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Yang-Baxter deformations
of quandles and racks

MICHAEL EISERMANN

Given a rackQ and a ringA, one can construct a Yang-Baxter operaigr V @

V — V ® V on the freeA-moduleV = AQ by settingco(x® y) = y® x¥ for all

X,y € Q. Inanswer to a question initiated by D.N. Yetter and P.Jydthis article
classifies formal deformations a@f, in the space of Yang-Baxter operators. For
the trivial rack, whered’ = x for all x,y, one has, of course, the classical setting
of r-matrices and quantum groups. In the general case wadinte and calculate
the cohomology theory that classifies infinitesimal defdiames of cg. In many
cases this allows us to conclude tlwgt is rigid. In the remaining cases, where
infinitesimal deformations are possible, we show that higitder obstructions
are the same as in the quantum case.

Introduction

Following M. Gerstenhabetlp], an algebraic deformation theory should

o define the class of objects within which deformation takesg)
¢ identify infinitesimal deformations as elements of a suéailmhomology,
¢ identify the obstructions to integration of an infinitesirdaformation,

e (give criteria for rigidity, and possibly determine the dgibjects.

In answer to a question initiated by P.J. Freyd and D.N. Y¢it§], we carry out this
programme for racks (linearized over some riiyand their formal deformations in
the space of\-linear Yang-Baxter operators.
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Arack is a seQ with a binary operation, denoted, {/) — »¥, such thattg: X®@ y —
y@ X defines a Yang-Baxter operator on the fieenoduleAQ (sees1 for definitions).
For a trivial rack, wherexY = x for all x,y € Q, we see thaicg is simply the
transposition operator. In this case the theory of quantuwoums [7, 27, 22, 23]
produces a plethora of interesting deformations, whictehlraeeived much attention
over the last 20 years. It thus seems natural to study defmmseof cg in the general
case, wher&) is a non-trivial rack.

Outline of results

We first introduce and calculate the cohomology theory thedsifies infinitesimal
deformations of racks in the space of Yang-Baxter operatdrs many cases this
suffices to deduce rigidity. In the remaining cases, wheifiaiiasimal deformations
are possible, we show that higher-order obstructions ddepénd orQ: they are the
same as in the classical case of quantum invariants. §(Sééor a precise statement.)

Formal Yang-Baxter deformations of racks thus have an wwrply simple descrip-
tion: up to equivalence they are just r-matrices with a sgesgimmetry imposed by
the inner automorphism group of the rack. Although this tsitively plausible, it
requires a careful analysis to arrive at an accurate fortionla The precise notion of
entropicr-matrices will be defined igl.3.

With regards to topological applications, this result mayne as a disappointment
in the quest for new knot invariants. To our consolation, w&aim a complete and

concise solution to the deformation problem for racks, Wilsoquite satisfactory from

an algebraic point of view.

Throughout our calculations we consider the generic casgerhe ordef Inn(Q)| of
the inner automorphism group of the ra€kis invertible in the ground ring\. We
should point out, however, that certain knot invariantseannly in the modular case,
where| Inn(Q)| vanishes inA; see the closing remarks in Sectién

How this paper is organized

In order to state the results precisely, and to make thislarsielf-contained, Section
1 first recalls the notions of Yang-Baxter operatdis.{) and racks {1.2). We can
then introduce entropic mapgl(3) and state our result§X.4). We also discuss some
examples {1.5) and put our results into perspective by briefly reviewinigtesl work

(51.6).
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The proofs are given in the next four sections: Sec®artroduces Yang-Baxter coho-
mology and explains how it classifies infinitesimal deforioreg. SectiorB calculates
this cohomology for racks. Sectighgeneralizes our classification from infinitesimal
to complete deformations. SectiGrexamines higher-order obstructions and shows
that they are the same as in the classical case of quantuneims Sectior, finally,
discusses some open questions.

1 Review of basic notions and statement of results

1.1 Yang-Baxter operators

Let A be a commutative ring with unit. In the sequel all modules kgl A-modules,
and all tensor products will be formed ovér. For everyA-moduleV we denote by
VEN the n-fold tensor product o/ with itself. The identity map o¥/ is denoted by
I:' V—V,and I=1® | stands for the identity map of ® V.

Definition 1 A Yang-Baxter operatoon V is an automorphisne: V@V —V ® V
that satisfies th&ang-Baxter equatigralso calledoraid relation,

cohilodceo)=01xcCce (I oc in Auty(Ve3).

This equation first appeared in theoretical physics, in &php C.N. Yang 28] on the
many-body problem in one dimension, in work of R.J. Bax®8] on exactly solvable
models in statistical mechanics, and later in quantum fiederty [L3] in connection
with the quantum inverse scattering method. It also hasyanagural interpretation in
terms of Artin’s braid groupsl], 4] and their tensor representations:

Remark 2 Recall that the braid group amstrands can be presented as

Oi0] = 0i0j for|i—j| > 2
Bn:<0'1,---,0nl . ) | | ’

0i0j0j = 0j0|0] for |i —j| =1
where the braid; performs a positive half-twist of the strandandi + 1. In graphical
notation, braids can conveniently be represented as inéigu

Given a Yang-Baxter operatar, we can define automorphisnes: V" — V" for
i=1,...,n—1bysetting; = I1®0- V@ ce 12— The Artin presentation ensures
that there exists a unique braid group representatfonB, — Aut, (V®") defined by
peoi) = Gi.



