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Notations

Question:

When does a Riemannian product admit a (local or

global) conformal mapping onto an Einstein space ?

Notations:

(Mn, g) denotes an n-dimensional pseudo-Riemannian manifold

(of arbitrary signature). F : (M, g) → (N, h) is conformal iff

F ∗h = ϕ−2g for a real function ϕ that is never zero:

hF (x) (dFx(X), dFx(Y )) = ϕ−2(x) · gx(X, Y )

∇2ϕ(X, Y ) = g (∇Xgradϕ, Y ) denotes the Hessian (0, 2)-tensor

∆ϕ = div (grad ϕ) = tr(∇2ϕ) is the Laplacian of ϕ, Ric denotes

the Ricci tensor, (Mn, g) is Einstein iff Ric = λ · g.

n ≥ 3: Einstein constant λ, n = 2: λ = K (Gaussian curvature)

scalar curvature tr(Ric) = S = nλ,

normalized scalar curvature k = S
n(n−1)

= λ
n−1

(
= 1 for Sn(1)

)
.



Basic formulas

Lemma 0.1

The following formula holds for any conformal change

g 7→ g = ϕ−2g of a metric on an n-dimensional manifold:

(1) Ric−Ric = ϕ−2
(
(n−2)·ϕ·∇2ϕ+

[
ϕ·∆ϕ−(n−1)·‖gradϕ‖2

]
·g
)
.

Consequently, the metric g is Einstein if and only if the equation

(2) ϕ · Ric + (n− 2) · ∇2ϕ = θ · g

holds for some function θ or, equivalently,

ϕ · (Ric)◦ + (n− 2) · (∇2ϕ)◦ = 0

where ( )◦ denotes the trace-free part.



Immediate consequences

Corollary 0.2

A metric g on a manifold M is (locally or globally) conformally

Einstein if and only if there is a (local or global) positive solution

ϕ of the equation

ϕ · (Ric)◦ + (n− 2) · (∇2ϕ)◦ = 0.

Corollary 0.3 (H.W.Brinkmann 1925)

If g is an Einstein metric then g is also an Einstein metric if and

only if

(∇2ϕ)◦ = 0.



Another approach

Theorem 0.4 (I.R.Miklashevskii 1987)

A metric g on an n-manifold M is conformally Einstein if and

only if a certain vector bundle over M of rank n+ 2 admits a

horizontal section. The connection is determined by the

conformal structure.

Further results by H.Baum, R.Gover, F.Leitner and others

(conformal holonomy)

Theorem 0.5 (A.Derdzinski 1983)

If (M, g) is a 4-dimensional Kähler manifold such that g = ϕ−2g
is Einstein, then ϕ coincides - up to a constant - with the scalar

curvature of g.



Folklore result

On an Einstein space with n ≥ 3 the equation (∇2ϕ)◦ = 0 can be

explicitly solved in the sense that g and ϕ can be determined.

Roughly the results are the following:

As long as g(gradϕ, gradϕ) 6= 0, the metric is a warped product

g = ǫdt2 + (ϕ′(t))2g∗

with an (n− 1)-dimensional Einstein space (M∗, g∗), ǫ = ±1, and

where ϕ depends only on t and satifies the following equations:

(3) ϕ′′′ + ǫkϕ′ = 0, (ϕ′′)2 + ǫk(ϕ′)2 = ǫk∗

If g(gradϕ, gradϕ) = 0 on an open subset then we have ∇2ϕ = 0
and Ric = Ric = 0. This leads to a so-called Brinkmann space.

Typical 4-dimensional examples are pp-waves

g = −2dudv − 2H(u, x, y)du2 + dx2 + dy2

with a parallel gradient ∂
∂v

of ϕ = u and with Hxx +Hyy = 0.



A classical example: The generalized

Mercator projection

Example (conformal cylinder)

Let M∗ be an (n− 1)-dimensional Einstein space with Einstein

constant λ∗ = n− 2. Then the cylinder M = R×M∗ with the

product metric g = dt2 + g∗ is conformally Einstein:

The metric g = cosh−2 t · g is Einstein with λ = n− 1.

