (P1, P3) it is mapped to
0000100O00O0
000030000
00000100O00O0
13y .—

(hy") = ( 0000001O00O0 )'
000000O0OT1TO
000000OO0OO0T1

We have
000000
0000\ 70000\ (2 0000\ 799999\ (000000
_ 0000 0000 000000 _
eah@ge = 1(0.0.{ 0000 |>| 0000 | [ 00000, | 000007).1 600000 [)|ec21=s0
0000 0000 0 0000 00000 000000
00000 00000 000000
=: [e21]
= {leal},
therefore an R-linear basis is given by
724\ . _
(3 = {13},
Via the canonical isomorphism from 64A(3)62 to Hompgsg, (Ps, Py) it is mapped to
00001000O00O0
000030000
000001000O0
24\ .

(hi7) = ( 000000O1TO00O0 )'
0000O0OO0OO0OT1ITO
000000001

The operating matrices can be found in the file main_S5_loc3, the homomorphisms Homs_S5_loc3.

They can e.g. be used to check the RSs-linearity of the maps between P, P, Ps;, P, and P; derived
above.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P, are denoted
rhoP1, rhoP2,rhoP3, rhoP4 and rhoP5, respectively.

E.g. for the operating matrices on P;, call
rhoP1(S5P!sigma) ;

for an element sigma of S5. Analogously for P5, P3, P, and Ps.

To check that the matrices found above represent RSs-linear maps between the respective projective
modules, follow these steps:

load main_S5_loc3;
load Homs_S5_loc3;

[rhoP1(sigma)*Hom_P1P1[i] eq Hom_P1P1[i]*rhoP1(sigma):sigma in {S5P!(1,2),S56P!(1,2,3,4,5)}, 1 in [1..2]];
[rhoP2(sigma)*Hom_P2P2[i] eq Hom_P2P2[i]*rhoP2(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}, i in [1..2]];
[rhoP2(sigma)*Hom_P2P4[i] eq Hom_P2P4[i]*rhoP4(sigma):sigma in {S5P!(1,2),s5P!(1,2,3,4,5)}, i in [1..1]];

[rhoP1(sigma)*Hom_P1P3[i] eq Hom_P1P3[i]l*rhoP3(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}, i in [1..1]];
[rhoP3(sigma)*Hom_P3P1[i] eq Hom_P3P1[il*rhoP1(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}, i in [1..1]];
[rhoP3(sigma)*Hom_P3P3[i] eq Hom_P3P3[i]*rhoP3(sigma):sigma in {S5P!(1,2),s56P!(1,2,3,4,5)}, 1 in [1..2]];

[rhoP4(sigma)*Hom_P4P2[i] eq Hom_P4P2[i]l*rhoP2(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}, i in [1..1]];
[rhoP4(sigma)*Hom_P4P4[i] eq Hom_P4P4[i]*rhoP4(sigma):sigma in {S5P!(1,2),s6P!(1,2,3,4,5)}, 1 in [1..2]];
[rhoP5(sigma)*Hom_P5P5[i] eq Hom_P5P5[i]*rhoP5(sigma):sigma in {S5P!(1,2),S56P!(1,2,3,4,5)}, i in [1..1]];
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Remark 96 There are 3 primitive central idempotents of A3,

C1 1=

000000
00000\ /10000
0000) (0100) (00000 (01000} (500000
(LO, 0000 |+ {0010 | 000001, 001001, 16500000 »
0000 0001 0000 \pboty 000000
000000
Coy =
000000
10000\ /00000
0100\ (0000 (01000 (00000) (BOOEED
(o {gase ) Lgans ) {6408 |- 84088 || dosuse |)
00001/ \00000/ \J08590
C3 =
100000
00000\ /00000
0000) (0000) (00000} (00000} (057000
(Qo, 0000 | {0000 | 000001, 000001, 16500100 )
0000/ \oooo/ \93908 ) {90000 ) {oo00io
000001
The idempotent c3 generates a block of defect 0.

Remark 97 Let SI°) be the alternating Specht module of A(3). Then we get the isomorphisms of
projective modules of A(s)

P~SY g p, PSS g p and Py = ST @ P

Therefore, by applying Remark 176, we can reduce our problem of the projective modules of RSy to the
tensorproductsP2®P2, P2®P3, P2®P5, P3®P3, P3®P5 and P5®P5.

5.1.2 The tensor product P, ® P,

Lemma 98 Let E be the embedding tPo @ Po — Py ® Ps, and E be the embedding Po @ tPy — Po ® Ps.

We have a commutative diagram of Z3)Ss-linear map

B
P, @tP, —~ PP? ¢ PP @ PP @ PO!

oSt
(o}

P, ® P,

B

~

tPy ® Py P? @ PO ¢ PO @ PO?

with A, B, B isomorphisms, and the describing matrices

Recall that R = Z3) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.
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We have to show local invertibility and RSs-linearity of the maps A, B and B, the RSs-linearity of E, E,
C and C, and the commutativity of the diagram. The functions and operating matrices necessary to prove
the local invertibility, the RSs-linearity and the commutativity can be found in the file main_S5_loc3,
the matrices for this diagram in the file Diagram_S5_loc3_P20P2 .

The embedding F is defined as the Kronecker product of the embedding is : tPy — P> and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding E is defined
as the Kronecker product of idp, and the embedding is : tPo — Ps.

The representations, i.e. the maps sending group elements to operating matrices, on P, Ps, P3, Py, P
are denoted rhoP1, rhoP2, rhoP3, rhoP4, rhoP5, respectively.

The representations on tPy, tP,, tP3;, tP;, tP5 are denoted rhorP1, rhorP2, rhorP3, rhorP4, rhorP5,
respectively.

The representations on Po ® Py, tPo ® P, P, ® tP, are denoted op_p20p2, op_rp2op2, op_p2orp2,
respectively. The operating matrix of a group element on such a tensor product is defined as the tensor
product of the operating matrices on the tensor factors.

For example, for the operating matrices on P, ® P; call
op_p20p2(SEP!sigma) ;

for an element sigma of S5. The other maps work the same way.

The representation on the direct sum P2®2 ® P§B1 ® Pfal &) P;Bl is denoted op_proj_sum_p2p2. The
operating matrix of a group element is defined as the block diagonal matrix containing the operating

matrices of the summands. The maps A, B, C, E are denoted A, B1, C1, E1, respectively; the maps B,
C, E are denoted B2, C2, E2, respectively.

To verify the Lemma, follow these steps:
load "main_S5_loc3";

load "main_S5_loc3_P20P2";

load "Diagram_S5_loc3_P20P2";

[rhorP2(sigma)*i2 eq i2*rhoP2(sigma) : sigma in {S5P!(1,2), S6P!(1,2,3,4,5)}];

E1l
E2 :

KroneckerProduct(i2,MatrixRing(Rationals(),6)!1);
KroneckerProduct (MatrixRing(Rationals(),6)!1,i2);

[op_rp2op2(sigma)*El eq El*op_p2op2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p2orp2(sigma)*E2 eq E2*op_p2op2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//commutativity
E1*A4 eq B1xC1;
E2*A eq B2x*C2;

//RSs-1linearity
[op_p2op2(sigma)*A eq A*op_proj_sum_p2p2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rp2op2(sigma)*Bl eq Blxop_proj_sum_p2p2(sigma):sigma in {S5P!(1,2), S56P!(1,2,3,4,5)}];
[op_p2orp2(sigma)*B2 eq B2*op_proj_sum_p2p2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p2p2(sigma)*Cl eq Cl¥op_proj_sum_p2p2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p2p2(sigma)*C2 eq C2xop_proj_sum_p2p2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc3"
loc_inv(A,3);
loc_inv(B1,3);
loc_inv(B2,3);
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Remark 99 Using Magma, we can verify

1

C
Coker(lé]) = Dy® Dy D,

Coker(C) > Coker(C) = Dy@Py, = P,

with Loewy layers already known.

5.1.3 The tensor product P, ® P;

Lemma 100 Let E be the embedding tPo® P3 — P, ® Ps, and E be the embedding Po®@tP; — Po® Ps.

We have a commutative diagram of Z3)Ss-linear maps

B
Py @tP; ~ PPl @ PP? @ PP? @ PP?

[esh
(o}

P, ® Py 2 PE' o PP @ PE2 @ PE
O :
Py ® P B P® @ PP? g P2 @ P22

with A, B, B isomorphisms, and the describing matrices

I P IR

Recall that R = Zs).

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc3 and main_S5_loc3_P20P3 the matrices for this

diagram in the file Diagram_S5_loc3_P20P3 .
The maps and matrices are denoted analogously to those for P, ® Ps, see proof of Lemma 98 .

To verify the Lemma, follow these steps:

load "main_S5_loc3";
load "main_S5_loc3_P20P3";
load "Diagram_S5_loc3_P20P3";

[rhorP2(sigma)*i2 eq i2*rhoP2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[rhorP3(sigma)*i3 eq i3*rhoP3(sigma) : sigma in {S5P!(1,2), S6P!(1,2,3,4,5)}];
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E1l
E2

KroneckerProduct(i2,MatrixRing(Rationals(),9)!1);
KroneckerProduct (MatrixRing(Rationals(),6)!1,1i3);

[op_rp2op3(sigma)*El eq Elxop_p2op3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p2orp3(sigma)*E2 eq E2xop_p2op3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//commutativity
E1*A eq B1xC1;
E2*4 eq B2*(C2;

//RSs-linearity
[op_p2op3(sigma)*A eq A*op_proj_sum_p2p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rp2op3(sigma)*B1l eq Bl*op_proj_sum_p2p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_p2orp3(sigma)*B2 eq B2*op_proj_sum_p2p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_proj_sum_p2p3(sigma)*Cl eq Cl¥op_proj_sum_p2p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p2p3(sigma)*C2 eq C2*op_proj_sum_p2p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc3"
loc_inv(A,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 101 Using Magma, we can verify

c
Coker( ~ ) = DQ ® D3 = D3 s
C
Coker(C’) = D2 ® pg = pg s
Coker(é’) = P2®D3 = P3@P4@P5,

with Loewy layers already known.

5.1.4 The tensor product P, ® P;

Lemma 102 Let E be the embedding tPo® Ps — Po® Ps, and E be the embedding Po QtPs — Po® Ps.
We have a commutative diagram of Z3)Ss-linear maps

Py @ tPs Z PPt o PP @ PE°

o)t
Qe

P, ® Ps

B

~

tP, ® Ps P o PP @ PO3

with A, B, B isomorphisms, and the describing matrices

0.7, .. 3




72 CHAPTER 5. ON LOCALIZATIONS OF 7S5

The matrices C' and C being block diagonal matrices, with blocks of the form id and 3 - id, confirms the
expected result, shown in Remark 163, for P5 belongs to a defect-0 block.

Recall that R = Z3) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc3 and main_S5_loc3_P20P5 the matrices for this

diagram in the file Diagram_S5_loc3_P20P5 .
The maps and matrices are denoted analogously to those for P, ® P, see proof of Lemma 98.

To verify the Lemma, follow these steps:

load "main_S5_loc3";
load "main_S5_loc3_P20oP5";
load "Diagram_S5_loc3_P20oP5";

[rhorP2(sigma)*i2 eq i2*rhoP2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[rhorP5(sigma)*ib eq iS*rhoP5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El := KroneckerProduct(i2,MatrixRing(Rationals(),6)!1);
E2 := KroneckerProduct(MatrixRing(Rationals(),6)!1,i5);

[op_rp2op5(sigma)*El eq El*op_p2opb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p2orpb(sigma)*E2 eq E2*op_p2op5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//commutativity
E1*A eq B1xC1;
E2*A eq B2x*C2;

//RSs-1linearity
[op_p2op5(sigma)*A eq A*op_proj_sum_p2p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rp2op5(sigma)*B1l eq Bl*op_proj_sum_p2p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_p2orp5(sigma)*B2 eq B2*op_proj_sum_p2pb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p2p5(sigma)*Cl eq Cl¥op_proj_sum_p2p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p2p5(sigma)*C2 eq C2xop_proj_sum_p2pb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc3"
loc_inv(4A,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 103 Using Magma, we can verify

IR

c _
Coker([é]) = D2®D5 = D2®P5 D5 = P5,

1
1

Coker(C) ~ Dy® P; Ds Ps,

Coker(C’) = pg & D5 = pg X p5

1%

P3691546913§93

with Loewy layers already known.
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5.1.5 The tensor product P; ® P

Lemma 104 Let E be the embedding tPs® P3 — P3® Ps, and E be the embedding P3s®@tP; — P3® Ps.

We have a commutative diagram of Z3)Ss-linear maps

B
Py@thPs = PP o PPt @ PP @ PO

oSt
(o}

A
P P = PP o PPt o PP @ PP
: O :
tPy @ P B P? @ PPt @ PP @ P2

with A, B, B isomorphisms, and the describing matrices

(3 .. . T 3 ...

Recall that R = Z3) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc3 and main_S5_loc3_P30P3 the matrices for this

diagram in the file Diagram_S5_loc3_P30P3 .

The maps and matrices are denoted analogously to those for P, ® Ps, see proof of Lemma 98 .

To verify the Lemma, follow these steps:

load "main_S5_loc3";
load "main_S5_loc3_P30P3";
load "Diagram_S5_loc3_P30oP3";

[rhorP3(sigma)*i3 eq i3*rhoP3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El := KroneckerProduct(i3,MatrixRing(Rationals(),9)!1);
E2 KroneckerProduct(MatrixRing(Rationals(),9)!1,i3);

[op_rp3op3(sigma)*El eq El*op_p3op3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p3orp3(sigma)*E2 eq E2*op_p3op3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
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//commutativity
El1xA eq B1xC1;
E2*4 eq B2x*(C2;

//RS5-linearity
[op_p3op3(sigma)*A eq A*op_proj_sum_p3p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rp3op3(sigma)*B1l eq Bl*op_proj_sum_p3p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_p3orp3(sigma)*B2 eq B2*op_proj_sum_p3p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_proj_sum_p3p3(sigma)*Cl eq Cl¥op_proj_sum_p3p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p3p3(sigma)*C2 eq C2*op_proj_sum_p3p3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc3"
loc_inv(A,3);

loc_inv(B1,3);
loc_inv(B2,3);

Remark 105 Using Magma, we can verify
C _ _
Coker( o ) = D3®D3 = Dy® P PFs,

Coker(C) = Coker(C) = D3 ® Ps ~ PoPP?oPP?,

with Loewy layers already known.

5.1.6 The tensor product P; ® P;

Lemma 106 Let E be the embedding tP3s® Ps — P3® Ps, and E be the embedding P3s@tPs — P3® Ps.
We have a commutative diagram of Z3)Ss-linear maps

Py ®P; = PP @ PP* o PE

[eshl
(o}

P ® Ps

B

~

tPy® Ps P? @ PP g P3

with A, B, B isomorphisms, and the describing matrices

(3 .. .. . .7 (3 .. . . ]
R P I .3

3. R I S
1. S I I I
.1 S N A

The matrices C' and C being block diagonal matrices, with blocks of the form id and 3 - id, confirms the
expected result, shown in Remark 163, for P; belongs to a defect-0 block.

Recall that R = Z3) .
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Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc3 and main_S5_loc3_P30oP5 the matrices for this
diagram in the file Diagram_S5_loc3_P30oP5 .

The maps and matrices are denoted analogously to those for P, ® Ps, see proof of Lemma 98 .
To verify the Lemma, follow these steps:
load "main_S5_loc3";

load "main_S5_loc3_P3oP5";
load "Diagram_S5_loc3_P3oP5";

[rhorP3(sigma)*i3 eq i3*rhoP3(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[rhorP5(sigma)*ib eq iS*rhoP5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El := KroneckerProduct(i3,MatrixRing(Rationals(),6)!1);
E2 := KroneckerProduct(MatrixRing(Rationals(),9)!1,i5);

[op_rp3op5(sigma)*El eq El*op_p3opb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p3orp5(sigma)*E2 eq E2*op_p3opb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//commutativity
E1*A eq B1xC1;
E2*4 eq B2x*(C2;

//RSs-linearity
[op_p3op5(sigma)*A eq A*op_proj_sum_p3p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rp3op5(sigma)*B1l eq Bl*op_proj_sum_p3p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_p3orp5(sigma)*B2 eq B2*op_proj_sum_p3p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_proj_sum_p3p5(sigma)*Cl eq Cl¥op_proj_sum_p3p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_p3pb(sigma)*C2 eq C2*op_proj_sum_p3pb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc3"
loc_inv(A,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 107 Using Magma, we can verify

1%

D3 ® Dy = D3 ® Ps = Py @® P, @ Ds P;@® P, @ Ps,

1%

Coker([ g )

I

Coker(C’) = D3®p5 = Pg@P4@D5 p3@p4@p5,

Coker(C) = p3®D5 = P5®P3

IR
IR

PP2 o PP? @ DP? P2 o PP? @ PSR,

with Loewy layers already known.
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5.1.7 The tensor product P; ® P;

Lemma 108 Let E be the embedding tPs® Ps — P;® Ps, and E be the embedding Ps @tPs; — Ps® Ps.
We have a commutative diagram of Z3)Ss-linear maps

T

Ps ® tP; - PPt o PP @ PP @ PP @ PR
: O ¢
A

P;® Ps PP o PP o PP o PP o P!

5 Q c

B

~

tPs® Ps PP o PP @ PP @ PP @ PP!

with A, B, B isomorphisms, and the describing matrices

3l.]-]-]- 3.

w
w

The matrices C' and C being block diagonal matrices, with blocks of the form 3-id, confirms the expected
result, shown in Remark 164, for P; belongs to a defect-0 block.

Recall that R = Z3) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc3 and main_S5_loc3_P50P5 the matrices for this
diagram in the file Diagram_S5_loc3_P50P5 .

The maps and matrices are denoted analogously to those for P, ® Ps, see proof of Lemma 98 .

To verify the Lemma, follow these steps:

load "main_S5_loc3";
load "main_S5_loc3_P5oP5";
load "Diagram_S5_loc3_P5oP5";

[rhorP5(sigma)*i5 eq ib*rhoP5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El := KroneckerProduct(i5,MatrixRing(Rationals(),6)!1);
E2 := KroneckerProduct(MatrixRing(Rationals(),6)!1,i5);

[op_rp5op5(sigma)*El eq El*op_pbop5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_pborp5(sigma)*E2 eq E2*op_pbopb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//commutativity
El1*A eq B1xC1;
E2*A eq B2*(C2;
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//RSs-linearity:
[op_pSop5(sigma)*A eq A*op_proj_sum_p5p5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rpSopb(sigma)*B1l eq Bl*op_proj_sum_pbpb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_pborp5(sigma)*B2 eq B2*op_proj_sum_pbp5(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[op_proj_sum_pbp5(sigma)*Cl eq Clxop_proj_sum_pbpb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_pbpb(sigma)*C2 eq C2*op_proj_sum_p5pb(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc3"
loc_inv(A,3);
loc_inv(B1,3);
loc_inv(B2,3);

Remark 109 Using Magma, we can verify

@}

Coker(lg]) >~ Coker(C) = Coker(C)

~ Ds®@Ds; =2 PP =2 PeP,®P;®P,®Ds
~ POPoP®dPoPs,

with Loewy layers already known.

5.2 The Localization Z)S;

In this section, we will meet twice the phenomenon that a tensor product of two simple modules may
have an indecomposable summand that is neither simple nor projective nor Specht. We consider the

corresponding canonical presentations in Sections 5.2.5 and 5.2.7.

Let
R = Z(Q) .

5.2.1 Idempotents and projectives

Definition 110 Let

di1 dio2 diz d €11 €12 €13 €14 €15
C11 C12 C13 C14 11 d12 dld d14 €3] €22 €23 €24 €25
A - {(a b C21 C22 C23 C24 21 (22 A23 (24 €31 €35 €33 €34 €30
2 - 11 P11 | €31 €32 €33 C34 | » ’ ’

Ca i cs ¢ 31 32 33 W34 €41 €42 €43 €44 €45
13 14 €15 ©16 dyq dao dy3 dyg €51 €52 €53 €54 €55

f11 f12 f13 f14 f15 911 912 913 G14 915 J16

f21 f22 f23 f24 f25 921 922 923 924 925 926

fa1 fa2 fa3 faa f35 931 932 933 934 935 936 ‘

7| 941 942 943 Ga4 945 G46

far faz fas faa fas 951 952 953 G54 G55 956

f51 f52 f53 fsa f55 ge1 962 ge3 Je4 ges Jee

ai; =2 b11, e11 =2 966, a11 — fi1 =4 2961, air + b1 +e1r + fi1 =8 2911 + 2966 =4 0,
e12 + f12 =8 2912, €13+ f13 =8 2913, e1s + f14 =5 2914, e15 + f15 =8 2915,

€22 + fo2 =g 2922, €23 + fo3 =8 2923, €24 + fos =8 2924, €25 + fo5 =g 2925,

e32 + f32 =g 2932, €33 + f33 =8 2933, €34 + f31 =8 2934, e35 + f35 =5 2935,

eq2 + fa2 =g 2042, €43+ fa3 =8 2943, €44 + faa =8 2014, a5+ fa5 =8 295,

es52 + fs2 =8 2952, €53 + f53 =8 2953, €54 + f54 =8 2954, €55 + [55 =s 2955,

Jo1 =2 921, fo2 =2 922, f23 =2923, foa =2 924, fo5 =2 925,

f31=2931, [f32=2932, f33=2933, f34=2034, f35=2035,

Jun =2 941, fa2 =2 942, [f13 =2943, f1a =2 gaa, [fa5 =2 ga5,

f51 =2 951, [52=2052, [53=2953, [f54=2051, [55=20s5,
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c11 =2d11, c12=2d12, c13 =2d13, C14 =2 d,
C21 =2 da1, C22 =2 daz, Ca3 =2 doz, Coq =3 day,
c31 =2d31, c32 =2d32, c33 =2d33, C34 =2 d34,
cq1 =2da1, c42 =2dsa, c43 =2 ds3, Caa =2 dag,
e — f11 =4 g16, €21 — fo1 =4 g26, €31 — f31 =4 936, €41 — fi1 =4 Ga6, €51 — f51 =4 56 »
fi2 =4 962, f13=4963, f14 =464, f15=4 965}

c Z(Q) X Z(Q) % Z4><4 % Z4><4 % ZS><5 % Z5><5 « ZGXG

(2 (2) (2 (2) (2

= RXxRx R4><4 % R4><4 X R5><5 % R5><5 % R6><6 .

The Z)-order A(y) is the image of Z5)S5 under the Wedderburn isomorphism of Remark 242.

The entries of tuples belong to the Specht modules $17), §®), §(2L1L1) g1 g2:2.1) §(32) gpd §G:L.1)
in the order chosen above.

Consider the following idempotents of A ).

q::(Ll,
e (QO,
es 7(m0,

100000
0000 0000 10000 10000 000000
00000 00000
0000 0000 000000
: {00000 |,|00000], ,
00000 00000 000000
000000
0000 0000 00000 00000 010000
01000 01000
0000 0000 000000
00000 00000
00000 00000 000000
000000
1000 1000 00000 00000 000000
00000 00000
0000 0000 000000
00000 00000
0000 |+ {0000 |- {99900 1195000 1:]1000000 )
0000 0000 00000 00000 00ouoD

Remark 111 Let

E

F
G

{(a,b,¢,d, (;£)) |
a=3b,c=h,a—d=42g,a+b+c+d=g2e+2h=40,c—d=4f}
C RxRxRxRxR?**?,

{(a;b,c) |a+b=g2c,a=2¢c} CRxRXR,
{(a,b) |a=2b} C RXR.

We have isomorphisms of R-orders

EFE — €1A(2)61

(G/,b7€117f117 (géi gég)) —

0000
e110000 110000 g1 916
0000\ (0000) [ 00000} ("0 0000) [ & 8000 O
(%b7 0000 ]->{0000 ]| 90000 f,1 000001 ¢ p0p0 0 )7
0000 0000 8 8888 8 8888 0 0000 0
961 0000 ges
F—>€2A(2)€2
(€22, fa2,g22) +—
000000
00000 00000
i (o (BB (BBl (o oncs
(QO, 0000 [+{0000 |- 508001008 000)-1000000 ),
0000/ A0000/°Xg 0 000/ \o 0000/ \§ 93999
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G — €3A(2)€3

(8117(111) —

(0,0,

Lemma 112 The idempotents e1, es and es are primitive.

C11

oo O
ooOo O
[evlenjeran]
ooOo O
OOOEN
ooOo O
SooOo O
SOoOo O
SOOOO
OO0 O
SOOOO
OO0 O
SOOOO
SOOOO
DOOOO
SOOOO
SOoOOoOOO
SOOOO
[eslevlenlenlenjen]
[esjevlenlenlerjen]
[eslerlenlenleien]
SOoOOoOoOoO
[e=lerlenlenlerien]
[e=jerlenlelenlen]
N—

They represent the equivalence classes of the primitive idempotents of A(z) .

Proof. We have to show primitivity of e;, ey and eg.

