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YANG–BAXTER DEFORMATIONS AND RACK COHOMOLOGY

MICHAEL EISERMANN

Abstract. In his study of quantum groups, Drinfeld suggested to consider

set-theoretic solutions of the Yang–Baxter equation as a discrete analogon.
As a typical example, every conjugacy class in a group, or more generally
every rack Q provides such a Yang–Baxter operator cQ : x ⊗ y 7→ y ⊗ xy .
In this article we study deformations of cQ within the space of Yang–Baxter

operators. Infinitesimally these deformations are classified by Yang–Baxter co-
homology. We show that the Yang–Baxter cochain complex of cQ homotopy-
retracts to a much smaller subcomplex, called quasi-diagonal. This greatly

simplifies the deformation theory of cQ, including the modular case which had
previously been left in suspense, by establishing that every deformation of cQ

is gauge equivalent to a quasi-diagonal one. In a quasi-diagonal deformation
only behaviourally equivalent elements of Q interact; if all elements of Q are

behaviourally distinct, then the Yang–Baxter cohomology of cQ collapses to
its diagonal part, which we identify with rack cohomology. This establishes
a strong relationship between the classical deformation theory following Ger-
stenhaber and the more recent cohomology theory of racks, both of which have

numerous applications in knot theory.

1. Introduction and statement of results

1.1. Motivation and background. Yang–Baxter operators (recalled in §2) first
appeared in theoretical physics: in a 1967 paper by Yang [44] on the many-body
problem in one dimension, during the 1970s in work by Baxter [3, 4] on exactly
solvable models in statistical mechanics, and later in quantum field theory (Faddeev
[19]). They correspond to tensor representations of braid groups and have thus
played a prominent rôle in knot theory and low-dimensional topology ever since
the discovery of the Jones polynomial [28] in 1984. Attempts to systematically
construct solutions of the Yang–Baxter equation have led to the theory of quantum

groups, see Drinfeld [11] and Turaev, Kassel, Rosso [40, 41, 31, 32].
Yang–Baxter operators resulting from the quantum approach are deformations

of the transposition operator τ : x ⊗ y 7→ y ⊗ x. As a consequence, the associated
knot invariants are of finite type in the sense of Vassiliev [42] and Gusarov [27],
see also Birmann–Lin [6] and Bar-Natan [2]. These invariants continue to have
a profound impact on low-dimensional topology; their interpretation in terms of
classical algebraic topology, however, remains difficult and most often mysterious.

As a discrete analogon, Drinfeld [12] pointed out set-theoretic solutions, which
have been studied by Etingof–Schedler–Soloviev [18] and Lu–Yan–Zhu [36], among
others. An important class of such solutions is provided by racks or automorphic
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sets (Q, ∗), which have been studied by Brieskorn [7] in the context of braid group
actions. Here the Yang–Baxter operator takes the form cQ : x⊗ y 7→ y ⊗ xy, where
xy = x∗y denotes the action of the rack Q on itself. The transposition τ corresponds
to the trivial action, whereas conjugation xy = y−1xy in a group provides many
non-trivial examples. Applications to knot theory were independently developed
by Joyce [30] and Matveev [38]. Freyd and Yetter [24] observed that the knot
invariants obtained from cQ are the well-known colouring numbers of classical knot
theory. These invariants, in contrast, are not of finite type [13].

Freyd and Yetter [24, 45] also initiated the question of deforming set-theoretic
solutions within the space of Yang–Baxter operators over a ring A, following Ger-
stenhaber’s paradigm of algebraic deformation theory [25], and illustrated their
general approach by the simplified ansatz of diagonal deformations [24, §4]. The
latter are encoded by rack cohomology, which was independently developed by Fenn
and Rourke [21] from a homotopy-theoretic viewpoint via classifying spaces. Carter
et al. [10] have applied rack and quandle cohomology to knots by constructing state-
sum invariants. These, in turn, can be interpreted in terms of classical algebraic
topology as colouring polynomials associated to knot group representations [16].

1.2. Yang–Baxter deformations. In this article we continue the study of Yang–
Baxter deformations of racks linearized over a ring A. Detailed definitions will be
given in §2, in particular we will review Yang–Baxter operators (§2.1), set-theoretic
solutions coming from racks (§2.2) and their deformation theory (§2.3). In this
introduction we merely recall the basic definitions in order to state our main result.

Notation (modules). Throughout this article A denotes a commutative ring with
unit. All modules will be A-modules, all maps between modules will be A-linear,
and all tensor products will be formed over A. For every A-module V we denote by
V ⊗n the tensor product V ⊗ · · · ⊗ V of n copies of V . Given a set Q we denote by
AQ the free A-module with basis Q. We identify the n-fold tensor product (AQ)⊗n

with AQn. This choice of bases allows us to identify A-linear maps f : AQn → AQn

with matrices f : Qn × Qn → A, whose coefficients are denoted by f [ x1,...,xn
y1,...,yn

].
For the purposes of deformation theory we equip A with a fixed ideal m ⊂ A.

Most often we require that A be complete with respect to m, that is, we assume
that the natural map A → lim

←−
A/m

n is an isomorphism (§6). A typical setting is

the power series ring K[[h]] over a field K, equipped with its maximal ideal m = (h),
or the ring of p-adic integers Zp = lim

←−
Z/pn with its maximal ideal (p).

Notation (racks). A rack or automorphic set (Q, ∗) is a set Q equipped with
an operation ∗ : Q × Q → Q such that every right translation x 7→ x ∗ y is
an automorphism of (Q, ∗). This is equivalent to saying that the A-linear map
cQ : AQ ⊗ AQ → AQ ⊗ AQ defined by cQ : x ⊗ y 7→ y ⊗ (x ∗ y) for all x, y ∈ Q is a
Yang–Baxter operator over the ring A (see §2.1).

Two rack elements y, z ∈ Q are called behaviourally equivalent, denoted y ≡ z,
if they satisfy x ∗ y = x ∗ z for all x ∈ Q. This is equivalent to saying that y, z have
the same image under the inner representation ρ : Q → Inn(Q). As usual, a matrix
f : Qn × Qn → A is called diagonal if f [ x1,...,xn

y1,...,yn
] vanishes whenever xi 6= yi. It is

called quasi-diagonal if f [ x1,...,xn
y1,...,yn

] vanishes whenever xi 6≡ yi.

Quasi-diagonal maps play a crucial rôle in the classification of deformations:
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Theorem 1.1. Suppose that the ring A is complete with respect to the ideal m. Then

every Yang–Baxter deformation c of cQ over A is equivalent to a quasi-diagonal

deformation. More explicitly this means that c is conjugated to a deformation of the

form cQ ◦ (id⊗2 +f) where the deformation term f : AQ2 → mQ2 is quasi-diagonal.

There are thus two extreme cases in the deformation theory of racks:

(1) In the one extreme the rack Q is trivial, whence ρ : Q → Inn(Q) is trivial
and all elements of Q are behaviourally equivalent. This is the initial setting
in the theory of quantum invariants and we cannot add anything new here.

(2) In the other extreme, where ρ : Q → Inn(Q) is injective, all elements of Q
are behaviourally distinct, and every deformation of cQ is equivalent to a
diagonal deformation. This is the setting of rack cohomology.

In other words, the more inner symmetries Q has, the less deformations cQ

admits. Our theorem makes the transition between the two extremes precise and
quantifies the degree of deformability of set-theoretic Yang–Baxter operators.

Example 1.2. Consider a group (G, ·) that is generated by one of its conjugacy
classes Q ⊂ G. Then (Q, ∗) is a rack with respect to conjugation x∗y = y−1·x·y, and
we have a natural isomorphism Inn(Q, ∗) ∼= Inn(G, ·). If the centre of G is trivial,
then the injectivity of ρ : Q → Inn(Q) implies that every Yang–Baxter deformation
of cQ is equivalent to a diagonal deformation.

As pointed out above, diagonal deformations have received much attention over
the last 20 years [24, 21, 45, 10]. It is reassuring that Theorem 1.1 justifies this
short-cut in the case where ρ : Q → Inn(Q) is injective. In general, however, the
simplified ansatz of diagonal deformations may miss some interesting Yang–Baxter
deformations, namely those that are quasi-diagonal but not diagonal. For more
detailed examples and applications see §7.

1.3. Yang–Baxter cohomology. Our approach to proving Theorem 1.1 follows
the classical paradigm of studying algebraic deformation theory via cohomology,
as expounded by Gerstenhaber [25]. Since it may be of independent interest, we
state here our main cohomological result, which in degree 2 proves the infinitesimal
version of Theorem 1.1.

The previous article [15] introduced Yang–Baxter cohomology H∗
YB

(cQ;m) to
encode infinitesimal deformations of cQ over a ring A with respect to the ideal m

(§2.3). There the second cohomology H2
YB

(cQ;m) was calculated under the hypoth-
esis that the order of the inner automorphism group Inn(Q) is finite and invertible
in the ring A. The main application was to Yang–Baxter operators cQ derived from
a finite rack Q and deformed over the ring A = Q[[h]]. In many cases the results of
[15] imply that cQ is rigid over Q[[h]].

In the present article we calculate Yang–Baxter cohomology H∗
YB

(cQ;m) in gen-
eral, including the modular case that had previously been left in suspense [15,
Question 39]. As our main result we establish the following classification; for de-
tailed definitions and proofs we refer to §5.

Theorem 1.3. The quasi-diagonal subcomplex C∗
∆(cQ;m) ⊂ C∗

YB
(cQ;m) is a homo-

topy retract, whence the induced map H∗
∆(cQ;m) → H∗

YB
(cQ;m) is an isomorphism.

Contrary to [15] we no longer require the rack Q to be finite, nor do we impose
any restrictions on the characteristic of the ring A. This opens up the way to study
the modular case, for example p-adic deformations of cQ where p divides |Inn(Q)|.
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Remark 1.4. Yang–Baxter cohomology includes rack cohomology H∗
R
(Q; Λ) as

its diagonal part, as explained in §3, where Λ is a module over some ring K. If
|Inn(Q)| is invertible in K, then H∗

R
(Q; Λ) is trivial in a certain sense, see Etingof–

Graña [17]. The modular case, however, leads to topologically interesting rack
deformations (§7.6). Since the full Yang–Baxter cohomology of racks vastly extends
rack cohomology, the modular case stood out as a difficult yet promising problem.

