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Yang-Baxter deformations
of quandles and racks

MICHAEL EISERMANN

Given a rackQ and a ringA , one can construct a Yang-Baxter operatorcQ : V ⊗
V → V⊗ V on the freeA-moduleV = AQ by settingcQ(x⊗ y) = y⊗ xy for all
x, y ∈ Q. In answer to a question initiated by D.N. Yetter and P.J. Freyd, this article
classifies formal deformations ofcQ in the space of Yang-Baxter operators. For
the trivial rack, wherexy

= x for all x, y, one has, of course, the classical setting
of r-matrices and quantum groups. In the general case we introduce and calculate
the cohomology theory that classifies infinitesimal deformations of cQ . In many
cases this allows us to conclude thatcQ is rigid. In the remaining cases, where
infinitesimal deformations are possible, we show that higher-order obstructions
are the same as in the quantum case.

Introduction

Following M. Gerstenhaber [16], an algebraic deformation theory should

• define the class of objects within which deformation takes place,

• identify infinitesimal deformations as elements of a suitable cohomology,

• identify the obstructions to integration of an infinitesimal deformation,

• give criteria for rigidity, and possibly determine the rigid objects.

In answer to a question initiated by P.J. Freyd and D.N. Yetter [15], we carry out this
programme for racks (linearized over some ringA) and their formal deformations in
the space ofA-linear Yang-Baxter operators.

http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 
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A rack is a setQ with a binary operation, denoted (x, y) 7→ xy , such thatcQ : x⊗ y 7→
y⊗xy defines a Yang-Baxter operator on the freeA-moduleAQ (see§1 for definitions).
For a trivial rack, wherexy

= x for all x, y ∈ Q, we see thatcQ is simply the
transposition operator. In this case the theory of quantum groups [7, 27, 22, 23]
produces a plethora of interesting deformations, which have received much attention
over the last 20 years. It thus seems natural to study deformations of cQ in the general
case, whereQ is a non-trivial rack.

Outline of results

We first introduce and calculate the cohomology theory that classifies infinitesimal
deformations of racks in the space of Yang-Baxter operators. In many cases this
suffices to deduce rigidity. In the remaining cases, where infinitesimal deformations
are possible, we show that higher-order obstructions do notdepend onQ: they are the
same as in the classical case of quantum invariants. (See§1.4for a precise statement.)

Formal Yang-Baxter deformations of racks thus have an unexpectedly simple descrip-
tion: up to equivalence they are just r-matrices with a special symmetry imposed by
the inner automorphism group of the rack. Although this is intuitively plausible, it
requires a careful analysis to arrive at an accurate formulation. The precise notion of
entropicr-matrices will be defined in§1.3.

With regards to topological applications, this result may come as a disappointment
in the quest for new knot invariants. To our consolation, we obtain a complete and
concise solution to the deformation problem for racks, which is quite satisfactory from
an algebraic point of view.

Throughout our calculations we consider the generic case where the order| Inn(Q)| of
the inner automorphism group of the rackQ is invertible in the ground ringA. We
should point out, however, that certain knot invariants arise only in the modular case,
where| Inn(Q)| vanishes inA; see the closing remarks in Section6.

How this paper is organized

In order to state the results precisely, and to make this article self-contained, Section
1 first recalls the notions of Yang-Baxter operators (§1.1) and racks (§1.2). We can
then introduce entropic maps (§1.3) and state our results (§1.4). We also discuss some
examples (§1.5) and put our results into perspective by briefly reviewing related work
(§1.6).
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The proofs are given in the next four sections: Section2 introduces Yang-Baxter coho-
mology and explains how it classifies infinitesimal deformations. Section3 calculates
this cohomology for racks. Section4 generalizes our classification from infinitesimal
to complete deformations. Section5 examines higher-order obstructions and shows
that they are the same as in the classical case of quantum invariants. Section6, finally,
discusses some open questions.

1 Review of basic notions and statement of results

1.1 Yang-Baxter operators

Let A be a commutative ring with unit. In the sequel all modules will be A-modules,
and all tensor products will be formed overA. For everyA-moduleV we denote by
V⊗n the n-fold tensor product ofV with itself. The identity map ofV is denoted by
I : V → V , and II= I ⊗ I stands for the identity map ofV ⊗ V .

Definition 1 A Yang-Baxter operatoron V is an automorphismc: V ⊗ V → V ⊗ V
that satisfies theYang-Baxter equation, also calledbraid relation,

(c⊗ I)(I ⊗ c)(c⊗ I) = (I ⊗ c)(c⊗ I)(I ⊗ c) in AutA(V⊗3).

This equation first appeared in theoretical physics, in a paper by C.N. Yang [28] on the
many-body problem in one dimension, in work of R.J. Baxter [2, 3] on exactly solvable
models in statistical mechanics, and later in quantum field theory [13] in connection
with the quantum inverse scattering method. It also has a very natural interpretation in
terms of Artin’s braid groups [1, 4] and their tensor representations:

Remark 2 Recall that the braid group onn strands can be presented as

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

σiσj = σjσi for |i − j| ≥ 2
σiσjσi = σjσiσj for |i − j| = 1

〉

,

where the braidσi performs a positive half-twist of the strandsi andi +1. In graphical
notation, braids can conveniently be represented as in Figure 1.

Given a Yang-Baxter operatorc, we can define automorphismsci : V⊗n → V⊗n for
i = 1, . . . ,n−1 by settingci = I⊗(i−1)⊗c⊗ I⊗(n−i−1). The Artin presentation ensures
that there exists a unique braid group representationρn

c : Bn→ AutA(V⊗n) defined by
ρn

c(σi) = ci .
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Here we adopt the following convention: braid groups will act on the left, so that
composition of braids corresponds to composition of maps. The braid in Figure
1, for example, readsβ = σ−2

1 σ2
2σ

−1
1 σ1

2σ
−1
1 σ1

2 ; it is represented by the operator
ρ3

c(β) = c−2
1 c2

2c−1
1 c1

2c−1
1 c1

2 acting onV⊗3.

1

i
i+1

n

1

i
i+1

n

Figure 1: Elementary braidsσ+1
i , σ−1

i ; a more complex exampleβ

Notice that Artin, after having introduced his braid groups, could have written down
the Yang-Baxter equation in the 1920s, but without any non-trivial examples the theory
would have remained void. It is a remarkable fact that the Yang-Baxter equation admits
any interesting solutions at all. Many of them have only beendiscovered since the
1980s, and our first example recalls the most prominent one:

Example 3 For everyA-moduleV the transpositionτ : V ⊗ V → V ⊗ V given by
τ (a⊗ b) = b⊗ a is a Yang-Baxter operator. This in itself is not very surprising, but
deformations ofτ can be very interesting: Suppose thatV is free of rank 2 and choose
a basis (v,w). If we equipV⊗2 with the basis (v⊗ v, v⊗ w,w⊗ v,w⊗ w) thenτ is
represented by the matrixc1 as follows:

c1 =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









, cq =









q 0 0 0
0 0 q2 0
0 q2 q−q3 0
0 0 0 q









.

