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Abstract: We investigate closed surfaces in Euclidean 3-space satisfying certain
functional relations κ = F (λ) between the principal curvatures κ, λ. In particular
we find analytic closed surfaces of genus zero where F is a quadratic polynomial or
F (λ) = cλ2n+1. This generalizes results by H.Hopf on the case where F is linear and
the case of ellipsoids of revolution where F (λ) = cλ3.
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Introduction

A surface in 3-space is called a Weingarten surface or a W -surface if the two principal
curvatures κ and λ are not independent of one another or, equivalently, if a certain
relation Φ(κ, λ) = 0 is identically satisfied on the surface. The set of solutions of this
equation is also called the curvature diagram or the W-diagram [4] of the surface. The
study of Weingarten surfaces is a classical topic in differential geometry, as introduced
by Weingarten in 1861 [11]. For applications in CAGD see [2]. If the curvature diagram
degenerates to exactly one point then the surface has two constant principal curvatures
which is possible only for a piece of a plane, a sphere or a circular cylinder. If the
curvature diagram is contained in one of the coordinate axes through the origin then
the surface is developable. If the curvature diagram is contained in the main diagonal
κ = λ then the surface is a piece of a plane or a sphere because every point is an
umbilic. The curvature diagram is contained in a straight line parallel to the diagonal
κ = −λ if and only if the mean curvature is constant. It is contained in a standard
hyperbola κ = c/λ if and only the Gaussian curvature is constant. Locally there are
the following five main classes of Weingarten surfaces:

1. surfaces of revolution,

2. tubes around curves where one principal curvature is constant,

3. helicoidal surfaces,

4. surfaces of constant Gaussian curvature,

5. surfaces of constant mean curvature (cmc surfaces).
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This list is, of course, not exhausting. It is not difficult to obtain closed smooth Wein-
garten surfaces of arbitrary genus by glueing together pieces of spheres, other surfaces
of revolution and tubes. The classical analytic examples are the closed surfaces of rev-
olution of genus 0 or genus 1 on the one hand and tubes around closed curves on the
other hand. Since the discovery of the Wente torus [12] analytic example of type 5
above have been investigated. N.Kapouleas [5] found closed surfaces of constant mean
curvature for higher genus. However, K.Voss proved in [10] that a closed analytic Wein-
garten surface of genus zero is necessarily a surface of revolution. From the Delaunay
surfaces one obtains as a corollary a classical result of H.Hopf [4] that a closed surface of
genus zero with constant mean curvature must be a round sphere. It was the discovery
of H.Hopf in the same article that there are closed analytic surfaces of genus zero with
a linear curvature diagram. In the sequel the method of Hopf is further extended to
a larger class of surfaces with a prescribed curvature diagram. As a result, there are
explicit analytic solutions of genus zero also with self-intersections, see the section on
quadratic Weingarten surfaces.

The case of a linear curvature diagram: Hopf surfaces

Unless one of the principal curvatures is constant, the curvature diagram in the (κ, λ)-
plane is linear if and only if an equation

κ = cλ + d

is satisfied with two constants c, d where c 6= 0. It was observed by H.Hopf [4, p.238]
that on a closed analytic surface of genus g ≥ 2 such a relation is impossible unless
c = −1 which is the case of a cmc surface. By that time it was unknown whether such
a surface exists. As one of the main results, in the same article Hopf proved that in
an umbilical point of an analytic surface either c or 1/c must be an odd integer. This
implies that on a closed analytic surface of genus zero a relation κ = cλ + d can hold
only for these specific values of c. Furthermore, all these values are in fact realized by
certain closed surfaces of revolution. The case of the standard sphere corresponds to
the case c = 1 and (necessarily) d = 0.

Notation: Whenever we talk about a surface of revolution then κ denotes the curvature
of the profile curve and λ denotes the other principal curvature of the surface.
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Figure 1: A W -surface with κ = 5λ (Hopf surface).

1. Proposition (H.Hopf [4])
For any c > 1 and d ≤ 0 there is a unique (up to scaling) closed convex C 2-surface of
revolution satisfying the equation κ = cλ + d and which is distinct from the standard
sphere. This surface is analytic if and only if c is an odd integer.

By a theorem of K.Voss [10] any closed analytic Weingarten surface of genus zero is
necessarily a surface of revolution. This leads to the following Corollary:

2. Corollary Any closed analytic surface of genus zero satisfying the same equation
κ = cλ + d is congruent to the standard sphere or to one of the Hopf surfaces in
Proposition 1, up to scaling.

