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Definition: A complete (open) hypersurface in Euclidean E"*
is an embedded hypersurface such that the embedding is proper
(preimage of a compact set is compact) and such that the image
is complete. Similarly we have complete open immersed hypersur-

faces.

Theorem (Gauss-Bonnet)
For any compact and oriented Riemannian 2-manifold with

boundary the equality

2y (M) — /M KdA = /8 (s)ds

holds where k denotes the geodesic curvature on the oriented

boundary. In particular, if all boundary curves are geodesics,

we obtain
2mx (M) — / KdA =0,
M

the same formula which holds for compact 2-manifolds without

boundary.

In the case of non-compact 2-manifolds things are a little bit more

complicated.



Theorem (Cohn-Vossen)
If (M, g) is a complete Riemannian 2-manifold of finite topo-
logical type and with absolutely integrable Gauss curvature K,

then the inequality
2 x (M) — / KdA >0
M

holds. In particular, we have fM KdA < 27 if M is non-

compact.

There are more subtle versions for the case that M is not of finite
topological type. Furthermore, there are a number of additional
conditions under which the Gauss-Bonnet equality

2rx(M) — [,; KdA = 0 holds in the non-compact case.

Theorem (Osserman)
For embedded and complete minimal surfaces with finite total

curvature the equation
2 x (M) — / KdA =27k
M

holds where k is the number of ends. In the case of immersed
minimal surfaces one has to take “multiplicities” at the ends

into account.

Wintgen suggested that the curvature defect of a complete and
properly immersed surface in Euclidean 3-space is the length of the
set M, of the so-called limit directions lim, .o f(x,)/||f(x)]]-

This is true under reasonable additional assumptions.
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For a hypersurface in Euclidean space E"™! we have the Gauss-
Kronecker curvature K = K,, which is defined as the determinant
of the shape operator. It is well-known that K is intrinsic if n is

€Vell.

NOTATION: The constant ¢,, denotes the volume of the standard
unit n-sphere. This can be expressed in terms of the Gamma
function as follows: ¢,_; = 27"/2/T'(n/2). The symbol dV denotes
the volume element of a submanifold, sometimes in the form dVy,

for specifying the manifold on which it is defined.

Theorem (Gauss-Bonnet-Hopf)

Let M"™ C E"™ be an embedded compact hypersurface such
that M is the boundary of its interior My, C E"", and let
K denote the Gauss-Kronecker curvature of M with respect to

the inner normal (pointing to Miy). Then the following hold:
(i) [ KdVar = ¢ - X(Ming).

(i) If n is even, then x(M) = 2x(Miy) and, consequently,
Jar KdVar = (en/2) - x(M).

Moreover, this equality holds for arbitrary immersions
f3 M — ]En—l—l

of a compact orientable n-manifold, even if M s not the

boundary of any (n + 1)-manifold.



As a matter of fact, for odd dimensions the total curvature does
depend on the choice of My, i.e., on the choice of the embedding.

Nevertheless, we have the following folklore result:

Proposition
Within the class of all immersions f: M" — E""! of a fized
compact manifold M, the total Gauss-Kronecker curvature

fM KdV)y; depends only on the reqular homotopy class of f.

This follows from the variational formula for the total curvature,
see below. The gradient of the curvature functional [ W KAV s
identically zero. The theorem on turning tangents (the “Hopf
Umlaufsatz”) can be regarded as the special case n = 1 in the

Gauss-Bonnet-Hopf theorem.

Definition (unit normal space, total curvature)
For a compact submanifold M" C E™*! with boundary OM we

define the unit normal space N' by
N'=1'(M)u L (oM).

[t carries a canonical volume form dV,,, as in the case of a sub-
manifold without boundary. Then the total curvature of M 1is

defined as the sum of the total curvatures of the two parts from
1LY (M \ OM) and from L1 (OM):

TC(M, 8M) = Kd‘/ccm
N1

:/ Kn(§>d‘/can+/ Kn—l(_f)d‘/can-
el Y(M\OM) ¢ell (OM)
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Theorem
For a compact submanifold M"™ C E™ with boundary OM
(or an immersion of M) the Gauss-Bonnet formula holds as

follows:
TC(M,0M) = ¢, - x(M).

