Conformally Einstein product spaces

W.Kühnel

joint work with Hans-Bert Rademacher

Leipzig, 11. Oct. 2013

Notations

Question: When does a Riemannian product admit a (local or global) conformal mapping onto an Einstein space ?

Notations:

 (M^n, g) denotes an *n*-dimensional pseudo-Riemannian manifold (of arbitrary signature). $F: (M, g) \to (N, h)$ is *conformal* iff $F^*h = \varphi^{-2}g$ for a real function φ that is never zero:

$$h_{F(x)}\left(dF_x(X), dF_x(Y)\right) = \varphi^{-2}(x) \cdot g_x(X, Y)$$

 $\begin{aligned} \nabla^2 \varphi(X,Y) &= g \left(\nabla_X \operatorname{grad} \varphi, Y \right) \text{ denotes the } \textit{Hessian } (0,2) \text{-tensor} \\ \Delta \varphi &= \operatorname{div} \left(\operatorname{grad} \varphi \right) = \operatorname{tr} (\nabla^2 \varphi) \text{ is the } \textit{Laplacian of } \varphi, \operatorname{Ric denotes} \\ \text{the } \textit{Ricci tensor,} \quad (M^n,g) \text{ is } \textit{Einstein iff } \operatorname{Ric} = \lambda \cdot g. \\ n &\geq 3 \text{: } \textit{Einstein constant } \lambda, \quad n = 2 \text{: } \lambda = K \text{ (Gaussian curvature)} \\ \textit{scalar curvature} \quad \operatorname{tr}(\operatorname{Ric}) = S = n\lambda, \\ \textit{normalized scalar curvature} \quad k = \frac{S}{n(n-1)} = \frac{\lambda}{n-1} \quad (= 1 \text{ for } S^n(1)). \end{aligned}$

Basic formulas

Lemma 0.1

The following formula holds for any conformal change $g \mapsto \overline{g} = \varphi^{-2}g$ of a metric on an *n*-dimensional manifold:

(1)
$$\overline{\operatorname{Ric}} - \operatorname{Ric} = \varphi^{-2} \Big((n-2) \cdot \varphi \cdot \nabla^2 \varphi + \Big[\varphi \cdot \Delta \varphi - (n-1) \cdot \|\operatorname{grad} \varphi \|^2 \Big] \cdot g \Big).$$

Consequently, the metric \overline{g} is Einstein if and only if the equation

(2)
$$\varphi \cdot \operatorname{Ric} + (n-2) \cdot \nabla^2 \varphi = \theta \cdot g$$

holds for some function θ or, equivalently,

$$\varphi \cdot (\operatorname{Ric})^{\circ} + (n-2) \cdot (\nabla^2 \varphi)^{\circ} = 0$$

where ()° denotes the trace-free part.

Immediate consequences

Corollary 0.2

A metric g on a manifold M is (locally or globally) conformally Einstein if and only if there is a (local or global) positive solution φ of the equation

$$\varphi \cdot (\operatorname{Ric})^{\circ} + (n-2) \cdot (\nabla^2 \varphi)^{\circ} = 0.$$

Corollary 0.3 (H.W.Brinkmann 1925)

If g is an Einstein metric then \overline{g} is also an Einstein metric if and only if

$$(\nabla^2 \varphi)^\circ = 0.$$

Another approach

Theorem 0.4 (I.R.Miklashevskii 1987)

A metric g on an n-manifold M is conformally Einstein if and only if a certain vector bundle over M of rank n + 2 admits a horizontal section. The connection is determined by the conformal structure.

Further results by H.Baum, R.Gover, F.Leitner and others *(conformal holonomy)*

Theorem 0.5 (A.Derdzinski 1983)

If (M,g) is a 4-dimensional Kähler manifold such that $\overline{g} = \varphi^{-2}g$ is Einstein, then φ coincides - up to a constant - with the scalar curvature of g.