If M∗ = Sn−1(1) then (M, g) is a cylinder representing the

(classical n-dimensional) Mercator projection from the n-sphere

without north and south pole. We verify

ϕ · (Ric)◦ + (n− 2) · (∇2ϕ)◦ = 0 for ϕ = cosh t by the block matrix

structure

Ric =

(
0 0
0 (n− 2)g∗

)
, ∇2ϕ =

(
ϕ′′ 0
0 0

)
=

(
ϕ 0
0 0

)
,

(Ric)◦ =

(
− (n−1)(n−2)

n
0

0 n−2
n
g∗

)
, (∇2ϕ)◦ =

(
(n−1)ϕ

n
0

0 −ϕ

n
g∗

)
.



A classical example: The generalized

Mercator projection

Remarks:

(1) In the special case of a compact Einstein space M∗ 6∼= Sn−1

this generalized Mercator projection is the result of a theorem by

Moroianu and Ornea 2008. Here the assumption is a globally

conformally Einstein product R×M∗ of strictly positive scalar

curvature.

(2) The transition from the conformal cylinder

g = cosh−2 t
(
dt2 + g∗

)
to the more familiar version

g = ds2 + sin2 s g∗ in polar coordinates is achieved by the

parameter transformation t 7→ s(t) with ds/dt = cosh−1 t
leading to the Gudermann function

s(t) =

∫ t

−∞

cosh−1 τ dτ = 2 arctan et.

The equation sin s = cosh−1 t follows.



Einstein warped products revisited

Proposition (Conformally Einstein products of type R×M∗)

If f is a non-constant function only on the real parameter t then

the metric

g = f−2(ǫdt2 + g∗)

is Einstein if and only if (M∗, g∗) is an n-dimensional Einstein

space and f satisfies the ODE

k∗f
2 − ǫ(f ′)2 = k.

Compare the Einstein warped products

g = ǫds2 + (ϕ′(s))2g∗

above with the similar ODE

k(ϕ′)2 + ǫ(ϕ′′)2 = k∗.



Special cases

Riemannian: ǫ = 1.

f(t) = cosh t, ϕ′(s) = sin s, k = k = k∗ = 1
cosh−1 t = sin s, t ∈ (−∞,∞), s ∈ (0, π) (Mercator)

For fixed s the M∗-slices behave like small spheres in the unit

sphere parallel to the equatorial sphere (Fermi coordinates).

f(t) = sin t, ϕ′(s) = cosh s, k = k = k∗ = −1
sin−1 t = cosh s, t ∈ (0, π), s ∈ (−∞,∞) (hyperbolic Mercator)

For fixed s the M∗-slices behave like parallel hypersurfaces to a

hyperbolic hyperplane (Fermi coordinates).

f(t) = t, ϕ′(s) = e−s, k = k = −1, k∗ = 0 (Poincaré half space)

If g∗ is Ricci flat but not flat we obtain a generalized Poincaré

half space of type (0,∞)×M∗ with the metric

t−2(dt2 + g∗) = ds2 + e−2sg∗ and s = log t.
For fixed s the M∗-slices behave like horospheres.

Special case if M∗ is a Ricci flat K3 surface.



Main theorem

Main Theorem on conformally Einstein products

Let (Mn, g̃) and (Mn∗

∗
, g∗) be pseudo-riemannian manifolds with

n+ n∗ ≥ 3. If f(y, x) is a non-constant function depending on

y ∈ M and x ∈ M∗ and if the metric g = f−2(g̃ + g∗) on M ×M∗

is Einstein then one of the following cases occurs:

(1) g is a warped product, i.e., f depends only on one of the

factors M or M∗. Moreover the fibre is an Einstein space.

(2) f(y, x) = a(y) + b(x) with non-constant a and non-constant

b, and both (M, g) and (M∗, g∗) are Einstein spaces, and

a satisfies the equation (∇̃2a)◦ = 0 and, simultaneously,

b satisfies the equation (∇2
∗
b)◦ = 0.



Main theorem (continued)

If n ≥ 3 or n∗ ≥ 3 then we have necessarily

∇̃2a = (−k̃a + c)g

∇2
∗
b = (−k∗b+ c)g∗

with a constant c and with normalized scalar curvatures k̃ = −k∗.
Such Einstein spaces can be (locally and globally) classified.