First we show that es and 0 are the only idempotents of €2A(2)62 . By Remark 111 it remains to show
that (0,0,0) and (1,1,1) are the only idempotents of F. Let (a,b,¢) € F be an idempotent. Since R
is local, Corollary 134 gives a,b,c € {0,1}. Since this is a finite problem, we can use Magma to list all
possible tuples (a,b,¢) € R x R x R with a,b,c € {0,1} and to test the ties of F' in a last step. To do so,

we call
i := {<a,b,c> : a,b,c in {0,1}| (a+b mod 8) eq (2*c mod 8) and (a mod 2) eq (c mod 2) };
and we get

> i
{<t, 1, 1>, <0, 0, 0>}

Next, we show that ez and 0 are the only idempotents of e3A(2ye3. By Remark 111 it remains to show
that (0,0) and (1,1) are the only idempotents of G. Let (a,b) € G be an idempotent. Since R is local,
Corollary 134 gives a,b € {0,1}. Since this is a finite problem, we can use Magma to list all possible
tuples (a,b) € R x R with a,b € {0,1} and to test the ties of G in a last step. To do so, we call

i := {<a,b> : a,b in {0,1}| (a mod 2) eq (b mod 2) };
and we get

> i
{«1, 1>, <0, 0>}
Therefore, using Lemma 136, the idempotents e, and ez are primitive.

For F, we cannot reduce the ties to a finite problem that way. We construct a basis of e;A(s)e; and
t(e1A(g)e1), e.g. by projection of the bases of P; and vP; given in Definition 116 below, and obtain

(11,1, 1, ((1)(1))), (2, 0,0, 2, (?%))
(0, 2,0, 2, (8%)) 0,2,0,2, (8%))
0,0, 2,2, ((1)8)), 0,0,2,2, ((1)8)),
(0, 0, 0, 4, (88)) 0,0, 0, 4, (88))
0,0, 0, 0, (38)), 0,0, 0, 0, (38)),
(0, 0, 0, 0, (86‘)) 0,0, 0,0, (86‘))
0,0, 0, 0, (88)), 0,0, 0, 0, (88)),
(0, 0, 0, 0, (82))] as a basis of e;Aer, (0,0, 0,0, (82))] as a basis of t(e; Azer).
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We observe that the index t(e1A2)e1) C e1Ayer is 2, and therefore E/tE >~ 5. Thus, the only

orthogonal decomposition into idempotents of 1 in E / oE 18 the trivial decomposition. Using Lemma 131

below, the only orthogonal decomposition into idempotents of 1 in E is the trivial decomposition.

Finally, there exists an orthogonal decomposition

" "

l=e1+ex+ey+ey+ey +e3+es+es+ ey

"

"

into primitive idempotents, which fall into the equivalence classes {e1}, {ez, €}, €}, €5’} and {es, €5, €4, €4’}

n

Here €}, e} and e}’ are obtained from ey by “shifting along the main diagonal”. Similarly e, e§ and ef’. O

Corollary 113 Up to isomorphism, we have the Peirce decomposition

A)

1%

61A(2) D 62Ag‘; D 63A§B2‘;

(elA(g)el (elA(2)€2)1X4 0
= (62/\(2)61) (62/\(2)62)4><4 0
0 0 (€3A(2)63)4X4

)1><1

4x1

Remark 114 Let ¢ := (0,0, (é?)) € QF.

We consider the quasiblock e £ and drop the first two zeroes in notation; i.e. (; {L> := (0,0,

¢E if and only if there exist a and b such that (a, b, (; fl)) isin E.
Then ¢F has ((é?) , <88) , (83) , (?8)) as an R-linear basis. So
eE = {(;{) le=ah, =20} C R>Z.

We claim that
! ef _ _ _ 2) (2
'C(EE) = {(9{1) ‘ezghzg 0, f:2 O} = ((R) 52;) = 1.

Both-sided multiplication with basis elements of ¢E shows that I is an ideal in eF.

(;{)) is in

We have 12 C 2R?*2_ hence I* C 4R?*? C 2¢E. By Lemma 213.(ii), we conclude that I C t(cE) C ¢FE.

Since the index of I in eF is 2 and t(¢E) C €E, we have that I = t(eE).

This proves the claim.

Lemma 115

Recall that R = Z3y. We have the radicals

t(elA(g)el) =
(2)0000\ /(2)0000
DOOON (8000 00000 00000
61A(2)61ﬂ((2)x(2)x 0000 X 0000 X 88888 X 88888 X
0000/ 0000 0 0000 0 0000
‘C(egA(g)eg) =
00
0000\ /0000y (00 000y /0 0000\ (0
000N (9000 [o@o00) {o@o00) [92
€2A(2)62ﬂ(o><0>< 0000 | {0000 |>*[0 0000 |x]00O000(|x
0000/ \o0oo/ \ooooo/ {oooao) |9
00000/ \ooooo/ \99
t(e3A(2)€3) =
00
wono\ (non (R (manany (4
0000 0000 00
€3A(2)63ﬂ(o><0>< 0000 <[ 9990 x[00000 |x[00000|x|J0
0000 000017\ 00000 || 0oooo || 99
00000/ \00000/ \99

—~
N

~—

S OOoOOoOOoO
S OOoOOoOOoO
SOOoOOoOOoO
S OOoOOoOOoO

Hooco

~—

[lelelelae o)
SO OoO O
SO OoO O
OO O

[es]en]en]es}enlan}
[es]en]en]enlenlan}
OOoOOoOOoOOoO
OOoOOoOoOOoO

—~
~

NOOOON
N—

—~
~—

N—
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where all entries are to be read as running through R.

Altogether, we obtain the Jacobson radical

t(A)) =
2)(2) (2) (2 (2) (2) (2) (2 %”;g)gg
((2)><(2)>< gggg X g g;gg x R22;22 x
2) (2) (2) (2 2) (2) (2) (2 R e
) (2) (2
9 RRRE 2 R R R R
2 o6 R (2)(2)(2) (2) R
R (2)(2)(2) (2) R
R222;2 < | w06 ) N A
R (2)(2) (2) (2
7 (32 (3 5 R (2)(2)(2) (2) R
RRERRRI(@)

Proof. The first follows by Proposition 222; cf. Remarks 114 and 208. The latter then follows by using
Proposition 217 and Remark 208; cf. Corollary 113. O

Definition 116 Let P, := e1-A(a), P2 := ea2-A(g), P3 := e3-A(2) represent the isoclasses of indecomposable
projective modules of Z)Ss; cf. Remark 208, Lemma 220.

So we have
g11 912 913 g14 915 gie
0000\ 0000\ (4L A3 carcs fu fiz fis 14 f1s 07000 00
Pr={(an,bi1, [ 6000 - [ 6000 000 0 0 0000 0 000000)(
1= 11,9011, 0000 El 0000 El 0 0 0 0 O k] 0 0 0 0 0 ) 0 0 0 0 0 0
0000 0000 099900 009000 000000

961 962 963 964 J65 J66
a11 =2 b11, e11 =2966, @11 — f11 =4 2961, ai1 +bi1 +e11 + f11 =8 2911 + 2966 =4 0, e12 + f12 =8 2912,
e13 + f13 =8 2913, e14 + fia =8 2914, e1s5 + f15 =8 2915, f12 =4 962, f13 =4 963, [f14 =4 ge64,

f15 =4 g65 }
00 0 0 0 00 0 00 0 0 00 0 O
8888 8888 €21 €22 €23 €24 €25 f21 f22 f23 faa fos5 g(Q)l 9(2]2 983 9(2]4 g(z)s g(z)ﬁ
PQZ{(Ova 0000|0000 ]):( 2 0 0 0 0 f, 100000, 00000 0 )’
0000 0000 0 00 00 0 0 0 00 00 00 0 0
00000 0 0 0 0 0 0000 0 0

e22 + fo2 =5 2922, e23 + f23 =5 2923, e24 + foa =5 2924, e25 + fo5 =5 2925,
fo1 =2 921, fo2 =2 922, f23 =2 923, foa =2 goa, fos5 =2 g25, €21 — fo1 =4 926 },

000000
€11 €12 €13 C14 di1 di2 diz dig 88888 88888 000000
py—((00 [0 00 0) [0 00 0) (00000, [00000],[000000
0000 00 0 0 00000 1:183558) 1000000
0000 0000 00000/ \ooooo/ \999999

c11 =2 d11, ci2 =2di2, c13 =2di13, ci4 =2d14 }.
We abbreviate

[au,bu,(eu e12 e13 e1s e15),(f11 fi2 f13 fia fi5), (911 912 913 914 915 g16), (961 962 963 g64 65 966)]
911 912 913 914 915 16

€11 €12 €13 €14 €15 f11 fi2 fi3 f14 f15
0000 0000 0O 0 0 0O 0 O
— (avi . [0000 0000 ©eo 99l 0 0 000 000000
= 11,011, 0000 ) 0000 ) ) ) 0 0 0 0 0 0 )
0000 0000

0 0 0 0 O
0 0 00 0 O
00000 0000 961 g62 963 964 g6s gee

oo
[ejen]
oo
[elen]
[l

[(621 €22 e23 e24 e25),(fo1r foz f23 foa fo5),(g21 g22 923 g24 gos 926)]

000 0 O 00 0 0 0 0 0 00 0 0
8888 8888 €21 €22 €23 €24 €25 f21 f22 f23 foa f25 g1 922 925 G2 925 926
‘:(0:07000070000188888»88888’000000):
0000 0000 000 0 0 0000 0 ey e sl
[(011 c12 c13 cia),(di1 diz dis d14)]
000000
€11 ¢12 €13 c14 di1 di2 dis dis gu000 gu000 000000
— (000 000 0 0 0 0 00000 00000 000000
SV 8000\ 8 6 8 ) \ooooo] {0000 ) | BEGOE0
00000 00000 000800
5
So we have P, «— S17) @ §06) ¢ §(2.21) g §3.2) gy §B.1.1) gy GB.LY) py «y §(221) gy §(3.2) gy §(3,1.1)

and Py «— SZLLD @ g1
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([(1t 000),(1000), ([(2 00 0),(0 00 0),
[(0100),(0100), [(0 2 00),(0 00 0)],
[(0010),(0010), [(0020),(0000),
[(0001),(000 1), [(0002),(0000),
[(0000),(2000), [(0000),(2000),
[(0000),(0200), [(0 0 00),(0200),

[(0 00 0),(00 20)], [(0000),(0020)],
[(0000),(0002)]) ofPs, [(0000),(0002)]) ofcPs.
Remark 117 Using Magma, we can verify the following Loewy layers:
D, D,
D4 Do Dy
D4 Do D4
_ _ _ Dy
PliDl Dla PQZDQ, P31D
D, Dy D, ’
D, D, D,
D1 D2
Remark 118 Recall that
=:[a11,b11, €11, f11,911, 916, 961, 966 |
9110000 g16
0000\ /0000 [€10000N  /f110000 000000
_ 0000 0000 0 0000 0 0000 0 0000 0
ethger = (an:bnv 0000 |-{0000]-| 9 9000 9900011 000000 )‘
0000 0000 0 0000 0 0000 0 8888 0
ge1 966

a11 +bi1 +e1r + fi11 =8 2911 + 2966 =4 0, e11 — f11 =4 g6 }

= {[a11,b11,e11, f11,911, 916,961,966 ] | a11 +b11 +e11 + fi1 =8 2911 + 2966 =4 0,

for which we fix the R-linear basis

711 711 711 711 711 711 711y .__
(el7h1 7h2 7h3 7h4 ah5 7h6 ,h7 ) T

{

[1,1,1,1,1,0,0,1],
[0,2,0,2,0,2,0,2],
[0,0,2,2,0,0,1,2],
[0,0,0,4,0,0,0,2],
[0,0,0,0,2,0,0,2],
[0,0,0,0,0,4,0,0],
[0,0,0,0,0,0,2,0],
[0,0,0,0,0,0,0,4] }

e11 — f11 =4 916 }

83

Our fixed R-linear basis (1, k1!, b3t K31 AL ALY RLY RIL) of Hompgs, (Py, P1) we get via the canonical

isomorphism from e;Aye1 to Hompg, (P, Pr).

For ez A (9)e2 we get

=: [e22, fa2, g22]

[elelele]
(el
[elelelen)
[elerlelen)
[elelelo]
[elelelw]
(el
[elelelen]

62/\(2) €

e )

€22 + fo2 =g 2g22

, f22 =2 g2

0 000 00000

22000 0f22000
000|,{00O000],
000 00000
000 00000

0
0
0

Q

[e]eleloNol]

OOoOOoOoN O
¥}

[e]eleleNele]

= {[e22, f22,922] | e22 + f22 =8 2922, fo2 =2922},

for which we fix the R-linear basis

(ea, 22 W32 h2%) = {[1,1,1], [0,4,2], [0,0,4]}.

[e]er]eslesNenlen]

[e]erjenlesNenlen]
[e]er]enlesNenlen]
~—

Our fixed R-linear basis (1,h3%, h3?, h3?) of Homps, (P2, P») we get via the canonical isomorphism from

62/\(2)62 to Hompsg, (Pg, Pz).
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As an R-linear basis of

=:[c11,d11]
000000
00000 00000
D000\ [ 000\ (00000 (00000} (BOE0EH
eahes = (0,0, 0 080).1 §898). 00000, (00000, 080000 |)]etr=2dur}
0000 0000 00000 00000 000000
00000 00000 000000

{[e1r,dir] | c1r =2dan }
we fix
(e0,h8) = {11, 0,21}
Our fixed R-linear basis (1, %) of Hompgs, (Ps, P3) we get via the canonical isomorphism from esA(ses
to Hompgg, (Ps, Ps).
Now, as R-linear basis of

=:[e21, f21, 921,926 |

0 0000 0
0000\ /0000 00000 0 0000\ (9200000 gag
0000 0000 f210000 e210000 0 0000 0
e2her = (Qov 0000 ):{0000 ) | 0 0000}, 000007).1 50000 0 )‘
0000 0000 00000 0 0000 0 0000 0
0 0000 0 0000 9 0e00

e21 + f21 =4 2926, f21 =2 g21 }

= {[e21,f21,921,926] | €21 + fo1 =4 2926, f21 =2 g21}
we fix
(h12, h32, A% h1?) = {[1,1,1,0], [0,2,0,2], [0,0,2,0], [0,0,0,4] }.

Our fixed R-linear basis (h12, hi% hi2 h1?) of Hompgs, (P, P2) we get via the canonical isomorphism from

ea(g)e1 to Hompgs, (P1, P2).

Now, for
=:[e12, f12, 912, 962 ]

09120000
0000 0000 012000 0e12000 0700000

0 000 0 0000
_ 0000 0000 000000

e1Aioye2 = 0,0, s , 10 000}|,10 0000},

0 000 00000 0g620000

e12 + fi2 =s 2912, fi12 =2 926

—— cococo

= {le12, f12,912,962] | e12 + fi12 =8 2912, f12 =2 g26}
we fix the R-linear basis
(h21, A2t B2t R = {[2,2,2,1], [0,4,2,0], [0,0,4,0], [0,0,0,2] } .
Our fixed R-linear basis (h?%, h3', h3', h3!) of Hompgs, (P2, P1) we get via the canonical isomorphism from
elA(g)eg to Hompgg, (P2, P1).

Describing matrices of the homomorphisms occurring in these bases can be found in the digital appendix.
To view them, load Homs_S5_loc2.

For example, the elements of the basis (h$!, h3!, h3', h3!) of Homgs, (Ps, P1) are denoted Hom[2,1] [1],
Hom[2,1][2], Hom[2,1] [3], Hom[2,1] [4], the first two entries labelling the projective modules, the
last one the number of the homomorphism in the ordered basis. The elements of the basis (1,h3) of
Hompgs, (Ps, P3) are denoted Hom[3,3] [1]1, Hom[3,3] [2], where the former is the identity.

For Hompgs, (Py, P1), Hompgs, (P2, P») and Hompgs, (Py, P2), the notation works analogously.
The operating matrices can be found in the file main_S5_loc2.
They can e.g. be used to check the RSs-linearity of the maps between P;, P, and P derived above.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P, and P are
denoted rhoP1, rhoP2,rhoP3, respectively.
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E.g. for the operating matrices on P, , call
rhoP1(S5P!sigma) ;

for an element sigma of Ss. Analogously for P, Ps, Py and Ps.

To check that the matrices found above represent RSs-linear maps between the respective projective
modules, follow these steps:

load main_S5_loc2;
load Homs_S5_loc2;

[rhoP1(sigma)*Homs[1,1]1[i] eq Homs[1,1][i]l*rhoP1(sigma):sigma in {S5P!(1,2),85P!(1,2,3,4,5)},i in [1..8]];
[rhoP2(sigma)*Homs[2,2] [i] eq Homs[2,2][i]*rhoP2(sigma):sigma in {S5P!(1,2),85P!(1,2,3,4,5)},i in [1..31];

[rhoP1(sigma)*Homs[1,2] [i] eq Homs[1,2][i]*rhoP2(sigma):sigma in {S5P!(1,2),85P!(1,2,3,4,5)},i in [1..41];
[rhoP2(sigma)*Homs[2,1]1[i] eq Homs[2,1][i]l*rhoP1(sigma):sigma in {S5P!(1,2),85P!(1,2,3,4,5)},i in [1..4]1];

[rhoP3(sigma)*Homs [3,3] [i] eq Homs[3,3][i]*rhoP3(sigma):sigma in {S5P!(1,2),S56P!(1,2,3,4,5)},i in [1..2]];

A file on how to construct those isomorphisms can be found in the digital appendix and is named

generate_Homs_S5_loc2.
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5.2.2 The tensor product P, ® P;

Lemma 119 Let E be the embedding tP,®@ Py — Py ® Py, and E be the embedding Py ®@tP, — Pi®P;.

We have a commutative diagram of Z)Ss-linear maps

Py g@ P f PP g P16 g PB@16
: ® :

P ®P f PE8 @ PP16 g pP16
5 Q .

tP1v® P f pléBS ® P§516 & P3@16

with A, B, B isomorphisms, and the describing matrices
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Recall that R := Z) .
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Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the

result via Magma.

Let Q := PP® @ PP @ P{P'% . We claim that we have a commutative diagram as follows.

P @tP, n Q = Q = Q
E Q o Q Cy Q c
P& P = Q - Q = Q
E Q Cy Q Cy Q C
P® P “ Q = Q = Q

Then the isomorphisms A, B and B are given as the composites A := 95Ty, B := 97 8,77 and
B = I3 153T3_ ! We refrain from calculating the occurring inverses explicitly, for their entries are rather
big.

So we have to show commutativity of all six quadrangles, RSs-linearity for all maps involved, and lo-

cal invertibility for all horizontal maps. The functions and operating matrices necessary to prove the
local invertibility, the RSs-linearity and the commutativity can be found in the files main_S5_loc2 and
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main_S5_loc2_P1loP1. The matrices for this diagram are contained in Diagram_S5_loc2_P1loP1_parti,
Diagram_S5_loc2_PloP1_part2 and Diagram_S5_loc2_PloP1_part3.

We denote the maps 91, 92, U3 as theta_1, theta_2, theta_3, respectively; the maps F, Cy, Cs, C we
denote as E1, C1_1, C1_2, C1; the maps E, Cy, Cs, C as E2, C2_1, C2_2, C2. The maps Si, Ss, T1, T,
T3 we denote as S1, S3, T1, T2, T3, respectively.

The embedding F is defined as the Kronecker product of the embedding i; : tP; — P; and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding E is defined
as the Kronecker product of idp, and the embedding i; : tP; — Pj.

The representations, i.e. the maps sending group elements to operating matrices, on P;, P», P3 are
denoted rhoP1, rhoP2, rhoP3, respectively. The representations on tPy, tP», tP3 are denoted rhorP1,
rhorP2, rhorP3, respectively.

The representations on P, @ P, tPy ® P, P, ® tP; are denoted op_plopl, op_rplopl, op_plorpi,
respectively. The operating matrix of a group element on such a tensor product is defined as the tensor
product of the operating matrices on the tensor factors.

For example, for the operating matrices on P; ® P; call
op_plop1(SEP!sigma) ;

for an element sigma of S5. The other maps work the same way.

The representation on the direct sum Q = Pfeg &) PQEB16 &) P§516 is denoted op_proj_sum_pipl. The
operating matrix of a group element is defined as the block diagonal matrix containing the operating
matrices of the summands.

To verify the claim, follow these steps:
load "main_S5_loc2";

load "main_S5_loc2_PloP1";

load "Diagram_S5_loc2_P1loP1";

[rhorP1(sigma)*il eq il*rhoPi(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El := KroneckerProduct(il,MatrixRing(Rationals(),24)!1);
E2 KroneckerProduct (MatrixRing(Rationals(),24)!1,i1);

[op_rplopl(sigma)*El eq El*op_plopl(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];
[op_plorpi(sigma)*E2 eq E2*op_plopl(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];

//first column of the diagram:

//commutativity:
theta_3*El eq Cl_l*theta_2;
theta_1*%E2 eq C2_1*theta_2;

//RS5-linearity
[op_proj_sum_pilpl(sigma)*theta_3 eq theta_3*op_rplopl(sigma):sigma in {S5P!(1,2),55P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*theta_1 eq theta_ilxop_plorpl(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*theta_2 eq theta_2xop_plopl(sigma):sigma in {SEP!(1,2),S5P!(1,2,3,4,5)}];
[op_proj_sum_pilpl(sigma)*Cl_1 eq Cl_1*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*C2_1 eq C2_1*op_proj_sum_plpi(sigma):sigma in {SB6P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc2"
loc_inv(theta_1,2);
loc_inv(theta_2,2);
loc_inv(theta_3,2);
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//second column of the diagram:

//commutativity:
Ci_1 eq S3%C1_2;
C2_1 eq S1%C2_2;

//RS5-linearity
[op_proj_sum_plpl(sigma)*C1_2 eq C1_2*op_proj_sum_plpi(sigma):sigma in {SB6P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_pilpl(sigma)*C2_2 eq C2_2%op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*S1 eq Sl*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*S3 eq S3*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility
loc_inv(S1,2);
loc_inv(S3,2);

//third column of the diagram:

//commutativity:
T3xC1_2%T2 eq C1;
T1%C2_2*T2 eq C2;

//RS5-linearity
[op_proj_sum_plpl(sigma)*Cl eq Cl*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*C2 eq C2*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*T1 eq Tl*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*T2 eq T2*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plpl(sigma)*T3 eq T3*op_proj_sum_plpl(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility
loc_inv(T1,2);
loc_inv(T2,2);
loc_inv(T3,2);

Remark 120 Using Magma, we can verify that

1%

D, ® D,

I
S

C
Coke -
r( o )

Coker(C) ~ Coker(C) = Db = P,

with Loewy layers already known.
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5.2.3 The tensor product P, ® P,

Lemma 121 Let E be the embedding tP, ® P, — Py Ps, and E be the embedding Py @tPy — P ® Ps.

We have a commutative diagram of Z)Ss-linear maps

P g@ Py f p1@4 ® P£®12 @ P3@12
: e é

P @ Py A P g pP12 g pO12
B Q .

tP® Py 5 Pt @ pP12 g pP12

with A, B, B isomorphisms, and the describing matrices

£ T T T
I Y D
R R M

Sl
I
L R N
I
e R
R D
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Co= oo, I
........... i
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i
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Recall that R :=Z) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the

result via Magma.

Let Q := PP* @ P'? @ P2 . We claim that we have a commutative diagram as follows.

9 ~
Py @tPQ Nl Q 5 Q = Q

]
G
ot
@
Q
G
Qu

P& Py = Q - Q = Q
o o ko |
) 9 ~ T:

P @ Py = Q % Q - Q

Then the isomorphisms A, B and B are given as the composites A := 05Ty, B := 9757, and
B = ¥y 1S3T3_ ! We refrain from calculating the occurring inverses explicitly, for their entries are rather
big.

So we have to show commutativity of all six quadrangles, RSs-linearity for all maps involved, and lo-
cal invertibility for all horizontal maps. The functions and operating matrices necessary to prove the
local invertibility, the RSs-linearity and the commutativity can be found in the files main_S5_loc2 and
main_S5_loc2_P1oP2. The matrices for this diagram are contained in Diagram_S5_loc2_P1oP2_part1,

Diagram_S5_loc2_P1loP2_part2 and Diagram_S5_loc2_P1loP2_part3.

For notations, see proof of Lemma, 119.

To verify the claim, follow these steps:

load "main_S5_loc2";

load "main_S5_loc2_PloP2";
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load "Diagram_S5_loc2_P1loP2";

[rhorP1(sigma)*il eq il*rhoPi(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[rhorP2(sigma)*i2 eq i2*rhoP2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El
E2

KroneckerProduct(il,MatrixRing(Rationals(),16)!1);
KroneckerProduct (MatrixRing(Rationals(),24)!1,i2);

[op_rplop2(sigma)*El eq El*op_plop2(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];
[op_plorp2(sigma)*E2 eq E2%op_plop2(sigma):sigma in {S5P!(1,2),55P!(1,2,3,4,5)}];

//first column of the diagram:

//commutativity:
theta_3*E1 eq C1_1x*theta_2;
theta_1*E2 eq C2_1*theta_2;

//RS5-linearity
[op_proj_sum_pilp2(sigma)*theta_3 eq theta_3*op_rplop2(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*theta_1 eq theta_ilxop_plorp2(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*theta_2 eq theta_2%op_plop2(sigma):sigma in {S5P!(1,2),S5P!(1,2,3,4,5)}];
[op_proj_sum_pilp2(sigma)*Cl_1 eq Cl_1*op_proj_sum_plp2(sigma):sigma in {S56P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*C2_1 eq C2_l*op_proj_sum_plp2(sigma):sigma in {SBP!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc2"
loc_inv(theta_1,2);
loc_inv(theta_2,2);
loc_inv(theta_3,2);

//second column of the diagram:

//commutativity:
C1_1 eq S3%C1_2;
C2_1 eq S1%C2_2;

//RSs-linearity
[op_proj_sum_pilp2(sigma)*C1_2 eq Cl_2%op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*C2_2 eq C2_2%op_proj_sum_plp2(sigma):sigma in {SB6P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*S1 eq Sl*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*S3 eq S3*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility
loc_inv(S1,2);
loc_inv(8S3,2);

//third column of the diagram:

//commutativity:
T3xC1_2*T2 eq C1;
T1xC2_2%T2 eq C2;

//RSs5-linearity
[op_proj_sum_plp2(sigma)*Cl eq Cl*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*C2 eq C2*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*Tl eq Tl*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*T2 eq T2*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_proj_sum_plp2(sigma)*T3 eq T3*op_proj_sum_plp2(sigma):sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility

loc_inv(T1,2);

loc_inv(T2,2);

loc_inv(T3,2); O
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Remark 122 Using Magma, we can verify that

C
Coker(| . |) = Di1®Dy = Dy,

C
Coker(C) ~ DioP = P,
Coker(é’) = pl [ D2 = p2®4 &b ]53694 y

with Loewy layers already known.

