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Definition: A complete (open) hypersurface in Euclidean E
n+1

is an embedded hypersurface such that the embedding is proper

(preimage of a compact set is compact) and such that the image

is complete. Similarly we have complete open immersed hypersur-

faces.

Theorem (Gauss-Bonnet)

For any compact and oriented Riemannian 2-manifold with

boundary the equality

2πχ(M) −
∫

M

KdA =

∫

∂M

κ(s)ds

holds where κ denotes the geodesic curvature on the oriented

boundary. In particular, if all boundary curves are geodesics,

we obtain

2πχ(M) −
∫

M

KdA = 0,

the same formula which holds for compact 2-manifolds without

boundary.

In the case of non-compact 2-manifolds things are a little bit more

complicated.
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Theorem (Cohn-Vossen)

If (M, g) is a complete Riemannian 2-manifold of finite topo-

logical type and with absolutely integrable Gauss curvature K,

then the inequality

2πχ(M) −
∫

M

KdA ≥ 0

holds. In particular, we have
∫

M KdA ≤ 2π if M is non-

compact.

There are more subtle versions for the case that M is not of finite

topological type. Furthermore, there are a number of additional

conditions under which the Gauss-Bonnet equality

2πχ(M) −
∫

M KdA = 0 holds in the non-compact case.

Theorem (Osserman)

For embedded and complete minimal surfaces with finite total

curvature the equation

2πχ(M) −
∫

M

KdA = 2πk

holds where k is the number of ends. In the case of immersed

minimal surfaces one has to take “multiplicities” at the ends

into account.

Wintgen suggested that the curvature defect of a complete and

properly immersed surface in Euclidean 3-space is the length of the

set M∞ of the so-called limit directions limn→∞ f(xn)/||f(xn)||.
This is true under reasonable additional assumptions.
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For a hypersurface in Euclidean space E
n+1 we have the Gauss-

Kronecker curvature K = Kn which is defined as the determinant

of the shape operator. It is well-known that K is intrinsic if n is

even.

Notation: The constant cn denotes the volume of the standard

unit n-sphere. This can be expressed in terms of the Gamma

function as follows: cn−1 = 2πn/2/Γ(n/2). The symbol dV denotes

the volume element of a submanifold, sometimes in the form dVM

for specifying the manifold on which it is defined.

Theorem (Gauss-Bonnet-Hopf)

Let Mn ⊂ E
n+1 be an embedded compact hypersurface such

that M is the boundary of its interior Mint ⊂ E
n+1, and let

K denote the Gauss-Kronecker curvature of M with respect to

the inner normal (pointing to Mint). Then the following hold:

(i)
∫

M KdVM = cn · χ(Mint).

(ii) If n is even, then χ(M) = 2χ(Mint) and, consequently,
∫

M KdVM = (cn/2) · χ(M).

Moreover, this equality holds for arbitrary immersions

f : M → E
n+1

of a compact orientable n-manifold, even if M is not the

boundary of any (n + 1)-manifold.
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As a matter of fact, for odd dimensions the total curvature does

depend on the choice of Mint, i.e., on the choice of the embedding.

Nevertheless, we have the following folklore result:

Proposition

Within the class of all immersions f : M n → E
n+1 of a fixed

compact manifold M , the total Gauss-Kronecker curvature
∫

M KdVM depends only on the regular homotopy class of f .

This follows from the variational formula for the total curvature,

see below. The gradient of the curvature functional
∫

M KdV is

identically zero. The theorem on turning tangents (the “Hopf

Umlaufsatz”) can be regarded as the special case n = 1 in the

Gauss-Bonnet-Hopf theorem.

Definition (unit normal space, total curvature)

For a compact submanifold Mn ⊂ E
m+1 with boundary ∂M we

define the unit normal space N 1 by

N 1 =⊥1 (M) ∪ ⊥1
+ (∂M).

It carries a canonical volume form dVcan as in the case of a sub-

manifold without boundary. Then the total curvature of M is

defined as the sum of the total curvatures of the two parts from

⊥1 (M \ ∂M) and from ⊥1
+ (∂M):

TC(M, ∂M) :=

∫

N1
KdVcan

=

∫

ξ∈⊥1(M\∂M)

Kn(ξ)dVcan +

∫

ξ∈⊥1
+(∂M)

Kn−1(−ξ)dVcan.
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Theorem

For a compact submanifold Mn ⊂ E
m+1 with boundary ∂M

(or an immersion of M) the Gauss-Bonnet formula holds as

follows:

TC(M, ∂M) = cm · χ(M).

Moreover, if m is even, then we have χ(N 1) = 2χ(M).