If n = n∗ = 2 then either the Gaussian curvatures are constant

and satisfy K̃ = −K∗, or both are non-constant and satisfy the

equations ∇̃2K = ∆K̃
2
g̃ and ∇2

∗
K∗ =

∆K∗

2
g∗. Such metrics are

also called extremal.

REMARK: A complete classification of Einstein warped products in (1) is not known.

However, Einstein warped products with a 1-dimensional base are easy to classify by

the folklore result above. For the case of a 2-dimensional base see the book by

A.Besse.



Main theorem (converse direction)

Conversely, any Einstein warped product in Case (1) is

conformally equivalent with a product space, and any two

Einstein metrics g̃, g∗ with constant k̃ = −k∗ and with solutions

a(y), b(x) of the equations ∇̃2a = (−k̃a+ c)g and

∇2
∗
b = (−k∗b+ c)g∗ lead to an Einstein metric

g = (a+ b)−2(g̃ + g∗)

on M ×M∗ in Case (2).

Any compact factor M or M∗ in Case (2) is necessarily a

standard sphere with a positive or negative definite metric.

However, (M ×M∗, g) cannot be compact since then a+ b has a

zero.

If n = n∗ = 2 then there are also examples M ×M∗ with two

surfaces M,M∗ that are not of constant curvature. However, by

a theorem of Calabi (quoted in Derdzinski’s handbook article)

there are no compact examples of this kind.



Method of proof

We use Equation (1) in the first Lemma:

f 2
(
Ric− Ric

)
= (N − 1)f · ∇2f +

[
f ·∆f −N · ‖gradf‖2

]
· g

If g is Einstein with f 2Ric = f 2λg = λg
then ∇2f admits a block matrix decomposition.

This implies ∂2f

dyjdxi
= 0 for any coordinate yj on the first factor

and xi on the second.

Therefore f splits as

f(y, x) = a(y) + b(x)

with functions a on M and b of M∗, and we have

∇2f =

(
∇̃2a 0
0 ∇2

∗
b

)



The equation to be solved

λ

(
g̃ 0
0 g∗

)
− f 2

(
R̃ic 0
0 Ric∗

)
(∗∗)

= (N − 1)f

(
∇̃2a 0
0 ∇2

∗
b

)
+
[
f ·∆f −N · ‖gradf‖2

]
·
(

g̃ 0
0 g∗

)

From this equation it is obvious that a constant function a
implies that g̃ is Einstein and a constant function b implies that g∗
is Einstein.

In each of these cases g is a warped product metric with an

Einstein fibre. This is case (1) in the Main theorem.



The mixed case

What happens if a and b both are non-constant ?

In this case the system of equations (**) is coupled. We

differentiate in a direction X tangent to M∗ and Y tangent to M
such that ∇Y a 6= 0, ∇Xb 6= 0:

0 = 2f∇Xb · R̃ic + (N − 1)∇Xb · ∇̃2a

+
[
∇Xb ·∆f + f∇X∆∗b−N · ∇X‖gradf‖2

]
· g̃,

0 = 2f∇Y a · Ric∗ + (N − 1)∇Y a · ∇2
∗
b

+
[
∇Y a ·∆f + f∇Y ∆̃a−N · ∇Y ‖gradf‖2

]
· g∗

Dividing through by ∇Xb or ∇Y a and differentiating once more

leads to

0 = 2∇Xf ·R̃ic+∇X

[
∆f+(∇Xb)

−1
(
f∇X∆∗b−N ·∇X‖gradf‖2

)]
·g̃,

0 = 2∇Y f ·Ric∗+∇Y

[
∆f+(∇Y a)

−1
(
f∇Y ∆̃a−N ·∇Y ‖gradf‖2

)]
·g∗.



General conclusion

A direct consequence:

1. g̃ and g∗ are Einstein metrics.

2. In addition ∇̃2a is a scalar multiple of g̃ and that ∇2
∗
b is a

scalar multiple of g∗. This is precisely the equation in the Folklore

result. In combination we have Case (2) in the Main theorem.

3. Thus, if n ≥ 3 and n∗ ≥ 3 we obtain warped product Einstein

metrics g̃, g∗ with warping functions a, b satisfying

∇̃2a = (−k̃a+ c)g and simultaneously ∇2
∗
b = (−k∗b+ c∗)g∗ with

constants c, c∗.