5.2.4 The tensor product P, ® P;

Lemma 123 Let E be the embedding tP; ® P3 — Py ® Ps3, and E be the embedding Py ®tP; — P, ® Ps.

We have a commutative diagram of Z3)Ss-linear maps

P, @ P z J e

: O ;

P ®Ps f P2®8@P§98

0k

P ® P b P @ PES

with A, B, B isomorphisms, and the describing matrices

[ S 7 S )
R e B
S N 2
e B
B R 20
..... T Ce e 20
...... ... ...... B
....... . ... ... ~ e
Co= T 2. .. ... » C= T 2 . ... ...
........ 1...... 2.0 ...
.......... 1..... L2
........... 1.. A
............ 1.. 2.
............. 1.. Y 1 5 1.
.............. 1. o O
............... 1 . |

Recall that R := Z) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

We have to show local invertibility and RSs-linearity of the maps A, B, and B, the RSs-linearity of E, E,
C and C, and the commutativity of the diagram. The functions and operating matrices necessary to prove
the local invertibility, the RSs-linearity and the commutativity can be found in the file main_S5_loc2,
the matrices for this diagram in the file Diagram_S5_loc2_P10oP3 .
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The embedding E is defined as the Kronecker product of the embedding 41 : tP, — P; and idp,. An
embedding in the chosen bases can be found in the files and is denoted i1. The embedding E is defined
as the Kronecker product of idp, and the embedding i3 : tPs — Ps, deoted 1i3.

The representations, i.e. the maps sending group elements to operating matrices, on Py, P», P3 are
denoted rhoP1, rhoP2, rhoP3, respectively. The representations on tP;, tP,, tP3; are denoted rhorP1,
rhorP2, rhorP3, respectively.

The representations on P} ® P3, tP; ® P35, P| ® tP; are denoted op_plop3, op_rplop3, op_plorp3,
respectively. The operating matrix of a group element on such a tensor product is defined as the tensor
product of the operating matrices on the tensor factors.

For example, for the operating matrices on P; ® P call
op_plop3(S5P!sigma) ;

for an element sigma of S5. The other maps work the same way.

The representation on the direct sum PQ658 P P?fBS is denoted op_proj_sum_p1p3. The operating matrix
of a group element is defined as the block diagonal matrix containing the operating matrices of the
summands. The maps A, B, C, E are denoted A, B1, C1, E1, respectively; the maps B, C, E are denoted
B2, C2, E2, respectively.

To verify the Lemma, follow these steps:

load "main_S5_loc2";
load "main_S5_loc2_P1oP3";
load "Diagram_S5_loc2_P1loP3";

[rhorP1(sigma)*il eq il*rhoP1(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[rhorP3(sigma)*i3 eq i3*rhoP3(sigma) : sigma in {S5P!(1,2), S6P!(1,2,3,4,5)}];

E1l
E2 :

KroneckerProduct(il,MatrixRing(Rationals(),8)!1);
KroneckerProduct (MatrixRing(Rationals(),24)!1,i3);

[op_rplop3(sigma)*El eq El*op_plop3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_plorp3(sigma)*E2 eq E2*op_plop3(sigma) : sigma in {S56P!(1,2), S5P!(1,2,3,4,5)} 1;

//commutativity:
E1*A eq B1xC1;
E2*A eq B2x*(C2;

//RSs-1linearity
[op_proj_sum_plp3(sigma)*Cl eq Cl¥op_proj_sum_plp3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_proj_sum_plp3(sigma)*C2 eq C2xop_proj_sum_plp3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_rplop3(sigma)*B1l eq Bl*op_proj_sum_pip3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_plorp3(sigma)*B2 eq B2*op_proj_sum_plp3(sigma) : sigma in {S6P!(1,2), S6P!(1,2,3,4,5)} 1;
[op_plop3(sigma)*A eq A*op_proj_sum_plp3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;

//local invertibility; loc_inv see "main_S5_loc2"
loc_inv(B1,2);
loc_inv(B2,2);
loc_inv(A,2);
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Remark 124 Using Magma, we can verify that

C
Coker(| . |) & Di®D3 = Ds,

C
Coker(C) ~ DieP = P,
Coker(C) ~ PeDy = PPoPP,

with Loewy layers already known.

5.2.5 The tensor product P, ® P

Lemma 125 Let E be the embedding tPo @ Py — Po® P,
We have a commutative diagram of Z)Ss-linear maps

P, ® tPy f PP g PP @ PY°
B Q ¢

Py ® Py < PP o PP @ PP°
. Q c

P ® Py = PP @ PP @ PP

with A, B, B isomorphisms, and the describing matrices

r2 . 7 T2 L
S o T
I T T N
2 B
! o T e I
B O B
S S
R T B N DA N A
...... .. ........ _ e S I
C=1...|...... i O T . ...
....... 2. ... o2
....... 2. ... e 2
.......... 2. ... R (A
........... 1..... A
....... 1. 2.
............ 1.. A
............. 1.. I
.............. 1. T O
P P 1] I O O 1

Recall that R :=Z) .

and E be the embedding Po@tPy — Po® Ps.

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc2 and main_S5_loc2_P20P2 the matrices for this
diagram in the file Diagram_S5_loc2_P20P2 .
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The maps and matrices are denoted analogously to those for P ® P, see proof of Lemma 123.

To verify the Lemma, follow these steps:

load "main_S5_loc2";

load "main_S5_loc2_P20P2";

load "Diagram_S5_loc2_P20oP2";

[rhorP2(sigma)*i2 eq i2*%rhoP2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El
E2

KroneckerProduct (i2,MatrixRing(Rationals(),16)!1);
KroneckerProduct (MatrixRing(Rationals(),16)!1,i2);

[op_rp2op2(sigma)*El eq El*op_p2op2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p2orp2(sigma)*E2 eq E2*op_p2op2(sigma) : sigma in {SHP!(1,2), S5P!(1,2,3,4,5)}];

//commutativity:
E1*A eq B1xC1;
E2*A eq B2xC2;

//RSs5-linearity
[op_proj_sum_p2p2(sigma)*Cl eq Cl*op_proj_sum_p2p2(sigma) : sigma in {S5P!(1,2), Sb6P!(1,2,3,4,5)}];
[op_proj_sum_p2p2(sigma)*C2 eq C2*op_proj_sum_p2p2(sigma) : sigma in {S5P!(1,2), SBP!(1,2,3,4,5)}];
[op_rp2op2(sigma)*Bl eq Bl*op_proj_sum_p2p2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p2orp2(sigma)*B2 eq B2*op_proj_sum_p2p2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];
[op_p2op2(sigma)*A eq A*op_proj_sum_p2p2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

//local invertibility; loc_inv see "main_S5_loc2"
loc_inv(B1,2);

loc_inv(B2,2);
loc_inv(A4,2);

Remark 126 Using Magma, we can verify that

C _
Coker( o ) ¥ Dy®Dy = P3pX,

Coker(C) ~ Coker(C) = DyoP, = PP aPPaoPpys.
D,
D,
with X a module of dimension 8, with Loewy layers D,
D,

Dy
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As operating matrices in lower block-triangular form, we get for X

1,0,0 000,00
0111000 000,
1111100 11010
0,0,0 001,00
0'1'1100'0'0
000011000

1,0,1010,1,0

0100010101
1,0,0 000,00
A1l nnninTn
1,1,000000
1101100000
1,1,1011,0,0
11111010010
70\0\9 l } 9\0\07
110,000 010

1'0'1000'1'1

S5 — GLg(]FQ) s (1,2,3,4,5) —

(1,2) —

5.2.6 The tensor product P, ® P3

Lemma 127 Let E be the embedding tPo® P3s — Po® Ps, and E be the embedding P, QtP; — Po® Ps.
We have a commutative diagram of Z3)Ss-linear maps

P, ©tPs = PES @ PPt
; O ‘

Py @ Py 4 PES @ P!
Ok
tP2U®P3 f PQGBG@P:?M

with A, B, B isomorphisms, and the describing matrices
r2..... o] r1..... ]
. 2. 2.
1.. 2.
1. 1..
1. ~ . 2.

Co=1| ... 1 s Co= 00 1. .
...... 1 A
...... 1 e e e 2.
...... 1. 1

L. - 1] L. 1]

Recall that R :=Z) .

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.
The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
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commutativity can be found in the file main_S5_loc2 and main_S5_loc2_P20P3 the matrices for this
diagram in the file Diagram_S5_loc2_P20P3 .
The maps and matrices are denoted analogously to those for P; ® Ps, see proof of Lemma 123.

To verify the Lemma, follow these steps:

load "main_S5_loc2";
load "main_S5_loc2_P2oP3";
load "Diagram_S5_loc2_P20P3";

[rhorP2(sigma)*i2 eq i2*rhoP2(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}]1;
[rhorP3(sigma)*i3 eq i3*rhoP3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

El := KroneckerProduct(i2,MatrixRing(Rationals(),8)!1);
E2 KroneckerProduct (MatrixRing(Rationals(),16)!1,1i3);

[op_rp2op3(sigma)*El eq Elxop_p2op3(sigma) : sigma in {SH5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_p2orp3(sigma)*E2 eq E2*op_p2op3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;

//commutativity:
E1xA eq B1xC1;
E2%A eq B2x%C2;

//RSs5-linearity:
[op_proj_sum_p2p3(sigma)*Cl eq Cl*op_proj_sum_p2p3(sigma) : sigma in {S6P!(1,2), S6P!(1,2,3,4,5)} 1;
[op_proj_sum_p2p3(sigma)*C2 eq C2*op_proj_sum_p2p3(sigma) : sigma in {S5P!(1,2), SbP!(1,2,3,4,5)} 1;
[op_rp2op3(sigma)*B1l eq Bl*op_proj_sum_p2p3(sigma) : sigma in {SBP!(1,2), S5P!(1,2,3,4,5)} 1;
[op_p2orp3(sigma)*B2 eq B2*op_proj_sum_p2p3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_p2op3(sigma)*A eq A*op_proj_sum_p2p3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;

//local invertibility; loc_inv see "main_S5_loc2"
loc_inv(B1,2);
loc_inv(B2,2);
loc_inv(A,2);

Remark 128 Using Magma, we can verify that

C _
Coker(| . |) & Dy®D3 = P,

C
Coker(C) ~ DyoPy = PP,
Coker(C) ~ PoDs = PP oP?,

C _
with Loewy layers already known. Note that Coker( % ) is projective over A (s, although neither P,
nor P; belong to a defect-0 block.
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5.2.7 The tensor product P; ® P

Lemma 129 Let E be the embedding tP3s® P3 — P3® Ps, and E be the embedding P3s®@tP; — P3® Ps.

We have a commutative diagram of Z)Ss-linear maps

B
fﬁ ® tl?g = Iﬁ$2 (S¥) }1?2

Proof. The assertion results from a Magma calculation [3]. We explain the necessary steps to verify the
result via Magma.

The functions and operating matrices necessary to prove the local invertibility, the RSs-linearity and the
commutativity can be found in the file main_S5_loc2 and main_S5_loc2_P30P3 the matrices for this

diagram in the file Diagram_S5_loc2_P30oP3 .
The maps and matrices are denoted analogously to those for P; ® P, see proof of Lemma 123.

To verify the Lemma, follow these steps:

load "main_S5_loc2";
load "main_S5_loc2_P30P3";
load "Diagram_S5_loc2_P3oP3";

[rhorP3(sigma)*i3 eq i3*rhoP3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];

E1l
E2

KroneckerProduct(i3,MatrixRing(Rationals(),8)!1);
KroneckerProduct (MatrixRing(Rationals(),8)!1,i3);

[op_rp3op3(sigma)*El eq El*op_p3op3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_p3orp3(sigma)*E2 eq E2*op_p3op3(sigma) : sigma in {SH5P!(1,2), S5P!(1,2,3,4,5)} 1;

//commutativity:
E1*A eq B1xC1;
E2%A eq B2x%C2;

//Z(2)Ss-1linearity

[op_proj_sum_p3p3(sigma)*Cl eq Cl*op_proj_sum_p3p3(sigma) : sigma in {S6P!(1,2), S6P!(1,2,3,4,5)} 1;
[op_proj_sum_p3p3(sigma)*C2 eq C2*op_proj_sum_p3p3(sigma) : sigma in {S5P!(1,2), SbP!(1,2,3,4,5)} 1;
[op_rp3op3(sigma)*Bl eq Bl*op_proj_sum_p3p3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_p3orp3(sigma)*B2 eq B2*op_proj_sum_p3p3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
[op_p3op3(sigma)*A eq A*op_proj_sum_p3p3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)} 1;
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//local invertibility; loc_inv see "main_S5_loc2"
loc_inv(B1,2);
loc_inv(B2,2);
loc_inv(4,2);

Remark 130 Using Magma, we can verify that

C
é])

COkeI'(C) = Coker(C) =2 D3® P3 = ]51 S¥) pg ,

IR

Coker( D;®@D3; = D3 X,

D,
Dy

D
with X a module of dimension 12, with Loewy layers !

1
Do
Dy

As operating matrices in lower block-triangular form, we get for X

1,000 0,0,0,0 00 0,0

0100100000000
1/1101:0000000010
0,0111,0,0,0000,0
1110011000000 010

i el ol Rl Rt
1,0111,1,0,0000,0
S —  GL»(F 1,2,3,4,5) +—— Bl bl el gl Al

5 12(F2), (1,2,3,4,5) 000010100000

00101/1/00001 00
0,1100,0,1,1101,0
1100000000011 110
1,0001,1,1,100 1,0

1'1000'0'1'0111'1

1,00 0 0,0,0,0 00 0,0
0/1100!0/00000/0
010100000000 010
1/1101,0,0,000 0,0
1101010101000 010,
0,0100,1,00000,0
B2 = 1 001100000
141100/000:1100:0
0,0100,0,00100,0
0101111411110 110
1,1011,0,1,1010,0

1000011001001




Chapter 6

The Krull-Schmidt Algorithm

6.1 Lemmas on idempotents

Let E be a ring.

Lemma 131 If E ‘E does not contain any nontrivial idempotents, then neither does E.

Proof. Assume there exists an orthogonal decomposition 1 = ¢’ + ¢” into idempotents in E such that
e’ # 0 and e’ # 0.

We have e’ ¢ tE, because otherwise 1 — €’ is invertible by Lemma 182, whence (1 — ¢’)e’ = 0 implies
e’ = 0, which is not the case.

Likewise e” ¢ tE.

Denote by ¢ : E — E/tE, x — x + tE the residue class map. Then 1o = €@ + €”¢ is an orthogonal
decomposition into idempotents, and €', ¢”p # 0, which is a contradiction. O

Lemma 132 Let e € E be an idempotent. If e is a unit in E, thene = 1g .

Proof. Since e is an idempotent, we have (1 — e)e = 0. Because e is a unit, we obtain that 1 —e = 0, and
thus e = 1. O

Lemma 133 Let e € E be an idempotent. If (1g — e) is a unit in E, then e = 0p .

Proof. Since e is an idempotent, we have (1 — e)e = 0. Because 1 — e is an isomorphism, we obtain that
e=0. O

Corollary 134 Let E be local. Suppose given an idempotent e € . Then e =1 ore =0g.

Proof. Assume e to be invertible. Then e = 1 with Lemma 132.

Now assume e to be not invertible. Then 1 —e is invertible, since FE is local. Then e = 0 with Lemma 133.
O

Lemma 135 Suppose E to be an integral domain. Suppose given an idempotent e € E. Then e =1g or

GZOE.

Proof. Since e is an idempotent, we have e(1 —e) = 0. Since F is an integral domain, we have that e = 0
ore—1=0. O

101
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Lemma 136 Suppose given an idempotent e € E. Then e is primitive if and only if Og and e are the

only idempotents in eFe.

Note that eFe is not required to be local.

Proof. Ad "=". Assume that there exists an idempotent f € eFe with f # 0 and f # e. Since

(e=f)? = e—ef—fetf? = e—f—f+f = e~
(e=f)f = ef—f = f=f =0
fle=f) = fe—f? = f-f =0

the decomposition e = f+(e— f) is an orthogonal decomposition into idempotents. This is a contradiction

to the primitivity of e.
Ad "<", Let e = ¢’ + ¢” be an orthogonal decomposition into idempotents.

Then € = (¢/ + ¢")e/(e/ + €") = ee’e € eEe. Therefore € € {0, e}, and so e is primitive. O

6.2 A Krull-Schmidt-type decomposition method

6.2.1 Detecting an isomorphism

Let B be an additive category.

Lemma 137 Let X, Y, Z € obj(B) with
xLy %z

and g a nonisomorphism. Further, suppose X 20 and Endg(Y') to be local. Then the composite fg is a

nonisomorphism.

Proof. Assume that X J9, 7 s an isomorphism. Then e := g-(fg)™ - f is an idempotent endomorphism
on Y, since e? =g (fg)' f - g(fg) ' f = g(f9) ' f=e.
1

Assume further that e is an isomorphism. Then with Lemma 132, we have e = idy. Thus, we obtain
e=g-((fg)'f) =idy and ((fg)'f) 9= (fg)* - (fg) = idz by definition, so that g is an isomorphism.

This is a contradiction. Therefore, e is a nonisomorphism.

Now assume that id — e is an isomorphism. Then with Lemma 133, e = Oy. Thus,

0 = feg(fg)™" = fo(fo)'fo(fg)" = idx .
This is a contradiction, for X 2 0. Therefore, id — e is a nonisomorphism.

Alltogether, we now have idy = e + (idy —e), with idy € U(End(Y)) and e and (idy —e) non-units.
This is a contradiction to our initial assumption with Remark 192, for End(Y") is local. Therefore, fg is

a nonisomorphism. [

Lemma 138 Let X, Y € obj(B) with

and f, g nonisomorphisms and Endg(X) local. Then f + g is a nonisomorphism.

Proof. If X 2Y, then there is nothing to show, since no isomorphism exists.
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Solet X =Y. Let X — Y be an isomorphism. For f, g are nonisomorphisms, so are fu' and gu™,

which are in End(X). Thus, fu!+ gu! = (f + g) - u! is a nonisomorphism with Remark 192, since
End(X) is local. Hence, f 4 ¢ is a nonisomorphism. O

The following method is a variant of the proof of Krull-Schmidt found in [2, Th. 1.4.3].
Lemma 139 Let X1,..., X, € obj(B) with local endomorphism rings; cf. Definition 189. Let

e € EndB(X1 S5 @Xn)\{()}
be an idempotent. We write it as a matriz e = (eqp)a,p , where eqp : Xo —> Xy for a, b € [1,n].

Then there ezist i, j € [1,n] such that e;; is an isomorphism.

Proof. First, we remark that X; 2 0 for ¢ € [1, n].
Now, assume that e, is not an isomorphism for all a, b € [1,n].

Let f:=idx,e..ex, —e=1—-e. Writing f = (fap)a,p € Endp(X1 @ ... ® X,,), we obtain

idx, —€qa fora=0»
fab =
—€ab fora#b.

If f is an isomorphism then e # 0 implies fe # 0, but fe = (1 — e)e = 0. This is a contradiction.
So it remains to show that f is an isomorphism.

Now faq is an isomorphism for every a since Endg(X,) is local; cf. Remark 192. In contrast, fup is not
an isomorphism if a # b. So we have a matrix f with isomorphisms on the main diagonal, and all other

entries consisting of nonisomorphisms.

By row and column operations, corresponding to composition with automorphism from left and right,
this matrix can be transformed into the identity endomorphism, as we shall describe in what follows.
This then shows that f was already an isomorphism.

We begin with the last row, and, by multiplying the row with the isomorphism £}

, produce the entry
fm = 1. Off the diagonal, we have the composite of an isomorphism and a nonisomorphism, so we still
obtain nonisomorphisms there; cf. Lemma 137. We now use fm = 1 to clear the last column by row
operations. Off the diagonal, we obtain sums of the form kl+m with k, [ and m nonisomorphisms. Using
Lemma 137, kl is a nonisomorphism, and therefore according to Lemma 138, kl 4+ m is a nonisomorphism.
On the diagonal, we obtain sums of the form kIl + m with k, [ nonisomorphisms and m an isomorphism.

Using Lemma 137, kl is a nonisomorphism, and thus kI + m is an isomorphism again.

Then, we use fnn =1 to clear the last row by column operations, without any effect on the other entries

of f, since we operate with a column that has zero entries everywhere but on the diagonal.

By repeating this steps for every row, our matrix simplifies to idx,e. ax,, - O

Definition 140 We say that idempotents split in B if for V' € obj(B) every idempotent ¢ € Endz(V)
splits, meaning that there are W, W’ € obj(B) and an isomorphism f: V — W @ W' such that

v gy
le O |
f
_—
Ve ~ WoeWwW
1 h
- (®)

commutes.
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6.2.2 The method in general

Proposition 141 Let B be an additive category in which idempotents split; cf. Definition 140.
Suppose given' Y € obj(B).
Let n > 1. Suppose given X; € obj(B) such that Endg(X;) is local for i € [1,n].

Suppose that

Yy ~ (}) X; .

i€[1,n]
Let Z be a direct summand of Y. Then there is I C [1,n] with
7 =~ @Xi.
iel
Proof. Choose

q: Y (q1¥>qn) @ X;
i€[1,n]

y — (Yai,-- - Yqn)

J1
in

j : @ Xi Y
i€[1,n]
(l‘l,...,l‘n) — x1]1++xn]n,
with
jq =id D X and qj = idy .
i€[l,n]
We consider the case Z 2 0. Choose
Y Y

V4
such that tm = 1. Writing e := m € Endg Y, we have e? = mume = w1 = e, so e is an idempotent. We
have e # 0, since otherwise idyz = vmm = temr = 0, whence Z would be isomorphic to 0.

Let C:={ie[l,n] : jor =0} C[1,n].

For a, b € [1,n], we let j, be the embedding of X, to € X; and ¢, be the projection of @ X; to Xj.
i€[1,n] i€[1,n]
According to Lemma 139 there are a, b € [1,n] such that we obtain the following commutative diagram

with an isomorphism €., = j, e qp .

® X~ P Xila

Ja |
\ie[l,n] i€[1,n]
X, —2 X,
Hence, we get the diagram
€ab
X Y Y Xb
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Let 1 := 1 gy €.} jo . Since
2 _ S 1 1. 15 =1 - 1.
€1 = LGb€apJaTlqpCapJaT™ = LQbCapCabCapla™ = LQpCapJa™ = €1,

€1 is an idempotent endomorphism of Z. It splits, and so we have the commutative diagram

(t)

In particular, (;Z,//) (9'g") = ((1)(1)) and (g'g") (ile’/’) =1
!

We claim that j,mg’ : X, — Z' and that j,mg"” L.

\

Considering the diagram

we have

(W'vqyégy)(Jamg') = Werg

and on the other hand, using that 1 = (¢’ ¢") (g/l,) =g'h' +¢"h", ie. that ¢B' =1—g"h",

(Jamg ) (W' vqyégy) = jam (1 — "B ) qy €,
€ab
= Jamtqy Eqh, — Jag" h" Ly €

So it suffices to show that j,mg” L.

We find €1 (¢'¢") = (¢ 9”) (60), i-€. (s10'e19”) = (4'0). In particular, ¢qy, €, jomg” = 19" =0. So

Jamg" = Jamiqy Egpjag” = 0.
—
=€abdb
This proves the claim.

We consider the general case again, allowing for Z =0 or Z 2 0.

!
We now proceed by descending induction over |C| to show that there is an isomorphism Z &2 @  X;.
i€[1,n]\C

Basis. Let |C| = n. Then j.m = 0 for all ¢ € [1,n] and therefore (q1j1 + ...+ gnjn) ™ = 0. Thus we have

0= =1z, whence Z =0. =1
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Inductive step. Suppose |C| < n — 1. Then there exists ¢ € [1,n] \ C, so that j.m # 0. Hence 7 # 0. So

Z 20, and our claim above is applicable.

Let

be a commutative diagram.

We have 7" = h'vng” = h"g" =170 .

For any ¢ € C we get j.m = 0 and thus j.n"" = j.mg” = 0.

For ¢ = a our claim yields j,7” = j,mg" = 0; moreover, X, 2 0 and j,7¢’ : X, — Z' imply that
Jam #0,1e.a g C.

So j.m" =0 for ¢ € C' U {a}.