Theorem 1.3 solves this problem: it shows that the right object to study is
the quasi-diagonal subcomplex C∗

∆, situated between the strictly diagonal complex
C∗

Diag
and the full Yang–Baxter complex C∗

YB
, i.e., we have C∗

Diag
⊂ C∗

∆ ⊂ C∗
YB

. We
will see that the inclusion C∗

Diag
⊂ C∗

YB
allows for a retraction C∗

YB
→→ C∗

Diag
, which

entails that H∗
Diag

is a direct summand of H∗
YB

. In general, however, this is not
a homotopy retraction and H∗

Diag
$ H∗

YB
. The inclusion ι : C∗

∆ ⊂ C∗
YB

also allows
for a retraction π : C∗

YB
→→ C∗

∆, such that π ◦ ι = id∆, and our main result is the
construction of a homotopy ι ◦ π ≃ idYB.

Remark 1.5. Again we have two extreme cases that are particularly clear-cut:

(1) In the one extreme, if Q is trivial, then all elements of Q are behaviourally
equivalent. In this case we trivially have C∗

∆ = C∗
YB

.
(2) If ρ : Q → Inn(Q) is injective, then all elements of Q are behaviourally

distinct. In this case quasi-diagonal means diagonal, whence C∗
∆ = C∗

Diag
.

In general C∗
∆ lies strictly between C∗

Diag
and C∗

YB
, and retracting the full Yang–

Baxter complex C∗
YB

to its quasi-diagonal subcomplex C∗
∆ greatly simplifies the

problem. It often reduces the complexity from |Q|4 unknowns to the order of |Q|2

unknowns, which in many cases makes it amenable to computer calculations (§7).

1.4. How this article is organized. Section 2 recollects the relevant definitions
concerning Yang–Baxter operators, their deformations and cohomology. It also
gives explicit formulae in the case of racks, which is our main focus here. Section
3 identifies diagonal deformations with rack cohomology, and Section 4 introduces
quasi-diagonal deformations. Section 5 proves our main result in the infinitesimal
case, by constructing a homotopy retraction from the full Yang–Baxter complex
to its quasi-diagonal subcomplex. Section 6 extends the infinitesimal result to
complete deformations, and Section 7 provides examples and applications. We
conclude with some open questions in Section 8.

2. Yang–Baxter operators, deformations, and cohomology

This section provides the necessary background of Yang–Baxter operators (§2.1)
and racks (§2.2) and fixes notation. The notion of Yang–Baxter deformation and
cohomology (§2.3) is recalled from [15]. We add here the dual notion of Yang–
Baxter homology (§2.4) and the observation of non-functoriality (§2.5).

2.1. Yang–Baxter operators.

Definition 2.1. Let V be a module over the ring A. A Yang–Baxter operator on
V is an automorphism c : V ⊗ V → V ⊗ V that satisfies the Yang–Baxter equation

(2.1) (c ⊗ idV )(idV ⊗c)(c ⊗ idV ) = (idV ⊗c)(c ⊗ idV )(idV ⊗c) in AutA(V ⊗3).

This equation first appeared in theoretical physics (Yang [44], Baxter [3, 4],
Faddeev [19]). It also has a natural interpretation in terms of Artin’s braid group
Bn [1, 5] and its tensor representations:
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The automorphisms c1, . . . , cn−1 : V ⊗n → V ⊗n defined by

ci = id⊗(i−1)
V ⊗ c ⊗ id⊗(n−i−1)

V , or in graphical notation ci =

n

i+1
i

1

,

satisfy the well-known braid relations

cicjci = cjcicj if |i − j| = 1, = ,(2.2)

cicj = cjci if |i − j| ≥ 2, = .(2.3)

Equation (2.2) is a reformulation of the Yang–Baxter equation (2.1), while the
commutativity relation (2.3) follows automatically from the tensor construction.

Remark 2.2. A graphical notation for tensor calculus was first used by Penrose
[39]; for a brief discussion of its history see Joyal–Street [29]. This notation has
the obvious advantage to appeal to our geometric vision. More importantly, it
incorporates a profound relationship with knot theory and leads to invariants of
knots and links in R3:

Bn
Yang–Baxter

−−−−−−−−−→
representation

Aut(V ⊗n)

closure





y





y
trace

{links} −−−−−→
invariant

A

Each link L can be presented as the closure of some braid. This braid acts on
V ⊗n as defined above, and a suitably deformed trace maps it to the ring A. In
favourable cases the result does not depend on the choice of braid, and thus defines
an invariant of the link L, see Turaev [41, chap. I] or Kassel [31, chap. X].

2.2. Quandles and racks. In every group (G, ·) the conjugation a ∗ b = b−1 · a · b
enjoys the following properties:

(Q1) For every element a we have a ∗ a = a. (idempotency)
(Q2) Every right translation ̺(b) : a 7→ a ∗ b is a bijection. (right invertibility)
(Q3) For all a, b, c we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c). (self-distributivity)

Taking these properties as axioms, Joyce [30] defined a quandle to be a set Q
equipped with a binary operation ∗ : Q × Q → Q satisfying (Q1–Q3). Indepen-
dently, Matveev [38] studied the equivalent notion of distributive groupoid. Follow-
ing Brieskorn [7], an automorphic set is only required to satisfy (Q2–Q3): these two
axioms are equivalent to saying that every right translation is an automorphism of
(Q, ∗). The shorter term rack was suggested by Fenn and Rourke [21], going back
to the terminology wrack used by J.H. Conway in correspondence with G.C. Wraith
in 1959. Such structures appear naturally in the study of braid actions [7] and
provide set-theoretic solutions of the Yang–Baxter equation [12]:
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Proposition 2.3. Given a set Q with binary operation ∗ : Q × Q → Q, we can

consider the free module V = AQ with basis Q over the ring A and define the

A-linear operator

cQ : AQ ⊗ AQ → AQ ⊗ AQ by a ⊗ b 7→ b ⊗ (a ∗ b) for all a, b ∈ Q.

Then cQ is a Yang–Baxter operator if and only if Q is a rack. ¤

A homomorphism between two racks (Q, ∗) and (Q′, ∗′) is a map φ : Q → Q′

satisfying φ(a ∗ b) = φ(a) ∗′ φ(b) for all a, b ∈ Q. Racks and their homomorphisms
form a category in the usual way. The automorphism group Aut(Q) of the rack
Q consists of all bijective homomorphisms φ : Q → Q. We adopt the convention
that automorphisms of Q act on the right, written aφ, which means that their
composition φψ is defined by a(φψ) = (aφ)ψ for all a ∈ Q.

Each a ∈ Q defines an automorphism ρ(a) ∈ Aut(Q) by x 7→ x ∗ a. For every
φ ∈ Aut(Q) we have ρ(aφ) = ρ(a)φ. The group Inn(Q) of inner automorphisms

is the normal subgroup of Aut(Q) generated by all right translations ρ(a), where
a ∈ Q. The inner representation ρ : Q → Inn(Q) satisfies ρ(a∗b) = ρ(a)∗ρ(b), that
is, it maps the operation of the rack Q to conjugation in the group Inn(Q).

Notation. In view of the representation ρ : Q → Inn(Q), we often write ab for the
operation aρ(b) = a ∗ b. Conversely, it will sometimes be convenient to write a ∗ b
for the conjugation ab = b−1ab in a group.

Definition 2.4. Two elements x, y ∈ Q are behaviourally equivalent if a ∗x = a ∗ y
for all a ∈ Q. This means that ρ(x) = ρ(y), and will be denoted by x ≡ y for short.

2.3. Deformations and cohomology. We are interested here in set-theoretic
solutions of the Yang–Baxter equation and their deformations within the space of
Yang–Baxter operators over some ring.

Definition 2.5. We fix an ideal m in the ring A. Consider an A-module V and a
Yang–Baxter operator c : V ⊗ V → V ⊗ V .

A map c̃ : V ⊗ V → V ⊗ V is called a Yang–Baxter deformation of c with respect
to m if c̃ is itself a Yang–Baxter operator and satisfies c̃ ≡ c modulo m.

An equivalence transformation, or gauge equivalence with respect to m, is an
automorphism α : V → V satisfying α ≡ idV modulo m.

Two Yang–Baxter operators c and c̃ are called equivalent if there exists an equiv-
alence transformation α : V → V such that c̃ = (α ⊗ α)−1 ◦ c ◦ (α ⊗ α).

In order to study deformations it is useful to linearize the problem by considering
infinitesimal deformations, where m

2 = 0. To this end we recall the definition of
Yang–Baxter cohomology H∗

YB
(c;m) that encodes infinitesimal deformations.

Definition 2.6. The Yang–Baxter cochain complex C∗
YB

(c;m) consists of the A-
modules Cn = Hom(V ⊗n,mV ⊗n). For each f ∈ Cn we define the partial cobound-
ary dn

i f ∈ Cn+1 by

(2.4) dn
i f = (cn · · · ci+1)

−1
(f⊗ idV ) (cn · · · ci+1)−(c1 · · · ci)

−1
(idV ⊗f) (c1 · · · ci) .

This formula becomes more suggestive in graphical notation:

(2.5) dn
i f = +

0

i

n

0

i

n

f −

0

i

n

0

i

n

f .
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The coboundary is defined as the alternating sum dn =
∑n

i=0 (−1)idn
i .

Proposition 2.7. We have dn+1
j dn

i = dn+1
i dn

j−1 for i < j, whence dn+1dn = 0.

Proof. Our hypothesis that c is a Yang–Baxter operator ensures that dn+1
j dn

i =

dn+1
i dn

j−1 for i < j. This can be proven by a straightforward computation, and is
most easily verified using the graphical tensor calculus suggested above:

i

j

f
− f − f +

f

=
f

− f − f +
f

It follows that all terms cancel each other in pairs to yield dn+1 ◦ dn = 0. ¤

Definition 2.8. The cochain complex C∗
YB

(c;m) = (C∗, d∗) is called the Yang–

Baxter cochain complex, and its cohomology H∗
YB

(c;m) is called the Yang–Baxter

cohomology of the operator c with respect to the ideal m.

Proposition 2.9. The second cohomology H2
YB

(c;m) classifies infinitesimal Yang–

Baxter deformations: assuming m
2 = 0, the deformation c̃ = c ◦ (id⊗2

V +f) satisfies

(idV ⊗c̃)−1(c̃ ⊗ idV )−1(idV ⊗c̃)−1(c̃ ⊗ idV )(idV ⊗c̃)(c̃ ⊗ idV )

= (idV ⊗c)−1(c ⊗ idV )−1(idV ⊗c)−1(c ⊗ idV )(idV ⊗c)(c ⊗ idV ) + d2f.