4 Michael Eisermann

Here we adopt the following convention: braid groups wilt ao the left, so that
composition of braids corresponds to composition of mapse Braid in Figure
1, for example, reads} = o, Zagal— 10—%01‘ 10—%; it is represented by the operator

p8(8) = ¢, %c3c; 'cke;'c acting onV @3,

— 1 —1
bdh pdl POSSISS]
n : n

Figure 1: Elementary braids™?, o;"; a more complex examplé

Notice that Artin, after having introduced his braid groupsuld have written down
the Yang-Baxter equation in the 1920s, but without any mmat examples the theory
would have remained void. Itis aremarkable fact that thegYBaxter equation admits
any interesting solutions at all. Many of them have only bdcovered since the
1980s, and our first example recalls the most prominent one:

Example 3 For everyA-moduleV the transpositionr: V® V — V ® V given by
7(a® b) = b® a is a Yang-Baxter operator. This in itself is not very suripigs but
deformations of- can be very interesting: Suppose thais free of rank 2 and choose
a basis ¢, w). If we equipV®? with the basis{® v,v® w,w® v,w ® w) thenr is
represented by the matrpg as follows:

100 g0 0
o _loo1o oo @ o
1"lo100” ““|o @ g O

000 00 0 q

For every choice ofj € A*, the matrixcy is a Yang-Baxter operator, and fqr= 1
we obtain the initial solutiort; = 7. The family Cq), together with a suitable trace,
yields the celebrated Jones polynomib8,[19, 20], a formerly unexpected invariant
of knots and links. More generally, deformationsmofead to the so-callequantum
invariants of knots and links.

Given the matrixcy of the preceding example, it is straightforwarddoeckthat it
satisfies the Yang-Baxter equation. Howfitmd such solutions, however, is a much
harder question. Attempts to construct solutions in a gyatie way have led to the
theory of quantum groups (cf7]). For details we refer to the concise introduction
[23] or the textbook 22].
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Remark 4 A slight reformulation sometimes proves useful. Every Y&axter
operatorc can be written ag = 7f wheref: V® V — V ® V is an automorphism
satisfyingfiofiafoz = fosf1fio, with fj acting on theth andjth factor of V@ V ® V.
Such an operatof is called anr-matrix. Depending on the context it may be more
convenient to consider the r-matrixor the Yang-Baxter operatatf .

The set of Yang-Baxter operators is closed under conjugéatioAut(V), and conjugate
operators yield conjugate braid group representationserel goal of Yang-Baxter
theory, as yet out of reach, would be to classify solutionthefYang-Baxter equation
modulo conjugation by AuY(). In favourable cases this can be done at léatlly,
that is, one can classifyeformationf a given Yang-Baxter operator. Our main result,
as stated if§1.4 below, covers a large class of such examples.

Definition 5 We fix an idealm in the ring A. Suppose that: V@V —-V® Vs a
Yang-Baxter operator. Amap: V®V — V®V is called arang-Baxter deformation
of ¢ (with respect tan) if € is itself a Yang-Baxter operator and satisfies ¢ modulo
m.

The typical setting is the power series ring= K[h] over a field K, equipped with
its maximal idealm = (h). In Example3 we can choose € 1 + m, which ensures
that ¢ is a deformation of- in the sense of the definition.

Definition 6 An equivalence transformatiofwith respect to the ideah) is an au-
tomorphisma: V — V with o« = | modulom. Two Yang-Baxter operators and ¢
are calledequivalent(with respect tom) if there exists an equivalence transformation
a:V — V such thatt = (¢ ® o) c(a ® a)~ L.

For every invertible elemerdg € 1 + m multiplication yields a deformatios - ¢ of
c. Such a rescaling, even though uninteresting, is in gematagéquivalent tac. A
deformationC of c is calledtrivial if it is equivalent toc or to a rescaling- ¢ by some
constant factos € 1+ m. We say that is rigid if every Yang-Baxter deformation of
c is trivial.

1.2 Quandles and racks

Racks are a way to construct set-theoretic solutions of #reg*Baxter equation. To
begin with, consider a grou@ and a subse® C G that is closed under conjugation.
This allows us to define a binary operatien Q x Q — Q by settingx * y = y~1xy,
which enjoys the following properties:
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(Q1) Foreveryx € Q we havex x X = X. (idempotency)
(Q2) Every right translatiornn(y): X — X * y is a bijection. (right invertibility)
(Q3) Forallx,y,ze Qwe have xxy) xz= (X*2) * (y* 2). (self-distributivity)

Such structures have gained independent interest sind®8ts when they have been
applied in low-dimensional topology, most notably to stkaiypts and braids. This is
why a general definition has proven useful:

Definition 7 Let Q be a set with a binary operation We call @, x) aquandleif it
satisfies axioms (Q1-Q3), andack if satisfies axioms (Q2—-Q3).

The term “guandle” goes back to D. Joy@&]. The same structure was called “dis-
tributive groupoid” by S.V. MatveeVZg], and “crystal” by L.H. Kauffman24]. Since
guandles are close to groups, their applications in knatrthare in close relationship
to the knot group. We should point out, however, that theist emany quandles that
do not embed into any group.

Axioms (Q2) and (Q3) are equivalent to saying that everytrigimslationo(y): X —
XxY is an automorphism ofJ, ). This is why such a structure was calkatomorphic
setby E. Brieskorn §]. The somewhat shorter terrack was preferred by R. Fenn and
C.P.Rourke 14].

Definition 8 Let Q be a rack. The subgroup of A@) generated by the family
{o(y) | y € Q} is called the group ofnner automorphismsdenoted Inn@). Two
elementsx,y € Q are calledbehaviourally equivalendenotedx =y, if o(X) = o(y).

We adopt the convention that automorphisms of a 1@ckct on the right, writterx?
or X % ¢, which means that their compositiain) is defined byx(*¥) = (x?)¥ for all
x € Q. Forx,y € Q we use the notatiow’ andx = y indifferently.

P.J. Freyd and D.N. Yettef §] considered the similar notion @fossed G-setsHere
the defining data is a s&) equipped with a right action of a group and a map

0. Q — G such thato(x9) = g~to(X)g. One easily verifies that this defines a rack
(Q, %) with xx y = x20), Conversely, every rackQ, =) defines a crosse@-set by
choosing the grouis = Inn(Q) with its natural action orQ and ¢: Q — Inn(Q) as
above. Notice, however, that crossédsets are slightly more general than quandles,
because the grou@ acting onQ need not be chosen to be 1)

Just as quandles generalize knot colourings, racks ape-tadde for braid colourings,
see E. Brieskornd]. This brings us back to our main theme:
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Proposition 9 Given a rackQ, one can construct a Yang-Baxter operatgr as
follows: letV = AQ be the freeA -module with basi€Q and define

Co: AQ®AQ—-AQ®AQ by x®y—y® (Xx*xy) forall xyeQ.