For every choice ofq ∈ A× , the matrixcq is a Yang-Baxter operator, and forq = 1
we obtain the initial solutionc1 = τ . The family (cq), together with a suitable trace,
yields the celebrated Jones polynomial [18, 19, 20], a formerly unexpected invariant
of knots and links. More generally, deformations ofτ lead to the so-calledquantum
invariantsof knots and links.

Given the matrixcq of the preceding example, it is straightforward tocheckthat it
satisfies the Yang-Baxter equation. How tofind such solutions, however, is a much
harder question. Attempts to construct solutions in a systematic way have led to the
theory of quantum groups (cf. [7]). For details we refer to the concise introduction
[23] or the textbook [22].
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Remark 4 A slight reformulation sometimes proves useful. Every Yang-Baxter
operatorc can be written asc = τ f where f : V ⊗ V → V ⊗ V is an automorphism
satisfyingf12f13f23 = f23f13f12, with fij acting on thei th andj th factor ofV ⊗ V ⊗ V .
Such an operatorf is called anr-matrix. Depending on the context it may be more
convenient to consider the r-matrixf or the Yang-Baxter operatorτ f .

The set of Yang-Baxter operators is closed under conjugation by Aut(V), and conjugate
operators yield conjugate braid group representations. A general goal of Yang-Baxter
theory, as yet out of reach, would be to classify solutions ofthe Yang-Baxter equation
modulo conjugation by Aut(V). In favourable cases this can be done at leastlocally,
that is, one can classifydeformationsof a given Yang-Baxter operator. Our main result,
as stated in§1.4below, covers a large class of such examples.

Definition 5 We fix an idealm in the ringA. Suppose thatc: V ⊗ V → V ⊗ V is a
Yang-Baxter operator. A map̃c: V⊗ V→ V⊗ V is called aYang-Baxter deformation
of c (with respect tom) if c̃ is itself a Yang-Baxter operator and satisfiesc̃≡ c modulo
m.

The typical setting is the power series ringA = K[[h]] over a fieldK, equipped with
its maximal idealm = (h). In Example3 we can chooseq ∈ 1 + m, which ensures
that cq is a deformation ofτ in the sense of the definition.

Definition 6 An equivalence transformation(with respect to the idealm) is an au-
tomorphismα : V → V with α ≡ I modulo m. Two Yang-Baxter operatorsc and c̃
are calledequivalent(with respect tom) if there exists an equivalence transformation
α : V → V such that̃c = (α⊗ α) c (α ⊗ α)−1 .

For every invertible elements ∈ 1 + m multiplication yields a deformations · c of
c. Such a rescaling, even though uninteresting, is in generalnot equivalent toc. A
deformationc̃ of c is calledtrivial if it is equivalent toc or to a rescalings· c by some
constant factors∈ 1+ m. We say thatc is rigid if every Yang-Baxter deformation of
c is trivial.

1.2 Quandles and racks

Racks are a way to construct set-theoretic solutions of the Yang-Baxter equation. To
begin with, consider a groupG and a subsetQ ⊂ G that is closed under conjugation.
This allows us to define a binary operation∗ : Q× Q→ Q by settingx ∗ y = y−1xy,
which enjoys the following properties:
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(Q1) For everyx ∈ Q we havex ∗ x = x. (idempotency)

(Q2) Every right translation̺ (y) : x 7→ x ∗ y is a bijection. (right invertibility)

(Q3) For allx, y, z∈ Q we have (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z). (self-distributivity)

Such structures have gained independent interest since the1980s when they have been
applied in low-dimensional topology, most notably to studyknots and braids. This is
why a general definition has proven useful:

Definition 7 Let Q be a set with a binary operation∗. We call (Q, ∗) a quandleif it
satisfies axioms (Q1–Q3), and arack if satisfies axioms (Q2–Q3).

The term “quandle” goes back to D. Joyce [21]. The same structure was called “dis-
tributive groupoid” by S.V. Matveev [26], and “crystal” by L.H. Kauffman [24]. Since
quandles are close to groups, their applications in knot theory are in close relationship
to the knot group. We should point out, however, that there exist many quandles that
do not embed into any group.

Axioms (Q2) and (Q3) are equivalent to saying that every right translation̺(y) : x 7→
x∗y is an automorphism of (Q, ∗). This is why such a structure was calledautomorphic
setby E. Brieskorn [5]. The somewhat shorter termrack was preferred by R. Fenn and
C.P. Rourke [14].

Definition 8 Let Q be a rack. The subgroup of Aut(Q) generated by the family
{̺(y) | y ∈ Q} is called the group ofinner automorphisms, denoted Inn(Q). Two
elementsx, y ∈ Q are calledbehaviourally equivalent, denotedx≡ y, if ̺(x) = ̺(y).

We adopt the convention that automorphisms of a rackQ act on the right, writtenxφ

or x ∗ φ, which means that their compositionφψ is defined byx(φψ)
= (xφ)ψ for all

x ∈ Q. For x, y ∈ Q we use the notationxy andx ∗ y indifferently.

P.J. Freyd and D.N. Yetter [15] considered the similar notion ofcrossed G-sets. Here
the defining data is a setQ equipped with a right action of a groupG and a map
̺ : Q → G such that̺(xg) = g−1̺(x)g. One easily verifies that this defines a rack
(Q, ∗) with x ∗ y = x̺(y) . Conversely, every rack (Q, ∗) defines a crossedG-set by
choosing the groupG = Inn(Q) with its natural action onQ and ̺ : Q→ Inn(Q) as
above. Notice, however, that crossedG-sets are slightly more general than quandles,
because the groupG acting onQ need not be chosen to be Inn(Q).

Just as quandles generalize knot colourings, racks are tailor-made for braid colourings,
see E. Brieskorn [5]. This brings us back to our main theme:



Yang-Baxter deformations of quandles and racks 7

Proposition 9 Given a rackQ, one can construct a Yang-Baxter operatorcQ as
follows: let V = AQ be the freeA-module with basisQ and define

cQ : AQ⊗ AQ→ AQ⊗ AQ by x⊗ y 7→ y⊗ (x ∗ y) for all x, y ∈ Q.

By construction,cQ is a Yang-Baxter operator: Axiom (Q2) ensures thatcQ is an
automorphism, while Axiom (Q3) implies the Yang-Baxter equation.

1.3 Entropic maps

In examining deformations of the operatorcQ we will encounter certain mapsf : AQn→

AQn that respect the inner symmetry of the rackQ. To formulate this precisely, we
introduce some notation.

Definition 10 Using graphical notation, a mapf : AQn → AQn is calledentropic
with respect tocQ if it satisfies, for eachi = 0, . . . ,n, the following equation:

0

i

nn

i

0

f =

0

i

n n

i

0

f

This can be reformulated in a more algebraic fashion. For notational convenience,
we do not distinguish between theA-linear map f : AQn → AQn and its matrix
f : Qn×Qn→ A, related by the definition

f : (x1⊗ · · · ⊗ xn) 7→
∑

y1,...,yn

f

[

x1, . . . , xn

y1, . . . , yn

]

· (y1⊗ · · · ⊗ yn) .