’

o

By induction, there exists Z"” é X, . Altogether, using our claim, we obtain
i€[1,n]\(CU{a})
Jamg’ 0 10
(g"9") ( 0 1) . (09"//>
I———>7 07— X, 07— Xi® b X — D X;.
i€[1,n]\(CU{a}) i€[l,n)\C
—

6.2.3 The Krull-Schmidt Algorithm
6.2.3.1 The algorithm

The procedure described here will be referred to as the Krull-Schmidt Algorithm. For the assertions
needed in the procedure, we refer to the proof of Proposition 141.

Let A be a ring.

Suppose given k > 0. Suppose given nonzero A-modules W, for o € [1,k]. Let X := @ W,. Let U

be a direct summand of X. ag[L,k]

We want to find I C [1, k] such that U = @ W,,.

a€l
If W, has a local endomorphism ring for « € [1, k], such a subset I exists by Proposition 141. Otherwise,
we may attempt to use the same algorithm, which then is not guaranteed to succeed — and so the
procedure is not an algorithm any longer. It will return a warning in case it breaks down.

Let ¢ be the embedding U «— X. Let p be the projection of X onto U. Then i - p is the identity on U.
Let j, be the embedding W, — X and ¢, be the projection of X onto W, for « € [1, k].
i o
U X Wa

P Ja

Step 1.

Write gg := p - 4, which is an idempotent endomorphism of X.
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If U = 0, then we are done. If U # 0, then gy # 0.
We search for a; € [1,k] and 51 € [1, k] such that f1 := ju, -p- - ¢a, is an isomorphism.
If W, has a local endomorphism ring for a € [1, k|, then such elements a; and 3, exist by Lemma 139.

If such elements «; and B; do not exist, we break the algorithm and return a warning.

h
W, X z X W,

Then &1 :=i-qp, - fi' * ja, - p is an idempotent endomorphism on U. It splits the module U into two
direct summands
U =Ue & U(l—z’;‘l) R

where Ue; is isomorphic to W, -

It remains to find I; C [1,k] \ {a1} such that U(1 —&;) = @ W, . Then we may choose I = {a;} U, .
acl;

Step 2.

Write g1 :=p- (1 — 1) - 4, which is an idempotent endomorphism of X.

If U(1 —e1) =0, then we are done. If U(1 — &) # 0, then g; # 0.

We search for as € [1,k] \ {@1} and B2 € [1, k] such that fo := jo, -p- (1 —&1)-i-qgp, is an isomorphism.

If W, has a local endomorphism ring for « € [1, k], then such elements «y and [y exist by Lemma 139,

remarking that j,, -p- (1 —&1) =0.
If such elements ag and P2 do not exist, we break the algorithm and return a warning.

Let i1 be the embedding U(1—¢1) — U. Let p; be the projection of U onto U(1 —&1). Then iy -p; = id.

f2
VVUé2 X s X Wﬂz

Jag
1—

U = U
P1 /
U(l — 81)

Then €3 :=py - 41 -7 ¢, - f2_1 “Jas * P - p1 - %1 is an idempotent endomorphism on U, orthogonal to
&1 = 1-— pP1 - ’il .

It splits the module U into three direct summands
U = Ue & Uey P U(1—61—€2),

where Ue; is isomorphic to W, for s € {1,2}.

It remains to find I» C [1,k] \ {a1, as} such that U(1 —e; —e2) = @ W, Then we may choose I =
{041}0{042}012. a€ls

Step 3.
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Write go :=p- (1 — €1 — &2) - 4, which is an idempotent endomorphism of X.
IfU(1 —e; —ez) =0, then we are done. If U(1 — g1 — e3) # 0, then g5 # 0.

We search for as € [1,k] \ {a1,a2} and B3 € [1,k] such that f3 := ja, -p- (1 —€1 —€2) - -qp, is an
isomorphism.

If W, has a local endomorphism ring for « € [1, k], then such elements a3 and (3 exist by Lemma 139,
remarking that j,. -p- (1 —e; —e3) =0 for s € {1,2}.

If such elements a3 and B3 do not exist, we break the algorithm and return a warning.

Let is be the embedding U(1 — &1 —e2) < U. Let p2 be the projection of U onto U(1 — &1 — 5). Then
’iQ P2 = id.

fs
/,//:‘\\
Wag ja3 X X 453 W53
p [
U l—e1—e2 U
p2 12
U(]. — &1 — 82)
Then €3 1= pa - 42 -1 - qg, - fL{l “ Jas P P2 - 12 is an idempotent endomorphism on U, orthogonal to

e1+ea=1—po-io.

It splits the module U into four direct summands
U=Ue ®Uesy & Ues ® U(l—¢e1 —e9—e3),

where Ue; is isomorphic to W, for s € {1,2,3}.

It remains to find I3 C [1,k] \ {a1, ag, ag} such that U(1 —e; —eg —e3) =2 @ W, . Then we may
choose I = {a;} U{as} Uf{as} Uls. el

Step > 4. Etc.
This procedure ends after < k steps.

If W, has a local endomorphism ring for a € [1, k], then the procedure ends once U(1 —e; —...—¢4) =0

for some ¢ € [0, k], i.e. once 1 = €1 +...+¢y is an orthogonal decomposition into idempotents. This yields

U= P Ve = P Wa,,

s€[1,4] s€[1,4]

for Ue, = W, for s € [1,£]. So we may choose I = {ay, ..., ag} C[1, k]

6.2.3.2 The Magma code

We will perform the Krull-Schmidt Algorithm via Magma [3] in a particular case.
Let R be a localization of Z at a maximal ideal. Let A be an R-order.

We always view localizations of the integers Magma-internally as subrings of Q, without defining that
subring explicitly.
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Suppose given k > 0. Suppose given nonzero A-lattices W, for @ € [1,k]. Let X := @ W,. Let U be

a direct summand of X. a€[L,k]

We want to find I C [1, k] such that U = @ W,,.

acl
Let ¢ be the embedding U — X. Let p be the projection of X onto U. Let j, be the embedding
W, «— X and g, be the projection of X onto W, for a € [1, k].

i da
U X We
p j(!
The Krull_Schmidt_Algorithm is a procedure that yields the subset I = {a1, ..., as}, together with

the idempotent endomorphisms €5 of U such that Ues, =2 W, and the maps j,. -p : Wy, — U for
s €[1,4].

As input data we need the following. A tuple emb containing describing matrices of the embeddings
Wa Joy XA tuple proj containing describing matrices of the projections X % W, . The variable
rank_tuple is a tuple of the ranks of the direct summands W, of X. Then rank_summand is the rank of
U. The projection X 25 U is denoted p and is given by a matrix, the embedding U —5 X is denoted i

and is given by a matrix. Finally, R = Zprime) -

Calling
Krull_Schmidt_Algorithm(emb,proj,rank_tuple,rank_summand,p,i,prime);

the output is given as a sequence of tuples of the form
<idempotent,number,embedding> ,

where idempotent is the idempotent endomorphisms €4 of U, where number is the number «, such that

Ues 2 W, ,insuch a way that 1 = > ¢, is an orthogonal decomposition into idempotents and where
s€[1,L

embedding is the monomorphism from W, to U, given as a matrix in the choses bases.

If there exists an « such that End W, is not local, then the algorithm might not yield a decompos-

tion into summands isomorphic to certain W, . In this case, the procedure is broken after Step t

and it returns the idempotents (g1, ..., e, 1 — > &g), the numbers (a3, ..., oz, 0) and the maps
s€[1,t]
(Jay Dy -+ Ja, - P, 0), together with the

WARNING: idempotent decomposition incomplete
The algorithm can also be found in the file Krull_Schmidt_Algorithm.

Q := Rationals();

Krull_Schmidt_Algorithm := function(emb,proj,rank_tuple,rank_summand,p,i,prime)

// zero just to fix the size of a sequence entry, removed at the end :

idem_vec := [*<MatrixRing(Q,rank_summand)!0,0,0>*];

r := 0; // counting variable for while-loop

// while loop done once the sum over the constructed idempotents equals 1
while &+[x[1] : x in idem_vec] ne MatrixRing(Q,rank_summand)!1 do
// success means: composed with maps in emb and proj an isomorphism has been successfully found,

// which then yields another idempotent

success := false;
r +:= 1;
next := &+[x[1] : x in idem_vec]; // sum of all idempotents constructed so far

// remaining endomorphism, turned into an idempotent of X :
g_next := p * (MatrixRing(Q,rank_summand)!l - next) * 1ij;

// (critical point for usage of larger base rings than localizations of integers)
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D_idem, S_idem, T_idem := SmithFormRat(l - next);
// embedding of the image of 1 - next
Emb_Image_1_minus_idem :=
((RMatrixSpace (Q,Rank(D_idem) ,rank_summand) ! (RowSubmatrixRange(D_idem, 1, Rank(D_idem))) *
(RMatrixSpace(Q,rank_summand,rank_summand)!T_idem~-1)));
// projection to the image of 1 - next
Proj_Image_1_minus_idem :=
RMatrixSpace(Q,rank_summand,Rank(D_idem))!ColumnSubmatrixRange(S_idem~-1, 1, Rank(D_idem));
// attempt to find an isomorphism of the form emb[j] * g_next * proj[l], for some j and some 1
// must be successful if End W, is local for every «
for j in [1..#emb] do
for 1 in [1..#projl do
if rank_tuple[j] eq rank_tuple[l] then // no isomorphism if ranks not equal
F_next := emb[j] * g_next * proj[l]l; // only quadratic F_next remain under consideration
// test whether F_next, considered as an endomorphism over the ground ring, is invertible :
if loc_inv(F_next,prime) then
emb_next := emb[j]; // fix data at j and 1
proj_next := projl[l];
a = j; // remember number of chosen summand
success := true;
break j; // attempt finished, since successful
end if;
end if;
end for;
end for;
if success then
// generating the actual idempotent on U, using the found isomorphism :
idem_next :=
Proj_Image_1_minus_idem * Emb_Image_1_minus_idem * i * proj_next * (F_next~-1) *
emb_next * p * Proj_Image_l_minus_idem * Emb_Image_l_minus_idem;
idem_vec cat:= [#<idem_next, a, emb[a] * p>*];
else // if End W, is not local for every «, the algorithm might not find an isomorphism - and if not :
print "WARNING: idempotent decomposition incomplete";
idem_vec cat:= [*<MatrixRing(Q,rank_summand)'!l - next,0,0>*];
end if;
end while;
idem_vec := idem_vec[2..r+1];
return idem_vec;

end function;

6.2.4 Decomposition of a tensor product of a lattice with a projective lattice
in the local case

6.2.4.1 The algorithm

We will now apply the Krull-Schmidt Algorithm to our problem and decompose the tensor product of a
lattice and a direct summand of RG, where G is a finite group and R is a localization of the integers at
a maximal ideal.

Note that R is a non-complete discrete valuation ring.

Let A be the image of RG under the Wedderburn isomorphism w.

Let M be an RG-lattice. Let P be a direct summand of RG.

Suppose an orthogonal decomposition 1zg = [Z ]eg into idempotents, not necessarily primitive, to be
i€l,k

known. This can be obtained e.g. using A and w™.

We want to use the Krull-Schmidt-Algorithm of Section 6.2.3.1 to decompose the tensor product M ® P,
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using the fact that a decompsition of M ® RG is easy to find.
With the isomorphism ¢ of Lemma 167, we define an isomorphism ¢ as follows.
=@
M
M ® RG — = M & RG — R®™*M & RG —— RGO™:M
Further, P being a summand of RG, we have an embedding i : M @ P — M ® RG and an projection
p: M®RG — M ® P, so that ip = 1yyep .

Use the orthogonal decomposition 1pc = > €} into idempotents of RG to obtain a direct sum decom-
1€[1,k]
position RG®™M = @ W,,sothat k = x-tk M. We denote by g, : RG®™M — W, the projection
a€ll,k]

and by j, : W, — RG®™¥M the embedding for every a.
S ¢ M
M®P _ M ® RG —> RG®kM . We .
Ja
With the isomorphism ¢ just defined, we obtain the embedding ¢ :=i-@: M @ P — RG®™M and the
projection 7 := ¢! - p: RG¥™*M 5 M @ P. We define gg := 7 - ¢.

Since t-m=14-¢-@ ' -p=1and since g is an idempotent endomorphism, we may, if End Wy, is local for
a € [1, k], apply Lemma 139, which yields a1, 51 such that fi := ja, - go - ¢, is an isomorphism.
If there exists « such that End W, is not local, we still attempt to find such an isomorphism, which might

turn out to be unsuccessful, however, yielding a break and a warning.

f1

~

90

RG® kM W,

M® P

981

We obtain an idempotent endomorphism on M ® P as 1 :=t-qg, * fi* * ja, * 7

By iteration, as described in Section 6.2.3.1, we find an orthogonal decomposition into idempotents
lmep =D &;, yielding a decomposition into indecomposable projectives of M ® P, provided an isomor-

phism fs can be found in every Step s. Again, if End Wy, is local for « € [1, k], then this is possible.

Remark 142 Suppose that the Wedderburn isomorphism maps RG into a finite direct product I' of
matrix rings over R, so that A C I' is an R-suborder such that F/A is of finite length as an R-module,
i.e. such that rkp A =1kp ' = |G|.

Let W, be indecomposable for o € [1,k]. Then by Lemma 233, each endomorphism ring End(W,,) is

local, so that the requirements of Lemma 139 (and of Proposition 141) are met.
Remark 143 Suppose the requirements of Remark 142 to hold for RG.

Let P be a finitely generated indecomposable projective A-module, let 1y = > ¢e; be an orthogonal

decomposition into primitive idempotents. 1€[L,k]

Then we can find s € [1, k] so that P = e A.

Proof. First proof, using Proposition 141.
Since P is projective, we can find £ > 1 so that P is a summand of A®* =2 P(e;A)®*. With Proposi-

tion 141, we can find direct summands such that P = e,,A® ... ® e, A with v; € {1,...,k}. Since P is

indecomposable, it is isomorphic to only one summand.
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Second proof, using only Lemma 139.
Since P is projective, we can find £ > 1 so that P is a summand of A®* = @ (e;A)®¢. Let W, := e;A for
every i € [1,k]. Write A®¢ = ( @ W,)® = @ W
i€[LK] i€[LK]
Then we have the projection and the embedding

b wH - p - P wEt.
i€[L,K] S

w1

: > and ¢ =: (v1...vs).

Us

Write m =: (

We have the idempotent matrix e := m = (u;v;);;: @ WP — @ W
i€[1,k] i€[1,k]

With Lemma 139, we can find ¢, j such that w;v; is an isomorphism.

-1

eh—>p o ejA ——=¢;A
W
=f

Thus, e;A is a summand of P. Since P is indecomposable, P is isomorphic to e; A with isomorphism ;.
Third proof, using Lemma 220 from the appendix.

By Remark 208, RG is stable. So the assertion follows from Lemma, 220. O

Remark 144 Krull-Schmidt is also true in a more general form. For this, see [9, Cor. VL.3.3].

6.2.4.2 The Magma code

We continue our Magma [3] implementation.

The function Application generates the information for the algorithm Krull_ Schmidt_Algorithm. It
needs the Wedderburn isomorphism rho, being a function that maps each group element to a tuple
of matrices, having image A; a tuple ez containing an orthogonal decomposition 15 = Y. e; into
1€[1,K]
idempotents of A, written as vectors in the standard basis of the direct product of the matrix rings; an

idempotent £ of A; a function rhoM mapping each group element to a matrix acting on an RG-lattice M,

the group G given as a permutation group, and the prime at which we localize the integers.

Write e;w := €} for i € [1, k).

Q := Rationals();

Application := function(rho,ez,f,rhoM,G,prime)
Gsorted := [sigma : sigma in GI; // fixing an order on the elements of G
// numbering the elements of G :
Gsorted_bij := map< G -> [1..#Gsorted] | [<Gsorted[i],i> : i in [1..#Gsorted]]l>;
Ggen := [G.i : i in [1..Number(OfGenerators(G)]1];
// the Wedderburn isomorphism as a matrix :
omega := MatrixRing(Q,#Gsorted)!&cat[ElementToSequence(rho(sigma)[i]):
i in [1..#rho(sigma)], sigma in Gsorted];
rkM := NumberOfRows(rhoM(G!1));
// generating M as a GModule :
M := GModule(G, [MatrixRing(Q,rkM)'!'rhoM(x) : x in Ggenl);
// generating RG as a GModule :
RG := GModule(G, [PermutationMatrix(Q,[Gsorted_bij(x * y) : x in Gsorted]) : y in Ggen]);
op_left := [PermutationMatrix(Q,[Gsorted_bij(y * x) : x in Gsorted]) : y in Gsorted];
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op_left_f := &+[(f * omega~-1)[1,i] * op_left[i] : i in [1..#Gsorted]l];
P,ii,pp := Image(AHom(RG,RG)!op_left_f); //embedding f’—ji%}ﬂg, projection RG Peop
idM := AHom(M,M)!(MatrixRing(Q,rkM)!1);
ppp := TensorProduct(idM,MapToMatrix(pp,Q)); //projection M ® RG M eP
iii := TensorProduct(idM,MapToMatrix(ii,Q)); //embedding M ® P BN Y ® RG
MoRG := TensorProduct(M,RG);
phi_prel := DirectSum([rhoM(sigma~-1): sigma in Gsorted]);
tupl := [<i,j> : i in [1..rkM] , j in [1..#Gsorted]];
tup2 := [<i,j> : j in [1..#Gsorted] , i in [1..rkM]];
tupl_bij := map< tupl -> [1..#tupl] | [<tupl[il,i> : i in [1..#tuplll>;
tup2_bij := map< tup2 -> [1..#tup2] | [<tup2[il,i> : i in [1..#tuplll>;
PM_aux_1 := PermutationMatrix(Q, [tupl_bij(x) : x in tup2]);
PM_aux_2 := PermutationMatrix(Q, [tup2_bij(x) : x in tupll); // PM_aux_2 = PM_aux_1"-1
//M ® RG g M & RG; and Magma-internally ¢ =@ :
phi := PM_aux_1 * phi_prel * PM_aux_2;
phiinv := PM_aux_1 * phi_prel~-1 * PM_aux_2;
vect := [];
for i in [1..rkM] do

vec := RMatrixSpace(Q,1,rkM)!0;

vec[1,i] := 1;

vect cat:= [vec];
end for;
op_left_ez := [&+[(x * omega~-1)[1,i] * op_left[i] : i in [1..#Gsorted]] : x in ez];
// tuple containing (¢|RG)®™*M @ ... @ (e, RG)® kM .
PP := [Image(AHom(RG,RG)!op) : j in [1..rkM], op in op_left_ez];
emb:= [* TensorProduct(vec,MapToMatrix(x,Q))* phiinv where

_, x := Image(AHom(RG,RG)!op) : vec in vect, op in op_left_ezx];
proj := [* phi*TensorProduct(Transpose(vec),MapToMatrix(x,Q)) where
_s_, x := Image(AHom(RG,RG)!op) : vec in vect, op in op_left_ez*];

rank_tuple := [Rank(PP[i]): i in [1..#PP]];
rank_summand := rkM * Rank(P);
//calling the main algorithm; cf. file Krull_Schmidt_Algorithm :
vec := Krull_Schmidt_Algorithm(emb,proj,rank_tuple,rank_summand,ppp,iii,prime);
return vec;

end function;

6.2.5 Examples for the Krull-Schmidt Algorithm

We keep the notation from Sections 6.2.4.1 and 6.2.4.2. We have
M ® RG =M & RG = RG®*M =~ (/RG@...® e RG)P™M = (| RG)®™*M g . @ (¢! RG)®TkM

We fix the latter as the order of the summands W, of RG®™*M je. provided rk M > 2, we choose
Wi = ¢\ RG, Wy = €,RG, ..., Wy_1 — ¢. RG, Wy = ¢.RG.
Example 145 We will test the algorithm with a decomposition we already know well.

Let Z(3)83 ~ A(g) = P @ P, with an orthogonal decomposition 1A(3) = e1 +e5 into primitive idempotents,
like given in Definitions 21 and 27.

We can now use the Krull-Schmidt Algorithm to decompose the tensor product
M®P = PL®P,

well-known from Lemma 30. We write

Pi®Az = Pi®ZL3S; = P @ Z3Ss = ZSPTeP
A 2 (alm Belp)® N 2 (PP = PP o P

Il

We prepare the input and start the algorithm.
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load "Krull_Schmidt_Algorithm";

load "main_S3_loc3";

G := S3P; // S3 as permutation group

//loading file containing the map rho
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// [el,eg] as vectors in the standard basis of a direct product of matrix rings over Q :

ez =
f =
rhoM

prime

[RMatrixSpace(Q,1,6)![0,0,0,0,1,1] ,RMatrixSpace(Q,1,6)![1,1,0,0,0,0]];
ez[1];
:= rhoP1;

= 33

idempotents

:= Application(rho,ez,f,rhoM,G,prime);

We obtain the following.

[*

[ 1
[ 3/2
[ 3/2
[-1/2
[-1/2
[ -1
0

Lo B e B |

L o
[-3/2
[-3/2
L o
L o
[ 3/2
[-3/2
[-3/2
[ 3/2

L o
L o
[-3/2

[ 1/2
[ 1/2
[-1/2
[ 3/2
[ 3/2
[-3/2

0
-1/2
-3/2

1/2
1/2

O O O =

3/2
3/2

-3/2
3/2
3/2

-3/2

3/2

-1/2
-1/2

1/2
-3/2
-3/2

o O O

= R W O

o O O O

w o w

0

3

O O O O O O O © O

0
0
0

3 0-1-1]
-3 0 0 1]
-3 0 1 1]

0

0

-3/2 9/2
-9/2 3/2
3/2 3/2
3/2 -3/2

0

0
0
0

0

3/2 -9/2
9/2 -3/2

0
0
0
0 0
0 0
0

0
0

-9/2 3/2
-3 9/2 9/2
0 3/2 -9/2
0 -9/2 3/2

-3/2 3/2 9/2
-3/2 9/2 3/2

0
0
0

0
0
0

-3/2 -3/2

3/2 -1/2
-9/2 -9/2
-3/2 9/2

9/2 -3/2

0
0
0
1
0 -1/2 3/2
0
3
0
0

O O O O © O O © O

O O H O O O O O O

1/2
1/2

O O O ©O O O © © O

0 0]
1/2 -3/2]
3/2 -1/2]
-1/2 -1/2]
-1/2 1/2]
-1 0]

0 0]

0]

-1/2 3/2]
-3/2 1/2]

3/2 -1/2]
-3/2 -3/2]
-1/2 3/2]

3/2 -1/2],

-1/2 -3/2]
-3/2 -1/2]

1/2 1/2]
1/2 -1/2]
-1/2 1/2]
3/2 3/2]
3/2 -3/2]
-3/2 3/2],

// choose P := elA(3) ~ P
// M = P

// starting the algorithm
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[0o 0 2 0 2 2 1 -1-1]
[0 0-2 1 -1-3-1 1 1]
[1-1-1 1-3-1-1 1 1]

%]

This tells us that P; ® P; is isomorphic to the direct sum of the first, fourth and fifth summand of the
direct sum Pf93 &) P§B3 =P &P &P &P, &P,® P, ie to Py®P,®P,. The corresponding idempotent
endomorphisms of P; ® P; and the embeddings of these summands into P; ® P; are returned as well.

Now we want to test this result independently.

First we verify that the found tuple contains an orthogonal decomposition into idempotents.

For this and further tests, we need

Gsorted := [sigma : sigma in GJ;

Gsorted_bij := map< G -> [1..#Gsorted] | [<Gsorted[i],i> : i in [1..#Gsorted]]>;

Ggen := [G.i : i in [1..Number(OfGenerators(G)]];

RG := GModule(G, [PermutationMatrix(Q,[Gsorted_bij(x * y) : x in Gsorted]) : y in Ggen]);

omega := MatrixRing(Q,#Gsorted)!&cat[ElementToSequence(rho(sigma)[i]l): i in [1..#rho(sigma)],
sigma in Gsorted];

rkM := NumberOfRows(rhoM(G!1));

M := GModule(G, [MatrixRing(Q,rkM)'rhoM(x) : x in Ggen]);

op_left := [PermutationMatrix(Q,[Gsorted_bij(y * x) : x in Gsorted]) : y in Gsorted];

op_left_f := &+[(f * omega~-1)[1,i] * op_left[i] : i in [1..#Gsorted]l];

op_left_ez := [&+[(x * omega~-1)[1,i] * op_left[i] : i in [1..#Gsorted]] : x in ez];

P := Image(AHom(RG,RG)!op_left_£);

MoP := TensorProduct(M,P);

Homs := AHom(MoP,MoP);

R

Iop := [* Image_local(AHom(RG,RG)!op,RG) : op in op_left_ez*1; // Iop[1l]l = P, Iopl[2] & P>

P1 := GModule(G, [rhoP1(S3P!(1,2,3)),rhoP1(S3P!(1,2))1); // P; as GModule
P2 GModule(G, [rhoP2(83P!(1,2,3)),rhoP2(83P!(1,2))1); // Ps as GModule

// testing the idempotents (entry 1):
// RG-linearity:
[idempotents[i,1] * ActionGenerator(MoP,j) eq ActionGenerator(MoP,j)*idempotents[i,1]:
i in [1..#idempotents], j in [1..NumberOfGenerators(S3P)]];
// idempotent:
[idempotents[i,1]"2 eq idempotents[i,1]: i in [1..#idempotents]];
//orthogonal:
[idempotents[i,1]*idempotents[j,1] eq O: i,j in [1..#idempotents]| i ne jI1;
// decomposition of 1;
&+[id[1] : id in idempotents] eq MatrixRing(Rationals(),NumberOfRows(idempotents[1,1]))!1;

// for which ¢ do we have e¢;(M ® P) > P;
[IsIsomorphic(Image_local(Homs'!idempotents[i,1],MoP),P1): i in [1..#idempotents]];

// for which i do we have ¢;(M ® P) X P,
[IsIsomorphic(Image_local(Homs'!idempotents[i,1],MoP),P2): i in [1..#idempotents]];
//IPei(MRP)=2M®P

IsIsomorphic(DirectSum([Image_local(Homs!idempotents[i,1],MoP): i in [1..#idempotents]]),MoP);

// testing the embeddings (entry 3):

// yielding altogether an isomorphism (loc_inv cf. main_S3_loc3)
loc_inv(VerticalJoin([idempotents[i,3]: i in [1..#idempotents]]),prime);

// RG-linearity:

o :=11,2,2]; // MQP2P ® PP,

[[ActionGenerator(Ioplo[il],j)*idempotents[i,3] eq idempotents[i,3]*ActionGenerator(MoP,j):

. . . . i in [1..#idempotents]]: j in [1..2]];
We identify the summands up to isomorphism:

> [IsIsomorphic(Image_local(Homs!idempotents[i,1],MoP),P1): i in [1..#idempotents]];



116 CHAPTER 6. THE KRULL-SCHMIDT ALGORITHM

[ true, false, false ]

> [IsIsomorphic(Image_local(Homs!idempotents[i,1],MoP),P2): i in [1..#idempotents]];

[ false, true, true ]

> IsIsomorphic(DirectSum([Image_local(Homs!idempotents[i,1],MoP): i in [1..#idempotents]]),MoP);

true

SoPLQPL =P & Pz632 , in accordance with Lemma 30.