We do not repeat the proof of Proposition 1 here since this is a special case of a more
general construction described below. For d = 0 an elementary exposition is given in
[7, 3.27] including a picture of typical profile curves. Figure 1 shows a solution for
c = 5 and d = 0 which is, therefore, real analytic. As a matter of fact [6], any of
these surfaces with κ = cλ satisfy in addition the equation KII = H where KII denotes
the inner curvature of the second fundamental form regarded as a Riemannian metric.
Similarly, for negative c one obtains complete surfaces of negative Gaussian curvature,
including the catenoid. Locally surfaces satisfying κ = cλ were rediscovered 30 years
later in [9].
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Constructing closed surfaces

For the construction of surfaces of revolution satisfying particular equations between
the principal curvatures we choose a parametrization of the type

f(r, φ) = (r cos φ, r sinφ, h(r))

where r ≥ 0 and 0 ≤ φ ≤ 2π and where h is a function only of the parameter r. This
is possible except at points where the tangent of the profile curve is parallel to the axis
of rotation. We call this a vertical tangent. In such exceptional points there is a zero of
1/h′ (or a pole of h′). This has to be taken into account in all the calculations below.
Then the principal curvatures κ, λ are given by the equations

λ =
h′

r(1 + h′2)1/2
, κ = (rλ)′ =

h′′

(1 + h′2)3/2

where ( )′ denotes differentiation by r. Consequently any equation of the type

κ = F (λ)

with a given continuous function F leads to the ODE (rλ)′ = F (λ) or, equivalently,

λ′(r) =
F (λ) − λ

r
. (1)

It follows that locally any equation of this type with an arbitrary continuous function F
admits a solution. Apparently this was rediscovered in the paper [8]. In fact, this ODE
is explicitly solvable by separation of variables. As long as r2λ2(r) < 1, any solution of
(1) satisfies the equation

h′(r) = ±
√

r2λ2(r)

1 − r2λ2(r)
. (2)

Consequently the function h admits the following representation

h(r) = ±
∫

rλ(r)
√

1 − λ2(r)r2
dr. (3)

Example: In the case of Hopf surfaces with F (λ) = cλ + d one obtains the solution
λ(r) = 1

c−1(rc−1−d) which is essentially unique. Then equation (3) leads to an explicit

expression for h(r). The other principal curvature is κ(r) = 1
c−1(crc−1 − d).

4



The case of genus zero

If a connected component of the profile curve starts on the axis of rotation with a
horizontal tangent and ends at a point p with a vertical tangent, then we obtain a
closed surface of genus zero by glueing together two mirror symmetric copies of the
surface. Under some additional conditions this closed surface is of class C 2 (resp. C∞).

3. Lemma Let λ be a solution of (1). Then the following conditions on λ and the
resulting h are necessary and sufficient for obtaining a compact surface of revolution of
class C2:

1. λ is defined on an interval (0, ε), with a finite limit lim
r↘0

λ(r) =: λ(0).

2. For r = 0 there is an umbilic, i.e. λ(0) = F (λ(0)).

3. There is a maximal interval [0, r0) on which λ and h′ are defined as differentiable
solutions, necessarily with a vertical tangent at r0 i.e., necessarily with a pole of
h′ at r0 and with λ(r0) = ± 1

r0
.

4. h is a continuous function on the interval [0, r0] including the endpoint r0 (i.e.,
the corresponding improper integral in (3) converges).

Furthermore, the surface is analytic everywhere if and only if the following three con-
ditions are satisfied:

5. λ is an even function at r = 0

6. F is analytic

7. dF (λ)
dλ |r=0 is a positive and odd integer (see [4, p.236]).

Remark: If the condition 1. above is satisfied, then the condition 2. follows from
(1).

In the case of the Hopf surfaces conditions 1. – 4. are easily checked. This leads to the
construction in Proposition 1.
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4. Lemma If the conditions 1. and 3. above are satisfied by a particular solution λ
with λ(r0) = ± 1

r0
then the condition 4. is equivalent to each of the following equivalent

conditions

(a) (h′)2 has a simple pole at r = r0

(b) F (± 1
r0

) 6= 0

(c) λ′(r0) 6= ∓r−2
0

Consequently, Conditions 1. and 3. are sufficient conditions for obtaining a compact
C2-surface of genus zero whenever F (± 1

r0
) 6= 0.