This means that c̃ is a Yang–Baxter operator if and only if d2f = 0. Likewise, c
and c̃ are equivalent via conjugation by α = (idV +g) if and only if f = d1g, because

(α ⊗ α)−1 ◦ c ◦ (α ⊗ α) = c ◦ (id⊗2
V +d1g).

Remark 2.10. In the quantum case, where c = τ , we obtain df = 0 for all
f ∈ C∗

YB
. In particular there are no infinitesimal obstructions to deforming τ : every

deformation of τ satisfies the Yang–Baxter equation modulo m
2, and only higher-

order obstructions are of interest. This explains why Yang–Baxter cohomology is
absent in the quantum case.

Infinitesimal obstructions are important, however, if c 6= τ , for example for an
operator cQ coming from a non-trivial rack Q, the main object of interest to us
here. In extreme cases they even allow us to conclude that cQ is rigid.

Example 2.11. Yang–Baxter cohomology can in particular be applied to study
the deformations of the Yang–Baxter operator cQ associated with a rack Q. The
canonical basis Q of V = AQ allows us to identify each A-linear map f : AQn →
AQn with its matrix f : Qn × Qn → A, related by the definition

f : (x1 ⊗ · · · ⊗ xn) 7→
∑

y1,...,yn

f

[

x1, . . . , xn

y1, . . . , yn

]

· (y1 ⊗ · · · ⊗ yn) .

For example, the identity id : AQ → AQ will be identified with the following
matrix Q × Q → A, which is usually called the Kronecker delta function:

id

[

x
y

]

=

{

1 if x = y,

0 if x 6= y.
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In this notation the coboundary can be rewritten more explicitly as follows:

(dn
i f)

[

x0, . . . , xn

y0, . . . , yn

]

= +f

[

x0 , . . . , xi−1, xi+1, . . . , xn

y0 , . . . , yi−1, yi+1, . . . , yn

]

· id

[

x
xi+1···xn

i

y
yi+1···yn

i

]

(2.6)

−f

[

xxi

0 , . . . , xxi

i−1, xi+1, . . . , xn

yyi

0 , . . . , yyi

i−1, yi+1, . . . , yn

]

· id

[

xi

yi

]

.

Remark 2.12. Instead of an ideal m in a ring A one can also define the Yang–
Baxter cochain complex C∗

YB
(c;m) and its cohomology H∗

YB
(c;m) for any module m

over a ring K. Both points of view become equivalent in the infinitesimal setting:
If m

2 = 0 in A, then m is a module over the quotient ring K = A/m. Conversely,
every K-module m defines a K-algebra A = K ⊕ m with m

2 = 0.

2.4. Yang–Baxter homology. As could be expected, there is a homology theory
dual to Yang–Baxter cohomology. Let A be a ring and let c : V ⊗ V → V ⊗ V be a
Yang–Baxter operator. We will assume that the A-module V is free of finite rank,
so that we can define a trace tr : End(V ) → A, see Lang [35, §XVI.5]. Slightly more
general, it suffices to assume V projective and finitely generated over A, see Turaev
[41, chap. 1]. Even though this hypothesis may seem restrictive, it is precisely the
setting of quantum knot invariants, where a trace is indispensable. Notice further
that then End(V ⊗n) = End(V )⊗n, and for each index i = 1, . . . , n we have a partial
trace tri : End(V )⊗n → End(V )⊗(n−1) defined by contracting the ith tensor factor.

Definition 2.13. Given a Yang–Baxter operator c : V ⊗ V → V ⊗ V , the Yang–
Baxter chain complex CYB

∗ (c) consists of the A-modules Cn = End(V ⊗n). We
define the partial boundary ∂i

n : Cn → Cn−1 by
(2.7)

∂i
nf = trn

[

(cn−1 · · · ci) f (cn−1 · · · ci)
−1

]

− tr1

[

(c1 · · · ci−1) f (c1 · · · ci−1)
−1

]

.

Again this formula becomes more suggestive in graphical notation:

(2.8) ∂i
nf = +

i

1

i

1

nn

f − i i

1 1

n n

f
.

As Equation (2.5) above, this is reminiscent of rope skipping. The boundary
∂n : Cn → Cn−1 is defined as the alternating sum ∂n =

∑n
i=1 (−1)i−1∂i

n.

Proposition 2.14. We have ∂j
n−1∂

i
n = ∂i

n−1∂
j+1
n for i ≤ j, whence ∂n−1∂n = 0.

Proof. Our hypothesis that c is a Yang–Baxter operator ensures that ∂j
n−1 ◦ ∂i

n =

∂i
n−1 ◦∂j+1

n for i ≤ j. This can be proven by a straightforward computation, and is
most easily verified using the graphical tensor calculus suggested above. It follows,
as usual, that all terms cancel each other in pairs to yield ∂n−1 ◦ ∂n = 0. ¤

Definition 2.15. The chain complex CYB

∗ (c) = (C∗, ∂∗) is called the Yang–Baxter

chain complex, and its homology HYB

∗ (c) is called the Yang–Baxter homology of c.

Proposition 2.16. The dual complex Hom(CYB

∗ ,m) is naturally isomorphic to the

Yang–Baxter cochain complex C∗
YB

(c;m) defined above.
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Proof. The duality is induced by the duality pairing End(V ⊗n) ⊗ End(V ⊗n) → A
defined by 〈f | g〉 = tr(fg). In graphical notation this reads as

〈f | g〉 =

f g

.

The advantage of this notation is that all calculations become self-evident. In
particular, we see that the coboundary operator d∗ of Equation (2.5) is the dual
of the boundary operator ∂∗ of Equation (2.8): for f ∈ CYB

n+1 and g ∈ Cn
YB

and all
i = 1, . . . , n + 1 we have

〈∂i
n+1f | g〉 = 〈f | dn

i−1g〉.

In graphical notation this can be seen as follows:

gf

=

gf

,

gf
=

gf

.

We conclude that 〈∂n+1f | g〉 = 〈f | dng〉 as claimed. ¤

Remark 2.17. In the case of a finite rack Q and its associated Yang–Baxter
operator cQ, the chain complex CYB

∗ can be described as follows. Starting from
the canonical basis Q of V = AQ, we obtain the basis Qn of V ⊗n and then a
basis Qn × Qn of End(V ⊗n). In analogy with our previous notation we denote
by ( x1,...,xn

y1,...,yn
) the endomorphism that maps x1 ⊗ · · · ⊗ xn to y1 ⊗ · · · ⊗ yn, while

mapping all other elements of the basis Qn to zero. The boundary operator can
then be rewritten more explicitly as follows:

∂n

(

x1, . . . , xn

y1, . . . , yn

)

=

n
∑

i=1

(−1)i−1

[ (

x1 , . . . , xi−1, xi+1, . . . , xn

y1 , . . . , yi−1, yi+1, . . . , yn

)

· id

(

x
xi+1···xn

i

y
yi+1···yn

i

)

(2.9)

−

(

xxi

1 , . . . , xxi

i−1, xi+1, . . . , xn

yyi

1 , . . . , yyi

i−1, yi+1, . . . , yn

)

· id

(

xi

yi

) ]

.

We see that the boundary formula (2.9) is dual to the coboundary formula (2.6),
which nicely illustrates the preceding proposition.

Remark 2.18. The duality exhibited above is graphically appealing and it is re-
assuring to have the standard homology-cohomology pairing. We have to restrict
to free modules of finite rank, however, or finitely generated projective modules.
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Yang–Baxter cohomology alone can be defined over arbitrary Yang–Baxter mod-
ules (V, c), not necessarily projective or finitely generated. From this viewpoint
Yang–Baxter cohomology seems more natural than homology.

2.5. Non-Functoriality. Yang–Baxter (co)homology suffers from a curious de-
fect: it is not functorial with respect to homomorphisms of Yang–Baxter operators.

Definition 2.19. A homomorphism between Yang–Baxter operators c : V ⊗ V →
V ⊗ V and c̄ : V̄ ⊗ V̄ → V̄ ⊗ V̄ is an A-linear map φ : V → V̄ such that c̄◦ (φ⊗ φ) =
(φ ⊗ φ) ◦ c, making the following diagram commute:

V ⊗ V
c

−−−−→ V ⊗ V

φ⊗φ





y





y
φ⊗φ

V̄ ⊗ V̄
c̄

−−−−→ V̄ ⊗ V̄

This ensures that φ induces for each n a homomorphism φ⊗n : V ⊗n → V̄ ⊗n that
is equivariant with respect to the natural action of the braid group Bn.

Example 2.20. A map φ : Q → Q̄ is a homomorphism between two racks Q and
Q̄ if and only if only if its A-linear extension φ : AQ → AQ̄ is a homomorphism
between the associated Yang–Baxter operators cQ and cQ̄.

Given a homomorphism φ between Yang–Baxter operators c and c̄, we would
expect a cochain homomorphism φ∗ : C∗

YB
(c̄;m) → C∗

YB
(c;m) and a chain homo-

morphism φ∗ : CYB

∗ (c) → CYB

∗ (c̄). The definitions of CYB

n (c) = End(V ⊗n) and
Cn

YB
(c;m) = Hom(V ⊗n,mV ⊗n), however, do not lend themselves to any obvious

construction. The problem already occurs in degree 2 shown in the above diagram:
in a deformation of c : V ⊗ V → V ⊗ V both factors may interact, and this does
not respect the product structure of φ ⊗ φ.

Example 2.21. Consider a homomorphism φ : Q → Q̄ between racks. We can
define a map φ∗ : C∗

YB
(cQ̄;m) → C∗

YB
(cQ;m) by setting

(2.10) (φ∗f)

[

x1, . . . , xn

y1, . . . , yn

]

= f

[

φ(x1), . . . , φ(xn)
φ(y1), . . . , φ(yn)

]

.

Even though this is the natural candidate, it does in general not define a cochain
map, that is, we usually have φ∗ ◦ d∗Q̄ 6= d∗Q ◦φ∗. In order to illustrate this, we shall
construct an explicit example.

