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Notations

Question:
When does a Riemannian product admit a (local or
global) conformal mapping onto an Einstein space ?

Notations:

(M™, g) denotes an n-dimensional pseudo-Riemannian manifold
(of arbitrary signature). F: (M,g) — (N, h) is conformal iff
F*h = p~2g for a real function ¢ that is never zero:

hp@) (AF(X), dF,(Y)) = 972(2) - g.(X,Y)

V2p(X,Y) = g(Vxgradp,Y) denotes the Hessian (0, 2)-tensor

Ay = div (grad ) = tr(V2p) is the Laplacian of p, Ric denotes

the Ricci tensor, (M™,g) is Einstein iff Ric = A\ - g.

n > 3: Einstein constant \, n = 2: A\ = K (Gaussian curvature)
scalar curvature tr(Ric) = S = n),

normalized scalar curvature k= 55y = 25 (=1 for S(1)).



Basic formulas

Lemma 0.1

The following formula holds for any conformal change
g — g = ¢ 2g of a metric on an n-dimensional manifold:

(1) Ric—Ric = ¢~* ((n—2)-30-V290+ [w-Aw—(n—l)-llgradMF] -g)-
Consequently, the metric g is Einstein if and only if the equation
(2) ¢-Ric+(n—2)-Vip=0-g
holds for some function 6 or, equivalently,

¢+ (Ric)° + (n —2) - (V*p)* =0

where ( )° denotes the trace-free part.




Immediate consequences

Corollary 0.2

A metric g on a manifold M is (locally or globally) conformally
Einstein if and only if there is a (local or global) positive solution
o of the equation

v - (Ric)® + (n — 2) - (V*p)° = 0.

Corollary 0.3 (H.W.Brinkmann 1925)
If g is an Einstein metric then g is also an Einstein metric if and
only if

(VZp)° = 0.




Another approach

Theorem 0.4 (I.R.Miklashevskii 1987)

A metric g on an n-manifold M is conformally Einstein if and
only if a certain vector bundle over M of rank n + 2 admits a
horizontal section. The connection is determined by the
conformal structure.

Further results by H.Baum, R.Gover, F.Leitner and others
(conformal holonomy)

Theorem 0.5 (A.Derdzinski 1983)

If (M, g) is a 4-dimensional Kédhler manifold such thatg = p~2g
is Einstein, then o coincides - up to a constant - with the scalar
curvature of g.



Folklore result

On an Einstein space with n > 3 the equation (V2p)° = 0 can be
explicitly solved in the sense that g and ¢ can be determined.
Roughly the results are the following:

As long as g(grady, grady) # 0, the metric is a warped product
g =edt’ +(¢'(1))°g

with an (n — 1)-dimensional Einstein space (M., g.), ¢ = +1, and
where ¢ depends only on ¢ and satifies the following equations:

) @+ ek =0, (") + eh(g)? = ek,

If g(gradep, grady) = 0 on an open subset then we have Vip =0
and Ric = Ric = 0. This leads to a so-called Brinkmann space.
Typical 4-dimensional examples are pp-waves

g = —2dudv — 2H (u, z, y)du* + dz* + dy?
with a parallel gradient 2 of ¢ = u and with H,, + H,, = 0.



A classical example: The generalized
Mercator projection

Example (conformal cylinder)

Let M, be an (n — 1)-dimensional Einstein space with Einstein
constant A\, = n — 2. Then the cylinder M = R x M, with the
product metric g = dt* + g, is conformally Einstein:

The metric § = cosh 2t - ¢ is Einstein with A\ = n — 1.

If M, = S™1(1) then (M, g) is a cylinder representing the
(classical n-dimensional) Mercator projection from the n-sphere
without north and south pole. We verify

¢ - (Ric)° + (n — 2) - (V%p)° = 0 for ¢ = cosh ¢ by the block matrix
structure

. (0 0 s (¢ 0N (¢ 0O
RIC_(O(n—z)g*)’V@_(o 0)~\oo)

. _ (n=1)(n—2) 0 5 o (n—1)p 0
mior= (T L )@= )

n




A classical example: The generalized
Mercator projection

Remarks:

(1) In the special case of a compact Einstein space M, % S"~!
this generalized Mercator projection is the result of a theorem by
Moroianu and Ornea 2008. Here the assumption is a globally
conformally Einstein product R x M, of strictly positive scalar
curvature.

