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ABSTRACT. Motivated by the study of ribbon knots we explore symmetric unions, a beau-
tiful construction introduced by Kinoshita and Terasaka in1957. For symmetric diagrams
D we develop a two-variable refinementWD(s, t) of the Jones polynomial that is invari-
ant under symmetric Reidemeister moves. Here the two variabless andt are associated
to the two types of crossings, respectively on and off the symmetry axis. From sample
calculations we deduce that a ribbon knot can have essentially distinct symmetric union
presentations even if the partial knots are the same.

If D is a symmetric union diagram representing a ribbon knotK, then the polyno-
mial WD(s, t) nicely reflects the geometric properties ofK. In particular it elucidates
the connection between the Jones polynomials ofK and its partial knotsK±: we obtain
WD(t, t) = VK(t) andWD(−1, t) = VK− (t) ·VK+ (t), which has the form of a symmetric
product f (t) · f (t−1) reminiscent of the Alexander polynomial of ribbon knots.

1. INTRODUCTION AND OUTLINE OF RESULTS

A knot diagramD is said to be asymmetric unionif it is obtained from a connected
sum of a knotK+ and its mirror imageK− by inserting an arbitrary number of crossings on
the symmetry axis. Figure1 displays two examples withK± = 52. (We shall give detailed
definitions in§2.) Reversing this construction, the knotsK± can be recovered by cutting
along the axis; they are called thepartial knotsof D.

FIGURE 1. Two symmetric union presentations of the ribbon knot 927

(left and right) obtained from the connected sum of the partial knots
K± = 52 (middle) by inserting crossings on the symmetry axis

The two outer diagrams of Fig.1 both represent the knot 927, which means that they are
equivalent via the usual Reidemeister moves, see [2, Fig. 8]. Are they equivalent through
symmetric diagrams? In the sequel we construct a two-variable refinementWD(s, t) of the
Jones polynomial, tailor-made for symmetric union diagrams D and invariant under sym-
metric Reidemeister moves. This allows us to show that therecannot exist any symmetric
transformation between the above diagrams, in other words,every transformation must
break the symmetry in some intermediate stages.
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1.1. Motivation and background. Symmetric unions were introduced by Kinoshita and
Terasaka [8] in 1957. Apart from their striking aesthetic appeal, they appear naturally in the
study of ribbon knots, initiated at the same time by Fox and Milnor [4, 3, 5]. While ribbon
and slice knots have received much attention over the last 50years [12], the literature on
symmetric unions remains scarce. We believe, however, thatthe subject is worthwhile in
its own right, and also leads to productive questions about ribbon knots.

It is an old wisdom that,algebraically, a ribbon knotK resembles a connected sum
K+♯K− of some knotK+ with its mirror imageK−. This is geometricallymodelled by
symmetric unions: it is easy to see that every symmetric union represents a ribbon knot
(§2.2). The converse question is still open; some affirmative partial answers are known [2].
For example, all ribbon knots up to 10 crossings and all two-bridge ribbon knots can be
represented as symmetric unions.

Besides the problem ofexistenceit is natural to consider the question ofuniqueness
of symmetric union representations. Motivated by the task of tabulating symmetric union
diagrams for ribbon knots, we were led to ask when two such diagrams should be regarded
as equivalent. A suitable notion of symmetric Reidemeistermoves has been developed
in [2, §2]. Empirical evidence suggested that ribbon knots can haveessentially distinct
symmetric union representations, even if the partial knotsK± are the same. With the tools
developed in the present article we can solve this problem inthe affirmative for the knot
927 as in Fig.1, and indeed for an infinite family of two-bridge ribbon knots(§6.4).

1.2. A refined Kauffman bracket. As our main tool we develop a two-variable refine-
ment of the Jones polynomial that nicely reflects the geometric properties of symmetric
unions. Since skein relations are local and do not respect global symmetry conditions, we
are led to consider arbitrary diagrams for the following construction.

Definition1.1 (refined bracket polynomial). Consider the planeR2 with vertical axis{0}×
R and letD be the set of planar link diagrams that are transverse to the axis. The Kauffman
bracket [7] can be refined to a two-variable invariantD → Z(A,B), D 7→ 〈D〉, according to
the following skein relations:

• For every crossing off the axis we have the usual skein relation

(A)
〈 〉

= A+1
〈 〉

+A−1
〈 〉

.

• For every crossing on the axis we have an independent skein relation

(B)

〈 〉

= B+1
〈 〉

+B−1
〈 〉

,
〈 〉

= B−1
〈 〉

+B+1
〈 〉

.

• If C is a collection ofn circles (i.e., a diagram without any crossings) having 2m
intersections with the axis, then we have the following circle evaluation formula:

(C)
〈C〉 = (−A2−A−2)n−1

(

B2 +B−2

A2 +A−2

)m−1

= (−A2−A−2)n−m(−B2−B−2)m−1.

Remark1.2. While the skein relations (A) and (B) are a natural ansatz, the circle evaluation
formula (C) could seem somewhat arbitrary. We should thus point out that, if we want to
achieve invariance, then (A) and (B) imply (C) up to a constant factor. We choose our
normalization such that the unknot (wheren = m= 1) is mapped to〈 〉 = 1.

There is a natural family of Reidemeister moves respecting the axis, as recalled in§2.3.
The crucial observation is that the refined bracket is indeedinvariant:
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Lemma 1.3(regular invariance). The two-variable bracket〈D〉 ∈ Z(A,B) is invariant un-
der regular Reidemeister moves respecting the axis. R1-moves off the axis contribute a
factor−A±3, whereas S1-moves on the axis contribute a factor−B±3.

Remark1.4. Of course, in every construction of link invariants one can artificially intro-
duce new variables. Usually the invariance under Reidemeister moves enforces certain
relations and eliminates superfluous variables. It is thus quite remarkable that the variables
A andB remain free, and moreover, carry geometric information as we shall see.

1.3. A refined Jones polynomial. In order to obtain full invariance we normalize the two-
variable bracket polynomial〈D〉 with respect to the writhe. To this end we consider the set
~D of oriented diagrams and define theA-writheα(D) and theB-writheβ (D) to be the sum
of crossing signs off and on the axis, respectively. This ensures full invariance:

Theorem 1.5(refined Jones polynomial). The map W: ~D → Z(A,B) defined by

W(D) := 〈D〉 · (−A−3)α(D) · (−B−3)β (D)

is invariant under all Reidemeister moves respecting the axis (displayed in§2.3).

Notation. We shall adopt the common notationA2 = t−1/2 andB2 = s−1/2. Instead ofW(D)
we also writeWD or WD(s, t) if we wish to emphasize or specialize the variables.

The following properties generalize those of the Jones polynomial:

Proposition 1.6. The invariant W: ~D → Z(s1/2, t1/2) enjoys the following properties:

(1) WD is insensitive to reversing the orientation of all components of D.
(2) WD is invariant under mutation, flypes, and rotation about the axis.
(3) If D♯D′ is a connected sum along the axis, then WD♯D′ = WD ·WD′ .
(4) If D∗ is the mirror image of D, then WD∗(s, t) = WD(s−1, t−1).
(5) If D is a symmetric diagram, then WD(s, t) is symmetric in t↔ t−1.
(6) If D is a symmetric union link diagram, then WD is insensitive to reversing the

orientation of any of the components of D.

1.4. Symmetric unions. In the special case of symmetric union diagrams, the practical
calculation ofW-polynomials is most easily carried out via the following algorithm:

Proposition 1.7 (recursive calculation via skein relations). Consider a symmetric union
diagram D with n components. If D has no crossings on the axis then

(1) WD(s, t) =

(

s1/2 +s−1/2

t1/2 + t−1/2

)n−1

VL(t),

where VL(t) is the Jones-polynomial of the link L represented by D.
If D has crossings on the axis, then we can apply the followingrecursion formulae:

W
( )

= −s+1/2W
( )

−s+1W
( )

,(2)

W
( )

= −s−1/2W
( )

−s−1W
( )

.(3)

These rules allow for a recursive calculation ofW(D) for every symmetric unionD.
Notice thatW(D) is independent of orientations according to Proposition1.6(6).

