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Introduction

The dihedral group

We aim to describe certain dihedral group rings. Let p € Z>3 be a prime. Write n := 5

We consider the dihedral group
D2p = <$7 Yy xp’ y2v (y$)2> ;
cf. Section 3.1.

Number theoretic preliminaries

Let ¢, = exp(%) € C be a primitive p-th root of unity. Let 9, := ¢, + ¢, " — 2. Then

Q(G) 1 Q) [Q,

where Q(¢,) = RN Q((,)- The corresponding rings of algebraic integers are
ZIG) | Z[p) | Z..

Cf. Lemma 22 and Lemma 24 (i1). We obtain discrete valuation rings

L) Gl | Zp) 0] | Zgpy

with maximal ideals generated by (, — 1, ¥, and p, respectively ; cf. Remark 46 (%4,iv).

Both extensions are totally ramified, with ramifications

((Gp—=1)2) = (¥p) resp. (7)) = (p) -

Wedderburn

By Wedderburn’s Theorem, we obtain the isomorphisms of algebras

Proposition 62 — we :  CDy = C x ((CQXZ)X" x C
Proposition 63 — woe,) © QWy)Da — Q) x (VW,)*2)™ x Q¥,) |
Proposition 67 — wg :  QDg, = Q x QW) x Q

over C, Q(9,) and Q, respectively.
We want to describe the image wg(ZDs, ), which is an isomorphic copy of ZDg,, .

We want to describe the image wg(g,)(Z[9,]D2p), which is an isomorphic copy of Z[0,]Da, .

iii



iv Introduction
The group rings ZD,, and Z[¥,]|Dy,

Aims

The image wg(ZDs,) is a proper subring of Z x Z[J,]?*? x Z. We aim to describe this subring via

congruences of matrix entries, called ties.

Similarly, the image wq(g,)(Z[Jp]D2p) is a proper Z[J,]-subalgebra of Z[1J,] x (Z[ﬁp}zm)xn X Z[9,] , which
we want to describe via ties.

The integral group ring ZD,,

In Theorem 70 we restrict wg to the isomorphism of rings

wz : ZDgp — {(a, (25),]‘) €ELXLWY)*? XL :a=y, b, d=y, 0, e=y, [, G,Ezf}

e o (Lt )
0, U, +1

1 0
— 1, ,—1),
y ( (19,, _1> )

whose image is a subring of Z x Z[J,]**?

ol T .
2

After tensoring with Z,, , this can be compared with [Plesken 83, Ch. VIII, p. 138, Theorem (VIIL5)].

X 7Z,, which can be adumbrated as follows.

Using a related pullback description of ZDo,, A. Zimmermann has investigated conjugacy classes of
involutions in ZDs, in [Zimmermann 92, Abschnitt 3.9, p. 65, Satz 4].

The tensor product Z[J,| ® Z[J,]
z

We will pass from the description of our isomorphic copy of the group ring ZDs, to that of Z[J,]D2,
via Z[9,] ® —. There, tensor products of the form Z[9,] ® Z[J,] will occur, which need to be replaced as
Z Z

follows. For i € [0,n — 1] and k € [1,n], we define

< : > ey () - (2) frke i,
' 0 for k € [i +2,n].

Restricting the isomorphism of Dedekind’s Lemma, cf. Lemma 109, we obtain the following

Proposition 41 We have the isomorphism of Z[1J,]-algebras

[z, ez, — { (aj)jenn € Z[W,]*™ - Z < ; > ax =y 0 for i € [0,n — 1] } =: 0,

z k=1

where U is a Z[U,]-subalgebra of Z[J,]*".
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EXAMPLE  The subalgebra ;¥ of Z[J7]*3 is given by

—-v+w =gu 0
=< (v, w, ) € LW, : 7

v-3w+z =3 0
7

A local and a global basis of a principal ideal
Write 0, := f(1®Y,) € ,¥. In U, we have the principal ideal

=0, 0 C U C 7, "

It also plays a role in the passage from ZDs, to Z[¥,]D2, mentioned above. Its localization
V) = O V) € Vo) C Zp 0"
will turn out to be easier to control than ,V itself.

Multiplying a Z[9,]-linear basis of ,¥ C Z[,]*™ of triangular shape with 6, , we obtain a Z[9,]-linear basis
Bp\il = ng‘pq/ of p\i/.

Somewhat easier to handle is the description via ties, proven in

Proposition 52 The principal ideal of ;¥ generated by 6, is given by

=0, 0 = {(aj)je[l,n] S/ 252221_—11))2(22)'<Z;1>ak =y 0forie [1,n]} .

k=1

This description allows to deduce the Z[0,]-linear basis

@k—12(1+k—-1\
z = —_— -9 :lell
qu/(m ((l—i—]{i— 1 k—1 p kelLm] 6[ ,TL]

of the localized ideal p\il(p) .

Now Bp‘i/(, ) is contained in p\i!, but not a Z[0,]-linear basis of pﬁl if p > 5, cf. Subsection 2.2.4, Corollary 53.

EXAMPLE  We have the Z[¢7]-linear basis

(034692 +997, 92 +497, V7 ),
Bg=1( 0, 93 +49%, 307 ),
( 0, 0, %)

of ¥, which is written using the Z-linear basis (9% : i € [1,3]) of ¥97Z[J7], cf. Lemma 24 (i3).



vi Introduction
The description via ties is given by

2v =y 0
=1 (v, w,z) € L] : ~2160 + 24w =gz 0

36000v — 6000w + 720x =y O

7

We deduce the Z 7 [)7]-linear basis

(79779197;25197)7
By, = | (0,303, 2502),
(0, 0, 50%)

of 7\11(7) .

The group ring Z[J,]|Dy,
Consider the Z[V,]-subalgebra
— Y1 P2 2x2 (e, _ _ _ ‘ _
PQ T { (5, 1/}3 ¢4 an) € Z[ﬂp]quj XZ[ﬁP] . (g)ze[l,n] =0, 1/117 ¢3 =0, Oa 1/)4 =0, (n)ze[l,n] ) 5 =2 77}

of Z[9,] x ;¥?*2 x Z[0,]. Here, for instance, (§);e(1,,] =6, 1 means that (£);eq,n) — Y1 € Op - ¥ = W,
which explains the interest in this principal ideal mentioned above. Cf. Notation 74.

The Z[9,]-algebra , can be adumbrated as follows.

So we can embed

2%2 ~
P C L) x P X LW, C L[] x (Z[9p]") x
where the isomorphism " =" merely reorganizes the entries.

Theorem 80 We have the isomorphism of Z[1J,]-algebras

wz[gp] : Z[’ﬂp]Dgp — pQ

Cf. also [Wingen 95, §4, p. 307, Theorem 3 and p. 309, Example 5].



Introduction
Presentations via path algebras
Aim

We give a presentation of the group ring Z, D, by quiver and relations over Z,) in Chapter 6.

We derive a well-known presentation of the group ring F,Ds, by quiver and relations over F, .

Presentation of Z, Dy, by quiver and relations

=\

Consider the quiver = := (E ° ° F) , cf. Notation 81.
5

Let p19,,0(X) € Z[X] be the minimal polynomial of ¥, over Q.
Consider the ideal
I = J Mﬂp,Q(aﬁ)av Mﬁp7(@(ﬁa)6 I>Z - C Z(p)Ea

cf. Convention 10, Notation 82. We denote the residue class of an element § € Z,)= by

E = £+1 € Z(p)E/I.

Propositions 84, 85 We have the isomorphisms of Z,)-algebras

Ps3
RN

Lip)D2p Z(p)E/]

~__
Po

which invert each other; cf. Remark 86.
The isomorphism of Z,)-algebras P is given on the generators of Dg, = <x, Y
Pi(x) = E+ F+a+B+Pfa and Ps(y) = E—-F+73.

The isomorphism of Z,)-algebras P is given on the generators by

&=

Py

) = 72 DFak(1+y)

Py(F) = ;<1_y Z kk1+y>>

p—2

Pa( Tl —y— Z Vexk (1 +y)

~—

P.(F) = —z 1)ak(1+y).

EXAMPLE  The group ring Z(7\D14 is isomorphic to

Z<7>E/<] ((aB)® +7(aB)? +14aB +7) - a, ((Ba)® +7(Ba)? +14Ba +7) - 8 >

2(7)5

as Zr)-algebra.

vii



viii Introduction

Presentation of F,Dy, by quiver and relations

Using the presentation of the group ring Z,) D), obtained above and the fact that the minimal polynomial
of ¥, over Q is Eisenstein at p, we are able to derive a well-known presentation of the group ring F,Do,

via a reduction modulo p.

Consider the ideal
J = <(af)"a, (Ba)"B DFPE C F,=,

cf. Convention 10, Notation 88. So J is the image of I under the reduction map Z,)= — F,Z modulo p.

We denote the residue class of an element ¢ € F,= by
E = £+J € FPE/J .

We get isomorphisms of F,-algebras

Fngp ~ ]Fp.:/J

which invert each other; cf. Lemma 89.

The images of the generators of Dy, under P, are given as

Pi) = E+F+a+B+Pa and Piy) =E-F+8
The images of the generators under P5 are given as
= p—1
7)5(E) = (n+1) Z (—1)kxk(1+y)
k=0
= p—1
Ps(F) = (n+1)<1y2(1)k1k(1+y)>
k=1
p—2
P(@) = ey 3 (DAL
k=1
= p—1
Ps(B) = — 3 (—1)kak(1 4 ).

k=1
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Conventions

Convention 1 Let A, Bbesetsand f : A — B be amap. Let X C Aand f(X)CY C B.

Then we write

fB/( : X — Y for the restriction of f to X in the domain and to Y in the codomain.

In addition, in the case Y = B we denote f‘X = f‘f} , and in the case X = A we denote f‘y = f‘X.

Convention 2 Let f be an arbitrary map between commutative rings and [ € Z>g .

Then we denote the [-th difference A'f at the point
Alf(z) := f(x) for1=0,

and recursively
Alf(x) == A7V (e +1) — A7V f(x) for 1 € Zs, .

Convention 3 Let a,b € Z. We denote [a,b] :={z€Z :a<z<b}.

Convention 4 Given a € R and b € Z. Then we denote

(a) —a(a_l)"l;!(a_bﬂ) for b >0,
0 for b<0.

Note that if a € Z>¢ and b ¢ [0, a], then (}) =0.

Convention 5 Let (A,+) be an abelian group and m € Z> .

Then we write for the m-ary direct sum of A

AD-- DA = AP,
—————

m
Further, if A is a commutative ring, we write for the m-ary cartesian product of A

AV = Ax o x A =1 AX™,
——

m

Let a = (a;)jeq1,m) € A*™. Then we consider a as a row vektor.



Conventions xi

Convention 6

Given a commutative ring A and m € Z>; , we denote by E,, the identity matrix in A™>*™.

Convention 7 Let K be a commutative ring and m € Z>q . Let (4;,a;) be K-algebras for i € [1,m)].

Then we consider [] A4; as a K-algebra via
i=1

K — IT 4
k — (a1(K), ..., am(k)).
Furthermore, let A, B be K-algebras, where A is commutative. Then we consider A ® B as an A-algebra
K
via
A — A®B
K

a — a®lp,

of. Lemma 91 (iii).

Convention 8 Let G be a finite group. We denote the hermitian scalar product

a(-,)  Cf(G@) x Cf(G) — C

(v, v)  — ale,¥) = ﬁ;asﬂ(g)w(g%

where Cf(G) denotes the space of complex-valued class functions on G, i.e. the space of maps from G to

C that are constant on conjugacy classes.

Convention 9 Let A be a commutative ring and a € A. We write
(a) == aA = {ax : z € A}

for the principal ideal of A generated by a if the ring is unambiguous.

We sometimes write 0 := (0) = {0} = 0A.

Convention 10 Let A be a ring, not necessarily commutative. Let m € Z>; and a; € A for i € [1,m)].
Then we write <lay,...,a, >, forthe (both-sided) ideal of A that is generated by the set {a1,...,ax}.

Convention 11 Let A be a commutative ring and z,y,a € A.

Then we write
T=qYy <= x=,yinA < z—ycaA.

This also applies to the case where x is contained in some subring B of A.



xii

Conventions

Convention 12 Let A be a set, s,t € Z>1 and a,z;,y; € A for i € [1,s] and j € [1,¢].
Then we write

('r17"'7$3)u(y13"'ayt) = ('I17"'7x35y17"'7yt)7

a€ (z1,...,x5) < there exists i € [1,s] with a = x;,

(1,...,25) € (y1,...,4t) < thereexists k € [1,t —s] with (x1,...,25) = (k- Ykts) -
Convention 13
Let K be a commutative ring and V' be a K-module. Further, let s € Z>q and vy,...,vs € V.

Then we call the tuple (vq,...,vs) a K-basis of V
T

the K-linear map f : K®s — 174

(1, ps) —> > pv; is bijective.
i=1

If there exists such a K-basis for the K-module V' as explained above, then we call V' a finitely generated
free K-module.

Convention 14

In order to indicate explicitly which part of a statement is to be shown, we use the character "!".

Convention 15 Let K C C be a subfield. So K is a field extension of Q.

Then we call K an algebraic number field ( or simply number field ) if K is a finite field extension of Q.



Chapter 1

Number theoretic preliminaries

Definition 16 Let K C C be a subfield. Then we denote

O := {z€eC: there exists a monic polynomial f(X) € Z[X] such that f(z) =0}
( the ring of algebraic integers ),
O = ONK

( the ring of algebraic integers of K ).

Furthermore, we introduce the following definitions, which are valid throughout the main part of this work
and for the part "On binomial coefficients" of the appendix, i.e. for the Chapters 1 to 6 and Chapter B.

Definition 17 Suppose given a prime p € Z>3. Then we denote

n = ”2;162,
¢ = (, ( primitive p-th root of unity ),
pea(X) = ®p(X) = XPTl4. 4 X0,
9 = ¥, = (+('-2=(+(-2€RNQ),
gl = B = 942 =(+(,
i = S = {+(¢7 forjez.

1.1 The Dedekind domain Z[?,)]

Remark 18

(i) Forl € Z we have vp - 17 = 1517 + 1217 -
(i) We have Z[Vp] = Z[vp) .



2 Number theoretic preliminaries
Proof of (i). For | € Z we calculate

Yoy o= (CHCHIEHC) = PR

= (4D 4t 0D =y .
Proof of (ii). This is a simple consequence of v = ¢ + 2. a

Lemma 19 Suppose given j € Z>1 . Then there exist a;j € Z for k € [0, — 1] such that

j—1
Yo =it Z%‘,k “kVp

k=0
Proof. This is shown by induction on j. For j = 1, we obtain 4! = ( 4+ (7! = ;7.

For the inductive step j — j + 1, we calculate
i+1 . 1.H. Jj—1
Y =y = (vt X ae kY
k=0

j—1

il R.18
= y-;7+ kz ik Y kY (:) 1Y+ i1y + kZ @ (k1Y + k—17) -
—0 i =0

(Note that _;y=(¢ 1+ (¢ =17v.) -

Lemma 20

(i) For j € Z, the element ;7y, belongs to Z[v,).

(ii) Let M := {x € Z[(,] : « =T} = RNZ[).
Then the tuple (v, : i € [1,n]) is a Z-linear basis of M.

Proof of (i). First we show the statement for j € Z>( . This is shown by induction on j.
For j = 0, we obtain gy = (°+ (70 = 2 € Z[y].

Suppose given j € Z>1 . For the inductive step j —1 — j, we note that by Lemma 19 there exist a; € Z
for k € [0,7 — 1] such that

J—1
Vo= Y ik Ry
k=0
L.H.
4
j—1 €zl
So ;v = 'yJ—Zaj’k- kY € Z[).
k=0
€Z[]

Therefore the statement is true for j € Z>¢ . Since ;7 = _,7 , cf. Definition 17, the statement is true for
all j € Z.

Proof of (ii). First we note that the tuple (,v : i € [1,n]) is linearly independent over Z.

We choose the Z-linear basis (¢!, (2, ¢3,..., ¢(P~1) of Z[(].

Let y = a1¢* + a2+ a3C® + -+ ap—3¢P 2 + ap_2(P~? + a,_1¢P~1 € M, where a; € Z fori € [1,p —1].



The Dedekind domain Z[0)) 3

Then y =7, ie.
a Cl + 2 3 . p—3 p—2 p—1
1 azC* + a3’ + -+ ap3CP77 +apoCPT" +ap1¢

= a1t +asl®+as+--+ap_3(P 3 +ap_a(P 2+ ap_1¢P!

a1Ct +a2¢? + azC® + -+ ap5(P + ap—a(P2 + ap_1 (P

= apalt +ap o Hap 3t 03P+ aa(PT  an (P
This implies that a; = ap—; for i € [1,p —1].

Thus every element y € M is of the form y = > ap - (CF+¢7%) = 3 ap - wv. O
k=1 k=1

Corollary 21 We have

M = {z€ZlG]:z =7} = RNZG] = Zyl = Z[Y,].

In particular, Z[Y,) has the Z-linear basis (v, : i € [1,n]).

Proof. In
D werlglie =7} = RNZIGL = Zhyl 2 2,

we only have to show nin

We prove the inclusion "2". This is a consequence of vy =+ ¢! = ¢+ ¢! = (+ (€ Z[(]NR.

We prove the inclusion "C". By Lemma 20 (%) we get that every element y € M is of the form

where a; € Z for i € [1,n].

Since M equals Z[¥Y], we obtain by Lemma 20 (i) that Z[J] has the Z-linear basis (;v : i € [1,n]). O

Lemma 22 We have that Z[9,] is the ring of algebraic integers of Q(3,), i.e.

Z[9p] = Oq,) ;
c¢f. Definition 16.

Proof. We prove the inclusion "C". We have Z[] C O, because ¥ = (+ (' —2 € O and Z[J] C Q().

We prove the inclusion "D". We obtain

Y€Q(¢)NR
il " )
Ogey = ONQM) € ONQE)NR = Oy NR 2 Z[]nR “2* z[v],

where in (x) we refer to [Neukirch 99, Ch. I, p. 60, Proposition (10.2)]. O

Corollary 23 The ring Z[9,)] is a Dedekind domain.

Proof. By Lemma 22 we have that Z[J] = Og(y). Hence it is a Dedekind domain; cf. Remark 132. [



4 Number theoretic preliminaries

1.2 The discriminant AQ(ﬁp”Q
Lemma 24

(i1) The extension Q((p)|Q(Vp) has degree [Q((p) : Q(Up)] = 2.
It follows that
Gal(Q(6)|Q(Wp)) = {idg(,) s ¢}

where ¢ denotes the complex conjugation, restricted to Q((p).

(i2) The extension Q(9,)|Q has degree [Q(¥,) : Q] = prl =n.

(i3) Z[9,] has the Z-linear basis (99, ..., 9p~").
(ZZ) We have AQ(C}:)\Q@%) = 191,(’[9;,) + 4)
(l’LZ) We have N@(ﬁp)'Q(AQ(Cp)lQ(ﬂp)) = (—1)” - p.

(iv) The absolute term ag in py, o(X) is ag = (—=1)" - Ng,)0(Jp) = p-

, 1 [ £.0),
(v) For i€ Z we have Troc,) o (¢1) = { Jori #y

p—1 fori=,0.

(vi) We have Agcyo = (—1)" -pPT2,

Proof of (i1, i2, i8) and (ii). We have the minimal polynomial
fieow)(X) = X2 — (2+9)X + 1 of ¢ over Q(9), because ji¢ g9 (¢) =0 and { ¢ R D Q(V).
And therefore we have [Q(() : Q(V)] = deg(p¢ ) (X)) = 2.

So the Galois group Gal(Q(¢)|Q(«)) contains two elements. Of course idg ) is contained in Gal(Q(¢)|Q()).
We have

c® =c((*+¢r -2 =0+ T -2=¢1 4t -2=9.

So ¢ is also contained in Gal(Q(¢)|Q(¢)). Moreover, ¢(¢) = ¢~ # ¢. Hence Gal(Q(¢)|Q(¥)) = {idg(c), ¢}

By the multiplicativity of degrees and knowing that deg(u¢ (X)) b7 deg(XP~ 1+ -+ X0) =p—1, we
get

Q©:Q _p-1_
[Q(C) - Q)] 2

Q) : Q] =

So the tuple (99, ...,9"71) is linearly independent over Q 2 Z and since ¥ € O we have g o(X) € Z[X].
Thus we get that (9°,...,9"" 1) is a Z-linear basis of Z[].

Further we get with Remark 111 and p¢ g(9)(X) that
Aguyew) = 2+9)? —4-1 = 9> +49.
Proof of (iii) and (iv). From (ii) it follows that
Nowie(Ae@iaw) = Now)e@(? +4)) = Now)je(¥) New)o(? +4)-

We prepare

—

*

(1) No@ow(¢—1) = C-1(C-1) = (-1 ' =1) =2-¢-¢" = -0,

N>
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(2) No@)ew@ (¢ +1) YU DCHY) = C+DECH1) = 24C+ ¢ =9 +4,
and
(3) Now)o(=1) = (=1)",

where in (x) we refer to [Neukirch 99, Ch. I, p. 9, Proposition (2.6.iii)] and recall that by (i) we have
Gal(Q(¢)|Q(¥)) = {idg(c),c}; cf. also Corollary 114 for the corresponding statement for the trace.

We have

fe10X) =0, (X + D) 2T (X + 1P+ (X + 1P 24 4 (X + 1) 4+ (X +1)0,

has absolute term p

whence
(4) Nooe(—1) = (-1)’"'-p = p.

Further we have

pera(X) = @p(X 1) P2 (X - 1P (X - 1P 2 (X - 1) (X - 1)°,
+1 -1 1 +1

has absolute term 1

whence
(5) No@o+1) = (-1)P""- 1 =1.
From (1) and (4) we get
(6) Now)e(=9) = New@ieWeiew (€ —1) = Ngge¢—1) = p.
So we get with (3) and (6)
(7) No@)o(?) = Now)e((=1)(=?)) = Ngw)e(—1) Now)e(—?) = (-1)" - p.
Since Ngyo(¥) = (—1)" - ag this shows (iv).
From (2) and (5) we get
(®) No)je(? +4) = Now)e(No@ew (€ +1) = Noge@+1) = 1.
And overall we get with (7) and (8)
Now)ie(Bewiew) = Now)je(?) Now)e(@+4) = (=1)" -p.

Proof of (v).
Case 1 : Let : = 0. Then we have

9) Trooe (¢°) = Trgee) = [QK): Q] =p-1.
Case 2 : Let i € [1,p — 1]. We choose the Q-linear basis (¢°,...,(P72) of Q(().

e For j € [0,p — i — 2] the exponent k of (*-¢/ = ¢* is in the set [i,p — 2]. Therefore we have no
contribution of the images of ¢’ to the trace.
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o . . p—2
e For j=p—i—1wehave (*-¢J = (*-¢(P771 = (=1 = — 3 (¢!, Therefore we have a contribution
1=0
of —1 to the trace.

e Finally let j € [p —4,p — 2]. Then the exponent k of ¢*-¢7 = ¢* is in the set [1,7 — 2]. Therefore
we have no contribution of the images of ¢/ to the trace.

Thus, summarized we have Trg(c)g (¢f) = —1.

Now, we generalize the cases 1 and 2.
First, we consider the generalization of Case 1, that i € Z with ¢ =, 0. Then there exists k € Z with

1 = kp and so

: (©)
Troe (¢') = Trgee (¢*7) = Trge(l) = p—1.

Finally, we consider the generalization of Case 2, that ¢ € Z with ¢ #, 0. Then there exists k € Z with
i+kp =:je[l,p—1] and so

Trgole (¢) = Traie () = Trgee (¢) 7= -1.

Proof of (vi). For p = 3 we have

D. Tr(¢9) Tr (¢
Agepia =" det < Tr( E) ( (

For p > 3 we have
D.110 o
Agele = det ((Troye (€ ¢)); je0.p—2)

e Qr—1x(p-1)

Tr(c?)  Tr(¢h) () Tr(¢) Tr (¢P7%) T (¢"?)
Tr(¢h)  Tr(¢?) () Tr(¢Y Tr(¢P72) T (")
Tr (CQ) Tr (C?’) Tr (C4) Tr (C5) Tr (Cp_l) Tr (Cp)
Tr (¢3) Tr (¢*) Tr (¢°) Tr (¢°) Tr (¢P) Tr (¢PH1)
et . . . . : .
Ty (C'pfd) Tr (C'pﬁ) Tr (C.pfl) Tr (.Cp) B (<.2p*6) Tr (4'217*5)
Tr (@72) Tr (Cpfl) Tr (Cp) Tr (CP+1) B b s (C2p*5) Tr (<2p74)
p—1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 p-1
-1 -1 -1 -1 p—1 -1
© det .
-1 -1 -1 pi 1 -1 —1




The discriminant Agy, )|

p 0 0 0 0
-1 -1 -1 -1 -1
0O 0 0 0 0
0 0 0 0
= det
0 0 0 p 0
0 0 p 0 0
1 0O 0 O 0
-1 -1 -1 1 -1
0 0 0 0
0O 0 0 o0 1
=pP~ 2. det
0O 0 0 1 0
0 o0 1 0
1 0|0 O 0 0
0 —-1/0 O 0 0
0 010 O 0 1
0 0 1]0 O 1 0
zpp_2-det
0 0 ]0 1 0
0 0|1 0 0
0 0 0 1
0 O 1 0
1
=pP~2 - det 0 det
0 -1
0 0 0
0 0 0

e Qp—=3)x(p—3)

— P2 (1) - sgn ((1,p_3)(2,p_4).-- (p;?’_Lp;Pm
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Lemma 25 We have
pP—3
Agu,e = £ 7 .