Example 146 Let Z3)S3 = A(3) >~ P, & P, with an orthogonal decomposition 1A(3) = ¢e; + ey into
primitive idempotents, like given in Definitions 21 and 27..

We can now use the Krull-Schmidt Algorithm to decompose the tensor product
MeoP = S®Ygp

where S(1) is the Specht module to the partition (2,1) over Z) .
. (2.1
We write S0 @ Ay = A%;ks ~ pP? g pP2,
We prepare the input and start the algorithm.
load "Krull_Schmidt_Algorithm";

load "main_S3_loc3"; // loading file containing the map rho
load "Krull_Schmidt_Example_146"; // loading file containing the map rhoS21

G := S3P; // S3 as permutation group

// kl,eﬂ as vectors in the standard basis of a direct product of matrix rings over Q :
ez := [RMatrixSpace(Q,1,6)'[0,0,0,0,1,1],RMatrixSpace(Q,1,6)![1,1,0,0,0,0]];

f := ez[1]; // choose P := elA(3) ~ P

prime := 3;

idempotents := Application(rho,ez,f,rhoS21,G,prime);

We obtain the following.

[*
<

[ 1 o -1 o -1 1]
[1/2 1/2 -1 0 -1/2 1/2]
[ 1/2 -1/2 0 0 -1/2 1/2]
[ 1/2 -1/2 0 0 -1/2 1/2]
[ 1/2 -1/2 0 -1 1/2 1/2]
[ 1 -1 0o -1 0 11,
1,

[1 1-2 0-1 1]
[0o-1 1 -1 1 0]
[-1 0 1 0 1-1]

[ o 0 1 0 1 -1]
[-1/2 1/2 1 0 1/2 -1/2]
[-1/2 1/2 1 0 1/2 -1/2]
[-1/2 1/2 0 1 1/2 -1/2]
[-1/2 1/2 0 1 1/2 -1/2]
[ -1 1 0 1 0 0],
3,

[ o 0 1 0 1 -1]
[ o 0 -1 1/2 -1/2 1/2]
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[ 1/2 -1/2 -1/2 -1/2 -1/2 1/2]

*]

This means that S @ P; is isomorphic to the direct sum of the first and third summand of the direct
sum PP? @ P2 ie. to P, @ P,. The corresponding idempotent endomorphisms of S © P; and the
embeddings of these summands into S> @ P, are returned as well.

In accordance, we verify that over Q we have

:;(2,1) QP = é;(Z,l) ® (f;(Z’l) D :;(1,1,1)) (:;(2,1) ® ﬁ;(2’1)) @ (:;(2,1) ® é;(l,l,l))
> B g5l gstll)gs@l) ~ poPp.

1%

2

To verify the result independently, see file Krull_Schmidt_Example_146.
Example 147 Let Z)Sy = Ap) = Py & P35>,

We have an orthogonal decomposition 15, = €1 + ez + e3 into primitive idempotents, like given in
Definition 73. Let M = S®ZD) @ §(?2) We can now decompose the tensor product

MeP = (S@" e s P .
We write (S@1D @ §22)) @ Z2)S4 = P:LEBS ® P2®10 :

load "Krull_Schmidt_Algorithm";
load main_S4_loc2; // file containing S4P
load "Krull_Schmidt_Example_147"; // file containing the map rhoS211_822

G := S54P; //symmetric group Sy as permutation group

// le1,e2,e3] as vectors in the standard basis of a direct product of matrix rings over Q :

ez := [RMatrixSpace(Q,1,24)![1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],
RMatrixSpace(Q,1,24)![0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,01,
RMatrixSpace(Q,1,24)![0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11];

£ := ez[1]; // choose P := e1A3) = P

prime := 2;
idempotents := Application(rho,ez,f,rhoS211_S22,G,prime); // starting the algorithm
We get the following result.

> [idempotents[i,2]: i in [1..#idempotents]];
[1,6,7,9, 10]

This means that (S11) @ §(22)) ® Py is isomorphic to the direct sum of the summands 1, 6, 7, 9 and
10 of the direct sum Pl®5 &) P2®10, ie. to P & P2®4. The corresponding idempotent endomorphisms of
(S g §(22)) ® Py and the embeddings of these summands into (S11) @ $22)) @ P; are returned
as well, but not printed here.

We verify over Q that

(5(2,1,1) D 5(2’2)) ® P
(3(2,1,1) o 5(2,2)) ® (5(1,1,1,1) o S(4) D 5(2’1’1) o S(B,l))
(8¢

IR

> (§ELD g SLLLYY g (SELY g §!) g (SELD g §EL) g (§ZLD g §E.1)
69(5(2’2) ® 5(1,1,1,1)) ® (5(2,2) ® 5(4)) @ (5(2,2) ® 5(2,1,1)) @ (5(2’2) ® 5(3,1)>

> (§BD) g (S2LD) g (W @ $ELD ¢ B g §(22)) g (§LLLY g §2.11)
@5(3,1) o) 5(2,2)) D (5(2,2)) D (5(2,2)) o) (5(2,1,1) o) 5(3,1)) @ (5(2,1,1) @ 5(3’1))

I

P o PP .
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Example 148 Let Z()Sy = Aoy = P & PQEBQ.

We have an orthogonal decomposition 15, = €1 + €2 + e3 into primitive idempotents, like given in
Definition 73.

Let M := P,. We choose the orthogonal decomposition into idempotents 14, = e+es3, with e :=e1+e2,
which is no decompostion into primitive idempotents, and so the endomorphism ring of €A ) is not local.

The algorithm nevertheless decomposes the tensor product

M@P = P,® Py

into summands of the form W, , i.e. from {P; ® P, P}.

load "Krull_Schmidt_Algorithm";

load main_S4_loc2; //file containing the map rhoP2

G := S4P; //symmetric group S4 as permutation group

rhoM := rhoP2; // M = Py

ez := [RMatrixSpace(Q,1,24)![1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0], /] e1+e2
RMatrixSpace(Q,1,24)![0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11]; // e3

f = ez[2]; // choose P := 62A(3> > Py

prime := 2;

idempotents := Application(rho,ez,f,rhoM,G,prime);
We obtain the following.

> [idempotents[i,2]: i in [1..#idempotents]];
[1,4,7,9, 11]

This means we obtain a decomposition into the summands 1, 4, 7, 11 and 14 of the direct sum
(P, @ Py)28 @ PP® ie. P, ® Py = (P, ® Py)® @ PP? in accordance to Lemma 84.

Example 149 Let Z()Sy = Aoy = P & P2@2.

We have an orthogonal decomposition 14, = €1 + ez + e into primitive idempotents, like given in

Definition 73.

Let M := P,. We choose the trivial orthogonal decomposition into idempotents 15, = 1., , which is
no decompostion into primitive idempotents, and so the endomorphism ring of A(s) is not local. The
algorithm attempts to decompose the tensor product

M@P = P,® Py

into modules of the form W, , i.e. from {P; ® P2®2}, finds one such summand, fails to continue, breaks,

returns a warning and an incomplete decomposition.

Note that P, @ Py = Pf93 &) P2@5 cannot be decomposed using only copies of P; & P§B2 as summands.

load "Krull_Schmidt_Algorithm";

load main_S4_loc2;

G := S4P; //symmetric group S4 as permutation group

rhoM := rhoP2; // M = Py

ez := [RMatrixSpace(Q,1,24)![1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,111; //e1 + ez + e3

f := RMatrixSpace(Q,1,24)![0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1]; //choose P := egAC” >~ Py
prime := 2;

idempotents := Application(rho,ez,f,rhoM,G,prime);
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We obtain the following.

> idempotents := Application(rho,ez,f,rhoM,G,prime);
WARNING: idempotent decomposition incomplete

> [idempotents[i,2]: i in [1..#idempotents]];
[1, 01

This shows that the algorithm was able to split the tensor product into two summands. The first one
is isomorphic to W = P, & P2®2. Then the algorithm is not able to find another isomorphism, and
therefore returns as second idempotent the unity matrix minus the first idempotent. The embedding of
this remaining summand is not returned, instead we see a dummy zero (and a dummy zero in entry 3,

which is not printed here).



Chapter 7
Lifting isomorphisms

Let R be a discrete valuation ring with maximal ideal (7). Let A be a stable R-order; cf. Definition 207,
Remark 208.

Let P be a finitely generated projective A-modules. Let M be a A-lattice. Let py; : M — M denote
the residue class map.
Let 1o = > e; be an orthogonal decomposition into primitive idempotents. By Lemma 220, there

1€[1,k]
exists an isomorphism

PeM = P er® = Q
i1€[1,k]
for some a; > 0; cf. Lemma 168. We aim to construct such an isomorphism.
Concerning the multiplicities a; in the case of Z,)S,, , cf. Section E.1. But it is also possible to do a finite

search, for Magma [3] gives an isomorphism P ® M — @ &A®% = Q via IsIsomorphic if one plugs

in the correct a; . ie[1,k]
Remark 150 We have the situation
P M Q
pPPOPM l
PoM~—"2—Q.

Since @ is projective over A, we can lift the isomorphism ¥ to an isomorphism ¢ : P® M — @ with
Lemma 214. We want to do this constructively.

Since @ = @ie[l,k] e;A®% | it suffices to find, for a given ¢ € [1,k] and a given A-linear map e;A 25 Q,

a completion
eeA
pPPRPM ‘/

PoM <7
to a commutative quadrangle of A-linear maps.

Choose an element £ € P ® M such that
E(pp ® pur) = erg? .

120
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Define
eh s o PoM
e y — E-epy

Then the quadrangle commutes because

ech(pp @ prr) = (E-e0)(pp @ pu) = (E)(pp @ par) €0 = egl-er = (e-er)gd = eggl .

Construction 151 On the example of the tensor product of projective modules P; @ P3 of Z)Ss, the
main step of the lifting process will be descibed here in detail.

Let A = Z)S5. We will calculate the isomorphism Py @ Ps &2 P5?® @ PP® by lifting the isomorphism
— — 1§ — —

P, ® P3 =~ PP® @ PYS.

To generate P, , P», and P; as GModule, we use the representations of P, , P, and Pz, given in the file
main_S5_loc2, denoted rhoP1, rhoP2 and rhoP3.

The file Bases_for_lift contains bases of P;, P, and P; written as vectors in the standard basis of the
matrix rings, where the first row represents the idempotent generating the respective projective module.

With Magma [3], the lifting process can be realized as follows.

load "main_S5_loc2";

load Bases_for_lift;

// generating the symmetric group Ss

G := SymmetricGroup(5);

// fixing an order on the elements of Ss
S5Ptup := [sigma : sigma in SG6P];

// generating Fo

F := GF(2);

// the Wedderburn isomorphism, as used in Section 5.2 and as explicitly
// given in Remark 242, written as a matrix :
omega := Matrix(120,120,&cat[ElementToSequence(rho(sigma)[i]) : i in [1..7], sigma in S5Ptupl);

omega_inv := MatrixRing(Rationals(),120)'!omega~-1;

// generating Pi, P> and P; as GModules over Fo

PP1 := GModule(G, [MatrixRing(F,24)!rhoP1(S5P!(1,2,3,4,5)), MatrixRing(F,24) !rhoP1(S5P!(1,2))]1);
PP2 GModule(G, [MatrixRing(F,16)!rhoP2(S5P!(1,2,3,4,5)), MatrixRing(F,16)!rhoP2(S5P!(1,2))1);
PP3 GModule(G, [MatrixRing(F,8)!rhoP3(S5P!(1,2,3,4,5)), MatrixRing(F,8)!rhoP3(S5P!(1,2))1);

// generating the tensor product P; @ Ps
PP1oPP3 := TensorProduct(PP1,PP3);

// operating matrices on the tensor product P; ® P3
op_plop3 := map<S5P -> RMatrixSpace(Rationals(),192,192) |
[<sigma, RMatrixSpace(Rationals(),192,192) !KroneckerProduct(rhoP1(sigma),rhoP3(sigma))>:sigma in S5P]>;

PP := [*PP1,PP2,PP3%];

// matrices containing the coefficients of basis elements of P, P>, P3, viewed

// as submodules of A.::Z(2>S5, at group elements;

// found by taking the preimages of the bases of the projectives as constructed in Definition 116,
// under the Wedderburn isomorphism used there :

BasisP1GR := RMatrixSpace(Rationals(),24,120)!BasisPl*omega_inv;

BasisP2GR := RMatrixSpace(Rationals(),16,120)!BasisP2%omega_inv;

BasisP3GR := RMatrixSpace(Rationals(),8,120)!BasisP3*omega_inv;

BasisPPGR := [*BasisP1GR,BasisP2GR,BasisP3GR*];
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// using Magma’s MeatAxe to find a decomposition of P; ® P; (cf. also Section E.1):
DSD := DirectSumDecomposition(PP1oPP3);

// counting multiplicities of Py, Py and P3 in DSD :
cn := [ #[1 : Q in DSD | IsIsomorphic(Q,P)]: P in PP];

// sequence of the form [ 1,...,1 , 2,...,2 ..., k,...,k |

H’—/i H’—/i H,—/f
// a1 times P ag times Po ap times Py
//

proj_num := [j : i in [1..cn[j]], j in [1..#cnl];

// generating Q = 152698 ® 15§BS :
QQ := DirectSum([PP[proj_num[il] : i in [1..#proj_numll);

// when taken as a basis for QQ a disjoint union of bases of its summands, the following
// sequence row_choice contains the position numbers of the respective first basis elements,
// that is, of the generating idempotents of the summands

row_choice := [&+([0] cat [Rank(PP[proj_num[i]]) : i in [1..#proj_num]])[1..j] + 1 : j in [1..#proj_num]];

// calculating 9 :
dummy, theta_bar := IsIsomorphic(QQ,PP1oPP3);

// Z()-linear 1lift, realized by coercing the matrix entries of theta_bar into Z :

iso_local := MatrixRing(Integers(),Dimension(PP1oPP3))!theta_bar;

// For the lift £ € P ® P3 of the image of &, under 9,

// as used above in Remark 150, we may use {=iso_locall[row_choice[1]].

// We will map an element of the basis of eyA, which is of the form ep-y, to {-ep-y.
// We know that £ is multiplied with an element o € Ss via op_plop3.

// We need to write eyy = E:a€S5
// We have numbered the elements of Ss. Say, o has number i.

Us0, where u, € Z(@’ to obtain £-ep -y = 2:0685£~(7u0.

// We have numbered the basis elements of e;A. Say, ey has number j.
// Then the coefficient u, of eyy is given by BasisPPGR[proj_num[111[j][i].
// Moreover, the product of & with o is iso_local[row_choice[1l]]*op_plop3(S5Ptupl[i]).
// So :
theta := MatrixRing(Rationals(),192)!
&cat[
L
&+[iso_locall[row_choice[1]]*op_plop3(S5Ptupl[i])*BasisPPGR[proj_num[111[jI1[i]l : i in [1..0rder(S5P)]
] : j in [1..NumberOfRows(BasisPPGR[proj_num[1]])]
] : 1 in [1..#proj_num]
1

To check the map theta, load the file main_S5_loc2_P10P3 containing the representation on the tensor
product P; ® Pz, denoted op_plop3, and the representation on the direct sum Ps*® @ P, denoted
op_proj_sum_plp3.

load "main_S5_loc2_P1oP3";

// local invertibility:
loc_inv(theta,2);

/! Z(2)Ss5-linearity :
[op_proj_sum_plp3(sigma)*theta eq thetaxop_plop3(sigma) : sigma in {S5P!(1,2), S5P!(1,2,3,4,5)}];



Chapter 8
Diagonalizing partially

8.1 A total decomposability

Let R be a discrete valuation ring with maximal ideal (7). Recall that ®p = ®.

Let G be a finite group split by R, i.e. suppose that A := RG is isomorphic to an R-suborder of a finite
direct product T of matrix rings over R such that the R-linear factor module I'/; has finite length over R.
Example 152 We may choose R = Z,) for some prime p and G = S,, for some n > 1; cf. [5, Th. 4.12].

Definition 153

(i) Consider the category lat-A of A-lattices and A-linear maps.
Consider the category Ay := (e — @), having two objects and a single nonidentical morphism.
Consider the category A := (lat-A)>! of diagrams of shape A; with values in lat-A.
Then A is an additive category. It is a full additive subcategory of the abelian category (mod-A)t

closed under summands. Therefore, idempotents split in A.

The category A has as objects diagrams of the form M JoN , with M, N A-lattices and f a
A-linear map. As morphisms in .4 we have those pairs of A-linear maps (m,n) that make the

diagram

commutative.

Suppose given two composable morphisms

b

M/ > N/

L

M// > N//

in A. The composite of (m,n) and (m’,n’) is given entrywise by (m,n)(m’,n’) = (mm/,nn’).

Also addition of morphisms is given entrywise.

123
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The direct sum of two objects is given as

(22)

0
ML Nyo M 5 N) = (MoN Y M oN').
(ii) Recall that given U, V in obj(lat-A), we get U ® V' € obj(lat-A) via (u®v)g = (ug ® vg) for u € U,
veVand g €.
Given (M N N) in obj(A) and X € obj(lat-A), we define

ML NMex = Mox 125 NoX) € objA).

Definition 154 Recall from Definition 153.(i) that A = (lat-A)41.

We call an object (M N N) € Ob(A) elementary if it is isomorphic in A to an object of the form
0—0Q)
(Q —0)
@—Q),

where ) € obj(lat-A) is isomorphic to an indecomposable direct summand of A, where o > 0 and where
Q= Q, g — 7.

We call an object (M LN ) € Ob(A) totally decomposable if it is isomorphic in A to a finite direct

sum of elementary objects.

Lemma 155 The endomorphism ring of each elementary object of A is local.

Proof. Suppose given a finitely generated indecomposable projective A-module Q). We know by Lemma 233
that End Q is local.

Suppose given o > 0.
We remark that we have ring isomorphisms

End4(0 — Q) -~ EndyQ
EndA(Q — 0) - Endp @
End4(Q =5 Q) —> End,Q,

given by projection to the second resp. to the first resp. to the first (or second) component. Since the
right hand side is local, so is the left hand side in each case. O

Lemma 156 Suppose given (M N N) € Ob(A).
Suppose given a finitely generated projective A-module P.
Then, if (M N N) ® A is totally decomposable, so is (M N N)® P.

Proof. There exist k >0 and P € obj(lat-A) such that P @ P = A®*,
Suppose that (M N N) ® A is totally decomposable.

Then
ML Nyor ~ v L NyePep) 2 ML NyerPe MmN e P

is totally decomposable as a direct sum of totally decomposable summands.
We apply Proposition 141, where, in the notation used there, B is A, where Y is (M N N) @ A®F
where Z is (M 7, N) ® P and where the X; are elementary objects in A, which, by Lemma 155, have

local endomorphism rings. We obtain that Z = (M JoN ) ® P is isomorphic to a direct sum of certain
of the X; and thus totally decomposable. O
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Theorem 157 Recall that R is a discrete valuation ring with mazimal ideal (7), that G is a finite group
split by R and that A = RG.

Suppose given (M N N) in obj(A), i.e. M and N are A-lattices and f is a A-linear map.
Let P be a finitely generated projective A-module.

Then the object (M N N)®P = (M®P Jer, N®P) of A is totally decomposable; cf. Definition 15/.

Proof. By Lemma 156, we may assume that P = A.

Let & be the tensor product and ¢ the isomorphism given in Lemma 167. Then we have the commutative
diagram
FOA
MA——N®A
R 2\ =
MA — NQA .

Hence we are reduced to show that (M®@A ELEN NG&A) = (M L5 N)@A is totally decomposable.
We can use the R-linear elementary divisor theorem to decompose
ML N) = (R— 0% a0 — R @R R)*m,
a>0
where k, £ > 0, where m,, > 0 for all & and m,, = 0 for almost all «.
So (M — N)@A splits into a direct sum
(ML N)BA = (A — 0 a0 — 1) o @Pu T A)Em

a>0
and is therefore totally decomposable. O

Corollary 158 Suppose given (M N N) in obj(A) such that tkp M = tkr N and such that f is
injective.

Let P be a finitely generated projective A-module.

Then we have a decomposition

ML NeP = PR ™SQ),

K3

where Q; is an indecomposable direct summand of A and a; > 0 for all i.

Proof. By Theorem 157, the object (M SN ) ® P of A is totally decomposable. It remains to show
that its direct sum decomposition into elementary objects contains neither elementary objects of the form
(0 — @) nor of the form (Q — 0).

Since f is injective, so is f ® P, and thus this decomposition does not contain objects of the form
(@ — 0).

Since tkr M = rkgr N, this decomposition does not contain objects of the form (0 — Q). O

Corollary 159 Let P and P be finitely generated projective A-modules. Recall that P denotes the
Jacobson radical of P. Let § denote the embedding of tP into P. Then we can find projective A-modules
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Q and Q', not necessarily indecomposable, and A-linear isomorphisms o, 8 such that

Pop—QaqQ

N idg 0
Q ]
tP® P RQoQ

commutes.

Proof. Note that rkr tP = rkg P since P/tP is a torsion module.

So by Corollary 158, we have a decomposition

(P P)® P = Q™ Q).

where @); is an indecomposable direct summand of A and «; > 0 for all 4.

LetQ:: @ QZ andQ’:: @ Qi-

Oéi:O Otiil

!

We have to show that «; < 1 for all 7. It suffices to show that the R-linear elementary divisors of
P(Q; LN Q;) are contained in {7° 7'}. That is to say, we have to show that the elementary divisors
i

of § ® P are contained in {7% 7'}.

It suffices to show that the elementary divisors of 6 : tP — P are contained in {7°, 7'}. In fact, P/tP

is a (semisimple) A-module, thus annihilated by 7. O

Remark 160 Note that Corollary 159 does not assert that both matrices C' and C of the examples stated
in the Chapters 3, 4 and 5 can be transformed into diagonal form simultaneously.

To this end, in the proof of Theorem 157, we would need a generalization of the R-linear elementary

divisor theorem to simultaneously diagonalize f and f’ in a diagram M TN LM of R-lattices,
using a triple of R-linear automorphisms on M, N resp. M’, which we do not have at our disposal.

An example where the matrices C' and C cannot be transformed simultaneously is given in Remark 16.

Example 161 Suppose that R = Z3) and that A = Z)S5 = P691 &) P2@4 <) P3€B4; cf. Definition 116 and
Corollary 113. Suppose that M = tP1 and N = P;.

We then have a total decomposition of (M N ) ® A as follows.

1%

(tPh— P) QA (tPp— P)®A
(tP, — P)) @A
(R R)®L @ (R R)®®) & A
(A 25 M) e (A — A)®23
(P 25 P11 @ (P, -5 Po)®% 1 @ (P 2 Py) @41
B(PL — PPV @ (B~ Py)®423 @ (Py — Py) 0423

1%

1

1%

1

The matrix F of Lemma 119 has been brought into diagonal form C'; the possibility to diagonalize F is
guaranteed by Corollary 159. We have obtained

(1) ('CPl ‘—)P1)®P1 = (P1 i>P1)®169(P1 ;>P1)$7€B(P2 —1>P2)®16@(P3 ;>P3)€B16.