4. Furthermore Equation (**) implies k̃ = −k∗ and c = c∗.



Special conclusion if n = n∗ = 2

If n = n∗ = 2 then we have warped product metrics

g̃ = ǫdt2 ± a′(t)2dx2, g∗ = ǫ∗ds
2 ± b′(s)2dy2

with ∇2a = ǫa′′g̃ and ∇2
∗
b = ǫ∗b

′′g∗.

The Gaussian curvatures are K = −ǫa′′′/a′, K∗ = −ǫ∗b
′′′/b′.

Then Equation (∗∗) reads as follows:

λ = (a+ b)2K +2(a+ b)ǫa′′ + (a+ b)(2ǫa′′ +2ǫ∗b
′′)− 3(ǫa′2 + ǫ∗b

′2)

λ = (a+ b)2K∗+2(a+ b)ǫ∗b
′′+(a+ b)(2ǫa′′+2ǫ∗b

′′)−3(ǫa′2+ ǫ∗b
′2).

In particular we have

0 = (a+ b)(K −K∗) + 2(ǫa′′ − ǫ∗b
′′)

= aK + 2ǫa′′ − (bK∗ + 2ǫ∗b
′′) + bK − aK∗



This leads to
K ′

a′
=

K ′

∗

b′
= c (constant)

and K = ca,K∗ = cb.

Inserting this into the last equation leads to the ODEs

ca2 + 2ǫa′′ = d

and

cb2 + 2ǫ∗b
′′ = d

with a constant d.

These equations have non-constant solutions.

A non-periodic solution with d = 0, c = 1, ǫ = ǫ∗ = 1:

a(t) = K(t) = −12t−2, b(s) = K∗(s) = −12s−2.

This leads to the Ricci flat (and non-flat) metric

g =
t4s4

(t2 + s2)2

(
dt2 +

576

t6
dx2 + ds2 +

576

s6
dy2

)
.



Are there compact solutions ?

Candidates of compact Einstein manifolds in Case (2) that are

globally conformal to products:

(1) In any dimension: Products Sn(1)× (−Sn∗(1)) with functions

a(t) = cos t, b(s) = cos s

that are globally defined.

Unfortunately the conformal image is not compact since the

function a+ b has a zero (necessarily).

(2) For n = n∗ = 2 periodic solutions of the equations above

leading to products S2 × S2, each factor being a surface of

revolution. Can that work ?



History

(A) There are periodic solutions of the ODE ca2 + 2ǫa′′ = d.

(B) Tashiro (JDG 1981): There are compact surfaces satisfying

the requirements above.

(C) Tashiro (JDG 1983): Corrigendum: These compact surfaces

have one singularity each. They look like a drop.

The error was pointed out by Derdzinski.

Correct statement: There is a compact product (S2, g)× (S2, g)
of two drop surfaces that is conformally Einstein.

(D) Theorem (Calabi 1982, Derdzinski): The only compact

conformally Einstein products M2 ×M2
∗

are Einstein products

themselves with a constant conformal factor.



There are no compact examples in Case (2)

(E) SIMPLE PROOF: On a compact surface the metric must be

positive or negative definite. Assume that there is a periodic

solution a(t) of ca2 + 2a′′ = d with a minimum at t = 0 such that

the metric dt2 + a′2dx2 is smooth in a neighborhood. Here dx2

describes the metric of a circle, like x = eiθ.
Necessarily we have a′′(0) = A > 0 (like polar coordinates).

If a hat a maximum at t = t0 then we have a′′(t0) = −A.

Otherwise the metric has a singularity there.

This implies:

ca2 = d− 2A at the minimum

ca2 = d+ 2A at the maximum.



Integrating the ODE leads to a′2 = da− c
3
a3 + e with a constant e.

At the minimum and maximum we get

0 =

√
d− 2A

c

(
d− d− 2A

3

)
+ e

0 =

√
d+ 2A

c

(
d− d+ 2A

3

)
+ e

In combination:

√
d− 2A

(
d+ A

)
=

√
d+ 2A

(
d− A

)
.