The Gauss-Bonnet difference term

cmχ(M) −
∫

⊥1(M\∂M)

KndVcan

can be expressed as the integral of Kn−1 over the set of outer unit

normals at ∂M . Obviously, any ξ̃ ∈ (⊥1
+)p can be uniquely written

as

ξ̃ = cos ϕ · νout + sin ϕ · ξ,

where 0 ≤ ϕ ≤ π/2 and ξ is a unit normal vector to M at

p ∈ ∂M . Vice versa, any such ξ leads to a ξ̃ in (⊥1
+)p for any ϕ

with 0 ≤ ϕ ≤ π/2. This enables us to compute this integral by

Fubini’s theorem, pointwise evaluated for the normal sphere Sm−n

on the one hand and half the normal sphere Sm−n+1 on the other

hand.

5



Theorem (Gauss-Bonnet theorem for submanifolds in the closed

unit ball)

Let (Mn, ∂Mn) ⊂ (Bm+1, Sm) be a compact submanifold which

is orthogonal at the boundary, i.e., the outer normal νout of M

at each boundary point coincides with the outer normal of Sm.

Then for the Gauss-Bonnet defect the equation

cmχ(M) −
∫

⊥1(M\∂M)

KdVcan

=
∑

0≤2i≤n−1

cm

cm−n+2icn−1−2i

∫

⊥1(∂M)

K2i dVcan

holds, where Kj denotes the jth elementary symmetric func-

tion of the eigenvalues of the shape operator of the embedding

∂M → Sm.
Proof: At each boundary point p ∈ ∂M we compute the boundary term

as follows:
∫

ξ̃∈(⊥1
+)p

Kn−1(−ξ̃) dVSm−n+1 =
∫

ξ∈⊥1
p, 0≤ϕ≤π/2 Kn−1(sinϕ · ξ −

cos ϕ · νout) dVSm−n+1

=
∫
⊥1

p

∫ π/2

0 det(sin ϕ · Aξ − cosϕ · Aνout
)dVSm−n ∧ sinm−n ϕ dϕ

=
∫
⊥1

p

∫ π/2

0 sinm−1 ϕ det(Aξ + cotϕ · Id) dVSm−n ∧ dϕ

=
∫
⊥1

p

∫ π/2

0 sinm−1 ϕ
∑n−1

j=0 Kj(ξ) cotn−1−j ϕ dVSm−n ∧ dϕ

=
∑n−1

j=0

∫ π/2

0 sinm−n+j ϕ cosn−1−j ϕ dϕ
∫

ξ∈⊥1
p

Kj(ξ)dVSm−n.

Note that in our case the shape operator Aξ of ∂M in the ambient Euclidean

space coincides with the shape operator of ∂M in Sm and that Aνout
is

nothing but the negative identity, namely, the shape operator of Sm ⊂
E

m+1. The last integral vanishes for odd j, and so we obtain the sum over

all even j = 2i. The proof is completed by the equation

∫ π/2

0

sinm−n+j ϕ cosn−1−j ϕdϕ =
cm

cm−n+jcn−1−j
.
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Corollary (Special cases)

1. For a compact surface (M 2, ∂M 2) ⊂ (B3, S2) of this type

we have

4πχ(M) − 2

∫

M

KdVM = 2 · length(∂M).

2. For a compact hypersurface (M 4, ∂M 4) ⊂ (B5, S4) of this

type we have

8

3
π2χ(M) − 2

∫

M

K4 dVM =
1

3

∫

∂M

(S − 2) dV∂M ,

where S denotes the scalar curvature of ∂M 4.

Proof: From the formula above we obtain

c2χ(M) − TC(M \ ∂M) =
c2

c0c1

∫

∂M

2K0 dV∂M = 2

∫

∂M

dV∂M

in the case (i). For (ii) we have

8

3
π2χ(M) −

∫

⊥1(M)

K4 dVcan =
8

3
π2

∫

∂M

(
2

4π2
+

2K2

8π2
) dV∂M

=
1

3

∫

∂M

(4 + 2K2) dV∂M =
1

3

∫

∂M

(S − 2) dV∂M ,

where S = 6 + 2K2 is the scalar curvature of ∂M .

For a compact 3-dimensional hypersurface we obtain

c3χ(M) − 0 =
c3

2c2

∫

∂M

(1 + K2) =
c3

2c2

∫

∂M

K =
c3

2
χ(∂M).
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Definition (Cone-like end) An end E of a complete submanifold

Mn ⊂ E
m+1 with associated component ME

∞ (which is assumed

to be either a smooth submanifold or a point) in the set of limit

directions is said to be (asymptotically) cone-like if the following

conditions are satisfied:

1. There is a point q such that for sufficiently large R the inter-

section E ∩ Sm(R; q) is an (n − 1)-dimensional submanifold

of the sphere of radius R around q, and

lim
R→∞

1

R
(E ∩ Sm(R; q)) = ME

∞

(in the C2-topology if it is a manifold). This property is ac-

tually independent of the choice of q, so that we may assume

that q is the origin 0.