Folklore result

On an Einstein space with $n \ge 3$ the equation $(\nabla^2 \varphi)^\circ = 0$ can be explicitly solved in the sense that g and φ can be determined. Roughly the results are the following:

As long as $g(\operatorname{grad}\varphi, \operatorname{grad}\varphi) \neq 0$, the metric is a warped product

$$g = \epsilon dt^2 + (\varphi'(t))^2 g_*$$

with an (n-1)-dimensional Einstein space (M_*, g_*) , $\epsilon = \pm 1$, and where φ depends only on t and satifies the following equations:

(3)
$$\varphi''' + \epsilon k \varphi' = 0, \quad (\varphi'')^2 + \epsilon k (\varphi')^2 = \epsilon k_*$$

If $g(\operatorname{grad}\varphi, \operatorname{grad}\varphi) = 0$ on an open subset then we have $\nabla^2 \varphi = 0$ and $\operatorname{Ric} = \operatorname{Ric} = 0$. This leads to a so-called *Brinkmann space*. Typical 4-dimensional examples are pp-waves

$$g = -2dudv - 2H(u, x, y)du^{2} + dx^{2} + dy^{2}$$

with a parallel gradient $\frac{\partial}{\partial v}$ of $\varphi = u$ and with $H_{xx} + H_{yy} = 0$.

A classical example: The generalized Mercator projection

Example (conformal cylinder)

Let M_* be an (n-1)-dimensional Einstein space with Einstein constant $\lambda_* = n - 2$. Then the cylinder $M = \mathbb{R} \times M_*$ with the product metric $g = dt^2 + g_*$ is conformally Einstein: The metric $\overline{g} = \cosh^{-2} t \cdot g$ is Einstein with $\overline{\lambda} = n - 1$. If $M_* = S^{n-1}(1)$ then (M, g) is a cylinder representing the (classical *n*-dimensional) Mercator projection from the *n*-sphere without north and south pole. We verify

 $\varphi\cdot({\rm Ric})^\circ+(n-2)\cdot(\nabla^2\varphi)^\circ=0$ for $\varphi=\cosh t$ by the block matrix structure

$$\operatorname{Ric} = \begin{pmatrix} 0 & 0 \\ 0 & (n-2)g_* \end{pmatrix}, \ \nabla^2 \varphi = \begin{pmatrix} \varphi'' & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \varphi & 0 \\ 0 & 0 \end{pmatrix},$$
$$\operatorname{Ric}^\circ = \begin{pmatrix} -\frac{(n-1)(n-2)}{n} & 0 \\ 0 & \frac{n-2}{n}g_* \end{pmatrix}, \ (\nabla^2 \varphi)^\circ = \begin{pmatrix} \frac{(n-1)\varphi}{n} & 0 \\ 0 & -\frac{\varphi}{n}g_* \end{pmatrix}.$$

A classical example: The generalized Mercator projection

Remarks:

(1) In the special case of a compact Einstein space $M_* \not\cong S^{n-1}$ this generalized Mercator projection is the result of a theorem by Moroianu and Ornea 2008. Here the assumption is a globally conformally Einstein product $\mathbb{R} \times M_*$ of strictly positive scalar curvature.

(2) The transition from the conformal cylinder $\overline{g} = \cosh^{-2} t (dt^2 + g_*)$ to the more familiar version $\overline{g} = ds^2 + \sin^2 s g_*$ in polar coordinates is achieved by the parameter transformation $t \mapsto s(t)$ with $ds/dt = \cosh^{-1} t$ leading to the *Gudermann function*

$$s(t) = \int_{-\infty}^{t} \cosh^{-1} \tau \, d\tau = 2 \arctan e^{t}.$$

The equation $\sin s = \cosh^{-1} t$ follows.