Proof. We apply Lemma 112 to the case (F|L|K) = (Q(¢)|Q(¢¥)|Q) to obtain

[Q(0)Q()]
Agoie = Naw)ie (Laew) - Aowio -

By Lemma 24 (i1, i, vi) it follows
(=)™ pP% = (=1)" - p- Afo-

So we get
p—3
Agwye = 07 .



The Galois group of Q(¥,) over Q
1.3 The Galois group of Q(+J,) over Q

Notation 26 We consider the Galois group Gal(Q((,)|Q), which has order p — 1.
Denoting
gi = Q&) — Q)

b o= G

for i € [1,p — 1], we get Gal(Q((p)|Q) ={d: : i € [1,p—1]}.
Then the Galois group Gal(Q(9,)|Q) of Q(9,) over Q is given by

Gal(Q(¥,)|Q) = {o; : i€ [l,n]},

. Q@

where o; = ;%) for i e [1,n]; cf. Convention 1.

Q(9p)

Proof. We have the short exact sequence

of. L.24 (i1) of. L.24 (i2)

=2 | =p-1 1=n

——N— ——— f ———
Gal(Q(O)Q() — Gal(QIQ) —  Gal(Q(®)Q)

Q)

a9) forie[l,p—1],

(3',' — f(@'z) = (AJ'Z
cf. [Lang 02, Ch. VI, §1, p. 265, Theorem 1.10] applied to the case
(K,k, G, F,H) = (Q(¢),Q, Gal(Q(¢)|Q), Q(?), Gal(Q(¢)|Q(¥)))-

For i € [1,n] we have

Gi(04+2) =6i(C+ ) =CH T =P+ =TT R P =6, (CH () =60+ 2),

Qv

whence f(6;) = f(6,—;) for ¢ € [1,n]. Writing 0; :=6; pat

; for i € [1,n], we therefore get

Gal(Q(W)[Q) = {0, : i €[1,n]}.
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1.4 Ramification

1.4.1 The ideal J,Z[V,] over pZ

Lemma 27

(i) We have the isomorphism of rings
F, — Z[9y) /ﬁpz[ﬁp] , 1 — 14+ 9,Z[9,).

In particular, 9,Z[Y,)] is mazimal ideal, hence a prime ideal of Z[0,).
(ii) We have the equality of ideals
DZ[Y,) NZ = pZ.

(iii) We have the isomorphism of rings

F, — ZKp]/(l —G)ZIG) L T (L= G)ZIG] -
In particular, (1 — (p)Z[(p] is mazimal ideal, hence a prime ideal of Z[(p).

(iv) We have the equality of ideals
(1- Cp)Z[Cp] NZ = pk.

Proof of (i) and (7). We have
(=)
dety Z[9] — Z|Y
z — v

L.24 "
) = No)e(?) v (=)™ p.

Therefore we get that
(+) 119) /g5 = (=" -5l = p-

By Lemma 24 (iv) we get that J|p and so pZ C J9Z[V].

By this we get that there exists a unique ring morphism ¢ fitting into the following commutative triangle.

3! ring morphism
z e 201 /g9 # 0
A
/
/
o O
w /A
/
/
/
Fp = Z/pZ

Since F, is a field we get that ¢ is injective. Considering the injectivity and through (x) we get that ¢ is
surjective and this shows (i).

Further we see that on the one hand

ker(p) = {2 €Z : z € VLY } = ZNIZW],

and on the other hand with the commutativity in (1)

ker(¢) = ker(¢ o) v 10 ker(m) = pZ.
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Proof of (iii) and (iv). We have

pco(X) =0,1—X) 2T 1 - X)P 4 (1= X)P 2 (1= X) 4+ (1—X)°,

has absolute term p

whence
Noel =¢) = +p.

Therefore we have

(=)(1=¢)
detz(zm z( ) — Nowoll— ) = .

e
x —  x- (1=
Therefore we get that
(%) 24/~ zig| =1+l =

Since (1 —=¢)-(¢P1=1)=(1-¢) - (¢t =1)=("1—2+ (=1, we get the divisor chain

1—(¢ divides 9 divides p,
L.QAI(Z'U)

so that pZ C (1 — {)Z[(].

By this we get that there exists a unique ring morphism p fitting into the following commutative triangle.

7 3! ring rzorphism Z[C] /(1 _ C)Z[C] 7é 0
/4
(2) )
x Q / /El!g
/
/
/
/
F, = Z/pZ

Since F, is a field we get that p is injective. Considering the injectivity and through (xx) we get that o
is surjective and this shows (%4i).

Further we see that on the one hand

ker(k) = {z€Z:2€(1-QZ[(]} = Zn(1-)Z[(],

and on the other hand with the commutativity in (2)

ker(k) = ker(gpom) ¢ I ker(n) = pZ.

Remark 28

(i) For x € Z[Y,] we have xZ[(,] N Z[Y,] = xZ[Y,)].

(it) Fori e [1,p—1] there exists u € U(Z[(p]) such that ¢} —1 =u({, — 1).
(iii) For s € Z>o and o € Gal(Q(V,)|Q), we have

o (DZ[9,]) = O3Z[0,).
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Proof of (i). The statement is true for x = 0. Given x € Z[J] \ {0}, then we have

L.22

ZI(NZY] £ 2O no = zO0 N n o N QW
TZ[C] N Z[Y)] o 0 MY x zQ(C) < Q()
=Q(¢)2Q() ="
= 20N QW) = z0nNzQ)
~——
=2Q(9)
= Z‘O(@(g) ng JZZW] y

where in (x) we refer to [Neukirch 99, Ch. I, p. 60, Proposition (10.2)].
Proof of (ii). We have % =+ + (e Z[C).

For i € [1,p — 1] there exists j € Z>1 with ij =, 1, so that (¥ = (.
Hence we have

(@ ) (6 ezl = 7.

Thus our desired unit is u := %%11 € U(Z[¢]).

Proof of (iii). We show that o;(9Z[9)) = YZ[I)] for i € [1,n]; cf. Notation 26. In Z[¢] we have

(1) 9ZI = ((¢-1)(C-1))z[) (¢ = 1)(T = 1))ZIC = 6:(((¢—1) (€ - 1)Z[c]) = :WZC)) .

We note that
6:(Z[9) "2 6,(0 N Q) C Z[Y] for i € [1,n],

because &; maps an algebraic integer to an algebraic integer. Similarly, we have &; '(Z[9]) C Z[Y], so
that Z[¥] C 6;(Z[9]), whence altogether

(2) &;(Z[9) = Z[V] for i € [1,n].
So we get
(3) o, (0Z9)) ¥ 6,0Z(c) N ZW)) = 6:(9Z[C) N a:(z) 2 vz(c) nzy] < vz,

Hence, given s € Z>q, we obtain

oi(0°Z[Y]) = oi((VZ[9)*) = (o:(VZ[Y]))* = (VZ[I))* = I°Z[J].

Lemma 29 We have (p) = (9,)". Therefore (p) is totally ramified in Z[J,).

Proof. By Corollary 23 there exist s € Z>; and prime ideals p1, ..., ps of Z[J] such that

(1) (p) = p1--ps,
cf. Lemma 135 (ii).

By Lemma 24 (iv) we get that J|p in Z[J]. So there exists x € Z[J] with p = J2 and therefore
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By this and by Lemma 27 (i) we can assume that the prime ideal p; is equal to (19).

The Galois group Gal(Q(¥)|Q) permutes transitively the prime ideals in the prime ideal decomposition
in (1), i.e. for j € [1, s] there exists o € Gal(Q(9)|Q) with o(p1) = o((99)) = p;; cf. [Neukirch 99, Ch. I,
p. 54, Proposition (9.1)].

By Remark 28 (7ii) we therefore get that
(2) ) = (¥).
Consider the embeddings

VL) — 9 TIZ[] — ... —— PPL[I)] — VL[] — Z[V]

By Lemma 27 (i) and using the isomorphism theorem each of these embeddings has index p and therefore
the embeding (¢)° = ¥*Z[Y] — Z[VY] has index p®. (3)

So we get
3
Il
Q) en n
| = | = v
where in () we refer to Lemma 24 (i3). So we have s = n. Consequently, (2) yields (p) = (9)". O

Remark 30 For k € Z>( we have
(Cp - 1)%2[@)] = ﬁZZ[Cp} :
Given z,y € Z[VY,)], then we have

T=,-n: Y L[] = w=gry in Z[Up].

Proof. For k € Z>o we have

() 9210 = W) = (D2 = (- )E-1Z)" "2 (- 1°24)" = (- 1?2
Suppose given x,y € Z[¥]. Then we have
T =(c_1y2x Y in Z[(]
— zoye(¢—D*znzp L oz Nz R(':js I*Z[0)]
< =g yin Z[V)].
O

Remark 31 We have
(1 - CP)Z[CP] N Z[ﬁp] = ﬂpz[ﬁp] .

Proof. We have that (1 —¢)Z[¢]NZ][Y)] is a proper ideal of Z[¢]. Because otherwise we had 1 € (1—-¢)Z[(],
in contradiction to the fact that (1 — ¢)Z[¢] € Z[(] is a maximal ideal of Z[(]; cf. Lemma 27 (iii).
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Therefore we get

(+) 9Z[9) C 9Z[() NZW) "2 (1 - OZ N ZW] € (1 - QZCINZWY) S Z[).

By Lemma 27 (i) we know that 9¥Z[1] is a maximal ideal of Z[)]. So the sequence of ideals in (x) yields
that 9Z[9] = (1 — Q)Z[¢] N Z[Y). O

1.4.2 Bases for V,Z[0,)]

Remark 32

(i) Forl € Z we define
w’ = 17,/, = 1Y — 1-17p -

Then we have for i € Z>,

. < e [(2i—1
v, = Z(—l) k'(i_k>'k%/r

k=1

(it) The ideal V,Z]9,] of Z[9,] has the Z-linear basis

(k7p = k€[1,n])

and the Z-linear basis
(bp =2 ke [ln]).

Proof of (i). This is shown by induction on i. For ¢ = 1, the right hand side is

(-t <2i1_11) Y =1 = oy =+ == =+ -2 =9

So the statement is true for ¢ = 1.
Suppose given i € Z>; . To perform the inductive step i — 7 + 1, we make two preliminaries.

(a) For [ € Z we have

9y 2T (v=2) = (v=2)- (v —117)

R.18
0 1Y i1y =y — =2y — 2- (v —i—1y) = Y Y 207
2

(b) For k € [1,4] we have

2i+1 0\ [ 2 N 2 [ 2i-1 N 2 —1 N 2 —1 N 2 —1
i+1—-k) \i—k i+1-k) \i—k-—1 i—k i—k i+1—k
[ 2i—1 Lo 2 —1 N 2 —1
T \i—k-1 i—k i+1—k/)°
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Proof of (ii). We define By := (v : k € [1,n]). By Lemma 24 (3i3) it follows that 9Z[V] has the Z-linear
basis By := (9% : s € [1,n]). By this and using (i) we see that VZ[J] C (B3 )z .

Therefore we have n = rky (( B1)z) = rkz(VZ[]I]) < rkz ((Bz2)z) < n. So rkz (( B2)z) = n, whence
Bs is Z-linearly independent.

We consider the Z-linear embedding ¢1 : VZ[J] — ( Bz )z . It follows from (i) that the describing matrix
A; of 1 with respect to By and B, is upper triangular.

2i—1

i—1

The diagonal entries of Ay are (—1)"~*- (%'~') = 1fori € [1,n]. Therefore A; has determinant 1, whence

t1 is bijective.

Altogether, By is a Z-linear basis of 9Z[J].

We define Bs := (py—2 : k € [1,n]). For s € [1,n] we have 0,(9) = o5(17v —2) = sy — 2. Since
os(0) € VZ[Y], cf. Remark 28 (iii), we therefore obtain that (Bs)z C 9Z[¥] = (Bs )z .

On the other hand, we have

(s7v—2) = (517 —2) for s €[2,n],

37/23’7—3—17: (7 =2) = (sm17—2) =
17— 2 for s =1.

So ¥Z[9] = (Ba)z C (Bs)z. Hence we get ( Bs)z = VZ[Y]. Since n = rkz(9Z[J]) = rkz (( B3 )z) < n,
we have that rkyz ({ B3 )z) = n. Thus Bj is Z-linearly independent.

Altogether, Bs is a Z-linear basis of 9Z[¥]. O

1.4.3 Summary of Ramification

In summary, we obtain the following diagram

maximal

ideal

(1 — G)Z[Gp]
ramiinﬁdc:Xtion 9 Z[’&p]

maximal

ideal

ramification
index

maximal

ideal




Chapter 2

Two tensor products

2.1 The tensor product Q(v¥,) ® Q(v,)
Q

Lemma 33 We have the isomorphism of Q(9,)-algebras
5 : Q(9y) 2 QWp) — QW) x ... x Q(d,)
Yy ® € — (Jn(x)y y ey 01 (x)y) )

where Gal(Q(9,)|Q) = {0, : i € [1,n]}; ¢f. Notation 26.

Proof. By Lemma 24 (i2) we have [Q(¢) : Q] = n. Hence, we apply Lemma 109 to the case (L, K,m) =
(Q(¥),Q,n) to obtain the assertion. (Note that the order of the Galois automorphisms may be chosen
arbitrarily.) O

2.2 The tensor product Z[¢,] @ Z[J,)
z

2.2.1 The tensor product Z[V,| ® Z[J,] as a Z[J,|-subalgebra ¥ of Z[vJ,]*"
Z

Definition 34 For i € [0,n — 1] and k € [1,n], we define

- <k> _ ) 0T () - (2) erke i,

0 for k€ [i +2,n].
Note that the formula for k € [1,7 + 1] applies to the case k € [i + 2, n| as well, if one prefers.

This enables us to define the Z[,]-submodule of the Z[9,]-algebra Z[¥,]*"

n 7: )
U — U= {(aj)je[l,n] c Z[ﬁp]xn . Z<k>ak =vi 0 for i € [O,nl]} s

k=1

cf. Convention 7.

17
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Example 35 Let us consider ,¥ in the case p = 11. Then 1,V is given by

—vtw =g 0

v-3w+z =y 0

n¥ = (v,w,z,y,2)€ L] :
v+ 9w —dr+y =y 0
v — 28w+ 20z — Ty +2 =g 0
Remark 36

Let Dy = Dy := diag(vp~', 9072, ..., 99) €Z[J,]"*" NGL,(C),

and Ky = Kp\y = << ! >> e Z™" N GLn(@)

k/ )ieo,n-1],
k€ [1l,n]

Suppose given a = (a;)je,n) € Z[9p]*". Then we have

a €W < DyKyga' ey "ZY,]"".

0 for k>7+1 and

1 for k=i+1.

Proof. We have Ky € Z™*"™ by Definition 34. We see that < ; > = {

Therefore Ky is lower triangular and det(Ky) = 1. Hence, Ky € GL,,(Q).

For given a = (a;);jep1,n € Z[Y]*", we have

a €V <= q satisfies the defining congruences for ¥

= Z < ; > ag =gi 0 for i € [0,n — 1] <= DyKya® € 9" 1Z[Y]" L.
k=1

Example 37 Let us consider Ky in the case p = 11. Then K,y is given by the lower triangular matrix

1 0 0 0 0
-1 1 0 0 0
K, 2 -3 1 0 0
5 9 -5 1 0
14 —28 20 -7 1

Lemma 38 The Z[9,]-submodule ;¥ C Z[9,]*" has the Z[9,]-linear basis

l+k—-2
By = By = =1 : 1 .
v oY (ﬂp (( 20 — 2 ))ke[l,n] el ’n]>
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z

Proof. Let i,1 € [1,n]. First, note that the elements of By are the rows of an upper triangular matrix,
whence By is Z[J]-linearly independent.

The describing matrix L of the embedding ¢ : (By)zg < Z[J]*" with respect to By and to the

Standard baSiS Of Z['&]X” iS
< l ' <l k )> ’
2l 2 k,le[l,n]

We consider the matrix Ky defined in Remark 36 and note that Ky = << i-1 > .
i,k€[1,n]

Then we have

=i\ o (14 k-2 (g = i1\ [l+Ek-2
Kol = <;<k> v (21—2 )) - (19 z_: k 26-2))
= i,l€[1,n] k=1 i,l€[1,n]

(1)
FEY (0L SG,D) e (90, ey = diag (90,0, 0nT) = P
So we obtain for given a = (a;) 1,0 € Z[UI]*"
Dpr-1 —9" LK,
aev 2 p, Ty at ezl s DoF L-lat € 9riz[g)nx]
— "Lt e 9T IZWY = ' € LZ]™Y <= a € (Bu)zy) -
Therefore we have ¥ = (By)z(y) - O

Example 39 In the case p = 11 the Z[01;]-linear basis B,y of the submodule 1, of Z[911]*® is given
by

91,0, 1, 3, 6, 10

93,-(0, 0, 0, 1, 7

)
)
Bow = | 9%-(0, 0, 1, 5, 15),
)
)

194111'(07 Oa Oa Ov 1

Remark 40 Let: : U — Z[J,]*" be the canonical embedding.

Then we have

(n—1)n

detz[ﬁp]([/) = 19;0 2,

Proof. By Lemma 38 we get that the describing matrix of ¢ with respect to the basis By of ¥ and to the

L-(ﬂl-‘l(l+k_2)) )
l k,lE[l,n]

Since (l —2|_lk _22) =0 for £ < [ the matrix L is lower triangular. Further we have that <
for k =1.

l+k—-2\
-2 )
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So we can calculate the determinant of ¢ as follows

(n—1)n
2

n—1 n=1
detzg) () = det(L) = H 9= 9= —
i=0

Proposition 41
The Z[9,)-submodule ¥ of the Z[0,]-algebra Z[9,]*", given in Definition 34, is a subalgebra.

We have the isomorphism of Z[,]-algebras

[z, ® Zp, — {(aj)je[l,n] € Z[0,]*™ - Z < ; > ax =g 0 fori € [0,n— 1]} =,

k=1

@ > (on—jr1(m) - €)jefn
where o; € Gal(Q(9,)|Q) for j € [1,n]; ¢f Notation 26.

Proof. By Remark 28 (iii) (in the case s = 0) we get that o restricts to an automorphism of Z[J] for all
o € Gal(Q(9)Q).

So we can consider the map f : Z[J)] QZQ Z[Y) — Z[]", E@n— f(§®@n) = (On—j+1(1n) - §)je,n -

We have the commutative diagram

£®77} §®77* (Un(ﬁ)§a~-701(77)§)
QW) ® Q) —=—= Q) ® Q) —=— Q(V) x - - x Q¥)

~

g (n (S, o1 (n)E)

whence f is an injective morphism of Z[Y]-algebras.

Now we want to show that f(Z[J] ® Z[0]) C .
z

We choose the Z-linear basis (17, 27, .-, n—17, n7y) of Z[¥]; cf. Corollary 21.

Therefore we can choose the Z[¢]-linear basis B := (1® 17,1 ®27,...,1 ® n—17,1 ® ) of Z[¥] ® Z[V];
z
cf. Lemma 100 (7).

By Remark 28 (4ii) we have for 7 € Gal(Q(v)|Q)

(1) T(V'Z[Y])) = 9'Z[Y)] for i € [0,n —1].
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Given (a;)jeq1,n € Z[Y]*™ and 7 € Gal(Q(¥)|Q) we write T7((a;) en,n)) = (T(a5))jenm -

For (a;);eqi,n € Z[Y]*™, we obtain

(aj)je[l,n] cv <D:3§ Z < A >ak =yi 0 fori € [O,n — 1]

—~
—

— i <;>T(ak) =g 0fori € [0,n—1] <= (7(aj))je1n €Y

<~ T((aj)je[l’n]) S v,

Further we have for s € [1,n]

fAem) = fl®o(17) = (Oajs1(0s(u7))jeqn

Gal.gr.
= (04(0n—jr1 (1)) jernn)

abelian

= 0((Onjr1(1M)jepn) = os(f1®17)).

Since B is a Z[¢]-linear basis of Z[J¥] @ Z[¢] and because of (x), we only have to show that
A

fA®17) = (Onjr1(M)jenm = (n7, - 17) €V,
—————

=n—j+17

in order to prove the stated inclusion f(Z[9] ® Z[9]) C ¥.
z

For this we shall verify that the tuple (7, ... ,17) satisfies the defining congruences for ¥.
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"(1) g NTeWY WOIJ SMO[[O] 91 [T — © ‘] D 2 10] puUR ‘() = 2 I0J ONI} ST PUD Y} J® IDUINISUOD BT[) BIYM

0=s 0=s

‘0 w(1=9)= NN?\V - ﬁva:\v =+ smAv - UN\:v = mAH\vvaﬂmv ”W 4@+:\v + mAvIVAsmmv ”W As\ﬁv

4 4

T+i=s T+1=s 1=s

wIVAWNvaH|v ”M + wlvAMNvaH|VHHWm + T .i.:lv + mVAsmNV mAﬁ|v MM + mVAsva mAﬁ|v ”sw + T @I:V

T+1=s =5 T+1=s I=s

m\vA@Mva~|v WM N+§\V + m\vANmmeA.m|v MNW 4@+:\v + .s+:\v + mVAsvamA._”|v \MM .s\:v + wvAﬁMvaH|v MW w\zv + @\ﬁv
¢ T+2={ . =5 p T+2={ . 1=s

.nl.vomv .mA~|v MM .I.:Iv + mlvpmv mAH|v Msw .i.@lv + .I.:IV + mvmsmv .mAﬂ|v HM .slcv + mvpmvmﬁﬂ|v ”sw NI:V + @I:v
‘ T+2={ . 1=s P 1+2=C . 1=s

T4+ HTX& (7)) X + (i) <(1-) KudF ) Fr -y w:NVoNZTV a2t (iz) (1) Kimud+imud
P T+e={ . 1=s P T+2=C . 1=s

H+.m\.v@mv .mA._H|v WM .frﬁ.v + m\vAwmvm:”|v MW IL&\@ + 4s+:\.v + ﬁ\.mv@mv .mm._u|v MSM @\:\V + wv@mvw:ﬂ|v MW w\ﬁv + @\ﬁv
T+2={ =5 T+2={ 1=s

4180 @mv et—1g(T—) WM —ud + mvaU (1) @W rru—? + pu-d + T~+.§|v@@ eti—1z(17) HM rru—? + mvﬂwvmﬁlv HM —ud + )
1=s 1=¢ T=s 1=s

mvmﬂ\w& H+m.A._H|V M\W .s\ﬁv + w\vANvamA._n|v Msw .s+:\v + Tr,:\v + m\UAH@\NmV H+m§”|v ”W w+§\v + wvANvamA._u|v MNW .s\z.v + @\ﬁv

1=s

T=s 1=¢ T=s
() )T o3I T a9 i35 190 T (0T
I—s s =
(s—rru-9 + so-ud) AA )~ vav (1) HW +oagud T )
41 T+y—1 =
(b= + pra-ud) () = () chas1) A sy + 1o

s (D5 i (1) 3

u u

oAR om [T — u‘Q] D 2 10
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n . ~
Hence we get with Remark 30 that < ; >n,k+1'y =y 0 for i € [0,n — 1], and so f(Z[]J] ® Z[I]) C V.
k=1 Z
So we can define f := f“p, cf. Convention 1. As a restriction of f, the map f : Z[J] ® Z[9] — ¥ is
Z

injective.

Now we calculate the principal ideal of Z[9] that is generated by the Z[J]-linear determinant of f.

We choose the Z-linear basis (9°,91,... 9772 971 of Z[J]; cf. Lemma 24 (i3).

Therefore we can choose the Z[J]-linear basis C := (1®9°,1@9!,..., 109" 2 19" of Z[Y] @ Z[J];
Z

cf. Lemma 100 (4). Further we choose the standard basis of Z[9]*™. So we obtain the describing matrix
of the Z[9]-linear map f : Z[9] ® Z[¥] — Z[9]*" as
Z

A= (on—j+1(19i))j € (1,m),

ie0,n—1]

We apply Lemma 115 to the case (L, Q,m, (z;) ep,m) ) = (Q(9),Q,n, (¥);c(0,n—1 ) and get

2 L.25 r—3
(det(A))” = Aguyio = +p 7 .

So we have

(det(A))°Z[9] = p*7 z[9) =’

p—3 2n+1-3
2

9Tz = 9" Z[9] = 9"zl

whence
(n—1)n

detzg) (f)Z[Y] = det(A)ZW] = 9~ = Z[V].

By Remark 40 we know that detzg) (¢ : U — Z[J]*") = I
So we have the following situation

(n—1)n

detypoy (DZB=9 " 2 Z[]
+

/’}'\
r=fl*
\\

Z[Y) © Z[V] - Z[9]<m .

Z
(n—1)n
detypg) (Z[W)=0" 2 Z[¥]

We have
detzga) () Z[Y] = detzg) (v 0 f)Z[Y]

= (detgy(f) - detgp())Z[] = detgy)(f)Z[Y) - detzy ()ZW) ()

= detgg)(f)Z[Y] - detyyy) (f)Z[9] = (detyp)(f) - detzp (f))Z[0].