By construction,cq is a Yang-Baxter operator: Axiom (Q2) ensures tbgtis an
automorphism, while Axiom (Q3) implies the Yang-Baxter atjon. O

1.3 Entropic maps

In examining deformations of the operatwy we will encounter certain mags AQ" —
AQ" that respect the inner symmetry of the ra@k To formulate this precisely, we
introduce some notation.

Definition 10 Using graphical notation, a map AQ" — AQ" is called entropic
with respect tocq if it satisfies, for each = 0, ..., n, the following equation:

0 0 0 0
—_ N —
i ‘—f—’ i = i _/—ﬂfx/— i
N /

n n n n

This can be reformulated in a more algebraic fashion. Faoatiootal convenience,
we do not distinguish between thi-linear mapf: AQ" — AQ" and its matrix
f: Q"x Q" — A, related by the definition

f: (X1®"'®Xn)»—> Z f[Xl,.,.,Xn

(1@ - @ Yn).

Definition 11 A map f: AQ" — AQ" is called quasi-diagonalif f[J!3"] = 0
wheneverx; # vy, for some indexi € {1,...,n}. It is fully equivariantif it is
equivariant under the action of IM@I", that isf [J130] = f[Jhalnian | for all
X1, X Y1,---,¥n € Qanday,...,an € INN(Q).

Proposition 12 (proved in§3.2) An A-linear mapf : AQ" — AQ" is entropic if and
only if it is both quasi-diagonal and fully equivariant.

Remark 13 Entropic maps form a sub-algebra of EAAY"). If Q is trivial, then every
map is entropic. If InnQ) acts transitively orQ and¢: Q — Inn(Q) is injective, then
the only entropic maps arkid with A € A. There are many examples in between the
two extremes. Generally speaking, the larger @)ni§, the fewer entropic maps there
are.
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1.4 Yang-Baxter deformations of racks

As we have seen, each ra€k provides a particular solutiong to the Yang-Baxter
equation. It appears natural to ask for deformations. Ounmesult solves this
problem: under generic hypotheses, every Yang-Baxteruahefiion ofcg is equivalent
to an entropic deformation.

Definition 14 Every deformationc of cg can be written ag = cof with f = 1
modulom. We call such a deformatioentropicif f is entropic.

The preliminaries being in place, we can now state the maultse

Theorem 15 (proved in§3) Consider the infinitesimal case wheré = 0. Then
every entropic deformation ofq satisfies the Yang-Baxter equation. If moreover
| Inn(Q)| is invertible inA , then every Yang-Baxter deformation@f is equivalent to
exactly one entropic deformation.

Our approach to prove this theorem is classical: in the iefiinal case everything
becomes linear in first order terms, and the Yang-Baxtertemuaan be recast as a
cochain complex. This can reasonably be calledheg-Baxter cohomologyit is
introduced ir2 and calculated i§3. Having this initial result at hand, we can proceed
from infinitesimal to complete deformations:

Theorem 16 (proveding4) Let A be aring that is complete with respect to the ideal
m, and letQ be a rack such thainn(Q)| is invertible inA.. Then every Yang-Baxter
deformation ofcg : AQ? — AQ? is equivalent to an entropic deformation.

Notice that the hypotheses are always satisfied for a findle @aover the complete
local ring A = Q[ h] with its maximal idealm = (h).

The preceding theorem ensures that we can restrict atbetotientropic deformations;
however, not every entropic deformation satisfies the YAaxgter equation. Being
entropic suffices in the infinitesimal case, but in generghéi-order terms introduce
further obstructions. Quite surprisingly, they do not depenQ at all; higher-order

obstructions are exactly the same as in the quantum case:

Theorem 17 (proved in§5) Consider a rackQ and its associated Yang-Baxter
operatorcg: AQ? — AQ? over some ring\. An entropic deformatiortof satisfies
the Yang-Baxter equation if and onlyif satisfies the Yang-Baxter equation, that is,
ifand only iff is an r-matrix.
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The transposition operatar does not impose any infinitesimal restrictions; the only
obstructions are those of degree 2 and higher. The precttingem says that entropic
deformations oty are subject to exactly the same higher-order obstructismefor-
mations ofr, plus the entropy condition enforced by a non-trivial inmetomorphism
group InnQ). In this sense, entropic Yang-Baxter deformationsgére just entropic
r-matrices. We have thus reduced the theory of formal Yaagt® deformations of
racks to the quantum casg R7, 22, 23].

1.5 Applications and examples

To simplify notation, we will consider here only quandl€sthat embed into some
finite group G. This leads to certain classes of examples where defornsatiger
A = Q[h] are particularly easy to understand.

Remark 18 Consider first a trivial quandl€), with x x y = x for all x,y, where
cg = 7 is simply the transposition operator. Here our results oaadd anything new:
every mapf: AQ" — AQ" is entropic, and so Theorefrd simply restates that there
are no infinitesimal obstructions (every deformationofatisfies the Yang-Baxter
equation modulan?). There are, however, higher-order obstructions, whichaee
carefully excluded from our discussion: these form a sulgétheir own and belong
to the much deeper theory of quantum invariants (see Exa8ple

After the trivial quandle, which admits many deformations éscapes our techniques,
let us consider the opposite case of a rigid operator:

Corollary 19 Let G be a finite centreless group that is generated by a conjugasy ¢
Q. Then every Yang-Baxter deformation @f overQ[h] is equivalent tcs - cq with
some constant factare 1+ (h). In other wordscq is rigid. O

Example 20 The smallest non-trivial example of a rigid operator is gil®y the set
Q = {(12),(13),(23)} of transpositions in the symmetric gro&y, or equivalently the
set of reflections in the dihedral groly. Ordering the basi® x Q lexicographically,
we can represertg by the matrix
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In the case of the Jones polynomial, the initial operatds trivial but the deformation
Cq is highly non-trivial. Inthe present example, the inteirgspart is the initial operator
Cq itself: the associated link invariant is the number of 3ecwings, as defined by
R.H.Fox. Unlike 7, the Yang-Baxter operatotg does not admit any non-trivial
deformation overQ[h]. In this sense it is an isolated solution of the Yang-Baxte
equation.