(2) The transition from the conformal cylinder

g = cosh™ t(dt* + g.) to the more familiar version

g = ds? + sin? s g, in polar coordinates is achieved by the
parameter transformation t + s(t) with ds/dt = cosh™" t
leading to the Gudermann function

t
s(t) = / cosh™' 7 dr = 2arctane’.

—0o0

The equation sin s = cosh ™! ¢ follows.



Einstein warped products revisited

Proposition (Conformally Einstein products of type R x M)

If fis a non-constant function only on the real parameter t then
the metric

g=["(edt’ + g.)
is Einstein if and only if (M,, g.) is an n-dimensional Einstein
space and f satisfies the ODE

ko f? —e(f)? =F.

Compare the Einstein warped products
g = eds® + (¢'(s))?9.
above with the similar ODE

k(') + e(¢")? = k.



Special cases

Riemannian: = 1.

f(t) =cosht, ¢'(s) =sins, k=k=k, =1

cosh™ t =sins, t € (—00,00), s € (0, ) (Mercator)
For fixed s the M.-slices behave like small spheres in the unit
sphere parallel to the equatorial sphere (Fermi coordinates).

f(t) =sint, ¢'(s) =coshs, k=k=Fk, =—1

sin~'t = coshs, t € (0,7), s € (—00,00)  (hyperbolic Mercator)
For fixed s the M,-slices behave like parallel hypersurfaces to a
hyperbolic hyperplane (Fermi coordinates).

fit)y=t, ¢'(s)=e*, k=k=—1, k, =0 (Poincaré half space)
If ¢, is Ricci flat but not flat we obtain a generalized Poincaré
half space of type (0, 00) x M, with the metric

t72(dt? + g,) = ds®> + e **g, and s = log t.

For fixed s the M,-slices behave like horospheres.

Special case if M, is a Ricci flat K3 surface.



Main theorem

Main Theorem on conformally Einstein products
Let (M",g) and (M-, g.) be pseudo-riemannian manifolds with
n+n, > 3. If f(y,x) is a non-constant function depending on
y € M and x € M, and if the metricg = f2(g + g.) on M x M,
is Einstein then one of the following cases occurs:
(1) g is a warped product, i.e., f depends only on one of the
factors M or M,. Moreover the fibre is an Einstein space.
(2) f(y,x) = a(y) + b(x) with non-constant a and non-constant
b, and both (M, ¢g) and (M., g.) are Einstein spaces, and
a satisfies the equation (V2a)° = 0 and, simultaneously,
b satisfies the equation (V2b)° = 0.



Main theorem (continued)

If n > 3 or n, > 3 then we have necessarily
Va = (—ka + c)g

with a constant ¢ and with normalized scalar curvatures k = —k,.
Such Einstein spaces can be (locally and globally) classified.

If n» = n, = 2 then either the Gaussian curvatures are constant
and satisfy K = — K, or both are non-constant and satisfy the
equations VK = 27 and V2K, = 2K Such metrics are
also called extremal.

REMARK: A complete classification of Einstein warped products in (1) is not known.
However, Einstein warped products with a 1-dimensional base are easy to classify by
the folklore result above. For the case of a 2-dimensional base see the book by
A.Besse.



Main theorem (converse direction)

Conversely, any Einstein warped product in Case (1) is
conformally equivalent with a product space, and any two
Einstein metrics g, g. with constant k£ = —, and with solutions
a(y), b(z) of the equations V?a = (—ka + ¢)g and

V2b = (—k.b + c)g. lead to an Einstein metric

g=(a+b)7*(g+g.)
on M x M, in Case (2).

Any compact factor M or M, in Case (2) is necessarily a
standard sphere with a positive or negative definite metric.
However, (M x M,,q) cannot be compact since then a + b has a
zero.

If n = n, = 2 then there are also examples M x M, with two
surfaces M, M, that are not of constant curvature. However, by
a theorem of Calabi (quoted in Derdzinski’'s handbook article)
there are no compact examples of this kind.



Method of proof

We use Equation (1) in the first Lemma:
fA(Ric — Ric) = (N = 1)f - V2f + |- Af = N - [gradfI|*] - g

If 7 is Einstein with f?Ric = f?A\g = \g

then V2 f admits a block matrix decomposition.

This implies dj;fwi = ( for any coordinate y; on the first factor
and x; on the second.

Therefore f splits as

f(y,r) = a(y) + b(z)

with functions a on M and b of M,, and we have

%Qa 0
20
vi= (%" o)



The equation to be solved

~(9 0 Ric 0
A(0 g*)_fQ( 0 Ric*) (+4)
v -0f (N gy )+ [ear= v ear] - (50

From this equation it is obvious that a constant function «
implies that g is Einstein and a constant function b implies that g,
is Einstein.