Matrix entries are thus denoted byf
[ x1,...,xn

y1,...,yn

]

with indices
[ x1,...,xn

y1,...,yn

]

∈ Qn×Qn.

Definition 11 A map f : AQn → AQn is calledquasi-diagonalif f
[ x1,...,xn

y1,...,yn

]

= 0
wheneverxi 6≡ yi for some indexi ∈ {1, . . . ,n}. It is fully equivariant if it is
equivariant under the action of Inn(Q)n, that is f

[ x1,...,xn
y1,...,yn

]

= f
[ x1∗α1,...,xn∗αn

y1∗α1,...,yn∗αn

]

for all
x1, . . . , xn, y1, . . . , yn ∈ Q andα1, . . . , αn ∈ Inn(Q).

Proposition 12 (proved in§3.2) An A-linear mapf : AQn→ AQn is entropic if and
only if it is both quasi-diagonal and fully equivariant.

Remark 13 Entropic maps form a sub-algebra of End(AQn). If Q is trivial, then every
map is entropic. If Inn(Q) acts transitively onQ and̺ : Q→ Inn(Q) is injective, then
the only entropic maps areλ id with λ ∈ A. There are many examples in between the
two extremes. Generally speaking, the larger Inn(Q) is, the fewer entropic maps there
are.
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1.4 Yang-Baxter deformations of racks

As we have seen, each rackQ provides a particular solutioncQ to the Yang-Baxter
equation. It appears natural to ask for deformations. Our main result solves this
problem: under generic hypotheses, every Yang-Baxter deformation ofcQ is equivalent
to an entropic deformation.

Definition 14 Every deformationc of cQ can be written asc = cQf with f ≡ II
modulom. We call such a deformationentropicif f is entropic.

The preliminaries being in place, we can now state the main results:

Theorem 15 (proved in§3) Consider the infinitesimal case wherem
2

= 0. Then
every entropic deformation ofcQ satisfies the Yang-Baxter equation. If moreover
| Inn(Q)| is invertible inA, then every Yang-Baxter deformation ofcQ is equivalent to
exactly one entropic deformation.

Our approach to prove this theorem is classical: in the infinitesimal case everything
becomes linear in first order terms, and the Yang-Baxter equation can be recast as a
cochain complex. This can reasonably be called theYang-Baxter cohomology. It is
introduced in§2 and calculated in§3. Having this initial result at hand, we can proceed
from infinitesimal to complete deformations:

Theorem 16 (proved in§4) Let A be a ring that is complete with respect to the ideal
m, and letQ be a rack such that| Inn(Q)| is invertible inA. Then every Yang-Baxter
deformation ofcQ : AQ2→ AQ2 is equivalent to an entropic deformation.

Notice that the hypotheses are always satisfied for a finite rack Q over the complete
local ring A = Q[[h]] with its maximal idealm = (h).

The preceding theorem ensures that we can restrict attention to entropic deformations;
however, not every entropic deformation satisfies the Yang-Baxter equation. Being
entropic suffices in the infinitesimal case, but in general higher-order terms introduce
further obstructions. Quite surprisingly, they do not depend onQ at all; higher-order
obstructions are exactly the same as in the quantum case:

Theorem 17 (proved in §5) Consider a rackQ and its associated Yang-Baxter
operatorcQ : AQ2 → AQ2 over some ringA. An entropic deformationcQf satisfies
the Yang-Baxter equation if and only ifτ f satisfies the Yang-Baxter equation, that is,
if and only if f is an r-matrix.



Yang-Baxter deformations of quandles and racks 9

The transposition operatorτ does not impose any infinitesimal restrictions; the only
obstructions are those of degree 2 and higher. The precedingtheorem says that entropic
deformations ofcQ are subject to exactly the same higher-order obstructions as defor-
mations ofτ , plus the entropy condition enforced by a non-trivial innerautomorphism
group Inn(Q). In this sense, entropic Yang-Baxter deformations ofcQ are just entropic
r-matrices. We have thus reduced the theory of formal Yang-Baxter deformations of
racks to the quantum case [7, 27, 22, 23].

1.5 Applications and examples

To simplify notation, we will consider here only quandlesQ that embed into some
finite group G. This leads to certain classes of examples where deformations over
A = Q[[h]] are particularly easy to understand.

Remark 18 Consider first a trivial quandleQ, with x ∗ y = x for all x, y, where
cQ = τ is simply the transposition operator. Here our results cannot add anything new:
every mapf : AQn → AQn is entropic, and so Theorem15 simply restates that there
are no infinitesimal obstructions (every deformation ofτ satisfies the Yang-Baxter
equation modulom2). There are, however, higher-order obstructions, which wehave
carefully excluded from our discussion: these form a subject of their own and belong
to the much deeper theory of quantum invariants (see Example3).

After the trivial quandle, which admits many deformations but escapes our techniques,
let us consider the opposite case of a rigid operator:

Corollary 19 Let G be a finite centreless group that is generated by a conjugacy class
Q. Then every Yang-Baxter deformation ofcQ over Q[[h]] is equivalent tos · cQ with
some constant factors∈ 1 + (h). In other words,cQ is rigid.

Example 20 The smallest non-trivial example of a rigid operator is given by the set
Q = {(12), (13), (23)} of transpositions in the symmetric groupS3, or equivalently the
set of reflections in the dihedral groupD3. Ordering the basisQ×Q lexicographically,
we can representcQ by the matrix

cQ =











1 · · · · · · · ·
· · · · · · 1 · ·
· · · 1 · · · · ·
· · · · · · · 1 ·
· · · · 1 · · · ·
· 1 · · · · · · ·
· · · · · 1 · · ·
· · 1 · · · · · ·
· · · · · · · · 1











.
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In the case of the Jones polynomial, the initial operatorτ is trivial but the deformation
cq is highly non-trivial. In the present example, the interesting part is the initial operator
cQ itself: the associated link invariant is the number of 3-colourings, as defined by
R.H. Fox. Unlike τ , the Yang-Baxter operatorcQ does not admit any non-trivial
deformation overQ[[h]] . In this sense it is an isolated solution of the Yang-Baxter
equation.

There are also racks in between the two extremes, which are neither trivial nor rigid. We
indicate a class of examples where every infinitesimal deformation can be integrated,
because higher-order obstructions miraculously vanish.

Corollary 21 Let G be a finite group, generated byQ = ∪iQi , whereQ1, . . . ,Qn

are distinct conjugacy classes ofG. Assume further that the centreZ of G satisfies
Z · Qi = Qi for eachi = 1, . . . ,n. Then every Yang-Baxter deformation ofcQ over
Q[[h]] is equivalent to one of the formc(x⊗ y) = sij · y⊗ xy for x ∈ Qi andy ∈ Qj ,
with constant factorssij ∈ 1 + hQ[[h]][ Z × Z] . Conversely, every deformation of this
form satisfies the Yang-Baxter equation.

Example 22 Consider the set of reflections in the dihedral groupD4, that is

Q = { (13), (24), (12)(34), (14)(23)}.