There are also racks in between the two extremes, which d@ghentivial nor rigid. We
indicate a class of examples where every infinitesimal deédion can be integrated,
because higher-order obstructions miraculously vanish.

Corollary 21 Let G be a finite group, generated By = U;Q;, whereQq, ..., Qn
are distinct conjugacy classes @f Assume further that the centre of G satisfies
Z-Q = Q foreachi = 1,...,n. Then every Yang-Baxter deformation af over
Q[h] is equivalent to one of the form(x ® y) = sj - y®@ X for x € Q; andy € Qj,
with constant factors; € 1+ hQ[h]J[Z x Z]. Conversely, every deformation of this
form satisfies the Yang-Baxter equation. O

Example 22 Consider the set of reflections in the dihedral gr@ug that is

Q={(13), (24), (12)(34), (14)(23)}.

This set is closed under conjugation, hence a quandle. B4ttect to the lexicograph-
ical basis,cq is represented by the following permutation matrix:

By construction, this matrix is a solution of the Yang-Baxaguation. According to
Corollary 21, it admits a 16-fold deformation(\) given by
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A1 A2 - 0 Az A -
D O
ST S Asde - - A7 )e -
o s A7 A8 0 AsXe -
YD VIR VI VI ST
DV P Y
R, e ds - - Mg Ay -
. e U VS VA
CA)=C+ | " 2o . . A S
o Az - 0 Ag Ago - o
T T L MM - - s s
e VI S VI ¥
© A0 A9 - A2 Aqg - e
A2 A1 0 Ao Ag -

© A4 A3 - - A1 Ais
© A6 A5 0 0 A1 i3

For every choice of parametels, . .., A1g, the matrixc()\) satisfies the Yang-Baxter
equation, and as a special case weaf@) = co. We finally remark that the trace of
its square is given by

tr [c(N)?] = 40\ + 17 + 45 + 4(\1s + 17 + 4)%g
+ 8(\6 + 1)A11 + 8(A10 + L)A7 + 8A2A3 + 8A14M15 + 8AsAg + BAghi2,

which shows that none of the parameters can be eliminateah lgaivalence trans-
formation. This proves anew that the deformed operetay is not equivalent to the
initial operatorcg.

Remark 23 Itis amusing to note that the minimal Examp8&&0, and22 are the first
three members of the family formed by reflections in dihedralips. The following
figure nicely summarizes the point:

l N | ’
Il

| 1% | ~14
: N | s
1 1 2 N
e - i et
7 I N
: 7 | N
I 7 | N
2 : 3
! ’ | N
trivial but non-trivial neither trivial
deformable but rigid nor rigid

Figure 2: The first three members of the dihedral family
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1.6 Related work

Similar deformation and cohomology theories naturallgain situations that are close
or equivalent to the Yang-Baxter setting.

e Our results can be reformulated in terms of deformations adlutes over the
guantum doubleD(G) of a finite groupG. In this form it has possibly been
known to experts in quantum groups, but there seems to be itterwaccount
in the literature. See2B, ch. IX] for general background.

e The bialgebra approach was pursued by M. Gerstenhaber Bn&&hack, who
proved in [L7, §8] that the group bialgebr&G is rigid as a bialgebra. They did
not discuss deformations of its quantum doublgs).

e Our approach can also be reformulated in terms of deformstaf braided
monoidal categories. This point of view was put forward by. Preyd and
D.N. Yetter in [L5]. The deformation of quandles and racks appeared as an
example, but only diagonal deformations were taken intoaet

o Diagonal deformations have been more fully developedjnwhere quandle
cohomology was used to construct state-sum invariants atskrP. Etingof and
M. Graha [11] have calculated rack cohomolody*(Q, A) assuming| Inn(Q)|
invertible in A. Our calculation ofHEB(CQ,A) generalizes their result from
diagonal to general Yang-Baxter deformations.

e In [29 Yetter considered deformations of braided monoidal aateg in full
generality; see als@(] and the bibliographical references therein. He was thus
led to define a cohomology theory, which is essentially egjaivt to Yang-Baxter
cohomology. He did not, however, calculate any examples.

As far as | can tell, none of the previous results covers YBagter deformations of
conjugacy classes, quandles, or racks.

2 Yang-Baxter cohomology and infinitesimal deformations

This section develops the infinitesimal deformation theafriyang-Baxter operators.
As usual, this is most conveniently formulated in terms ofuaable cohomology
theory, which we will now define.
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2.1 Yang-Baxter cohomology

Let A be a commutative ring with unit and let be an ideal inA . Given anA -module
V and a Yang-Baxter operatar V®2 — V®2 we can construct a cochain complex
of A-modulesC" = Hom, (V®", mV®") as follows. Firstly, giverf € C", we define
d'f € C'*1 by
1 —
d'f = (cn---Gip1)  F@D(Ch - -Cip1) —(C1--a) Tl ®f) (- q)
or in graphical notation:
0 0 0 0
n f — N e —
dif = + i :/\—_x i — i N— f — i

n n n n

We then define the coboundary operatBr C" — C™ by d" = S71=0(—1)idP.
Proposition 24 The sequenc€? L c? LN C3... is a cochain complex.

Proof The hypothesis that be a Yang-Baxter operator impIielt'SJfldjn = dj”jflldin for
i <j. This can be proven by a straightforward computation; it tsteasily verified
using the graphical calculus suggested in the above figurlldws, as usual, that

terms cancel each other in pairs to yief*d" = 0. O

Definition 25 We call (C",d") the Yang-Baxter cochain compleassociated with
the operatorc. As usual, elements of the kerngl' = ker(d") are calledcocycles

and elements of the imag8" = im(d"~!) are calledcoboundaries The quotient
H" = Z"/B" is called theYang-Baxter cohomologyf the operatorcc, denotedH}; (c),

or H),(c; A, m) to indicate the dependence on the riigand the ideai.