The inner automorphism group Inn(Q) acts naturally on Q. The set of orbits
Q̄ = Q/ Inn(Q) can be regarded as a trivial rack, in which case the quotient map
φ : Q → Q̄ becomes a rack homomorphism.

Consider a cochain f ∈ Cn
YB

(cQ̄;m). The coboundary d∗Q̄ vanishes, so that
φ∗d∗Q̄f = 0. In general, however, we have d∗Qφ∗f 6= 0. To see this consider y, z ∈ Q
satisfying y 6≡ z, which means that there exists x ∈ Q such that xy 6= xz. We find

(

d1
Q(φ∗f)

)

[

x, y
x, z

]

= (φ∗f)

[

y
z

]

· id

[

xy

xz

]

− (φ∗f)

[

y
z

]

· id

[

x
x

]

− (φ∗f)

[

x
x

]

· id

[

y
z

]

+ (φ∗f)

[

xy

xz

]

· id

[

y
z

]

= −f

[

φ(y)
φ(z)

]

.

This is in general not zero, whence d∗Qφ∗f 6= φ∗d∗Q̄f . We conclude that the natural

candidate φ∗ : C∗
YB

(cQ̄;m) → C∗
YB

(cQ;m) is not a cochain map.
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3. Diagonal deformations

In §2 we have considered general Yang–Baxter deformations. For cQ coming
from a rack Q the theory becomes much easier if we concentrate on deformations
of the form c̃(a ⊗ b) = λ(a, b) · cQ(a ⊗ b) where λ : Q × Q → Λ is a map to some
abelian group Λ. Such deformations are classified by rack cohomology:

Definition 3.1. Let Q be a rack and let Λ be an abelian group (written additively).
We consider the cochain complex Cn

R
= Cn

R
(Q; Λ) formed by all maps λ : Qn → Λ.

The coboundary δn : Cn
R
→ Cn+1

R
is defined by

(δnλ)(a0, . . . , an) =
n

∑

i=1

(−1)i
[

λ(a0 , . . . , ai−1, ai+1, . . . , an)(3.1)

−λ(aai

0 , . . . , aai

i−1, ai+1, . . . , an)
]

.

This defines a cochain complex (C∗
R
, δ∗), whose cohomology Hn

R
(Q; Λ) is called the

rack cohomology of Q with coefficients in Λ.

Remark 3.2. It is easily seen that c̃ is a Yang–Baxter operator if and only if λ
is a rack cocycle, see Graña [26]. Likewise, c̃ and cQ are equivalent if and only if
λ is a coboundary. As in group theory, the second cohomology group H2

R
(Q; Λ)

corresponds to equivalence classes of central extension Λ y Q̃ → Q [14, 15].

Let us make explicit how rack cohomology fits into the more general framework
of Yang–Baxter cohomology. Suppose that Λ is a module over some ring K. We
can form the K-algebra A = K ⊕ Λ by setting uv = 0 for all u, v ∈ Λ, that is, we
equip A with the product (a, u) · (b, v) = (ab, av + bu). For K = Λ, for example,
we obtain A = K[h]/(h2). We have an augmentation homomorphism ε : A → K
defined by ε(1) = 1 and ε(u) = 0 for all u ∈ Λ. The augmentation ideal m = ker(ε)
thus coincides with Λ. Notice also that the additive group Λ is isomorphic to the
multiplicative subgroup 1 + m of the ring A.

If we consider diagonal deformations

c̃(a ⊗ b) =
(

1 + λ(a, b)
)

· cQ(a ⊗ b) with λ(a, b) ∈ m,

then we see that rack cohomology naturally embeds into Yang–Baxter cohomology:

Proposition 3.3. The rack cochain complex C∗
R
(Q; Λ) is naturally isomorphic to

the diagonal subcomplex C∗
Diag

of the Yang–Baxter cohomology C∗
YB

(cQ;m). ¤

Remark 3.4. Unlike the full Yang–Baxter complex (C∗
YB

(cQ,m), d∗), the diagonal
subcomplex C∗

Diag
(cQ,m) and rack cohomology (3.1) are functorial in Q.

Proposition 3.5. There exists a retraction r : C∗
YB

→ C∗
Diag

of cochain complexes,

whence rack cohomology H∗
R
(Q; Λ) is a direct summand of Yang–Baxter cohomology

H∗
YB

(cQ;m).

Proof. The obvious idea turns out to work. We define rn : Cn
YB

→ Cn
Diag

by

(rnf)[ x1,...,xn
y1,...,yn

] :=

{

f [ x1,...,xn
y1,...,yn

] if xi = yi for all i = 1, . . . , n,

0 otherwise.

The coboundary formula (2.6) shows that dn
i ◦ rn = rn+1 ◦ dn

i , whence d ◦ r = r ◦ d.
By construction we have r(C∗

YB
) = C∗

Diag
and r|C∗

Diag
= id. ¤
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Remark 3.6. The example of a trivial rack Q shows that Yang–Baxter H∗
YB

(cQ;m)
is in general much bigger than rack cohomology H∗

R
(Q; Λ), so we cannot capture all

information by diagonal deformations alone. In order to do so, we have to consider
the more general notion of quasi-diagonal deformations, which we explain next.

4. Quasi-diagonal deformations

As before we consider a rack Q and the associated Yang–Baxter operator cQ

over some ring A. Within the Yang–Baxter complex we can now define the quasi-
diagonal subcomplex. Recall from §1.2 that a matrix f : Qn × Qn → A is called
quasi-diagonal if f [ x1,...,xn

y1,...,yn
] vanishes whenever xi 6≡ yi for some index i = 1, . . . , n.

Proposition 4.1. The quasi-diagonal cochains of the Yang–Baxter complex form

a subcomplex, denoted (C∗
∆, d∗). ¤

Remark 4.2. Restricted to the subcomplex C∗
∆ of quasi-diagonal cochains, the

coboundary dn : Cn
∆ → Cn+1

∆ takes the form dnf =
∑n

i=1 (−1)idn
i f with

(dn
i f)[ x0,...,xn

y0,...,yn
] =

(

f

[

x0 ,...,x
i−1,xi+1,...,xn

y0 ,...,y
i−1,yi+1,...,yn

]

− f

[

x
xi
0 ,...,x

xi
i−1,xi+1,...,xn

y
yi
0 ,...,y

yi
i−1,yi+1,...,yn

])

· id [ xi
yi

].

This illustrates, in explicit terms, that the quasi-diagonal subcomplex is half-way
between Yang–Baxter cohomology (2.6) and rack cohomology (3.1). As pointed out
in the introduction, the quasi-diagonal subcomplex C∗

∆ coincides with the Yang–
Baxter complex C∗

YB
if the rack Q is trivial. On the other hand, C∗

∆ coincides with
the rack complex C∗

R
if the inner representation ρ : Q → Inn(Q) is injective: in this

case x ≡ y means x = y, and quasi-diagonal means diagonal.

The main goal of this article is to show that C∗
∆ ⊂ C∗

YB
is a homotopy retract.

We point out that a much weaker statement follows easily from the definition:

Proposition 4.3. There exists a retraction r : C∗
YB

→ C∗
∆.

Proof. Again the obvious idea turns out to work. We define rn : Cn
YB

→ Cn
∆ by

(rnf)[ x1,...,xn
y1,...,yn

] :=

{

f [ x1,...,xn
y1,...,yn

] if xi ≡ yi for all i = 1, . . . , n,

0 otherwise.

The coboundary formula (2.6) shows that dn
i ◦ rn = rn+1 ◦ dn

i , whence d ◦ r = r ◦ d.
By construction we have r(C∗

YB
) = C∗

∆ and r|C∗
∆ = id, so r is a retraction. ¤

Remark 4.4. Like the full Yang–Baxter complex C∗
YB

(cQ,m), the quasi-diagonal
complex C∗

∆(cQ,m) is not functorial in the rack Q. Every rack homomorphism
φ : Q → Q̄ induces a map φ∗

∆ : C∆(cQ̄,m) → C∆(cQ,m) defined by

(4.1) (φ∗

∆f)

[

x1, . . . , xn

y1, . . . , yn

]

= f

[

φ(x1), . . . , φ(xn)
φ(y1), . . . , φ(yn)

]

for all x1 ≡ y1, . . . , xn ≡ yn in Q. This natural map, however, is in general not a
cochain map. A concrete example can be constructed as follows.

Example 4.5. Consider a non-trivial rack Q̄ and choose x̄, ȳ ∈ Q̄ such that x̄ȳ 6= x̄.
Assume that φ : Q → Q̄ is a rack homomorphism, φ(x) = x̄, φ(y) = ȳ, φ(z) = z̄,
with y 6= z but ȳ = z̄. The easiest example is the trivial extension Q = Q̄ × {1, 2},
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where (a, i) ∗ (b, j) = (a ∗ b, i), which also ensures that y = (ȳ, 1) and z = (ȳ, 2) are
behaviourally equivalent. For each cochain f ∈ C1(cQ̄,m) we find

(d1φ∗f)

[

x, y
x, z

]

=

(

(φ∗f)

[

xy

xz

]

− (φ∗f)

[

x
x

])

· id

[

y
z

]

= 0 as opposed to(4.2)

(φ∗d1f)

[

x, y
x, z

]

= (d1f)

[

x̄, ȳ
x̄, z̄

]

=

(

f

[

x̄ȳ

x̄ȳ

]

− f

[

x̄
x̄

])

id

[

ȳ
z̄

]

= f

[

x̄ȳ

x̄ȳ

]

− f

[

x̄
x̄

]

.(4.3)

Since x̄ȳ 6= x̄, the cochain f can be so chosen that the last difference is non-zero.

The difference between (4.2) and (4.3) disappears for equivariant cochains:

Definition 4.6. A cochain f ∈ Cn(cQ,m) is fully equivariant if it satisfies

f

[

x1, . . . , xn

y1, . . . , yn

]

= f

[

xg1

1 , . . . , xgn
n

yg1

1 , . . . , ygn
n

]

for all x1, . . . , xn, y1, . . . , yn ∈ Q and g1, . . . , gn ∈ Inn(Q). It is called entropic if
it is fully equivariant and quasi-diagonal. Such cochains are characterized by the
condition dn

0f = · · · = dn
nf = 0, in other words, all partial coboundaries vanish

[15, Lemma 30]. In particular, entropic cochains are cocycles; the submodule of
entropic cocycles is denoted by E∗(cQ,m) ⊂ Z∗

YB
(cQ,m).