Moreover, if m is even, then we have x(N') = 2x(M).

The Gauss-Bonnet difference term
CmX(M) _ / Knd‘/can
LL(M\OM)

can be expressed as the integral of K,_; over the set of outer unit
normals at M. Obviously, any E € (L1), can be uniquely written

as

~

£ =1COSQ - Vyy +sinp - &,
where 0 < ¢ < 7/2 and £ is a unit normal vector to M at
p € OM. Vice versa, any such & leads to a € in (L), for any ¢
with 0 < ¢ < 7/2. This enables us to compute this integral by
Fubini’s theorem, pointwise evaluated for the normal sphere S™~"

on the one hand and half the normal sphere S™ "*! on the other
hand.



Theorem (Gauss-Bonnet theorem for submanifolds in the closed
unit ball)

Let (M",0M") C (B™"!,S™) be a compact submanifold which
15 orthogonal at the boundary, i.e., the outer normal vy, of M
at each boundary point coincides with the outer normal of S™.
Then for the Gauss-Bonnet defect the equation

CmX(M) - / Kd‘/ccm
J_l(M\OM)

- Z Cm / KQZ' d‘/can
' J 1L (oM)

0<%i<n—1 Cm—n+2iCn—1-2i

holds, where K; denotes the j' elementary symmetric func-

tion of the eigenvalues of the shape operator of the embedding

oM — S™.
PROOF: At each boundary point p € OM we compute the boundary term
as follows: ff (), K, 1( f) AVgm-ni1 = fgeL;,, O<p<n/2 K,_1(sinp - £ —
COS © - Vout) AVgm-—nt1
= fﬂ fo det(sing - A¢ — cosp - A, )dVen—n Asin™ " ¢ dyp
= fi}; o Tsin™ o det(Ae + cot - Id) dVgm-n A dip
= le 77/2 in™! E?_g K;(&) cot™ " o dVgm—n A dp

Z] ! 077/2 " n+g¢COSn 1— jsp dop fgeﬂ f)dng .
Note that in our case the shape operator A¢ of (9M in the ambient Euclidean
space coincides with the shape operator of M in S™ and that A, , is
nothing but the negative identity, namely, the shape operator of S™ C
E™*!. The last integral vanishes for odd j, and so we obtain the sum over

all even 7 = 2i. The proof is completed by the equation

/2 ’ - Con
/ sin” " o cos" Y pdp = :
0 Cm—n+;jCn—1—j
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Corollary (Special cases)

1. For a compact surface (M? 0M?*) C (B?,S%) of this type

we have

drx (M) — 2/ KdVy; = 2 - length(OM).
M

2. For a compact hypersurface (M*,0M*) C (B°,S?%) of this
type we have
8 1

—TT X(M)—Q/ K, dVMZ—/ (S —2) dVip,
3 M 3 Jom

where S denotes the scalar curvature of OM?.

PROOF: From the formula above we obtain
eax (M) — TC(M \ OM) = 2 / 2Ky dVins = 2 / dVonr
¢ Jom oM
in the case (i). For (ii) we have

8 8 2/ 2 2K,
37 XM) /mM) 4 37 o 1 s

1 1
:_/ (44 2K) dVaM——/ (S = 2) dVis,
3 OM 3 oM

where S = 6 + 2K is the scalar curvature of OM .

For a compact 3-dimensional hypersurface we obtain

C3 C3 C3
M)—-0=— 1+ Ky) = — K =—x(0M).
(M) 0= | (1K) =52 | K = Zx(om)



Definition (Cone-like end) An end E of a complete submanifold
M"™ c E™ with associated component MZ (which is assumed
to be either a smooth submanifold or a point) in the set of limit
directions is said to be (asymptotically) cone-like if the following

conditions are satisfied:

1. There is a point ¢ such that for sufficiently large R the inter-
section £ N S™(R;q) is an (n — 1)-dimensional submanifold
of the sphere of radius R around ¢, and

lim l(E NS™(R;q)) = M~
R—oo R

(in the C*-topology if it is a manifold). This property is ac-

tually independent of the choice of ¢, so that we may assume

that q is the origin 0.

2. For every € there is a number Ry such that for each R >
Ry the angle between outer unit normal of the submanifold
E N B™(R;0) at any point p € E, ||p|| = R, and the

position vector p is at most e.