The case of genus one

If a connected component of the profile curve (r, h(r)) starts at a point p0 and ends at a
point p1 with vertical tangents in opposite directions and on the same h-level, then we
obtain a closed surface of genus one by glueing together two mirror symmetric copies
of it. The condition that the start- and endpoint are on the same h-level is crucial
and might be difficult to decide because the levels of those points are represented by
improper integrals. Under some additional conditions this closed surface is of class C 2

(resp. C∞).

5. Lemma Let λ be a solution of (1). Then the following conditions on λ and the
resulting h are sufficient for obtaining a compact surface of revolution of class C 2 of
genus one:

1* There is a maximal interval (r0, r1) ⊂ (0,∞) on which λ and h′ are defined as
differentiable solutions, necessarily with vertical tangents at r0 and r1 (in opposite
directions), i.e., necessarily with a pole of h′ at r0/1 and with λ(r0) = ± 1

r0
and

λ(r1) = ∓ 1
r1

.

2* h is a continuous function on the interval [r0, r1] including the endpoints r0/1

(i.e., we have convergence of the corresponding improper integral in (3))

3* At the two endpoints we have h(r0) = h(r1).

Furthermore, the surface is analytic everywhere if and only if F is analytic
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6. Lemma If the condition 1* above are satisfied by a particular solution λ with
λ(r0) = ± 1

r0
and λ(r1) = ∓ 1

r1
then the condition 2* is equivalent to each of the following

equivalent conditions

(a*) (h′)2 has a simple pole at r = r0 and r = r1

(b*) F (± 1
r0

) 6= 0 and F (∓ 1
r1

) 6= 0

(c*) λ′(r0) 6= ∓r−2
0 and λ′(r1) 6= ±r−2

1

Consequently, Condition 1* is sufficient for obtaining a compact C 2-surface of genus
one whenever F (± 1

r0
) 6= 0, F (∓ 1

r1
) 6= 0 and h(r0) = h(r1).

For a compact surface of genus one the following necessary conditions must be satisfied:

1. There is a maximal interval (r0, r2) on which λ and h′ are defined as differentiable
solutions, necessarily with a vertical tangent at r0 and r2, i.e., necessarily with
a pole of h′ at r0 and r2 and with λ(r0) = ± 1

r0
, λ(r2) = ∓ 1

r2
. In between there

is a zero of λ at some point r1 ∈ (r0, r2) which corresponds to a point with a
horizontal tangent.

2. h is a differentiable function on the interval [r0, r2].

Quadratic Weingarten surfaces: a quadric as diagram

Closed surfaces satisfying a linear relation aK+bH+c = 0 between the mean curvature
and the Gaussian curvature with constants a, b, c were studied by Chern in [3]. The
result is that any closed and convex surface of this type with K > 0 and a2 +b2 +c2 6= 0
is a standard sphere. This can be seen as follows: For b 6= 0 the curvature diagram
corresponding to this equation is nothing but the ordinary rectangular hyperbola

(

κ +
a

2b

)(

λ +
a

2b

)

=
a2 − 4bc

4b2
.

At an umbilical point we have necessarily a2 − 4bc ≥ 0. Obviously, within the class of
convex surfaces the cases b = 0 and a2 − 4bc = 0 are possible only for the standard
sphere. It turns out that the case a2 − 4bc > 0 also leads to the standard sphere by
the following argument which is due to Hilbert: The larger principal curvature cannot
attain its maximum if simultaneously the other principal curvature attains its minimum.
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In this section we study the case that the curvature diagram is a standard parabola
with the corresponding quadratic function

F (λ) = c(λ − λ∗)
2 + λ − a

where a, c, λ∗ are constants, c 6= 0. Since any closed surface of genus zero has an
umbilic, we have necessarily ac ≥ 0. The standard sphere is the particular solution
where λ is constant. In all other cases the ODE (1) can be solved as follows, with the
notation y = λ(r) for a variable and λb(r) for the various solutions:

∫

1

c(y − λ∗)2 − a
dy = log r + b with a constant b ∈ R (4)

Case 1: a = 0. Then the equation above becomes

− 1

c(λb(r) − λ∗)
= log r + b (5)

or, equivalently, λb(r) = λ∗ −
1

c(log r + b)

We have to check the conditions according to Lemma 3 above:

1. r = 0 corresponds to λ = λ∗.