From the inclusion "C" in (2) we get that there exists an x € Z[¢] with
f inj.
4

0 # detz[ﬁ] (f) = detzw] (f) . detzw] (f) T = 1= detz[ﬂ](f) -
> detgy(f) € UZ[Y]).

Thus we get that f is surjective.

Altogether, f is bijective. Since f = f‘q’ and f is a morphism of Z[Y]-algebras, we conclude that

U =im(f) is a Z[J]-subalgebra of Z[9]*". O
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2.2.2 A submodule ¥ of Z[9,]*"

In the following two Subsections 2.2.2 and 2.2.3, we intend to describe a principal ideal of ¥ via ties,
which will help us later to describe the group ring Z[¥,]D2, in Section 4.2 via ties.

Definition 42 We define the Z[9,]-submodule ,¥ of the Z[1J,]-algebra Z[9,]*"

U=, 0= { (aj)jeq,n) € Z[Op)*" - 2811__11))2(22)'<Z;1 > ray =g; 0 for i € [1,n] } ,

k=1

cf. Convention 7, Definition 34 and Remark 141.
Example 43 Let us consider p\i/ in the case p = 11. Then 1,V is given by

v =g 0
—216v + 24w =92, 0
wl o= (v, w,z,y,2) € Zn]*: 360000 — 6000w + 720z =ga 0

—9878400v + 1975680w — 3951362 + 40320y =y4 0

4115059200v — 914457600w + 2351462402 — 41990400y + 3628800z =ys 0

Remark 44

Let Dy = Dj

diag(dp=", 932, ..., 9)) € Z[Y,"*" N GL,(C),
o o (2i — 1) _. | 1—1 nxn
and Kg = Kg = ((Qk )2 (21)! & e € Z"" N GL,(Q) .

Suppose given a = (a;)jen,n € Z[9p]*™. Then we have
a€V < D4y Kga' €dpL[o,]"".

Proof. We have Kj, € Z"*" by Remark 141.

For i,k € [1,n] we denote the entries of Kg by l;} := %(22)'< ‘ B ! > By Definition 34 we see that
lix=0fork>iand l;;, #0for k =1.

Therefore K is lower triangular and det(Ky) # 0, i.e. K € GL,(Q).

For given a = (a;);jcp1,n) € Z[Y]*", we have

aeV — a satisfies the defining congruences for ¥
= (20— 1)2 i — 1
— u(22)' ! ar =gi 0 for i € [1,71] — D@K‘i,at S 19”2[’[9]n><1 .
= (2k — 1)2 k
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Example 45 Let us consider qu, in the case p = 11. Then K g is given by the lower triangular matrix

2 0 0 0 0

—216 24 0 0 0

K § = 36000 —6000 720 0 0
—9878400 1975680  —395136 40320 0

4115059200 —914457600 235146240 —41990400 3628800

Remark 46 We write (p) := pZ and (0,) := 9,Z[V,).

(i) We have Z[0,] )y = Z[Vpl(s,) as subrings of Q(J,).
(ii) We have Z[9p] ) = Zp)[Up] as subrings of Q(1,).
(i) In particular, Zy[9,)] is a discrete valuation ring.

iv) Moreover, the mazimal ideal of Z,)[¥,] is generated by ¥, .
(»)Yp P

Proof of (i). Recall that (p) C Z and () C Z[J] are prime ideals; cf. Lemma 27 (3). So the localizations
of Z[¥] at () respective (p) are defined; cf. Definition 117. By Lemma 22 we have Z[J] = Ogy). By
Lemma 27 (i), we have (p) = Z N (¥). By Lemma 29 we have ¥"Z[J] = pZ[J]. Therefore we can apply
Lemma 137 to the case (L, K,Ok,p,O0r,q,s) = (Q(9),Q, Z, (p), Z[¥], (¥),n) and obtain the assertion.

Proof of (ii). Using Lemma 24 (i8) we have to show the vertical equality in

2 = { P ca; €7 for i€ [O,n—l],sEZ\(p)} C QM)
!
n71b~ .
Zipld] = {20 S0 b e Z for i€ [0,n—1],s €Z)\ (p) for i€ [o,n_l]} c QW)

The inclusion "NI" holds using coefficients % of ¥* for i € [0,n — 1].

n—1 n—1 ) fil(bissi—l)m
Ad"uU". Let s :== [] s; € Z\(p). Thenss;' € Z fori € [0,n—1],and Y 2¢i = =0 ——— € Z[¥],) .
i=0 i=0

S

Proof of (iii). By Corollary 23 the ring Z[4] is a Dedekind domain. By Lemma 27 (i), the ideal (¢) # 0
of Z[Y] is prime. Therefore we get with Definition 131 that Z[]) © Z[9] () @ Zpy[9] is a discrete
valuation ring.

Proof of (iv). By Lemma 27 (i) we have that () is a maximal ideal of Z[)]. So we obtain by (%) and
Remark 126 that (1)) is the unique maximal of Z[¥] ) = Z(,)[V]. O

Lemma 47 The Zy [J,]-submodule p\i/(p) of Zpy[9p]*™ has the Z,)[0,]-linear basis

2% —1)2 (l+k—1
B; = B:; := (¥ . @k —1)° clell .
Y(p) o) ( P <l+kz— 1 < k—1 ))kep,n] <l 7TL])
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Proof. First, note that the elements of B@(p) are the rows of an upper triangular matrix, whence B\i/(p) is
Z(py[V]-linearly independent.

The describing matrix of the embedding ¢ : (By, )z, ) < Zp)[V]*" with respect to By —and to the
standard basis of Z ) [9]*" is

L <19[ (2k—1)2<l+k—1)>
l+k-1 k—1 kJE[Ln]'

Since [+ k—1<2n—1<pfor [,k € [1,n], we see that L € (Z, [ﬁ])nxn.

Note that by Remark 143 the matrix L is already contained in Z[9¥]"*™. So B\i/(p) , which we find again

in the columns of L, is already contained in Z[#]*". Cf. Subsection 2.2.4.

Further we consider the matrix

(2i—-1)2 . [i—1 R.141 k(20 —1\ (20)! . R4t
Kg = | =55 (20)! = ((-1) 2i —1 VAR
v ((% 1)2( ) k el - ik a1l ike(1,n] © ’

defined in Remark 44.

Then we have

(k21 @D 2k = 1) (14 k-1
KyL = (Z( 1) (Zk 2]{:71(2@ 1)-9 Bl (R o
nle|l,n

- . 2i—1\ 2k—-1 [l+k—-1
[, - A\ | _1)i—k
9 (2i = @) (D) (z—k) Z+k—1( k-1 >>'l€[1 |

—_———

—_———
=0fork>1i =0for k<1

: 721\ 2% —1 [I+k—1
l_ - A\ | _1)i—k e -
0 2= D@ (=) (i—k>l+k—1( k-1 ))
l i,l€[1,n]

i—l1 .
, _ o 2—1 \20+2% —1/2+k -1
90 (2= 1)(20)! D (1) lk(i—l—ki)%kf—l< K’ ))
i,l€[1,n]

k=0

i—l—k) 2+k—1 K(2—1)

il )
9 (2 = DEDEDT (D <Z ! z—lk) (20 +2k —1) (Z!:;lk—;!)! - 1)
F=0 i,l€[1,n]

i—1 .
1 ) 21 —1 204+ k—2
L, s A\ | _1\i—l _1\k o
9" (20 = 1)(20) 5 (-1) 1;0:( 1) (i_l_k>(21+2k 1)( o ))l »
= ,le|l,n

. i—l .
gk (191 @i D@1 Z(l)k< 2 — 1 ) 2A4+2%k—1(2+k— 1)!)
k=0 i,1€[1,n]

(20— 1)(21‘)1211_ (20 1) @,l)

i,l€[1,n]

= (9 (2i —1)(20)! - 0yy) = diag(9'(2i —1)(2i)! : i € [1,n]) = F.

i,1€[1,n]

By Remark 44, we have, given a = (a;);ep1,n € Z[9]*",

a € \I’ <— D@K@at € ﬁnZ[ﬂ]de .



The tensor product Z[V,] @ Z[1,) 27
z

We apply Corollary 125 to the case (4, B,p,z,k, M,N) = (Z, Z[V], pZ, 9", n, Dg Ky , Th).
So given a = (a;)je,n] € (Z[ﬁ](p))xn = (Z ) [ﬂ])xn, we have
R.46 (ii)

a € \I/(p) <~ D@K@at e " (Z(p) [19])n><1 .

Therefore we get

=FL!
a < \i/(p) <~ D\i, K‘i! at € 9" (Z p [ﬂ])nXI
— (Dg F)L™ " € 0" (Zy[9) "™ -
R.44 . . . . _ nx1
<= U -diag((2i —1)(20)! : i € [1,n] )L™ a’ € 9" (Z [V])
—  diag((2i —1)(20)! : i€ [1,n]) L a € (Zgp[9])" "

=:A

Since 2i —1 < 2i < 2n < p for i € [1,n], we get that p { det(A) € Z. Therefore A € GL,(Z,)), implying

nx1l nx1

that A~ (Z,[0])"" = (Z) )
So we get with (2)

i~ nxl

a €V, < a' € L(Zy]) <= a € By, )z, -

Therefore we have \i/(p) = <Bq,(p>>z(p)[19] . =

Example 48
In the case p = 11 the Zy1)[¢1:]-linear basis Bn\i,(u) of the submodule 11\11(11) of Z(H)[ﬂn]XE’ is given by

9, - (1, 9, 25, 49, 81),
93,-(0, 3, 25, 98, 270),
=1 93,-(0, 0, 5, 49, 243),

11‘i’(11)

7‘94111'(07 07 07 77 81)7

93, -(0, 0, 0, O, 9)

2.2.3 The principal ideal of W generated by the image of 1 ® 9, equals p\i/
Definition 49 We define

0 =0p:= (on(dp), ..., 00(0p)) = F(LOVp) €V,
where o; € Gal(Q(9,)|Q) for i € [1,n]; cf. Notation 26. For f we refer to Proposition 41.

We obtain the principal ideal 0¥ = 6, - ,¥ in ¥ generated by 6, .
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Remark 50 The principal ideal of ;¥ generated by 0, has the Z[0,]-linear basis

_ l+k—2
Boy = ng.pq/ = <19i7 1, (Un—k+1(19p)' ( o] _ 9 )) :le [1,n]> .
ke[l,n]

Let v: 0, - ¥ — Z[U,])*™ be the canonical embedding. Then we have
n(n+1)
2

detzpy, H Yopost1(9p))  and  detz(t) = £pT oz

s=1

Proof. By Lemma 38 we have a Z[J]-linear basis of ¥ given by By = (ﬁl_l : ((l;lk:;) )k e le1, n])
€ll,n

Therefore ¥ has the Z[J]-linear basis 6 - By = <19ll . (Jn_k+1(19) . (l;lk__22)>k . :lel,n] | =Byw.
€ll,n

Fusther we have (1 + k- 2) _ { 0 for k <1 and

2l -2 1 for k=1.

Therefore the describing matrix A of the Z[¥]-linear embedding ¢ : 0¥ — Z[¢]*™ with respect to Bpy and
to the standard basis of Z[]*™ is lower triangular. Its diagonal entry at position (s,s)is 971 0, _s11(1)
for s € [1,n]. So A has the determinant

det(4) = [T (9" onssr(®))
s=1
We have
0) -
detz(b) = iNQ(ﬂﬂQ(detZ[ﬂ](L)) = :I:NQ(g)‘Q(det(A)) = iNQ(@)\Q (H cOp— S+1(19))>

n

£ T ((Newie®) ™ - Nowyeloa-s1()) 2 £ T ((Newye@) ™ - Newye®)

s=1 s=1

= =] Momie@)” 2! £ ][5 = ™5,

s=1
where in (1) we refer to Lemma 116 applied to the case
(K,s,A4,B,1, 0k, ¢) = (Q),n, 00, Z[9]*",n, Og(s), 1) ,
and recall that Og(y) h22 Z[9).
In (2) we refer to [Neukirch 99, Ch. I, p. 9, Proposition (2.6.iii)]; cf. also Corollary 114 for the corre-

sponding statement for the trace. g

Example 51 In the case p = 11 the Z[1;]-linear basis By,,.,,u of the submodule ;7 - 11V of Z[11]*5 is

given by
(o5(W11), oa(V11), o3(011) , o2(011) , o1(V11) ),
91 ( 0, o04(¥11), 3-03(911), 6-02(911), 10-01(911)),
Bow = | 92,- ( 0, 0,  os@n), 5-02(011), 15-01(0m)), | -
93, ( 0, 0, 0, o2(V11), T-o1(%1)),
91 ( 0, 0, 0, 0, o1(%11))
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respectively, written using the Z-linear basis (9%, : i € [1,5]) of ¥11Z[911], cf. Lemma 24 (i3),

(95, +1097, +3593, 45002, 425011, 97, +80%, 42002, +16911, 93, +607, 49911, 93,4+4911, Y11),

( 0, 93, +89%, 42093, +1692,, 394, +1893 +2792,, 69342492, 1002,),
B911'11‘1’ = ( 0, 0, 99,4607, +993,, 591,4200%,, 1503, ),

( 0, 0, 0, O3, +49%;, 79%,),

( 0, 0, 0, 0, "9?1)

Proposition 52 The principal ideal of ¥ generated by 6, is given by

29

I
&

6, W — {(aj)je[lyn] € Z0," - Zg]i__ll))Q-(zi)!-<i;1>.ak =), 0 foric [l,n]} .

Proof. We have

(1) 0V = (10 9)f (2] © ZY)) = S(ZY) @ Z[Y)).

We choose the Z-linear basis (v —2 : k € [1,n]) of 9Z[J]; cf. Remark 32 (ii). Therefore we can choose
the Z[¥]-linear basis B:=(1® (17—2),1® (27—=2), ..., 1 ® (h—17—2), 1@ (»7—2) ) of Z[¢] @ IZ[V] ;
Z

cf. Lemma 100 (7). So we get by (1) that

2) b0 = (F(1@ (7 —2) + 5 € [Ln] )y -
Lo
Now we want to show that 6 C W. Because of (2) it suffices to show that
-
fAl®(sy—2) € U for sel,n]. (%)

Given (a;)je1,n € Z[Y]*™ and 7 € Gal(Q(¥)|Q) we write 7((a;) en,n)) = (7(a5))jenm] -

For (a;);cqi,n) € Z[Y]*™, we obtain

- D.42 Ny )
(@))jenm €V &= X (gmpe - (20)!

cap =i 0 for i € [1,n]

-y, € 9Z[Y) P(‘:Zj 71 (9'Z[)]) for i € [1,n]

-1(ay) € VZ[Y] for i € [1,n]

()
()
— T<i @17 .(2¢)!.<i;1> ~ak> € 9z} for i € [1,n]
()
()

-7(ag) =gi 0 for i € [1,n]
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Further we have for s € [1,n)]

fA®(s7v—2) = fAl®os(1y—2) = (on—j+1(0s(7 —2)))jenn

Gal.gr. (0s(on—j+1(17 = 2)))jel1n] W

abelian

= Us((Un—j+1(1’Y - 2))je[1,n]) =os(f(1® (v —2))).

Because of (3) and (4) our task from (x) reduces further to

[

fA® Gy —=2) = (On—j+17 = 2))jenn = (n—j+17 — 2)jern € V.

For this we shall verify that the tuple (,—j117 —2)je,n satisfies the defining congruences for 0.

For i € [1,n] we have

LS R () @i 1) (R R )

=0 for k > 1
= (20)-(2i—1)-(=1)"- kil(_l)k (211 kl) ﬁ . (Cn_k+1 + Cm—wrk -1 _ 2)
= (@) @i-1- (-1 kil(—l)’“ Y i (€= 1)+ )R (¢ 1)+ 1R - 2)
- eyt et e (O e v E e )
- - =0 for 0T -
ji>n—k+1
@D (D D (Y (f -1+ e - 1)j>

S

@i @) (D (DF Y gy +k((”*f“) + (") (=17 = SG).

1

bl
I
—

<

We denote the coefficient of (¢ — 1)7 in S(i) with k(, 7).
Considering the left side of the equation above we get with Remark 141 and Remark 32 (i) that

R.31
S(i) e VZ[Y] < (¢ —1DZ[¢].
=p—2
—
Choosing the Z-liner basis ((¢ —1)! : [ € [0, 2n — 1]) of Z[¢] we get that ({ —1)Z[¢] has the Z-liner basis
((¢—1)!:1€]1,2n]). Since j <n+k < n+i< 2n, we therefore get that all occurring coefficients
k(i,7) in S(¢) are integers.

Let us have a closer look at the coefficients k(i, s) for s € [1,2i — 1]. We calculate

LK) = (20021 (-1 Y (- 5w (Y (1)

o
=

FEE(2i) 20 = 1) (1) (<1 S (DR () - (R
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Z
; ; 2t i— nti—
= (20)!- (20 = 1) (=1)7L. (=1)"Ft. kX—:O(_l)k : (2 k 1) o (M k)
s s—1
BT (20 (20— 1) - (—1)i 2t 2O [T (2n+1-2u)

= @i=1 (it G T (p - 20)

St

u=0
: im1 odica—s =1 T
= p (2= 1) ()i SR (p - 2u)
s—1
= p-g-@2i—1) (1)t G =) T (p—2u) . (%)
u=1

So we have k(i,s) = p- %, with € Z and y € Z>;. Without loss of generality we suppose that z is
coprime to y. Since k(i,s) € Z we know that y € {1,p}. We further know from (xx) that y is a divisor

of s!'. But, since s <2i —1<2n—1 < p, we get that y equals 1. Thus we have that ki) — 3 € Z for

se(1,2i—1].
So we can write S(¢) as

2i—1
S(i) = ((—1)* w+p- > a;(¢—1), witha; € Zfor j € [1,2i — 1] and w € Z[(].  (sxx)
j=1

By considering the divisor chain
(¢ —1)* divides 9™ divides p in Z[¢] for i € [1,n],
1
R.30 L.29
and using (x#*) we get that

S(i) =(¢_1y= 0 in Z[(] 22 S(i) =g 0'in Z[9].

Hence 0W is a subset of V.

Suppose given a = (a;) e[1,n) € Z[U]*". Then we know from Remark 44 that

a € \if <— D@K@at S 19”2[19]”X1 ( )
5

t nrp—1n-—1 nx1
<~ a' €V"Ky Dy Z[]"*

~ t ~ ~
We define ¥’ := (WK;D;ZW]M). Using (5) we therefore get that ¥ = ¥/ N Z[J]*".

We choose the standard basis (e; : i € [1,n]) for Z[#]*" and the basis (det(Kg) 'e; : i € [1,n])
for det (K\i,)_1 Z[Y9]*™ C Q(9)*™. So the embedding j : Z[J]*"™ — det (K\i,)_1 Z[9]*™ is given by the
matrix det (K ) E,, .

- t
For ¥’ we choose the basis < (ﬁ"K\;D;@) RS [1,n}> .

For fixed ¢ € [1,n] we are looking for \;; € Z[V] for j € [1,n] with

VR

9K D el = Y Ajidet (Kg) el
j=1
i.e. we are looking for a representation of the i-th basis element of ¥’ in the basis of det (K\i,)f1 Z[9) <™.
This is equivalent to

n
det (Kg) K3'9"D3lel = Y Ajiet.
j=1
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So the desired Ai;, ..., Ay, can be found in the i-th column of the matrix det (Ky) K\;W"D;. Thus

the latter is the describing matrix of the embedding k : ¥/ «— det (K\i,)_1 Z[9)*".

Note, since ﬂ”Dgl € Z[Y]™*™ and det (K ) K\; = det (K ) (det (K\i:))_l adj (Kg), cf. Remark 44, we
———

see that the describing matrix of k is an element of Z[9]"*". cznxn

So we can consider the commutative diagram of the Z[¢]-linear embeddings with respect to the bases as

explained above

R.50 — ¢

TN

(6) ov Z[Y)*™

7 <—det(K¢,)En

G det (K ) T Z)* C Q) <™

Note that all occurring modules in diagram (6) are finitely generated free Z-modules.

By Remark 50 we have

n(n+1)
2

detz(hog) = detz(t) = £p— 2z
Since detz(h o g) = detz(h) detz(g), we therefore get that

n(n+1)

detz(h)detz(g) = £p~ 2z

and hence |detz(h)| is a power of p.

We further calculate
\©/ —1.qn —1
detz(k) 2 +Ngwya (det (det (Kg) K3'0"Dy ))

= =£Ngu) (dot( )ndct<K\i—,1>det<ﬂHDgl>)

=det(Kg)" ez

= +det (Kg)" V" Nowo (det (WD 51))

R.44 n—1)n n

2 4 det (Kg) ™" Noyg (90 - 0m)

L(:zj e det (Kg) "V ptept = i det (Kg) " ptET
w

where in (8) we refer to Lemma 116 applied to the case
(K,s,A,B,7,0x ,¢,F) = (Q), n, ¥, det (Kg) ' Z[9]*"™, n, Z[Y], k, det (K@)qulq?"D;) ,

and recall that Z[Y ] OQ(ﬂ
The matrix K is a lower triangular matrix with the diagonal entries (2i)! for ¢ € [1,n]; cf. Remark 44

and Definition 34. Hence det (Kg) = [](2)!. Since 2i <2n < p for i € [1,n], we get

i=1

(10) pfdet(Kg) .
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z

By the commutativity in (6) we get

(11) detz(j) detz(h) = detz(j o h) = detz(koi) = dety(k) detz (7).

Now it is our aim to show that '
detz(g) = £1.

Since |detz(h)| is a power of p, in particular # 0,
we see that it suffices to show that '

detz(h) detz(g) | detz(h).
Now |detz(h) detz(g)| is a power of p, cf. (7), and
detz(j) as a power of det (K, ) is coprime to p,
cf. (10). So it suffices to show that

detz () detz(g) | deta(h) detz () 2 dety (k) det (i)

This is certainly satisfied if dety(h) detz(g)
already divides the factor detz(k) in the product
detz (k) detz (7). So it remains to show that

detz(h) detz(g) i dety (k) .
And this is true, cf. (7) and (9).

So we have reached our aim to show that detz(g) = 41, whence 0¥ = 0. O

2.2.4 The local basis can not be used globally

In the previous Proposition 52 we have provided a description of the principal ideal 8, -,V as 6, -, ¥ = ¥,
where W is defined as a submodule of Z[9,]*" via ties.

We have seen in Lemma 47 that, if we localize the Z-module ,¥ at (p), we obtain the Z(p)[Up)-linear basis
B, of p\il(p) = (0p - p¥)(p) - By Remark 143 we get that B g, is already contained in VAL fai

By Remark 50 we have the rather complicated Z[9,]-linear basis By, . w of 0,-,¥, involving o; for i € [1,n].

So one might ask whether B g " is already a Z[t,]-linear basis of 0, - . But this is false for p € Z>5 .

We show this exemplarily in the case p = 11.

The known Z[11]-linear basis of the submodule ;1 - 11V of Z[1911]*? is given by

(o5(011), oa(P1),  os(W1),  o2(dn1), o1(V1)),
91 ( 0, o04(¥11), 3-03(911), 6-02(911), 10-01(911)),
Boyy v = 92, ( 0, 0, o3(P11), 5-02(P1), 15-01(011)), )
93 ( 0, 0, 0, o2(V11), T o1(%11)),
9 ( 0, 0, 0, 0, o1(%11))

cf. Example 51.
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Therefore we obtain the principal ideal of the Z[1)11]-linear determinant of the canonical embedding

detzpy,,) (011 - 11V — Z[911]*?)Z[V11] = detzp, ) (B, w)zo,.] — Z[Y11]*%) Z[011]

5

(H (057 'U5s+1(1911))> Z[9n] = <H?9§11> Z[Y11] - (H 05s+1(1911)> Z[911]

s=1

= U9Z[Y11] - No(o,1)o(P11)Z[011] L(_Qj NYZ[911] - 11Z[011]

w

M2 112209,,] - 1Z[0] = 113Z[0,] .

We recall from Example 48 that
9t - (1, 9, 25, 49, 81
0% -
B11‘i’(11) = ?9:151 '

19111'(07 07 Oa 77 81

93,-(0, 0, 0, 0, 9)

which is contained in Z[11]%5.

Therefore we obtain the principal ideal of the Z[1)1;]-linear determinant of the canonical embedding

detzpy, ) (<Bu )Zi911] Z[ﬁlﬂx‘r’) Z[Y11]

\i'(ll)

= (ﬁ ((2s-1) 'Qﬁl)) Z[W1) = (1-3-5-7-9)Z[Y11] - 913Z[V11] (2)

s=1

L.29

(1-3-5-7-9)Z[WV11] - 113Z[011] = (1-3-5-7-9-11%)Z[914].

We see that the ideals differ by the factor 1-3-5-7-9, which is not a unit in Z[¢1;]. Therefore Bu\i/(u)

can not be a Z[¢11]-linear basis of 017 - 11V, whence <B11§,(11)>Z[1911] # (Boy,1,0)z[9,,) = 011 - 117.

n
In the case of an arbitrary prime p € Z>5 we have the factor [] (2s — 1) by which the ideals differ. Also
s=1
this factor is not a unit in Z[¢,] and (qu,(p))zwp] # (Bo,,v)z9,] = Op - p¥-

Locally, we of course have <Bp\i; )2y 19, = (Op p¥) () = (Bo,,w)z,, v, 3 cf. Lemma 47 and Remark 50.