This set is closed under conjugation, hence a quandle. With respect to the lexicograph-
ical basis,cQ is represented by the following permutation matrix:

cQ =

























1 · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · · · · 1 · ·
· 1 · · · · · · · · · · · · · ·
· · · · · 1 · · · · · · · · · ·
· · · · · · · · 1 · · · · · · ·
· · · · · · · · · · · · 1 · · ·
· · · 1 · · · · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · · · · 1 ·
· · 1 · · · · · · · · · · · · ·
· · · · · · 1 · · · · · · · · ·
· · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · 1

























By construction, this matrix is a solution of the Yang-Baxter equation. According to
Corollary21, it admits a 16-fold deformationc(λ) given by
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c(λ) = cQ +

































λ1 λ2 · · λ3 λ4 · · · · · · · · · ·
λ3 λ4 · · λ1 λ2 · · · · · · · · · ·
· · · · · · · · λ5 λ6 · · λ7 λ8 · ·
· · · · · · · · λ7 λ8 · · λ5 λ6 · ·
λ2 λ1 · · λ4 λ3 · · · · · · · · · ·
λ4 λ3 · · λ2 λ1 · · · · · · · · · ·
· · · · · · · · λ6 λ5 · · λ8 λ7 · ·
· · · · · · · · λ8 λ7 · · λ6 λ5 · ·
· · λ9 λ10 · · λ11 λ12 · · · · · · · ·
· · λ11 λ12 · · λ9 λ10 · · · · · · · ·
· · · · · · · · · · λ13 λ14 · · λ15 λ16
· · · · · · · · · · λ15 λ16 · · λ13 λ14
· · λ10 λ9 · · λ12 λ11 · · · · · · · ·
· · λ12 λ11 · · λ10 λ9 · · · · · · · ·
· · · · · · · · · · λ14 λ13 · · λ16 λ15
· · · · · · · · · · λ16 λ15 · · λ14 λ13

































.

For every choice of parametersλ1, . . . , λ16, the matrixc(λ) satisfies the Yang-Baxter
equation, and as a special case we getc(0) = cQ . We finally remark that the trace of
its square is given by

tr
[

c(λ)2]
= 4(λ1 + 1)2 + 4λ2

4 + 4(λ13 + 1)2 + 4λ2
16

+ 8(λ6 + 1)λ11 + 8(λ10 + 1)λ7 + 8λ2λ3 + 8λ14λ15 + 8λ5λ9 + 8λ8λ12,

which shows that none of the parameters can be eliminated by an equivalence trans-
formation. This proves anew that the deformed operatorc(λ) is not equivalent to the
initial operatorcQ.

Remark 23 It is amusing to note that the minimal Examples3, 20, and22are the first
three members of the family formed by reflections in dihedralgroups. The following
figure nicely summarizes the point:

2

1

2 3

4

32

1

1

trivial but
deformable but rigid

non-trivial
nor rigid

neither trivial

Figure 2: The first three members of the dihedral family
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1.6 Related work

Similar deformation and cohomology theories naturally arise in situations that are close
or equivalent to the Yang-Baxter setting.

• Our results can be reformulated in terms of deformations of modules over the
quantum doubleD(G) of a finite groupG. In this form it has possibly been
known to experts in quantum groups, but there seems to be no written account
in the literature. See [23, ch. IX] for general background.

• The bialgebra approach was pursued by M. Gerstenhaber and S.D. Schack, who
proved in [17, §8] that the group bialgebraKG is rigid as a bialgebra. They did
not discuss deformations of its quantum doubleD(G).

• Our approach can also be reformulated in terms of deformations of braided
monoidal categories. This point of view was put forward by P.J. Freyd and
D.N. Yetter in [15]. The deformation of quandles and racks appeared as an
example, but only diagonal deformations were taken into account.

• Diagonal deformations have been more fully developed in [6], where quandle
cohomology was used to construct state-sum invariants of knots. P. Etingof and
M. Graña [11] have calculated rack cohomologyH∗(Q,A) assuming| Inn(Q)|
invertible in A. Our calculation ofH2

YB(cQ,A) generalizes their result from
diagonal to general Yang-Baxter deformations.

• In [29] Yetter considered deformations of braided monoidal categories in full
generality; see also [30] and the bibliographical references therein. He was thus
led to define a cohomology theory, which is essentially equivalent to Yang-Baxter
cohomology. He did not, however, calculate any examples.

As far as I can tell, none of the previous results covers Yang-Baxter deformations of
conjugacy classes, quandles, or racks.

2 Yang-Baxter cohomology and infinitesimal deformations

This section develops the infinitesimal deformation theoryof Yang-Baxter operators.
As usual, this is most conveniently formulated in terms of a suitable cohomology
theory, which we will now define.
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2.1 Yang-Baxter cohomology

Let A be a commutative ring with unit and letm be an ideal inA . Given anA-module
V and a Yang-Baxter operatorc: V⊗2 → V⊗2, we can construct a cochain complex
of A-modulesCn

= HomA(V⊗n,mV⊗n) as follows. Firstly, givenf ∈ Cn, we define
dn

i f ∈ Cn+1 by

dn
i f =

(

cn · · · ci+1
)−1

(f ⊗ I)
(

cn · · · ci+1
)

− (c1 · · · ci)
−1 (I ⊗ f ) (c1 · · · ci)

or in graphical notation:

dn
i f = +

0

i

n n

i

0

f −

0

i

nn

i

0

f

We then define the coboundary operatordn : Cn→ Cn+1 by dn
=

∑i=n
i=0(−1)idn

i .

Proposition 24 The sequenceC1 d1

−→ C2 d2

−→ C3 . . . is a cochain complex.

Proof The hypothesis thatc be a Yang-Baxter operator impliesdn+1
i dn

j = dn+1
j+1 dn

i for
i ≤ j . This can be proven by a straightforward computation; it is most easily verified
using the graphical calculus suggested in the above figure. It follows, as usual, that
terms cancel each other in pairs to yielddn+1dn

= 0.

Definition 25 We call (Cn,dn) the Yang-Baxter cochain complexassociated with
the operatorc. As usual, elements of the kernelZn

= ker(dn) are calledcocycles,
and elements of the imageBn

= im(dn−1) are calledcoboundaries. The quotient
Hn

= Zn/Bn is called theYang-Baxter cohomologyof the operatorc, denotedHn
YB(c),

or Hn
YB(c; A,m) to indicate the dependence on the ringA and the idealm.

Remark 26 A more general cohomology can be defined by taking coefficients in an
arbitrary A-moduleU . The operatorsci act not only onV⊗n but also onU ⊗ V⊗n,
extended by the trivial action onU . Using this convention, we can define a cochain
complexCn

= HomA(V⊗n,U ⊗ V⊗n) with coboundary given by the same formulae
as above.