Einstein warped products revisited

Proposition (Conformally Einstein products of type $\mathbb{R} \times M_*$)

If f is a non-constant function only on the real parameter t then the metric

$$\overline{g} = f^{-2}(\epsilon dt^2 + g_*)$$

is Einstein if and only if (M_*,g_*) is an *n*-dimensional Einstein space and *f* satisfies the ODE

$$k_*f^2 - \epsilon(f')^2 = \overline{k}.$$

Compare the Einstein warped products

$$g = \epsilon ds^2 + (\varphi'(s))^2 g_*$$

above with the similar ODE

$$k(\varphi')^2 + \epsilon(\varphi'')^2 = k_*.$$

Special cases

Riemannian: $\epsilon = 1$. $f(t) = \cosh t, \ \varphi'(s) = \sin s, \ k = \overline{k} = k_* = 1$ $\cosh^{-1} t = \sin s, \ t \in (-\infty, \infty), \ s \in (0, \pi)$ (Mercator) For fixed *s* the *M*_{*}-slices behave like small spheres in the unit sphere parallel to the equatorial sphere (Fermi coordinates).

 $f(t) = \sin t, \ \varphi'(s) = \cosh s, \ k = \overline{k} = k_* = -1$ $\sin^{-1} t = \cosh s, \ t \in (0, \pi), \ s \in (-\infty, \infty)$ (hyperbolic Mercator) For fixed *s* the *M*_{*}-slices behave like parallel hypersurfaces to a hyperbolic hyperplane (Fermi coordinates).

f(t) = t, $\varphi'(s) = e^{-s}$, $k = \overline{k} = -1$, $k_* = 0$ (Poincaré half space) If g_* is Ricci flat but not flat we obtain a *generalized Poincaré half space* of type $(0, \infty) \times M_*$ with the metric $t^{-2}(dt^2 + g_*) = ds^2 + e^{-2s}g_*$ and $s = \log t$. For fixed *s* the M_* -slices behave like horospheres. Special case if M_* is a Ricci flat K3 surface.

Main theorem

Main Theorem on conformally Einstein products

Let (M^n, \tilde{g}) and $(M_*^{n_*}, g_*)$ be pseudo-riemannian manifolds with $n + n_* \geq 3$. If f(y, x) is a non-constant function depending on $y \in M$ and $x \in M_*$ and if the metric $\overline{g} = f^{-2}(\tilde{g} + g_*)$ on $M \times M_*$ is Einstein then one of the following cases occurs:

- (1) \overline{g} is a warped product, i.e., *f* depends only on one of the factors *M* or *M*_{*}. Moreover the fibre is an Einstein space.
- (2) f(y,x) = a(y) + b(x) with non-constant a and non-constant b, and both (M,g) and (M_*,g_*) are Einstein spaces, and a satisfies the equation $(\widetilde{\nabla}^2 a)^\circ = 0$ and, simultaneously, b satisfies the equation $(\nabla^2_* b)^\circ = 0$.

Main theorem (continued)

If $n \ge 3$ or $n_* \ge 3$ then we have necessarily

$$\widetilde{\nabla}^2 a = (-\widetilde{k}a + c)g$$

$$\nabla^2_* b = (-k_*b + c)g_*$$

with a constant c and with normalized scalar curvatures $k = -k_*$. Such Einstein spaces can be (locally and globally) classified.

If $n = n_* = 2$ then either the Gaussian curvatures are constant and satisfy $\tilde{K} = -K_*$, or both are non-constant and satisfy the equations $\tilde{\nabla}^2 K = \frac{\Delta \tilde{K}}{2} \tilde{g}$ and $\nabla_*^2 K_* = \frac{\Delta K_*}{2} g_*$. Such metrics are also called *extremal*.

REMARK: A complete classification of Einstein warped products in (1) is not known. However, Einstein warped products with a 1-dimensional base are easy to classify by the folklore result above. For the case of a 2-dimensional base see the book by A.Besse.