Remark 26 A more general cohomology can be defined by taking coeffisignan
arbitrary A-moduleU. The operators; act not only onV®" but also onU @ V",
extended by the trivial action ob. Using this convention, we can define a cochain
complexC" = Hom, (V®", U @ V®M) with coboundary given by the same formulae
as above.

Moreover, given a submoduld’ c U, we can consider the image of the induced map
U @ VO — U® V", (The image will be isomorphic with)’ @ VO if V is flat.)
Using this submodule instead bf® VE", we obtain yet another cohomology, denoted
H.(c; U, U’). This generalizes our initial definition &), (c; A, m). All cohomology
calculations in this article generalize verbatim to theeos U’). For our applications,
however, it will be sufficient to consider the special casent).
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2.2 Infinitesimal Yang-Baxter deformations

Consider a Yang-Baxter operator V€2 — V®2_ Every deformatiore: V&2 — V&2

of ¢ can be written a§€ = c(I + f) with perturbation ternf: V®2 — mV®2, For
the rest of this section we will assume that = 0, which means that we consider
infinitesimal deformations. One can always force this condition by pastinthe
quotientA /m?. The reason for this simplification is, of course, that higheler terms
are suppressed and everything becomes linear in first edest

Proposition 27 Suppose that the ideal C A satisfiesm? = 0. Thent = c(l + f)
is a Yang-Baxter operator if and onlydff = 0. Moreover,c andt are equivalent via
conjugation by = | + g with g: V. — mV if and only iff = d'g.

Proof Spelling out the Yang-Baxter equation foryields the Yang-Baxter equation
for ¢ and six error terms of first order. More precisely, we obtain

(128 @) Med) @ ) edEx))
=(looce )Mo Hce ) @ c)(c® ) + d?f.

By hypothesis,c is a Yang-Baxter operator, so the first term is the identitys &
consequencé is a Yang-Baxter operator if and onlyfife Z2(c) := ker(d?).

On the other hand, given = | + g we havea™! = | — g and thus
(a®a)tcla®a)=c(l +d'g)

As a consequence, and ¢ are equivalent if and only if € B%(c) := im(d?). O

The infinitesimal deformations af are thus encoded in the cochain complex
1 2
Hom(V, mV) & Hom(v®2, mv®2) £ Homv®3, mve3).

Here d! maps each infinitesimal transformatign V — mV to its infinitesimal per-
turbation termdlg: V®2 — mV®2, which corresponds to an infinitesimally trivial
deformation, andd® maps each infinitesimal perturbatidn V2 — mV®2 to its
infinitesimal error termd?f : V®3 — mV®3, By construction, we find again that
d? o d* = 0. We are interested in the quotient k) im(d*).
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3 Yang-Baxter cohomology of racks

This section will establish our main technical result: thxglieit calculation of the
second Yang-Baxter cohomology of a rac® ¢). As before, we consider the Yang-
Baxter operatorcg: AQ?> — AQ? defined byx®y — y® (x+Yy). We wish to
study the associated cochain complek — C?> — C3 — ... with cocyclesZ" and
coboundaried®". In degree 2 this is solved by the following theorem:

Theorem 28 Entropicn-cochains form a submodule @f, denotedE". If the order
of Inn(Q) is invertible in A, then we haveZz? = E? @ B?, in other words, every
2-cocycle is cohomologous to exactly one entropic cocycle.

The theoremimplies in particular thei? = E2, which is a perfectly explicit description
of the second Yang-Baxter cohomology of a ra@k The theorem does even a little
better: in each cohomology clagse H? it designates a preferred representative,
namely the unique entropic cocycle §n This will be proved by a sequence of four
lemmas, which occupy the rest of this section.

3.1 The coboundary operators

Our goal is to calculate the Yang-Baxter conomology of raélefore doing so we will
first make the coboundary operators more explicit by traimglahem from graphical
to matrix notation.

Letd: Q x Q — A be the identity matrix, which in matrix notation is writtes a

5 m )1 itx=y
y| |0 ifx#y’
In this notation the operatat’f : Q™! x Q"*! — m is given by

: Xi+1°Xn

1 o&f [xo,...,xn] L [xo,...,xil,x.ﬂ,...,xn} 5[){1 n]
( ) ( I ) YOv---,Yn y07---7yi_17yi+17-"7yn y?/+1 4
f[xg,...,x?“_l,xiﬂ,...,xn} 5[&}

_ h . )

y07"'7yi_17yi+l7-"7yn Vi

The coboundaryf : C" — C™1 is given byd"f = S71=0(—1)id"f.
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Remark 29 Our definitions were motivated by infinitesimal deformatiégmthe space
of Yang-Baxter operators. We could instead restrict alloeotdlary operators to di-
agonal matrices, that is, to matricesQ" x Q" — m with f[y5n ] = 0 whenever
X #Y; for somei. In this case we obtain the cochain complex of quandle or rack

cohomology (seeq, 9)).

3.2 Characterization of entropic maps

Recall from Definition10 that a mapf: AQ" — mQ" is entropic if and only if
dof = --- = dyf = 0. The following lemma gives a useful reformulation:

Lemma 30 Given anA-linear mapf: AQ" — mQ" and anyk € {0,...,n}, we

havedif = --- = d.f = 0 if and only if the following two conditions hold:
Dy: f Bl’ o ’;ﬂ = 0 wheneverx % y; for somei > k, and
1,---5>Yn

. X1, ... 5 Xn XTs e X X1, -+ Xn :
Ey: f =f forall o € Inn andi > k.
K |:yl>"'>yn:| |:y(f>"'>y?>yi+la---ayn (Q)

In particular,f is entropic if and only if it is quasi-diagonal and fully egaiiant.

Proof By equation ), conditionsDy and Ey imply thatdyf = --- = d,f = 0. To
prove the converse, we proceed by a downward inductiokem, ..., 0.