Moreover, given a submoduleU′ ⊂ U , we can consider the image of the induced map
U′ ⊗ V⊗n → U ⊗ V⊗n. (The image will be isomorphic withU′ ⊗ V⊗n if V is flat.)
Using this submodule instead ofU⊗V⊗n, we obtain yet another cohomology, denoted
Hn

YB(c; U,U′). This generalizes our initial definition ofHn
YB(c; A,m). All cohomology

calculations in this article generalize verbatim to the case (U,U′). For our applications,
however, it will be sufficient to consider the special case (A,m).
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2.2 Infinitesimal Yang-Baxter deformations

Consider a Yang-Baxter operatorc: V⊗2→ V⊗2. Every deformatioñc: V⊗2→ V⊗2

of c can be written as̃c = c(II + f ) with perturbation termf : V⊗2 → mV⊗2. For
the rest of this section we will assume thatm

2
= 0, which means that we consider

infinitesimal deformations. One can always force this condition by passing to the
quotientA/m2. The reason for this simplification is, of course, that higher-order terms
are suppressed and everything becomes linear in first order terms.

Proposition 27 Suppose that the idealm ⊂ A satisfiesm2
= 0. Then c̃ = c(II + f )

is a Yang-Baxter operator if and only ifd2f = 0. Moreover,c and c̃ are equivalent via
conjugation byα = I + g with g: V→ mV if and only if f = d1g.

Proof Spelling out the Yang-Baxter equation forc̃ yields the Yang-Baxter equation
for c and six error terms of first order. More precisely, we obtain

(I ⊗ c̃)−1(c̃⊗ I)−1(I ⊗ c̃)−1(c̃⊗ I)(I ⊗ c̃)(c̃⊗ I)

= (I ⊗ c)−1(c⊗ I)−1(I ⊗ c)−1(c⊗ I)(I ⊗ c)(c⊗ I) + d2f .

By hypothesis,c is a Yang-Baxter operator, so the first term is the identity. As a
consequencẽc is a Yang-Baxter operator if and only iff ∈ Z2(c) := ker(d2).

On the other hand, givenα = I + g we haveα−1
= I − g and thus

(α⊗ α)−1 c (α⊗ α) = c(II + d1g)

As a consequence,c and c̃ are equivalent if and only iff ∈ B2(c) := im(d1).

The infinitesimal deformations ofc are thus encoded in the cochain complex

Hom(V,mV)
d1

−→ Hom(V⊗2,mV⊗2)
d2

−→ Hom(V⊗3,mV⊗3).

Here d1 maps each infinitesimal transformationg: V → mV to its infinitesimal per-
turbation termd1g: V⊗2 → mV⊗2, which corresponds to an infinitesimally trivial
deformation, andd2 maps each infinitesimal perturbationf : V⊗2 → mV⊗2 to its
infinitesimal error termd2f : V⊗3 → mV⊗3. By construction, we find again that
d2 ◦ d1

= 0. We are interested in the quotient ker(d2)/ im(d1).
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3 Yang-Baxter cohomology of racks

This section will establish our main technical result: the explicit calculation of the
second Yang-Baxter cohomology of a rack (Q, ∗). As before, we consider the Yang-
Baxter operatorcQ : AQ2 → AQ2 defined byx ⊗ y 7→ y ⊗ (x ∗ y). We wish to
study the associated cochain complexC1 → C2 → C3 → . . . with cocyclesZn and
coboundariesBn. In degree 2 this is solved by the following theorem:

Theorem 28 Entropicn-cochains form a submodule ofZn, denotedEn. If the order
of Inn(Q) is invertible in A, then we haveZ2

= E2 ⊕ B2, in other words, every
2-cocycle is cohomologous to exactly one entropic cocycle.

The theorem implies in particular thatH2 ∼= E2, which is a perfectly explicit description
of the second Yang-Baxter cohomology of a rackQ. The theorem does even a little
better: in each cohomology classξ ∈ H2 it designates a preferred representative,
namely the unique entropic cocycle inξ . This will be proved by a sequence of four
lemmas, which occupy the rest of this section.

3.1 The coboundary operators

Our goal is to calculate the Yang-Baxter cohomology of racks. Before doing so we will
first make the coboundary operators more explicit by translating them from graphical
to matrix notation.

Let δ : Q×Q→ A be the identity matrix, which in matrix notation is written as

δ

[

x
y

]

=

{

1 if x = y

0 if x 6= y
.

In this notation the operatordn
i f : Qn+1×Qn+1→ m is given by

(dn
i f )

[

x0, . . . , xn

y0, . . . , yn

]

= +f

[

x0 , . . . , xi−1, xi+1, . . . , xn

y0 , . . . , yi−1, yi+1, . . . , yn

]

· δ

[

xxi+1···xn
i

yyi+1···yn
i

]

(1)

−f

[

xxi
0 , . . . , x

xi
i−1, xi+1, . . . , xn

yyi
0 , . . . , y

yi
i−1, yi+1, . . . , yn

]

· δ

[

xi

yi

]

.

The coboundarydnf : Cn→ Cn+1 is given bydnf =
∑i=n

i=0(−1)idn
i f .
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Remark 29 Our definitions were motivated by infinitesimal deformations in the space
of Yang-Baxter operators. We could instead restrict all coboundary operators to di-
agonal matrices, that is, to matricesf : Qn × Qn → m with f

[ x1,...,xn
y1,...,yn

]

= 0 whenever
xi 6= yi for some i . In this case we obtain the cochain complex of quandle or rack
cohomology (see [6, 9]).

3.2 Characterization of entropic maps

Recall from Definition10 that a mapf : AQn → mQn is entropic if and only if
d0f = · · · = dnf = 0. The following lemma gives a useful reformulation:

Lemma 30 Given anA-linear mapf : AQn → mQn and anyk ∈ {0, . . . ,n}, we
havedkf = · · · = dnf = 0 if and only if the following two conditions hold:

Dk : f

[

x1, . . . , xn

y1, . . . , yn

]

= 0 wheneverxi 6≡ yi for somei > k, and

Ek : f

[

x1, . . . , xn

y1, . . . , yn

]

= f

[

xα1 , . . . , x
α
i , xi+1, . . . , xn

yα1 , . . . , y
α
i , yi+1, . . . , yn

]

for all α ∈ Inn(Q) and i ≥ k.

In particular,f is entropic if and only if it is quasi-diagonal and fully equivariant.

Proof By equation (1), conditionsDk and Ek imply that dkf = · · · = dnf = 0. To
prove the converse, we proceed by a downward induction onk = n, . . . ,0.

Assumedkf = · · · = dnf = 0 and thatDk+1 andEk+1 are true. We want to establish
Dk andEk . First of all, we can suppose thatxk+2 ≡ yk+2, . . . , xn ≡ yn; otherwiseDk

andEk are trivially satisfied because all terms vanish.

In order to proveDk , consider the casexk+1 6≡ yk+1 . Since̺(xk+1) 6= ̺(yk+1), there
existsw ∈ Q with such thatu = w ∗ ̺(xk+1)−1 differs from v = w ∗ ̺(yk+1)−1. We
can thus chooseu 6= v with uxk+1 = vyk+1 to obtain

0 = (dkf )

[

x1, . . . , xk,u, xk+1, . . . , xn

y1, . . . , yk, v, yk+1, . . . , yn

]

= f

[

x1, . . . , xk, xk+1, . . . , xn

y1, . . . , yk, yk+1, . . . , yn

]

.

