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By a theorem of E.Cartan (1939) all isopara-
metric families of hypersurfaces in the sphere
with at most three principal curvatures are
given by the following list:

1. tubes around a point in Sn

2. tubes around a great sphere Sk ⊂ Sn

where 1 ≤ k ≤ n − 2

3. tubes around any of the Veronese-type
standard embeddings of the projective
planes RP 2 → S4, CP 2 → S7, HP 2 →
S13, or OP 2 → S25.

In these three cases we have 1, 2 or 3 con-
stant principal curvatures, respectively.

Topologically, the hypersurfaces in Case 3
are total spaces of Sk-bundles over the pro-
jective plane over F(k) where the real di-
mension of F is k.
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In particular, the dimension of the total
space is 3k in each of the cases.

In addition isoparametric hypersurfaces have
the geometric property of tightness and tautness.

Definition An embedding M → E
N of

a compact manifold is called tight, if for
any open half space E+ ⊂ E

N the induced
homomorphism

H∗(M ∩ E+) −→ H∗(M )

is injective where H∗ denotes an appropri-
ate homology theory with coefficients in a
certain field. The notion of k-tightness refers
to the injectivity in the low dimensions
Hi(M ∩E+) → Hi(M ), i = 0, . . . , k. The
notion of tightness is projectively invariant.
Tightness of a subset means that it is em-
bedded as convexly as possible.
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In the smooth case (and, with certain mod-
ifications, also in the polyhedral case) this
is equivalent to the condition that almost
all height functions on M are perfect func-
tions, i.e., have the minimum number of
critical points. The similar notion of taut-
ness refers to the condition that almost all
distance functions are perfect functions.

It is well known that the ε-tube around any
taut submanifold or around any embedded
tight submanifold is again taut or tight, re-
spectively. The reason is that the coho-
mology ring of the total space of the unit
normal bundle is isomorphic to the tensor
product of the cohomology rings of the base
and the fibre.
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Theorem 1 In each of the cases of an
isoparametric hypersurface of Sn men-
tioned above (except possibly for the octo-
nion case) there is a simplicial n-sphere
in Euclidean space such that the follow-
ing conditions are satisfied:

1. It contains two disjoint simplicial

subcomplexes triangulating the

two focal sets of the isoparametric fam-
ily as a kind of “top” and “bottom” of
the simplicial n-sphere (for the case of
HP 2 see below),

2. each member of the isoparametric family
corresponds to a slice through this n-
sphere between top and bottom,

3. each member of the family (including
the focal sets) is a tight polyhedral sub-
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manifold in the boundary complex of a
certain convex (n + 1)-polytope. So in
particular the real Cartan hypersur-
face is tight in the boundary complex
of a 5-polytope, the complex Cartan
hypersurface is tight in the boundary
complex of an 8-polytope.

In the case of the quaternionic Cartan
hypersurface these polyhedral models ex-
ist, but a complete proof of their topo-
logical properties is not available. In the
case of the octonion Cartan hypersurface
an appropriate triangulation of the focal
set is still missing. If there exists a tight
27-vertex triangulation of OP 2 then this
case is included as well.
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The construction will make use of the fol-
lowing three ingredients:

1. Higher-dimensional octahedra (duals of
the cube),

2. Tight triangulations of the projective planes
over R and C,

3. Sarkaria’s deleted join of a simplicial com-
plex with itself, and the Bier sphere.

The (n+1)-dimensional cross polytope βn+1
(also called (n+1)-dimensional octahedron)
is defined as the convex hull of the points

(0, . . . , 0, ±1︸︷︷︸
i

, 0, . . . , 0), i = 0, 1, . . . , n

in (n + 1)-space.
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Case 1: In the first case we pick two an-
tipodal vertices, say, (±1, 0, . . . , 0). Then
the polyhedral model of the isoparametric
family with one principal curvature is just
given by all the slices through ∂βn+1 by hy-
perplanes orthogonal to (1, 0, . . . , 0). Each
member of the family is a convex polyhe-
dron in n-space and is therefore tight.