Remark 4.7. For every rack Q we have C∗
YB

(cQ,m) ⊃ C∗
∆(cQ,m) ⊃ E∗(cQ,m) by

definition. Every rack homomorphism φ : Q → Q̄ induces maps

C∗
YB

(cQ,m)
⊃

←−−−− C∗
∆(cQ,m)

⊃
←−−−− E∗(cQ,m)

φ∗

x





x





φ∗

∆

x





φ∗

E

C∗
YB

(cQ̄,m)
⊃

←−−−− C∗
∆(cQ̄,m)

⊃
←−−−− E∗(cQ̄,m).

Here φ∗ is defined by (2.10), whereas φ∗
∆ is defined by (4.1), and the map φ∗

E is
obtained from φ∗

∆ by restriction. In general φ∗ and φ∗
∆ are not cochain maps,

as pointed out above. Only the third map φ∗
E is always a cochain map because

C∗
E ⊂ Z∗

YB
is a trivial subcomplex.

Entropic deformations are symmetric unter Inn(Q). If the order of Inn(Q) is
finite and invertible in A, then symmetrization can be used to show that every
Yang–Baxter deformation of cQ is equivalent to an entropic deformation [15]. In the
present article we will not impose such restrictions and thus not use symmetrization.

5. Constructing a homotopy retraction

Having set the scene in the preceding sections, we can now study the subcomplex
C∗

∆ ⊂ C∗
YB

of quasi-diagonal cochains. It is easy to see that it is a retract but
it is more delicate to prove that it is a homotopy retract. The construction of
Proposition 4.3 is nice and simple, but unfortunately the retraction r : C∗

YB
→ C∗

∆

does not seem to be homotopic to the identity of Cn
YB

.
To resolve this difficulty we introduce an auxiliary filtration

C∗

YB
= C∗

0 ⊃ C∗

1 ⊃ C∗

2 ⊃ · · · ⊃ C∗

∞ = C∗

∆.

of subcomplexes. We then prove that each complex homotopy-retracts to its suc-
cessor (§5.1). The advantage is that the partial retractions p∗m : C∗

m →→ C∗
m+1 are

much easier to understand. Composing these homotopies we obtain the desired
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homotopy retraction C∗
YB

→→ C∗
∆ (§5.2). Figuratively speaking, we thus construct

the deformation from C∗
YB

to C∗
∆ by a piecewise linear path.

Definition 5.1. For each m ∈ N we define C∗
m ⊂ C∗

YB
to be the subcomplex of

cochains that are quasi-diagonal in the last m variables. More explicitly:

Cn
m :=

{

f ∈ Cn
YB

| f [ x1,...,xn
y1,...,yn

] = 0 if xi 6≡ yi for some index i with n − m < i ≤ n
}

.

In each degree n we thus obtain a filtration Cn
YB

= Cn
0 ⊃ Cn

1 ⊃ · · · ⊃ Cn
n that

stabilizes at Cn
n : obviously Cn

m = Cn
n for all m > n.

Lemma 5.2. The coboundary dn : Cn
YB

→ Cn+1
YB

satisfies dn(Cn
m) ⊂ Cn+1

m for each

m ∈ N. In other words, (C∗
m, d∗|C∗

m
) is a subcomplex of (C∗

YB
, d∗).

Proof. Suppose that f ∈ Cn
m. Formula (2.6) for the partial coboundary shows that

dn
i f is in Cn+1

m . The same thus holds for the coboundary dnf =
∑n

i=0 (−1)idn
i f . ¤

Notation. We will suppress the explicit mention of the coboundary map and de-
note the complex (C∗

YB
, d∗) simply by C∗

YB
. Likewise we write C∗

m for (C∗
m, d∗|C∗

m
).

5.1. Cochain homotopies. We wish to show that the inclusion ι∗m+1 : C∗
m+1 →֒

C∗
m is a homotopy retract. To this end we shall construct a cochain map p∗m : C∗

m →→
C∗

m+1 such that p∗m◦ι∗m+1 = id∗

m+1 and a cochain homotopy ι∗m+1◦p
∗
m ≃ id∗

m : C∗
m →

C∗
m. Such a projection p∗m is called a homotopy retraction see Mac Lane [37, §II.2].

Recall that a cochain homotopy is a map sn
m : Cn

m → Cn−1
m such that pn

m − idn
m =

dn−1 ◦ sn
m + sn+1

m ◦ dn. In the sequel we will prefer the sign convention dn−1 ◦ sn
m −

sn+1
m ◦ dn, which is logically equivalent.

Remark 5.3. We call the set ∆ = {(x, y) ∈ Q2 | x ≡ y} the quasi-diagonal.
On its complement ∆c = {(x, y) ∈ Q2 | x 6≡ y} we choose a map ψ : ∆c → Q2,
(x, y) 7→ (u, v) such that u 6= v but ux = vy. It is easy to see that such a map
exists: the inequivalence x 6≡ y means that the inner automorphisms z 7→ z ∗ x and
z 7→ z ∗ y are different. This is equivalent to saying that their inverses z 7→ z ∗ x
and z 7→ z ∗ y are different: there exists z ∈ Q such that u = z ∗ x differs from
v = z ∗ y. In other words we have u 6= v but ux = vy.

Definition 5.4. Fix n,m ∈ N. For m ≥ n we define sn
m : Cn

m → Cn−1
m to be the

zero map. For 0 ≤ m ≤ n − 1 we set k := n − m and define sn
m : Cn

m → Cn−1
m by

(sn
mf)[ x2,...,xn

y2,...,yn
] :=

{

f
[ x2,...,xk−1,u,xk,...,xn

y2,...,yk−1,v,yk,...,yn

]

if xk 6≡ yk, with (u, v) = ψ(xk, yk),

0 if xk ≡ yk.

This induces a map tnm := dn−1 ◦ sn
m − sn+1

m ◦ dn : Cn
m → Cn

m.

Theorem 5.5. The cochain map pn
m := idn

m −(−1)n−mtnm : Cn
m → Cn

m sends Cn
m to

the subcomplex Cn
m+1 and restricts to the identity on Cn

m+1. By construction, the

maps id∗

m and p∗m are homotopy equivalent, and thus C∗
m+1 →֒ C∗

m is a homotopy

retract and thus induces an isomorphism H∗(C∗
m+1)

∼−→ H∗(C∗
m) on cohomology.

Proof. The fact that p is a cochain map follows at once from its definition:

dn ◦ pn
m = dn − (−1)n−m

[

dndn−1sn
m − dnsn+1

m dn
]

,

pn+1
m ◦ dn = dn + (−1)n−m

[

dnsn+1
m dn − sn+2

m dn+1dn
]

.

The two properties pn
m(Cn

m) ⊂ Cn
m+1 and pn

m|Cn
m+1 = idn

m+1 will be established
in the following two lemmas. The remaining statements are standard consequences
of cochain homotopy, see Mac Lane [37, §II.2]. ¤
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Lemma 5.6. We have (tnmf)[ x1,...,xn
y1,...,yn

] = (−1)kf [ x1,...,xn
y1,...,yn

] whenever xk 6≡ yk.

Proof. As before we set k := n − m. We will calculate tnm : Cn
m → Cn

m by making
dn−1

i ◦ sn
m and sn+1

m ◦ dn
i explicit for i = 0, . . . , n. Let f ∈ Cn

m and assume xk 6≡ yk.
We shall distinguish the three cases i ≤ k − 2 and i = k − 1 and i ≥ k.

First case. For i = 0, . . . , k − 2 we find:

(dn−1
i sn

mf)

[

x1, . . . , xn

y1, . . . , yn

]

= +(sn
mf)

[

x1 , . . . , xi , xi+2, . . . , xk, . . . , xn

y1 , . . . , yi , yi+2, . . . , yk, . . . , yn

]

· id

[

x
xi+2···xn

i+1

y
yi+2···yn

i+1

]

−(sn
mf)

[

x
xi+1

1 , . . . , x
xi+1

i , xi+2, . . . , xk, . . . , xn

y
yi+1

1 , . . . , y
yi+1

i , yi+2, . . . , yk, . . . , yn

]

· id

[

xi+1

yi+1

]

= +f

[

x1 , . . . , xi , xi+2, . . . , u, xk, . . . , xn

y1 , . . . , yi , yi+2, . . . , v, yk, . . . , yn

]

· id

[

x
xi+2···xn

i+1

y
yi+2···yn

i+1

]

−f

[

x
xi+1

1 , . . . , x
xi+1

i , xi+2, . . . , u, xk, . . . , xn

y
yi+1

1 , . . . , y
yi+1

i , yi+2, . . . , v, yk, . . . , yn

]

· id

[

xi+1

yi+1

]

= (dn
i f)

[

x1, . . . , xk−1, u, xk, . . . , xn

y1, . . . , yk−1, v, yk, . . . , yn

]

= (sn+1
m dn

i f)

[

x1, . . . , xn

y1, . . . , yn

]

.

The third of these four equalities needs justification. We have to verify that

x
xi+2···xk−1xk···xn

i+1 = y
yi+2···y−1yk···yn

i+1

is equivalent to

x
xi+2···xk−1uxk···xn

i+1 = y
yi+2···yk−1vyk···yn

i+1 .

We can assume that xj ≡ yj for all k < j ≤ n, otherwise the factors involving f
vanish by our hypothesis f ∈ Cn

m. So we only have to show that

x
xi+2···xk−1xk

i+1 = y
yi+2···y−1yk

i+1

is equivalent to

x
xi+2···xk−1uxk

i+1 = y
yi+2···yk−1vyk

i+1 .

This follows from (a ∗u) ∗xk = (a ∗xk) ∗ (u ∗xk) and (b ∗ v) ∗ yk = (b ∗ yk) ∗ (v ∗ yk),
and our construction (u, v) = ψ(xk, yk) ensures that u ∗ xk = v ∗ yk.