In order to proveEk , it suffices to considerα = ̺(z) with z ∈ Q, since these
automorphisms generate Inn(Q). Here we obtain

0 = (dkf )

[

x1, . . . , xk, z, xk+1, . . . , xn

y1, . . . , yk, z, yk+1, . . . , yn

]

= f

[

x1, . . . , xk, xk+1, . . . , xn

y1, . . . , yk, yk+1, . . . , yn

]

− f

[

xz
1, . . . , x

z
k, xk+1, . . . , xn

yz
1, . . . , y

z
k, yk+1, . . . , yn

]

.

This establishes the induction stepk + 1→ k and completes the proof.
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Notice that in the preceding lemma we can choose the idealm = A; we thus obtain
the characterization of entropic maps announced in Proposition 12.

3.3 Entropic coboundaries vanish

On our way to establishZ2
= E2⊕ B2, we are now in position to prove the easy part:

Lemma 31 If the order of the inner automorphism groupG = Inn(Q) is not a zero-
divisor in A, thenEn ∩ Bn

= {0}.

Proof Consider a coboundaryf = dg that is entropic. We have to show thatf = 0.
By the previous lemma, we know thatf is quasi-diagonal, hence we can assume that
xi ≡ yi for all i . The equationf = dg then simplifies to

f

[

x1, . . . , xn

y1, . . . , yn

]

=

i=n
∑

i=1

(−1)i−1δ

[

xi

yi

](

g

[

x1, . . . , xi−1, xi+1, . . . , xn

y1, . . . , yi−1, yi+1, . . . , yn

]

−g

[

x1 ∗ xi , . . . , xi−1 ∗ xi , xi+1, . . . , xn

y1 ∗ yi , . . . , yi−1 ∗ yi , yi+1, . . . , yn

])

Using the equivariance under the action ofGn, we obtain

|G|n · f

[

x1, . . . , xn

y1, . . . , yn

]

=

∑

α∈Gn

f

[

xα1
1 , . . . , xαn

n

yα1
1 , . . . , y

αn
n

]

=

i=n
∑

i=1

(−1)i−1δ

[

xi

yi

]

∑

α∈Gn

(

g

[

xα1
1 , . . . , xαi−1

i−1 , x
αi+1
i+1 , . . . , x

αn
n

yα1
1 , . . . , y

αi−1
i−1 , y

αi+1
i+1 , . . . , y

αn
n

]

− g

[

xα1
1 ∗ xαi

i , . . . , x
αi−1
i−1 ∗ xαi

i , x
αi+1
i+1 , . . . , x

αn
n

yα1
1 ∗ yαi

i , . . . , y
αi−1
i−1 ∗ yαi

i , y
αi+1
i+1 , . . . , y

αn
n

])

Fix some indexi in the outer sum. We can assumexi = yi , otherwiseδ
[ xi

yi

]

= 0.
Consider further some indexj < i . The mapsxj 7→ xαj

j ∗ xαi
i and yj 7→ yαj

j ∗

yαi
i correspond to the action ofαjα

−1
i ̺(xi )αi . As αj runs throughG, the product

αjα
−1
i ̺(xi )αi also runs throughG. This means that in the inner sum overα ∈ Gn, all

terms cancel each other in pairs. We conclude that|G|nf = 0, whencef = 0.

3.4 Making cocycles equivariant by symmetrization

Given an automorphismα ∈ Aut(Q) and a cochainf ∈ Cn, we define the cochain
αf ∈ Cn by

(αf )

[

x1, . . . , xn

y1, . . . , yn

]

:= f

[

xα1 , . . . , x
α
n

yα1 , . . . , y
α
n

]

.
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It is easily seen thatd(αf ) = α(df), henceα maps cocycles to cocycles, and
coboundaries to coboundaries. The induced action on cohomology is denoted by
α∗ : H∗

YB(cQ)→ H∗
YB(cQ).

Lemma 32 Every inner automorphismα ∈ Inn(Q) acts trivially onH∗
YB(cQ). If the

order of the inner automorphism groupG = Inn(Q) is invertible in A, then every
cocycle is cohomologous to aG-equivariant cocycle.

Proof It suffices to consider inner automorphisms of the formα = ̺(z) with z∈ Q,
since these automorphisms generate Inn(Q). For every cocyclef ∈ Zn we then have

f

[

x1, . . . , xn

y1, . . . , yn

]

− f

[

xα1 , . . . , x
α
n

yα1 , . . . , y
α
n

]

= (dn
nf )

[

x1, . . . , xn, z
y1, . . . , yn, z

]

= (−1)n
n−1
∑

i=0

(−1)i(dn
i f )

[

x1, . . . , xn, z
y1, . . . , yn, z

]

= (dn−1g)

[

x1, . . . , xn

y1, . . . , yn

]

where the cochaing ∈ Cn−1 is defined by

g

[

u1, . . . ,un−1

v1, . . . , vn−1

]

:= (−1)nf

[

u1, . . . ,un−1, z
v1, . . . , vn−1, z

]

.

This shows thatf − αf = dg, whenceα acts trivially onH∗
YB(cQ).

If the order ofG = Inn(Q) is invertible inA, then we can associate to each cochainf
a G-equivariant cochain̄f =

1
|G|

∑

α∈Gαf . If f is a cocycle then so is̄f , and both are
cohomologous by the preceding argument.

3.5 Calculation of the second cohomology group

Specializing to degree 2, the following lemma completes theproof of Theorem28.

Lemma 33 Every equivariant2-cocycle is cohomologous to an entropic one.

Proof By hypothesis, we haved2f = 0, and according to Lemma30 equivariance is
equivalent tod2

2f = 0. We thus haved2
0f = d2

1f , or more explicitly:

(2) f

[

v,w
y, z

](

δ

[

uvw

xyz

]

− δ

[

u
x

])

= f

[

u,w
x, z

]

δ

[

vw

yz

]

− f

[

uv,w
xy, z

]

δ

[

v
y

]

for all u, v,w, x, y, z ∈ Q. It suffices to makef quasi-diagonal, that is, to ensure
f
[ v,w

y,z
]

= 0 for v 6≡ y or w 6≡ z. The left-hand side then vanishes identically, that is
d2

0f = 0, which entails that the right-hand side also vanishes, whenced2
1f = 0.
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First suppose thatw 6≡ z. Then there exists a pair (v, y) ∈ Q × Q with v 6= y
but vw

= yz. If (u, x) ∈ Q× Q also satisfiesu 6= x and uw
= xz, then Equation

(2) implies that f
[ v,w

y,z
]

= f
[ u,w

x,z
]

. To see this, notice thatuw
= xz is equivalent to

uvw
= xyz, because̺ (v)̺(w) = ̺(w)̺(vw) and̺(y)̺(z) = ̺(z)̺(yz), with vw

= yz by
our assumption. This allows us to define a 1-cochain

g

[

w
z

]

=

{

0 if w≡ z, or else

f
[ v,w

y,z
]

with v 6= y such thatvw
= yz.