Assumedif = --- = dyf = 0 and thatDy, 1 andEx 1 are true. We want to establish
Dk and Ey. First of all, we can suppose that,» = Yki2, ..., Xn = Yn; OtherwiseDy
and Ey are trivially satisfied because all terms vanish.

In order to proveDy, consider the casg.1 # Yk+1. Sinceo(Xk+1) # o(Yk+1), there
existsw € Q with such thatu = w x o(x.1) " differs fromv = w o(yis1) 1. We
can thus choosa # v with U+ = W«+1 to obtain
O: (dkf)|:xl7“‘ ’)(k7u7xk+l7"'7xn} — f |:X17“‘ ’)(k7)(k+17“‘ 7Xn}.
y17‘ . >YK>V>YK+1,« .. >Yn yla' .. aykayk+1>' .. >Yn
In order to proveEy, it suffices to considerr = o(2) with z € Q, since these
automorphisms generate 1) Here we obtain
0— (dkf)[xl,...,xk,z,ka,...,xn]
Y155 Yo 4 Yk, - - -5 Yn
X X X, - %n X5, X Xk - - - 5 Xn
—f —f .
Y155 Yio Yk+1, - - -5 Yn Yiv---aMZUYK—klw-an
This establishes the induction stkp- 1 — k and completes the proof. O
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Notice that in the preceding lemma we can choose the igleal A ; we thus obtain
the characterization of entropic maps announced in Propodi2.

3.3 Entropic coboundaries vanish

On our way to establisE@? = E? @ B2, we are now in position to prove the easy part:

Lemma 31 If the order of the inner automorphism gro@= Inn(Q) is not a zero-
divisor in A, thenE" N B" = {0}.

Proof Consider a coboundary = dg that is entropic. We have to show that= 0.
By the previous lemma, we know thhtis quasi-diagonal, hence we can assume that
xi =y foralli. The equatiorf = dg then simplifies to

X1,...,Xn i—1¢|% Xlyeo oy Xi—1, X415 .-+, Xn
f 1)~
|:yl?“‘>yn:| IZ;( ) |: :|< |:yla"'>yil,yi+la"'ayn:|
_ |:X1*Xi7"'7Xi—1*Xi7Xi+17"'7Xn:|>
Yi*VYi,.oo o Yi—1 * Vi, Yit1, -5 Yn
Using the equivariance under the action@¥, we obtain
X1,y Xn Xt
rifesl- S
| | Y1, -5 Yn %(;n 5. ”,yan

>y a;(‘”[y‘fa...,y?'layﬁ;za...,yan

B |:X(fl*xiai,. a'l*Xla', |o-{||-517" Xﬁ])

yit oy ...,y,“'ll*ya' Yoty

Fix some indexi in the outer sum. We can assume= yi, otherwised [} | =
Consider further some index < i. The mapsx — X" + X" andy; — yJJ *
y correspond to the action ijOéi_lQ(Xi)Oéi. As ¢ runs throughG, the product
OéjOéi_lg(Xi)Oéi also runs througl. This means that in the inner sum over= G", all
terms cancel each other in pairs. We conclude (B#if = 0, whencef = 0. O

3.4 Making cocycles equivariant by symmetrization

Given an automorphismx € Aut(Q) and a cochairf € C", we define the cochain

of € C" by
X1,. .. %] x“,...,xﬁ]
f =1L )
(a)[yl,...,yn} [ycl“,...,yﬁ
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It is easily seen thatd(af) = «(df), hencea maps cocycles to cocycles, and
coboundaries to coboundaries. The induced action on cologymnas denoted by

o Hip(eo) — Hia(Co)-

Lemma 32 Every inner automorphism € Inn(Q) acts trivially onH;,(cq). If the
order of the inner automorphism grodp = Inn(Q) is invertible in A, then every
cocycle is cohomologous to@-equivariant cocycle.

Proof It suffices to consider inner automorphisms of the farm= o(2) with z € Q,
since these automorphisms generate @nor every cocycld € Z" we then have

f{xl,...,xn} _f[xi“,...,xﬁ} :(dﬂf){xl""’xn’z}

Y1,---5¥Yn y(fw"aYﬁ Y1,-.-,¥n, 2
n—1
i X1, ... 5%, Z -1 X1, Xn
= 1" S (1) (o — (@
( ) Z( )(I )|:yl>"'>yn>zj| ( g)|:y1>"'>yn:|

i=0

where the cochaig € C"! is defined by

g Ug, ..., Un—1 - (_1)nf Ug,...,Un-1,Z
Vla---7Vn—l Vlv"'avn—lvz

This shows that — of = dg, whencea acts trivially onHJ;(cg).

If the order of G = Inn(Q) is invertible in A, then we can associate to each coctfain
a G-equivariant cochairfi = ﬁ > accaf . If fis acocycle then so i, and both are
cohomologous by the preceding argument. O

3.5 Calculation of the second cohomology group

Specializing to degree 2, the following lemma completesptioef of Theoren8.

Lemma 33 Every equivarian-cocycle is cohomologous to an entropic one.

Proof By hypothesis, we have?f = 0, and according to Lemn®0 equivariance is
equivalent todsf = 0. We thus havel3f = d2f, or more explicitly:

V, W u u u,wi [wW wow| v
I P G AR M DR LM R LY
for all u,v,w,x,y,z € Q. It suffices to makef quasi-diagonal, that is, to ensure

f[Vz] =0 forv £y orwz z The left-hand side then vanishes identically, that is
daf = 0, which entails that the right-hand side also vanishesnae?f = 0.
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First suppose thatv £ z. Then there exists a paiv,y) € Q x Q with v # y
but W = y?. If (u,x) € Q x Q also satisfiess # x and u” = x*, then Equation
(2) implies thatf [ V7] = f[%7]. To see this, notice that” = x* is equivalent to
U™ = x%, becausep(v)o(w) = o(W)o(V") and o(y)o(2) = o(2)o(y*), with V" = y* by
our assumption. This allows us to define a 1-cochain

[w} _Jo if w= z orelse
Nz) = f[V%] with v # ysuch that" = y2.