We emphasize thatW(D) of an arbitrary diagramD will in generalnotbe a polynomial:
by constructionW(D) ∈ Z(s1/2, t1/2) is usually a fraction and cannot be expected to lie in
the subringZ[s±1/2, t±1/2]. This miracle happens, however, for symmetric union diagrams:

Proposition 1.8(integrality). If D is a symmetric union knot diagram, then WD is a Lau-
rent polynomial in s and t. More generally, if D is a symmetricunion diagram with n
components, then WD ∈ Z[s±1, t±1] · (s1/2 +s−1/2)n−1.
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Remark1.9. The integrality ofWD is a truly remarkable property of symmetric unions.
The fact that the denominator disappears for symmetric unions was rather unexpected, and
sparked off an independent investigation, whose results are presented in [1]. The integrality
of WD(s, t) now follows from a more general integrality theorem [1, Theorem 1], which is
interesting in its own right: for everyn-component ribbon link the Jones polynomialV(L)
is divisible by the Jones polynomialV(©n) of the trivial link.

The following special values int correspond to those of the Jones polynomial:

Proposition 1.10(special values int). If D is a symmetric union link diagram with n com-
ponents, then WD(s,ξ ) = (−s1/2−s−1/2)n−1 for eachξ ∈ {1, ±i, e±2iπ/3}, and ∂WD

∂ t (s,1) =

0. In other words, WD − (−s1/2−s−1/2)n−1 is divisible by(t −1)2(t2 +1)(t2 + t +1).

The following special values insnicely reflect the symmetry:

Proposition 1.11 (special values ins). Suppose that a knot K can be represented by a
symmetric union diagram D with partial knots K±. Then the following properties hold:

(1) Mapping s7→ t yields WD(t, t) = VK(t), the Jones polynomial of K
(2) Mapping s7→ −1 yields a symmetric product WD(−1, t) = VK−(t) ·VK+(t).

In particular, both specialization together imply WD(−1,−1)= det(K)= det(K−)·det(K+).

Remark1.12. Finding a symmetric union representationD for a ribbon knotK introduces
precious extra structure that can be used to refine the Jones polynomialVK(t) to a two-
variable polynomialWD(s, t). In this sense we can interpretWD(s, t) as a “lifting” of VK(t)
to this richer structure. The specializations 7→ t forgets the extra information and projects
back to the initial Jones polynomial.

The product formulaWD(−1, t) = VK−(t) ·VK+(t) is particularly intriguing. Recall that
for every ribbon (or slice) knotK, the Alexander-Conway polynomial is a symmetric prod-
uct∆K(t) = f (t) · f (t−1) for some polynomialf ∈Z[t±1]. The preceding theorem says that
such a symmetric product also appears for the Jones polynomialVK(t), albeit indirectly via
the lifted two-variable polynomialWD(s, t).

Remark1.13. We use the letterW as a typographical reminder of the symmetry that we
wish to capture:W is the symmetric union of two lettersV, just as theW-polynomial is
the combination of twoV-polynomials. (This analogy is even more complete in French,
whereV is pronounced “v́e”, whileW is pronounced “double v́e”.)

1.5. Applications and examples.In [2] we motivated the question whether the two sym-
metric unions of Fig.1 could be symmetrically equivalent. (In fact, 927 is the first example
in an infinite family of two-bridge ribbon knots, see§6.4.) Having theW-polynomial at
hand, we can now answer this question in the negative:

Example1.14. The symmetric union diagramsD (left) andD′ (right) of Fig.1 both rep-
resent the knot 927. The partial knot isK± = 52 in both cases, so this is no obstruction to
symmetric equivalence (see§2.5). Calculation of theirW-polynomials yields:

WD(s, t) = 1+ s·g1(t)− s2· f (t),
WD′(s, t) = 1− g1(t)+ s−1 · f (t),

with

g1(t) = t−5−3t−4 +6t−3−9t−2 +11t−1−12+11t −9t2 +6t3−3t4 + t5,

f (t) = t−4−2t−3 +3t−2−4t−1 +4−4t +3t2−2t3 + t4.

This proves thatD andD′ are not equivalent by symmetric Reidemeister moves.
As an illustration, for both diagrams the specializationss= −1 ands= t yield

W(−1, t) = (t − t2 +2t3− t4 + t5− t6)(t−1− t−2 +2t−3− t−4 + t−5− t−6),

W(t, t) = t−4−3t−3 +5t−2−7t−1 +9−8t +7t2−5t3 +3t4− t5.
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Notice thatW(s, t) captures the symmetry, which is lost when we pass to the Jones
polynomialV(t) = W(t, t). The latter does not seem to feature any special properties.

Remark1.15. Symmetric Reidemeister moves do not change the ribbon surface, see Re-
mark2.11below. Possibly the more profound difference between the two symmetric union
presentationsD andD′ of the knot 927 is that they define essentially distinct ribbon surfaces
SandS′ bounding the same knot 927. To study this problem we would like to concoct an
invariantS 7→WS(s, t) of (not necessarily symmetric) ribbon surfacesS⊂ R

3. Ideally this
would generalize ourW-polynomialWD(s, t) and likewise specialize to the Jones polyno-
mial VK(t). In any case Figure1 will provide a good test case to illustrate the strength of
this extended invariant yet to be constructed.

1.6. Open questions.Our construction works fine for symmetric unions, and we are con-
vinced that this case is sufficiently important to merit investigation. Ultimately, however,
we are interested in ribbon knots. Two possible paths are imaginable:

Question1.16. Can every ribbon knot be presented as a symmetric union?

Although this would be a very attractive presentation, it seems rather unlikely.

Question1.17. Is there a natural extension of theW-polynomial to ribbon knots?

This seems more plausible, but again such a construction is far from obvious.
The right setting to formulate these questions is the following instance of “knots with

extra structure”, where the vertical arrows are the obviousforgetful maps:
{

symmetric
unions

}

−−−−→
{

ribbon knots +
specific ribbon

}

−−−−→
{

slice knots +
specific slice

}





y





y





y

{

symmetrizable
ribbon knots

}

−−−−→ {ribbon knots} −−−−→ {slice knots}

Some natural questions are then: Which ribbon knots are symmetrizable? Which rib-
bons can be presented as symmetric unions? Under which conditions is such a presenta-
tion unique? (The analogous questions for the passage from slice to ribbon have already
attracted much attention over the last 50 years.)

Question1.18. Can we construct an analogue of theW-polynomial for ribbon knots with
a specified ribbon? Does it extend theW-polynomial of symmetric unions, or do we have
to pass to a suitable quotient?

Question1.19. Can one obtain in this way an obstruction for a knot to be ribbon? Or
an obstruction to being a symmetric union? (Although theW-polynomial captures the
symmetry condition, it does not yet seem to provide such an obstruction.)

Question1.20. Are there similarly refined versions of the HOMFLYPT and Kauffman poly-
nomials? Do we obtain equally nice properties?

1.7. How this article is organized. The article follows the program laid out in the intro-
duction. Section2 expounds the necessary facts about symmetric diagrams (§2.1) and in
particular symmetric unions (§2.2). We then recall symmetric Reidemeister moves (§2.3)
and sketch a symmetric Reidemeister theorem (§2.4). This is completed by a brief discus-
sion of partial knots (§2.5) and Reidemeister moves respecting the axis (§2.6).

Section3 is devoted to the construction of the two-variable bracket (§3.1) and its nor-
malized version, theW-polynomial (§3.2). In Section4 we establish some general proper-
ties analogous to those of the Jones polynomial. Section5 focuses on properties that are
specific for symmetric union diagrams (§5.2), in particular integrality (§5.1) and special
values int ands (§5.3-§5.4).
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Section6 discusses examples and applications: we compile a list of symmetric union
diagrams and theirW-polynomials for all ribbon knots up to 10 crossings (§6.3) and study
two infinite families of symmetric union diagrams of two-bridge ribbon knots (§6.4).

1.8. Acknowledgements.The authors would like to thank Adam Sikora for helpful dis-
cussions in Warsaw 2007. This work was begun in the winter term 2006/2007 when the
first author was on a sabbatical funded by a research contractdélégation aupr̀es du CNRS,
whose support is gratefully acknowledged.

2. SYMMETRIC DIAGRAMS AND SYMMETRIC EQUIVALENCE

In this section we discuss symmetric diagrams and symmetricReidemeister moves.
Since we will use them in the next section to define our two-variable refinement of the
Jones polynomial, we wish to prepare the stage in sufficient detail. It will turn out that our
construction of theW-polynomial applies not only to symmetric unions but more generally
to diagrams that are transverse to some fixed axis. In fact, the skein relations that we
employ will destroy the symmetry and thus make this generalization necessary.