2. For every ε there is a number R0 such that for each R >

R0 the angle between outer unit normal of the submanifold

E ∩ Bm+1(R; 0) at any point p ∈ E, ||p|| = R, and the

position vector p is at most ε.

Theorem

For a complete submanifold Mn ⊂ E
m+1 with finitely many

cone-like ends the Gauss-Bonnet defect is given by the same

formula for M∞ ⊂ Sm as above

cmχ(M) −
∫

⊥1
KdVcan =

∑

0≤2i≤n−1

cm

cm−n+2icn−1−2i
K2i(M∞).
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Corollary

1. If in addition all curvatures K2i of M∞ are nonnegative, then

the ‘Cohn-Vossen inequality’ cmχ(M)−
∫
⊥1 KdVcan ≥ 0 holds.

2. If in addition for each end ME
∞ is totally geodesic in Sm, then

we have

χ(M) − 1

cm

∫

⊥1
KdVcan = k,

where k denotes the number of ends.

3. For a 2-dimensional open surface M 2 ⊂ E
3 with cone-like ends

the Gauss-Bonnet defect equals the total length of M∞ ⊂ S2

(counted with multiplicity, i.e., for each end separately):

2πχ(M) −
∫

M

KdA = length(M∞) ≥ 0,

where K is the Gauss curvature. This implies the Cohn-Vossen

inequality.

4. For an open hypersurface M 4 ⊂ E
5 with cone-like ends the

Gauss-Bonnet defect is

4

3
π2χ(M) −

∫

M

K4dVM =
1

6

∫

M∞
(S − 2)dVM∞,

where the integral has to be taken for each end separately.
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Notice that the value 2 for the scalar curvature has a special mean-

ing by the following gap theorem: It is known that a compact

hypersurface of S4(1) with constant mean curvature and constant

scalar curvature can satisfy S ≤ 2 only if it is a member of Cartan’s

isoparametric family of hypersurface with S = 0.

Corollary The Cohn-Vossen inequality does not hold in gen-

eral for complete open 4-dimensional hypersurfaces in Euclidean

5-space.

A Key Example is a 4-manifold with one end which is (asymptot-

ically) a cone over Cartan’s hypersurface. Here for M∞ we have

three principal curvatures
√

3, 0,−
√

3, and hence

K1 = 0, K2 = −3, S = 6 + 2K2 = 0

with vanishing scalar curvature and non-vanishing volume. This

implies that the Gauss-Bonnet defect is strictly negative.
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The variational problem for the total curvature

The variation of the extrinsic higher mean curvature functionals

Ki(M) =

∫

M

KidVM

where Ki denotes the ith elementary symmetric function of the

eigenvalues of the shape operator A of a hypersurface. The nor-

malization is chosen such that the characteristic polynomial is

det(A + λ · Id) =
∑

i Kiλ
n−i if M is n-dimensional. In terms of

the principal curvatures κi one has Ki =
∑

j1<···<ji
κj1κj2 · · ·κji.

Theorem (Pinl–Trapp, K. Voss, R. Reilly)

For any hypersurface in Euclidean space the gradient of the ith

curvature functional Ki =
∫

KidV is the function

−(i + 1)Ki+1.

Theorem (R. Reilly)

For a hypersurface in the unit n-sphere the gradient of the

curvature functional Ki =
∫

KidV is the function

−(i + 1)Ki+1 + (n − i)Ki−1.
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Theorem

For even n the gradient of the total outer curvature functional

(= the right hand side of the formula for M∞) of a hypersurface

in Sn is the negative Gauss-Kronecker curvature −Kn−1 of this

hypersurface.

Proof If δ denotes the gradient, then we have

δKi = −(i + 1)Ki+1 + (n − i)Ki−1

by the theorem above. If n is even, this implies

δ(
∑

0≤2i≤n−1

cn

c2icn−1−2i
K2i)

=
∑

0≤2i≤n−2

cn

c2icn−1−2i
( − (2i + 1)K2i+1 + (n − 2i)K2i−1)

= − cn

cn−2c1
(n−1)Kn−1+

∑

0≤2i≤n−4

cn(
n − 2i − 2

c2i+2cn−3−2i
− 2i + 1

c2icn−1−2i
)K2i+1

= −Kn−1.

In the last step we used the equation

(j − 1)cj = c1cj−2,

which holds for arbitrary j.