(p)

But at least we get the following

Corollary 53 We have

(B 1210,) S (Boy-w)zio,) -

Moreover, this is a proper inclusion for p € Z>s .

n(n+1)
2

Proof. By Remark 50 we have d := dety (0¥ «— Z[9¥]*") = +p . Moreover, we have

d-Z[)*" C 0 C Z[9]™ .
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z

So we can apply Lemma 128 to the case (R, m,a, M,N) = (Z7 D, %, 7|9 <™, 9\11) and get
1) (00) ) N Z[) " = 0.
We have

L.47

4 P.52
B, )z) S Vi) = (09)p) -

We have that By, is contained in Z[¥]*™; cf. Lemma 47 and Remark 143.
Altogether, we obtain

(Bg,, Jzig) C (0)@) NZW*" 20w "2 (Byy )z

Properness of the inclusion for p € Z>5 is a consequence of the inequality shown above by means of

determinants. 0



Chapter 3

Wedderburn

3.1 The dihedral group

Definition 54 For m € Z>; we define the dihedral group via generators and relations as

Doy, = <$7y : xmvaa (yl‘)2>,

cf. [Dummit 04, Sec. 1.2, p. 26, item (1.1)].

Remark 55 The dihedral group, given in Definition 54, has the non-redundant list of elements
Da, = {1,x1,x2, 2™y ay, 2Py, ,:cm_ly}.

In particular, the dihedral group Do, has order 2m.

Proof. We refer to [Dummit 04, Sec. 1.2, pp. 24-26].

3.2 Wedderburn over C

Definition 56 For i € [1,n] we define

1 1
M, = - b GL,(Z[9,)),
(c;+<;1—2 <;+<51—1>6 A

Z
|

1 0

A o= (179 1) cano),
G-1 -1

cf. Definition 17 and Corollary 21.

36
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1 1 1
Mlz and N1: 0 .
9, U,+1 9, —1

Remark 57 For the matrices, given in Definition 56, the following holds:

In particular,

(i) Fori € [1,n] we have

A MATY = G 0 ,
) 0 Cp_z

(ii) Fori € [1,n] we have

(#4i) We have

B 9,41 —1 B 1 ~1 1
Mf:( i 1) ond AT = = (1—< 1—<1>'
p g P D D

(iv) For k € Z>o we have

Proof of (i). We have

e (55 ) et endin) < (2 )
C’Lil 71 C’L+C77472 CZ+<7271 174'71 74'71
Ci 0 A _ CZ 0 1_<—i 1 _ Ci_l Ci
U A U AN L=t =)
AN, — <1fgi 1)( 1 o) _ <c‘—1‘ —1)
¢—-1 -1 (¢t —2 -1 1—¢ 1
01y, _ (01 1-¢ 1\ [ ¢-1 -1
1o/ \10 -1 —-1)  \1=¢*% 1)°

Proof of (ii). This follows from (7).

and

Proof of (iii). This is shown by multiplication of the respective matrices.
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Proof of (iv). For k € Z>o we have

. 1 k k
ME(E, + M) 2 (AH(C 0 >A1>(E2+N1) - A11<< 0 >A1<E2+N1>
(i) 1 -1 -1 ko 1-¢t 1 2 0
ot 1=¢ 1-¢? 0 ¢* (-1 -1 )\ ¢+¢t=20
1 _Ck _ka
Cfl —¢ Ck _ CkJrl ka _ Cf(kJrl)

¢k ¢k -10
Ck _ Ck_H C_k _ C_(k+1) -1 0

SR 0
§k+1 o Ck + C—(k—i—l) _ C_k 0 :

Lemma 58 We have the representations of the dihedral group Do,

(1) ot : Do — GL1(C)
r 1,
y L,

(2) 0. : Dy, — GLy(C)
T 1,
Yy — _1a

and,

(3) foriell,n], 0; : Dg — GLy(C)
T > M;
y N; .

A. Zimmermann has made use of the representing matrices My and —Np in (3); cf. [Zimmermann 92,
Abschnitt 3.9, pp. 60-63] and note that our (Day, x,y, ;7p) is denoted by (D, a, b,1;(p)) in his work.

We denote the characters of these representations by x,, , Xe. and x,, for ¢ € [1,n], respectively.

Proof.
The relations required by Definition 54 have to be verified. For (3), they follow by Remark 57 (ii). O

Remark 59 Let x and y denote the generators of Doy, given in Definition 54.
Then we have for i € [1,n] and j € [0,p — 1]

X (#7) = Q'+ (7" and  x,, (27y) =0,

¢f. Lemma, 58.



Wedderburn over C

Proof. For i € [1,n] and j € [0,p — 1] we have

Xoi (#7) = tr(0i(27)) "2 tr (M) 27 o ( ¢

J
‘ — (I
3) (¥ ! ) ¢ ¢

—

39

. J ji
| o o i 0 1 0 ¢
Xaulo') = wr(a(e?y) 2w (V) " < % i ) ( 10 ) = “(( it Co )) -0

Lemma 60 The characters of the representations given in Lemma 58 are irreducible.

O

Proof. We only have to consider x,, for i € [1,n]. Let x and y denote the generators of Dy, given in

Definition 54. Then we have

2 R.55 p—l ji —ji 2 p=l i _ii\2
2p'D2p(XQi?XQi) = > |X9i(d)| = Z|< +¢ | = Z(Cj +¢ ])
~—_——— deDay, R.59 =0 N—_——— =0
cf. C.8 eR
p—1 .. .. .. .. p—1 N N\
= XTI = ap T () (M) =
j=0 ~—— j=0

=1
primitive p-th
roots of unity
since 2i #, 0

Therefore we have p, (X, , Xe;) = 1.

Lemma 61 The characters of the representations given in Lemma 58 are pairwise distinct.

Proof. We only have to show that
|
Xow # Xoo for k,l € [1l,n] with k # [.

For k,l € [1,n] with k # [ we have

D.56

Xow(@) = tr(o(z) = tr(Mp) = (F4+CF = 4y
b Y c.21
Xo(@) = tr(a(@) = te(My) 2% (et o= gy,

Proposition 62 We have the Wedderburn isomorphism of the semisimple C-algebra CDo,

~

we @ CDy = C x  (C¥2P" x C
T — (1, (Mn—i-‘rl)ie[l,n] ;v 1) = (o(2) (Qn—i+1(17))ie[1,n] , 0a(7))
Yy — (1 > (Nn—i+1)ie[1,n] 1—1) = (Qt(y) s (aniJrl(y))ie[l,n] , Qa(y)),

¢f. Lemma, 58.
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Proof. The representations g, o, and g; for i € [1,n] of Dg, over C are irreducible; cf. Lemma 60.
Moreover, they are pairwise distinct; cf. Lemma 61.

Thus the Artin-Wedderburn theorem yields that there exists an isomorphism

(1) €Dy 5 C x (C¥*¥)™ x C x H(C"sms , where m € Z>o and ns € Z>; for s € [l,m] ,

s=1
projecting to the C-algebra morphism w¢ on the first n 4+ 2 components of the cartesian product.

Considering the C-dimensions in (1) we get by Remark 55

m m m
-1
2p:12—|—22-n—|—12—|—gn§:2—|—4-pT+Eni:Zp—&—Eni.

s=1 s=1 s=1

It follows that m has to be zero. O

3.3 Wedderburn over Q(v,)

Proposition 63 We have the Wedderburn isomorphism of the semisimple Q(9,)-algebra Q(9,)D2,

wo,) @ Qp)D2p — Q) x (Q(ﬁp)zw)xn x Q(V,)
O (1 s (Mp—iv1)ienm > 1),

Yy L (1 ’ (Nn7i+1)i€[1,n] ) _1) .

Proof. We consider the Wedderburn isomorphism wc¢ of Proposition 62.

We restrict the domain of we from CDg, to Q(J)Dy,. Further, since M;, N; € Z[9]**? C Q(9)?*?
for i € [1,n], cf. Definition 56, we can restrict the codomain of w@\Q(ﬁ)D% from C x (szz)xn x C to

QM) x (Q(¥)2*2)™" x Q).

So we can define wq(y) = w@‘(@w

Q¥
Moreover we obtain the commutative diagram of rings

x (Q(9)**2) " xQ(¥)

;D , whence wq(g) is a morphism of Q(v)-algebras.
2p

we

CDy, — C x ((C2X2)Xn x C

O

wo(v)

Q(9)Dy, — = Q(0) x (Q)?*2)™" x Q(¥).

As a restriction of wc, the map wq(y) is injective. Comparing Q(v)-dimensions, it is also surjective;
cf. Remark 55. (]
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3.4 Wedderburn over Q

Lemma 64 We have the isomorphism of Q(¥,)-algebras

[ @(ﬂp)% QD?p = Q(ﬁp)D%

c¢f. Convention 7.
Proof. We apply Lemma 99 to the case (K, L,G,¢) = (Q,Q(9),Dap ,Q — Q(1)). O

Lemma 65 We have the isomorphism of Q(9,)-algebras

h : QY,) % (QW,)**%) — Q(U,)%? x ... x Q(9,)**2
a b on(a)r op(b)x o1(a)r o1(b)x
v ( c d ) — << on(c)x  op(d)x ) o ( oi(c)x  o1(d)x >>

Proof. We have

Q) @ (QW)>) o (@(«9) ® @(ﬁ)) =5 @) x ...ox Q)2 = (@)
. a b r®a x®b ( (on(a)x,...,o1(a)x) (o,(b)z,...,01(b)x) >
c d r®c r®d (on(Q)z,...,01(c)x) (on(d)z,...,01(d)x)
Lioz @(ﬂ)2X2 % % Q(ﬂ)2><2
on(a)r on(b)x o1(a)r o1(b)x
— << on(C)x Un(d)x> ’ ’ ( o1(c)r o1(d)x >> ’
where in (x) we refer to Lemma 98 applied to the case (4, B, K,m) = (Q(9),Q(9), Q, 2). O

Corollary 66 We have the isomorphism of Q(9,)-algebras

k- Q(ﬁp) % QD2 - Q(ﬁp) % (Q x Q(ﬂp)sz x Q)
q & X — q & (]- ) Ml ) 1)7
¢ ® y — q¢ @ (1 M , —1).
Proof. We have

QW) @ @Dz =25 QW)Dz —22 QW) x QW) x Q)

wo(9)
¢ ® xT +— qx — (¢, ¢ (Ma—iz1)iepin) > q)
¢ ® Yy qy — (¢, ¢ (Na—is1)ien] > —9)
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- Q) ©Q x @(ﬁ)%(Q(ﬂ)m) x QW) ©Q &2 Q) 9 (Q x Q)% x Q)

g
— (g1 q® M , 1) «— ¢ ® (1, M , 1)

— (q®1 ) Q®N1 ) _Q®1) A q & (1 ) Nl ) _1)7

where in (*) in the middle component we refer to Lemma 65 and note that

1 1
h(Q®M1) D':56 h‘<q® <<1+C_1_2 C1+<_1_1>>

L.65 q q D.56 (Mp_ii1)s
N.26 (<n7i+1+47(n7i+1) —2)q (<n7i+1+cf(n7i+1) ~1)q) ) = @\ Mn—it1)ieli,n] -

i€[1,n]

Similarly, we have h(q ® N1) = q¢(Np—it1)ie[1,n] - O

Proposition 67 We have the Wedderburn isomorphism of the semisimple Q-algebra QD2

wg : QDy 5 Q x QW) x Q

cf. Definition 56.

Proof. We have the commutative diagram

1®axt 1® (1, My,1)

1oy 1® (1,Ny, 1)

C.66
4

Q(9) QD £ Q) ® (@ x Q(¥)?**% x Q)

@ pmi () gaing| ()

QDyp —= > Q x Q(¥)2*2 x Q

} (1a]V—17_1)

I
F

1
F

| (1, M, 1)

In (%) and (#*) we refer to Lemma 100 () applied to the case (K, L, ¢, V) = (Q, Q(¥), Q — Q(¥), QDg,)
and (K, L, ¢, V) = (Q, Q(¥), Q — Q(9),Q x Q(9)**? x Q) respectively.

Therefore wg is an injective morphism of Q-algebras. Comparing Q-dimensions, it is also surjective;
cf. Lemma 24 (i2) and Remark 55. O
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3.5 Summary of Wedderburn

In summary, we obtain the following commutative diagram

Proposition 62 — CDy, ‘:C C x ((C2><2)><’ﬂ % C
Proposition 63 — Q(9,)Da, wa”) Q(9,) x (pr)zxz)m x Q(V,)

L.64— f |2 Q 2 + L.65,1.96

Corollary 66 — Q(3,) %) QDay, Q) % (Q x Q(W,)**% x Q)

L.100 (ii) — Q + L.100 (i)

\_/

Proposition 67 — QD,, . Q x Q(¥,)>? x Q




Chapter 4

Group rings of Do,

4.1 The integral group ring ZDg,

Notation 68 Recall that p € Z>3 is a prime. Denote:

I = ' = ZxZ[VY,)*%xZ,

be 2%x2 — _ _ _
A = pA = {(a,(de),f)EZXZ[ﬁp] XZZa:,ﬁpb,d:ﬁpo,ezﬂpf7a:2f} C
Remark 69

(i) The additive subgroup ,A of ,I' is a subring.

(ii) Let |
Gy = <(0,<§ 8),0)) L ((0,(% 8),0):@'6[1,n—1]>,
Ge = ((o,(ﬁ é),m) i ((o7<8 %;>70):i6[1,n—1]>,
() 0l o)
Go = ((o,<8 ?),1—1;)) I <(0’<8 1%)),0):1‘6[1,71—1]),
o= (05 5) ).

We define G = (1pr‘) UGy UG UGq UG UGs. Cf. Convention 12.

Then G is a Z-linear basis of pA in pI.

In particular, we have the Z-linear determinant of the canonical embedding v : pA — T,

detz (1) = 2-p3.

44
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Proof of (i). We have 1p = (1, ((1) (1)),1) € A.

Suppose given (ay, ( bioa ) , f1), (az, ( bz 2 ) Jf2) €A (%)

dy e dy ez

We have to show that

(a1, ( b «a ) ) (a2,< by o ) f2) = (aras, ( biba 4+ c1da  bica + cres ) i) é A (x)

dl e1 dg €92 dlbg + €1d2 d102 + ereq

Because of (x) there exist k,l € Z and 21 , 29, w1 ,wa ,uy ,uz € Z[Y] with

a1 = f1+2k, ap—by = Y-wy,
ay = fa+2I, as—by = 0-ws,
di = 92, e1— fi ¥ -ug,
do = V-2, es — fo - ug.

Now we consider the entries of the product.

(1) We have ajas = (f1 + 2k)(fo +20) = f1fo+ 21f1 +2kfo + 4kl =5 f1 f>.

(2) We have dlbg + 61d2 = ’1921(72 + 19612’2 = 19(2’1[)2 + 6122) =9 0.

(3) We have
aiag — b1b2 — C1d2 = ajag — b1a2 + b1a2 — b1b2 — Cldg
= ((ll - bl)ag + bl(ag — b2) - Cldg
Jwiag + b1Ywy — 1929 =y 0.

(4) The congruence dics + e1es =y f1f2 is shown analogously to (3).

Overall this shows (xx) and so A is a ring.

Proof of (ii). By Lemma 24 (iv) we get that J|p in Z[]. So it is seen that G is a subset of A, because
the defining congruences for A hold for every element in G. The tuple G is, by construction, linearly
independent over Z; cf. Lemma 24 (i3).

Suppose given A = (a, <Z g>7f) €A

We have to show that A is a Z-linear combination of elements of G.

By subtraction of a Z-multiple of 1 € G we can assume a = 0, whence b =y 0 and f € 2Z.

bc
-2 (Oa (d 6)7'f)
By Lemma 24 (i8) and since b =y 0, there exist s; € Z for i € [0,n — 1] with
b= (s, 19" 5, 20" 24 f 5109 £ 50) = s 10"+ s 00T 4 5197+ 50

Because of Lemma 24 (iv) there exist ¢; € Z for j € [1,n — 1] with

19“ = tn—lﬂnil + tn—Qﬂn72 + -+ t1191 —Pp,
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and therefore we get
b = Sn_l(tn_l'&nil —+ tn_g'lgn72 + 4 tlﬁl — p) + Sn_219n71 + 4 51192 + 50191
= Spo1tn 10" sty 20" 2+ syt — S+ ST 4 5192 + S0t

So we can assume b = 0 by subtraction of Z-multiples of elements of Gy, C G.

= 0. (3)0

By subtraction of Z-multiples of elements of G. C G we can assume ¢ = 0; cf. Lemma 24 (i3).

= 0. (49)0

Since d =y 0, we can assume d = 0 by subtraction of Z-multiples of elements of Gq C G;

cf. procedure for entry b.

0 (§0) 0

By subtraction of Z-multiples of elements of G¢ C G we can assume e = 0, cf. Lemma 24 (i3), whence
f =v 0. Recall that a = 0, whence f € 2Z. So we have

FEVZWYIN2Z = 9ZWNZN2Z "Z pZ.N2Z = 2.

(i)

0. (50)0)

Since f € 2pZ we can assume f = 0 by subtraction of a Z-multiple of G C G.

s (o,<88>,0)

Therefore G is a Z-linear basis of A in T'.

Now we choose the Z-linear basis G of A and the canonical Z-linear basis of I'; cf. Lemma 24 (i3).
Then the describing matrix of the canonical embedding ¢ : A — TI" is lower triangular.

We consider the contributing factors of the components of G to the determinant of ¢:

component of G ‘ 1r ‘ (&N ‘ Ge

Ga | Ge | Gt
contributing factor‘ 1 ‘ p ‘ 1 ‘ p ‘ 1 ‘Qp

Therefore we have the determinant detz (1) = 2 - p?. O

Theorem 70 We have the isomorphism of rings

wz, © ZDoy AN {(a, <gg), ) GZXZ[ﬁp]QXQXZ : azﬁpb,dzﬁpo,ezﬁpf,azgf} = ,A

x — (1, My , 1):(1,(1 ! ),1),

9, 9, + 1
1 0
— 1, N ,-1)= (1, ,—1),
y (1. M -1 = (q%_l) )

c¢f. Definitions 17, 56.
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Proof. We consider the Wedderburn isomorphism wg of Proposition 67.

We restrict the domain of wg from QDs, to ZDs,. Further, since My , Ny € Z[9]**?, we can restrict the
codomain of WQ‘ZDQP from Q x Q(ﬂ)2X2 xQ to Z x Zw]zxz < 7.

Zx Z[9])2% 2 x

7 - . . .
Do, , whence @z is a morphism of rings.

So we can define @y, := wQ‘
Hence, we obtain the commutative diagram

wg

QD2 ————Q x Q(¥)**? x Q

O

7,

ZDgy ————>7 x Z[Y)?*2 x Z =T + N.68

As a restriction of wg , the map @y is injective.

Since wyz(x) and wyz(y) are elements of A and using the fact of Remark 69 (i) that A is a ring we get that
@z(ZD4p) C A.

By Remark 69 (ii) we have that the canonical Z-linear embedding of A in I" has determinant 2 - p®.

So we have
T/a| = ldeta(a — 1)) = 25"

Further we calculate the index of the image of Wz in I' as

|D2p|‘D2p|
. 222‘[(@(19):@]) .1

L.24(i2) (2p)2p B (2p)P
L.25 (ipp%s>4 e T opp3. o1

)

‘F/@Z(ZDQP)‘ = i

:2pa

4
L (AQ(ﬂ)l@

where in (%) we refer to [Kiinzer 99, Ch. I, p. 4, Proposition 1.1.5 (total index formula II)] applied to the
case (G, R, K) = (Dyp,Z,Q); cf. Lemma 22.

Using that @z(ZDs)) is a subset of A we therefore obtain that &z(ZD4,) = A.

o~ A A . . . .
Hence we get that wy := wz‘ = wQ‘Zsz is an isomorphism of rings. O

Corollary 71 We have the isomorphism of Z,)-algebras
wrg, © LDz — pAg)
x  — wg(x),

y o wz(y) .

Proof. By Theorem 70 we have the isomorphism of rings wz : ZDa, — A. So we get by Remark 122

that as subrings of QD3

I
wz,, = (wz)p) : (ZD2p)p) = Zp)Dayp — Agp)

S s Y wg(d)

dEsz dEsz
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is an isomorphism of Z,)-modules. Since wz is an isomorphism of rings, we see that wy ,, preserves 1
and is multiplicative. So wz,, i an isomorphism of Z,)-algebras. O

Remark 72 We have the short exact sequence of abelian groups
0 Z Z[0,) 3
pA — ol - /o7, b ( P /ﬂpZ[ﬁp])

(a,(Zg),f) — (a,<gg),f) — (a=n+22, (a=1)+0,209,)
) d+19PZ[19;D]
, (e=f)+ ﬁpz[ﬁpD .

Proof. As embedding of A in T',; the map ¢ is additive and injective. We see that p is also additive.

®3
Suppose given (1 + 27, s + 9Z[J], t + IZ[I],u + IZ[Y]) € L/og @ (Z[ﬂ]/ﬁZ[ﬂ]) . Then we have

Q((r,(rts O>,0)> = (r+ 22, s + 9Z[I), t + VL[], u + IZ[V)) .

u

Therefore o is surjective. Further we have the equivalences

(a,(gg>,f)eker(g) s a—fe2Z and a—b,d, e— f € 9T[9) L2 (a,(ZE)j)EA:im(L).

O
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4.2 The group ring Z[J,|Dy,

Remark 73 First we recall some definitions and facts from Section 2.2 :

S|
Il
bS]
S
v}
llto
[N
—N—
—
S
S
S—
S
m
=
=S
m
N
53
=
X
3
[
/\
T .
~—
Q
ol
I
<>
oo
o
¥
=
~.
m
=)
3
|
=
——
N
N
53
=,
X
3

n . .
P.52 " (2i—-1)% . [Ji—1 _ _
ov = 917 . p\I/ = { (aj)je[l,n] € Z[’ﬂp]x : E W(QZ)' k Qg :19;') 0 for i € [1,’[1] .
Given £, n € p¥, we usually write =g, n for { —n € 0, - ¥ ; cf. Convention 11.

Notation 74 We have the Z[¢,]-algebra
K o= K = Z[9,) x 022 x Z[J,),
and its Z[Y,]-submodule

Q = ,0 = {(57 (%; zj)n) € ol (§)icping =0, Y1, %3 =0, 0, %4 =g, (M)iecnn, =27 }7

cf. Convention 7.

Remark 75 Write I := [1,n]. We have the injective morphism of Z[9,]-algebras

v K =2, x RUERE X Z[Wy] — Z[9,) x (Z[9,]2*2)" x Z[W,)

“)6’()@)777) — e (B8 ow
i€l

(ci)ier (di)ier

—
780
/N
—

Proof. We obtain o as the composite of the injective morphisms of Z[1]-algebras

7O x U2 x 28] <Dz x (28] x

(ai)ier (bi)icr (ai)ier (bi)ier a; b;
(£, ( (ci)ier (di)ier > 1) = (& ( (ci)ier (di)ier > n) = @ (Ci di)ie[ K

where we note that U is a Z[]-subalgebra of Z[¢]*", cf. Proposition 41, so that the canonical embedding
in (%) is an injective morphism of Z[J]-algebras. In (xx) we refer to Lemma 102. O
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Remark 76 Write I := [1,n]. We have the short ezact sequence of Z[9,]-modules
. ) »
e Ly K AN /QZW ® <pq1 /e,, . pq/)
(& (gé zii),n) — (& (ﬁ; ﬁj),n) — ((5 —n) + 2Z[0,] , (€)ier — 1) + Oy - ,¥
) qu + ep . p\I]
» (V4= (M)ier) + 6, - pxp) .

Proof. As embedding of 2 in 7K, the map j is a morphism of Z[J]-modules and injective.

We see that r is also a morphism of Z[¢]-modules.

@3
Suppose given (w + 2Z[J],x + 0V, y + 0¥, z + 0¥) € Z[Y] /22[19] @ (‘I’/g\p) . Then we have

r((w,( (w)ier =2 0 ) ,0)) = (w+2Z[9),x + 600,y + 00, 2 + 0T) .

Yy z

Therefore r is surjective. Further we have the equivalences

(&, (zzl% qﬁ)ﬂ?) €ker(r) <= {—ne€2Z[] and (§)ier — Y1, V3, Y4 — (N)ier € OV
e (i) mea=mG).