2.1. Symmetric diagrams. We consider the planeR2 with the reflectionρ : R
2 → R

2

defined by(x,y) 7→ (−x,y). The mapρ reverses the orientation ofR
2 and its fixed-point

set is the vertical axis{0}×R.

Definition 2.1. A link diagramD ⊂ R
2 is symmetricif it satisfiesρ(D) = D except for

crossings on the axis, which are necessarily reversed. By convention we consider two dia-
gramsD andD′ as identical if they differ only by an orientation preserving diffeomorphism
h: R

2 ∼−→ R
2 respecting the symmetry, in the sense thath(D) = D′ with h◦ρ = ρ ◦h.

(a) the knot 61 (b) the trefoil knot (c) the Hopf link

FIGURE 2. Three types of symmetric diagrams

Remark2.2. Each componentC of a symmetric diagram is of one of three types:

(a) The reflectionρ mapsC to itself reversing the orientation, as in Fig.2a.
(b) The reflectionρ mapsC to itself preserving the orientation, as in Fig.2b.
(c) The reflectionρ mapsC to another componentρ(C) 6= C, as in Fig.2c.

Each componentC can traverse the axis in an arbitrary number of crossings. Incases
(a) and (b) these are pure crossings where the componentC crosses itself, while in case (c)
they are mixed crossings between the componentC and its symmetric partnerρ(C).

Moreover, the componentC can traverse the axis without crossing any other strand;
assuming smoothness this is necessarily a perpendicular traversal. In case (a) there are
precisely two traversals of this kind, while in cases (b) and(c) there are none.
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2.2. Symmetric unions. In view of the preceding discussion of symmetric diagrams, we
single out the case of interest to us here:

Definition2.3. We say that a link diagramD is asymmetric unionif it is symmetric,ρ(D) =
D, and each component is of type (a). This means that each component perpendicularly
traverses the axis in exactly two points that are not crossings, and upon reflection it is
mapped to itself reversing the orientation.

While symmetric diagrams in general are already interesting, symmetric unions feature
even more remarkable properties. Most notably they are ribbon links:

Definition 2.4. Let Σ be a compact surface, not necessarily connected nor orientable. A
ribbon surfaceis a smooth immersionf : Σ # R

3 whose only singularities are ribbon
singularities according to the local model shown in Fig.3a: the surface intersects itself in
an intervalA, whose preimagef−1(A) consists of one interval in the interior ofΣ and a
second, properly embedded interval, running from boundaryto boundary.

(a) Local model of a ribbon singularity (b) The knot 820 bounding a disk with two
ribbon singularities (dotted lines)

FIGURE 3. An immersed disk with ribbon singularities

Definition 2.5. A link L ⊂ R
3 is said to be aribbon link if it bounds a ribbon surface

consisting of disks. (Fig.3b shows an example.)

Proposition 2.6. Every symmetric union diagram D represents a ribbon link.

Proof. The essential idea can be seen in Fig.3b; the following proof simply formalizes
this construction. We equip the diskD2 = {z∈ R

2 | |z| ≤ 1} with the induced action
of the reflectionρ : (x,y) 7→ (−x,y), and extend this action toΣ = {1, . . . ,n}×D

2. The
symmetric diagramD can be parametrized by an equivariant plane curveg: ∂Σ → R

2,
satisfyingg◦ρ = ρ ◦g. We realize the associated link by a suitable lifting ˜g: ∂Σ → R

3

that projects tog = p◦ g̃ via p: R
3 → R

2, (x,y,z) 7→ (x,y). We denote bỹρ : R
3 → R

3

the reflectionρ̃ : (x,y,z) 7→ (−x,y,z). We can achieve ˜g◦ρ = ρ̃ ◦ g̃ except in an arbitrarily
small neighbourhood of the reflection plane{0}×R

2 to allow for twists. The map ˜g can
be extended to a mapf : Σ → R

3 by connecting symmetric points by a straight line:

f
(

(1− t) ·s+ t ·ρ(s)
)

= (1− t) · g̃(s)+ t · g̃(ρ(s))

for eachs∈ ∂Σ andt ∈ [0,1]. If we choose the lifting ˜g of g generically, thenf will be the
desired ribbon immersion. ¤

An analogous construction can be carried out for an arbitrary symmetric diagram:

Proposition 2.7. Every symmetric diagram D represents a link L together with aribbon
surface f: Σ # R

3 of the following type:

(a) Each component of type (a) bounds an immersed disk.
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(b) Each component of type (b) bounds an immersed Möbius band.
(c) Each pair of components of type (c) bounds an immersed annulus. ¤

Let us add a remark that will be useful in§5.1. Each disk contributes an Euler char-
acteristic 1 whereas annuli and Möbius bands contribute 0. We conclude thatL bounds a
ribbon surface of Euler characteristicχ(Σ) = n, wheren is the number of components of
type (a). Moreover, sinceD is symmetric, it perpendicularly traverses the axis precisely 2n
times, twice for each component of type (a).

2.3. Symmetric Reidemeister moves.Symmetric diagrams naturally lead to the follow-
ing notion of symmetric Reidemeister moves:

Definition 2.8. We consider a knot or link diagram that is symmetric with respect to the
reflectionρ along the axis{0}×R.

A symmetric Reidemeister move off the axisis an ordinary Reidemeister move as de-
picted in Fig.4 carried out simultaneously with its mirror-symmetric counterpart.

A symmetric Reidemeister move on the axisis either an ordinary Reidemeister move
(S1–S3) or a generalized Reidemeister move (S2± or S4) as depicted in Fig.5.

Subsuming both cases, asymmetric Reidemeister moveis one of the previous two types,
either on or off the axis.

~
R2 R3

~~
R1

FIGURE 4. The classical Reidemeister moves (off the axis)

~
S4

(++)

S1
~

(+)

~
S3

(o+)
~
S3

(u+)

~
(h)

S2
~

(+)

S2

~
(v)

S2

FIGURE 5. Symmetric Reidemeister moves on the axis

Remark2.9. We usually try to take advantage of symmetries in order to reduce the number
of local moves. By convention the axis is not oriented, whichmeans that we can turn all
local pictures in Fig.5 upside-down. This adds one variant for each S1-, S2-, and S4-move
shown here; the four S3-moves are each invariant under this rotation. We can also reflect
each local picture along the axis, which exchanges the pairsS1±, S2±, S3o±, S3u±.
Finally, we can rotate about the axis, which exchanges S3o and S3u. The S4-move, finally,
comes in four variants, obtained by changing the over- and under-crossings on the axis.
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Remark2.10. The S1 and S2v moves are special cases of a flype move along the axis, as
depicted in Fig.6. The introduction of such flypes provides a strict generalization, because
complex flypes along the axis can in general not be generated by the above Reidemeister
moves, as observed in Remark2.16below. In particular, a half-turn of the entire diagram
around the axis can be realized by flypes, but not by symmetricReidemeister moves.

~ ~

FIGURE 6. A vertical flype along the axis

Remark2.11. Symmetric Reidemeister moves as well as flypes preserve the ribbon surface
constructed in Proposition2.7: every such move extends to an isotopy of the surface,
perhaps creating or deleting redundant ribbon singularities.

2.4. A symmetric Reidemeister theorem.In this article we shall consider the symmetric
moves above asdefiningsymmetric equivalence. Two natural questions are in order.On
the one hand one might wonder whether our list could be shortened. This is not the case,
in particular the somewhat unexpected moves S2± and S4 are necessary in the sense that
they cannot be generated by the other moves [2, Thm. 2.3].

On the other hand one may ask whether our list is complete. In order to make sense of
this question and to derive a symmetric Reidemeister theorem, we wish to set up a corre-
spondence between symmetric Reidemeister moves of symmetric diagrams and symmetric
isotopy of symmetric links inR3.

The näıve formulation, however, will not work because crossings on the axis inhibit
strict symmetry: links realizing symmetric union diagramsare mirror-symmetric off the
axis but rotationally symmetric close to the axis.

One way to circumvent this difficulty is to represent each crossing on the axis by a
singularity together with a sign that specifies its resolution:

+7→ resp.
−7→ .

This reformulation ensures that the (singular) link is strictly mirror-symmetric. The signs
can be chosen arbitrarily and encode the symmetry defect after resolution.