Main theorem (converse direction)

Conversely, any Einstein warped product in Case (1) is conformally equivalent with a product space, and any two Einstein metrics \tilde{g}, g_* with constant $\tilde{k} = -k_*$ and with solutions a(y), b(x) of the equations $\widetilde{\nabla}^2 a = (-\widetilde{k}a + c)g$ and $\nabla^2_* b = (-k_*b + c)g_*$ lead to an Einstein metric

$$\overline{g} = (a+b)^{-2}(\widetilde{g}+g_*)$$

on $M \times M_*$ in Case (2).

Any compact factor M or M_* in Case (2) is necessarily a standard sphere with a positive or negative definite metric. However, $(M \times M_*, \overline{g})$ cannot be compact since then a + b has a zero.

If $n = n_* = 2$ then there are also examples $M \times M_*$ with two surfaces M, M_* that are not of constant curvature. However, by a theorem of Calabi (quoted in Derdzinski's handbook article) there are no compact examples of this kind.

Method of proof

We use Equation (1) in the first Lemma:

$$f^2(\overline{\operatorname{Ric}} - \operatorname{Ric}) = (N-1)f \cdot \nabla^2 f + \left[f \cdot \Delta f - N \cdot \|\operatorname{grad} f\|^2\right] \cdot g$$

If \overline{g} is Einstein with $f^2 \overline{\text{Ric}} = f^2 \overline{\lambda} \overline{g} = \overline{\lambda} g$ then $\nabla^2 f$ admits a block matrix decomposition. This implies $\frac{\partial^2 f}{dy_j dx_i} = 0$ for any coordinate y_j on the first factor and x_i on the second. Therefore f splits as

$$f(y,x) = a(y) + b(x)$$

with functions a on M and b of M_* , and we have

$$\nabla^2 f = \left(\begin{array}{cc} \widetilde{\nabla}^2 a & 0\\ 0 & \nabla^2_* b \end{array}\right)$$

The equation to be solved

$$\begin{split} \overline{\lambda} \left(\begin{array}{cc} \widetilde{g} & 0 \\ 0 & g_* \end{array} \right) &- f^2 \left(\begin{array}{cc} \widetilde{\operatorname{Ric}} & 0 \\ 0 & \operatorname{Ric}_* \end{array} \right) \quad (**) \\ &= (N-1)f \left(\begin{array}{cc} \widetilde{\nabla}^2 a & 0 \\ 0 & \nabla_*^2 b \end{array} \right) + \left[f \cdot \Delta f - N \cdot \|\operatorname{grad} f\|^2 \right] \cdot \left(\begin{array}{cc} \widetilde{g} & 0 \\ 0 & g_* \end{array} \right) \end{split}$$

From this equation it is obvious that a constant function a implies that \tilde{g} is Einstein and a constant function b implies that g_* is Einstein.

In each of these cases \overline{g} is a warped product metric with an Einstein fibre. This is case (1) in the Main theorem.

The mixed case

What happens if a and b both are non-constant ? In this case the system of equations (**) is coupled. We differentiate in a direction X tangent to M_* and Y tangent to Msuch that $\nabla_Y a \neq 0$, $\nabla_X b \neq 0$:

$$0 = 2f\nabla_X b \cdot \widetilde{\operatorname{Ric}} + (N-1)\nabla_X b \cdot \widetilde{\nabla}^2 a + \left[\nabla_X b \cdot \Delta f + f\nabla_X \Delta_* b - N \cdot \nabla_X \| \operatorname{grad} f \|^2 \right] \cdot \widetilde{g}, 0 = 2f\nabla_Y a \cdot \operatorname{Ric}_* + (N-1)\nabla_Y a \cdot \nabla_*^2 b + \left[\nabla_Y a \cdot \Delta f + f\nabla_Y \widetilde{\Delta} a - N \cdot \nabla_Y \| \operatorname{grad} f \|^2 \right] \cdot g_*$$