Second case. For i = k − 1 we find:

(dn−1
k−1sn

mf)

[

x1, . . . , xn

y1, . . . , yn

]

= +(sn
mf)

[

x1 , . . . , xk−1, xk+1, . . . , xn

y1 , . . . , yk−1, yk+1, . . . , yn

]

· id

[

x
xk+1···xn

k

y
yk+1···yn

k

]

−(sn
mf)

[

xxk

1 , . . . , xxk

k−1, xk+1, . . . , xn

yyk

1 , . . . , yyk

k−1, yk+1, . . . , yn

]

· id

[

xk

yk

]

= 0.
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The first factors vanish whenever xj 6≡ yj for some j with k < j ≤ n; otherwise the
second factors vanish because of our hypothesis xk 6= yk. On the other hand

(sn+1
m dn

k−1f)

[

x1, . . . , xn

y1, . . . , yn

]

= +(dn
k−1f)

[

x1, . . . , xk−1, u, xk, . . . , xn

y1, . . . , yk−1, v, yk, . . . , yn

]

= +f

[

x1 , . . . , xk−1, xk, . . . , xn

y1 , . . . , yk−1, yk, . . . , yn

]

· id

[

uxk···xn

vyk···yn

]

−f

[

xu
1 , . . . , xu

k−1, xk, . . . , xn

yv
1 , . . . , yv

k−1, yk, . . . , yn

]

· id

[

u
v

]

= f

[

x1, . . . , xk−1, xk, . . . , xn

y1, . . . , yk−1, yk, . . . , yn

]

.

The first factors vanish whenever xj 6≡ yj for some j with k < j ≤ n; otherwise we
have u 6= v with uxk = vyk , whence uxk···xn = vyk···yn .

Third case. For i ≥ k we find:

(dn−1
i sn

mf)

[

x1, . . . , xn

y1, . . . , yn

]

= +(sn
mf)

[

x1 , . . . , xk , . . . , xi , xi+2, . . . , xn

y1 , . . . , yk , . . . , yi , yi+2, . . . , yn

]

· id

[

x
xi+2···xn

i+1

y
yi+2···yn

i+1

]

−(sn
mf)

[

x
xi+1

1 , . . . , x
xi+1

k , . . . , x
xi+1

i , xi+2, . . . , xn

y
yi+1

1 , . . . , y
yi+1

k , . . . , y
yi+1

i , yi+2, . . . , yn

]

· id

[

xi+1

yi+1

]

= 0.

The first summand vanishes because xk 6≡ yk; the second summand vanishes be-
cause xi+1 6= yi+1 or x

xi+1

k 6≡ y
yi+1

k . Analogously:

(sn+1
m dn

kf)

[

x1, . . . , xn

y1, . . . , yn

]

= +(dn
kf)

[

x1, . . . , xk−1, u, xk, . . . , xn

y1, . . . , yk−1, v, yk, . . . , yn

]

= +f

[

x1 , . . . , xk−1, u , xk+1, . . . , xn

y1 , . . . , yk−1, v , yk+1, . . . , yn

]

· id

[

x
xk+1···xn

k

y
yk+1···yn

k

]

−f

[

xxk

1 , . . . , xxk

k−1, u
xk , xk+1, . . . , xn

yyk

1 , . . . , yyk

k−1, v
yk , yk+1, . . . , yn

]

· id

[

xk

yk

]

= 0.

The first factors vanish whenever xj 6≡ yj for some j with k < j ≤ n; otherwise the
second factors vanish because of our hypothesis xk 6= yk.

The same conclusion holds for i > k:

(sn+1
m dn

i f)

[

x1, . . . , xn

y1, . . . , yn

]

= +(dn
i f)

[

x1, . . . , xk−1, u, xk, . . . , xn

y1, . . . , yk−1, v, yk, . . . , yn

]

= +f

[

x1 , . . . , xk−1, u , xk , . . . , xi−1, xi+1, . . . , xn

y1 , . . . , yk−1, v , yk , . . . , yi−1, yi+1, . . . , yn

]

· id

[

x
xi+1···xn

i

y
yi+1···yn

i

]

−f

[

xxi

1 , . . . , xxi

k−1, u
xi , xxi

k , . . . , xxi

i−1, xi+1, . . . , xn

yyi

1 , . . . , yyi

k−1, v
yi , yyi

k , . . . , yyi

i−1, yi+1, . . . , yn

]

· id

[

xi

yi

]

= 0.
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The first summand vanishes because xk 6≡ yk; the second summand vanishes be-
cause xi 6= yi or xxi

k 6≡ yyi

k . ¤

Lemma 5.7. The map tnm satisfies tnmf = 0 whenever f ∈ Cn
m+1.

Proof. We show (tnmf)[ x1,...,xn
y1,...,yn

] = 0 for f ∈ Cn
m+1 and x1, . . . , xn, y1, . . . , yn ∈ Q.

The previous lemma resolves the case xk 6≡ yk, so it suffices to consider the remain-
ing case where xk ≡ yk. By definition of sn+1

m we have (sn+1
m dn

i f)[ x1,...,xn
y1,...,yn

] = 0
because xk ≡ yk. Likewise, for i ≤ k − 2 we find:

(dn−1
i sn

mf)

[

x1, . . . , xn

y1, . . . , yn

]

= +(sn
mf)

[

x1 , . . . , xi , xi+2, . . . , xk, . . . , xn

y1 , . . . , yi , yi+2, . . . , yk, . . . , yn

]

· id

[

x
xi+2···xn

i+1

y
yi+2···yn

i+1

]

−(sn
mf)

[

x
xi+1

1 , . . . , x
xi+1

i , xi+2, . . . , xk, . . . , xn

y
yi+1

1 , . . . , y
yi+1

i , yi+2, . . . , yk, . . . , yn

]

· id

[

xi+1

yi+1

]

= 0.

For i ≥ k − 1, however, we find:

(dn−1
i sn

mf)

[

x1, . . . , xn

y1, . . . , yn

]

= +(sn
mf)

[

x1 , . . . , xk−1 , . . . , xi , xi+2, . . . , xn

y1 , . . . , yk−1 , . . . , yi , yi+2, . . . , yn

]

· id

[

x
xi+2···xn

i+1

y
yi+2···yn

i+1

]

−(sn
mf)

[

x
xi+1

1 , . . . , x
xi+1

k−1 , . . . , x
xi+1

i , xi+2, . . . , xn

y
yi+1

1 , . . . , y
yi+1

k−1 , . . . , y
yi+1

i , yi+2, . . . , yn

]

· id

[

xi+1

yi+1

]

.

The summands are non-zero only if xi+1 = yi+1 and xj ≡ yj for all j with k ≤ j ≤ n:
in this case their difference measures the defect of sn

mf to being equivariant (jointly
in the first i variables).

Both summands vanish if xk−1 ≡ yk−1, so let us assume xk−1 6≡ yk−1:

(dn−1
i sn

mf)

[

x1, . . . , xn

y1, . . . , yn

]

= +f

[

x1 , . . . , u′ , xk−1 , . . . , xi , xi+2, . . . , xn

y1 , . . . , v′ , yk−1 , . . . , yi , yi+2, . . . , yn

]

(5.1)

−f

[

x
xi+1

1 , . . . , u′′, x
xi+1

k−1 , . . . , x
xi+1

i , xi+2, . . . , xn

y
yi+1

1 , . . . , v′′, y
yi+1

k−1 , . . . , y
yi+1

i , yi+2, . . . , yn

]

Here (u′, v′) = ψ(xk−1, yk−1) and (u′′, v′′) = ψ(x
xi+1

k−1 , y
yi+1

k−1 ). The contributions do
in general not cancel for f ∈ Cn

m, but both summands vanish if f ∈ Cn
m+1. ¤

Remark 5.8. Equation (5.1) shows that (tnmf)[ x1,...,xn
y1,...,yn

] can be non-zero for f ∈
Cn

m, if xk ≡ yk but xk−1 6≡ yk−1. This equation measures the defect of the cochain
f , and our auxiliary map ψ : (xk−1, yk−1) → (u, v), to be equivariant under the
action of |Inn(Q)|. In the equivariant setting of [15] this defect disappears, and the
projection pn

m becomes

(pn
mf)[ x1,...,xn

y1,...,yn
] :=

{

0 if xj 6≡ yj for some j with n − m ≤ j ≤ n,

f [ x1,...,xn
y1,...,yn

] otherwise.

This simplified formula has been used in [15], where symmetrization was applied
throughout to simplify calculations. In our present setting we cannot apply sym-
metrization and thus cannot assume equivariance. It is remarkable, therefore, that
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the above calculations carry through. The price to pay is that the projection pn
m

has a more complicated form.

5.2. Composition of homotopy retractions. Having constructed homotopy re-
tractions C∗

0 →→ C∗
1 →→ . . . →→ C∗

m−1 →→ C∗
m it now suffices to put the pieces together:

Corollary 5.9. The subcomplex C∗
∆ of quasi-diagonal cochains is a homotopy re-

tract of the full Yang–Baxter cochain complex C∗
YB

. As a consequence the inclusion

C∗
∆ →֒ C∗

YB
induces an isomorphism on cohomology, H∗(C∗

∆) ∼−→ H∗(C∗
YB

).

Proof. The composition of homotopic cochain maps yields again homotopic cochain
maps. As a consequence, the composition of our partial homotopy retractions yields
again a homotopy retraction

P ∗

m := p∗m−1 ◦ p∗m−2 ◦ · · · ◦ p∗1 ◦ p∗0 : C∗

0 → C∗

m.

This shows that the inclusion C∗
m →֒ C∗

YB
is a homotopy retract. We wish to pass

to the limit C∗
∆ =

⋂

m C∗
m. In each degree n we have pn

m = idn
n for all m ≥ n, and

thus Pn
m = Pn

n . We can thus define P ∗
∞ = limm→∞ P ∗

m as the degree-wise limit
Pn
∞ = Pn

n . We conclude that C∗
∆ →֒ C∗

YB
is a homotopy retract. ¤

6. From infinitesimal to complete deformations

In this section we will pass from infinitesimal to complete deformations. In order
to do so, we will assume that the ring A is complete with respect to the ideal m,
that is, we assume that the natural map A → lim

←−
A/m

n is an isomorphism.

Example 6.1. A polynomial ring K[h] is not complete with respect to the ideal
(h). Its completion is the power series ring K[[h]] = lim

←−
K[h]/(hn). The latter is

complete with respect to its ideal m = (h). If K is a field, then K[[h]] is a complete
local ring, i.e., complete with respect to its unique maximal ideal m.

Example 6.2. The ring of integers Z is not complete with respect to the ideal (p),
where p will be assumed to be prime. Its completion is the ring of p-adic integers
Zp = lim

←−
Z/pn , which is complete with respect to its unique maximal ideal m = (p).