Theorem
For a complete submanifold M™ C E™ with finitely many
cone-like ends the Gauss-Bonnet defect is given by the same

formula for My, C S™ as above

CmX(M) - Kd‘/can — Z Cm K2Z(Moo)



Corollary

1. If in addition all curvatures Ky; of M, are nonnegative, then
the ‘Cohn-Vossen inequality” ¢, x(M)— [ 11 KdV,q, > 0holds.

2. If in addition for each end MZ is totally geodesic in S™, then

we have

1
X(M) — — KdV,., =k,

Cm J |1
where k£ denotes the number of ends.
3. For a 2-dimensional open surface M? C E? with cone-like ends
the Gauss-Bonnet defect equals the total length of M., C S?

(counted with multiplicity, i.e., for each end separately):
2mx (M) — / KdA = length(M,,) > 0,
M

where K is the Gauss curvature. This implies the Cohn-Vossen

inequality.

4. For an open hypersurface M* C E° with cone-like ends the
Gauss-Bonnet defect is

4

1
—r2y(M) — / Ky dVy = - / (S —2)dViy.,
3 Y 6

oo

where the integral has to be taken for each end separately.



Notice that the value 2 for the scalar curvature has a special mean-
ing by the following gap theorem: It is known that a compact
hypersurface of S*(1) with constant mean curvature and constant
scalar curvature can satisfy S < 2 only if it is a member of Cartan’s

isoparametric family of hypersurface with S = 0.

Corollary The Cohn-Vossen inequality does not hold in gen-
eral for complete open 4-dimensional hypersurfaces in Euclidean

b-space.

A Key Example is a 4-manifold with one end which is (asymptot-

ically) a cone over Cartan’s hypersurface. Here for My, we have

three principal curvatures v/3, 0, —v/3, and hence
Ki=0, Ko;=-3, S=6+2K,=0

with vanishing scalar curvature and non-vanishing volume. This

implies that the Gauss-Bonnet defect is strictly negative.
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The variational problem for the total curvature

The variation of the extrinsic higher mean curvature functionals
K;(M) = / K;dVy,
M

where K, denotes the " elementary symmetric function of the
eigenvalues of the shape operator A of a hypersurface. The nor-
malization is chosen such that the characteristic polynomial is
det(A+ X -Id) = Y. KA if M is n-dimensional. In terms of

the principal curvatures x; one has K; = Z]-1<m<j, KjKjy* Ky,
1

Theorem (Pinl-Trapp, K. Voss, R. Reilly)
For any hypersurface in Fuclidean space the gradient of the i™"
curvature functional K; = [ K;dV is the function

Theorem (R. Reilly)
For a hypersurface in the unit n-sphere the gradient of the
curvature functional Ky = [ K;dV is the function

—(Z + 1)Ki—i—1 + (n — Z)Kl_l
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Theorem

For even n the gradient of the total outer curvature functional
(= the right hand side of the formula for M, ) of a hypersurface
in S™ 1s the negative Gauss-Kronecker curvature — K, _1 of this
hypersurface.

PROOF If 0 denotes the gradient, then we have

by the theorem above. If n is even, this implies

oY —" Ky

0<2i<n_1 C2iCpn—1-2i
Cn ) )
= E T( — (2’& + 1)KQZ'_|_1 + (n - QZ)KQZ'_l)
0<2i<n—2 21tn—1-21
Cn n—21—2 21+ 1
- = (n_l)Kn—1+ § Cn( - )K2i+1
Cn—2C1 0<2i<n—4 €2i+2Cn—3-2; C2iCp—1-2i

—Lipn—1-

In the last step we used the equation
(] — 1)6]' = Clcj_g,
which holds for arbitrary j.

Remark If n is odd, then the same calculation shows that the
gradient vanishes identically because the leading term K, vanishes
on the (n — 1)-dimensional boundary. This is not surprising, since
we know that in this case the total curvature is constant, namely,

the Fuler characteristic.
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Corollary

The total curvature [ v KndV of an even-dimensional open hy-
persurface M C E"™ with cone-like ends (as submanifolds of
S™) is stationary (within the class of such hypersurfaces having
cone-like ends) if and only if each component of M, has van-
ishing Gauss-Kronecker curvature in the sphere “at infinity”
or, equivalently, if it has one vanishing principal curvature at

each point.