There is no real solution d unless A = 0. Contradiction. �



Corollary 0.6 (Moroianu & Ornea 2008)

If M∗ is compact Riemannian (but not a round sphere) and if

g = f−2(dt2 + g∗) is Einstein with S > 0 and with a non-constant

function f(t, x) that is globally defined and never zero on

R×M∗, then the following holds:

(M∗, g∗) is an Einstein space with S∗ > 0, and the function f(t, x)
is the cosh-function on the real t-axis, up to constants. In

particular f does not depend on x ∈ M∗. This is precisely the

generalized Mercator projection above.



Proof. If f(t, x) depends on t and on x then (M∗, g∗) is a round

sphere by our main theorem in combination with the well known

theorem that the only compact pseudo-Riemannian Einstein

space admitting a non-constant solution of the equation

(∇2
∗
b)◦ = 0 is the round sphere.

If f depends only on t then g∗ is Einstein. Furthermore the case

S > 0 is only possible for a function of cosh-type (up to additive

or multiplicative constants). This is a consequence of the ODE

ff ′′ − (f ′)2 = k > 0. Moreover from f ′′ = k∗f we get k∗ > 0.

If f depends only on x then we obtain a contradiction: S∗ is

negative, and by Corvino’s result ∆∗f is positive at a positive

maximum of f , and it is negative at a negative minimum of f .

Here we use that f never vanishes on M∗. This is a

contradiction on a compact manifold M∗ because one of these

cases must occur. �



Non-compact examples

I. Here is an example of a complete Riemannian manifold

M = R× R× M̂ = R×M∗

admitting a global solution f = a(t) + b(x) where both a, b are

non-constant and never zero. Unfortunately f has zeros. Let

(M̂, ĝ) be a complete Ricci flat manifold of dimension n− 1 and

a(t) = cos t− 2, b(s) = es + 2.

Then on M the function f(t, s, x) = a(t) + b(s) satisfies all

conditions above: The metric g∗ = ds2 + e2sĝ on M∗ = R× M̂ is a

complete Einstein space with k∗ = −1, and with c = −2 we have

a′′ = k∗a + c, b′′ = −k∗b+ c, ∇2
∗
b = (−k∗b+ c)g∗.

By the results above g = f−2
(
dt2 + ds2 + e2sg̃

)
on M = R×M∗ is

Einstein with k = −1 whenever f(t, s) = cos t+ es 6= 0.

If g̃ is not flat then g is not of constant curvature.



Non-compact examples

II. A similar example starts with an (n− 1)-dimensional Einstein

space (M̃, g̃) with k̃ = −1. Then M = R× M̃ with

g = dt2 + cosh2(t)g̃ is also Einstein with k = −1 and satisfies

∇2 cosh(t) = cosh(t)g. If (M̂, ĝ) is (m− 1)-dimensional Einstein

with k̂ = 1 then M∗ = R× M̂ with g∗ = ds2 + cos2(s)ĝ is also

Einstein with k∗ = 1 and satisfies ∇2
∗
cos(s) = − cos(s)g∗. Let

a(t) = cosh t, b(s) = cos s.

Then on M ×M∗ the function f(t, x, s, y) = a(t) + b(s) satisfies

all conditions above with c = 0. By the results above the metric

g = f−2
(
dt2 + cosh2(t)g̃ + ds2 + cos2(s)ĝ

)

on M ×M∗ is Ricci flat whenever f(t, s) 6= 0. This is the case at

least if cos s 6= −1. If g̃ is not hyperbolic then g is not of constant

curvature and not conformally flat. Consequently, g is not flat.



A global pseudo-Riemannian example

III. Let (M̃, g̃) be complete, Ricci flat and Riemannian. Then

M = R× M̃ with g = dt2 + exp(2t)g̃ is complete Einstein with

k = −1 and satisfies ∇2 exp = exp g. Then −g is complete

Einstein with k = 1. Let a(t) = exp t, b(s) = exp s. Then on

(M, g)× (M,−g) the function f(t, x, s, y) = exp t+ exp s satisfies

all conditions above with c = 0 and f 6= 0 everywhere. By the

results above the metric

g = (exp t+ exp s)−2
(
dt2 + exp(2t)g̃ − ds2 − exp(2s)g̃

)

on M ×M is Ricci flat everywhere. If g̃ is not flat then g is not of

constant curvature and not conformally flat.

Consequently, g is not flat.

In other words: (M ×M, g) is Einstein (Ricci flat) and globally

conformal with a complete product metric.

The end