Completions lend themselves to induction techniques: we solve the problem first
for m = 0, and then inductively for m

n = 0 where n = 2, 3, . . . . One can always force
this condition by passing to the quotient A/m

n, and finally to the limit lim
←−

A/m
n.

Lemma 6.3. Let A be a ring with ideal m such that m
n+1 = 0. If c : AQ2 → AQ2

ie a Yang–Baxter operator that satisfies c ≡ cQ modulo m and is quasi-diagonal

modulo m
n, then there exists α : AQ → AQ with α ≡ idV modulo m

n, such that

(α ⊗ α)−1 ◦ c ◦ (α ⊗ α) is a quasi-diagonal deformation of cQ.

Proof. We have c = cQ ◦ F with F ≡ id⊗2
V modulo m. We write F in matrix

notation as a map F : Q2 × Q2 → A. Its non-quasi-diagonal part f : Q2 × Q2 → A
is defined by

f [ x1,x2
y1,y2

] :=

{

0 if x1 ≡ y1 and x2 ≡ y2,

F [ x1,x2
y1,y2

] otherwise.

By hypothesis f takes values in m
n ⊂ A, and can thus be considered as a cochain

C2
YB

(cQ;mn). The map c̄ = cQ ◦ (F − f) = c ◦ (id⊗2
V −f) is quasi-diagonal, by
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construction. We claim that c̄ is actually a Yang–Baxter operator. We know that
c satisfies the Yang–Baxter equation; its deformation c̄ thus satisfies

(6.1) id⊗3
V −(idV ⊗c̄)−1(c̄ ⊗ idV )−1(idV ⊗c̄)−1(c̄ ⊗ idV )(idV ⊗c̄)(c̄ ⊗ idV ) = d2f.

It is easy to check that the left-hand side is a quasi-diagonal map, whereas
the right-hand side is zero on the quasi-diagonal. We conclude that both sides
must vanish. This means that c̄ satisfies the Yang–Baxter equation, and that
f ∈ C2

YB
(cQ;mn) is a cocycle.

By Theorem 1.3, the inclusion C∗
∆(cQ;mn) ⊂ C∗

YB
(cQ;mn) induces an isomor-

phism on cohomology. The class [f ] ∈ C2
YB

(cQ;mn) can thus be presented by a

quasi-diagonal cocycle f̃ ∈ C2
∆(cQ;mn). This means that there exists a cochain

g ∈ C1
YB

(cQ;mn) such that f̃ = f +d1g. We conclude that α = idV +g conjugates c
to a quasi-diagonal Yang–Baxter operator c̃ = (α⊗α)−1◦c◦(α⊗α), as desired. ¤

Remark 6.4. In the preceding proof the construction and analysis of c̄ serve to
show that f is a 2-cocycle. The separation trick for Equation (6.1) is taken from [15,
§4]. I seize the opportunity to point out that there the difference is misprinted and
lacks the term id⊗3

V ; with this obvious correction the argument applies as intended.

Remark 6.5. In the proof of Lemma 6.3 we do not claim that c is conjugate to c̄.
This is true in the equivariant setting of [15], but without equivariance it is false
in general: the coboundary d1g kills the non-quasi-diagonal part but usually also
changes the quasi-diagonal part (see Remark 5.8).

To conclude the passage from infinitesimal to complete deformations, it only
remains to put the ingredients together:

Theorem 6.6. Suppose that the ring A is complete with respect to the ideal m. Then

every Yang–Baxter deformation c of cQ over A is equivalent to a quasi-diagonal

deformation cQf where f : AQ2 → AQ2 is quasi-diagonal and f ≡ id modulo m.

Proof. Starting the induction with c1 := c = cQf1, suppose that cn = cQfn has a
deformation term fn that is quasi-diagonal modulo m

n. By Lemma 6.3, there exists
αn : AQ → AQ with αn ≡ idV modulo m

n, such that cn+1 := (αn ⊗ αn)−1cn(αn ⊗
αn) is given by cn+1 = cQfn+1 with fn+1 quasi-diagonal modulo m

n+1. The lemma
ensures that such a map ᾱn exists modulo m

n+1; this can be lifted to a map
αn : AQ → AQ, which is invertible because A is complete. Completeness of A also
ensures that we can pass to the limit and define the infinite product α = α1α2α3 · · · :
for each n ∈ N this product is finite modulo m

n. By construction, (α⊗α)−1 c (α⊗α)
is quasi-diagonal and equivalent to c, as desired. ¤

Corollary 6.7. If H2
YB

(cQ;m/m
2) = m/m

2, then cQ is rigid over (A,m).

Proof. For every unit u ∈ 1 + m we obtain a trivially deformed Yang–Baxter op-
erator c̃ = u · cQ. On the cochain level this corresponds to a constant multiple
of the identity, which induces an injection m/m

2 →֒ H2
YB

(cQ;m/m
2). If these triv-

ial classes exhaust all cohomology classes, then degree-wise elimination as in the
preceding proof conjugates any given deformation of cQ to one of the form u·cQ. ¤

7. Examples and applications

7.1. Trivial quandles. Consider first a trivial quandle Q, with x∗y = x for all x, y,
so that cQ = τ is simply the transposition operator. Here our results cannot add
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anything new, because the Yang–Baxter complex C∗
YB

is trivial, i.e., df = 0 for all
f ∈ C∗

YB
. In particular there are no infinitesimal obstructions: every deformation of

τ satisfies the Yang–Baxter equation modulo m
2. There are, however, higher-order

obstructions: these form a subject of their own and belong to the much deeper
theory of quantum invariants [11, 40, 31, 32].

7.2. Faithful quandles. Next we consider the other extreme, where Theorem 1.1
applies most efficiently. Let G be a centreless group, so that conjugation induces an
isomorphism G ∼−→ Inn(G). Suppose that Q ⊂ G is a conjugacy class, or a collection
of conjugacy classes, that generates G. Then we have Inn(Q) ∼= Inn(G) ∼= G, and
the inner representation ρ : Q → Inn(Q) is injective. In this case every Yang–Baxter
deformation of cQ over a complete ring A is equivalent to a diagonal deformation.
If the order |G| is finite and invertible in A, then cQ is rigid [15].

7.3. The dihedral quandle of order 3. The smallest non-trivial example of a
rigid operator cQ is given by the quandle Q = {(12), (13), (23)}, formed by trans-
positions in the symmetric group S3. The associated link invariant is the number
of 3-colourings, as defined by Fox [22, 23]. The operator cQ does not admit any
non-trivial deformation over Q[[h]]. In this sense it is an isolated solution of the
Yang–Baxter equation. We can now prove more:

Proposition 7.1. For the quandle Q = {(12), (13), (23)} ⊂ S3 the associated

Yang–Baxter operator cQ is rigid over every complete ring.

Proof. According to [15], the operator cQ is rigid over every ring A in which the
order |S3| = 6 is invertible. Potentially there could exist non-trivial deformations in
characteristic 2 or 3. Theorem 1.3 ensures that infinitesimal deformations are quasi-
diagonal, which means diagonal in the present example because ρ : Q → Inn(Q) is
injective (see §7.2). According to Proposition 3.3, diagonal deformations corre-
spond to rack cohomology. A direct calculation shows that H2

R
(Q; Z/2) ∼= Z/2 and

H2
R
(Q; Z/3) ∼= Z/3, whence Corollary 6.7 implies rigidity. ¤

7.4. The other quandle of order 3. The smallest quandle that is non-trivial yet
deformable is Q = {a, b, c} with operation given by the table below. Ordering the
basis Q×Q lexicographically, we obtain the matrix of cQ as indicated. We consider
A = K[h]/(h2) with m = hK. The group Inn(Q) is of order 2: if 2 is invertible in K,
then H2

YB
(cQ; K) is free of rank 9 and can easily be made explicit using the results

of [15]. We state it here in form of a 9-parameter deformation c = cQ ◦ (id⊗2
V +f),

where f ∈ C2
YB

(cQ,m) is quasi-diagonal and equivariant under Inn(Q) × Inn(Q):

Q =

∗ a b c
a a a b
b b b a
c c c c

, cQ =









1 · · · · · · · ·
· · · 1 · · · · ·
· · · · · · 1 · ·
· 1 · · · · · · ·
· · · · 1 · · · ·
· · · · · · · 1 ·
· · · · · 1 · · ·
· · 1 · · · · · ·
· · · · · · · · 1









, f =













λ1 λ2 · λ3 λ4 · · · ·

λ2 λ1 · λ4 λ3 · · · ·

· · λ5 · · λ6 · · ·

λ3 λ4 · λ1 λ2 · · · ·

λ4 λ3 · λ2 λ1 · · · ·

· · λ6 · · λ5 · · ·

· · · · · · λ7 λ8 ·

· · · · · · λ8 λ7 ·

· · · · · · · · λ9













.

For every choice of parameters λ1, . . . , λ9 ∈ m the deformed operator satisfies
the Yang–Baxter equation (to all orders) and thus deforms cQ over (A,m).

A priori there could exist more deformations over Z/2, but a computer calculation
shows that dimH2

YB
(cQ; Z/2) = 9. So for this quandle there are no additional

deformations in the modular case.



YANG–BAXTER DEFORMATIONS AND RACK COHOMOLOGY 21

7.5. The dihedral quandle of order 4. There are quandles for which the mod-
ular case offers more deformations than the rational case. We wish to illustrate
this by an example where the additional deformations are not diagonal but quasi-
diagonal. The smallest example is given by the set of reflections of a square,

Q = { (13) , (24) , (12)(34) , (14)(23) }.

This set is closed under conjugation in the symmetric group S4, hence a quan-
dle. With respect to the lexicographical basis, cQ is represented by the following
permutation matrix:

cQ =























1 · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · · · · · · · · 1 · · ·
· · · · · · · · 1 · · · · · · ·
· 1 · · · · · · · · · · · · · ·
· · · · · 1 · · · · · · · · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · 1 · · · · · ·
· · · · · · 1 · · · · · · · · ·
· · 1 · · · · · · · · · · · · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · · · · 1 ·
· · · · · · · 1 · · · · · · · ·
· · · 1 · · · · · · · · · · · ·
· · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · 1























.