4
O
Remark 77 We have the isomorphism of Z[V,]-algebras
k : Z[9,)Dap —> Z[9,) % A
1 1
— 1 =1 e1,M,1) = 1o(, 1
. 9 wrle) = 100001 = 100( 5 g% )
1 0
Y — 1 ®WZ(y) = 1®(17Nla_1) = 1®(1’<19p 1)5_1)
For wy, we refer to Theorem 70.
Proof. We compose the isomorphisms of Z[¢,]-algebras
Z[’&]@UJZ
Z[YDs, —— Z[Y] ® ZDyy, ———— ZY] @ A
1..99 Z 1.93, L.92(ii) z
x — 1 ® =z r—) 1 ® wz(x)
y — 1 © y — 1 @ w(y)
For the matrices occurring in wz(z) and wz(y), we refer to Theorem 70. O
Lemma 78 We have the isomorphism of Z[¥,]-algebras
T Z[,] @ (Z x Z[I,PX2 x Z) = Z[W,] x 22 < Z[Y,] = K
Z

" m n2 y " fE@m) f(€@mn2) "
el (773774> v) = (e (f(§®773)f(5®774)> -
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Proof. We compose the isomorphisms of Z[J]-algebras

Z) (Z X Z[IP*? x Z) L 7[9] % (Z[ﬁ] ® Z[ﬁ]m> X Z[]

L.96 VA
f@(m(”l”z),v)%(&u? ¢ ®<’“”2>,5v>
N3 M4 173 N4
2%2
5 Z[0] <Z[m§zm> x Z[) o Z[9] % P2x2 x Z[9)]
E@m @ f€@m) f(E@mn)
e <£®n3 £®n4> o) (G <f(f®773) f(£®n4)> e

Lemma 79 We have the isomorphisms of Z[V,]-algebras

T L] @ (Z/QZ) — ZWT’]/M[M

(i)

13 ® (242Z) — E2+2Z[Y,),
and
i) Ty o Z[9,)] % (Z[ﬁp]/ﬂpZ[ﬁp]) = p\Il/Hp-p\I/

3 ® (0 + DpZ[Vp]) — fE@n) +0,- ¥,

where f is the isomorphism of Z[0,]-algebras from Proposition 41.

Proof of (i). We define the multiplication maps by m¢ : C — C', ¢ —— 2¢ and the residue class maps
by pc : C — C/Qc, ¢+ ¢+ 2C for C = Z respectively C = Z[9).
By Lemma 24 (i3) we have that Z[1J] is a finitely generated free Z-module. Therefore Z[V] %) — is exact,

cf. Lemma 94, and so the upper row in the following diagram is a right exact sequence of Z[}]-modules.

& (?f Z 13 @ 2z
29 97— 2p9) 0 7 Rl 219)  (%/2z)
2 O 2
2] mz[) Z[9) pz[v] Z[Y) /22[19]
&z 2z =¢-2z

We see that the lower row is also a right exact sequence of Z[¥]-modules. Hence, there exists a unique
Z[Y)-linear map Z[V] ® (Z/QZ) — Z[V] / 27,[9] making the diagram commutative, which is an isomor-
Z

phism. This map is just 7. We see that 71 preserves 1. For &, & € Z[Y] and 21 + 27Z, 20 + 27 € Z/QZ
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we have

71 (&1 ® (21 4 22)) - (&2 ® (22 + 27))) 71 ((£162) ® (2122 + 22)) = E1&22122 + 2Z[V]

= (§121 +2Z[0]) - (§222 +2Z[Y]) = 71(& ® (21 +2Z)) - 11(&2 ® (22 + 2Z)).

Since 7 is additive and every element of Z[J] ® (Z/ 22) is a finite sum of elementary tensors, equation (1)
Z

shows that 7, is multiplicative.

Proof of (ii). We define ny : Z[V)] —) Z[ ], §— Y€ and ng : U — U, ¢ — 0. The residue class
maps we denote by oz : Z[] — /192 , E— E+VZ[Y] and gy 1 ¥ — lI}/G\I/a Y — 1+ 00,

By Lemma 24 (i3) we have that Z[1J] is a finitely generated free Z-module. Therefore Z[J] ® — is exact,
Z

cf. Lemma 94, and so the upper row in the following diagram is a right exact sequence of Z[}]-modules.

! £ in
219 © 219] " 2[9] © 2] e 219) @ (20 /gzp))
flz O f‘Z
W na N ov \11/9\:[17
fE€@n) 0f(§®@n) = f(§®@dn)

where we note that 0f(E®n) = f(1®9)-f(E®n)=f(1®9)-(E®n)) = f(£RIn).

We see that the lower row is also a right exact sequence of Z[¢¥]-modules. Hence, there exists a unique

Z[9]-linear map Z[J ( / VL[ ) — ‘11/9\1, making the diagram commutative, which is an isomor-

phism. This map is Just Ty . Slnce f is a morphism of rings, we see that 75 preserves 1. For & , & € Z[0)
and 1 + 9Z[9], 02 + VZ[Y] € /ﬂz we have

72 ((&1 @ (m + VZ[I))) - (&2 @ (g2 +IZ[I]))) = 72((&1&2) ® (mmne + VZ[Y)))
= f((&&)® (mm) + 0¥ = f(Gom) (Lom)+0¥ = (f(Gan) f(&on)+0v ¢ (2)

(f&r@m)+0¥) - (f(&2@n2) +0¥) = 7o(& @ (m +IZ[I])) - T2(§2 @ (02 + VZ[])) .

Since 75 is additive and every element of Z[J ( / V7D ) is a finite sum of elementary tensors,

equation (2) shows that 7o is multiplicative. O

Theorem 80 Write I := [1,n]. We recall the Z[Y,]-submodule ,$ of the Z[J,]-algebra ,7K

p§l = { (&, (g; gi)ﬂ?) € LYy x yU*2 X Z[Op] : (§)ier =o, V1, 3 =g, 0, Vs =g, (N)icr, £ =2 77}7

cf. Remark 73 and Notation 74.

Then ,$2 is a Z[9,]-subalgebra of ,iK .
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We have the isomorphism of Z[9,]-algebras

Wz, - Z[ﬁp]DQp — pQ

Moreover, we have the injective morphism of Z[V¥,]-algebras

v K¢ — Z[9,] x (Z[9,)272)" x Z[D,)

(€, ((ai)iel (bi)iel>’n) (¢, (CCL: ZZ) L n)-
i€

(Ci)iel ( i)ie[

So altogether, we have the morphisms of Z[Y,]-algebras

W[ p]

Z[9p|D2yp P i L[9,] X (Z19,]77) " X Z[9,] .

~ inj.

L @3
Proof. We have the short exact sequence of abelian groups A < T’ N Z/?Z &) (Z[ﬂ] /192[190 , where
[ =7Z x Z[9)**? x Z; cf. Remark 72 and Notation 68.

By Lemma 24 (i3) we have that Z[V] is a finitely generated free Z-module. Therefore the upper row in
the following diagram is a short exact sequence of Z[¢¥]-modules; cf. Lemma 94. By Remark 76 we get

that the lower row is a short exact sequence of Z[¥]-modules; cf. Notation 74.

Z[9) % A M) Z[9)] % (Z % Z[ﬂ]QXZ % Z) Z[9]®e Z[9)] %} <Z/2Z ® (Z[ﬁ] /ﬁZ[ﬁ])@3>

L.95

L.78— 70 |2 O T
L.79

9) N R Z[Y] x W2*2 x Z[Y] k Z[Y) /22[19] P (‘I'/Q\I,fm
s®<u,<”1 ”2),v>= €® ((u—v) +2Z, (u—m) +IZ[Y],
s 13 + VZ[I), (4 — v) + VZ[J])

O

(&(u—v) +2Z[9], f(€ @ (u—m)) + 6V,
fE@ns) + 0V, f(E@ (ns—v)) +0F)

Il (1)
fE@m) f(E®@n)
(fu, ( > 751}) = ( (gu - Ev) + 2Z[19} ) ((5“)16[ - f(f & 7’1)) + 0V )
fE@ms) fE®m) FE@ ) + 00, (F(€ @) — (€v)ier) + 00 ),
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where in equation (1) in the second entry, we note that

=u€Z
—_———

FE@ w—m)) "= (Gnirr(u—m)Eier = (Onit1(w) —0n_iv1(m))E)ier
= (u€ —opn—iv1(M)€icr = (&w)ier — (On—i+1(Mm)E)icr = (Ew)ier — f(E®@ M),

and similarly for the fourth entry.

Therefore we get the induced isomorphism of Z[¥]-modules

_ ~ w (M u fE@m) f(E@mn2) v
@ g ZPlgA =&, Lol ’(773 m)’ ) — ¢ ’(f(£®773) f(é“®774)>’/E ):

We recall that K = Z[J] x ¥2*2 x Z[J]; cf. Remark 73 and Notation 74.

As embedding of A in I, the map ¢ is not only a morphism of Z-modules, but also a morphism of
Z-algebras ; cf. Remark 69 (i). We apply Lemma 93 to the case (K, L, ¢, A, B) = (Z, Z[Y], ¢, A, T') and
obtain that Z[] ® ¢ is a morphism of Z[J]-algebras. We recall that Z[J] ® ¢ is injective.

Hence we obtain the injective morphism of Z[J]-algebras
g =10 ZW @) ZW] @A — Z[I] x ¥**? x Z[¥] = K,
z

which acts just as g. I.e. we get the commutative diagram

Z{9) © A ? Q
O
g/
X,
whence Q = im(g¢’) is a Z[J]-subalgebra of 7K and g = ¢’ ‘Q is an isomorphism of Z[]-algebras.

Hence we get the isomorphism of Z[¥]-algebras

~

gok : Z[J|Dy —> Q

cf. Remark 77. We have

(gok)@) = glh(z) "L (ro(}ohi)n)
f
f
_ o (faen saey bl )y
"\ fawy) faled)+f1el) ) N6 o+1 )7

-y )0

So wgzpg) := g o k is the asserted isomorphism of Z[1]-algebras.
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We obtain the map v as the composite of the injective morphisms of Z[¢]-algebras

Q s K s z) x (Z[9]22)" x Z[Y]

(ai)ier (bi)ier (ai)ier (bi)ier a; b;
(€, ((q)m (di)M)?n) — (&, <(l : )m) — (&, (ci d})iel,n%

where for 7 we refer to Remark 75.

99



Chapter 5

Overview of dihedral group rings

Summarizing Chapters 3 ("Wedderburn") and 4 ("Group rings of Dg,"), we obtain the following com-

mutative diagram of rings and morphisms of rings.

CDy, - Cx (C22)" xC
QD — Q) * (@) x @,
2| Theorem 80 : Z[9,]Ds, il L0 | - Z[9,) x (Z[9,)2°2)" x Z[9,)
QW) %Qsz < Q(vp) 2 (@ x Q(3,)**? x Q) 2
2
219, & 73, 210y & (2 x 23,12 x 7)
ans, = @ % QW)™ x Q
Theorem 70 : ZD\;I, = oA C Z x Z[ﬂ;]QXQ X7

56



Chapter 6

Presentations via path algebras

Notation 81

N

In this chapter we consider path algebras of the quiver = := (E ° ° F) .
~——
B

We write composition of paths in such a way that e.g. af is a path from E to E.

6.1 Presentation of Z,D, by quiver and relations

Notation 82 We denote by I the (both-sided) ideal of the path algebra Z, = that is generated by the
set { o, 0(aB)a, py, o(Ba)B }, where py, o(X) € Z[X] is the minimal polynomial of 1, over Q.

Using Convention 10 this means

I = < Mﬁp,@(a/ﬁ)a7 lu’ﬁpv@(ﬂa)/g [>Z(p)E ’

Moreover, we denote the residue class of an element { € Z,)= by

E=¢+TlelwE).

Proposition 83 We have the isomorphism of Z,)-algebras

= ~ 2x2
Py Z(p)u/[ — {(u,(ZZ),z)GZ(p)X(Z(p)[ﬁpD x XZ(;D):UEﬁp'U7fEEQ9p0,yE§pZ} :pA(p)

E=FE+1 — (17((1)8)0) =:e
F=F+I— (07(8(1))1) =
a=a+l — (07(8(%)70) =a
vl 00

— I — 0, ,0) =:b
p=p+ ( (19,,0) )

For ,A we refer to Notation 68.

57
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Proof. We have the orthogonal decomposition into idempotents 15, =e + f. (1)

We see that a € eA(,)f and b € fA(,e. So the universal property of the path algebra yields that there
exists a unique Z,)-algebra morphism that maps

2 —_ v w 2x2
P Z(p):. — {(u,(wy>,z)€Z(p)x (Z(p)['ﬂ]) x XZ(p) U=y v, x =y 0, yzﬂz} = A(p)

E s (1,((1)8),0)_6
F s (07(8?),1) =
@ — (o,(gé),o) —a
B— (07(38),0)=b

Using (1) we get the Peirce decomposition of A,

(2) Ap) = eApe® fAg f & fApe@ely)f.

We want to show that 77[; is surjective. By (2) it suffices to show that 1/; is surjective on each direct

summand. We have

(Sl) eA(p)e =

fon
(52)  fAwf = {(0,<
{oo (
{o (53

2x2
, O S Z(p Z(p) [19]) x X Z(p) U=y ’U}
2X2
6 Z (p) X Z(p)[ﬁ]) * X Z(p) LY =y Z}
(83) fA(p)e =

2x2
),0 GZ(p)X Z(p)[ﬁ]) % XZ(p) :leg()}

(S4)  eAgf = XZ(p)}

We claim that

(C1)  ehgye = (e (ab)!, (ab)?, ..., (ab)"", (ab)"),

(C2)  fApf = (f, (ba)t, (ba)?, ..., (ba)""L, (ba)" V2,

(C3)  fAge = (b, blab)l, b(ab)?, ..., bab)"2, b(ab)" "),
(C4)  ehpyf = (a,a(ba)l, a(ba)?, ..., a(ba)"~2, a(ba)"~1)

Z(p)

Once this is shown, we have that 1& is surjective since each of the listed Z,-linear generators is in the

image of ’Q/AJ .

Z(p)[Y] has the Z,)-linear basis (9% : k € [0,n —1]); cf. Lemma 24 (i3). So 9Z,)[9] has the Z,)-linear
basis (9% : k € [1,n]). (3)

d (C1). We have

(4) a-b=(0, (gg) 0), whence (ab)* = (0, (790'“ 8) 0) for k € [1,7].
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Considering (S1) we therefore see that the right side in (C1) is contained in the left.
Suppose given (u, (8 8), 0) € eApye, so that u =y v; cf. (S1). By subtraction of a Z,)-multiple of e

we can set u to 0, whence v =y 0. Using (3) and (4) we can set v to 0, whence the claim (C1) is shown.

Ad (C2). We have

(@) boa=(0, <83> 0), whence (ba)* = (0, <8ﬂok) 0) for k € [1,n],
and so the proof is analogous to the proof of (C1).

Ad (C3). By (4) we get

(5) b(ab)k:(0,<§k0+1 8>,O)fork€[0,n—1].

Considering (S3) we therefore see that the right side in (C3) is contained in the left.

Suppose given (0, (2 8), 0) € fApe, so that x =y 0; cf. (S3). Using (3) and (5) we can set = to 0,

whence the claim (C3) is shown.

Ad (C4). By (4') we get

(5" a(ba)k:(0,<8%k>70)forkE[O,n—l}.

Suppose given (0, <8 16)), 0) € fApe, so that w € Z,[V]; cf. (S4). Using (3) and (5') we can set w to

0, whence the claim (C4) is shown.

So we have that ) is surjective.

! .
We want to show that I C kery. We write

n—1
(6) poo(X) = X"+ ;X' € Z[X],
j=0

cf. Lemma 24 (i2).

Then we have

¥ (no0(ab) - a) = @(((aﬁ)“rnzl cj(aﬁ)j) .a>

5=0
_ ((ab)uj;:cj(ab)j) a = (<ab)"+j§1cj(ab)ﬂ) ‘atco-a
@ ((0,(%”8),0)+;§cj~(o,<%j8 ,0))~(0,<8(1)>,0)+c0~(0,(8(1)),0)
- (0,<8190n),0)+j§cj.(0,(S%j),0)+co~(o,(86),0)

0 9 0 0
_ (o,(o “”’%()>,0):(0,<0 0),0):0%).

Similarly, we have that v (1o,0(Ba)B) = 04, - Therefore we have that I C ker(qﬁ) ; cf. Notation 82.
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So there exists a unique Z,)-algebra morphism that maps

= 2x2
P o Z(p)ﬁ/] — {(“7(::1;)72)62(17) X (Z(p)[ﬂ]) x X Lpy + u=9v, =90, y=y z} = A

E+1 — (1,(58),0) — e
Fere 0, (§0) 0 =
a+1 —s (0,(8(1)),0) —a
BT —s (0,(%8),0) —

Ile. pop = 1&, where p denotes the residue class map p : Z)E — Z(p)E/I : kK — K+ I. Since 1/3 is
surjective, so is 1.

For k € Z>o we denote by Gy the Z,)-linear span of residue classes of paths in = of length less than or

equal to k, i.e.

Gy = (E+1,F+1)

Zep) >
Gi = (E+I,F+I,a+I,8+1)z, ,
(7) Gy = (E+I,F+1,a+1,B+1,a8+1,8a+1)s,
Gy = (E+I1,F+1,a+1,+1,af+1,Ba+1,apa+1,pBaf+1)z, ,

et cetera. Note that the number of Z,)-linear generators given for G is 2s+2 for s € Z>¢ . In particular,
for G, this number equals 2 - 2n + 2 = 2p.

Since G, C G, for r < s we get that

(8) Lw=/r = | Gk

k>0

For s > n we have

n—1 n—1
(af)’a+I = (a Z (af)Ya | +I and (Ba)*B+1 = (B Z (Ba)IB | +1,
7=0 7=0
€Gas—1 CGas €Gas—1 CGas

cf. Notation 82 and (6). Therefore we have Gasy1 C Gog for s > n.

For s > n we have

n—1 n—1
(@B) ST+ 1 = (ap)* ™| - Z ci(aBYa |B+1 and (Ba)t' +1 = (Ba)*~ Z cj(Ba) B la+1,
=0 j=0
EGQS §G25+1 EGZ:. gG2a+1

cf. Notation 82 and (6). Therefore we have Gasyo C Gaosy1 for s > n.
Together this shows that Gy = Ga,, for t > 2n, so that (8) becomes Z(10)5/] = Gy, .

So there exists a surjective Z,)-linear map ¢ : (Z(p))“p — Z(p)E/I, which maps the standard basis of
(Z(p))*? to the Z,)-linear generating tuple of Gz, = Z(p)E/] mentioned above.



Presentation of Z, D2, by quiver and relations

Note that rkz, (A(,)) = kg, (Z ) D2p) = 2p; cf. Corollary 71.

We have surjective Z,)-linear maps

2 ® = P
(Z(p))X P Trj> Z(P) /] T A(p)
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The composite 1 o ¢ is bijective, since rkz,  (ker(y o @) = rkz, ((Z(p))**?) — rkz,,,(Ap)) = 2p — 2p = 0.

So ¢ is injective, hence bijective. Since 1) o ¢ and ¢ are bijective, so is ).

Altogether 1) is the asserted isomorphism of Z,)-algebras, which we rename to Py := 1.

Proposition 84 We have the isomorphism of Z,)-algebras

Py LwE/p Zp)Day
_ 122!
E=FE+1 3 (k1 +y) = ¢
k=0
1 “—
7 k .k _.
F=F+1 2(1—y—2(—1)$(1+y)> = f
k=1
p—2
a=a+l — —a'—y-— (-Dkzk(1+y) = o
k=1
p—1
B=pB+1 > (DkF+y) =V,
k=1

where x and y denote the generators of Do, given in Definition 54. For the factor algebra of the path

algebra, cf. Notations 81, 82.

Proof. By Corollary 71 we have the isomorphism of Z,)-algebras

~

Wz,  LpDyp — Ay

Y. qa-d > Y qa-wz(d),
déDs, déDs,

where qq € Zp,) for d € Dy, . For wz we refer to Theorem 70.

By Proposition 83 we have the isomorphism of Z,)-algebras P; : Z(p)E/] = A(p) - Therefore it suffices

to show that

(Wl oPE+D) =wy! () = ¢ = wy, () =e
Wzl oP)F+D) =wz) ()2 f = wg ()£ y
(Wil oP)la+1) =wp! (a) =d = wy, () =a
Wil oP)(B+I) = wyl (B) 2V = wy, (V) £,

because then wz’(; o Py is the asserted isomorphism of Z,)-algebras P .
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To show this we make two preparations. We have

p—1 p—1 p—1 p—1 p—1
DR = Y EDRE X DR = (DR (DRt
k=1 k=1 k=1 k=1 k=1 (2)
subst. P—1 p=1 ;o p=1 p=1 ;o
= (DR X ()R = (DR - X ()R =0,
k'=p—k k=1 k=1 k=1 k=1
and
pz—:l(_l)k; (<k+1 _ Ck} + C—(k-ﬁ‘l) _ C—k?)
k=0
_ = N R e R —(k+1) (3)
DN+ ) + B (DR (¢ 4 )
(2) and subst. P ’ v o (_) .
K=kl _2_k’2::1(_1)k (Ck +e k) = 22 =
We have
p—1 p—1
wZ(P)(el) = wZ(p)(% k_o(l)kxk(1+y)> = %k_o(fl)k .wZ(p)(z)k 'wZ(p)(1+y)
—1 _
= %Z_O(—l)’“(LM{“,l)-((LEQ, )+ (1,N1,-1)) = %’; 1)k - (1, MF,1) - (2,Es + Ny, 0)
—1 k —k 0
= %Z:O(_l)k (27M116(E2+N1)a0) F;Z:ij 3 Z <<k+1 le_’_zg(k-ﬁ—l) _C—k 0) 70)
VSR (e 0
- L A 02 a(50)o =
% (—1)k (Ck+1 kg ¢ (k) C—k) 0 3)
k=0

wz,, (f) = wz, <§ (1 —y- Zz::i(l)kzk(l + y))) = wz,, (é (1 —y—2¢ + (-1)%2°(1 + y)))

= (1= €) = 1) =y () = w(51)n-a(g)0

p—2
W2 (p) () = WZp) (_zl —y— > (=1)Fak(1+ y)>
wz (27t =y = 2¢/ + (=1)°2°(1 +y) + (-1)P P (1 +y))
wz(m(:p_ly +1-2¢) = Wz, (z)7! wz, (Y) +wz, (1 —2€")

= (L,M7N1)- (LN, 1) +wg, (1—2¢)

R.57 (iii) 9+1 —1 1 0

= (1,((1) _}),—1)+(—1,<_é ?),1) = (0,(83),0) -,
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and
R k., k 0,.0
Wz, (0") = wZ(p)< kzl(fl) x® (14 y)> = wz,, (=2¢' + (=1)"2°(1 + y))
Wz, (Y) +wz,, (1 —2¢) = (1, N1,-1) +wz, (1 —2¢)

D.56 (17<119 _‘1)),_1)+(_1,<‘é $>,1) - (o,(fjg),o) ~ b,

Hence all equations in (1) hold. O

Proposition 85 We have the isomorphism of Z,)-algebras

Pg : Z(p)Dgp ;> Z(P)E/I
r +— E+F+a+p+Ba,
Y — E—F+E7

where x and y denote the generators of Do, given in Definition 54. For the factor algebra of the path
algebra, cf. Notations 81, 82.
Proof. By Corollary 71 we have the isomorphism of Z,)-algebras

Wi,y o Lp)Dap - Ay

> qa-d — Y qa-wz(d),
deDay, d€Day,

where ¢4 € Zp) for d € Dy, . For wz we refer to Theorem 70.

By Proposition 83 we have the isomorphism of Z,)-algebras P; : L= /T — Ay . Therefore it suffices
to show that

Pfl(wz(p)(x))ZPfl(wZ(x));E—I—F—I—E—!-B—}— a < PiI(E+F+a+B+pBa) = wz(z)

P (wey, () = Pri(wa(y) = E-F+5 = PI(E-F+8) = wy),

because then P, Lo Wz, is the asserted isomorphism of Z(p)—algebras Ps .

We have
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and

Remark 86 The isomorphisms of Z,)-algebras P2 and P invert each other, cf. Propositions 84, 85.

Proof.
By construction, we have Py = wz_(i) oP; and P35 = 731_1 owg,, , cf. pfs. of Propositions 84, 85. O
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6.2 Presentation of [,D,, by quiver and relations

Lemma 87 We consider the minimal polynomial 9, o(X) € Z[X] of ¥, over Q.

We have
pe,(X) =, X" in Z[X].

In particular, py, o(X) is Eisenstein at p, cf. Lemma 24 (iv).

Proof. We write

n—1

o.o(X) = X"+ | Y a; X7 | +p € Z[X] C Zg,)[X],
j=1
cf. Lemma 24 (iv). So we have
n—1 )
(1) ZipW) 3 poo@) = 9"+ | Y a7 | +p = 0.
j=1

By Remark 46 (iii, iv) we have that Z,[] is a discrete valuation ring and its maximal ideal is generated
by 9. So we have a valuation vy : Z,)[J] \ {0} — Z>¢ as in Remark 130 at our disposal.

We assume that there exists i € [1,n — 1] with p{a; in Z, i.e. pfa; in Z,) .
Let 7 be minimal with this property. ()
Then we have that a; € U(Z(p)) € U(Z)[¥]), so that

By Lemma 29 we have that there exists e € U(Z[J]) C U(Z,)[9]) with p = ed” (%)

By () we obtain for j € [1,7 — 1] that < € Z), so that

. a; a; *k a;
Vﬁ(ajﬁ]) = Vﬁ(aj)+j = Vy (p;j)—k] = V,9(p)+V19 (;])"_] (:) Vﬁ(Cﬁ”)—l—Vﬂ(;j)—‘rj 2 n—f—j 2 n>1.

For j € [i+1,n — 1] we have
Vg(ajﬁj) > v§(19j) =3j>1.