2. For r = 0 we have an umbilic since κ = F (λ) = λ there.

3. In the region λ > λ∗ the function F (λ) tends to ±∞ for λ → ∞ depending on the
sign of c. Moreover, λ has a pole at r = e−b. Therefore there is an intersection point
of the graph of λ(r) with that of ± 1

r , i.e., a point with λ2(r0) = 1
r2
0
, as required.

4. The extra condition F (± 1
r0

) 6= 0 is satisfied because of

F
(

± 1

r0

)

= c
(

± 1

r0
− λ∗

)2
± 1

r0
= c

(

± 1

r0
− λ∗

)2
+

c

|c| ·
1

r0
.

Consequently, there is a closed convex surface satisfying this equation. This surface is
never of class C3 because λb is not differentiable at r = 0 since lim

r→0
λ′

b(r) = ±∞.

Case 2: ac > 0. Then the equation (4) above becomes

∫

1

c(y − λ∗)2 − a
dy =

1

2
√

ac
log±λ − λ∗ −

√

a/c

λ − λ∗ +
√

a/c
= log r + b (6)
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or

∫

1

c(y − λ∗)2 − a
dy =

artanh±c(λ∗−λ)√
ac√

ac
= log r + b (7)

We can choose the positive sign in (6) and (7) which corresponds to just one of the
branches of the solution. Nevertheless, the considerations below can be adapted also
to the negative sign. This leads to the following two analytic expressions for λb:

λb(r) = λ∗ −
√

ac

c
tanh (

√
ac(log r + b)) (8)

and

λb(r) = λ∗ +

√

a

c
· 1 + r2c

√
a/c · e2bc

√
a/c

1 − r2c
√

a/c · e2bc
√

a/c
(9)

Again we have to check the conditions as above:

1. r = 0 corresponds to λ = λ∗ +
√

ac
c .

2. For r = 0 we have an umbilic since κ = F (λ) = λ there.

3. Because λb is continuous on [0,∞) we have to show that there exist some constants
b leading to at least one intersection point of the graphs of the functions λb(r) and ± 1

r
(we always take the intersection point r0 nearest to the axis of rotation). If we combine
the equation λb(r) = ±1

r with (8) and resolve it for b = b(r) then we get:

b(r) =
1√
ac

artanh
(c(λ∗ ∓ 1/r)√

ac

)

− log r

Therefore b(r) is well defined if and only if the following inequality holds

∣

∣

∣

c(λ∗ ∓ 1/r)√
ac

∣

∣

∣
< 1 ⇐⇒

∣

∣

∣
λ∗ ∓

1

r

∣

∣

∣
<

√
ac

|c|
Depending on the sign, there is a solution r in a union of at most two intervals I =
I1∪I2 ⊂ R

+ where one of them is not empty. It follows that we always get a 1-parameter
family of solutions λb depending on constants b ranging in I1 or in I2, respectively, such
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that there are intersection points with ± 1
r because b(r) is continuous and not constant

(i.e., for one i ∈ {1, 2} holds | b(Ii) |> 1).

4. From 3. we know that for every r ∈ I we have an intersection point of of the
graphs of λb(r) and ± 1

r . Because F has at most two zeros it follows that there are
at most two elements r0, r1 ∈ I with F (± 1

r0
) = F (± 1

r1
) = 0 (for at least one of the

signs). For these r0/1 we know that the constant b have to be b(r0) resp. b(r1) where
we have to regard the sign in the definition of b(r). By analyticity of the solutions in
(8) there are always a finite number of constants b ∈ b(I) so that r0/1 is an intersection

point of λb and ±1
r . Combining this with Lemma 4 (b) we see that the extra condition

F (± 1
r0

) 6= 0 is satisfied for all constants b ranging in the interval above after removing
a finite number of constants. Furthermore we can choose a smaller interval B ⊂ b(I)
within the remaining part of b(I). With respect to this interval B we finally obtain a
1-parameter family of solutions λb depending on b ∈ B and satisfying 3. and 4.

The surface is analytic if and only if
√

ac is an integer since we have

–0.4
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0
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0.6

0.8

0.2 0.4 0.6 0.8 1

Figure 2: Profile curves of W -surfaces with κ = λ
2 + λ − 4.
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dF (λ)

dλ

∣

∣

∣

r=0
= 2c(λ∗ +

√
ac

c
− λ∗) + 1 = 2

√
ac + 1

and because the expression in (9) for λb is an even function if
√

ac is an integer.