More formally, a singular link is an immersionf : {1, . . . ,n}× S
1 →֒ R

3 whose only
multiple points are non-degenerate double points. We shallnot distinguish between dif-
ferent parametrizations and thus identify the immersionf and its imageL. We can then
consider singular linksL ⊂ R

3 satisfying the following conditions:

Transversality: L is transverse toE = {0}×R
2, and each double point lies onE.

Symmetry: L is symmetric with respect to reflection alongE.

For such links we have the obvious notion of isotopy, that is,a smooth family(Lt)t∈[0,1]

such that eachLt satisfies the above transversality and symmetry requirements. If the
singularities are equipped with signs, then these signs arecarried along the isotopy in the
obvious way.

Theorem 2.12. Consider two symmetric diagrams D0 and D1 and the associated symmet-
ric (singular) links L0 and L1. If the links L0 and L1 are symmetrically isotopic then the
diagrams D0 and D1 are symmetrically equivalent.

Sketch of proof.We can put the isotopy(Lt)t∈[0,1] into generic position such that for all
but a finite number of parameters 0< t1 < · · · < tk < 1 the linkLt projects to a symmetric
diagram. In particular, the diagrams between two successive parametersti andti+1 differ
only by an isotopy of the plane and are essentially the same. Moreover we can arrange that
at each exceptional parameterti the modification is of the simplest possible type:
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Events off the axis:

• The projection of a tangent line degenerates to a point: R1 move.
• Two tangent lines cöıncide in projection: R2 move.
• The projection produces a triple point: R3 move.

Events on the axis:

• Two tangent lines cöıncide in projection: S2h move.
• The tangent lines of a singular point become collinear in projection: S2± move.
• A strand crosses a singular point: S3 move.
• Two singular points cross: S4 move.

The details of this case distinction shall be omitted. ¤

Remark2.13. We emphasize that, in the above setting of symmetric isotopy, moves of type
S1 and S2v cannot occur. Such isotopies can be realized only by temporarily breaking
the symmetry. Instead of further enlarging the notion of isotopy in order to allow for the
creation and deletion of singularities, we simply introduce S1 and S2v as additional moves.
We usually even allow the more general flype moves depicted inFig.6.

2.5. Partial knots. We are particularly interested insymmetric union knot diagrams, where
we require the symmetric union diagram to represent a knotK, that is, a one-component
link. As mentioned in the introduction, a symmetric union diagram ofK looks like the
connected sumK+♯K− of a knotK+ and its mirror imageK−, with additional crossings
inserted on the symmetry axis. The following construction makes this observation precise:

Definition2.14. For every symmetric union knot diagramD we can define partial diagrams
D− and D+ as follows: first, we resolve each crossing on the axis by cutting it open
according to 7→ or 7→ . The result is a connected sum, which can then be
split by a final cut 7→ . We thus obtain two disjoint diagrams:D− in the halfspace
H− = {(x,y) | x < 0}, andD+ in the halfspaceH+ = {(x,y) | x > 0}. The knotsK− and
K+ represented byD− andD+, respectively, are called thepartial knotsof D.

Proposition 2.15. For every union diagram D the partial knots K− and K+ are invariant
under symmetric Reidemeister moves.

Proof. This is easily seen by a straightforward case-by-case verification. ¤

Remark2.16. Notice that the partial knots are in general not invariant under flypes along
the axis, depicted in Fig.6. Such moves can change the partial knots fromK−♯L− and
K+♯L+ to K−♯L+ andK+♯L−.

Remark2.17. The above construction can be used to define the notion ofpartial link for
symmetric diagrams that have components of type (b) and (c),and at most one component
of type (a). If there are two or more components of type (a), then there does not seem to
be a natural notion of partial knot or link. (Apartial tanglecan, however, be defined as
above, up to a certain equivalence relation induced by braiding the ends; we will not make
use of this generalization in the present article.)

2.6. Reidemeister moves respecting the axis.As an unintentional side-effect, most of
our arguments will work also forasymmetricdiagrams. Our construction of the bracket
polynomial in§3 evenrequiresasymmetric diagrams in intermediate computations, be-
cause the resolution of crossings breaks the symmetry. Before stating the construction and
the invariance theorem for our bracket polynomial, we thus make the underlying diagrams
and their Reidemeister moves explicit.

As before we equip the planeR2 with the axis{0}×R, but unlike the symmetric case,
the reflectionρ will play no rôle here. We consider link diagrams that are transverse to
the axis, that is, wherever a strand intersects the axis it does so transversally. For such a
diagram we can then distinguish crossingson the axis and crossingsoff the axis.



A REFINED JONES POLYNOMIAL FOR SYMMETRIC UNIONS 11

Definition2.18. We denote byD the set of planar link diagrams that are transverse to the
axis{0}×R, but not necessarily symmetric. We do not distinguish between diagrams that
differ by an orientation-preserving diffeomorphismh: R

2 ∼−→ R
2 fixing the axis setwise. A

Reidemeister move respecting the axisis a move of the following type:

• A Reidemeister move (R1, R2, R3) off the axis as depicted in Fig.4.
• A Reidemeister move (S1, S2, S3, S4) on the axis, as depicted in Fig.5.

The advantage of this formulation is that it applies to all diagrams, symmetric or not.
For symmetric diagrams, both notions of equivalence coı̈ncide:

Proposition 2.19. Two symmetric diagrams are equivalent under symmetric Reidemeister
moves if and only if they are equivalent under Reidemeister moves respecting the axis.

Proof. “⇒” Each symmetric R-move is the composition of two asymmetricR-moves.
“⇐” Suppose that we can transform a symmetric diagramD into another symmetric

diagramD′ by a sequence of R-moves and S-moves. Since R-moves may be carried out
asymmetrically, the symmetry of intermediate diagrams is lost. Nevertheless, the isotopy
types of the tangles left and right of the axis remain mutually mirror-symmetric, since S-
moves preserve this symmetry. We can thus forget the given R-moves on the left-hand side
of the axis, say. Each time we carry out an R-move on the right-hand side, we simultane-
ously perform its mirror image on the left-hand side. This defines a symmetric equivalence
from D to D′. ¤

Remark2.20. As before we can define the partial diagramsD− andD+ of a diagramD,
provided thatD perpendicularly traverses the axis in either two points or no points at all.
The partial linksL− andL+ are invariant under Reidemeister moves respecting the axis.

3. CONSTRUCTING THE TWO-VARIABLE W-POLYNOMIAL

3.1. Constructing the two-variable bracket polynomial. We consider the setD of un-
oriented planar link diagrams that are transverse to the axis {0}×R but not necessarily
symmetric. We can then define the bracket〈·〉 : D → Z(A,B) as in Definition1.1.

Lemma 3.1. The polynomial〈D〉 associated to a link diagram D is invariant under R2-
and R3-moves off the axis as well as S2-, S3-, and S4-moves on the axis. It is not invariant
under R1- nor S1-moves, but its behaviour is well-controlled: we have

〈 〉

= (−A3)
〈 〉

and
〈 〉

= (−A−3)
〈 〉

,(4)
〈 〉

= (−B3)
〈 〉

and
〈 〉

= (−B−3)
〈 〉

.(5)

Proof. The proof consists of a case-by-case verification of the stated Reidemeister moves.
It parallels Kauffman’s proof for his bracket polynomial, and is only somewhat compli-
cated here by a greater number of moves.

Let us begin by noting two consequences of the circle evaluation formula (C):

• A circle off the axis contributes a factor(−A2−A−2).
• A circle on the axis contributes a factor(−B2−B−2).

As a consequence, for Reidemeister moves of type R1(+) we find

(6)
〈 〉

= A
〈 〉

+A−1
〈 〉

= −A3
〈 〉

.

The two summands contribute a factorA(−A2−A−2)+A−1 =−A3, as claimed. The same
calculation works for R1(−), leading to a factor−A−3. For S1-moves the calculation
applies verbatim, replacingA by B:

(7)

〈 〉

= B

〈 〉

+B−1
〈 〉

= −B3
〈 〉

.
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Invariance under R2-moves is proven as usual, via the skein relation (A):

(8)
〈 〉

= A+2
〈 〉

+A−2
〈 〉

+
〈 〉

+
〈 〉

=
〈 〉

Here the first two summands cancel with the third, because a circleoff the axis contributes
a factor(−A2−A−2).