Hence we obtain on the one hand

vo(0" 4 a4+ @) = v (9" + a9 + a9 a9 ) + e =

v19( )>i vy )::

On the other hand we have

v (0" + -+ a0 4+ ) w vy(—p) () vy(—ed") = n.

So we get ¢ = n in contradiction to i € [1,n — 1]. O

Notation 88 We denote by J the (both-sided) ideal of the path algebra F,= that is generated by the
set { (aB)"a, (Ba)™p } .

Using Convention 10 this means

J = <(af)"a, (Ba)"B >

p=
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Moreover, we denote the residue class of an element ¢ € F,= by

E::erJEFpE/J.

We recover the following well-known description of F,Ds), .

Lemma 89 We have the isomorphism of F,-algebras

Py F,Dy = B2/

Its inverse map is given by

P BE/, F,Da,

i
L

el
Il
&
+
<
l

(n+1) ) (=DFa*(1+y)

k=0
p—1

F=F+J (n+1)<1—y— Z (—1)kxk(1+y)>
k=1
p—2

a=a+J — —z 7 —y— > (—1)FazF(14y)
k=1

_ p—1

B=B+J - (=DFaF(14y).

B
I
—

Here x and y denote the generators of Doy, given in Definition 54. For the factor algebra of the path
algebra cf. Notations 81, 88.

Proof. We denote the residue class map by r : Z,) — Z(p)/pz(p) ;W w + pZyy . By Corollary 127
we therefore obtain the surjective morphism of rings ¢ := o=t or: Zp) — F,. We have
1

o~
~~

180.

ker(y) = ker( or) = ker(r) = pZy, .

We apply Lemma 105 to the case (R, S, p,a) = (Z¢, Fy, @, pZ,) ) and get the surjective morphism of

rings
1/) : Z(p) = — FpE
D gmm > lam)m,
me&Path(E) mePath(E)

where ¢, € Z,) , and g, = 0 for almost all m € Path(Z).

The kernel of 1 is given as ker(y) = pZ,)(Zp)E) = pLp)E.-
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We have

N.82

v U(QpglaB)as paoBe)B B, ) U= D u(koe(aB)a), vinna(BaB) By
L8T z/;((aﬁ) a+p- Z be(af)k ) (50‘ )*B+p- Z bi(Ba)* ) [>Fp5

= <Dulasyra) +p-o( T bula)a) () +p-o(T wu(a)s) B

= Qu(@dra), v((Ba)p) by o = Q@) e, (BB TS,

where b, € Z for k € [0,n — 1].

We apply Lemma 106 to the case (A, B,1,v,K) = (ZyZE, F,Z, 1,1, pZ,)=) and obtain the short
exact sequence of abelian groups

ker(@) = PE@E+D)/ — ZuE/ 5 BE/; O RE/
a+1 —  a+I — Yla)+J,
Il I
a ¥(a)

where ¢ is even a morphism of rings.

Since p € ker(¢) = (2w = +1) /1, we have p(Zw=/) € WLwE+1)/p.

Suppose given p& +i+ I € (PZw)E+1) /1 where £ € Z,,)Z and i € I.

Then we have p& +i+1=pE+ 1 =p(E+1) € p(Z(P)E/[>, whence (PZwE+1)/; C p(Z(p)E/]).
So we have (PZ()E + I)/I = p(Z(p)E/I) ()

We apply Lemma 103 to the case (R, S,G, p,a) = (Zy) , Fp, Doy, ¢, pZ) ) and obtain the short exact
sequence of abelian groups

PZp)(Zp)D2p) = PZp)D2p  —  Z)Dap - F,Dap

Srgd  — drgd — > p(rg)d,
d€Dayy, d€Dgyy, deDgyy,

where ¢ is even a morphism of rings.
We consider the isomorphisms of Z,-algebras
P Z(P)E/[ = Z(p)Dgp and 7Ps : Z(p)Dgp AN Z(P)E/I,

cf. Propositions 84, 85. We have

Py (P(Z<p)5/l)> =p-Po(20Z/1) = pLyDap and Py(pLiyDay) = p- Pa(ZiDay) = p(200Z/1).

So the restrictions

- PL(p)Dap (Z = ) ~
P= pEmE/ D) L ®=/1) = PlwDa.
and
Zipy 2/ ~ =
Pé = Pg P =/1) : pZ(p)Dgp — p(Z(P)“‘/I),
pZ(p)D2p
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are isomorphisms of abelian groups. Since P, and P35 invert each other, cf. Remark 86, the same applies
to P4 and Py .

Altogether, the rows in the following commutative diagram are short exact sequences of abelian groups

PZp)Dap Z(p)Dap ud FpDap

Py 2| P Q Pl 2| P

(pZ(p)E+I)/[ pay p(Z(p)E/]> c Z(p)E/_r d ]FpE/J

So there exists a unique morphism of abelian groups Py : F,Dgp, — Fp,2 / J making the diagram commu-
tative, which is an isomorphism. Moreover, applying Remark 108 to the case (4, B, A", B, o, f,¢',g9) =
(Z(p)Dap , FyDayp, Z(p)E/I, IFPE/J, @, Ps, ¢, Py) we get that P, is an isomorphism of rings.

We see that plF,Dy, = 0 and p(FpE/J) = 0. So we get by Remark 107 that P, is an isomorphism of
[F,-algebras.

Since @(x) =z and $(y) = y, we obtain

Pa(z) = Pa(@(x) = ¢(Ps(x)) = o(E+F+a

4
=
+
5
Q

|
+
2l
+
=
+
=
5

= O(B) +¢(F) +9(a) + ¥(B) + ¢(Ba) = E+
and

Pily) = Pal@dy) = o(Ps(y) = S(E—F+B)

= O(BE) - o(F)+9(B) = E-F+5.

We denote Ps := P; ' : FPE/J — F,Dop.

We have ¢(E) = E, Y(F) = F, ¢(a) = a and ¢ () = f, so that ¢(E) =E, ¢(F) = F, ¢(a) = & and
¢(B) = B.
Wehave 2-(n+1)=p+1=,1,ie. (n+1)=,27". So
(0 o(3) =) = ) = o2 ) = () + ) T 0,
Hence we have
Ps(E) = Ps(6(E)) = a(Po(E)) ™2 @(i S (Rt +y))
k=0
= o(3) TRy 2 ey Tkt
k=0 k=0
Ps(F) = Ps(o(F)) = ¢(P:(F)) ™= w(é <1 —y- Z_j( k2 (1 +y)>)
k=1



Presentation of F,D, by quiver and relations

p—2

Ps(a) = Ps(¢@) = ¢(Pa(@) = @(—x—l—y— <—1)’fx’f<1+y>)
k=1
= —z7l—y—) (-DrF(1+y),
k=1
and
P(3) = Ps(6(F)) = o(Pa(F)) 2 @(— 7( 1)‘“:c’“<1+y>) = Sttt y).
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Appendix A

Algebraic facts

A.1 Compatibilities for tensor products
Lemma 90 Let K be a commutative ring and A, B be K-algebras.
Then A ® B becomes a ring via the multiplication

K

u : A®B x A®B — A®B
K K K

(mM®& , 12R&L) — (M&) (L&) = (mn) @ (§é).
The identity element is lagp = 1la®@1p.
K

Proof. In the sequel, all occurring sums are finite. Suppose given (a,b) € A x B. A standard calculation
shows that the map

l

g(a,b) : AxB A%B

(¢,d) — ac®bd

is K-bilinear. Therefore, the map

9ab) A%B — A(IX()B

c®d +—— ac®bd

is well-defined and Z-linear.

Suppose given { =) ¢; ® d; € A® B. Again a standard calculation shows that the map
j K
fe : AxB — A®B
K

(a7b) — g(a,b)(ﬁ)

is K-bilinear. Therefore, the map
fg : A®B — A®B
K K
a®b — gap(§) = ac; ®bd;
j
is well-defined and Z-linear.
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Hence we obtain for n = > a; ® b; € A® B that
i K
) = fe <Zai®bi> ng (ai ®b;) ZZalc]@)bd

Thus the stated multiplication

wo: A®B X A®B — A®B
K K K
(Z%@bi ) ch®dj) — n-& —fg Zalcj®bdj,
=n %
or on elementary tensors (a®b , c®d) > (a®b) (c®d)=ac®bd

is well-defined.
We have

(la®1p)- (Zar@@b) ZlA ar @ 1p b, —Zar 1Aa®b, -1 = (Zaﬂgb) (la®1p),

and
(¥ar®br> : ((Z:CS@dS) : (Z:ut@vt)) = (Zar®br> : (%t:csut@dsvt)

Z arcsug @ brdsvy

r,8,t

and similarly in other brackets.

Further we have

(Zar ®br>~<ch ®ds + Zut ®Ut> = Zarcs ® brds + Zarut ® brvy
- s t

7,8 r,t

(erar ®br>-(;cs ®ds>+<;ar ®br>~<zt:ut ®vt> :

and similarly on the other side. 0

Lemma 91 Let K be a commutative ring and (B, 3), (L, ) be K-algebras, where L is commutative.
Further, let (A,4) be an L-algebra.  ( Note that (A,v o @) is a K-algebra. )

Then we have

(i) A® B becomes an L-algebra via
K

A — (A 1a®15.
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Moreover, we have the two special cases

(ii) L =K and ¢ =idg :

Then A ® B becomes a K-algebra via
K

v : K — A®B
K

Kk — Y(k)-1a®1p.

(iii) Further, if A is commutative, then we can set L = A and ¢ =idy :

Then A ® B becomes an A-algebra via
K

Proof of (i).

p(A1 + Az2)

and

p(A1 - Az)

n : A — AQ®B
K

a +—> a®1lp.

By Lemma 90 we know that A ® B is a ring. For A\ , A2 € L we have
K

= YA+ ) 1a®1p = (W) +v(X2)) - 1a®1p

= (M) -1a+9v(A2) - 14) @1 = ¥(M)-1a@1p+9Y(A2) - 1a®@1p = p(A1) + p(A2),

1/1()\1')\2)'1A®1B = (1/)()\1)1/1()\2))1A®13

(A1) - 1a-¥(X2) - 14)®@1p-1p = (¥(A1) - 14 @1B) - (Y(A2) - 14 ®1p) = p(A1) - p(A2) .

Further we have

p(lp) = Y1) 1a®1p = 1414 ®1p = 1A§B-

Therefore p is a morphism of rings.

!
Now we finally prove that p(L) CZ(A® B). Let a € A, b € B and A € L. Then we have
K

p(A) - (a@b)

€Z(A
~
(P(A) - 1a®1p)-(a®b) = PA) la-a®1lp-b

N2

= a-yp(AN)-1a@b-1p = (a®b)-((¥(V)-1a®1p)) = (a@b)-p(}).

And so, A ® B becomes an L-algebra.
K

The items (i) and (iii) follow. O

Lemma 92 Let K, S and T be commutative rings.

Let sMy N sMi L) sMj; be S-K -linear maps of S-K -bimodules.

Let g Nt AN KNQI“ AN KN¥ be K-T-linear maps of K-T-bimodules.
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(i) We have an S-T-linear map
f@g : sMg (I%KNT — sMj ® kN7
mo® n o f(m) ® g(n).

We write M @ g :=1idyy @ g and f @ N := f@idy .

(i) We have (f'@g') o (f®@g) = ((f" o f)® (g ©g)).

Further we have idy; ® idy = idyen -
K

Proof. This is well-known and can be shown along the lines of [Lang 02, Ch. XVI, §1, pp. 605/606]. O

Lemma 93 Let K C L be an extension of commutative rings. Let ¢ : A — B be a morphism of
K-algebras.

Then we have the morphism of L-algebras
Ly : L®A — L®B
K K
A®a — A® ya),

cf. Lemma 91 (iii).

Proof. By Lemma 92 we have that L ® ¢ is a morphism of L-modules.
Let A1 ®a1, Ao ®as € L®A. Then we have
K

(Lee)((M®a)- (A2 ®a2)) = (L@ p) (M) ® (a1az2)) = (A1A2) @ p(aiaz)
= (Mh2) @ (p(ar)p(az)) = (A ® p(ar)) - (A2 ® p(az)) (1)
= (Lep) (M @) (Lep)(h@az)),
and

(2) (L®¢)(1L§A) = (LRe)(1r®14) =11 @¢p(1x) = 1, @15 = lios-

Since L ® ¢ is additive and every element of L ® A is a finite sum of elementary tensors, equation (1)
K

shows that L ® ¢ is multiplicative.

This together with (2) shows that L ® ¢ is a morphism of rings. O

Lemma 94 Let K, S and T be commutative rings.

Let M be an S-K-module, such that M is finitely generated free over K; cf. Convention 13.
Suppose given a short exact sequence N’ Iy N 4 N of K-T-bimodules.

Then we have a short exact sequence of S-T-bimodules

M®j M
MeN 2% yeN 2% MeN”,
K K K

i.e. M ® — is an exact functor.
K
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Proof. We have that K is a flat K-module; cf. [Lang 02, Ch. XVI, §3, p. 613, Proposition 3.1 (i)].
Therefore the finitely generated free K-module M ~ K®% is also a flat K-module, where s € Z> ; cf.
[Lang 02, Ch. XVI, §3, p. 613, Proposition 3.1 (ii)]. So the statement follows by [Lang 02, Ch. XVI, §3,
p. 613, F 2. O

Lemma 95
Let K be a commutative ring and m € Z>1 . Further, let X and Y; be K-modules fori € [1,m] =:1.

Then we have an isomorphism of Z-modules

X <@m> = e (Xav)
K i€l i€l K
[
TR (Yi)ier — (r @ yi)ier
P
x ® (0,...,0, ys,0,...,0) +— (0,...,0, © ® ys ,0,...,0) forsel.
poTs.s poTs.s

Proof. We denote the projection onto the s-th direct summand by 75 : @ Y; — Y5, (yi)ier — ys and
i€l
pos. s

the inclusion by ¢5 : Yy — @Y, ys — (0,...,0, yZ,O,...,O), where s € I. Hence we get
iel

(X ©m)(z® (yi)icr))jer = (€ ®y;)jer = (x @ yi)ier = ¢z @ (yi)ier) ,
so that ¢ is well-defined and Z-linear; cf. Lemma 92 (7).

We consider the maps

pos. s

Vs =X Qs : X%YS—>X§(€B1Y1> ,x®ys'—>x®(0,...,0,gjs,0,...,0) for s € I.
ic

So we get that

v B (XeY) — X@(@Yi)
i€l K K el

(i ® Yi)ier — ZI%(% ® Ys)
sE

is also well-defined and Z-linear.
pos. s

Further we have for  ® (y;)ic; € X ® < @Yi> and (0,...,0,zéys,0,...,0) eEd(XRY;)forsel
K \ i€l i€l K
(Yoo)(z® (yi)ier) = Y(d(x® (Yi)ier)) = V(= @ yi)ier)
(1)
= Z"/}s(x@ys) = Zx®(07-"707 ysaow--uo) = $®(yi)iela
sel sel +
pos. s

and

pos. s pos. s

(G0 t)((0,....0,2@ys,0,...,0)) = S((0,...,0,2@ys,0,...,0)))
(2)
= ¢Ws(z®ys)) = ola®(0,...,0,y5,0,...,0)) = (0,...,0,2®ys,0,...,0).
T T

pos. s pos. s
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Since ¢ and 1 are additive and every element of X @ | @Y | respectively & (X ® Y;) is a finite sum of
K \iel =

elements of the form as in (1) respectively (2), equations (1) and (2) show that

1 o ¢ is the identity on X ® ( @ Y;) and @ o1 is the identity on & (X ®Y;) .
K \iel el K

Therefore ¢ is bijective. O

Lemma 96 Let K be a commutative ring and (A, «), (B, ), (C,7) be K-algebras.

Then we have an isomorphism of K-algebras

g : A (Bx(C) — A®BxA®C
K K K

a®(b,c) — (a® b, a®c).

Further, if A is commutative, g is an isomorphism of A-algebras.

Proof. By Lemma 95 we know that g is an isomorphism of Z-modules.

For ay,as € A, b1 ,by € B and ¢ ,co € C' we have

9((a1 @ (b1,c1)) - (a2 @ (b2, ¢c2))) = glaraz @ (b1, c1) - (ba,c2)) = glaraz @ (bibz,cic2))
= (a1a2 @ biba,a102 ® c1c2) = ((a1 ®b1) - (a2 @ b2), (a1 ® 1) - (a2 ® ¢2)) (1)

= (@m®b,a1®c1) (a2 ®@b2,a2®ca) = g((a1 ® (b1,c1))) - g((az @ (ba,c2))),

(2) 9(1e1,1)=(1®1L181) = lagpxagc-

Since ¢ is additive and every element of A® (B x C) is a finite sum of elementary tensors of the form as
K

in (1), equation (1) shows that g is multiplicative. This together with (2) shows that g is an isomorphism

of rings.

Note that A ® (B x C), together with K — A® (B x C), k — a(k) ® (1,1), is a K-algebra; cf.
K K

Lemma 91 (i7). So we have the commutative diagram

of A® (BxC) *>A®B><A®C k) ®@1,a(k)®@1)

N AN /

Thus, g is a isomorphism of K-algebras.

Now let A be commutative.
Note that A ® (B x (), together with A — A® (Bx (C),a — a® (1,1), is an A-algebra; cf.
K K

Lemma 91 (ii7). So we have the commutative diagram

A® BxC*>A®B><A<§>C (a®@1,a®1)

\ ~NeS S

Therefore g is an isomorphism of A-algebras. |
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Remark 97 Let (B, () be a K-algebra and m € Z>1 . Then B™*™ becomes a K-algebra together with
Bm : K —> Bmxm

A — BN -E,.

Proof. Since (8 is a morphism of rings it is seen that 3, is also a morphism of rings. Further we have
Pm(K) CZ(B™*™). -

Lemma 98 Let K be a commutative ring and (A, o), (B, ) be K-algebras with A commutative. Further,
let m € Zzl .

Then we have an isomorphism of A-algebras

mXm
hoooAw (B (A®B)
K
a ® (bij)ijem = (@®@bij)ijem)-

Proof. We consider the map

. mXm

h : A x (B™*™) — <A®B>

K

(a , (bijlijenm) = (a®bij)ijcim -

A standard calculation shows that h is K-bilinear. Therefore h is well-defined and Z-linear.

We have

(1) h(la®En) = (L4 ® 15 - 0ij)ijenm = Lagmmm .
Let a;,az € A and (b; ;) jeq,m] » (Cij)ijen,m) € B™*™. Then we obtain

h((ar ® (bij)ijenm) - (a2 @ (cig)ijenm)) = hlaraz @ ((big)ijen,m - (¢ig)ijenm))

h <a1a2 &® ( Z bk - CkJ') ) = (alag ® Z bk - CkJ')
k=1 i,j€[1,m] k=1 i,j€[1,m]

( Yo aras @by - Ck,j) ( Yo (a1 ®big) - (a2 ® Ck,j))
k=1 i,j€[1,m] k=1 i,5€[1,m]

= (a1 @ b;j)ijertm - (a2 @ ¢ij)ijenm = hlar @ (big)ijepm)) - ka2 @ (¢ij)ijepm) -

Since h is additive and every element of A ® (B™*™) is a finite sum of elementary tensors of the form as
K

in (2), equation (2) shows that h is multiplicative. This together with (1) shows that A is a morphism of

rings.
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Further we have the commutative diagram of isomorphisms of abelian groups

a® (bi,j)i,jeu,m] [ (a® bi,j)i,je[l,m]

a®(b1,1,...,b1,m,... | (a®b1,17--~7a®b1,m7~'-
..,bm’l,...,bm’m) ...,a®bm,1,...,a®bm’m)

Therefore h is an isomorphism of rings.

Recall that A®(B™*™), together with A — AQ(B™*™) | a — a®E,, , is an A-algebra; cf. Remark 97,
K K

mXxXm mXm
Lemma 91 (74). Recall that (A ® B) , together with A — (A ® B) ,ar— (a®1)-E,,,is an
K K

A-algebra; cf. Lemma 91 (i), Remark 97. So we have the commutative diagram

mXm
a®E,, A@(Bmxm)$(,4®3) (a®1)-Ey,
K K
\ \ ° /
a A a
Therefore h is an isomorphism of A-algebras. O

Lemma 99 Let ¢ : K — L be a morphism of commutative rings and G be a finite group.

Then we have the isomorphism of L-algebras

~

f L (I% KG — LG
A® Y Rgg = D A-p(rg)g
geG geG
Proof. First we consider the map
f: Lx KG — LG

(A s Zorg) — X A-eln)g.

geG geqG
We see that f is additive in the first component. Using the additivity of ¢, we get that f is additive in

the second component.

Further we get for A€ L, k € K and ) ky9 € KG that
geG

H(om 5 mas)) = (3900, 5 m00)

geG geG

> A (k) - p(kg)g
geG

S Apliong = F(0 S nmag)) = F(Ar X rag)).-

geG geG geG

Thus f is K-bilinear and consequently f is well-defined and Z-linear.
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For A1, € L and g1, g2 € G we have

A ®g1) (A®g2)) = f(MA2®g192) = M- A2 9(lx)-91-92 = A1+ A2- g1+ 92
= AMgi-Ag2 = Acop(lg) g1 A o(lx) g2 = f(A®ag)  [(A2®g2).
Since f is additive and every element of L ® K G is a finite sum of tensors of the form as in (1), equation
K

(1) shows that f is multiplicative. Further we have

fle®1lke) = f(lr ® 1k -1g) = 11 - o(1k) - 1g = 1.
So f is a morphism of rings.

We have the commutative diagram of isomorphisms of abelian groups

A® D Fggi > A-w(kg)g
geG geG

Lo KG LG
K
2 O 2

BIG|
L KOG > (L ®K> — > 18lG|
54 L.95 %

A® (Hg)geG 5 ()‘ ® Hg)gEG i ()‘ ’ SO(K’!J»!JEG

Therefore f is an isomorphism of rings.

Recall that L % KG@G, together with L — L (I% KG,\— A®1, is an L-algebra; cf. Lemma 91 (iii).

Therefore we have the following commutative diagram

Aol L& KG—— LG A1
\ \ o / /
A L A
So we get that f is an isomorphism of L-algebras. O

Lemma 100 Let ¢ : K — L be a morphism of commutative rings and V be a K-module.
Further, let s € Z>1 and (v1, ..., vs) be a K-basis of V; c¢f. Convention 13.

Then we have

(i) The tuple (1®@wv1, ..., 1®vs) is an L-basis of LRV .
K

(i1) Further, if @ is injective, then the map
iV — LRV
K
v — 1®v 1is injective.

Moreover, if V is a K-algebra, we get that j is an injective morphism of K-algebras.
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Proof of (i). We obtain the asserted isomorphism of L-modules f’ : L®* =5 L ® V as composite of the
K

L-linear isomorphisms given in the following diagram

()\1,...,)\8)! ()\1@1,...,/\5(81)! ;)\Z—Q@(&,j)je[l,s]

bs
L& ——— (L ® K) L® (K%
K K

cf. C.13

Proof of (ii). We have the commutative diagram

(Ki)ie(1,s | (p(Ki))ie,s]

inj.
K®s ————= [©s

, f. pf.
TZ O Zlf Akl ()

V——LeV
J K

V= KU} 1®v,

where in () we remark that
mult. of K on L
f/((@(ﬁi))ie[l,s]) = ; p(ri) @v; = )

K3

~L S S
1" ki®u = D 1QKY = 1® > Ky, = 1Qw.
i=1 i=1 i=1

Therefore j is injective.
Now let V be a K-algebra. In this case, we see that j is multiplicative ; cf. Lemma 90.

Further we have the commutative diagram

/J_\1L®K.1V

k- ly %4 Lgv 1||1
k-1lp &1y
O
K K K
Therefore j is an injective morphism of K-algebras. [l

Lemma 101 Let S be a commutative ring. Let R C S be a subring. Suppose that for all s € S, there
exists r € RNU(S) with rs € R. Furthermore, let A, B be S-algebras with A commutative.
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Then we have the isomorphisms of A-algebras

A®B = A® B
S R

ds

a ® b a ® b

!

a®bd@|a®b.

Proof. A standard calculation shows that dg is well-defined and Z-linear. We see that the map
ds : AxB — A®B
R

(a,b) — a®b
is additive in both components.

Let a € A, b€ B and s € S. Then there exists r € RNU(S) with rs € R. Note that r~! € S. Therefore
we obtain

ds((a-s,b)) = a-s®b = a-rlrs®b = ri®rs-b
= a-rlresb = a®s-b = dg((a,s-b)).
Thus dg is S-bilinear. Therefore dg is well-defined and Z-linear.
Let a1 ,as € A and by ,by € B. Then we have
n ds((a1 ®b1) - (a2 ® b2)) = ds((a1a2) ® (5152)) = a1a2 ®biby
= ((11 ®b1) ((12®b2) = ds(al ®b1)~dg(a2®b2).

Since dg is additive and every element of A ® B is a finite sum of elementary tensors, equation (1) shows
s

that dg is multiplicative. We see that dg(1® 1) = lags -
R
In summary, we have that dg is a morphism of rings.

Recall that A ® B, together with A — A ® B,a— a®1, is an A-algebra; cf. Lemma 91 (4ii). The

similar applies to A ® B. Therefore we have the commutative diagram

a®1 A®B—>A®B a®1
s R
\ \O/ /
a A a

Therefore dg is a morphism of A-algebras. Finally, we see that dg and dg invert each other. O
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A.2 Reordering an algebra

Lemma 102 Let A be a commutative ring and s,t € Z>1 .