Dividing through by $\nabla_X b$ or $\nabla_Y a$ and differentiating once more leads to

$$0 = 2\nabla_X f \cdot \widetilde{\operatorname{Ric}} + \nabla_X \left[\Delta f + (\nabla_X b)^{-1} \left(f \nabla_X \Delta_* b - N \cdot \nabla_X \| \operatorname{grad} f \|^2 \right) \right] \cdot \widetilde{g},$$

$$0 = 2\nabla_Y f \cdot \operatorname{Ric}_* + \nabla_Y \left[\Delta f + (\nabla_Y a)^{-1} \left(f \nabla_Y \widetilde{\Delta} a - N \cdot \nabla_Y \| \operatorname{grad} f \|^2 \right) \right] \cdot g_*.$$

General conclusion

A direct consequence:

1. \tilde{g} and g_* are Einstein metrics.

2. In addition $\widetilde{\nabla}^2 a$ is a scalar multiple of \widetilde{g} and that $\nabla^2_* b$ is a scalar multiple of g_* . This is precisely the equation in the Folklore result. In combination we have Case (2) in the Main theorem.

3. Thus, if $n \ge 3$ and $n_* \ge 3$ we obtain warped product Einstein metrics \tilde{g}, g_* with warping functions a, b satisfying $\tilde{\nabla}^2 a = (-\tilde{k}a + c)g$ and simultaneously $\nabla^2_* b = (-k_*b + c_*)g_*$ with constants c, c_* .

4. Furthermore Equation (**) implies $\tilde{k} = -k_*$ and $c = c_*$.

Special conclusion if $n = n_* = 2$

If $n = n_* = 2$ then we have warped product metrics $\widetilde{g} = \epsilon dt^2 \pm a'(t)^2 dx^2, \ g_* = \epsilon_* ds^2 \pm b'(s)^2 dy^2$ with $\nabla^2 a = \epsilon a'' \widetilde{g}$ and $\nabla^2_* b = \epsilon_* b'' g_*$.

The Gaussian curvatures are $K = -\epsilon a'''/a', K_* = -\epsilon_*b'''/b'$. Then Equation (**) reads as follows:

$$\begin{split} \overline{\lambda} &= (a+b)^2 K + 2(a+b)\epsilon a'' + (a+b)(2\epsilon a'' + 2\epsilon_* b'') - 3(\epsilon a'^2 + \epsilon_* b'^2) \\ \overline{\lambda} &= (a+b)^2 K_* + 2(a+b)\epsilon_* b'' + (a+b)(2\epsilon a'' + 2\epsilon_* b'') - 3(\epsilon a'^2 + \epsilon_* b'^2). \end{split}$$

In particular we have

$$0 = (a+b)(K - K_*) + 2(\epsilon a'' - \epsilon_* b'')$$

= $aK + 2\epsilon a'' - (bK_* + 2\epsilon_* b'') + bK - aK_*$

This leads to

$$\frac{K'}{a'} = \frac{K'_*}{b'} = c \text{ (constant)}$$

and $K = ca, K_* = cb.$

Inserting this into the last equation leads to the ODEs

$$ca^2 + 2\epsilon a'' = d$$

and

$$cb^2 + 2\epsilon_*b'' = d$$

with a constant d.

These equations have non-constant solutions.

A non-periodic solution with $d = 0, c = 1, \epsilon = \epsilon_* = 1$:

$$a(t) = K(t) = -12t^{-2}, \ b(s) = K_*(s) = -12s^{-2}.$$

This leads to the Ricci flat (and non-flat) metric

$$\overline{g} = \frac{t^4 s^4}{(t^2 + s^2)^2} \Big(dt^2 + \frac{576}{t^6} dx^2 + ds^2 + \frac{576}{s^6} dy^2 \Big).$$

Are there compact solutions ?