By construction, this matrix is a solution of the Yang–Baxter equation. Accord-
ing to [15] it admits a 16-parameter deformation c(λ) = cQ ◦ (id⊗2

V +f) given by the
following matrix, which is quasi-diagonal and equivariant under Inn(Q) × Inn(Q):

f =































λ1 λ2 · · λ3 λ4 · · · · · · · · · ·

λ2 λ1 · · λ4 λ3 · · · · · · · · · ·

· · λ5 λ6 · · λ7 λ8 · · · · · · · ·

· · λ6 λ5 · · λ8 λ7 · · · · · · · ·

λ3 λ4 · · λ1 λ2 · · · · · · · · · ·

λ4 λ3 · · λ2 λ1 · · · · · · · · · ·

· · λ7 λ8 · · λ5 λ6 · · · · · · · ·

· · λ8 λ7 · · λ6 λ5 · · · · · · · ·

· · · · · · · · λ9 λ10 · · λ11 λ12 · ·

· · · · · · · · λ10 λ9 · · λ12 λ11 · ·

· · · · · · · · · · λ13 λ14 · · λ15 λ16

· · · · · · · · · · λ14 λ13 · · λ16 λ15

· · · · · · · · λ11 λ12 · · λ9 λ10 · ·

· · · · · · · · λ12 λ11 · · λ10 λ9 · ·

· · · · · · · · · · λ15 λ16 · · λ13 λ14

· · · · · · · · · · λ16 λ15 · · λ14 λ13































.

For every choice of parameters λ1, . . . , λ16 ∈ m the matrix c(λ) satisfies the
Yang–Baxter equation (to all orders) and thus deforms c(0) = cQ over (A,m).

The quandle Q has the inner automorphism group Inn(Q) ∼= Z/2 ×Z/2, of order
4. If 2 is invertible in K, then H∗

YB
(cQ; K) can be calculated using the results of [15]

and is easily seen to be free of rank 16 such that f is the most general deformation.
In particular we have dimH∗

YB
(cQ; K) = 16 for every field K of characteristic 6= 2.

Over K = Z/2, however, a computer calculation shows that dimH2
YB

(cQ; Z/2) =
20, which means that there exists a 20-parameter deformation, at least infinitesi-
mally. We state the result in the form c = cQ(id⊗2

V +f + g) as follows.
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First we have the 16-parameter family that appears in every characteristic:

f =





































λ1 λ2 · · λ3 λ4 · · · · · · · · · ·

λ2 λ1 · · λ4 λ3 · · · · · · · · · ·

· · λ′

5 λ6 · · λ′

7 λ8 · · · · · · · ·

· · λ6 λ′

5 · · λ8 λ′

7 · · · · · · · ·

λ3 λ4 · · λ1 λ2 · · · · · · · · · ·

λ4 λ3 · · λ2 λ1 · · · · · · · · · ·

· · λ′′

7 λ8 · · λ′′

5 λ6 · · · · · · · ·

· · λ8 λ′′

7 · · λ6 λ′′

5 · · · · · · · ·

· · · · · · · · λ′

9 λ10 · · λ′

11 λ12 · ·

· · · · · · · · λ10 λ′

9 · · λ12 λ′

11 · ·

· · · · · · · · · · λ13 λ14 · · λ15 λ16

· · · · · · · · · · λ14 λ13 · · λ16 λ15

· · · · · · · · λ′′

11 λ12 · · λ′′

9 λ10 · ·

· · · · · · · · λ12 λ′′

11 · · λ10 λ′′

9 · ·

· · · · · · · · · · λ15 λ16 · · λ13 λ14

· · · · · · · · · · λ16 λ15 · · λ14 λ13





































.

For every choice of parameters in m the matrix c(λ) = cQ ◦ (id⊗2
V +f) satisfies

the Yang–Baxter equation modulo m
2. It even satisfies the Yang–Baxter equation

to any order provided that λ′
5 = λ′′

5 , λ′
7 = λ′′

7 , λ′
9 = λ′′

9 , λ′
11 = λ′′

11.
We set λ5 = λ′

5 + λ′′
5 , λ7 = λ′

7 + λ′′
7 , λ9 = λ′

9 + λ′′
9 , λ11 = λ′

11 + λ′′
11.

Two deformations c(λ) and c(λ̃) are gauge equivalent if and only if λk = λ̃k for
all k = 1, . . . , 16. We have chosen the redundant formulation above in order to
highlight the symmetry resp. the symmetry breaking. If 2 were invertible, we
would simply set λ′

5 = λ′′
5 = 1

2λ5 etc. In characteristic 2, however, we can realize
λ5 = 1 either by λ′

5 = 1 and λ′′
5 = 0, or by λ′

5 = 0 and λ′′
5 = 1: both deformations

are gauge equivalent, but no symmetric form is possible.
Next we have a 4-parameter deformation that appears only in characteristic 2:

g =







































α′
· · · β′

· · · · · · · · · · ·

· α′′
· · · β′′

· · · · · · · · · ·

· · α′
· · · β′

· · · · · · · · ·

· · · α′′
· · · β′′

· · · · · · · ·

β′′
· · · α′′

· · · · · · · · · · ·

· β′
· · · α′

· · · · · · · · · ·

· · β′′
· · · α′′

· · · · · · · · ·

· · · β′
· · · α′

· · · · · · · ·

· · · · · · · · γ′
· · · δ′

· · ·

· · · · · · · · · γ′′
· · · δ′′

· ·

· · · · · · · · · · γ′
· · · δ′

·

· · · · · · · · · · · γ′′
· · · δ′′

· · · · · · · · δ′′
· · · γ′′

· · ·

· · · · · · · · · δ′
· · · γ′

· ·

· · · · · · · · · · δ′′
· · · γ′′

·

· · · · · · · · · · · δ′
· · · γ′







































.

For every choice of parameters in m the matrix cQ ◦(id⊗2
V +g) satisfies the Yang–

Baxter equation modulo m
2. Two such deformations are gauge equivalent if and

only if they share the same values α = α′ + α′′, β = β′ + β′′, γ = γ′ + γ′′,
δ = δ′ + δ′′. They satisfy the Yang–Baxter equation modulo m

3 if and only if
α′ = α′′, β′ = β′′, γ′ = γ′′, δ′ = δ′′, whence α = β = γ = δ = 0. The
implications of such modular deformations still have to be worked out (§8.2).

7.6. Colouring polynomials. We conclude with a class of examples where the
modular case provides non-trivial diagonal deformations. Interesting knot invari-
ants, called colouring polynomials, arise already at the infinitesimal level.

For concreteness’ sake, consider the alternating group G = A5 and the conjugacy
class Q = (12345)G of order 12. The knot invariant associated to cQ counts for each
knot K ⊂ R3 the number of knot group representations π1(R3 r K) → G sending
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meridians of K to elements of Q. According to §7.2 the operator cQ has only trivial
deformations over Q[[h]] or any ring A in which |Inn(Q)| = 60 is invertible.

The modular case is more interesting: if we consider A = Z/5[h]/(h2), then
cQ allows non-trivial diagonal deformations that are topologically interesting [16,
Exm. 1.3]. The associated knot invariants can be identified as colouring polyno-

mials, counting knot group representations π1(R3 r K) → G while keeping track
of longitudinal information [14, 16]. According to Theorem 1.3, all infinitesimal
deformations of cQ are encoded in this way by rack cohomology, which has been
intensely studied in recent years and is fairly well understood.

8. Open questions

8.1. Topological interpretation. Our calculations of Yang–Baxter cohomology
have been entirely algebraic. Unfortunately we do not have any topological model to
guide our intuition or to translate Yang–Baxter cohomology to a geometric situation
that would be easier to understand. By way of contrast, for group cohomology we
have the topological notion of classifying space, see Brown [8, §I.4]. For racks an
analogous concept was developed by Fenn and Rourke [21]. It would be interesting
to set up a topological model for Yang–Baxter cohomology. Is this possible? Does
the non-functoriality of §2.5 obstruct such a construction?

8.2. From infinitesimal to complete deformations. As explained in §3, rack
cohomology H2

R
(Q; K) encodes infinitesimal deformations of cQ, i.e., deformations

over A = K[h]/(h2). Even at the infinitesimal level this approach leads to interesting
knot invariants, as illustrated by colouring polynomials (§7.6). In the framework of
Yang–Baxter deformations, the following generalization appears natural:

Question 8.1. What is the classification of complete deformations, that is, defor-
mations of cQ over the power series ring K[[h]] or the p-adic integers Zp?

For deformations of finite racks over Q[[h]] this question has been solved in [15].
The modular case is still open and potentially more interesting.

Question 8.2. Given a deformation of cQ, which topological information is con-
tained in the associated knot invariant?

For knot invariants coming from rack or quandle cohomology, this question was
answered in [16]. For non-diagonal deformations the question is still open. Notice
that the problem gets more complicated and more intriguing as we approach the
quantum case: the closer Q is to the trivial quandle, the more deformations will
appear. Their topological interpretation, however, becomes more difficult, and for
the time being remains mysterious.

8.3. From racks to biracks. Given a set Q and a bijective map c : Q×Q → Q×Q,
we can formulate the set-theoretic Yang–Baxter equation [12] as

(id×c)(c × id)(id×c) = (c × id)(id×c)(c × id).

In general c will have the form c(x, y) = (x⊲y, x⊳y) with two binary operations
⊲,⊳ : Q × Q → Q, see [18, 36] for details. Recently, Kauffman’s theory of virtual
knots [33] has rekindled interest in such set-theoretic solutions (Q,⊲,⊳) called
biracks or biquandles [20, 34]. Racks correspond to the case where the operation
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x ⊲ y = y is trivial whereas x ⊳ y = xy is the rack operation. Our notion of Yang–
Baxter cohomology [15] has been conceived for arbitrary Yang–Baxter operators,
and in particular it covers set-theoretic solutions such as biracks and biquandles.

Question 8.3. Can our results on quasi-diagonal deformations be extended to
set-theoretic solutions of the Yang–Baxter equation that do not come from racks?

The restricted setting of diagonal deformations has been studied by Carter et al.

[9]. More general deformations still need to be examined.

8.4. Higher dimensional knots. It is worth noting that quandle 3-cocycles have
been used to construct state-sum invariants of knotted surfaces K : M2 →֒ R4, see
Carter et al. [10]. These invariants count finite representations of the fundamental
quandle QK with fundamental class [K] ∈ H3(QK). On the other hand, deforma-
tion theory interprets 3-cocycles as higher-order obstructions to algebraic deforma-
tions. What is the relationship between these viewpoints? For classical knots see
[14, 16]. Does this relationship generalize to (framed) n-knots Mn →֒ Rn+2?
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