Remark If n is odd, then the same calculation shows that the

gradient vanishes identically because the leading term Kn vanishes

on the (n− 1)-dimensional boundary. This is not surprising, since

we know that in this case the total curvature is constant, namely,

the Euler characteristic.
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Corollary

The total curvature
∫

M KndV of an even-dimensional open hy-

persurface M ⊂ E
n+1 with cone-like ends (as submanifolds of

Sn) is stationary (within the class of such hypersurfaces having

cone-like ends) if and only if each component of M∞ has van-

ishing Gauss-Kronecker curvature in the sphere “at infinity”

or, equivalently, if it has one vanishing principal curvature at

each point.

Notice that for n = 2 the Gauss-Kronecker curvature of M∞ is

nothing but the geodesic curvature of the boundary curve. Thus

in the stationary 2-dimensional case we have the same behavior

as in Osserman’s formula for minimal surfaces: The Gauss-Bonnet

defect equals 2π times the number of ends.

Examples: The total curvature is stationary if each end is of one

of the following types:

1. a point p ∈ S2 (follows from the Cohn-Vossen inequality),

2. a totally geodesic great sphere Sn−1 ⊂ Sn,

3. Cartan’s isoparametric hypersurface in S4.

Moreover, if every end is a point then we have the Gauss-Bonnet

equation (cn/2)χ(M) −
∫

M KdV = 0. If every end is a totally

geodesic sphere then we have (cn/2)χ(M)−
∫

M KdV = (cn/2) · k
where k denotes the number of ends.
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Hypersurfaces of Sn+1 with vanishing

Gauss-Kronecker curvature

It seems that not too much is known about compact hypersurfaces

of the standard sphere with vanishing Gauss-Kronecker curvature.

Theorem

Let M 3 be a compact hypersurface of S4(1) with vanishing

Gauss-Kronecker curvature. Assume that the rank of the shape

operator is constant. Then

1

8π2

∫

M

(S − 2)dV ∈ Z.

Proof If M 3 is totally geodesic, then S = 6, volM = 2π2 and

the proof is finished. By a theorem of Ferus the rank of the shape

operator cannot be 1, so that we can assume that the rank is

2. Then M 3 is a tube over an immersed surface N and we can

apply the formulas K2dV = dVcan = dN ∧ dsS1 and dV (p, ξ) =

det(Aξ)dVcan(p, ξ). The Gauss equation for M implies S = 6 +

2K2, so that (S − 2)dV = 4dV + 2K2dV = 4dV + 2dVcan. Under

the assumptions we know that K2 is nowhere zero. Let ε be the

sign of K2. Then
∫

M(S − 2)dV = 4
∫
⊥1(N) dV + 2

∫
⊥1(N) dVcan

= 4
∫
⊥1(N) det AξdVcan + 4πεvolN

= 4ε
∫

N π(K − 1)dN + 4πεvolN

= 8π2εχ(N).
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Remark Under the assumptions of the theorem above the topol-

ogy of the 3-dimensional hypersurface is essentially unique: Either

it is totally geodesic and thus an equatorial 3-sphere or it must be

diffeomorphic to Cartan’s isoparametric hypersurface, according

to a theorem of R.Miyaoka et al.(1999). However, the geometry is

quite flexible in this case. One can slightly perturb the Veronese

surface and then consider the tube around it of radius π/2.

Theorem (Quantization of the total curvature)

Let M 4 be a complete open hypersurface of E
5 with finitely

many cone-like ends and with stationary total curvature. As-

sume that for each end the rank of the shape operator in the

sphere “at infinity” is constant. Then the normalized total

curvature takes values in the integers:

3

4π2

∫

M

K4dV ∈ Z.

This theorem can be considered as a kind of quantization of the

total curvature for hypersurfaces with cone-like ends, under the ad-

ditional condition that the total curvature is stationary (or, equiv-

alently, that the Gauss-Kronecker curvature at infinity vanishes)

and a condition on the rank of the shape operator, which we con-

jecture to be superfluous.
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Conjecture

For any complete open hypersurface M n ⊂ E
n+1 (n even) with

cone-like ends and with stationary total curvature
∫

M KdV ,

the normalized total curvature (2/cn)
∫

M KdV is an integer.

We remark that the conjecture holds for n = 2. Indeed, in that

case each end is a great circle or a point, such that the length

of M∞ is a multiple of 2π. It follows that (1/2π)
∫

M KdV is an

integer.

Questions: 1. One of the open questions is whether or not

every compact hypersurface in the sphere with vanishing Gauss-

Kronecker curvature is a π/2-tube around some other submanifold.

If yes, then this would provide a strategy for proving the conjecture

on the quantization of the total curvature.

2. Since the Gauss-Bonnet difference term can be expressed by

intrinsic curvatures K2i of M∞, the question arises whether this

difference can be described purely intrinsically in the original mani-

fold M . For 4-dimensional complete Riemannian manifolds one

would have to introduce a volume and an appropriate version of a

scalar curvature of the ideal boundary “at infinity”.
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