Case 2: In the case of two principal cur-
vatures we start with a βk+1 as the sub-
complex of βn+1 given by all vertices above
where 0 ≤ i ≤ k and a complementary
βn−k given by all vertices with k+1 ≤ i ≤
n. As a matter of fact, the boundary ∂βn+1
is just the join complex ∂βk+1 ∗ ∂βn−k

where, as usual, the join 4k ∗ 4n−k−1 of
two simplices 4k = 〈v0, v1, . . . , vk〉 and
4n−k−1 = 〈vk+1, . . . , vn〉 is defined as the

8



simplex4n = 〈v0, v1, . . . , vk, vk+1, . . . , vn〉.
Since each of the vertices of βn+1 is either
in βk+1 or in the complementary βn−k, we
can define a simplexwise linear function f
on the boundary complex of βn+1 which is
0 on ∂βk+1 and 1 on ∂βn−k. More pre-
cisely, f is assumed to be affine linear in
the barycentric coordinates on each sim-
plex, i.e., f (

∑

i λivi) =
∑

i λif (vi) where
∑

i λi = 1. Now the polyhedral analogue
of the isoparametric family is given by the
levels of the function f . Clearly each level
set f−1(t) defines a polyhedral manifold,
for 0 < t < 1 the level set is a polyhedral
decomposition of Sk×Sn−k−1 als a subset
of ∂βn+1

∼= Sn.

Each of these level sets f−1(t) is tightly
embedded into (n + 1)-space.
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Case 3: In the third case of three princi-
pal curvature we have to consider the tubes
around two antipodal real or complex
Veronese-type embeddings RP 2 → S4 or
CP 2 → S7, respectively. The quaternionic
case will be discussed later.

First of all, there are tight polyhedral ana-
logues of these Veronese-type embeddings
themselves. These are the canonical em-
beddings of the unique 6-vertex triangula-
tion RP 2

6 of RP 2 into the 5-simplex and of

the unique 9-vertex triangulation CP 2
9 of

CP 2 into the 8-simplex.

For our purpose we have to find an appro-
priate triangulation of the 4-sphere or 7-
sphere, respectively, which contains two an-
tipodal copies of them, linking one another
as required by the Cartan decomposition.
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Definition

(1) The deleted join K ∗∆K of a simplicial
complex K with itself is a part of the ordi-
nary join of two disjoint copies K1 and K2
of K where we take the join of only those
two simplices in K1 and K2, respectively,
which are disjoint in K. So in particular,
each vertex of K leads to a missing edge
(a diagonal) in K ∗∆ K.

(2) Similarly we have the deleted join
K ∗∆ K∗ of an n-vertex simplicial complex
K with its combinatorial Alexander dual
K∗ where the combinatorial Alexander dual
is defined as the set of the complements of
the non-faces of K. Here we think of a face
as a subset of {1, 2, . . . , n} and its comple-
ment as the set-theoretic complement. Ac-
cordingly, a non-face is a subset that does
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not correspond to a face in the complex.
The vertex set of the deleted join will be de-
noted by {1, 2, . . . , n, 1, 2, . . . , n} with di-
agonals 11, 22, . . . , nn.

The notion of the deleted join is due to
K.Sarkaria.

Theorem 2 For any given simplicial
complex K with n vertices the deleted
join of K with its combinatorial
Alexander dual K∗ is a triangulated
(n − 2)-sphere with at most 2n vertices.
It is called the Bier sphere Biern(K) be-
cause it was discovered by Thomas Bier
in 1992. After subdivision, the Bier sphere
coincides with the first barycentric subdi-
vision of an (n − 1)-simplex
(M. de Longueville 2004).
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Theorem 3

1. Any n-vertex triangulation of a com-
binatorial 2k-manifold M satisfies n ≥
3k + 3 unless M is a sphere. In case
of equality n = 3k + 3 we have neces-
sarily k = 0, 1, 2, 4, 8, and for k ≥ 1
M has the same cohomology ring as
the projective plane over

R, C, H, O, respectively. Moreover, for
k = 1, 2 the triangulation is combina-
torially isomorphic with RP 2

6 or CP 2
9 ,

respectively.

2. Any combinatorial 2k-manifold with
n = 3k + 3 vertices (which is not a
sphere) satisfies the following
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combinatorial complementarity condition:

• Any subset of vertices spans a simplex
in the triangulation if and only if the
complementary subset does not.

In particular, if K denotes the sim-
plicial complex triangulating the man-
ifold, then we have K∗ = K, and K
is (k +1)-neighborly which means that
any (k + 1)-tuple of vertices spans a
simplex in K.

3. In the cases k = 0, 1, 2, 4 there exists
such a combinatorial manifold with

3, 6, 9, 15 vertices, respectively. It is
unique for k = 0, 1, 2 and not unique
for k = 4. For k = 8 the existence is
still open.
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Corollary 4 If K denotes any simpli-
cial complex triangulating a combinato-
rial 2k-manifold with n = 3k + 3 vertices
which is not a sphere, then the deleted
join Biern(K) = K ∗∆ K is a combina-
torial sphere of dimension n− 2 with 2n
vertices. It can be regarded as a subcom-
plex of the cross polytope βn.