According to the preceding argument,g
[

w
z
]

is independent of the choice ofv, y. In
particularg is equivariant sincef is. This impliesd1

1g = 0, hencedg = d1
0g:

(dg)

[

u,w
x, z

]

= g

[

w
z

](

δ

[

uw

xz

]

− δ

[

u
x

])

This vanishes wheneverw≡ z. Otherwise we choosev 6= y with vw
= yz to obtain

(dg)

[

u,w
x, z

]

= f

[

v,w
y, z

](

δ

[

uw

xz

]

− δ

[

u
x

])

= f

[

v,w
y, z

](

δ

[

uvw

xyz

]

− δ

[

u
x

])

= (d2
0f )

[

u, v,w
x, y, z

]

= (d2
1f )

[

u, v,w
x, y, z

]

= f

[

u,w
x, z

]

.

By this construction,f̄ := f − dg is an equivariant cocycle satisfyinḡf
[ u,w

x,z
]

= 0
wheneverw 6≡ z. For f̄ our initial Equation (2) thus simplifies to

f̄

[

v,w
y, z

] (

δ

[

uv

xy

]

− δ

[

u
x

])

=

(

f̄

[

u,w
x, z

]

− f̄

[

uv,w
xy, z

])

δ

[

v
y

]

.

If w ≡ z but v 6≡ y, then chooseu 6= x with uv
= xy : the equation reduces to

f̄
[ v,w

y,z
]

= 0. This shows that̄f is quasi-diagonal, in the sense thatf̄
[ v,w

y,z
]

= 0 whenever
v 6≡ y or w 6≡ z. The left-hand side of our equation thus vanishes identically. The
vanishing of the right-hand side is equivalent tof̄

[ u,w
x,z

]

= f̄
[ u∗α,w

x∗α,z
]

for all α ∈ Inn(Q).
This proves that̄f is an entropic cocycle, as desired.

Proof of Theorem 28 The preceding lemmas allow us to conclude thatZ2
= E2⊕B2,

provided that the order ofG = Inn(Q) is invertible inA. Firstly, we haveEn∩Bn
= {0}

by Lemma31. Moreover, every cocycle is cohomologous to aG-equivariant cocycle by
Lemma32. Finally, in degree 2 at least, everyG-equivariant cocycle is cohomologous
to an entropic cocycle, by Lemma33.

Question 34 Is it true thatZn
= En⊕ Bn for all n> 2 as well?
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While all preceding arguments apply ton-cochains in arbitrary degreen, the present
calculation ofH2

YB seems to work only forn = 2. It is quite possible that some clever
generalization will work for alln, but I could not figure out how to do this. This state
of affairs, while not entirely satisfactory, seems acceptable because we use only the
second cohomology in subsequent applications.

4 Complete Yang-Baxter deformations

In this section we will pass from infinitesimal to complete deformations. In order to
do so, we will assume that the ringA is complete with respect to the idealm, that is,
we assume that the natural mapA→ lim

←−
A/mn is an isomorphism.

Theorem 35 Suppose that the ringA is complete with respect to the idealm. Let
Q be a rack such that| Inn(Q)| is invertible in A. Then every Yang-Baxter operator
c: AQ2 → AQ2 with c ≡ cQ modulo m is equivalent to an entropic deformation of
cQ. More explicitly, there existsα ≡ I modulom such that(α⊗α)−1 c (α⊗α) = cQf
with some entropic deformation termf : AQ2→ AQ2, f ≡ II mod m.

The proof will use the usual induction argument for completerings. We will first
concentrate on the crucial inductive step: the passage fromA/mn to A/mn+1.

4.1 The inductive step

To simplify notation, we first assume thatm
n+1

= 0. One can always force this
condition by passing to the quotientA/mn+1.

Lemma 36 Consider a ringA with idealm such thatmn+1
= 0. Let c: AQ2→ AQ2

be a Yang-Baxter operator that satisfiesc≡ cQ modulom and is entropic modulomn.
Thenc is equivalent to an entropic Yang-Baxter operator. More precisely, there exists
α : AQ→ AQ with α ≡ I modulom

n, such that(α⊗α)−1◦c◦ (α⊗ α) is an entropic
deformation ofcQ.

This lemma obviously includes and generalizes the infinitesimal casen = 1, estab-
lished in Theorem28, upon which the following proof relies. The only new dif-
ficulty is that higher-order terms of the Yang-Baxter equation render the problem
non-homogeneous. What is left, fortunately, is an affine structure:
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Remark 37 Supposec: AQ2→ AQ2 is a Yang-Baxter operator that satisfiesc≡ cQ

modulom and is entropic modulomn. Let Xn be the set of Yang-Baxter operatorsc̃
with c̃ ≡ c mod m

n. For eachc̃ ∈ Xn we havec̃ = c(II + f ), with f : AQ2→ m
nQ2,

and it is easily verified thatf ∈ Z2(cQ; A,mn). Conversely, everyf ∈ Z2(cQ; A,mn)
yields a Yang-Baxter operatorc(II + f ) ∈ Xn. In other words,Xn is an affine space
over Z2(cQ; A,mn).

Likewise, addition of a coboundaryf = dg ∈ B2(cQ; A,mn) produces an equivalent
deformationc̃ = c(II + f ). More explicitly, sincemn+1

= 0, the mapsα = I + g has
as inverseα−1

= I − g; we thus obtaiñc = (α⊗ α)−1c(α⊗ α) as claimed.

Having the affine structure at hand, we can now proceed fromA/mn to A/mn+1:

Proof of Lemma 36 As before letXn be the set of Yang-Baxter operatorsc̃ with
c̃ ≡ c mod m

n. Using theZ2-affine structure onXn, it suffices to findat least one
entropic solutionc̃ ∈ Xn. Every other solution will then be of the form̃c(II + f ) with
f ∈ Z2(cQ; A,mn), hence equivalent tõc(II + f ′) with some entropicf ′ , according to
Theorem28. Since the composition of entropic maps is again entropic, this suffices to
prove the lemma.

In order to find an entropic solutioñc ∈ Xn, we can first of all symmetrizec: given
α ∈ Inn(Q), we haveαc ∈ Xn, becausec is equivariant modulomn. This implies that
c̄ =

1
|G|

∑

α∈Gαc lies in Xn, too. We thus obtain an equivariant operatorc̄, which we

can write c̄ = cQ(II + e) with deformation terme: AQ2 → mQ2. In order to makee
quasi-diagonal, we decomposee = f + g such that

f

[

u, v
x, y

]

:=

{

e
[ u,v

x,y
]

if u≡ x, v≡ y,

0 otherwise

and

g

[

u, v
x, y

]

:=

{

0 if u≡ x, v≡ y,

e
[ u,v

x,y
]

otherwise

By hypothesis,e is quasi-diagonal modulomn, whence we havee≡ f mod m
n and

g: AQ2→ m
nQ2. We obtain by this construction a mapc̃ = cQ(II + f ) that is entropic

and satisfies̃c≡ c mod m
n.