Analogously, invariance under S2v-moves is proven via the skein relation (B):

(9)

〈 〉

= B+2

〈 〉

+B−2

〈 〉

+

〈 〉

+

〈 〉

=

〈 〉

Here the first two summands cancel with the third, because a circleon the axis contributes
a factor(−B2−B−2).

Invariance under S2h-moves is proven as follows:

(10)
〈 〉

= A+2
〈 〉

+A−2
〈 〉

+
〈 〉

+
〈 〉

=
〈 〉

Here the first two summands cancel with the third, thanks to the judicious coupling of the
variablesA andB, as formulated in the circle evaluation (C):

(11)
〈 〉

=
〈 〉

=
B2 +B−2

A2 +A−2

〈 〉

Invariance under the remaining moves will now be an easy consequence. To begin with,
S2h-invariance implies invariance under the slightly morecomplicated move S2±:

〈 〉

= B
〈 〉

+B−1
〈 〉

(12)

= B
〈 〉

+B−1
〈 〉

=
〈 〉

Here the twoB-summands are equal using S2h-invariance. For theB−1-summand we carry
out two opposite R1-moves, so the factors(−A3) and(−A−3) cancel each other.

Invariance under R3-moves is proven as usual, via the skein relation (A):
〈 〉

= A

〈 〉

+A−1
〈 〉

(13)

= A

〈 〉

+A−1
〈 〉

=

〈 〉

Here the middle equality follows from R2-invariance, established above. Notice also that
this R3-move comes in another variant: if the middle crossing is changed to its opposite,
then the coefficientsA andA−1 are exchanged, and the desired equality is again verified.

Analogously, invariance under S3-moves is proven via the skein relation (B):
〈 〉

= B

〈 〉

+B−1
〈 〉

(14)

= B

〈 〉

+B−1
〈 〉

=

〈 〉

Here the middle equality follows from S2h-invariance, established above. This proves
invariance under any R2v-move in the variant (o+). For the variant (o-) the middle cross-
ing is changed to its opposite: in the preceding equation thecoefficientsB andB−1 are
exchanged, and the desired equality is still verified. For the variants (u+) and (u-) the
horizontal strand passes under the two other strands, and the same argument still holds.
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Finally, invariance under S4-moves is again proven via the skein relation (B):
〈 〉

= B

〈 〉

+B−1
〈 〉

(15)

= B

〈 〉

+B−1
〈 〉

=

〈 〉

The middle equality follows from S3- and R2-invariance, established above. There are
three more variants of S4-moves, obtained by changing one orboth of the middle crossings
to their opposite. In each case the desired equality can be verified in the same way. ¤

3.2. Normalizing with respect to the writhe. Given an oriented link diagramD, we can
associate a sign to each crossing, according to the convention 7→ +1 and 7→ −1. Let
α(D) be the sum of crossing signs off the axis (calledA-writhe), and letβ (D) be the sum
of crossing signs on the axis (calledB-writhe).

FIGURE 7. A diagramD with α(D) = 4 andβ (D) = −1

Definition3.2. We define the normalized polynomialW : ~D → Z(A,B) to be

W(D) := 〈D〉 · (−A3)−α(D) · (−B3)−β (D).

This is called theW-polynomialof the diagramD with respect to the given axis.

Theorem 3.3. W(D) is invariant under Reidemeister moves respecting the axis.

Proof. TheA-writhe α(D) does not change under regular Reidemeister moves. Since〈D〉
is also invariant under such moves, so isW(D). An R1-move fromD = to D′ =
changes theA-writhe toα(D′) = α(D)−1, so that the factors inW compensate according
to Lemma3.1. The same argument holds for S1-moves and theB-writhe. ¤

Remark3.4. Consider a symmetric diagramD. At first sight one would expectα(D) = 0,
so that no normalization has to be carried out for the variableA. Indeed, in almost all cases
crossing signs cancel each other in symmetric pairs, but this fails where components of type
(a) cross components of type (b) or (c): according to Remark2.2 the reflectionρ reverses
the orientation of the former, but preserves the orientation of the latter. The signs in such
a symmetric pair of crossings are thus not opposite but identical. The simplest example of
this kind is displayed in Fig.7, showing in particular thatα(D) can be non-zero.

3.3. Generalization to arbitrary surfaces. Our invariance arguments are local in nature,
and thus immediately extend to any oriented connected surfaceΣ equipped with a reflec-
tion, that is, an orientation-reversing diffeomorphismρ : Σ → Σ of order 2. Even though
we do not have an immediate application for it, this generalization seems natural and in-
teresting enough to warrant a brief sketch. As before, we will call ρ the reflection; its
fix-point set is a 1-dimensional submanifold which will be called theaxis.

Example3.5. Such an object(Σ,ρ) naturally arises for every complex manifoldΣ of com-
plex dimension 1 (and real dimension 2) equipped with a real structure, that is, an anti-
holomorphic involutionρ : Σ → Σ. This includes the basic situation of the complex plane
C or the Riemann sphereCP

1, with ρ being complex conjugation. More generally, one
can consider the zero-setΣ ⊂ C

2 of a non-degenerate real polynomialP∈ R[z1,z2], or the
zero-setΣ ⊂ CP

2 of a non-degenerate homogeneous polynomialP ∈ R[z1,z2,z3], where
the reflectionρ is again given by complex conjugation.
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FIGURE 8. A surfaceΣ with orientation-reversing involutionρ . The
fixed axis is depicted as a dashed line.

Remark3.6. As in §2.1, a link diagramD on the surfaceΣ is symmetricif ρ(D) = D except
for crossings on the axis, which are necessarily reversed. For symmetric diagrams we can
consider symmetric Reidemeister moves as in§2.3and establish a symmetric Reidemeister
theorem as in§2.4. Partial tangles can be constructed as in§2.5and are again invariant; this
is essentially a local property. In the absence of a convex structure, however, we cannot
construct ribbon surfaces as in§2.2 by joining opposite points. More generally, a surface
boundingL in Σ×R exists if and only if the obvious obstruction[D] ∈ H1(Σ) vanishes.

Remark3.7. As before we can weaken the symmetry condition and consider only trans-
verse diagrams under Reidemeister moves respecting the axis. Here we assume a Morse
functionh: Σ → R for which 0 is a regular value, so that the axisA = h−1(0) decomposes
Σ into two half-surfacesΣ− = {x∈ Σ | h(x) < 0} andΣ+ = {x∈ Σ | h(x) > 0}.

We can then consider the setD(Σ) of link diagrams onΣ that are transverse to the
axis. The skein relations (A) and (B) together with the circle evaluation formula (C) define
an invariantD(Σ) → Z(A,B) as before. This can be further refined in two ways. Firstly,
instead of one variableB we can introduce separate variablesB1, . . . ,Bn for each connected
component of the axis. Secondly, we can evaluate circles on the surfaceΣ according to their
isotopy type. The generalized construction essentially works as before.

4. GENERAL PROPERTIES OF THEW-POLYNOMIAL

4.1. Symmetries, connected sums, and mutations.As before, we adopt the notation
A2 = t−1/2 andB2 = s−1/2, and instead ofW(D) we also writeWD(s, t).

Proposition 4.1. WD is insensitive to reversing the orientation of all components of D.

Proof. The bracket polynomial is independent of orientations, andthe writhe does not
change either: crossing signs are invariant if we changeall orientations. ¤

Proposition 4.2. The W-polynomial enjoys the following properties:

(1) WD is invariant under mutation, flypes, and rotation about the axis.
(2) If D♯D′ is a connected sum along the axis, then WD♯D′ = WD ·WD′ .
(3) If D∗ is the mirror image of D, then WD∗(s, t) = WD(s−1, t−1).
(4) If D is symmetric, then WD(s, t) is symmetric in t↔ t−1.

Proof. In each case the proof is by induction on the number of crossings ofD: the assertion
is clear whenD has no crossings and is propagated by the skein relations. ¤

Flypes and mutations along the axis are depicted in Figures6 and 9b. Such moves
leave theW-polynomial invariant but can change the partial knots, namely from K−♯L−
andK+♯L+ to K−♯L+ andK+♯L−. For a discussion of connected sums see [2]: there are
different ways of forming a connected sum, but they are related by mutations.
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D

D’ D’

D

(a) connected sum

rot.

flip

(b) mutation

FIGURE 9. Connected sum and mutation along the axis

There are two variants of mutation (Fig.9b), namely rotation and flipping. (Their com-
position yields a flip along a perpendicular axis and is not depicted here.) All variants are
equivalent in the sense that we can deduce a flip from a rotation and vice versa, as indi-
cated in Figures10 and11. In our setting of diagrams with respect to a fixed axis, this
equivalence also holds for mutations on the axis.