Candidates of compact Einstein manifolds in Case (2) that are globally conformal to products:

(1) In any dimension: Products $S^n(1) \times (-S^{n_*}(1))$ with functions

$$a(t) = \cos t, \ b(s) = \cos s$$

that are globally defined.

Unfortunately the conformal image is not compact since the function a + b has a zero (necessarily).

(2) For $n = n_* = 2$ periodic solutions of the equations above leading to products $S^2 \times S^2$, each factor being a surface of revolution. Can that work ?

History

(A) There are periodic solutions of the ODE $ca^2 + 2\epsilon a'' = d$.

(B) Tashiro (JDG 1981): *There are compact surfaces satisfying the requirements above.*

(C) Tashiro (JDG 1983): *Corrigendum: These compact surfaces have one singularity each. They look like a drop.*

The error was pointed out by Derdzinski.

Correct statement: There is a compact product $(S^2, g) \times (S^2, g)$ of two drop surfaces that is conformally Einstein.

(D) **Theorem** (Calabi 1982, Derdzinski): The only compact conformally Einstein products $M^2 \times M_*^2$ are Einstein products themselves with a constant conformal factor.

There are no compact examples in Case (2)

(E) SIMPLE PROOF: On a compact surface the metric must be positive or negative definite. Assume that there is a periodic solution a(t) of $ca^2 + 2a'' = d$ with a minimum at t = 0 such that the metric $dt^2 + a'^2 dx^2$ is smooth in a neighborhood. Here dx^2 describes the metric of a circle, like $x = e^{i\theta}$. Necessarily we have a''(0) = A > 0 (*like polar coordinates*).

If *a* hat a maximum at $t = t_0$ then we have $a''(t_0) = -A$. Otherwise the metric has a singularity there.

This implies:

$$ca^2 = d - 2A$$
 at the minimum $ca^2 = d + 2A$ at the maximum.

Integrating the ODE leads to $a'^2 = da - \frac{c}{3}a^3 + e$ with a constant *e*. At the minimum and maximum we get

$$0 = \sqrt{\frac{d-2A}{c}} \left(d - \frac{d-2A}{3} \right) + e$$
$$0 = \sqrt{\frac{d+2A}{c}} \left(d - \frac{d+2A}{3} \right) + e$$

In combination:

$$\sqrt{d-2A}(d+A) = \sqrt{d+2A}(d-A).$$

There is no real solution d unless A = 0. Contradiction.

Corollary 0.6 (Moroianu & Ornea 2008)

If M_* is compact Riemannian (but not a round sphere) and if $\overline{g} = f^{-2}(dt^2 + g_*)$ is Einstein with $\overline{S} > 0$ and with a non-constant function f(t, x) that is globally defined and never zero on $\mathbb{R} \times M_*$, then the following holds: (M_*, g_*) is an Einstein space with $S_* > 0$, and the function f(t, x) is the cosh-function on the real *t*-axis, up to constants. In particular *f* does not depend on $x \in M_*$. This is precisely the generalized Mercator projection above. *Proof.* If f(t, x) depends on t and on x then (M_*, g_*) is a round sphere by our main theorem in combination with the well known theorem that the only compact pseudo-Riemannian Einstein space admitting a non-constant solution of the equation $(\nabla_*^2 b)^\circ = 0$ is the round sphere.

If *f* depends only on *t* then g_* is Einstein. Furthermore the case $\overline{S} > 0$ is only possible for a function of cosh-type (up to additive or multiplicative constants). This is a consequence of the ODE $ff'' - (f')^2 = \overline{k} > 0$. Moreover from $f'' = k_* f$ we get $k_* > 0$.

If f depends only on x then we obtain a contradiction: S_* is negative, and by Corvino's result $\Delta_* f$ is positive at a positive maximum of f, and it is negative at a negative minimum of f. Here we use that f never vanishes on M_* . This is a contradiction on a compact manifold M_* because one of these cases must occur.