This proves the following Propositions 7 and 8:

Figure 3: W -surfaces satisfying κ = λ
2 + λ − 4 with b = 0.7 and b = 0.1.

7. Proposition (quadratic W -surfaces)
For any constants a, c and λ∗ with ac > 0 there exists a 1-parameter family (depending
on the choice of a parameter b ) of closed surfaces of class C 2 satisfying the equation

κ = c(λ − λ∗)
2 + λ − a.

These are analytic if and only if
√

ac is an integer.

Figure 2 shows several profile curves for c = 1, a = 4, and λ∗ = 0, Figure 3 shows two
particular surfaces which are analytic since

√
ac = 2 in this case.

8. Proposition For any constants c 6= 0 and λ∗ there exists a 1-parameter family
(depending on the choice of a parameter b ) of closed C 2-surfaces satisfying the equation
κ = c(λ − λ∗)2 + λ. None of them is of class C3, except for the standard sphere.
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Generalized Hopf surfaces: the case κ = λ
α.

It is well known [1, Ex.3] that the ellipsoid of revolution

{

(x, y, z)
∣

∣

∣

x2 + y2

a2
+

z2

b2
= 1

}

satisfies the relation

κ =
a4

b2
λ3

between the two principal curvatures (note our convention that κ denotes the curvature
of the profile curve). Conversely, any closed surface of revolution satisfying κ = cλ3

with a certain constant c is congruent to some ellipsoid of revolution. More generally,
in this section we study equations of the type κ = cλα or, equivalently,

F (λ) = cλα

with some constants c > 0 and α 6= 1, α 6= 0. Recall that the case α = 1 leads to a linear
curvature diagram and was studied above. Hence the ODE (1) takes the particular form

λ′(r) =
c

r
·
(

λ(r)
)α

− 1

r
· λ(r)

which is known as Bernoulli’s differential equation. Any solution is of the form

λb(r) =
(

c +
b

r1−α

)
1

1−α

with a constant of integration b ∈ R. The particular case b = 0 leads to λ0(r) = c
1

1−α

and, consequently, to constant principal curvatures κ0 = F (λ0) = cλα
0 = λ0. This is

the case of the round sphere of radius R = 1/λ0. Therefore in the sequel we assume
b 6= 0. There are two cases:

Case 1: α < 1.
In this case we have

lim
r↘0

|λb(r)| = lim
r↘0

(

|b|rα−1
)1/(1−α)

= ∞.

Therefore, no regular surface of genus zero can satisfy this equation since any point on
the axis of rotation is a singularity. However, the solution leads to a convex surface with
two isolated singularities on the axis, just as the classical Hopf surfaces for 0 < c < 1.
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Figure 4: Generalized Hopf surfaces with κ = λ
5.
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Case 2: α > 1.
In this case we can verify that all the conditions in Lemma 3 are satisfied:

1. We have
lim
r↘0

λb(r) = c1/(1−α)

for arbitrary choice of b. For b > 0 the solution λb is defined on [0,∞), for b < 0 the

solution has a pole at r = ( − c
b )

1/(α−1).

2. For r = 0 we have an umbilic since F (λ(0)) = λ(0).

3. Under the assumption b < 0 the solution λb has a pole. Therefore there is an
intersection point of its graph with the graph of the function ± 1

r , i.e., there is a number
r0 such that λ(r0) = ± 1

r0
. For 0 < b < 1 the resulting function h′(r) has a pole where

necessarily r2λ2 = 1 is satisfied, compare equation (2).

4. The additional condition F (± 1
r0

) 6= 0 is trivially satisfied.

The surface is analytic if and only if α is an odd integer since we have

dF (λ)

dλ

∣

∣

∣

r=0
= cα(λ(0))α−1 = α

on the one hand and since λb is an even function for odd α on the other.