Notice that for n = 2 the Gauss-Kronecker curvature of M, is
nothing but the geodesic curvature of the boundary curve. Thus
in the stationary 2-dimensional case we have the same behavior
as in Osserman’s formula for minimal surfaces: The Gauss-Bonnet

defect equals 27 times the number of ends.

Examples: The total curvature is stationary if each end is of one

of the following types:

1. a point p € S? (follows from the Cohn-Vossen inequality),
2. a totally geodesic great sphere St C S,

3. Cartan’s isoparametric hypersurface in S*.

Moreover, if every end is a point then we have the Gauss-Bonnet
equation (c,/2)x(M) — [,, KdV = 0. If every end is a totally
geodesic sphere then we have (¢, /2)x (M) — [,, KdV = (¢,/2) - k

where k denotes the number of ends.
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Hypersurfaces of S"™! with vanishing

Gauss-Kronecker curvature

[t seems that not too much is known about compact hypersurfaces

of the standard sphere with vanishing Gauss-Kronecker curvature.

Theorem

Let M? be a compact hypersurface of S*1) with vanishing
Gauss-Kronecker curvature. Assume that the rank of the shape
operator is constant. Then

1

— — 2)d Z..
= M(S )dV €

PRrROOF If M? is totally geodesic, then S = 6, volM = 272 and
the proof is finished. By a theorem of Ferus the rank of the shape
operator cannot be 1, so that we can assume that the rank is
2. Then M? is a tube over an immersed surface N and we can
apply the formulas KodV = dV.,, = dN N dsg and dV (p, &) =
det(Ag)dVean(p, &). The Gauss equation for M implies S = 6 +
2K, so that (S —2)dV = 4dV 4+ 2KodV = 4dV + 2dV,4y,. Under
the assumptions we know that K5 is nowhere zero. Let € be the
sign of K5. Then fM(S —2)dV = 4fL1(N) dV +2 le(N) AV.an
=4 le(N) det AedVeap, + 4mevol N

= 4e [y (K — 1)dN + 4mevol N

= 8m2ex (V).
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Remark Under the assumptions of the theorem above the topol-
ogy of the 3-dimensional hypersurface is essentially unique: Either
it is totally geodesic and thus an equatorial 3-sphere or it must be
diffeomorphic to Cartan’s isoparametric hypersurface, according
to a theorem of R.Miyaoka et al.(1999). However, the geometry is
quite flexible in this case. One can slightly perturb the Veronese

surface and then consider the tube around it of radius 7/2.

Theorem (Quantization of the total curvature)

Let M* be a complete open hypersurface of E> with finitely
many cone-like ends and with stationary total curvature. As-
sume that for each end the rank of the shape operator in the
sphere “at infinity” s constant. Then the normalized total

curvature takes values in the integers:

3
S K, dV € 7.
in? /M v e

This theorem can be considered as a kind of quantization of the
total curvature for hypersurfaces with cone-like ends, under the ad-
ditional condition that the total curvature is stationary (or, equiv-
alently, that the Gauss-Kronecker curvature at infinity vanishes)
and a condition on the rank of the shape operator, which we con-

jecture to be superfluous.
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Conjecture
For any complete open hypersurface M™ C E"™! (n even) with
cone-like ends and with stationary total curvature [ W KAV,

the normalized total curvature (2/cy) [,, KdV is an integer.

We remark that the conjecture holds for n = 2. Indeed, in that
case each end is a great circle or a point, such that the length

of My is a multiple of 27. It follows that (1/27) [,, KdV is an

integer.

QUESTIONS: 1. One of the open questions is whether or not
every compact hypersurface in the sphere with vanishing Gauss-
Kronecker curvature is a 7 /2-tube around some other submanifold.
If yes, then this would provide a strategy for proving the conjecture
on the quantization of the total curvature.

2. Since the Gauss-Bonnet difference term can be expressed by
intrinsic curvatures Ko; of M., the question arises whether this
difference can be described purely intrinsically in the original mani-
fold M. For 4-dimensional complete Riemannian manifolds one
would have to introduce a volume and an appropriate version of a

scalar curvature of the ideal boundary “at infinity”.
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