Non-compact examples

I. Here is an example of a complete Riemannian manifold $M=\mathbb{R}\times\mathbb{R}\times\widehat{M}=\mathbb{R}\times M_*$

admitting a global solution f = a(t) + b(x) where both a, b are non-constant and never zero. Unfortunately f has zeros. Let $(\widehat{M}, \widehat{g})$ be a complete Ricci flat manifold of dimension n - 1 and

$$a(t) = \cos t - 2, \quad b(s) = e^s + 2.$$

Then on M the function f(t, s, x) = a(t) + b(s) satisfies all conditions above: The metric $g_* = ds^2 + e^{2s}\widehat{g}$ on $M_* = \mathbb{R} \times \widehat{M}$ is a complete Einstein space with $k_* = -1$, and with c = -2 we have

$$a'' = k_*a + c, \quad b'' = -k_*b + c, \quad \nabla^2_*b = (-k_*b + c)g_*.$$

By the results above $\overline{g} = f^{-2} (dt^2 + ds^2 + e^{2s} \widetilde{g})$ on $M = \mathbb{R} \times M_*$ is Einstein with $\overline{k} = -1$ whenever $f(t, s) = \cos t + e^s \neq 0$. If \widetilde{g} is not flat then \overline{g} is not of constant curvature.

Non-compact examples

II. A similar example starts with an (n-1)-dimensional Einstein space $(\widetilde{M}, \widetilde{g})$ with $\widetilde{k} = -1$. Then $M = \mathbb{R} \times \widetilde{M}$ with $g = dt^2 + \cosh^2(t)\widetilde{g}$ is also Einstein with k = -1 and satisfies $\nabla^2 \cosh(t) = \cosh(t)g$. If $(\widehat{M}, \widehat{g})$ is (m-1)-dimensional Einstein with $\widehat{k} = 1$ then $M_* = \mathbb{R} \times \widehat{M}$ with $g_* = ds^2 + \cos^2(s)\widehat{g}$ is also Einstein with $k_* = 1$ and satisfies $\nabla^2_* \cos(s) = -\cos(s)g_*$. Let

$$a(t) = \cosh t, \quad b(s) = \cos s.$$

Then on $M \times M_*$ the function f(t, x, s, y) = a(t) + b(s) satisfies all conditions above with c = 0. By the results above the metric

$$\overline{g} = f^{-2} \left(dt^2 + \cosh^2(t) \widetilde{g} + ds^2 + \cos^2(s) \widehat{g} \right)$$

on $M \times M^*$ is Ricci flat whenever $f(t, s) \neq 0$. This is the case at least if $\cos s \neq -1$. If \tilde{g} is not hyperbolic then g is not of constant curvature and not conformally flat. Consequently, \overline{g} is not flat.

A global pseudo-Riemannian example

III. Let $(\widetilde{M}, \widetilde{g})$ be complete, Ricci flat and Riemannian. Then $M = \mathbb{R} \times \widetilde{M}$ with $g = dt^2 + \exp(2t)\widetilde{g}$ is complete Einstein with k = -1 and satisfies $\nabla^2 \exp = \exp g$. Then -g is complete Einstein with k = 1. Let $a(t) = \exp t$, $b(s) = \exp s$. Then on $(M, g) \times (M, -g)$ the function $f(t, x, s, y) = \exp t + \exp s$ satisfies all conditions above with c = 0 and $f \neq 0$ everywhere. By the results above the metric

$$\overline{g} = (\exp t + \exp s)^{-2} \left(dt^2 + \exp(2t)\widetilde{g} - ds^2 - \exp(2s)\widetilde{g} \right)$$

on $M \times M$ is Ricci flat everywhere. If \tilde{g} is not flat then g is not of constant curvature and not conformally flat.

Consequently, \overline{g} is not flat.

In other words: $(M \times M, \overline{g})$ is Einstein (Ricci flat) and globally conformal with a complete product metric.