This is what can be expected, once the decomposition of Py ® P; is known, for Coker ((tP, — P;) ® Py) &
D1®P12P1/2P1 :pl.
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Moreover, in Lemma 121 we have obtained

(2) (Pl P)@P, = (P — P)%a (P, - P)% 6 (P, — D)8 @ (P — P;)®12

and in Lemma 123, we have obtained

(3) (PLe—P)@P; = (P, — P)% @ (P 25 P3)% @ (P — P3)7.
Note that in fact (x) = (1)®! @ (2)%* @ (3)®4.
In particular, (tP, — P;) @ P, 2 (P, 2, P)% o (P LI Pp)®23 ] 50 that the argument using & that
worked for the tensor factor A does not work for the tensor factor P; .
Example 162 Suppose that R = Z ) and that A = Z,)S5 = Pl691 P P2EB4 &) PS694 ; cf. Definition 116 and
Corollary 113. Suppose that M = tP; and N = Ps.
We then have a total decomposition of (M SN N)® A by

(tPg%Pg,)@A = (tP3;>P3)®A

((R 2, R @ (RS R)@4) &A
(A 25 )% @ (A — A)®H
(PL 25 PP @ (P 2 Py)®4 @ (Py 2 Py)@4t
B(P, — PP g (P, - Py)®4 4 @ (Py - Py)®44,

1

—
*
~—
1%

1%

Transforming the Matrix C' of Lemma 123 into diagonal form, which is possible by Corollary 159, by

using column transformations from the right, we can see that
(1) (P — PP = (P, P)® @ (P — P)® @ (Py - P3)® @ (P — Py)®4.

This is what can be expected, once the decomposition of P, ® Ps is known, for Coker ((tPs — P3) @ Py) =
D3 ® Py = Py* @ PP* ) as is calculated via Magma [3].

Moreover, in Lemma 127 we have obtained

(2) (P—P)OPR = (P05 P) @ (Py— P)® e (P Py (P — Py)®?
and in Lemma 129, we have obtained

(3) (tPs — P)®@P; = (P P)® g (P — P)% & (P — P3)®' @ (Ps — P3)®L.
Note that in fact (x) = (1)®1 @ (2)%* @ (3)®4.

8.2 On defect-0 blocks

Let p be a prime. Let n > 1.

Lemma 163 Let D be a simple Z(,)S,-module that belongs to a defect-0 block. Let P be the corresponding
indecomposable projective Z ) Sy,-module; cf. Proposition 225. So D = P.

Let D be a simple Zp)Sn-module. Let P be the corresponding indecomposable projective module P.
Then we have a direct sum decomposition P @ P — Q' & Q" fitting into a commutative diagram
P ® 'Cp 4N> Q/ o Q//
p
idg: 0
( é? pidQ//>

Q/ @ Q//

D idQ/ 0
0 pidQ//

P P————=Q @Q".

~ ~

PP
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pidg, 0
0 pidgn
idQ/ 0
0 pidgn
S AN

is isomorphic to the canonical presentation of D ® D. So D@ D =~ Q.

In particular, the diagram

ReQ)e@aeQ") Q'&Q")

Proof. Since P belongs to a defect-0 block, we have that

tP@P = pP@P = p(P®P).

We have a commutative triangle
P

el

P®
p(P®

where (p(z ® #))¢ =2 ® & for 2 € P and & € P.

pid
)= PoP,

By Corollary 159 from Section 8.1, we can find projective modules Q' and Q" together with isomorphisms
p= (W) Q5 Q@ Q" and £ = (¢ €"): Q > Q'@ Q" such that

~ o
PP (4~l QaeQ"

1 (e l( 0 pidg >

PoP——>Q &Q"

Altogether, we have the following commutative diagram.

~ P', #//
t ( — ) Q/@QII
id s 0
\L( OQ pidQN>
7 (5/ 5//) / 1"
p ~ Qeq

P®
P®
pid pidgs 0
< 0 pidQu>
P N (51 5//)
p(P® m

P) PP——=Q ®Q"

Finally, note that we have a right exact sequence
pidgs 0
0 pidQN
idg/ 0
0 pidgn
%

Lemma 164 Let D and D be simple Z(p)Sn-modules that belong to defect-0 blocks. Let P and P be the

respective corresponding indecomposable projective Z,)Sy-modules. So D = P and D = P.

0
PQ —
—

ReQ)o@aeqQ") (Q'&Q") Q" .

O
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Then we have P ® P =5 Q fitting into a commutative diagram

~

P®tP—>Q

In particular, the diagram
(hia)
pid
Qe — «Q

is isomorphic to the canonical presentation of D ® D.

Proof. Since P and P belong to defect-0 blocks, we have

tPQP = pP®P = p(P® P)

and

P®tP = PRpP = p(P®P).

i

where (p(z ® )Y = @ for z € P and 7 € P.

We have a commutative triangle

'Uz
"Uz

Letting Q := P ® P, we have a commutative diagram

LQ

P®
”J/ lpldQ
PoP—>Q
P®

’“Uz

TPIdQ

—Q.

’“Uz



Appendix A

Some facts on completion

For the following facts, let R be a discrete valuation ring with maximal ideal (7). Let K := frac(R) be
the field of fractions of R,

R:= @R/ﬂn = {(a; + 7' R)i>1 : air1 = ai}
the completion of R. Let A be an R-order, X a A-lattice, i.e. a free A-module finitely generated over R.

The following well-known facts are stated without proof.

Lemma 165

(i) R is a subset of its completion R C R; more precisely, R B R (r)i>1 1s injective.
(ii) iR : R/?TR — R/WR .7+ TR — ig(r) + 7R is an isomorphism.
(iii) Risa complete discrete valuation ring with mazrimal ideal 7, and iy is an isomorphism.
(iv) The completion A := R ®r A is an R-order, and we have A — A : X — 1 ® \.
(v) The completion X :== R®p X is a A-lattice.
(vi) Recall that X = X/?TX' We have X 22 X with (i) and (ii).
(vii) If P is projective over A, then P is projective over A.
(viii) We have K N R = R.
(iz) Given x € K and N > 0, there exists y € K with z —y € mVR.

Lemma 166 Let A be an R-order. Then A contains a nontrivial idempotent if and only if A contains
a nontrivial idempotent.

Note that one needs completeness of R in order to show "<, and that this is the only passage where we
really need the completion.
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(zeneral tools

B.1 Two tensor products

Let R be a commutative ring. Let G be a finite group. Tensor products over R are denoted by ® := ®pg.
Suppose given RG-modules M and N.
Let the RG-module M ® N be defined as the R-module M ® N, equipped with the diagonal action of G,

i.e.
(m®n)g = (mg®@ng),

where m € M, n € N and g € G. Note that M @ N — N ® M via m ® n — n ® m, where m € M
and n € N.

In particular, on the RG-module M ® RG we have
(mex)g = (mg®xg) ,

where m € M, x € RG and g € G.
Let the RG-module M & RG be defined as the R-module M ® RG, equipped with the action of G on the

right factor, i.e.
(meax)g = (M xg),

where m € M, x € RG and g € G.
Lemma 167 The RG-modules M ® RG and M & RG are isomorphic via

v: M®RG = MGJSRG
meg — m-g’1®g
m-g®g <— mx®g .

Lemma 168 Let M be an RG-lattice. Let P be a finitely generated projective RG-module.
Then P ® M is a projective RG-lattice.

Proof. There is an RG-module Q such that P & Q = RG®* for some k > 0. Therefore, without loss of
generality, we can assume that P = RG®*. We may moreover assume that k = 1. So it remains to show
that RG ® M is projective.

We have RG® M = M @ RG = MARG; cf. Lemma 167. As R-modules, we have M = R®! for some
1 > 0. Since the action of G on M does not play a role in M@RG, we have M @ RG = R¥ & RG =
(R® RG)®' = RG®! as RG-modules. Now RG is projective, and we are done. O
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B.2 Reducing matrix entries and resulting transformation

Let R be a discrete valuation ring with maximal ideal (7). Let K := frac(R) be its field of fractions.
Let A be an R-order.

Remark 169 Suppose given m > 1 and A € R™*". Then I,, + 7 - A is invertible in R™*™.

Proof. With the Leibniz formula, we see that det(I,, + 7 - A) =, det I,, = 1. So det(I,, + 7 - A) is a unit
in R. Hence I, + 7 - A is invertible in R™*"™. O

Definition 170 Suppose given A-lattices M and N. Suppose given s > 0.

(i) Let o, 8 € Homp (M, N). Then we write
Q=g B

if there exists v € Homp (M, N) with o = 5 + 7%.

Note that in this case, we have v € Homp (M, N), for (zA)(7®y) = (z)(7*y)A implies, N being
R-free, that (z\)y = (z)yA for x € M and A € A.

(ii) Fix R-linear bases of M and N. Write m := rkg M and n := rkg N. Let A, B € R™*" be two

describing matrices of A-linear maps M — N. Then we write
A =rs B

if there exists C € R™*"™ with A = B + 7°C. Note that in this case, C' describes a A-linear map
M — N, too.

Lemma 171 Suppose given A-lattices M and N with n :=rkg M = rkg N.

Fix R-linear bases of M and N.

Suppose A, B € R"*™ C K"™*" to be the describing matrices of A-linear maps M — N.
Suppose A to be injective. Let £ be the maximal valuation of an elementary divisor of A.

Suppose that
A =l+1 B.

We can invert A as a matriz of K"". Then B-A': M — M and A'-B: N — N are A-linear

automorphisms. Moreover, B is injective.

Proof. Without loss of generality, we have A = . , where 9; € [0,¢] for i € [1,n].

xOn

!
In K™ we may invert A. We claim that 7¢A™! € Homy (N, M).

It is an R-linear map from N to M, since mfA' € R™*™. So it remains to show that for y € N and
A € N we have that
(yA) A = yrlATN.

Since A is injective, it suffices to show that
(yNTEATTA = yrf ATTNA.
But (yA)mfA 1A = yint = yrt A TAN = yn® A1AA. This proves the claim.

We have B = A + /1. C for some C; € Homy (M, N); cf. Definition 170.(ii). So B = A(I,, + 7 - Cs)
for Cy := A'7?Cy € Homy (N, N); cf. the claim above.
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Note that I,, + m - C is an automorphism of N by Remark 169. In particular, injectivity of A implies
injectivity of B = A(I,, + 7 - Cb).

We get
Al .B= Aﬁl(A(In +7-C9))=U,+7-Cy),

which is an automorphism.
For B - A1, the proof works analogously. O
Lemma 172 Suppose given A-lattices M and N with tkg M = rtkg N. Suppose o, B : M — N to be
A-linear maps.
Suppose o to be injective. Let £ > 0 be minimal such that 7° Coker(a) = 0.
Suppose that

O =041 ﬂ

Then p:= ((KB) - (Ka)’l)‘j‘l\j[[ ‘M — M and v := ((Ka) - (Kﬂ))m : N — N emist and are A-linear

automorphisms.

Proof. This follows by Lemma 171. O
Construction 173 Let P and P be projective A-modules. Consider a commutative quadrangle of the
form
~ B
tP® P = Q
O )
P®P = Q,

where @ is a projective module; like observed in the examples of the Chapters 3, 4 and 5.
Then v € End(Q) is an A-linear injective map, but in general not an isomorphism.
Let ¢ > 0 be minimal such that ¢ Coker(y) = 0. Note that £ < 1; cf. proof of Corollary 159.
Let 4 € End(Q) with v =,e+1 4. With Lemma 172 we have the isomorphism

ko= (BNE)DS: Q2@
with ky = 4.

Thus, we obtain a commutative diagram

~ B
PP = Q = Q
(¥ ; o () l
- o id
P®P ~ Q Q,
and thus the commutative quadrangle
Br~!

tP® P = Q
(%) % Q) 5
P®

P ~ Q.
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In practice, we may use this construction to pick a A-linear map 4 that is of a simpler shape than ~.
Then, we may also state the existence of the commutative quadrangle (xx) without inverting x explicitly,

but rather by constructing a diagram of the form (x).

B.3 The radical and the sign

Let R be a discrete valuation ring. Let n > 1.

Notation 174 Let A be the alternating module of RS,,, belonging to the partition (1"). We denote the
functor
A ®R — = (—)_ 5

applicable to RS, -modules and RS,,-linear maps.

Remark 175 Let P be a projective module over RS,. Then we have
(tP)” = v(P7).

Proof. We have
P — Def. p ~ A®P Def. p~
(“/ep)” = AR ip) = © /A®tP - /(tP)_

The module (P/tP)~ is simple, so (tP)~ must be a maximal submodule of P~. For P~ is indecomposable
projective, there is only one maximal submodule, namely the radical t(P™). O

Remark 176 Let P, P be projective RS,-modules.
Denote by tP — P and by P % P the respective embeddings.

Decompose P ® P = P Q; into indecomposable projective RS,,-modules Q; .
i

Suppose given a commutative diagram

P®P = @Qi
() O ()
tP®P @ PRtP = @Qi@@@-

Then there exists a commutative diagram as follows.

P-oP s (PeP) - DO

(1) O ) O (€)

(tP®P)~ @ (P®tP)” —= Do oDQ;

tP~QP @ P~ ®tP

Writing C' = (v;,j)ij , where v, ; : Q; — Q;, and C = (%,5)ij , where %;; : Q; — Q;, we have
Cc™ = (%—,j)ij and C~ = (:Yz_J)w
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B.4 A lemma on exact sequences

Lemma 177 Suppose given a commutative diagram

BI/ C//
iB”
B// 'Y//
A : B L C
B’ ,
B'p
B .

of abelian groups with (B', B, B"), (A, B, C) short exact sequences, and (B',C,C") a right-ezact sequence.

i
(ﬁ’ 1"_ gt 1 . .
Then A® B’ B =P ons right-ezact sequence.

Proof. The composite py”’ is surjective as a composite of surjective maps.

We have to show that im (ﬂz/) = ker(py”).

We have im (é,) C ker(py"), because

ipy”" =0, for ip=0,
ﬂ/p,}/// — ()7 for /B/p,_y// — /B//B//p// — Op// — O .

Further we have im (é/) D ker(py”), because given b € B with (bp)y” = 0, right-exactness of the
sequence (B’,C,C") gives a b’ € B" with t/8'p = bp, and therefore (b'3" — b)p = 0, so that there exists
a € A with ai = b8’ — b, whence (—a, ) (ﬁz,) — —ai+ VB =b. O



Appendix C

The Jacobson radical

We want to give a self-contained introduction to Jacobson radicals of orders over discrete valuation rings,

collecting well-known facts in one place.

C.1 Jacobson radical of rings
Let A be a ring. Recall that
Uleft (A) 3 Uright (A) ) U(A)
denote the set of left-invertible, right-invertible and invertible elements in A, respectively.

Definition 178 The intersection of the annihilator ideals of the simple right modules of A is called the
Jacobson radical and denoted tA.

Note that tA is an ideal of A.

Example 179

(i) Let R be a discrete valuation ring with maximal ideal generated by w. Then wR is the unique
maximal (left) ideal of R, whence tR = 7R.

(if) We have vZ =, < o prime PZ = 0.

(iii) We have v (%8) = (8%) Z (88) =t (88)
Definition 180 For a finitely generated projective A-module P, we denote its radical by tP := P - tA.
In particular, given an idempotent e of A, we have t(eA) = eA-tA = etA.

Lemma 181 ([8, 4.1]) For a € A, the following statements are equivalent.

(i) a is in the intersection of all mazimal right ideals of A.
(ii) 1 — ax is right-invertible for all x € A.
(iii) a € tA.
Proof. Ad (i) = (ii). Let a be in the intersection of all maximal right ideals of A.

Assume that there exists an element « for which 1 — az & Usigne(A). Then (1 —az)A C A is contained
in a maximal right ideal I of A. Since (1 —ax) € I anda € I, weget that 1 = (1 —ax)-1+a-z € I.

That is a contradiction.
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Ad (ii) = (iii). Assume that a ¢ tA, i.e. that there exists a simple right module M and m € M such
that ma # 0. By simplicity of M, we must have ma - A = M. In particular, we have that m = ma - z
for some € A. This yields that m(1 — ax) = 0. However, (1 — az) € Usigni(A) by (ii). So there exists
y € A with (1 — ax)y = 1. Hence 0 = m(1 — ax)ya = ma, which is a contradiction.

Ad (iii) = (i). For each maximal right ideal I, the right module A/I is simple. Therefore by (iii),
(A/I)-a=0,ie Aa C I, soin particular, a € I. So a is in the intersection of all maximal right ideals
of A. O

Lemma 182 ([8, 4.3]) For a € A, the following statements are equivalent.

(i) a is in the intersection of all mazimal right ideals of A.
(7') a is in the intersection of all mazimal left ideals of A.
(i) 1 — yax is invertible for ally € A and x € A.

(iii) a € tA.

Proof. Ad (i) = (ii). First, we recall that a € vA, which is an ideal of A; cf. Lemma 181. Suppose given

|
y € Aand z € A. We have to show that 1 — yax € Ujes(A) N Upigne (A). Since ya € tA, we have that
1 — yax € Upgne(A); cf. Lemma 181. So there exists u € A such that (1 — yaz)u = 1. So u = 1 + yazu.
Since yaxu € tA, we have that v = 1 — (yazu) - (—1) € Usignt(A); cf. Lemma 181. So there exists v € A

with uv = 1. Hence 1 — yaz = (1 — yaz)uv = v. Hence 1 = uv = u(1 — yax).

Ad (ii) = (i). Letting y = 1, we see that 1 — ax is invertible, hence right-invertible, for all z € A. So by
Lemma 181, the element a is contained in the intersection of all maximal right ideals.

Ad (') & (ii). Since assertion (ii) is left-right-symmetric, the equivalence (i’) < (ii) is the symmetric

assertion to the equivalence (i) < (ii), and the latter has already been shown.

Ad (i) & (iii). See Lemma 181. O
Lemma 183 ([10, 2.5.14]) Let e € A be an idempotent. Then
t(ede) = er(A)e = edentA.

Moreover, we have an isomorphism of rings
A ~ ’ ’
¢ e/t(eAe) - ¢ ( tA) €
ere +t(ede) +— €'(z+tA)e

where we abbreviate €/ := e + tA.

Proof.
We treat the first equality.

Ad D. Suppose given a € er(A)e. By Lemma 181, we have to show that e — aexe € Uligni(eAe) for all
x € A. Note that ae = a = ea. Since a € t(A) we get by Lemma 181, that 1 — aze € Usigns (A). So there
exists y € A such that (1 — aze)y = 1. We get

(e — axe)eye = eye —axeye = e(l —aze)ye = €? = e.

!
Ad C. Conversely, suppose given z € t(eAe) C ede. It suffices to show that = € tA, for x = exe.
Suppose given a simple right A-module M. We have to show that Mz = 0. Assume that Mz # 0. Then
0 # Mx = Mex, so 0 # Me. Note that Me is a right eAe-submodule of M.
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Given m € M such that me # 0, we get me - eAe = (meA)e = Me, since M is a simple right A-module.
Hence Me is generated as a right eAe-module by every nonzero element, and so it is a simple right

eAe-module.

But = € t(eAe), so it annihilates every simple right eAe-module. Therefore Me - & = 0, which is a

contradiction.

We treat the second equality.

Ad C. We have et(A)e Ct(A) and er(A)e C eAe.

Ad D. Suppose given z € t(A) NeAe. Then we have x = exe € er(A)e.
We consider the claimed isomorphism.

The kernel of the surjective ring morphism eAe — ¢’ (A/tA)e’, exe — €' (z+tA)e’ is given by eAeNtA,
which we know to be equal to et(A)e. O

Remark 184 Note that in general for an idempotent e we have
(t(ede))? # e(tA)%e

R R

For example, let A := ( 3) R ) with R:=Zs3) .

Then we have

—
i
b
~—
[ V)
I
/N

1
Let e := 0 . We get
0 0

(t(cde))? = <(g) 8)

Lemma 185 (and Definition) Suppose given idempotents e, f € A such that eA = fA as A-modules.

Then
eAf -v(fAf) = etAf = t(ede)-eAf .

As abelian group, we define
t(eAf) = eAf t(fAf) = ev(A)f = t(ede)-eAf .

Proof. Since eA = fA, we may choose u = euf € eAf and v = fve € fAe such that uv = e and vu = f.
We want to show that ev(A)f = t(ede) - eAf, the other equation being symmetric.

Ad D. Suppose given a = eae € t(eAe) and b =ebf € eAf. We have to show that ab 6 et(A)f. Since

ab € eAf , it suffices to show that ab e tA. So it suffices to show that a E tA. But a € t(ede) = etr(A)e C
tA by Lemma 183.

!
Ad C. Suppose given z = exf € er(A)f. It suffices to show that zv € t(ede), for then z = zvu €
t(ede) - eAf . However, zv € et(A)f - fAe C et(A)e = t(eAe) by Lemma 183. O

Lemma 186 We have
lj(A/tA) =
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Proof. We abbreviate A’ := A/tA. Let M be a simple A-module. We have M -tA = 0; cf. Definition 178.
So M may be viewed as an A’-module via m - (z 4+ tA) :=m - x for x € A. As an A’-module, M is again

simple.

Now let z € A be such that z +tA € tA’. Then M -z = M - (x +vA) = 0 for every simple A-module M.
Hence z € tA, i.e.  +tA = 0. This shows that tA’ = 0. O

Lemma 187 (NAKAYAMA) Let X be a finitely generated right module over A.
If X #0, then X -tA is a proper submodule of X.

Proof. We show that X - tA = X implies X ~o.
Write X = (@1, ..., ;) with a minimal number k of generators.

Assume that k > 1. Since X -tA = X, we have z;, € X - tA. So
T = X101+ ...+ TRag
for some a1, ..., a € tA. Hence
(1 —ag) = x1a1+ ...+ Tp_10K—1 -
By Lemma 182, (1 — ay) € U(A). So there exists w € A with (1 — ax)w = 1. We conclude that
T = T101W+ ...+ Tp_10—1W .

Hence each element y € X may be written as

y = x1bi+ ...t apby = b1 + ..+ Tp_1bp—1 + (1wt . F Tp_1ap_1w)by € (X1, ..., Tp—1) ,
where b; € A for i € [1,k]. Hence X = (21, ..., x_1), contradicting the minimality of k.
So k = 0, whence X = 0. O

Lemma 188 Let P and Q be finitely generated projective A-modules.
Suppose that P/tP = Q/tQ as A-modules.
Then P = Q as A-modules.

Proof. We may choose a diagram as follows, with vertical residue class maps

p---=-- - Q
PP rQ
P/tP —"—=Q/1Q.

where the A-linear map ¢ exists, because P is projective and pg is surjective.
It remains to show that ¢ is an isomorphism.
Ad surjectivity. We have that (P@)pg = Ppp ¢ = Q/tQ, and therefore Pp + tQ = Q.

We obtain
(Q/Pg) -vA = (Q-vA+ Pp)/Pp = (xQ+ P)/Pp = Q/Pp.
So Lemma 187 yields Q/P¢ =0, i.e. Q = Pp.

Ad injectivity. Let K := Ker . We aim to show that K < 0.
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We have a short exact sequence K p2 @, where 7 is the inclusion map. Since @ is projective, this

sequence splits, i.e. there exists a A-linear map t : Q — P such that t¢ =idg. Let Q' := Qt.

We claim that P = K @ Q'. Given x € P, we may write © = (x — ) + ¢ € K + Q’. Moreover, given
y € KNQ', we may write y = ¢t for some ¢ € Q to obtain 0 = y@ = qt@ = ¢, so that we get y = gt = 0.
This proves the claim. In particular, we have the projection map from P to K, which shows that K is
finitely generated.

We have Kppyp = K@pg = 0, and thus Kpp = 0,ie. K CtP =P -tA =K - tAdQ -tA So
K C K -tA C K, whence K =0 by Lemma 187. O

C.2 Local rings

Let A be a ring.
Definition 189 The ring A is called local, if its set of non-units A\ U(A) is an ideal in A.

Remark 190 (cf. [8, 4.8]) Suppose given a € A. The following hold.

(i) We have a € Ujer,(A) if and only if a + tA € Upep (A/tA)-
(ii) We have a € Uyigne(A) if and only if a +tA € Uright(A/tA)~

(iii) We have a € U(A) if and only if a +tA € U(A/tA).

Proof. Ad (i). We have to show the reverse implication. Suppose that a + tA € Ujep(A/tA). Then there
exists b € A such that (b+tA)(a+tA) = 1+tA, i.e. such that ba = 14z for some z € tA. By Lemma 182,
there exists w € A such that w(1 + z) = 1. So (wb)a = 1.

Ad (iii). Follows from (i) and its symmetric assertion (ii). O

Remark 191 Suppose given a ring B. If the zero ideal is a maximal left ideal in B, then B is a skewfield.

Proof. Since B has a maximal ideal, we have B # 0.

Suppose given z € B with  # 0. Then Bz is a nonzero left ideal in B. If Bx was a proper left ideal of
B, then it would be contained in a maximal left ideal, which is not the case. Hence Bx = B. So there
exists y € B such that yx = 1. Note that y # 0. So, likewise, there exists z € B such that zy = 1. Hence
z = zyx = x. Therefore yzr =1 and zy = zy = 1. O

Remark 192 (cf. [8, 19.1]) The following assertions are equivalent.

(i) A is alocal ring.

(ii) We have 04 # 14 and the sum of any two non-units in A is a non-unit.
(iii) A/tA is a skewfield.

(iv) tA is the unique maximal left ideal in A.
(iv') tA is the unique maximal right ideal in A.

(v) We have A = U(A) UtA.
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Proof. Write I := A\ U(A).

Ad (i) = (ii). By assumption, [ is an ideal in A. So it is closed under addition in A. Moreover, 0 € I.
Since 1 € U(A), we have 1 € I, s0 0 # 1.

Ad (ii) = (iii). Since 0 # 1, the left ideal {0} is properly contained in A, whence there exists a maximal
left ideal in A, which does not contain 1. Hence 1 ¢ tA, i.e. 0 +tA # 1+ tA; cf. Lemma 182.