In each of these cases g is a warped product metric with an
Einstein fibre. This is case (1) in the Main theorem.



The mixed case

What happens if « and b both are non-constant ?
In this case the system of equations (**) is coupled. We
differentiate in a direction X tangent to M, and Y tangent to M
such that Vya # 0, Vxb # 0:
0=2fVxb-Ric+ (N —1)Vxb-Va
+[Vxbe Af 4 fVxAb = N - Vlgradf|?] -5,

0 =2fVya- Ric, + (N — 1)Vya - V?b
+|Vya- Af + [VyBa— N - Vy|gradf|?] - g,

Dividing through by V xb or Vya and differentiating once more
leads to

0 =2V f-RictVy [Af+(vxb)—1 (fVXA*b—N-VX ngadeQH -7,

0 = 2Vy f-Ric.+Vy [Af—l—(Vya)_l <fvyﬁa—N-vyngade2)] G-



General conclusion

A direct consequence:
1. g and g, are Einstein metrics.

2. In addition V2« is a scalar multiple of g and that V2b is a
scalar multiple of g.. This is precisely the equation in the Folklore
result. In combination we have Case (2) in the Main theorem.

3. Thus, if n > 3 and n, > 3 we obtain warped product Einstein
metrics g, g. with warping functions «, b satisfying

V2a = (—ka + ¢)g and simultaneously V2b = (—k.b + c¢,) g, With
constants ¢, c..

4. Furthermore Equation (**) implies k=—k,and c = c,.



Special conclusion if n = n, = 2
If n = n, = 2 then we have warped product metrics

G = edt? £d(t)%dr?, g, = e.ds® £V (s)*dy?

with VZa=ea’g and V?2b=elbg..
The Gaussian curvatures are K = —ead"” /d', K, = —€,0" V.
Then Equation (xx) reads as follows:
A= (a+b)’K +2(a+b)ea” + (a+b)(2ea” + 2¢,b") — 3(ea” + €,b%)
A= (a+b)’K.+2(a+b)e.b” + (a+b)(2ea” +2€,b") — 3(ea” + €.b?).
In particular we have
0=(a+b)(K —K,)+2(ea" —€,b")
= aK +2ea” — (DK, + 2¢,b") + DK — a K,



This leads to

/ /
= b'* = ¢ (constant)
and K = ca, K, = cb.

Inserting this into the last equation leads to the ODEs

ca’ +2ed" =d

and
cb? 4+ 2e,b" = d

with a constant d.

These equations have non-constant solutions.

A non-periodic solution withd =0,c=1,e = ¢, = 1:
a(t) = K(t) = —12t7% b(s) = K.(s) = —12s72.

This leads to the Ricci flat (and non-flat) metric

_ 4t , 576, ., 576,



Are there compact solutions ?

Candidates of compact Einstein manifolds in Case (2) that are
globally conformal to products:

(1) In any dimension: Products S"(1) x (—S5™(1)) with functions
a(t) = cost, b(s) = coss

that are globally defined.
Unfortunately the conformal image is not compact since the
function a + b has a zero (necessarily).

(2) For n = n, = 2 periodic solutions of the equations above
leading to products S? x 52, each factor being a surface of
revolution. Can that work ?



History

(A) There are periodic solutions of the ODE ca? + 2¢a” = d.

(B) Tashiro (JDG 1981): There are compact surfaces satisfying
the requirements above.

(C) Tashiro (JDG 1983): Corrigendum: These compact surfaces
have one singularity each. They look like a drop.

The error was pointed out by Derdzinski.

Correct statement: There is a compact product (52, g) x (52, g)
of two drop surfaces that is conformally Einstein.

(D) Theorem (Calabi 1982, Derdzinski): The only compact
conformally Einstein products M? x M? are Einstein products
themselves with a constant conformal factor.



There are no compact examples in Case (2)

(E) SIMPLE PROOF: On a compact surface the metric must be
positive or negative definite. Assume that there is a periodic
solution a(t) of ca® + 2a” = d with a minimum at ¢ = 0 such that
the metric dt* + a’*dz? is smooth in a neighborhood. Here dz?
describes the metric of a circle, like z = ¢¥.

Necessarily we have o”(0) = A > 0 (like polar coordinates).