According to the preceding argumemﬁ"z"] is independent of the choice ofy. In
particularg is equivariant sincé is. This impliesdig = 0, hencedg = dig:

SPHEEHICFRH)

This vanishes whenevev = z. Otherwise we choose # y with W = y* to obtain

o33 =[] Ll —ob) = B3] (el =)

_ (de)[u’V’W} _ (d%f)[u,v,w} _ [u,w].

X7 y?z X7 y7Z X7Z

By this construction,f = f — dg is an equivariant cocycle satisfyirﬁ&’,"z"] =0
wheneverw £ z. For f our initial Equation 2) thus simplifies to

— \ — Y
o] (o] =2[x]) - (3] -3 ob)
Y, Z XY X X, Z X,z y
If w= zbutv # vy, then chooseu # x with u’ = x/: the equation reduces to
f[Vz ] = 0. This shows that is quasi-diagonal, in the sense that;; | = 0 whenever
v £ yorw# z. The left-hand side of our equation thus vanishes idemyicalhe
Uk, W

vanishing of the right-hand side is equivalenf{&% ] = f[ %] forall a € Inn(Q).
This proves thaf is an entropic cocycle, as desired. O

Proof of Theorem 28 The preceding lemmas allow us to conclude fat= E2@ B2,
provided that the order d& = Inn(Q) is invertible in A.. Firstly, we haveE"NB" = {0}
by Lemma31l. Moreover, every cocycle is cohnomologous 6 @&quivariant cocycle by
Lemma32. Finally, in degree 2 at least, eve@requivariant cocycle is cohomologous
to an entropic cocycle, by Lemn&s3. O

Question 34 Is it true thatZ" = E" @ B" for all n > 2 as well?



20 Michael Eisermann

While all preceding arguments apply tecochains in arbitrary degree, the present
calculation ofHZ, seems to work only fon = 2. It is quite possible that some clever
generalization will work for alln, but | could not figure out how to do this. This state
of affairs, while not entirely satisfactory, seems accelgtdoecause we use only the
second cohomology in subsequent applications.

4 Complete Yang-Baxter deformations

In this section we will pass from infinitesimal to completdatenations. In order to
do so, we will assume that the rinfy is complete with respect to the ideal, that is,
we assume that the natural map— lim A/m" is an isomorphism.

Theorem 35 Suppose that the ring. is complete with respect to the ideal. Let

Q be a rack such thdtinn(Q)| is invertible inA. Then every Yang-Baxter operator
c: AQ? — AQ? with ¢ = Co modulom is equivalent to an entropic deformation of
cq. More explicitly, there exists: = | modulom such thafa ® )~ c(a® «) = cof
with some entropic deformation terim AQ> — AQ?, f =1 mod m.

The proof will use the usual induction argument for completgs. We will first
concentrate on the crucial inductive step: the passage frgmi® to A /m"1,

4.1 The inductive step

To simplify notation, we first assume that""! = 0. One can always force this
condition by passing to the quotieat/m™!,

Lemma36 Consider aring\ with idealm such thain™?! = 0. Letc: AQ? — AQ?
be a Yang-Baxter operator that satisfies co modulom and is entropic modulen".
Thenc is equivalent to an entropic Yang-Baxter operator. Moreijsidy, there exists
a: AQ — AQ with o = | modulom™, such thata ® o) toco (a® «) is an entropic
deformation ofcg.

This lemma obviously includes and generalizes the infimtakcasen = 1, estab-
lished in Theoren8, upon which the following proof relies. The only new dif-
ficulty is that higher-order terms of the Yang-Baxter equatrender the problem
non-homogeneous. What is left, fortunately, is an affinecstire:
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Remark 37 Supposec: AQ? — AQ? is a Yang-Baxter operator that satisfies: cq
modulom and is entropic modula". Let X, be the set of Yang-Baxter operatdts
with € = ¢ modm". For eacht € X, we havet = ¢(l + f), with f: AQ? — m"Q?,
and it is easily verified that € Z2(cq; A, m"). Conversely, every € Z%(cq; A, m")
yields a Yang-Baxter operata(l + f) € X,. In other words,X, is an affine space
over Z%(cq; A, m").

Likewise, addition of a coboundarfy = dg € B?(cg; A, m") produces an equivalent
deformation¢ = c(l + f). More explicitly, sincem™! = 0, the mapsy = | + g has
asinversen~! = | — g; we thus obtairt = (o ® o)~ 'c(a ® «) as claimed.

Having the affine structure at hand, we can now proceed figim" to A /m™+1:

Proof of Lemma 36 As before letX, be the set of Yang-Baxter operatotswith
¢ = ¢ modm". Using theZ?-affine structure orX,, it suffices to findat least one
entropic solutionc € X,. Every other solution will then be of the for@(l + f) with
f € Z?%(cq; A, m"), hence equivalent t&(I + ') with some entropid’, according to
Theorem28. Since the composition of entropic maps is again entropis,duffices to
prove the lemma.

In order to find an entropic solutiod € X, we can first of all symmetrize: given
a € Inn(Q), we haveac € Xy, because is equivariant modulan”. This implies that
cC= ‘—é‘ ZQEG ac lies in X, too. We thus obtain an equivariant operatpwhich we
can write€ = cq(l + €) with deformation terne: AQ?> — mQ?. In order to makee
guasi-diagonal, we decompose= f + g such that

fu,v] {e[iﬁ;ﬂ fu=sxv=y,

1 X Y] 0 otherwise
and
(u,v] 0 fu=xv=y,
g = v .
XY e[xy| otherwise

By hypothesise is quasi-diagonal module", whence we have = f modm" and
g: AQ?> — m"Q?. We obtain by this construction a mép= co(l + f) that is entropic
and satisfie€ = ¢ modm".