= =
rot.

FIGURE 10. Deducing a flip from a rotation

= =
flip

FIGURE 11. Deducing a rotation from a flip

According to the preceding proposition, theW-polynomial is invariant under mutations
on and off the axis. Here is a famous example:

Example4.3. The Kinoshita-Terasaka knot can be presented as a symmetricunion (with
trivial partial knots) as in Fig.12 on the left. On the right you see a mutation, the Conway
knot, where the right half has been flipped. Both knots thus share the sameW-polynomial.

FIGURE 12. The Kinoshita-Terasaka knot (left) and the Conway knot
(right) are mutations of one another.
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4.2. Oriented skein relations. The following observation can be useful to simplify cal-
culations, by relatingWD to the Jones polynomial in an important special case:

Proposition 4.4. Let D be a diagram representing a link L. If D has no crossings on the
axis and perpendicularly traverses the axis in2m points, then

WD(s, t) =

(

s1/2 +s−1/2

t1/2 + t−1/2

)m−1

VL(t).

Proof. The claim follows by induction on the numberc of crossings off the axis. Ifc = 0
then we simply have the circle evaluation formula (C). If c ≥ 1 then we can resolve one
crossing off the axis and apply the skein relation (A) on both sides of the equation. ¤

Remark4.5. The invariantW : ~D → Z(s1/2, t1/2) satisfies some familiar skein relations:

t−1W
( )

− t+1W
( )

= (t1/2− t−1/2)W
( )

(16)

s−1W
( )

−s+1W
( )

= (s1/2−s−1/2)W
( )

(17)

W
( )

=
s1/2 +s−1/2

t1/2 + t−1/2
W

( )

(18)

W
( )

= 1(19)

We do not claim that these oriented skein relations suffice todetermine the mapW
uniquely; this is probably false, and further relations arenecessary to achieve uniqueness.
In particular the oriented skein relations do not lead to a simple algorithm that calculates
W(D) for every diagramD. This is in contrast to the Jones polynomial, for which the
oriented skein relation is equivalent to the construction via Kauffman’s bracket.

These difficulties suggest that the bracket polynomial of Definition 1.1and its defining
skein relations (A), (B), and (C) are the more natural construction in our context. For
symmetric unions we describe a practical algorithm in Proposition 5.6below.

5. THE W-POLYNOMIAL OF SYMMETRIC UNIONS

Having constructed theW-polynomial on arbitrary diagrams, we now return to symmet-
ric diagrams, and in particular symmetric unions. It is in this setting that theW-polynomial
reveals its true beauty: integrality (§5.1), simple recursion formulae (§5.2), and special val-
ues int ands (§5.3-§5.4). We continue to use the notationA2 = t−1/2 andB2 = s−1/2.

5.1. Integrality. Our first goal is to control the denominator that appears inWD, and then
to show that this denominator disappears ifD is a symmetric union.

Example5.1. For the three symmetric diagrams of Fig.2 we find

Wa(s, t) = 1+s−1−s−1(t−1 + t−3− t−4)(t + t3− t4),

Wb(s, t) = s3/2 (t1/2 + t−1/2)2

s1/2 +s−1/2
−s2 +s3−s4,

Wc(s, t) = −s
(t1/2 + t−1/2)2

s1/2 +s−1/2
−s5/2 +s3/2.

The symmetry ofD implies thatWD is symmetric int ↔ t−1. By specializings 7→ t we
recover, of course, the Jones polynomials of the knot 61, the trefoil knot 31, and the Hopf
link L2a1, respectively. Here we orient the Hopf link (c) such that the reflection along the
axis preserves orientations.
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We shall see that the symmetry ofD also entails thatWD has no denominator, apart from
s1/2 + s−1/2. The difficulty in proving this integrality ofWD is to find a suitable induction
argument: resolving a symmetric diagramD will lead to asymmetric diagrams, and for
asymmetric diagrams the desired integrality does not hold in general.

The right setting seems to be the study of ribbon surfaces. Since this approach in-
troduces its own ideas and techniques we refer to the article[1], whose key result is a
surprising integrality property of the Jones polynomial:

Theorem 5.2([1]). If a link L⊂R
3 bounds a ribbon surface of Euler characteristic m> 0,

then its Jones polynomial V(L) is divisible by V(©m) = (−t1/2− t−1/2)m−1. ¤

This is precisely what we need to ensure the integrality ofWD:

Corollary 5.3 (integrality). Let D be a symmetric diagram that perpendicularly traverses
the axis in2m points. Then the bracket polynomial satisfies

(20) 〈D〉 ∈ Z[A±1,B±1] · (B2 +B−2)m−1

and, equivalently, the W-polynomial satisfies

(21) WD ∈ Z[s±1/2, t±1/2] · (s1/2 +s−1/2)m−1.

Proof. We first consider the case whereD has no crossings on the axis. By Proposition4.4
we then know that

WD(s, t) =

(

s1/2 +s−1/2

t1/2 + t−1/2

)m−1

VL(t)

whereVL ∈ Z[t±1/2] is the Jones polynomial of the linkL represented byD. Using the
notation of§2.1, the diagramD hasm components of type (a), no components of type
(b), and all components of type (c) come in pairs separated bythe axis. According to
Proposition2.7, the linkL bounds a ribbon surface of Euler characteristicm. Theorem5.2
thus ensures thatV(L) is divisible by(t1/2 + t−1/2)m−1, so (21) holds.

Both assertions (20) and (21) are equivalent because〈D〉 andWD differ only by a writhe
normalization of the formWD = 〈D〉 · (−A−3)α(D) · (−B−3)β (D). We can now proceed by
induction on the number of crossings on the axis using skein relation (B):

〈 〉

= B+1
〈 〉

+B−1
〈 〉

,
〈 〉

= B−1
〈 〉

+B+1
〈 〉

.

The right hand sides involve only symmetric diagrams, so we can apply our induction
hypothesis (20). The skein relation thus expresses〈D〉 as a linear combination of two
polynomials inZ[A±1,B±1] · (B−2 +B2)m−1, so (20) holds. ¤

Notice that form= 0 the denominators1/2+s−1/2 is in general unavoidable, as illustrated
by Example5.1. If the diagramD is symmetric and perpendicularly traverses the axis at
least once (m≥ 1), thenWD always is an honest Laurent polynomial ins1/2 andt1/2, that
is, WD ∈ Z[s±1/2, t±1/2]. This integrality property will be re-proven and strengthened for
symmetric unions in Corollary5.7below.

5.2. Symmetric unions. We will now specialize to symmetric union diagrams, that is,we
assume that each component is of type (a) as explained in§2.2.

Proposition 5.4. Let D be a symmetric union link diagram with n components.

(1) Each crossing on the axis involves two strands of the same component.
For every orientation, is a positive crossing and is a negative crossing.

(2) The resolution 7→ yields a symmetric union diagram with n components,
while 7→ yields a symmetric union diagram with n+1 components.

(3) Each crossing off the axis and its mirror image involve the same components.
Their signs are opposite so thatα(D) = 0.
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Proof. The assertions follow from our hypothesis that for a symmetric union the reflection
ρ maps each component to itself reversing the orientation (see §2.2). In particular, each
crossing on the axis involves two strands of the same component and both strands point to
the same halfspace. This means thatis necessarily a positive crossing (or ), while

is necessarily a negative crossing (or ). The rest is clear. ¤

In particular, the pairwise linking numbers of the components of a symmetric union
D vanish. This also follows from the more geometric construction of ribbon surfaces in
Proposition2.6. In general, even for symmetric diagrams, the linking number need not
vanish (see Remark3.4).