Therefore we obtain the following generalization of Proposition 1 above:

9. Proposition (Generalized Hopf surfaces)
For any constant α > 1 and any c > 0 there exists a 1-parameter family (depending on
the choice of a parameter b < 1 ) of closed convex surfaces of class C 2 satisfying the
equation κ = cλα. These are analytic if and only if α is an odd integer. Up to scaling,
these surfaces form a 2-parameter family. The particular case α = 3 corresponds to the
classical ellipsoids of revolution.
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In the case α = 3 the solution is

λb(r) =
(

c + br2
)− 1

2

and, consequently,

h = ±
∫

r
√

c + (b − 1)r2
dr =

±1

b − 1

√

c + (b − 1)r2 + const

which describes an ellipsoid for b < 1 and a hyperboloid for b > 1. The particular case
b = 1 leads to a paraboloid, for b = 0 one obtains a sphere.

Similarly, each of the cases α = 5, 7, 9, . . . leads to a family of generalized ellipsoids in
the sense that these are analytic convex surfaces with a shape which is quite similar
to that of an ellipsoid. In any case the standard sphere is a particular member of this
family. Similarly, for b = 1 we obtain generalized paraboloids and for b > 1 generalized
hyperboloids. Figure 4 shows generalized ellipsoids with α = 5, c = 1 and four cases
b = 0.9, 0.5, 0, −0.5.

In constrast to this situation, we have the following:

10. Proposition For any constant α < 1 and any c > 0 there is no closed genus zero
C2-surface of revolution satisfying the equation κ = cλα, except for the standard sphere.
Therefore, if there is an analytic surface of genus zero (distinct from the standard
sphere) satisfying κ = cλα with α < 1 and c > 0 then there is no analytic surface of
genus zero satisfying λ = c̃κα with the same α and any constant c̃. In particular, the
ellipsoids of revolution are the only analytic surfaces of genus zero where the principal
curvatures κ1, κ2 satisfy κ1 = c(κ2)

3.

Closed Weingarten surfaces of genus one: An example

For obtaining solutions λ which lead to a closed surface of genus one we have to check the
conditions in Lemma 5 above. The crucial condition 3∗ is necessary for glueing together
two mirror symmetric copies of the surface. The trivial case is κ = c (constant) leading
to the standard torus of revolution. Unfortunately, for the functions F studied in the
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Figure 5: Profile curve of a W -surface with κ = cosh λ + λ for c0 = 1.177.

sections above we could not verify condition 3∗. Therefore, as an example we study the
case of a curvature diagram associated with the function

F (λ) = cosh(λ) + λ.

Then the ODE (1) can be solved by

λ(r) = log
(

tan (
1

2
(log r + c))

)

(10)

where c ∈ R and r > 0. This solution is defined on any interval of the form (r0
k, r

1
k) :=

(e2kπ−c, e(2k+1)π−c) for arbitrary k ∈ Z.

We have to check the conditions according to Lemma 5 above:

1*. We have lim
r↘e2kπ−c

λ(r) = −∞ and lim
r↗e(2k+1)π−c

λ(r) = ∞. Hence there is a maximal

interval (r0, r1) satisfying the conditions in 1*, i.e., at the endpoints of the interval we
have an intersection of the graph of λ with that of 1/r and −1/r, respectively.

2*. From F (x) = cosh(x) + x > 0 for x ∈ R we obtain F (± 1
r1

) 6= 0 and F (∓ 1
r1

) 6= 0.
Hence 2* follows from Lemma 6.
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Figure 6: A W -torus satisfying κ = cosh λ + λ.

3*. In order to verify 3* we have to evaluate h(r0) and h(r1) as improper integrals.
We now choose k = 0 and 1/2 < c < π/2 so we have exactly one point r0(c) with
λ(r0(c)) = −1/r0(c) and one point r1(c) with λ(r1(c)) = 1/r1(c). The difference
d(c) := h(r0(c))−h(r1(c)) is a continuous function of c. By a numerical calculation we
obtain d(1) ≈ 0.3418424004 and d(1.2) ≈ −0.2427157496. Because of continuity of d
there is a c0 ∈ (1, 1.2) with d(c0) = 0. A reasonable approximation is c0 ≈ 1.177 with
r0(c0) ≈ 0.3437410829 and r1(c0) ≈ 2.271531739. Figure 5 shows the profile curve for
c0 = 1.177 where the vertical coordinate axis is the axis of rotation, and Figure 6 shows
the W -surface of genus one itself. The surface is analytic because F is analytic.

This implies the following:

11. Proposition There is a closed analytic surface of revolution of genus one
satisfying the equation κ = cosh(λ) + λ.

Presumably, by the same method it is possible to find many other examples of W -
surfaces of genus one with prescribed relations κ = F (λ).
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