Then we have the isomorphisms of A-algebras

(AXS)tXt L> (Atxt)xs
¢
((bk,l;i)ie[l,s]>k7le[17t] L ((bk,l;i)k,le[l,t]),L-e[Ls]
¥
((@ise)ieqt,s) )k,le[l,t] — ((@im )iy )ie[l,s] :

Proof. By construction, ¢ and v invert each other and therefore ¢ is bijective.

Moreover, we see that the map ¢ is additive and that ¢(1(A><5)txt) =1 aexeyxs -

s\Ext
Let ((Ck’lii)ie[l’s])k,le[l,t]’ ((dk’lii)ie[l’s})k,le[l,t] € (A*®) **. Then we get

t
¢(((Ck,l;i)i€[1,s])k,le[l,t] : ((dk,l%i)ie[lvs])k,le[l,t]) = ¢(( > (crjiidieft,s) ° (dj’l;i)ie[1’8]>k,l€[1,t])

j=1
t t
: sl ) = A ) o)
¢(<J§1(Cm’ s )i€f.o k,l€[L,] ¢ j§1ck’]’ P ) et Jeaen g
t
= "i.d.‘i) ) s
((jzlc’”’ P ) ten g Jiel,s)

and

¢(((Ck,l;i)ie[1,s])kJE[Lt]) '¢(((dk,l;i)i€[l,s])kJe[l,t]) = ((Ck,l;i)k,le[l,t])ie[l’s] : ((dk,l;i)k,le[l,t])ZE[LS]
t
- ((Chotsi) ke, - (dk,l;i)k,le[l,t])ie[l’s] = (<g;1 Ch.jsi - dj7l;i)k7le[17t] >z‘e[1,s] )
So ¢ is an isomorphism of rings.

Now we consider the A-algebra structures. We have commutative diagram

N\

Hence ¢ is an isomorphism of A-algebras. O

(a,....a) - E; (AX5) —— (A (a-Ey,...,a-Ey)
a
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A.3 Factor algebras

Lemma 103 Let R, S be commutative rings and G be a finite group. Let ¢ : R — S be a surjective
morphism of rings. Write a := ker(yp).

Then we have the short exact sequence of abelian groups

aRG — RG % SG

dreg = > Teg > > p(rg)g,
9eG geG geG

where ¢ is even a morphism of rings.

Proof. Since ¢ is a surjective morphism of rings we see that ¢ is also surjective morphism of rings. The
embedding of aRG in RG is injective and additive. So it suffices to show that aRG = ker(@). We have

ker(¢) = { ZGrgg € RG : ¢(ry) =0 for g € G}
g€
= {ZrggERG:rgeker(go):aforgeG} = aRG. g
geqG

e

S
Notation 104 Recall from Notation 81 that = = ( Ee . F) and that in this quiver, we write
—
B
composition of paths in such a way that e.g. af is a path from E to F.
Moreover, we denote the set of paths in = by

Path(Z) := {E, F, o, B, aB, Ba, ... }

Lemma 105 Let R, S be commutative rings. Let o : R — S be a surjective morphism of rings. Write
a:= ker(yp).

Then we have the short exact sequence of abelian groups

@aRE  «—  R= % S=
Z T Z Tmim  — Z o(rm)m,
me&Path(E) mePath(E) mePath(E)

where 1y, = 0 for almost all m € Path(E).

The map 1 is even a morphism of rings. In particular, we have aR= = ker(y) .

Proof. The proof in analogous to the proof of Lemma 103. (]

Lemma 106 Let A, B be rings, not necessarily commutative, and I be an (both-sided) ideal of A. Let
1 : A — B be a surjective morphism of rings. Write K := ker(v).

Then we have the surjective morphism of rings
o Y — Bl

a+I +— ¥(a)+9(I),
with ker(¢) = (KJFI)/I C A/I.
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Proof. Since 1) is a surjective morphism of rings, ¢(I) is an (both-sided) ideal of B and ¢ is a surjective

morphism of rings.

Given a € A, we have the equivalences
a+1I€ker(¢p) < t(a) € Y(I) <= there exists z € I with (a) = ¢(z)
<= there exists z € I with ¥(a —2) =0

<= there exists z € [ witha—z€ K <~— acK+1. O

Remark 107 Let q € Z>3 be a prime. Let A, B be rings with gA =0 and ¢gB =0. Let o : A — B be

a morphism of rings.
Then A becomes an Fy-algebra via Fy — A, k- 1p, — k- 14, where k € Z. The same applies to B.

Moreover, ¢ becomes a morphism of Fy-algebras.

Proof. Since A is a ring there exists a unique morphism of rings ¢4 : Z — A, 1 —> 14. Since gA = 0

we have ¢Z C ker(1/~) 4). So there exists a unique ring morphism ¢ 4 fitting into the following commutative

triangle .
YA
72— A
41
/
/
T / g
/
/
Fy = Z/qZ

mapping as stated above. Similarly B becomes an Fy-algebra via a unique ring morphism g .

©

A B

We have the commutative diagram O O
ha VB

Iy

Remark 108 Let A, B, A" and B’ be rings. Let p : A — B, f: A — A" and ¢’ : A’ — B’ be
morphisms of rings, where ¢ is surjective. Let g : B — B’ be a morphism of abelian groups.
Suppose that we have the following commutative diagram.

A surg. B

Then g is even a morphism of rings.

Proof. We have
9(1p) = gle(1a)) = ¢'(f(14)) = ¢'(lar) = 1.

Let b,b € B. Since ¢ is surjective, there exist a,d € A with ¢(a) = b and (@) = b. We obtain

glb-0) = glpla)-p(a) = gle(a-a)) = ¢'(fla-a)) = ¢'(f(a)- f(a))



84 Appendix: Dedekind

A.4 Dedekind

Lemma 109 (Dedekind)
Let L|K be a finite Galois extension. Write m := [L : K].
Then we have the isomorphism of L-algebras

~

f:L®L — L x...x L
K

Yy QT — (Ul(x)y EEC O'm(l')y),

where Gal(L|K) = {o; : i € [1,m]}.

Proof. First we prove that f is well-defined. For this we consider the map
f : L x L — L x...x L
(y ) ZC) — (O'1<.'L')y )ttty Um(x)y)a

We see that f is additive in both components. Let y,z € L and A € K. Then we have

f((y)‘al‘» = (Ul(x)y)‘?"'aam(x)y)‘)
A oy (2)yor(N), - O (2)yom (V)
= (a1(M2)y,...,om(A\2)y) = f((y,\)).

Therefore f is K-bilinear, whence f is well-defined and Z-linear.

Let y1,y2,21,22 € L. Then we get

[y @x1) - (2 @22)) = f((Y192 ® 2122))
= (o1(@mz2)y1y2, - om(@T1z2)y1y2) = (01(1)y101(02)Y2 5 - -+, T (T1)Y10m (22)Y2) ()
= (o(x)y,--som(@)yr) - (01(z2)y2, - s om(22)y2) = f((11 @ 21)) - (Y2 @ 22)) -

Since f is additive and every element of L ® L is a finite sum of elementary tensors, equation (x) shows
K

that f is multiplicative.
Further we have

fA®1l) = (o1(1)1,...,0m(1)1) = 1pxm.
Summarized we get that f is a morphism of rings.

Recall that L ® L, together with L — L® L, y— y®1, is an L-algebra; cf. Lemma 91 (%), applied
K K

to (K, (A, ¢),(B,B)) = (K,(L,¢),(L,t)), where ¢ : K — L denotes the canonical embedding. Therefore
we have the following commutative diagram

y®1 L®L*>L>< )

NN

Therefore f is a morphism of L-algebras and so consequently L-linear.



Dedekind 85

So we can consider the matrix A describing f with respect to the following L-linear bases. Choose
a K-linear basis (x1,...,%,,) of L and consider the L-linear basis (1 ® z1,...,1 ® z,,) of L® L; cf.
K

Lemma 100 (7). Furthermore, we choose the standard basis of L*™.

For i € [1,m] we have

f
1@z = (o1(zi),...,om(z:)).
And so we obtain A as
A= (Ui(wj))i7je[17m] e mxm.
Now we show that the rows in A are linearly independent.
For this we assume that the rows in A are linearly dependent.

Choose Ay ,..., A, € L such that

(1.1) > Noj(ai) = 0fori€[1,m], with [{j € [1,m] : A; # 0}| minimal, but > 1.
i=1 =U
Since (z1,...,2m) is a K-linear basis of L and the map > Ajo; is K-linear, (1.1) is equivalent to
j=1
(1.2) Z)\joj(x) = 0forz € L, with |U| minimal, but > 1.
j=1

Since (1) =1 for j € [1,m], we know that |U| > 2. Choose s,t € U with s # ¢, so that A\s # 0, Ay # 0.
Since s # t, there exists y € L with o5(y) # o+(y). (%)

Using (1.2) we therefore obtain

(2) ZAij(x)Us(y) = 0 forxel,
j=1

and
> Njoj(xy) = 0 forzel.
j=1

3) !
Z%‘%‘(ﬂﬁ)%’(y)

The difference of (2) and (3) yields

m

(4) Z)‘j(gs(y) —oj(y))oj(z) = 0 forzel.

j=1
Writing X} := A;j(0s(y) — 0;(y)) for j € [I,m] and U’ := {j € [I,m] : X # 0}, we get U’ C U. Since
te U, cf. (xx),and s € U\ U’, we obtain 0 # |U’| < |U].

Hence, (4) is a shorter non-trivial linear combination than (1.2), in contradiction to the minimality
of U.

Therefore the rows in A are linearly independent and A is invertible. And so f is bijective. O
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A.5 The discriminant of a finite Galois extension

Definition 110 Let L|K be an extension of number fields of degree m := [L : K]. Suppose given an
integral basis (7;);e[1,m] of Or|Of ; cf. Definition 16.

Then we define the (relative) discriminant of L over K
AL|K = det ((TrL\K(xixj))i,je[l,m]) .

For the definition of an "integral basis" and that, if such a basis exists, its length equals the degree [L : K]
of the field extension, we refer to [Neukirch 99, Ch. I, p. 12, Remark before Proposition (2.10)].

Remark 111 Let L|K be an extension of number fields of degree 2.
Suppose given o € L such that O, = Ok[a]. Write X? +bX + ¢ := po x(X) € Og[X].

Then we have
ALlK = b2 — 4C.

Proof. We choose the basis (1, a) of Ok[a]. Then we have

Trp (1) T 2 b
Apx D20 det T;L'K( ) TrLlK(O;) =det (| o =22 —de— b2 =12 — 4e.
L|K(a) rL|K(a ) 2c

O
Lemma 112 (Discriminant-product-formula)
In a tower of fields F|L|K, the relative discriminants are related by
Apigk =Ny (Apn) - AE}? .
Proof. We refer to [Neukirch 99, Ch. III, p. 202, Corollary (2.10)]. O

Remark 113 Let K be a commutative ring. Let A and B be K -algebras that are finitely generated free
as modules over K. Let ¢ : A "> B be an isomorphism of K -algebras.

Then we have for a € A
Trak(a) = Trpx(p(a)).

Proof. We have the commutative diagram

T o()

az | p(ar) = p(a)p(x)
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Therefore we have

Trax(a) = trx(a(—):A— A)

tri (¢ op(a)(—)op: A— A)

= trg(p(a)(—): B —> B) = Trpx(p(a)). O

Corollary 114 Let L|K be a finite Galois extension. Write G := Gal(L|K) and m := |G|.

Then we have for x € L

Trp ik (z) = Za(m)-

ceG

Proof. We have

Trpx(z) = tre (L 25 1) (Ll 220, Ler)
i K K
Ly (L JEEND, pxm) = TDrpen (F @ 1))
Write G =: {01, ..., oy } such that f(1 ® x) = (o1(2),...,0m(x)). Choosing the standard L-linear

basis of L*™ we therefore obtain the describing matrix A of f(1® x)(—) : L*™ — L*™ as

o1(x) 0 m
A—( 0 ), 50 tr(A):Zai(x):Za(:c).

o'm(x) ceG
[l
Lemma 115 Let L|Q be a finite Galois extension.
Write Gal(L|Q) =: G =: {01, ..., 0y }, where m = |G|. Suppose given a basis (x;);c(1,m) of OL|Z; cf.

Definition 16.

Then we have
(det ((o4(2;))ijepm))” = ALjg-

Proof. We have

(0i(x5))jier,m) - (0i(Tk))ikem) = (

o C.114
= (Zai(%‘xk)) = (Trrje(eze))jketm) -
J,k€[1,m]

Therefore we have

(det((Ui(xj))i,je[l,m]>)2 = det ((Trpg(zsar))jkep,m)) = Arjg-
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A.6 Change of base ring for determinants

Lemma 116

Let K be a number field, i.e. K C C is a finite field extension of Q ; cf. Convention 15. Write s := [K : Q].
Let A, B be finitely generated free O -modules of the same rank r € Z> .

Let (ay,...,a,) be an Ok -linear basis of A and (by,...,b.) be an Ok-linear basis of B.

Suppose given an Ok -linear map ¢ : A — B. Let F € OR*" be the describing matriz of ¢ with respect
to the given Ok -linear bases (ay ,...,a,) of A and (by,...,b.) of B.

Then we have
detz(¢) = £Ngg(det(F)) = £Ngg(deto,(p)) -

Proof. Let (7;);e[1,5) be a Z-linear basis of O ; cf. [Neukirch 99, Ch. I, p. 12, Proposition (2.10)].

Then we have the Z-linear bases

<a’i‘rj)i6[1,r]7 = (a121,01%2,...,01%s , ... , QpZ1,0:Z2,...,a,.25) of A and
i€l s

(bi:vj)ie[l”]’ = (blxl,blxg,...,blxs g eee g br:cl,brwg,...,brxs) of B.
Jjes]

For given y € K let § € Q**° denote the Q-linear describing matrix of K — K, z — zy with respect
to the Q-linear basis (2;);ep,s of K cf. [Neukirch 99, Ch. I, p. 8].

If y € Ok, then § € Z*** is also the Z-linear describing matrix of Ox — Ok , z — zy with respect to
(@j)je,s -

We further define for a given matrix M = (m; ;); jeq1,,) € K™*" the block matrix

M = (mk,l)k,le[l,r] = T c erXsr

n-n

A linear algebra calculation shows that the operation is compatible with multiplication, i.e.

(1) (7;1@2 = y/l-\yg for Y1,Y2 € K and
MlMQ = Jm for M, , My € K> |

Let F' = (fr1)kieq,,- Then the Z-linear describing matrix of ¢ with respect to the bases introduced
above is given by

r = (fk,l)me[lm] VAU
Let SL¥(K) := {5 € K™*" : det(S) € {~1,+1} } < GL,(K).

Gaussian elimination over K yields a matrix S € SL}(K ), arising as a product of elementary and
permutation matrices, such that

(2) SF = D := , where d; € K for i € [1,7].
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As both elementary matrices and permutation matrices yield matrices of determinant +1 under the
operation """, we have S € SLE.(Q) := {T € Q¥ : det(T) € {—1,+1} } < GL(Q).

So we get
detT:tl
(3.1) +det(D) 2 +det(SF) = +det(F) < Ldeto, (o) and
(3.2) tdet(D) = +det(SF) = *det(SF) = *det(F) = Hdetz(p).
(2) (1) det;il def.
Therefore we have
blockinatrix
tdetz(p) 2 Ldet(D) = £det(dy)---det(d) = £Ngpldi)- - Ngigldy)
_ ) (3.0)
= *Ngjg(di---d;) = £Ngjg(det(D)) =" £Ngjg(deto,(¥)).
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A.7 Discrete valuation rings and other localizations

A.7.1 Localization

In this section we recall some facts and notations concerning localization of rings and modules.

If a statement or a part of a statement is not proven here, we refer to [Dummit 04, Sec. 15.4, pp. 706-730].

Definition 117 Let A be a commutative ring. Let p C A be a prime ideal, and write S := A\ p.
Further, let M be an A-module.

(1.1) We define the localization of M at p as the set
Mp = (M X S)/N s

where the equivalence relation "~" is given by

(m,s) ~ (m',s") ;< there exists u € S with us'm = usm’ for m,m’ € M and s,s" € S.

We write
% := [(m, s)]~ for the equivalence class of (m,s) € M x S.

The set M, becomes an abelian group via
m m s'm + sm/
—+ — = ————— for mym' € M and s,s" € S.
s s 58

(1.2) Note that 0y, = (i—f‘:. For m € M and s € S we have

= — <= there exists u € S with um = 0,;.

m _ Ou
S 1A

(1.3) We have the Z-linear map A := Aprp @ M —> My, m+— -

(2.1) Considering A as an A-module, we obtain the abelian group A, , on which we define the multipli-

cation b b
8222 g a,be Aand t,s € S.
t s ts
So Ay, becomes a commutative ring with identity element 14, = }—;‘ .
(2.2) The map A4, of (1.3) is a morphism of rings.
(2.3) The abelian group M, becomes an A,-module via
a.m W gy a€ A, méeMandt,seS.
t s ts

More generally, let (B, ¢) be a commutative A-algebra. Let M be a B-module. Everything else stays the
same. Write am := ¢(a)m for a € A and m € M.

(3.1) Considering B as an A-module via ¢, we obtain the abelian group B, , on which we define the

multiplication
b ¢ be
—.-:= — for bce B, s, tes.
s t st
So By, becomes a commutative ring with identity element 1p, = % .

(3.2) Then B, becomes an Ap-algebra via ¢, : Ay — By, ¢ — 2(0) where a € A and s € S.

S
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(3.3) Moreover, M, becomes a Byp-module via

b b

>.r_M for be B,me M and t,s € S.

t s ts
Proof of (3.1). Suppose given & < S, € B, Wlth 2: , i.e. there exists u € S with us’db = usb’. For
c € Band t € S we obtain us'tbc = ustb'c, Whence % = % So the multiplication is well-defined in

the first component. The well-definedness in second component is shown analogously. Altogether, the

multiplication is well-defined.

Since A, B are commutative rings we see that the multiplication is associative, commutative and unital.

Distributivity is checked by a calculation.

Proof of (3.2). Suppose given ¢, ‘sl—,, € A, with ¢ = %:7 i.e. there exists u € S with us'a = usa’.
Then we have us’ - p(a) = p(us')p(a) = p(us’'a) = p(usa’) = us - p(a’), so that @ = %. We
have gop(%) = “’(11;) = }—f Since ¢ is additive and multiplicative we see that ¢, is also additive and

multiplicative. Cf. also Remark 122 below.
Proof of (3.3). By (1.1) M, is an abelian group.

Suppose given t , t, e B, with b = t, , 1e there exists u € S with ut'b = utd’. For m € M and s € S we
obtain ut’'sbm = utsb'm, Whence %” = t,s . So the multiplication is well-defined in the first component.
Suppose given ”:—,/ € M, with = = T—,/, ie. there exists u € S with us'm = usm’. For b € B and
t € S we obtain uts’bm = utsbm’, whence bt—? = ts, . So the multiplication is well-defined in the second
component.

We have }—i - = 7. The associativity follows by the associativities of A and the B-module structure
of M. Distributivity is checked by a calculation. O
Remark 118

(i) The map Anrp, given in Definition 117 (1.3), is injective if and only if the multiplication map
t(=) : M — M, m — tm is injective for t € S.

(ii) The map A4, cf. Definition 117 (1.3,2.2), is injective if and only if S contains no zero divisors.

In particular, if A is an integral domain then gy, : A — A, is injective.

Remark 119 Let A be integral domain. We consider the prime ideal (0) C A. Then we have
A(O) = frac(A) = K.

Suppose given a prime ideal p C A.
We consider A as a subring of Ay via the identification a = ¢ = Aap(a) fora € A, cf. Remark 118 (ii).
Likewise, we consider A, as a subring of K.

So we have the identification

A — A, — K.

=}
lts}
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More generally, given an extension A C B of integral domains, we write L := frac(B) and obtain the
identification

w |

Remark 120 Let A be integral domain and p C A be a prime ideal. Let M be a finitely generated free
A-module. Then we may identify

m = ? = Arp(m) € M,

and view M as a subset of M, .

Proof. Given s € A\ p and m € M such that sm = 0, then m = 0; cf. Remark 118 (3). |

Corollary 121 Let A C B be an extension of integral domains. Letp C A be a prime ideal. Letk € Z>1 .
As in Remark 119 we consider (By)** and (BX’“)p as subsets of frac(B)**. Then we have

(By)** = (BXk)p as subsets of frac(B)*" .

Proof. We have to show the vertical equality in

(BX’“)]D {(T)Lsﬂ : r; € B for ie[l,kLseA\p} C frac(B)**
I
(By)** = {(Z) " :r; € B for i €[1,k],s, € A\p for i€ [1,/6}} C frac(B)*F.
i/iel,
The inclusion "NI" holds using entries ** for i € [1, k].
k -1
Ad "U". Let s:= [] s; € A\ p. Then ss; ' € A for i € [1,k], and (:—) e w O
i=1 °r/iell, h

Remark 122 Let A be a commutative ring and p C A be a prime ideal. Further, let f : M — N and
g : N — P be morphisms of A-modules.

Then we have
(i) The map f, : My — Ny, = — @ is a morphism of A,-modules.
(i) The localization of maps as in (i) is compatible with composition, i.e.

(goflp = gpofy-

Let A C B be an extension of integral domains. Let p C A be a prime ideal. Let h : M' — N’ be a
morphism of B-modules.

Then we have

(i4) The map hy : My — Ny, LN h(fm,) is a morphism of B,-modules.

S

For the By-module structures of M, and N, we refer to Definition 117 (3.1-3.3).
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Proof of (ii). For > € M, we have (go f),(2) = g(fm)) — 9o (fo (2)).

S S

Proof of (iii). By (i) we have that h, is well-defined and Z-linear. For ¢ € B, and m% € M, we have

hp(é . m’) _ hp(bm’) __ h(bm') _ bh(m') _ b h(m) é'hp(ﬂ/)-

t? ts - S

ts ts t st
0

Lemma 123 Let A be a commutative ring and p C A be a prime ideal. Suppose given a left exact

sequence of A-modules
(S1) M L M oM

Then we have a left ezact sequence of Ay-modules

(52) M.

g h
L M, 2 MY

If additionally h is surjective, i.e. (S1) is a short exact sequence, then (S2) is also a short exact sequence.

Proof. By Remark 122 (i) we have that g, and h, are morphisms of A,-modules.

We show injectivity of g, . Suppose given % € Mé such that g, (mT,) = 0p, -

Then Q(T') R%)QQ gp("%) = Op, = 9. Thus, by Definition 117 (1.2), there exists u € S with

g A-lin.

g(um’) ug(m’) = 0.

Since g is injective we have um’ = 0. By Definition 117 (1.2) we therefore have

m’ 0

— = - =0y
S 1 My

We show that im(g,) = ker(hy).

We prove the inclusion "2". Suppose given = € ker(hy). So we have

Thus, by Definition 117 (1.2), there exists u € S with h(um) b dgin. uh(m) = 0, so that um € ker(h).

Since im(g) = ker(h), we therefore get that there exists m’ € M’ with g(m’) = um.

Hence

m’ m’ um m m
gp() _gm) _um _m G im(gy).
su su su s s

M M n n
We prove the inclusion "C". We have im(g)=ker(h)

. {
hy o gp R%jz (hog)y=10, = 0.
Therefore we have im(g,) C ker(h,). So we have shown that (52) is a left exact sequence.

Now let h additionally be surjective. We have to prove surjectivity of h,. Suppose given "~ € M,;’.
Since h is surjective there exists m € M with h(m) = m”.

Therefore we have
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Corollary 124 Let A C B be an extension of integral domains. Let p C A be a prime ideal and M be a
B-module. Let N C M be a submodule.

Then we have the isomorphism of By-modules

(M/N)p = M/,

m+N m
s s + NF‘ .

Proof. We have the short exact sequence of B-modules
N L M Pe M/N 7

where ¢ is the canonical embedding, and p, is the residue class map. By Remark 122 (%) and Lemma 123,
the upper row in the following diagram is a short exact sequence of By-modules.

N Mp (pL)F

Yiw),

Pep)
i My — M/Np

Here, p(,,) is the residue class map. So also the lower row is short exact. Hence there exists a unique
By-linear map (M/N), — M, /N, making the diagram commutative, which is an isomorphism. This
map necessarily acts on elements as stated above. O

Corollary 125 Let A C B be an extension of integral domains. Let p C A be a prime ideal. Let x € B
and k € Z>1. We denote the residue class map by p: B**1 — BkX1/ka><1 1 — 4 xBFXL

Suppose given a matriz M € BF*F.
Let N C B**! be the kernel of po (M(=)), i.e. N = {v e B*1 : Mv € aB"!}.
Then Ny = {w € By*' : Mw € aB§*' }.

Proof. The lower row in the following diagram is left exact.

kal

M(-) p

O

kx1
B> B

N po(M(-))

where ¢ denotes the canonical embedding.