In particular, this applies to the triangula-
tions K = RP 2

6 and K = CP 2
9 . In these

cases the deleted join coincides with the
Bier sphere Bier6(RP 2

6 ) or Bier9(CP 2
9 ),

respectively. Recall that the Veronese-type
standard embedding maps each of the four
projectives planes into the (n − 2)-sphere
where n = 3k + 3.
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Figure 1: slice through the simplex 〈132̄4̄6̄〉 together with the link of 12

PSfrag replacements

62

62

1414

4213

13

16

15

15

52

52

32 32

Figure 2: The link of the vertex 12 in the slice through RP 2
6 ∗∆ RP 2

6

16



Lemma 6 For any 0 ≤ t ≤ 1 the two
embeddings

f−1(t)∩RP 2
6 ∗∆RP 2

6 −→ f−1(t)∩∂β6 −→ E
5

f−1(t)∩CP 2
9 ∗∆CP 2

9 −→ f−1(t)∩∂β9 −→ E
8

are tight with respect to Z2. These are
polyhedral analogues of the family of isopara-
metric tubes around the real or complex
Veronese-type surface, respectively.
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Branched simplicial coverings related

to RP 2
6 ∗∆ RP 2

6

It was pointed out by Massey in 1973 that
incidentally a number of interesting 4-manifolds
(among them the complex projective plane)
are (branched or non-branched) quotients
of S2 × S2. In particular, CP 2 is the quo-
tient of S2×S2 by the involution τ (x, y) =
(y, x), and the 4-sphere is the quotient of
CP 2 modulo complex conjugation σ where
σ[z0, z1, z2] = [z0, z1, z2]. In the latter case
the branch locus consists precisely of the
real part which is a real projective plane.
Opposite to it we find the complex quadric
z2
0 + z2

1 + z2
2 = 0 on which the involution σ

acts freely.
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By a branched simplicial k-sheeted covering
between two d-manifolds we mean a sim-
plicial mapping which is simultaneously a
branched k-sheeted covering. In particu-
lar, it is required that the preimage of any
(open) d-simplex consists of k disjoint (open)
d-simplices and that there is no collapsing
of lower-dimensional simplices. Then the
branch locus is a simplicial subcomplex of
each of the two triangulated d-manifolds.
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Proposition 7 There is a branched sim-
plicial 2-sheeted covering from a triangu-
lated CP 2 onto a triangulated 4-sphere
which is branched along a subcomplex iso-
morphic to RP 2

6 . We can denote it – by
slight abuse of notation – as follows:

CP 2
18 := S2

12 ∗∆ RP 2
6 −→ RP 2

6 ∗∆ RP 2
6 .

Here S2
12 denotes the icosahedral triangu-

lation of the 2-sphere with its 2-fold sim-
plicial covering S2

12 −→ RP 2
6 . The com-

plex S2
12 ∗∆ RP 2

6 does not literally denote
the deleted join but the join where each
simplex is deleted which involves one ver-
tex of RP 2

6 and any of the two corre-
sponding antipodal vertices of the icosa-
hedron S2

12.
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Corollary 8 The polyhedral Cartan hy-
persurface halfway between the two copies
of RP 2

6 in the Bier sphere lifts to a 2-fold

covering halfway between S2
12 and RP 2

6 .
This is a polyhedral decomposition of the
lens space L(4, 1) which occurs as a tubu-
lar neighborhood of the real projective plane
in the complex projective plane. Combi-
natorially, it consists of 120 triangular
prisms.

Proof: Since the intermediate levels do
not intersect the branch locus, this defines
a twofold non-branched covering of some 3-
manifold onto the Cartan isoparametric hy-
persurface in S4. Topologically the latter
is the quaternion space S3/Q where Q =
{±1,±i,±j,±k} denotes the quaternion
group of order 8. Any twofold covering in
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between is a quotient of S3 by a group of or-
der 4 which is a subgroup of Q. This is pos-
sible only for the cyclic group C4, e.g., for
{±1,±i} ⊂ Q. Consequently, the twofold
covering of the Cartan hypersurface is a
lens space L(4, 1) with fundamental group
C4. Its combinatorial automorphism group
of order 240 acts transitively on the 120
prisms.
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Proposition 9 There is a branched sim-
plicial 2-sheeted covering from a trian-
gulated S2 ×S2 onto a triangulated CP 2

which is branched along a subcomplex iso-
morphic to the icosahedral triangulation
of S2. We can denote it – wth the same
remark as in Proposition 7 above – as
follows:

(S2×S2)24 := S2
12∗∆S2

12 −→ S2
12∗∆RP 2

6

where S2
12 −→ RP 2

6 denotes the same 2-
fold simplicial covering as above.
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