We claim thatc̃ actually lies inXn, that is, c̃ satisfies the Yang-Baxter equation. To
see this, recall that̄c is a Yang-Baxter operator. Forc̃ = c̄(II − g) we thus obtain

I⊗3− (I ⊗ c̃)−1(c̃⊗ I)−1(I ⊗ c̃)−1(c̃⊗ I)(I ⊗ c̃)(c̃⊗ I) = d2g
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It is easy to check that the left-hand side is a quasi-diagonal map, whereas the right-
hand side is zero on the quasi-diagonal. We conclude thatboth must vanish. This
means that̃c satisfies the Yang-Baxter equation, as claimed.

4.2 From infinitesimal to complete deformations

To conclude the passage from infinitesimal to complete, it only remains to put the
ingredients together:

Proof of Theorem 35 Starting with c1 := c for n = 1, suppose thatcn = cQfn
has a deformation termfn that is entropic modulomn. By Lemma36, there exists
αn : AQ→ AQ with αn ≡ I modulom

n, such thatcn+1 := (αn⊗αn)−1cn(αn⊗αn) is
given bycn+1 = cQfn+1 with fn+1 entropic modulomn+1. (In fact, the lemma ensures
that such a mapαn exists modulomn+1; this can be lifted to a mapAQ→ AQ, which
is again invertible becauseA is complete.) Completeness ofA ensures that we can
pass to the limit and define the infinite productα = α1α2α3 · · · . By construction,
(α⊗ α)−1 c (α⊗ α) is entropic and equivalent toc, as desired.

5 Entropic deformations and r-matrices

As we have seen in the preceding theorem, every Yang-Baxter deformation ofcQ over
a complete ringA is equivalent to an entropic Yang-Baxter deformation. Conversely,
however, not every entropic deformation gives rise to a Yang-Baxter operator: being
entropic suffices in the infinitesimal case, but in general higher-order terms introduce
further obstructions. Quite surprisingly, they do not depend onQ at all:

Theorem 38 Consider a rackQ and its Yang-Baxter operatorcQ : AQ2→ AQ2 over
some ringA. An entropic deformatioñc = cQf satisfies the Yang-Baxter equation if
and only if τ̃ = τ f satisfies the Yang-Baxter equation, that is, if and only iff is an
r-matrix.

As we have seen, the transposition operatorτ does not impose any infinitesimal
restrictions (the associated coboundary operator vanishes). The only obstructions are
those of higher order. The preceding theorem says that the integration of an entropic
infinitesimal deformation to a complete deformation ofcQ entails exactly the same
higher-order obstructions as in the quantum case [7, 27, 22, 23].
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Proof The theorem follows once we have established the equation

(I ⊗ c̃)−1(c̃⊗ I)−1(I ⊗ c̃)−1(c̃⊗ I)(I ⊗ c̃)(c̃⊗ I)

= (I ⊗ τ̃ )−1(τ̃ ⊗ I)−1(I ⊗ τ̃ )−1(τ̃ ⊗ I)(I ⊗ τ̃ )(τ̃ ⊗ I).

One way of proving this equality is by straightforward and tedious calculation. It
seems more convenient, however, to employ a suitable graphical notation. Recall from
Definition 10 that f being entropic means

= , = , = .

As before, positive and negative crossings representcQ andc−1
Q , respectively, whereas

the box represents the deformation termf . The first and the last equation appear to
be rather natural: they generalize the third Reidemeister move. The middle equation,
however, is somewhat special and has a curious consequence:

For our operatorcQ we know that the over-passing strand is not affected by a crossing.
The middle equation thus implies thatnoneof the strands is affected by the shown
crossings: we could just as well replace them by transpositions!

Following this observation, our calculation boils down to verifying the following
transformations:

=

=

=

Here a white box represents the deformationf , whereas a shaded box represents its
inverse f−1. In the first line, positive and negative crossings represent cQ and c−1

Q ,
respectively, whereas in the second line, crossings represent the transpositionτ . It is
an easy matter to verify the equalities graphically, using the fact thatcQ and τ are
Yang-Baxter operators, andf is entropic with respect tocQ andτ .

6 Closing remarks and open questions

Question 39 Our calculation in Section3 relied on symmetrization, requiring that
| Inn(Q)| be invertible inA; this can be seen as the generic case of “coprime character-
istic”. It seems natural to investigate the cohomologyH∗

YB(cQ; A,m) in the “modular
case”, where| Inn(Q)| vanishes in the ringA. Can one still find a succinct description
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of H2
YB(cQ), at least for certain (families of) examples? What are the higher order

obstructions in this case? Do any interesting knot invariants arise in this way?

To illustrate the point, let us emphasize the connection with quandle and rack co-
homology [6, 9]. Every mapα : Q × Q → Z/nZ defines a diagonal deforma-
tion of cQ over A = Z[h]/(n,h2), with respect to the idealm = (h), by setting
c: x⊗ y 7→ [1 + hα(x, y)] · y⊗ xy . One easily checks thatc is a Yang-Baxter defor-
mation ofcQ if and only if α is an additive rack cocycle, that is

α(x, y) + α(xy, z) = α(x, z) + α(xz, yz).

Moreover, c is equivalent tocQ if and only if α is a coboundary. Sample calcula-
tions [6] show that rack cohomologyH2(Q,Z/nZ) can be non-trivial. P. Etingof and
M. Graña [11] have shown that this can only happen when| Inn(Q)| is non-invertible
in A. In these cases Yang-Baxter cohomologyH2

YB(cQ; A,m) will include such extra
deformations, and possibly non-diagonal ones, too.

Question 40 Is there a topological interpretation of the deformed invariants? Under
suitable conditions, a Yang-Baxter deformationc of a quandleQ gives rise to invariants
of knots and links [27, 22, 23]. In the case of quandle cohomology one obtains so-
called state-sum invariants [6], which have a natural interpretation in terms of knot
group representations [10]. Can a similar interpretation be established for Yang-Baxter
deformations ofQ in general?

Question 41 What can be said about deformations of set-theoretic Yang-Baxter op-
erators in general? Following [8, 12, 25], consider a setQ equipped with a bijective
mapc: Q×Q→ Q×Q satisfying (c× I)(I × c)(c× I) = (I × c)(c× I)(I × c). Such
a Yang-Baxter map gives rise to a right-actionQ× Q→ Q, (x, y) 7→ xy , as well as a
left-actionQ× Q→ Q, (x, y) 7→ xy, defined byc(x, y) = (xy, xy). Notice that the case
of a trivial left action,xy = y, corresponds precisely to racks.
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As for racks, we can extendc to an A-linear mapc: AQ2 → AQ2 and study de-
formations over (A,m). As before, Yang-Baxter cohomologyH2

YB(cQ; A,m) yields
a convenient framework for the infinitesimal deformations of c, but concrete calcu-
lations are more involved. Does the cohomologyH2

YB(c) still correspond to entropic
maps (under suitable hypotheses)? Can one establish similar rigidity properties? What
happens in the modular case? Is there a topological interpretation?
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