If « hat a maximum at ¢t = ¢, then we have a"(ty) = —A.
Otherwise the metric has a singularity there.

This implies:

ca® = d — 2A at the minimum
ca® = d + 2A at the maximum.



Integrating the ODE leads to a”” = da — £a® + e with a constant e.

At the minimum and maximum we get

0= d_2A<d—d_2A>+e

In combination:

VAd=2A(d+ A) = Vd+24(d - A).

There is no real solution d unless A = 0. Contradiction. O



Corollary 0.6 (Moroianu & Ornea 2008)

If M, is compact Riemannian (but not a round sphere) and if

g = f~2(dt* + g.) is Einstein with S > 0 and with a non-constant
function f(t,x) that is globally defined and never zero on

R x M,, then the following holds:

(M., g.) Is an Einstein space with S, > 0, and the function f(t, x)
is the cosh-function on the real t-axis, up to constants. In
particular f does not depend on x € M,. This is precisely the
generalized Mercator projection above.




Proof. If f(t,x) depends on ¢t and on x then (M., g.) is a round
sphere by our main theorem in combination with the well known
theorem that the only compact pseudo-Riemannian Einstein
space admitting a non-constant solution of the equation

(V2b)° = 0 is the round sphere.

If f depends only on ¢ then g, is Einstein. Furthermore the case
S > 0 is only possible for a function of cosh-type (up to additive
or multiplicative constants). This is a consequence of the ODE
ff"—(f)* =k > 0. Moreover from f” = k. f we get k, > 0.

If f depends only on = then we obtain a contradiction: S, is
negative, and by Corvino’s result A, f is positive at a positive
maximum of f, and it is negative at a negative minimum of f.
Here we use that f never vanishes on M,. This is a
contradiction on a compact manifold M, because one of these
cases must occur. O



Non-compact examples
|. Here is an example of a complete Riemannian manifold
M:RxRx]/\/l\:RxM*

admitting a global solution f = a(t) + b(x) where both a, b are
non-constant and never zero. Unfortunately f has zeros. Let
(M,7q) be a complete Ricci flat manifold of dimension n — 1 and

a(t) =cost —2, b(s)=¢€"+2.

Then on M the function f(t, s, z) = a(t) + b(s) satisfies all
conditions above: The metric g, = ds®> +e**gon M, =R x M is a
complete Einstein space with k, = —1, and with ¢ = —2 we have

a'=ka+tec, V=-kb+c Vb= (-kb+c)g..

By the results above g = f~2(dt* + ds* + ¢*g) on M =R x M, is
Einstein with k = —1 whenever f(t,s) = cost + e* # 0.
If g is not flat then g is not of constant curvature.



Non-compact examples

Il. A similar example starts with an (n — 1)-dimensional Einstein
space (M, ) with k = —1. Then M =R x M with

g = dt? + cosh?(t)g is also Einstein with & = —1 and satisfies

V2 cosh(t) = cosh(t)g. If (]\//.7, 9) is (m — 1)-dimensional Einstein
with & = 1 then M, = R x M with g, = ds + cos?(s)g is also
Einstein with &, = 1 and satisfies V2 cos(s) = — cos(s)g.. Let

a(t) =cosht, b(s) = coss.

Then on M x M, the function f(t,z, s,y) = a(t) + b(s) satisfies
all conditions above with ¢ = 0. By the results above the metric

g = [2(dt® + cosh®(t)g + ds® + cos®(s)9)

on M x M= is Ricci flat whenever f(t, s) # 0. This is the case at
least if cos s # —1. If g is not hyperbolic then g is not of constant
curvature and not conformally flat. Consequently, 7 is not flat.



A global pseudo-Riemannian example

1. Let (]\7,@ be complete, Ricci flat and Riemannian. Then

M =R x M with g = dt?> + exp(2t)§ is complete Einstein with

k = —1 and satisfies V2 exp = exp g. Then —g is complete
Einstein with k£ = 1. Let a(t) = expt, b(s) = exps. Then on

(M, g) x (M, —g) the function f(t,z,s,y) = expt + exp s satisfies
all conditions above with ¢ = 0 and f # 0 everywhere. By the
results above the metric

= (expt+exps)? (dt2 + exp(2t)g — ds* — exp(23)§)

on M x M is Ricci flat everywhere. If g is not flat then ¢ is not of
constant curvature and not conformally flat.

Consequently, g is not flat.

In other words: (M x M,q) is Einstein (Ricci flat) and globally
conformal with a complete product metric.

The end