By Remark 122 (i7i) and Lemma 123 we have the left exact sequence of By-modules

(BkXI/kaxl)
P

N tp kal
P ( ) (po(M(=)))y

By Corollary 124 we have the isomorphism

kx1 ~ kx1 C.121 kx1
© (B /kaxl)p — (B )P/(kaxl)p = (Bp) /x(Bp)kXI
—

kx1
v+zB v +($Bk><1)p

S S

_ kx1
ci21 s Ha(By)™,

where v € B**1 and s € A\ p.
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Thus, viewing N, as a submodule of (B**1), “E" (B,)**! via 1, , we get

Ny = ker((po (M(=))y) "= ker(po py o (M(=))y) = {w e (B! : Mw e 2(By)*" } |

(#)

as asserted. O

Remark 126 Let R be a commutative ring and m C R be a mazximal ideal of R.

Then we have the isomorphism of rings

¥ R/m - Rm/mm
r+m o— My

In particular, my, is a mazimal ideal of R, .

Proof. Write S := R\m. Let r+m, 7' + m € (R/m) withr+m=7"+m,ie. r—r em. (%)

So we have , ,
T T =T ()
(F+mn) = (T +mn) = == +ma & 04,

whence ¢ is well-defined.
We see that ¢ is additive, multiplicative and preserves 1; cf. Definition 117 (1.1,2.1). So altogether, ¢ is
a morphism of rings.
!
We show injectivity of . Since R/m is a field it suffices to show that 1 ¢ m,, , because then Rm/mm is

not the zero ring.

We assume that % =, where m € m and s € S. Then there exists ¢ € S with ts = tm € m. Since m is

a prime ideal we get t € m or s € m in contradiction to t,s € S.
We show surjectivity of ¢.

First, we need an auxiliary assertion. Suppose given £ € Ry . We claim that £ € my if and only if
x € m. It suffices to show the direct implication. If £ = Z* for some m € m and ¢ € S, then there exists
u € S such that utx = usm € m. Since m is a prime ideal and u, ¢ € S, we obtain « € m. This proves
the claim.

Now suppose given * +my, € Rm/mm , where r € R and s € S.

We have to show that there exists z € R with § +my = $ +my, ie. § — 5 = ¥ € my, i.e, using

the claim, s — r € m. This is equivalent to the existence of + € R with (z + m)(s 4+ m) = (r + m). Since
s ¢ m and R/m is a field, we have s + m € U(R/m), so that our desired x € R can be chosen as an

arbitrary representative of the residue class (r +m)(s +m)~'. O

Corollary 127 Let g € Z>3 be a prime. Then we have the isomorphism of Fy-algebras

0 F =%y = Z(q)/qZ(q)

2+ql — F+qly-

Proof. We have ¢Z =: (¢) C Z is a maximal ideal. Further we have

» | o

(Q)(q):{a : ae(q),SEZ\(q)} = {q- :bEZ,SGZ\(q)} = qZ -

S
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So we obtain by Remark 126 that g is an isomorphism of rings.

Moreover, we have ¢F, =0 and q(Z(q)/qZ(q)) = 0. So we get by Remark 107 that ¢ is an isomorphism
of IF,-algebras. O

Lemma 128 Let R be a principal ideal domain and wR = (n) C R be a prime ideal of R. Let o € Z>g
and M, N be finitely generated free R-modules with

T MCNCM, ie WQ(M/N) —0.

So N C M C Mgy and N C Ny ©€ M) ; ¢f. Remark 120.

Then we have
M N N(ﬂ.) = N.

Proof. We see that the inclusion "D" is true.
Ad "C". Suppose given & € M N N5y . Then

?:ng withm € M,ne€ N and s € R\ ().

So there exists u € R\ (7) with usm = un. Since M is torsion-free we get sm = n. Hence we have
s(m+N)=sm+N=0+N=0. (1)

By the structure theorem for finitely generated modules over a principal ideal domain we have a decom-
position
k

(2) Min = @ T/ ()

=1

where k € Z>¢, ;i € Z>1 for i € [1,k] and ¢; € R are prime elements of R for i € [1,k].

We assume that there exists j € [1, k] with (g;) # (7). By (2) and since 7 (M/N) =0 we get

T + (qu) =0+ (qf1> forallr € R ,ie. n%r € (qf’) for all r € R.

Choosing r = 1 we get 7% € (qf]) Since g¢; is prime we therefore get that g;|m. (3)

So there exists x € R with gjo = m, in particular «|g;z. Since 7 is prime we get 7|g; or m|x.
In the case 7|g; we get with (3) that (¢;) = (7) in contradiction to our assumption.

In the case 7|z we get a contradiction to the fact that ¢;, as a prime element, is not a unit.

So (g;) = (m) for i € [1, k], whence (2) becomes
k
(4) M/y ~ @ R/(Wm).

We now assume that m ¢ N. So we get by (1) that s annihilates m + N € (M/N) \ {0}. Hence we get
with (4) that s € (7) in contradiction to the choice of s € R\ (7).

Therefore we have m € N, whence x = * =m € N. O
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A.7.2 Dedekind domains and discrete valuation rings
Definition 129 A discrete valuation ring R is a local principal ideal domain that is not a field.

Remark 130 Let R be a discrete valuation ring with mazimal ideal generated by m € R. Then every
element © € R\ {0} is of the form x = un®, where u € U(R) = R\ 7R and a € Z>g .

The exponent a in this representation of x is unique, whence we can define the valuation v, as
ve ¢ R\{0} — Z>o
r=ur® —> vﬂ(uw“) =a.
For x,y € R, we have
(i) ve(z-y) = vo(@) +va(y),

(i3) ve(x +y) > min{v.(z), vz(y)}, and

(iii)  ve(x+y) = min{ve(z), va(y)} if va(z) # va(y).

Proof. We refer to [Serre 79, Ch. I, §1, pp. 5/6]. Concerning (7ii), note that given 0 < a < b in Z
and u, v’ € U(R), we obtain un® + u/n® = (u + 7°~%/)7?, where u + 7*~%’ € R\ 7R = U(R). So
Vr(ur® 4+ u'7’) = a.

Definition 131 Let A be a noetherian integral domain. Then we call A a Dedekind domain if A, is a
discrete valuation ring for every prime ideal p # 0 of A.

Cf. [Serre 79, Ch. I, §3, p. 10, Proposition 4 and the subsequent definition].

Remark 132 Let K be a number field. Then Ok is a Dedekind domain.

Proof. We refer to [Neukirch 99, Ch. I, pp. 17/18, Theorem (3.1), Definition (3.2)]. Note that the
definition in loc. cit. is equivalent to our Definition 131 by [Serre 79, Ch. I, §3, p. 10, Proposition 4]. O

Definition 133 Let A be a Dedekind domain and K := frac(A).
(1) A fractional ideal of K is a finitely generated A-submodule 0 # a of K
cf. [Neukirch 99, Ch. I, p. 21, Definition (3.7)].

(2) Let a,b be fractional ideals of K. Then we write a- b for the A-submodule of K that is generated
by products of the form a - b with a € a and b € b.

Lemma 134 Let A be a Dedekind domain and K := frac(A). We denote by Jx the set of all fractional
ideals of K. Then Ji becomes an abelian group with the multiplication as defined in Definition 133 (2).
It is called the ideal group of K.

The identity element is 15, = A, and the inverse of a € Jx is

ol ={2ecK:zaCA}.

Proof. We refer to [Neukirch 99, Ch. I, p. 21, Proposition (3.8)]. |
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Lemma 135 Let A be a Dedekind domain and K := frac(A). Denote by P the set of the nonzero prime
ideals of A.

(i) Let a be a fractional ideal of K. Then a admits a unique (up to the order of the factors) represen-

tation as a product

a = H p* with oy € Z forp € P, and oy = 0 for almost all p € P.
peP

(i) Let 0 # a C A be an ideal of A. Then a admits a unique (up to the order of the factors) represen-

tation as a product

a = H P with oy € Z>o forp € P, and oy =0 for almost all p € P.
peP

(i4i) We have

{agK 2 a is a fractional ideal of K andagA} = {agA : a is an ideal of A witha#O}.

Proof of (i) and (i). We refer to [Neukirch 99, Ch. I, p. 22, Corollary (3.9)] and [Neukirch 99, Ch. I,
p. 18, Theorem (3.3)].

Proof of (iii). The inclusion "D" follows from A being noetherian. The inclusion "C" follows since an
ideal of A is just an A-submodule of A. a

Remark 136 Let A be a Dedekind domain and K := frac(A). Denote by P the set of the nonzero prime
ideals of A. Let oy , By € Z for p € P, where o, =0 and B, =0 for almost all p € P.

Then we have the equivalence

IIr> < J[9* <= =58, forpeP.
peP peP
Proof. The implication "<=" is true since pa Caforp € Pand a € Jg .

Ad "=". By Lemma 134 we have

-1 —1

R o VA 1 R U B U B U It

peP peP peP peP peP

Tt = H p7* with v, € Z>o for p € P, and v, = 0 for almost all p € P.
peP

Because of the uniqueness of the representation we therefore get with (1)

0<~v = ap,—pB for pc P, and so o, > B, for p € P.

Lemma 137 Let L|K be an extension of number fields. Let 0 # p C Ok be a prime ideal.

Let 0 # q C O be a prime ideal with qN Ox = p. Suppose that p is totally ramified, more precisely,
q° =pOp , where s € Z>1 .

Then we have

(OL)q = (OL), considered as subrings of L .
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Proof. Write A := Ok and B :=Op,.

!
Ad B, C B;. We have ACB

A\p = A\(@@n4) = A\q C B\g.

So every element g € By, where b e B and s € A\ p, is also an element of B, .

!
Ad B, O B,;. We want to show that every ¢ € B\ q is invertible in B, . Once this is shown, we obtain
fory e BC By and t € B\ q that

€B,
)
z =y- t_l S Bp,
whence By C By, as required.
We have t € B\ q is invertible in B, if and only if ¢ ¢ m for all maximal ideals m of B, . (1)

We see that t = £ ¢ g, , since otherwise ¢ = £ for some ¢ € q and some s € A\ p C B\ q, so ts € q, but

q is prime and s, ¢t ¢ q, which is a contradiction.
Using (1) it therefore suffices to show that q, is the only maximal ideal of B, .
By [Neukirch 99, Ch. I, p. 65, Proposition (11.1)] we get the bijection

{prime ideals v of B with tN(A\p) =0} <+— {prime ideals t of B, }

tNB — t.

Since every prime ideal of B, is contained in a maximal ideal, it therefore suffices to show that

(2) {primeideaIStofBwithtﬂ(A\p)Z(Z)}é{o,q}.

Now A = Ok and B = Op, are Dedekind domains; cf. Remark 132. Therefore every nonzero prime ideal
of A respectively of B is maximal; cf. [Serre 79, Ch. I, §3, p. 10, Proposition 4(ii)]. (3)

Now, let 0 # t be a prime ideal of B. Then we claim

(4) eN(A\p) =0 pCr.

Ad "=". This will be proven by contraposition. Suppose that p Z t.

Choose y € v\ {0}. Let f(X) € Z[X] be a monic polynomial having f(y) = 0. Dividing by a suitable
power of y, we may assume that f(0) # 0. Then f(0) = —(f(y) — f(0)) € B is divisible by y. So
f(0) € ZNt C ANt. In particular, p’ := ANt # 0. Since p ¢ v, we have p’ # p. Since p’ C A is maximal
by (3), there exists z € p"\p=tN(A\p). SortN(A\p)#0.

Ad "<=". Suppose that p Ctv. Then p C ANt C A. Since v C B is prime, we have 14, = 1p ¢,
whence ANt C A. By (3) we obtain that p is a maximal ideal. Therefore, p = A Nt. Thus
tN(A\p) =tnN(A\(ANt)) =tN(A\r) = 0.

This proves claim (4).
So it suffices to show that
(2) { prime ideals v of B with p C ¢} < {q}.
Assume that there exists a prime ideal v of B with p C v and v # q. So we get

P '=¢"=pBCtB=1t=q"1t,

but this is in contradiction to Remark 136. |
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On binomial coefficients

Lemma 138 (Vandermonde convolution) Let m € Z>o and r,s € Z. Then we have
i LA S _(r+s
k m—-k) \m )’
k=0

Proof. To prove the statement we use the cauchy summation formula, which states the following.

Suppose given two power series

flx) = (thxl> and g(x) = Zujxj
i=0 j=0

with the positive radii of convergence 7y and 4. Then the product

(1) f(z)-g(z) = (Ztlﬂ) . Zujxj = Z thui_j z' = h(z) for |z| <min{r, 7, }
=0 =0 =0 \ j=0

is also a power series with radius of convergence r;, > min{ry, 4 },
cf. [Walter 04, §7, p. 144, 7.8 Multiplikation von Potenzreihen].

Further we use the modified binomial theorem, wich states that for each o € R and = € R with |z| < 1

we have

2) (1+2)* = i (s;)zm

m=0

cf. [Graham 94, Sec. 5.1, p. 163, Equation (5.13)].

So we obtain for z € R with |z| < 1

i (7“-1-5)3;’” @ (1ot = (14a) (14 a)

(S06)(£0-) 2 £(£0) ()~

Jj=0

m=0

IS
S

Since two power series are equal if and only if all of their coefficients are equal, comparing coefficients
yields that the statement is true. O
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Remark 139 Leti,l € [1,n]. Then we have

S(i,1) = f:(l;’“_‘22><’;1> — 0.

k=1

For the term < ‘ ; ! > we refer to Definition 34.
Proof. Since <i;1 > =0 for k > i and (l;lk__zz) =0 for k < I, we get
s - n (l_;_lk_—22>.<ik1> _ Z(l;k_—;) <zk1>
k=1 k=l
() e () (5)

For i < ! we have that S(i,1) is an empty sum and the statement is true.

sn=('3)) Qﬁ( G- (27 ) -

For ¢« = | we have

=1 = =

and, again, the statement is true.
For i > | we have to show that S(i,1) £ 0. This is equivalent to
L+ k-2 e (2-2\ 1 = (l+k—2 . [ 20-2
(—1)i k. L (1) k. )
S50 o (2) 2 2 (0) co (22
k=l k=1
We substitute ¥’ := k — [ and i’ := 7 — [. So we have to show for i’ > 0 that

Lok -2 o (2004 2A—2\ 1 e (24K 2 o (204202
(—1) . ~ C(—1)¢ ) )
Z( 9 — 2 ) (=) ( ik ) Z( 2 -2 ) (=1) k1

k’=0 k’'=0

By multiplication with (—1)~% and further substitution I’ := 2/ — 2, we reformulate to
N v (20 T\ 1 o (UK o[ 2l
Z < I >(1) .(i’—k’) - Z( I )(1) Nk 1)
k=0 k=0
For ease of notation, we rename k := &/, ¢ := 4’ and [ := I’. Therefore it suffices to show that
L1+ k po (2041 1 = (l+k v [ 2i+1
g > (1) o () = () e ()
k=0 k=0
for/>0and ¢ > 1.
We have
L+k\  (l+E\ » (—1)" —1-1
l N k N k ’
where the trick () is taken from [Graham 94, Sec. 5.2, p. 174, Table 174 : "upper negation"].

Therefore equation (1) becomes

B

W ];)(zk 1> . <3z_+kl> * ki (lk 1) _ (Z Ez]:_l 1) .

=0

=:LS =:RS
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2041

We have
L (—l=1\ (2041 pass [—l—142i+1 2 — 1
s o= ()G e () - ()
k=0
-l % +1 -1 2% 41 —/-l-1
- 20 (A0 - ) (E0) -2 00) (20
k=0 k=0
=0
Lass  (—l—1+2i+1\  [(2i—1\  [(2i-1
B i—1 - \i-1/) i )
Thus equation (1’) is shown.
In summary we have shown that S(¢,1) = 0, for ¢,l € [1,n].
Corollary 140 Let i,l € [1,n]. Then we have
i—l .
, 2 — 1 204k —2
)Y (=) 2 + 2k —1 = (2i—1)-9;y.
e (2 e (%) < e a
Proof. Let i,k € [1,n]. Then we have
i—1\ passa g ((20-2) [ 2i-2
< k > = ((zk) (zkl))
. 1 1
= (=1)*2i-2)! -
(=17 )((i—k)!(i—i—k—Z)! (z’—k—l)!(i—i—k—l)!)
o i+ k—1)— (i —k) ik s 2k — 1
— _1““2—2!(Z = (-1)"""(2i - 2)!
A G T T S A G Al Py T oy
. (20 —2)1(2i—1) o (21 o
=y 2k —1)(2i —1)7F = (=1)"*F 2k —1)(2i —1)71.
(1) (i—k)!(z’—l—k—l)!( )(2i —1) (1) i) )(2i —1)

By Remark 139 we have for i, € [1,n]

ki:_l(l;lk—_22> <2;1>

=0 for k <1

0.1

—_———
=0for k>1i

%

—~

> (550

k=l
i—1

> <212+z]i/22) S (—1)iER (l iil_lk) 2+ 2k —1)(2i —1)7"

k’=0

_q)ick (i’_‘i) (2k —1)(2i — 1)~}

i—l

(—1)i! kz:% (2l;l‘k; 2) (=1 (zmz_lk) (20 + 2k — 1)(2i — 1)~
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Remark 141 For i,k € [1,n] we have
@-12 o fi-1\ i1y @)
ok 1) (20)! " = (-1) k) o (2i—-1) € Z.

Proof. For k > i, both sides equal 0; cf. Definition 34 and Convention 4. For k& = 4, both sides equal (24)!.

For k < ¢ we calculate the difference of the terms as

i—1)2 . i— i—k i 7)! .
*Skjézwzz)!-( ,;>—<—1> G RE SCEEY

D2t @)’ o) ik
k

(G2 = (2520) = o= (5) - 425 - @i - )
= e o e (G- (G50 - (22)) - G5))
i

(2i—1) ( (2i—2)! (20—2)! )_ (2i—1)! )
(i— G—k)(i+k—1)!

\_/

2i—1 i
= (2k— ) S(=1)F - (20)! (2k— 1) RIGk—2)  G—k—D)I(itk—1)

= 22D )ik (24)) (20 —

1),.( 1 ( 1 _ 1 )_ 1 )
N\ @D\ GRGR—) T G kDI E—1)! G—R)(ith—1)!

2i—1 i— : : i+k—1)—(i—k
= @D ik 21 (20— 1)1 ((%1_1) ke l)ioh) @_k)!(hk_l)y)

= 22D Cyiko(24) (20— 1)1

1 1
((ifk)!(iJrkfl)l - (iflc)!(iJrkfl)!)

= @D
= 0.
In this case, we have 2(131_)'1 € Z, so that the right hand side is an integer. O

Remark 142 Leti,s,t € Z>o. Then we have

g(_l)k@_—;)%l—l((t—lz+1>+(t+s-k>> (_1)i§(_1)k(2i;1>2i_11_2k<t+i—k)'

Proof. For ¢ = 0, both sides equal 0. For ¢ € Z>, we have

Xi:(_l)k (222—_/3> 2k1— 1 (t ) I: i 1) ki_k 20: _(_1)1# (z Ei1_+1k’> —(%—1) (t ik/>

k=1 k'=1—1 (*)

k=k’ 0
1 2 —1 1 t+k
o Z ( >2k—1( s )

k=1—1i

So we obtain

S () () +(1)
- (s () e (e ()
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2 e () () xer () s ()

k=1—1

L 2 —1 1 t+k
—1)*
() )m ()

Feitk X i (21— 1 1 t+i—k
= 2D K ) 2i—2k —1 s

k'=0

T s (e ().

k=0 0

Remark 143 Let k,l € Z>, . Then we have
2k—1 (l+k—-1 l+k—1 l+k-2
—_— = Z.
l+k1( k-1 ) ( k-1 >+(kl1)e

Proof. For k < I, both sides equal 0. For k =, both sides equal 1. So let £ > [. We calculate

2k—1 (l+k—-1\ _ (A+k-1D)+FEk-0D)(+k-1)
l+k—1( k—1 ) B (I+k—1)(k—0!20-1)
I+ k-DU+E-2)  (E-D({+k—-2)!
(k=020 —1)! (k=020 —1)!
B (I+k-1) (I+k—2)! (It k-1 l+k—2
By TGy R Py TGy B ( k-1 >+(k—l—1)'
O
Remark 144 Let m,j € Z>o with m > j. Then we have
= m\ [k
1)k -
2 () -
Proof. We calculate
=0for k <y
- m\ (k " m\ [k
,;J( Dk(’f)(ﬂ) N ,;(_l)k(k)(J)
¥ ml B8 (m — j)! m!
- L em T 2V G R w70

I
NE
T
=
=
VRN
> 3
L
S
N———
7 N
~. 3
N———
=
L
J
M3
d

o
S~—
=

+
o
N
3

™
o
N———
VRS
<. 3
N———
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Corollary 145 Let m,j € Z>o with m > j. Then we have

—1)* I =0.
>0 () =0
k=0

In particular, for every polynomial P(k) € C[k] of degree less than m we have

m

Z(-N(’Z) Plk) = 0.

k=0

Proof. Let j € [0,m — 1]. Suppose the statement to be true for all s € [1,m — 1] with s < j (LH. ). By
Remark 144 we have

0 = i(—l)kCZ) (k> = i(—l)k<7§> LS LA

|
k=0 J k=0 J:
1 & m . L.H 1 & m .
= D)Wk Sk
7! k 7! k
k=0 T k=0
pol. in k of
degree < j, or 0 0

Remark 146 Let m € Z>y and x € R\ [-m,0]. Then we have

() ()

k=0

Proof. We consider the map g : R\ {0} — R, z +—— 2. We now claim that

{!

forl € Zsy. (for A! cf. Convention 2)

This is shown by induction on I. For [ = 0 we have

1 0!
Z = (=1. =
x (=1) x
For the inductive step [ — [ + 1, we calculate

AFlg(m) = Alg(z +1) — Alg(x)

I
(x+1)(x+2)~~(fr+l+1)_<_1)l
B B . x7(1'+l+1)
- (-1t 2@+ D@ +2) (it 1)
. —(+1)
rz+1)(z+2) - (z+1+1)

(l+1)!
w4+ 1) (m+1+1)

I
(1) (m 1)

=

(-1

= (=1)t- 1!

_ (71)l+1 .

So our claim is shown.

Further we have

Alg(z) = Z(—l)lik (i) glx+k) ,forleZsg,

cf. [Graham 94, Sec. 5.3, p. 188, Equation (5.40)].
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Therefore, after setting [ = m, we obtain

Appendix: On binomial coefficients

- m m!
D k) = (-1)™-
kZ:O( ) <k>g(x+) (=1) z(x+1)---(x+m)
" m 1 1 m!
)™ (=1)k = (=)™ =
= 1 kZ:O( )(k>x+k (=1) z ((z+m)—m+1)---(x+m)
“ 1 1 (z+m\ "
_1k m = — - .
k=0
|
Remark 147 Suppose given t € Z, i € Z>1 and s € [0,2i — 1]. Then we have
. 1.+12i‘1 (21 1 t+i—k gtica—s i D! 8‘12 - R
= — g — _— = tmems A /7, t — = .
s = (1) kZ:O( )< k >2i—1—2k( s > s1(2i)! u[[o( +1-2u) :
Proof. For s =0 we have to show that
. e, (21 1 R (GRS I
= (1) -1 — = ot T - )
o= (1) kz:%( )( k )2i—1—2k (20)! 0
If i =1, we obtain 2 = 2.
If + > 2, we obtain
2i—1 . 2i—1 .
; 21 —1 1 , 1 2t —1 1
-1 1+1 -1 k - — _1 i+1 L. -1 k _
(10 )< k )2@—1—% (=073 2 (1 ko)L
k=0 k=0 2
2i—1 ; 2i—1 \1
B ;1 rf21—1 1 ™ 1y 1 B 2 5
= U3 D 1)< k )21'—1+k = U3 < 2i—1)\2 —1
k=0 2
. _ , —1
Y e (=D =D =) i)
0 2i—1 \2i—1 2 —1 (26 —1)!

. X —1
(—1)+1(2i — 2)! ((2¢ )20 —3) 31 (=1)-(=3)---(—2i +3)- 2*@“1))

= (i—1)-2%7%. W gti-3 2 (i —(21i))!!(i —1)!
—  odi-2, “(222)'1)' ’
where in (%) we refer to Remark 146 applied to the case (m,z) = (QZ' —1, _2i;1)_ So the statement is

true for s =0, i.e. Lo = Rg.
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o=n
i(1z 55T e
,:_A|WE.N|_;N. (ne—1+1)]] _H = cm.5|$N|H+§§|3m|ﬁ+§.:a|TL@@TTL@.H =
DI —
oﬁ”od”
R ) 00 1) (19— ) (@ = ) (- Fa) (g B T
I 1)t e ! ! T T T ureSe opam

Sy D
n y — isg
+ n)b 11— sHl‘ =
(T=9) =3 +D(@=-5)—F+2)- - C-F+DE+D) fv - VMN?A "
T — 2g > 90139p JoO
(3 ut eouway) n ur -jod
= ! Q\vm (1-)¢ o
(1=5)=S+1+n)(G—5) - c+24+n) - (1-S+1+m)E+r+n) \1—2g)"" x0T o
58—y —1) & :L?“M %
(1=s)—1+y-9)(e—9)—1+y—0) (0 —1+y4-9)0+y-—y\1—-w)" " 1
s \e-1-m( 4 AIW& o) = e
_ _ El T+? -
y—1+1 I 11— s

"SMO[[0] S® T ULIOJsuRI}) Ued oM\ [T — 2¢ ‘1] D § 19] MON
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