Suppose given a € A\ tA. Condition (ii) being left-right symmetric, it suffices to show that there exists
b € A such that (b+tA)(a +tA) =1+ tA. Since a ¢ tA, we may choose a maximal left ideal L. C A
not containing a. As L + Aa is a left ideal of A properly containing L, we have L + Aa = A. So there
exists £ € L and ¢ € A such that £+ ca = 1. By (ii), ca is a unit in A. So there exists w € A such that
(we)a = 1. In particular, (we+ tA)(a+tA) = 1+ tA.

Ad (iii) = (iv). Since A/tA # 0, there exists a maximal left ideal; cf. Lemma 182. Suppose given a
maximal left ideal L C A. Note that tA C L; cf. Lemma 182. Therefore L/tA is a maximal left ideal in
A/tA. The latter being a skewfield, we conclude that L/tA =0, i.e. L = tA.

Ad (iv) = (iii). Since tA is a maximal left ideal in A, we have A/tA # 0.

Since tA is the unique maximal left ideal in A, the ring A/t A has the unique maximal left ideal tA/tA = 0.
By Remark 191, the ring A/tA is a skewfield.

Ad (iv) = (v). We have to show that [ ZtA. We may use (iii).
!
Ad I DO tA. Since tA is a maximal left ideal of A, it does not contain a unit of A.

! !
Ad I CtA. Suppose given a € A\ tA. We have to show that a is not contained in I, i.e. that a € U(A).

Since @ +tA # 0 and since A/vA is a skewfield by (iii), we have a +tA € U(A/rA). By Remark 190.(iii),
we have a € U(A).

Ad (v) = (i). We conclude that I = tA, which is an ideal in A; cf. Definition 178. O

Remark 193 A local ring has, up to isomorphism, only one simple module, viz. A e

Proof. Note that tA is the unique maximal right ideal in A; cf. Remark 192.
So the A-module A/tA is simple.

Conversely, suppose given a simple A-module M. We may choose m € M \ {0}. Consider the surjective
A-linear map ¢ : A — M, a — ma. Then A/ Ker ¢ is isomorphic to M as an A-module. So A/ Ker ¢
is simple, whence Ker ¢ is a maximal right ideal in A. Therefore Keryp = vA. Altogether, A/tA is

isomorphic to M as an A-module. O

C.3 Jacobson radical of K-algebras

Let K be a field. Let A be a finite-dimensional K-algebra.

Recall that an ideal I C A is nilpotent if there exists £ > 0 such that each product of length ¢ with factors
in I is zero.

Lemma 194 Let S C A be a subset such that s-a € S for all s € S and a € A.
Suppose that S consists of nilpotent elements.

Then S C tA.

Proof. Suppose given s € S. It suffices to show that 1— sa is right-invertible for all a € A ; cf. Lemma 181.
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Write ¢ := sa. By assumption, t € S. So there exists £ > 0 such that ¢/ = 0. Then

1=ty Y t=1-t"=1.
i€[0,6—1] O
Lemma 195 ([8, 4.11])
(i) There exists k > 1 such that (tA)* = 0.

(ii) Given an ideal N C A such that there exists k > 1 such that NF¥ =0, then N C tA.

Proof.

Ad (i). Given k > 0, the A-module (tA) is finitely generated, since it is even finite-dimensional over K.
Hence (tA)¥ -tA C (tA)¥ by Lemma 187. Since A is finite-dimensional over K, we conclude that there
exists ¢ > 0 such that (tA)* = 0.

Ad (ii). This follows by Lemma 194, since N consists of nilpotent elements and since N - A C N. O

Lemma 196 Suppose A to be commutative. Then

tA = {a € A]ais nilpotent }.

Proof. Write N := {a € A | a is nilpotent }.

!
We claim that N is an additive subgroup of A. Suppose given z, y € N. We have to show that xt—y € N.
Pick k£ > 1 with z* = 0 and ¢ > 1 with y* = 0. Then (z — y)*™* = 0 since A is commutative. This proves
the claim.

Since A is commutative, we have A- N C N. Together with our claim, this shows that N is an ideal in A.
Ad tA C N. By Lemma 195.(i), each element of tA is nilpotent.

Ad tA D N. By Lemma 195.(ii), it suffices to show that the ideal N is nilpotent. Let (21, ..., zm) be
a K-linear basis of N. Pick s > 1 such that 2 = 0 for all ¢ € [1,m]. Then

le.ij."'.mjsnL = 0

for each choice of indices j, € [1,m] for ¢ € [1, sm], because we may reorder the factors to get

PR .. . . — ai . . a;
Ty Xy v eee Ty = T T

with some «; > 0 for ¢ € [1,m] and observe that there exists an i € [1,m] with «; > s.

So multiplying K-linear combinations and expanding, this shows that any product of length sm with
factors in IV is zero. Hence N is nilpotent. [

Lemma 197 (FITTING, cf. e.g. [1, 1.3.2])
Suppose given an A-module M that is finite dimensional over K. Suppose given f € End M.

Then there exists n > 1 such that
M = Im f* & Ker f™ .

If M is indecomposable, then f is an automorphism or nilpotent.

Proof. There exists an n > 1 such that dimg Im f* = dimg Im f2*. Then the surjective map

. pn|Im 3, n 2n
p = f ‘Imf” cIm f* — Im f

is also injective. Moreover, Im f* = Im f2".
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Given u € Im f* N Ker f, we get up = uf™ = 0 and thus v = 0. This shows that Im ™ N Ker f™* = 0.

Suppose given m € M. Then mf™ € Im f* = Im f?", so that we may write m f™ = z f?" for some x € M.
Hence m = zf™+ (m —xf") with  f* € Im f™ and (m —xf")f* =0, i.e. m —xf™ € Ker f™. This shows
that M = Im f™ + Ker f™.

If M is indecomposable, we conclude that there exists n > 1 such that M = Im f™ or M = Ker f". In

the former case, f is an automorphism; in the latter case, f is nilpotent. O

Lemma 198 Suppose given an indecomposable A-module M that is finite dimensional over K.

Then End 4 M is a local ring.

Proof. Write E := Endy M. We have to show that F S U(E)U<tE. Since E # 0, we have t£ C F and
!
thus U(F) NtE = (). So it suffices to show that F\ U(F) C tE.

The subset £\ U(E) consists of nilpotent elements by Lemma 197. Tt is closed under right-multiplication
with elements of F, as it consists of non-invertible K-linear endomorphisms. So F \ U(E) C tFE by
Lemma 194. O

Lemma 199 Suppose given a simple A-module S.

(i) There exists an indecomposable projective A-module P and a surjective A-linear map P 25 8.

(i) Given indecomposable projective A-modules P and QQ and surjective A-linear maps P 2,54 Q,
then there exists an A-linear isomorphism P % Q such that fq = p.

P—1—Q
S
Proof. Ad (i). Choose s € S\ {0}. We have a surjective A-linear map ¢ : A — S, a — sa. Decompose
A= & P; with each P; indecomposable projective. There exists j € [, k| such that ¢|p, # 0. Since
1€[1,k]
S is simple, ¢|p, : P; — S is surjective. So we may choose P := P; and p := ¢|p, .
Ad (). Using projectivity of P, we find an A-linear map P N Q such that fq = p. Using projectivity of
Q, we find an A-linear map Q —2 P such that gp = ¢. Since (fg)*p = p # 0 for k > 0, the endomorphism
fg of P is not nilpotent. Likewise, the endomorphism gf of @ is not nilpotent. So using Lemma 197, we
get fg € U(End(P)) and gf € U(End(Q)). Therefore, f and g are isomorphisms. O

Lemma 200 Suppose given primitive idempotents e, f € A. If eA is not isomorphic to fA as A-modules,
then eAf C tA.

Proof. Given a simple A-module S, we have to show that SeAf = 0; cf. Definition 178.
We assume that SeAf # 0. Then Se # 0. Moreover, 0 C SeAf C Sf,so Sf #0.

Then we can find an element s € S such that se # 0. Thus, there exists an A-linear map eA 2 S,

ea — sea, which is nonzero since se # 0, and thus surjective since S is simple.
Analogously, we get a surjective A-linear map fA — S.

According to Lemma 199, this implies eA = f A, which is a contradiction. O

Proposition 201 Recall that A is a finite-dimensional K-algebra. Let 14 = > e; be an orthogonal
i€[1,n]
decomposition into primitive idempotents.
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We define an equivalence relation (~) on the index set [1,n] by letting
it~ s eiA%JejA

fori, j € [1,n].

Recall from Lemma 185 that we write t(e;Ae;) = e;Ae; - t(ejAej) = e;t(A)e; = v(e;Ae;) - ejAej for
i, j € [L,n] withi~ j.

Then we get
tA = ( P rlede))d( @ ede).
i,j€[1n] i,j€l1,n]
i~] Ucadi)

Proof. Write RS for the right-hand side of the equation in question.

Ad tA D RS. Suppose given i, j € [1,n]. We have to show that the corresponding summand in RS is
contained in tA.

If i ¢ j, then e;Ae; C tA by Lemma 200.
If i ~ j, then t(e;Aej) = e; t(A)e; C tA.

AdtA C RS. Suppose given a € tA. Suppose given i, j € [1,n]. We have to show that e;ae; is contained

in the corresponding summand in RS, for then a = >  e;ae; is contained in RS.
4,5 € [1,n]

If © ¢ j, there is nothing to show.
If i ~ j, then e;ae; € e;t(A)e; = v(e; Aey). O
Example 202

Suppose given an orthogonal decomposition into primitive idempotents 14 = e; + e + e3 + e4 with

€1 & eq, e1 e, €1 L ey, ex ez, ea b eq and ez ~ ey, i.e. with (~)-classes {e;}, {ea} and {es, e4}.
We have the Peirce decomposition

€1A€1 611462 61A63 €1A€4

621461 62A€2 €2A€3 €2A€4

63A€1 €3A62 €3A€3 63A64
esAer egAes eghes egAey

With Proposition 201, we get the following matrix.

t(erAe;)  ejAes e1Aes e1Aey
A — esAer  t(eaAes)  egdes ey Aey
esAeq esdAes  t(ezdes) t(esAey)
esAer esAes  t(egdes) t(esAey)
t(erAer)  ejAes e1Aes e1Aey
B esAe;  t(egAes) esAes egAey
B esAeq egAes t(ezAes) esAeqr(esAey)
esAe; esAes  eqAhest(esAes) t(egAey)

So informally speaking, to get the radical of A we have to take radicals on its Peirce block main diagonal.

Remark 203 Suppose given a primitive idempotent e € A. Then the ring eAe is local.

Proof. We have eAe = End 4(eA). Since e is primitive, eA is indecomposable and finite-dimensional, and
so End4(eA) is local by Lemma 198. O
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Lemma 204 Let e and f be primitive idempotents of A. Each A-linear map
ed 2 fA/ftA

18 surjective or the zero map.

Proof. Using projectivity of eA, we obtain a commutative triangle of A-linear maps as follows.

eA- "~ fA

N

JA/feA

Then 1& is the multiplication from the left with some w € f Ae.

If 1[) is an isomorphism, then v is surjective. So from now on we can assume that 1[) is not an isomorphism.
We want to show that 1[1 < 0. We have to show that fweA = weA = (eA)y é frA. It suffices to show
that w é tA.

Case eA 2 fA. We have w € fAe C tA by Lemma 200.

Case eA =2 fA. We have u € eAf and v € fAe with wv = e and vu = f. Consider the following
commutative triangle of A-linear maps.

Since w(—) is not an isomorphism, neither is wu(—), i.e. wu is not a unit in fAf. Note that fAf is a
local ring by Remark 203, so that fAf = U(fAf) Ur(fAf) by Remark 192. So wu € fAf\ U(fAf) =
t(fAf) = fr(A)f CtA; cf. Lemma 183. O

Proposition 205 Let e € A be a primitive idempotent. Then the A-module eA/e cA 1s simple.

Proof. Write X := eA/etA. Assume that X is not simple. Let 0 C X’ C X be a proper submodule.
Choose ' € X'\ {0}. Then the A-linear map ¢ : A — X, a — 2’a is neither zero nor surjective.

Let 14 = > e; be an orthogonal decomposition into primitive idempotents. Then ¢|¢, 4 is zero or
i€[1,n]

surjective for ¢ € [1,n] by Lemma 204. Since ¢ is not surjective, ¢|.,a is not surjective for i € [1,n].

e;A = 0 for i € [1,n]. Since A= & e;A, this implies that ¢ = 0. We have reached a

1€[1,n] 0

Hence ¢

contradiction.

Lemma 206 Suppose given an A-module M that is a finite direct sum of certain simple submodules.
Suppose given an A-module N and a surjective A-linear map f : M —> N. Then N is a finite direct

sum of certain simple submodules.

Proof. Note that each simple A-module is an epimorphic image of the regular module A, hence finite-
dimensional. In particular, M is finite-dimensional.

We choose a decomposition M = @ S; with S; simple for ¢ € [1,k]. Then
1€[1,k]

N=Mf= (> s)f= > 5.

i€[1,k] 1€[1,k]
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Let I :={i € [1,k] | Sif # 0}. For i € I, the surjective A-linear map f

hence, S; being simple, injective. So S; f is simple for : € I. We have N = (S, f).
i€l

gf : S; — S;f is nonzero,

Let N’ C N be a submodule of maximal dimension with respect to being a direct sum of certain simple
submodules. Assume that N’ C N. We may choose j € I such that S;f ¢ N’, for otherwise we would

have > (S;f) C N’ C N. Then S;f N N' C S;f. Since S, f is simple, this implies S; f N N’ = 0. So we
i€l

have found the submodule N’ & S; f, which is again a direct sum of certain simple submodules and which

is of bigger dimension than N’. This is a contradiction. O

C.4 Jacobson radical of R-orders

Let R be a discrete valuation ring with maximal ideal (7). Recall that for reduction modulo 7, we use

the bar-notation.
Let A be an R-order. Denote the residue class ring morphism by
A A
r — IT.
Definition 207 The R-order A is called stable, if for each primitive idempotent e € A, the idempotent
€ € A is primitive.
Cf. Lemma 220 below.

Remark 208 If A is an R-suborder in a finite direct product I' of matrix rings over R such that I'/ A is
of finite length as an R-module, then A is stable, as we will see in Lemma 232 below.

Lemma 209 We have mA C tA.

Proof. 1t suffices to show that wA annihilates each simple A-module X. It suffices to show that =

annihilates each simple A-module X.

!
Note that X7 C X is a A-submodule. So to show that X« L 0, it suffices to show that X7 C X.
We consider X as an R-module now. Note that tR = 7R ; cf. Example 179.(i).

Note that X is a factor module of A, via A — X, A — z for any chosen element x € X \ {0}, and

therefore finitely generated as a module over R.

Since X # 0 and since X is finitely generated over R, we obtain X7 C X by Lemma 187. O
Lemma 210 We have

tA = p7i(rA),
i.e.

tA/TA = tA .

We obtain a ring isomorphism
AJtA = AJtA
r4+tA — T+rtA.

Proof. For I C A, we apply the bar elementwise and write [ :=Ip={Z |z €l}={ax+nA|zel}.

Recall that
{mACITCA| Iisarightidealin A} — {J
I — T
p ) T

C A | Jis aright ideal in A}
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are mutually inverse bijections preserving inclusions.

Write M := {1 C A| I is a maximal right ideal in A}. By Lemmas 181 and 209, we have
M = {wA CICA| Iisamaximal right ideal in A} .

Given I € M, the image I is a maximal right ideal in A.
Conversely, for each maximal right ideal J C A we have J = I for I = p~*(J) € M. So by Lemma 181
we have

tA = ﬂ I.

IeM

By Lemma 181, we conclude

A= (VIT={p'D)=p"()D=0r'@EA).

IeM IeM IeM

Applying p to both sides, this implies

tA/mA = tA.

Finally, we get
AfeA s (AJ7A)/(eAJmA) s RJeA
z+tA — T+ (tA/7A) —

Corollary 211 A is a local ring if and only if A is a local ring.

Proof. By Lemma 210, we have A/tA = A/tA. So the result follows by Remark 192. O

Proposition 212 Suppose A to be commutative. Then
tA = {z € A|Z is nilpotent } .

Proof. By Lemmas 210 and 196, we obtain

tA = p7'(tA) = p~'({Z | x € A such that z is nilpotent }) = {z € A | Z is nilpotent } . 0

Lemma 213
(i) There exists k > 1 such that (tA)* C 7A.

(ii) Given an ideal N C A such that there exists k > 1 such that N* C A, then N C tA.

Proof.

Ad (i). We have to show that there exists k > 1 such that ((tA)*)p = 0. But (tA)p “Z° tA; and we may

choose k > 1 such that (vA)¥ = 0 by Lemma 195.(i). So

(€A)")p = ((M)p)* = (A)* = 0.
Ad (ii). Choose k such that N¥* C 7A. Then (Np)¥ = (N¥)p = 0. By Lemma 195.(ii), we obtain
Np C A, so that N C p~!(xA) L2100, O

Lemma 214 Suppose given A-lattices P and Q.
Suppose that P is projective. Suppose that P = Q as A-modules.
Then P = Q as A-lattices.

Given an isomorphism P — Q, any morphism P — Q lifting it is an isomorphism.
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Cf. also Lemma 188.

Proof. We may choose a commutative diagram as follows, with vertical residue class maps

P---%->q
PP rQ
P—¢>Q7

where the A-linear map ¢ exists, because P is projective and pg is surjective. It is an isomorphism,
because

det o+ 7R = detp € U(R),
for ¢ is an isomorphism. Hence we know that det @ € U(R), so that ¢ is an isomorphism. O

Remark 215 Let e and f be idempotents of A.
Then eA = fA as A-modules if and only if €A =2 fA as A-modules.

Proof. This is a particular case of Lemma 214. O

Remark 216 ([10, p. 211]) There exists an orthogonal decomposition
lA = Z €;
i€[1,n]

into primitive idempotents e; of A.

Proof. We have to show that A may be written as a finite direct sum of indecomposable submodules.

Note that A is right-noetherian, for it is even noetherian as an R-module. In fact, it is finitely generated as
a module over the noetherian ring R. So each nonempty subset of submodules in A contains a submodule
not included in any other submodule of this set.

Write My := A.

If My # 0 then choose a maximal submodule M; in M that is a direct summand therein. Choose a
submodule N; of My such that M7 & N1 = My. Then N; is indecomposable, for a decomposition would
allow to enlarge M; by one of the summands of N7, which is impossible by maximality of M; .

If M7 # 0 then choose a maximal submodule Ms in M; that is a direct summand therein. Choose a
submodule Ny of M7 such that Ms @ Ny = M, . Then Ns is indecomposable, for a decomposition would
allow to enlarge M5 by one of the summands of Ny, which is impossible by maximality of Ms .

Etc.

We obtain a strictly ascending chain of submodules

Ny € Ni®Ny € Ni®&N,®ON3 C ...

=

Since A is right-noetherian, this chain cannot be of infinite length. So there exists n > 0 such that

M, = 0. Hence we have found a finite direct sum decomposition A = €@ N; into indecomposable

submodules. i€lt,n] O
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Proposition 217 Recall that A is an R-order. Suppose A to be stable; cf. Definition 207.

Let 1y = > e; be an orthogonal decomposition into primitive idempotents; cf. Remark 216.
i€[1,n]

We define an equivalence relation (~) on the index set [1,n] by letting
i~j e A =ejA

fori, j € [1,n].

Recall from Lemma 185 that we write v(e;Aej) = e;Ae; -v(ejAej) = e;t(A)e; = t(e;Ae;) - e;Aej for
i,j € [1,n] withi~ j.

Then we get
tA = ( @ t(eiAej)) @( @ eiAej) .
i.j€ll,n] ij€lL,n]
inj i
Proof. Since A is stable, 13 = > ¢; is an orthogonal decomposition into primitive idempotents.

i€[1,n]

For i, j € [1,n], we have e;A = ¢;A if and only if &;A = &;A by Remark 215. So the equivalence relation

(~) for the decomposition 15 = > e; coincides with the equivalence relation (~) for the decomposition
i€[1,n]
13 = > & in the sense of Proposition 201.
1€[1,n]

By Proposition 201, we have

Suppose given i, j € [1,7n] such that i ~ j. Suppose given z € A. We claim that e;ze; € v(e;Aé;) if and
only if e;ze; € v(e;Aej). We have
v(e;Ae;) = errhe;
=" e(tA)pe;
= (e;vAej)p
— (xleihe;)p.
Now if e;ze; € t(e;Ae;), then &;7e; = (e;we;)p € (v(eilej))p = v(e;Ae;).

Conversely, if €;7€; = (e;xej)p is in v(e;A€;) = (v(e;Aej))p, then e;ze; € v(e;Ae;) + A, whence e;ze; €
ei(t(e;Aej) + mA)e; = v(e;Aej) + e;mAej = t(e;Aej) by Lemma 209.

This proves the claim.

By Lemma 210, we obtain

A = pTl(rA)
= {x eAlz= Y eze;jisin( @ t(ehe)) e ( B éif\éj)}
i,5€[1,n] i,5€[1,n] i,5€[1,n]
w~] (2]

= {wzeAl|eze; ex(ee;) fori, j € [1,n] withi~j}
Claim

{z € A|ewe; €t(ejAej) for i, j € [1,n] with i~ j}

= {x eAfz= Y ewzejisin( @ rtlehe;)) @ ( P eile;) } .
i,j€[1,n] i,jle[lj’ﬂ] i).jle’,‘[/ljn]
i~ i
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Let € be a central idempotent of KA. Then A is a subring of KA, which is an R-order.

We have a surjective morphism of R-orders A — ¢A, x — ex.

Lemma 218 Suppose A to be stable.
Let e be a primitive idempotent of A.

Let ¢ be a central idempotent of KA.

(i) The A-module eA/e ¢\ is simple.

(ii) We have a surjective A-linear map

EA/etA — 6eA/eetA
er+etAh —— cex+eerA.

It is an isomorphism if e # 0.

(iii) The eA-module eeA/cetA is simple if ee # 0, it is zero if ce = 0.

Proof.

Ad (i). Since A is stable, € is a primitive idempotent of A.

We remark first that we have the following isomorphism of A-modules.
eAjemA =5 €A

er +erA —— ez
er +erA <+«— ez

Well-definedness in both directions follows from e(z — ) € emrA being equivalent to e(x — Z) € wA for
x, T € A.
So we have the following isomorphisms of A-modules.

L.21

- o _
eAjeth = (eAjerA)/(etAjerA) —» eA/e(rtA/mA) = eAjerA
(ex +emA) + (etA/emrA) +— ez +e(tA/7A)
By Proposition 205 the latter is simple as a module over A, hence over A. Hence so is the former.

Ad (i, #3). The A-linear map
eAjeth — cel/eetA
ex+etAh +—— cex+eetA

is well-defined since e(z — ) € etA implies ce(z — &) € eetA for z, T € A.

By construction, this map is surjective. So with (i), the A-module ceA/eetA is simple or zero. By

Lemma 187, it is nonzero if ce # 0. It is zero if ce = 0.
As a surjective A-linear map between simple modules, our map is an isomorphism if ee # 0.

We have a surjective ring morphism A — €A, © — ex. So also over €A, the module eeA/eetA is simple

or zero, for we know this fact for its restriction along A — cA. O

Lemma 219 Suppose given a simple A-module S.

Then S is isomorphic to eA/e tA for some primitive idempotent e of A.

Proof. Suppose given a simple A-module S.

We choose an epimorphism A 25 S, # — s for some s € S\ {0}.
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We have an orthogonal decomposition 1 = > e; into primitive idempotents, and therefore a decom-
i€[1,n]
position A = € e;A of A into indecomposable projective modules; cf. Remark 216.
i€[1,n]

We consider the restrictions ¢|c,a : e,A — S of ¢ on the summands e;A. We can find 7 € [1,n] such

that the map ¢le,a is not the zero map. Therefore it is an epimorphism, since S is simple.
Write K := Ker ¢|.,s . Consider the short exact sequence
K — A — S.

By definition, StA = 0. Thus, we get with S = ¢;A/K that (e;A/K)tA =0, i.e. e;AtA = ¢;tA C K. So
altogether we have e;tA C K C e;A, since S # 0.

With Lemma 218.(i), e;A/e;tA is simple, i.e. e;tA C e;A is maximal submodule. Thus, e¢;tA = K and so

S = €iA/6itA. O
Lemma 220 Suppose A to be stable. Suppose given a finitely generated indecomposable projective
A-module P. Suppose given an orthogonal decomposition 15 = > e; into primitive idempotents; cf.
Remark 216. i€ltn]

Then there ezists j € [1,n] such that P = ejA.

Proof. There exists k > 0 and a surjective A-linear map ¢ : A®* —s P. We obtain an induced surjective
A-linear map ¢ : (A/tA)®*¥ — P/vP, (x; 4+ tA)iepn g — (2i)iep e + tP.

Note that A/tA is a A-module by Lemma 209. By Lemma 218.(i), the module e;A/e;tA is simple over A
for i € [1,n], hence over A.
The A-module (A/tA)®* = ( @ e;A/e;vA)®* is a direct sum of certain simple submodules. So by

i€[1,n]
Lemma 206, so is its epimorphic image P/tP. Hence by Lemma 219, we have that P/tP is isomorphic

to @ (e;A/e;tA)®* for some o; > 0. Then by Lemma 188 P is isomorphic to a sum of projective
1€[1,n]
modules € (e;A)®*. But P is indecomposable. Hence there exists j € [1,n] such that a; = 1 and
i€[1,n]
a; =0 for i € [1,n]\ {j}, i.e. P is isomorphic to e;A. O

Lemma 221 Suppose A to be stable. Let € be a central idempotent of KA.
We have

e(tA) = t(ed).
Proof.