Corollary 5.5. For every symmetric union link diagram D the polynomial W(D) is in-
variant under orientation reversal of any of the components. In other words, W(D) is
well-defined for unoriented symmetric union diagrams. ¤

When working withunorientedsymmetric union diagrams, Proposition5.4 allows us
to determine theB-writhe and thus to anticipate theB-normalization. This observation can
be reformulated in the following normalized skein relations, which allow for a recursive
calculation ofW(D) for every symmetric union diagramD:

Proposition 5.6. Consider a symmetric union diagram D representing a link L with n
components. If D has no crossings on the axis then

(22) WD(s, t) =

(

s1/2 +s−1/2

t1/2 + t−1/2

)n−1

VL(t),

where VL(t) is the Jones-polynomial of the link L.
If D has crossings on the axis, then we can apply the followingrecursion formulae:

W
( )

= −s+1/2W
( )

−s+1W
( )

,(23)

W
( )

= −s−1/2W
( )

−s−1W
( )

.(24)

Proof. Equation (22) follows from Proposition4.4: sinceD is a symmetric union, we know
that m= n. If D has crossings on the axis, then we apply the skein relation (B) suitably
normalized according to Proposition5.4. This proves Equations (23) and (24). ¤

For symmetric unions we can strengthen Corollary5.3 in the following form:

Corollary 5.7 (strong integrality). If D is a symmetric union knot diagram, then WD is a
Laurent polynomial in s and t. More generally, if D is a symmetric union diagram with n
components, then WD ∈ Z[s±1, t±1] · (s1/2 +s−1/2)n−1.

Proof. Every symmetric union diagramD represents a ribbon linkL. If D has no crossings
on the axis, then the assertion follows from Equation (22) and the divisibility is ensured
by Theorem5.2. We can then proceed by induction on the number of crossings on the
axis, using Equations (23) and (24). Notice that , , have the same number of
components, whereas has one more component. ¤

5.3. Special values int. A few evaluations of the Jones polynomial have been identified
with geometric data, and some of these can be recovered for theW-polynomial:

Proposition 5.8. Let D by a symmetric union diagram with n components. We have
WD(s,ξ ) = (−s1/2−s−1/2)n−1 for everyξ ∈ {1,±i,e±2iπ/3}, and ∂WD

∂ t (s,1) = 0.

Proof. We proceed by induction on the number of crossings on the axis. If D has no
crossings on the axis, then we can use Equation (22) and calculateWD(s, t) from the Jones
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polynomialVL(t). For the latter we know that

VL(1) = (−2)n−1

VL(e
±2iπ/3) = 1

VL(±i) = (−
√

2)n−1(−1)arf(L)

dVL

dt
(1) = 3lk(D)(−2)n−1

(See [11] or [10, Table 16.3].) Here arf(L) is the Arf invariant ofL, and lk(D) is the total
linking number ofL, i.e., the sum∑ j<k lk(L j ,Lk) of all pairwise linking numbers between
the componentsL1, . . . ,Ln of L. Both arf(L) and lk(L) vanish becauseL is a ribbon link.
The above values ofVL(ξ ) thus show thatWD(s,ξ ) = (−s1/2−s−1/2)n−1 and ∂WD

∂ t (s,1) = 0.
If D has at least one crossing on the axis, then we can resolve it according to the skein

relation (23) or (24). More explicitly, consider a positive crossing on the axis:

W
( )

= −s1/2W
( )

−sW
( )

Notice that and are symmetric union diagrams withn+1 andn components, respec-
tively. We can thus apply the induction hypothesis: fort = ξ we find

W
( )

= −s1/2
(

−s1/2−s−1/2
)n−s

(

−s1/2−s−1/2
)n−1

=
(

−s1/2−s−1/2
)n−1

Likewise,
∂
∂ t

W
( )

= −s1/2 ∂
∂ t

W
( )

−s
∂
∂ t

W
( )

and fort = 1 all three derivatives vanish. Analogous arguments hold when we resolve a
negative crossing instead of a positive crossing . This concludes the induction. ¤

5.4. Special values ins. The following specializations insare noteworthy:

Proposition 5.9. For every diagram D the specialization s7→ t yields the Jones polynomial
of the link L represented by the diagram D, that is, WD(t, t) = VL(t).

Proof. For s 7→ t we no longer distinguish the crossings on the axis, and the above skein
relations become the well-known axioms for the Jones polynomial, thusWD(t, t) = VK(t).

Another way to see this is to start from our two-variable bracket polynomial. ForB 7→ A
this becomes Kauffman’s bracket polynomial in one variableA. Suitably normalized and
reparametrized witht = A−4 it yields the Jones polynomial, as desired. ¤

Proposition 5.10. If D is the symmetric union knot diagram with partial knots K− and
K+, then the specialization s7→ −1 yields WD(−1, t) = VK−(t) ·VK+(t). If D is a symmetric
union link diagram with n≥ 2 components, then WD(−1, t) = 0.

Proof. The specializations 7→ −1 means thats1/2 + s−1/2 = 0. We can now proceed by
induction on the numberc of crossings on the axis. Ifc = 0 then the assertion follows
from Equation22. If c≥ 1 then the skein relations23and24, specialized ats= −1, show
thatW( ) = W( ) = W( ). This operation reducesc but preserves the numbern of
components. Forn = 1 it also preserves the partial knotsK±. ¤

Corollary 5.11. Suppose that D is the symmetric union knot diagram of two partial knots
K− and K+. For s= t = −1 we obtain WD(−1,−1) = det(K) = det(K−) ·det(K+).

Proof. The evaluations are subsumed in the following commutative diagram:

(25)

WD(s, t) ∈ Z[s±1, t±1]
s7→t−−−−→ Z[t±1] ∋VK(t)

s7→−1





y





y
t 7→−1

VK−(t) ·VK+(t) ∈ Z[t±1] −−−−→
t 7→−1

Z ∋ det(K)
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On the one hand, substituting firsts = −1 and thent = −1 yields det(K−) · det(K+).
On the other hand, substituting firsts = t and thent = −1 yields det(K). The equality
det(K) = det(K−)det(K+) now follows fromWD ∈ Z[s±1, t±1], the integrality property of
Corollary5.7, which ensures the commutativity of Diagram (25). ¤

The product formula det(K) = det(K−) · det(K+) was first proven by Kinoshita and
Terasaka [8] in the special case that they considered; the general case has been established
by Lamm [9]. We derive it here as a consequence of the more general product formula for
the Jones polynomial established in Proposition5.10.

Example5.12. The symmetric union diagram of Fig.13a represents the knot 820 with par-
tial knots 31 and 3∗1. Here we find

W(s, t) = 1−s−2 +s−2(t + t3− t4)(t−1 + t−3− t−4),

W(t, t) = V(820) = −t−5 + t−4− t−3 +2t−2− t−1 +2− t,

W(−1, t) = V(31) ·V(3∗1) = (t + t3− t4)(t−1 + t−3− t−4).

In particularW has no denominator and is thus an honest Laurent polynomial in s andt.
As it must be, fort = −1 the last two polynomials both evaluate toW(−1,−1) = 9.

(a) 820 as symmetric union (b) 85 as asymmetric union

FIGURE 13. Symmetric vs asymmetric union diagrams

Example5.13. We should point out that the integrality ofWD(s, t) is a crucial ingredient:
The asymmetric union depicted in Fig.13b represents the knot 85 with partial knots 31 and
31. The lack of symmetry is reflected by a non-trivial denominator in theW-polynomial:

W(s, t) =
t9− t8 + t7− t6 + t5 + t3 +s−2(−2t7− t5 +2t4 + t2)

t +1
.

From this we can recover the Jones polynomial

W(t, t) = V(85) = 1− t +3t2−3t3 +3t4−4t5 +3t6−2t7 + t8

and the determinant det(85) = 21. If we first sets = −1, however, we find the product
W(−1, t) = V(31) ·V(31), and fort = −1 this evaluates to det(31) ·det(31) = 9.

This example shows that the evaluation ofW(−1,−1) is in general not independent of
the order of specializations. In other words, Diagram (25) doesnot necessarily commute
when we consider rational fractionsWD ∈ Z(s, t). For every diagramD both specializa-
tionsWD(t, t) andWD(−1, t) are Laurent polynomials inZ[t±1]. In (−1,−1) the rational
functionR

2 → R defined by(s, t) 7→WD(s, t) thus has limits

lim
t→−1

WD(t, t) = det(K) and lim
t→−1

WD(−1, t) = det(K+)det(K−).

If WD is continuous in(−1,−1) then these two limits coı̈ncide; otherwise they may
differ, in which case det(K) 6= det(K−) ·det(K+) as in the preceding example.
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6. EXAMPLES AND APPLICATIONS

In this final section we present the computation of someW-polynomials. We begin
with preliminaries on alternating knots (§6.1) and a computational lemma (§6.2). We then
calculate theW-polynomials of symmetric union diagrams for all ribbon knots up to 10
crossings (§6.3) and analyze two infinite families of symmetric union diagrams for two-
bridge ribbon knots (§6.4).