We claim thatC actually lies inX,, that is,C satisfies the Yang-Baxter equation. To
see this, recall that is a Yang-Baxter operator. Fér= c(l — g) we thus obtain

193 _(12®) e ) Med) o) @dEel) =dg
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It is easy to check that the left-hand side is a quasi-didgwog, whereas the right-
hand side is zero on the quasi-diagonal. We concludelbtit must vanish. This
means that satisfies the Yang-Baxter equation, as claimed. O

4.2 From infinitesimal to complete deformations

To conclude the passage from infinitesimal to complete, Iy oemains to put the
ingredients together:

Proof of Theorem 35 Starting withc; := ¢ for n = 1, suppose that, = cgfy
has a deformation terrfy, that is entropic modulan”. By Lemma36, there exists
an: AQ — AQwith oy = I modulom™, such that,, 1 := (an® an) " Lcn(an® an) is
given bycn,1 = cofh1 with f, 1 entropic modulom™. (In fact, the lemma ensures
that such a map, exists modulan™?; this can be lifted to a mapQ — AQ, which

is again invertible becausé is complete.) Completeness &f ensures that we can
pass to the limit and define the infinite produet= aiaza3---. By construction,
(a ® ) tc(a ® ) is entropic and equivalent to, as desired. O

5 Entropic deformations and r-matrices

As we have seen in the preceding theorem, every Yang-Bagferrdation ofcg over
a complete ringA is equivalent to an entropic Yang-Baxter deformation. @osely,
however, not every entropic deformation gives rise to a Y&agter operator: being
entropic suffices in the infinitesimal case, but in generghéi-order terms introduce
further obstructions. Quite surprisingly, they do not depenQ at all:

Theorem 38 Consider a rack) and its Yang-Baxter operatat : AQ? — AQ? over
some ringA. An entropic deformatioft = cqf satisfies the Yang-Baxter equation if
and only if7 = rf satisfies the Yang-Baxter equation, that is, if and only i§ an
r-matrix.

As we have seen, the transposition operatodoes not impose any infinitesimal
restrictions (the associated coboundary operator vasjisiiéne only obstructions are
those of higher order. The preceding theorem says that tbgration of an entropic
infinitesimal deformation to a complete deformationagf entails exactly the same
higher-order obstructions as in the quantum c&s2T, 22, 23].
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Proof The theorem follows once we have established the equation

(1) € ) Med) Ee ) 0dE))
(=% e G ) e (K e =) [ (R KR [ =) B

One way of proving this equality is by straightforward andi¢eis calculation. It
seems more convenient, however, to employ a suitable graptotation. Recall from
Definition 10thatf being entropic means

S TN a -
>XAE =S 2 =cde qp=AReS
As before, positive and negative crossings represgrand c@l, respectively, whereas
the box represents the deformation tekmThe first and the last equation appear to

be rather natural: they generalize the third ReidemeistaremThe middle equation,
however, is somewhat special and has a curious consequence:

For our operatocg we know that the over-passing strand is not affected by &sitrgs
The middle equation thus implies thatneof the strands is affected by the shown
crossings: we could just as well replace them by transpositi

Following this observation, our calculation boils down terifying the following
transformations:

&bt - pddpgd

Here a white box represents the deformatfQrwhereas a shaded box represents its
inversef ~1. In the first line, positive and negative crossings represgnand 051,
respectively, whereas in the second line, crossings repreise transpositiorr. It is

an easy matter to verify the equalities graphically, usimg flact thatcg and 7 are
Yang-Baxter operators, arfdis entropic with respect tog and . O

6 Closing remarks and open questions

Question 39 Our calculation in Sectio relied on symmetrization, requiring that

| Inn(Q)| be invertible inA; this can be seen as the generic case of “coprime character-
istic”. It seems natural to investigate the cohomolddjj (co; A, m) in the “modular
case”, where Inn(Q)| vanishes in the ring\. Can one still find a succinct description
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of HZ,(cg), at least for certain (families of) examples? What are tighér order
obstructions in this case? Do any interesting knot invésianise in this way?

To illustrate the point, let us emphasize the connectiom witandle and rack co-
homology B, 9. Every mapa: Q x Q — Z/nZ defines a diagonal deforma-
tion of cg over A = Z[h]/(n, h?), with respect to the idealh = (h), by setting
C: Xy [1+ha(x,y)] -y® X'. One easily checks thatis a Yang-Baxter defor-
mation ofcg if and only if « is an additive rack cocycle, that is

ax,y) + a(¥,2) = a(X, 2) + o, Y.

Moreover, ¢ is equivalent tocg if and only if « is a coboundary. Sample calcula-
tions [6] show that rack cohomolog#l?(Q, Z/nZ) can be non-trivial. P.Etingof and
M. Graha [11] have shown that this can only happen whHémn(Q)| is non-invertible
in A. In these cases Yang-Baxter cohomoldg%(cQ;A,m) will include such extra
deformations, and possibly non-diagonal ones, too.

Question 40 Is there a topological interpretation of the deformed iras? Under
suitable conditions, a Yang-Baxter deformatmaf a quandleQ gives rise to invariants

of knots and links 27, 22, 23]. In the case of quandle cohomology one obtains so-
called state-sum invariant$§][ which have a natural interpretation in terms of knot
group representation4(]. Can a similar interpretation be established for YangiBax
deformations ofQ in general?

Question 41 What can be said about deformations of set-theoretic YaageB op-
erators in general? Followin@,[12, 25], consider a se@Q equipped with a bijective
mapc: Q x Q — Q x Q satisfying € x (I x ¢)(c x 1) = (I x ¢)(c x D(I x ¢). Such
a Yang-Baxter map gives rise to a right-actiQnx Q — Q, (x,y) — ¥/, as well as a
left-actionQ x Q — Q, (x,y) — Y, defined byc(x,y) = (*y, ¥¥). Notice that the case
of a trivial left action,”y =y, corresponds precisely to racks.
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As for racks, we can extend to an A-linear mapc: AQ*> — AQ? and study de-
formations over £,m). As before, Yang-Baxter cohomology?Z,(co; A, m) yields
a convenient framework for the infinitesimal deformatioriscobut concrete calcu-
lations are more involved. Does the cohomoldd§, (c) still correspond to entropic
maps (under suitable hypotheses)? Can one establishrsiigithty properties? What
happens in the modular case? Is there a topological intatfme?
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