!
Ad C. Suppose given a maximal right ideal M C eA. By Lemma 181, we have to show that e(tA) C M.
The factor module eA/M is simple over €A, hence over A. Thus it is annihilated by vA. So e(tA) =
eA-tAC M.

!
Ad D. Let e be a primitive idempotent of A. We claim that et(¢A) C e(rA). With Lemma 218.(iii), the
module eeA /eetA is simple or zero over eA. In any case, it is annihilated by t(eA). Consequently,

et(eA) C eeA-t(eA) C eetA C e(tA),
which proves the claim.

Let 1o = Y e; be an orthogonal decomposition into idempotents. Suppose given £ € t(eA). We have to
i=1
!
show that & € e(tA). We get

§=1pr-& = Z e € Claim e(tA) .
i€[l,n) O
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Proposition 222 Suppose A to be stable.

Let 1xn = Y. €; be an orthogonal decomposition into central idempotents of KA. Then
1€[1,4]
tA = An P rn)
i€[1,4]

as R-submodules of KA.

Proof.

Ad C. Wehave tA C @ e;t(A) R P t(eA).
i€([1,4] 1€[1,4]

Ad D. By Lemma 213.(ii), we have to show that there exists k > 1 such that

(A0 @D ten) € A

i€[1,4]

Consider the subrings A C €@ e;A C KA. Consider the ideal @ t(g;A)in @ &;A.
i€[1,4] i€[1,4] i€[1,4]

It suffices to show that there exists k > 1 such that

!
( EB t(aiA))k C 7A.
i€[1,4]
By Lemma 213.(i), we may choose s > 1 such that v(e;A)® C we; A for i € [1,4].
Choose t > 1 such that 7wle; € wA for i € [1,4].

Let k£ := st. Note that

II ( > Eixz’j) = > I1 Eilij

JE[Lk] i€[1,4] i€[1,4] jE[1,k]

for z;; € KA. Hence

(D =) = D (@) = D ((Er)) € @ (red) = @ nleh C 7.

i€[1,4] i€[1,4] i€[1,4] i€[1,4] i€[1,4] O

Example 223 Suppose given s > 1. Let
A= {(a,b))eRxR|la=b}CRXxR.

We have an orthogonal decomposition 1xx = (1,0) + (0,1) into central idempotents €; := (1,0) and
g9 :=(0,1) of KA = K x K. Then ;A = R x 0, which is a subring of K'A and which has te; A = (7) x 0.
Likewise, teoA = 0 x (7). So Proposition 222 gives

tA = AN(rerAdread) = AN (((7) x 0)® (0% (7)) = {(a,b) e RxR|a=b=,0}.
Proposition 224 Suppose A to be stable. Let € be a central idempotent of KA. Suppose given primitive
idempotents e and f of A.
We may form the eA-submodules ceA and s fA of KA.
Suppose that eeA and efA are nonzero e A-modules isomorphic to each other.

Then eA and fA are isomorphic A-modules.

Proof. We write P :=eA and @ := fA. With Lemma 218.(i), P/tP and Q/tQ are simple.

Note that eeA = €e - €A is a projective eA-module, generated by the idempotent e of eA. So eeA Z efA
entails
cel/r(eeN) = efA/e(efA) .
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We obtain the following isomorphism of A-modules.

P/cP = eA/etA
—  cel/eetA
L.218. (i)

= gel/ee(tA)

b 22 cel/er(eA)
= ge-el/ee-t(eh)
= ge-eMfr(ee-eh)
= gel/t(eel)

Altogether, we get P/tP = Q/tQ). By Lemma 188, this implies P & Q). O

Proposition 225 Suppose A to be stable.

Write [X] for the isoclass of a A-module X .

Write IsoP for the set of isoclasses of the finitely generated indecomposable projective A-modules.
Write IsoS for the set of isoclasses of the simple A-modules.

We have the bijection
IsoP 2% IsoS

P} — [Php]| .
Proof. The map red is well-defined, since P = eA for some primitive idempotent e of A by Lemma 220,
and therefore P/tP = eA/etA is simple with Lemma 218.(i).
With Lemma 188, red is injective.

Surjectivity of red follows from Lemma 219. O



Appendix D

Heller’s Lemma

Let R be a discrete valuation ring with maximal ideal (7). Let K := frac R be its field of fractions.
Tensor products over R are denoted by ® := ®pg.

Given an R-module X, we denote by X := X/7X its reduction modulo 7, which is a module over R.

D.1 Preparations

Let A be an R-order.

Reduction modulo 7 yields the R-algebra A. Given a A-module Y, this yields a A-module Y.

Lemma 226 Let P be a projective A-lattice. Then P is finitely generated projective over A.

Proof. There exists a A-module @ such that P ® Q = A®* for some k > 0. Hence P ® Q =2 A®*. So P
is projective over A. O

Lemma 227 Let P be a projective A-lattice. Let X be a A-lattice. Consider the R-linear map

Homy (P, X) -, Homjy (P, X)
f+mHomp (P, X) — f

where f : P — X is a A-linear map and f: P — X its induced A-linear map.

The map p is an R-linear isomorphism.

Proof. For both sides are additive in P, without loss of generality, we can assume that P = A®* for some
k > 0, and further we can assume that £k = 1. So P = A.

Then we have the commutative triangle

P

(A= z) Homj (A, X) =<—— Homjy (A, X) (A= zX) + 7w Homy (A, X)
\ P
T X zi=x+7X

where the right hand side map is induced by X — Homp (A, X), 2 +— (A > z)).

Therefore, p has to be an isomorphism. O

154
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Lemma 228 Let P be a projective A-lattice. Then the R-linear isomorphism

End, (P) £, Endz(P)
f+mEndy(P) — f

from Lemma 227 is an isomorphism of R-algebras.

D.2 Heller’s Lemma on R-orders
Suppose given g > 1 and n; > 1for i € [1,p]. Let T:= [[ R™*™ =[] R™*™.
i€[1,p] i

Suppose A C T" to be an R-suborder such that F/A is of finite length as an R-module, i.e. such that
KA = KT, i.e. such that tkg A =rkg I

Reduction modulo 7 yields the R-algebra A. Given a A-module Y, this yields a A-module Y.

Given a finitely generated R-module X, we denote by X = Rop X its completion, which is a module
over R. We obtain the R-order A. Given a A-lattice Y, this yields a A-lattice Y. Cf. Lemma 165.(v).

Notation 229 We denote KA := K ®p A, and further KA := K @z A = K@R RorA= K@R A.

Note that
Kox KN=K®r K@oprA=K®rA=KA.

So given a finitely generated K A-module X, we obtain a finitely generated K @ KA-module K ®x X.
———
KA
Lemma 230 Let K := frac R and K := frac R, so that K C K.
Suppose given a finitely generated K A-module M.

Then there is a finitely generated K A-module N and an isomorphism of KA-modules K ®x N =5 M.

Proof. We have the short exact sequence

A — JIR"*™ — C.

The functor (K ®p —) = (K ®x —) o (K ®g —) is exact, so that we get the short exact sequence

KoprA — Kep[[R"™™ —  K&ipC
N—— ; —
=KA ! =0,
~T] Knixn; for C is f.g. torsion

Hence KA = HK"X” . Thus, the module M is isomorphic to a finite sum of rows of [ K™ *" ; so

i i
that, without loss of generality, M is the right ideal generated by a primitive main diagonal idempotent
6EHK’!L7><'H,1 gHK’thnl,

i i

M

(HK”’Xm)e
= (Keg[[E"™™)(1®e)
= K@K((HKnlxm)g)

—_———
= N
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Lemma 231 (HELLER, cf. [4, Prop. 2.5])
Let U be a A-lattice.

Then there is a A-lattice X and an isomorphism X 5uU of A-lattices.
Proof. The tensor product K ®p U is a finitely generated module over K ®Rp A = KA.
Then, using Lemma 230 there is a K A-module V' and an isomorphism
KopU -5 KogV

of KA-modules.
We choose an R-linear basis (uy, ..., u,) of U, with

n = 1kpU = dimzg K@aU = dimg K@ V = dimg V.
We choose a K-linear basis (vy,...,v,) of V.

We further define the injective maps a and 3

1®u K®pU KoV 1®w
a B
U U VvV v .

Let §; := (1® ;)¢ = ;847" for i € [1,n]. Then (41,...,7,) is a K-linear basis of K ®4 U.
Let @; := (1 ® u;) = u;a for i € [1,n]. Then (d1,...,4y,) is a K-linear basis of K ®pU.
Let

X = UanVpyt.

Let A= (aij)i,j € GLn(K) be such that v; = Z Clij’&j .
j=1

Further, let N > max(-val,(a;;)), i.e. 7™Va,; € 7R for all i, j € [1,n].
i

Denote Ag := 7V"1A € Rnx",

Using Lemma 165.(iz), there is a B € K"*" with B =~ A™; ie., writing B =: (b;;);; and

AN =: (@), with by; — a;; € 7V R for all 4,5 € [1,n].

Then BAg =~ A1Ag, and therefore BA = B(r! N Ay) =, AY(n1"NAg) = ATA=1,.

Thus, BA = I,, + nC for some C' € R"*", so BA € GLn(R), by considering the determinant.

In particular, det(B) # 0, so that B € GL,(K).

Let &; := ) byjajuy = > biyv; for i € [1,n]. Note that #; = 3 (Zbija/jk—)ﬂk with the matrix
J J

Jik k

(Zbijajk)i,k = BA € GLn(R)
J
We now show that
~ - !
R<l‘1,...,3§‘n> = X.

Since (1, ..., ,) is a K-linear basis of V31! and since B € GL,,(K), the tuple (1, ...,%,) is a K-linear
basis of V By.
Since (i1, ..., Uy ) is an R-linear basis of U« and since BA € GLn(}?), the tuple (Z1,...,Z,) is an R-linear
basis of Ua.
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n o
Since R C RN K, we have p(&1,...,7,) CUaNVBy! = X.

"5

Suppose given £ € X = Ua NV By, We have to show that & é R(Z1,...,Tn).

Because ¢ € VB¢, we can write £ = Y k;%; , for some k; € K.
i
Because € € Ua, we can write £ = > #;%; , for some 7; € R.
i

The tuple (Z1,...,%,) is linearly independent over R and over K. Thus, #; = k; € RNK = R for
i € [1,n]; cf. Lemma 165.(viii). We conclude that £ = > k;%; € gr(Z1,...,Tn)-

Hence equality is shown, and (#1,...,%,) is an R-linear basis of X.

Since X = Ua NV By, it is closed under multiplication with A N KA in K ®p U. Since A C AN KA,
the abelian subgroup X is a A-linear submodule of K® e U.

Having a finite R-linear basis, X is thus shown to be a A-lattice.
By definition, X = R®p X as A-modules. Via «, the A-lattices U and U« are isomorphic.
So we have to show that R @z X and U« are isomorphic.

The A-linear inclusion map
X — Ua«a

T, — Z;
induces the A-linear map
Rp X — U«
1®x; —  I;

sending an R-linear basis to an R-linear basis. Hence it is a A-linear bijection Ror X = Ua. O

Lemma 232 Let P be an indecomposable finitely generated projective A-module, i.e. an indecomposable

projective A-lattice.
Then P is indecomposable projective over A.

Moreover, P is indecomposable projective over A.

In the language of Definition 207, the latter property means that A is stable; cf. Lemma 220.

Proof. Assume known that P is indecomposable over A. Then there are no nontrivial idempotents in

~

EndA(]:D). Using Lemma 166 we know that then there are no nontrivial idempotents in End;(P) =
End/:&(ﬁ’) >~ End;(P); cf. Lemma 228, Lemma 165.(vi). Therefore, once we have shown that P is
indecomposable over A, we are done.

Let P be indecomposable over A. We assume that P is decomposable over f&, so that there exists a
decomposition P 2 U @ V into A-lattices U and V such that U # 0 # V. With Heller’s Lemma 231
we know that we can find A-lattices X and Y in such a way that U = X and V 2 Y as A-lattices. In
particular, X # 0 # Y. So we have a decomposition P~ X ®Y. We then have

P2PxXaoyv=XaV = XaY XV,

cf. Lemma 165.(v). Therefore Lemma 214 yields P = X @ Y, which is a contradiction to P being
indecomposable. Therefore, P must be indecomposable over A. O
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Lemma 233 Let P be an indecomposable finitely generated projective A-module. Then Enda (P) is local.

Proof. To prove this lemma, we will proceed as follows.

P indecomposable over A~ B indecomposable over A & Endj (P) local ECN End, (P) local

(1

N>

=—: This is Lemma 232.

CL. Note that P is indecomposable and finite-dimensional over R. Then, (2) follows
by Lemma 198.

L. Note that by Lemma 228 and Lemma 209, Endz (P) = End (P) and

7 Enda (P) C t(Enda (P)). Let p be the residue class map.

Then v(Enda (P)) = p~ (x(Enda (P))).



Appendix E

The Cartan matrix

E.1 Multiplicities of indecomposable summands in a tensor

product of indecomposable projectives

Let p be a prime. Let n > 1. Write A = Z(,,)S,, .

Let e, f be idempotents of A.

k
Suppose given an orthogonal decomposition 15 = >_ e; into primitive idempotents.
i=1

We aim to determine the multiplicity of e;A as a summand of eA ® fA. There are (at least) two ways to
do this via Magma [3]. On the one hand, we may directly apply DirectSumDecomposition to €A ® fA.
On the other hand, we may use AHom to calculate dimp, Homy (€;A, €A ® fA); then the result may be
derived using the Cartan matrix. The latter way is a bit faster. For example, in the case n =5, p = 2,
rky €A =r1kz  fA = 24, the former way takes 39 sec, the latter way takes 1.5 sec.

Definition 234 Let the Cartan matrix be

Crs, = (rkz()HomA(elA eJA))
(rkZ( )eJAeZ) i
(dlmF eJAez) i
(dlmF Homjp (&;A, eJA)) i € VAL

1)

It is well-known that the Cartan matrix of Z,S,, is symmetric and regular [11, §16.1, Th. 35, Cor. 3,
p. 132]. We shall verify that the Cartan matrices of Z,S,, and of Z,S,, coincide to get the same assertion
for the latter.

Lemma 235 The Cartan matriz of Z,)S, is symmetric and regular.

Proof. Let 1z s, = €1+ ...+ e, be an orthogonal decomposition into primitive idempotents. Note that
e; remains primitive in Z,S,, by Lemma 232; cf. beginning of Section D.2. Hence 17,5, =e1 + ... + ex

remains an orthogonal decomposition into primitive idempotents.
Given i, j € [1,n], we have
vkz,, €il@p)Sne; = tkz, Lp @z, (€:ilp)Sne;)
= 1kg, €i(Zy ®z,, Z(p)Sn)e;

= I‘kzp einSnej .

159
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So the Cartan matrices of Z(;,)S, and Z,S,, coincide. The latter is symmetric and regular by [11, §16.1,
Th. 35, Cor. 3, p. 132]; cf. [5, Th. 4.12]. O

The tensor product eA and fA is, as tensor product of two projective modules, isomorphic to a direct
sum of indecomposable projective modules. Using Lemma 220 and Remark 208, we can find

eA® fA @ e; A®%
i€[1,k]

Certainly,
(dimg, Homj (&;A,eA ® fA)); = (dimg, (€A ® fA)€;);
(dime (eA & fA)ej)j
= (rkz(p) (eA® fA)e;j);
(ka(,,> Homy (e;A, eA ® fA));
(

tkz, Homp (e;A, @ e;A®%));
i€[1,k]
k
= ( Z rkz ., Homp (ejA, e;A) - ai)j = Czs, -

i=1

Qg

So knowing the dimension vector (dimg, Homy(e;A,eA @ fA)); and the Cartan matrix, we are able to
find the multiplicities a; of the modules e; A in the direct sum decomposition by solving a linear equation

system; cf. Lemma 235.

Example 236 Applying this to A = Z3)S3, we have the orthogonal decomposition into primitive idem-
potents, given by e; and e from Definition 21, and the projective modules P; := e; A and Py := esA.
Note that the ring denoted by A3y in Definition 21 is, up to isomorphism, denoted A here.

The Cartan matrix can be found by counting the elements of the bases given in Remark 29. Write
rk =r1kg, . We get

and therefore the Cartan matrix is

2 1
CZ(:S)Sa:(l 2> .

Consider the example of P; ® P; . Knowing the vector of ranks (dimp, Homg (&;A, P ® Py)); = (g) and
the Cartan matrix, we are able to find the multiplicities a; of P; and P in the direct sum decomposition

()= (5) = (2)

Example 237 We show how our Magma [3] routine works in the example of Z3)S3 and Py ® P», keeping

as follows.

the notation of Example 236.

First, we need to define P, = PP1 and P, = PP2 via Magma. We use the representations rhoP1 and
rhoP2 which can be found in the file main_S3_loc3 as input for GModule.

The next step is to find the Cartan matrix. For that, we use AHom to generate the spaces of homomor-
phisms Homp,s, (P;, P;).
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The last thing we need is dimp, Homp,s, (€;A, Py ® P) for j € {1,2}, which we again get via AHom. The

resulting dimension vector is called d.

All we have to do now to find the vector a containing the multiplicities of P; and P, in the direct sum

decomposition is to solve the linear equation system C - a = d.

load main_S3_loc3;

//the finite field F3 :

F := GF(3);

//the symmetric group S3 :
G := SymmetricGroup(3);

//Py in a Magma-compatible form, using the generators (1,2,3) and (1,2) :

PP1 := GModule(G, [MatrixRing(F,3)'rhoP1(S3P!(1,2,3)), MatrixRing(F,3)!rhoP1(S3P!(1,2))]);
//P; in a Magma-compatible form, using the generators (1,2,3) and (1,2) :

PP2 := GModule(G, [MatrixRing(F,3)!rhoP2(S3P!(1,2,3)), MatrixRing(F,3)!rhoP2(S3P!(1,2))1);

proj := [PP1,PP2];

//generating the Cartan matrix :
C := MatrixRing(Integers(),#proj)![Dimension(AHom(proj[il,proj[j1)):j,i in [1..#projll;

//generating the tensor product of PP1 and PP2 :
PP1oPP2 := TensorProduct(PP1,PP2);

//dimHom(Py, Py ® Ps) :
diml := Dimension(AHom(PP1,PP10oPP2));
//dimHom(ﬁg,Pl ® 152) :
dim2 := Dimension(AHom(PP2,PP10oPP2));

d := RMatrixSpace(Integers(),1,#proj)![diml,dim2];

//we find a vector a with C-a=4d :
a := Solution(C,d);

Having followed the steps above, a contains the multiplicities of P, and P; in the direct sum decomposition
of Py ® P,. And indeed, we get

> a;
[2 1]

meaning that P, ® P, = PfBZ ® P5917 in accordance with Lemma 35.

E.2 Rational identification of projectives

Let p be a prime. Let n > 1.

We pull down an identification assertion from Z,S,,, where it is known by [11, Ch. 16, Th. 35, Cor. 2,
p. 132], to Z(p)Sn .

Lemma 238 Suppose given a finitely generated indecomposable projective Z,S,-module P. Suppose
given Zy)Sy-lattices M and N such that Q ®z,, M = Q ®z,y N-

Then P ®z,, M = P®z, N as Zp)Sn-modules.

In other words, to identify P ®z, M, it suffices to know the rational multiplicities of the Specht modules
in M.
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Proof. According to Lemma 168, P ®z,, M and P ®z, N are both projective Z,)S,-modules.
We have

Q®Z<p> (P®Z(p> M) = (Q®Z<p> P)®q (Q®Z(p> M) = (Q®Z<p) P)®@(Q®Z<m N) = Q®Z(m (P®Z<p> M)

Write X := P ®z, M and YV := P ®z, N. Note that X and Y are projective Z,S,-modules; cf.
Lemma 165.(v).

Since

Qp ®Zp X = Qp ®Zp ZP ®Z(p) X
Qy @z, X

Qp ®Q Q ®Z(P) X

1%

1%

I

Qp Bz, Y
Qp ®z, Zp ®z,,, Y

= QP ®Zp Y

1

1%

as Q,S,-modules, we may conclude by [11, Ch. 16, Th. 35, Cor. 2, p. 132] that X~V as Z,S,-modules.

Therefore
X

1%

Fp Q) X

1

Fp ®2, Zp ®2,,) X
= F, Qz, X

~ F,®z V

= F ®z, L Qz Y

1%

Fp Q) Y

= Y

as F,S,-modules. By Lemma 214, we conclude that X =Y as Z,)S,-modules. O



Appendix F

The Wedderburn isomorphisms

The Wedderburn embeddings are taken from [7].

Remark 239 The Wedderburn embedding used in Chapter 3 for Z1)Ss and Z3)Ss.

7S — 7 X 72%2 x Z
-2 -1

(1,2) — 1 x x -1
3 2

11
(1,2,3)%1x<32>x1

For this embedding, load the Magma-files main_S3_loc2 or main_S3_loc3.

To use the representations, call for example
load main_S3_loc2;

rho(S3P!(1,2)); // tuple of 3 matrices

Remark 240 The Wedderburn embedding used in Chapter 4 for Z3)S, and Z3)Sa.

7.S4 — Z x 7Z X 73%3 X 73%3 X 72%2
11 24 2 1 0 0
-5 24
(1,2) — -1 x 1 x 5 11 -1 X 1 -1 1 X L s
0 0 -1 0 0 1
16 41 -9 0 1 -1 4 15
(1,2,3,4) — 1 x 1 x 7 <18 4 X 1 2 2 X <14>
-8 -20 3 0 4 -3

For this embedding, load main_S4_loc2 or main_S4_loc3. Then rho(S4P!(1,2,4)) will return the

image tuple, consisting of 5 representing matrices.
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Remark 241 The Wedderburn embedding used in Section

APPENDIX F. THE WEDDERBURN ISOMORPHISMS

5.1 for Z(3)85.

4x4 4x4
Z(3)Ss — Z(3) X Z(3) X Z(J) X Z(d)
Z5><5 ><Z5><5
(3) (3)
6Xx6
X Z
(3)
-1 0 0-1 100 1
0—-1 0 1 01 0-1
(12)— -1 x 1 x 0 0-1-1 X1 o001 1
0O 0 0 1 00 0-1
—2-1-1-1 1 2 1 1 1-1
-3 -4 -3 -3 8 3 4 3 3-8
x —3-3-4-3 7 x| 3 3 1 3-7
9 9 9 8-16 —9-9-9-8 16
0O 0 0 O 1 0O 0 0 0-1
-1 0 1 0 1 O
0—-1-1 0 0 1
0O 0 1 0 0 O
X 0 0 0-1-1-1
0O 0 0 0 1 O
0O 0 0 0 o0 1
AR ARE
—1 — — —1
(12345) 1 x 1 x 0—-1 0 1 X 0—-1 0 1
0O 0-1-1 0 0-1-1
1 3 3 2 —6 1 3 3 2 —6
—12 —15 —15 —12 28 —12 —15 —15 —12 28
X —9 —16 —15 —12 29 | x —9 —16 —15 —12 29
12 15 14 12 —26 12 15 14 12 —26
-6 -9 -9 -7 17 -6 -9 -9 -7 17
00 10 0 O
00 00 1 0
% 00 00 O 1
10-10-1 O
01 10 0-1
00 01 1 1
For this embedding, load main_S5_loc3. Then rho(S5P!(1,2)(3,5,4)) will return the image tuple,

consisting of 7 representing matrices.

Remark 242 The Wedderburn embedding used in Section 5.2 for Z5)Ss.

4x4 4x4
Z(2>S5 — Z(2) X Z(2) X Z(2) X Z(2)
75%5 o« 75X5
(2) (2)
6x6
X 7
(2)
-1 0 0-1 100 1
0-1 0 1 010-1
(12)— -1 x 1 x 0 0-1-1 X1 o001 1
0 0 0 1 00 0-—1
3 4 2 4-4 —3-64 42 —12 —28
0-1—-1 0 0 0 11 -5 0 0
x| o0 0o 1 0 o] x 0 24—-11 0 O
—1-1-1-2 1 3 67 —41 10 21
11 0 1-2 —-1-11 8 -3 —6
—5 —1850 —294 —860 —600 —110
2 1025 161 476 328 64
—4 —1680 —265 —780 —540 —100
X | —5 —2627 —413 —1220 —841 —164
3 1419 224 659 456 86
0 134 21 62 42 9
0 0 0 1 0 0 0 1
(2345 — 1 x 1 x (A9 971) (30 8-
0 0—-1-1 0 0—-1-1
3 4 6 6-2 3 60 —38 1022
00 0 1 0 2 40 —28 920
x| -1-1-1-2 1] x 5 99 —69 2249
0 0—-1-1-1 4104 —73 2355
11 2 2-1 1 9 -6 2 3
—7 —3540 —560 —1644 —1138 —212
8 4408 698 2049 1422 270
—13 —6987 —1103 —3246 —2243 —426
X | —18 —9984 —1581 —4641 —3221 —612
7 3861 610 1794 1241 236
3 1668 263 775 535 103

For this embedding, load main_S5_loc2. Then rho(S5P!(1,5)) will return the image tuple, consisting

of 7 representing matrices.
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