Notation. Certain polynomials occur repeatedly in the following calculations. In order to
save space we will use the abbreviationu = −s1/2 − s−1/2 and the auxiliary polynomials
e(t), f (t), . . . defined in Table2 on page25.

6.1. Alternating knots. A non-trivial symmetric union knot diagram is never alternating.
To see this, start from a point where the knot perpendicularly traverses the axis and then
travel symmetrically in both directions: the first crossing-pair is mirror-symmetric and thus
non-alternating.

If a knot K admits a reduced alternating diagram withc crossings thenc is the minimal
crossing number and every minimal diagram representingK with c crossings is necessarily
reduced and alternating [7, 13, 14, 15]. This implies the following observation:

Proposition 6.1. Let K be a prime alternating knot with c crossings. If K can be repre-
sented by a symmetric union diagram, then at least c+1 crossings are necessary. ¤

This explains why in most of our examples the symmetric unionrepresentations require
slightly more crossings then the (more familiar) minimal crossing representations. This
argument no longer holds for non-alternating knots: the example 820 in Fig.3 shows that a
symmetric union diagram can realize the minimal crossing number.

In the context of alternating diagrams, the span of the Jonespolynomial turned out to
be a fundamental tool and has thus been intensively studied.

Proposition 6.2. Let D be a symmetric union diagram with n components having2c cross-
ings off the axis. Then the t-span of WD is at most2c+1−n. It is equal to2c if and only if
n = 1 and the partial diagrams D± are alternating so thatspanV(K±) = c.

Proof. The assertion follows from Proposition5.6 and the known property of the span of
the Jones polynomial [7, 13, 14, 15]. ¤

Proposition 6.3. Suppose that D is a symmetric union diagram with n componentshaving
c+ positive crossings and c− negative crossings on the axis. Then the degree in s ranges
(at most) from−n−1

2 −c− to n−1
2 +c+.

Proof. If c+ = c− = 0 then the assertion follows from Equation (22). We conclude by
induction using Equations (23) and (24). ¤

6.2. A computational lemma. As an auxiliary result, we study the effect onW(D) of
insertingk consecutive crossings andr necklaces on the axis: the resulting diagramDk,r is
shown in Fig.14. A positive twist numberk stands for crossings of type and a negative
k for crossings of type because both orientations either point from left to right orboth
point from right to left.

We assume thatD = D0,0 is a symmetric union diagram withn components. By Propo-
sition1.8we can writeW(D) = un−1

(

1+d(s, t)
)

for some polynomiald(s, t)∈Z[s±1, t±1].

Lemma 6.4. If D∞ is the trivial (n+1)-component link then

Wk,r(s, t) = un+r−1[1+(−s)k · (t −1+ t−1)r ·d(s, t)
]

.

Proof. Insertion of necklaces:For arbitrary link diagramsD = D0,0, D0,1 andD∞ related
as in Fig.14by insertion of one necklace, theW-polynomials satisfy the relationship

W0,1 = (−s1/2−s−1/2) · (t −1+ t−1) ·WD − (t −2+ t−1) ·W∞.
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r

k

Dk,r D∞D

FIGURE 14. The insertion ofk crossings and ofr necklaces

If D∞ is the trivial(n+1)-component link, then forr = 1 we obtain

W0,1(s, t) = un · (t −1+ t−1) ·
(

1+d(s, t)
)

− (t −2+ t−1) ·un

= un+r−1(1+(t −1+ t−1) ·d(s, t)
)

.

The general case forr necklaces follows by induction.
Insertion of crossings:We first assume thatk ≥ 0 and use induction. Fork = 0 the

assertion is valid for allr ≥ 0 andn≥ 1. For the induction step we assume that the assertion
holds fork−1 for all r ≥ 0 andn≥ 1. Then, by Proposition5.6we have

Wk,r(s, t) = −s1/2 un+r −sWk−1,r(s, t)

= −s1/2 un+r −sun+r−1(1+(−s)k−1(t −1+ t−1)rd(s, t)
)

= un+r−1[1+(−s)k(t −1+ t−1)rd(s, t)
]

.

Fork≥ 0 this completes the proof by induction. Fork≤ 0 the calculation is analogous.¤

As an illustration we calculate theW-polynomials of two families of symmetric union
diagrams. They will also be used for the two-bridge knot examples in§6.4below.

Example6.5. The diagramsDr andD′
r depicted in Fig.15 represent the symmetric unions

31♯3∗1 and 41♯41, respectively, withr necklaces. TheirW-polynomials are:

WDr (s, t) = ur [1− (t −1+ t−1)r ·e(t)],
WD′

r
(s, t) = ur [1+(t −1+ t−1)r · f (t)].

This follows from Lemma6.4andWD0(s, t) = 1−e(t) andWD′
0
(s, t) = 1+ f (t).

(a) Dr (b) D′
r

FIGURE 15. Insertion ofr necklaces in diagrams of 31♯3∗1 and 41♯41
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6.3. Ribbon knots with at most 10 crossings.We first study the 61-type family and the
Kinoshita-Terasaka family of symmetric union knot diagrams, and then turn to the remain-
ing ribbon knots with at most 10 crossings.

Example6.6. The family of symmetric union diagramsDk depicted in Fig.16a represents
the knots 31♯3∗1, 61, 820, 946, 10140, . . . with partial knotsK+ = 31 andK− = 3∗1. We have
W0(s, t) = 1+

(

VK+(t)VK−(t)−1
)

, and thus by Lemma6.4theW-polynomial ofDk is

(26) Wk(s, t) = 1+(−s)k ·
(

VK+(t) ·VK−(t)−1
)

whereVK+(t) = t−1 + t−3− t−4 andVK−(t) = t + t3− t4.

(a) The 61-type family (b) The Kinoshita-Terasaka family

FIGURE 16. Two families of symmetric union diagrams

Example6.7. The family of symmetric union diagramsDk depicted in Fig.16b has trivial
partial knots;D0 represents the trivial knot,D1 represents 10153, andD2 represents the
Kinoshita-Terasaka knot. For this family of diagrams Lemma6.4is not applicable because
D∞ is non-trivial. A small calculation shows thatWk(s, t) = 1+

(

(−s)k−1
)

· f (t).

(a) 89: an asymmetrically amphi-
chiral diagram

(b) 89: a symmetrically amphi-
chiral diagram

FIGURE 17. Two symmetric union diagrams for 89

Example6.8. Figure17 displays two symmetric union diagrams for the ribbon knot 89.
This knot is amphichiral, and so both diagrams are Reidemeister equivalent to their mirror
images. But the first diagram (Fig.17a) cannot be symmetrically amphichiral because its
W-polynomial is not symmetric ins:

W1(s, t) = 1+sg2(t)−s2 f (t).

For the second diagram (Fig.17b) we findW2(s, t) = 1+ f (t), so that the previous obstruc-
tion disappears. This diagram is indeed symmetrically amphichiral, as shown in Fig.18:
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(1) We start out with a diagram isotopic to Fig.17b,
(2) we slide the upper twist inside-out,
(3) we perform a half-turn of each of the partial knots along its vertical axis,
(4) we slide the lower twist outside-in,
(5) we turn the entire diagram upside-down.

Each of these steps is easily seen to be composed of symmetricReidemeister moves; the
last step is realized by a half-turn around the horizontal axis (realizable by symmetric
Reidemeister moves) followed by a half-turn around the vertical axis (flype).

~ ~ ~ ~

FIGURE 18. Symmetric equivalence between mirror images

Table1 completes our list of ribbon knots with at most 10 crossings.In order to save
space we have used the auxiliary polynomials listed in Table2, which appear repeatedly.

Diagrams for 61, 820, 946, 10140 are discussed in Example6.6within the 61-type family,
further diagrams are discussed for 89 in Example6.8, for 927 in Example1.14, and for
10153 in Example6.7. We remark that theW-polynomial of 10129 is the same as that of 88,
and theW-polynomial of 10155 is the same as that of 10137, in accordance with results of
Kanenobu [6] who studied an infinite family containing these knots. Lemma 6.4was used
for the diagrams of 61, 820, 946, 10140 in Example6.6 and again for 88, 103, 1022, 1035,
10137 in Table1.

6.4. Two-bridge ribbon knots. In this final paragraph we establish symmetric inequiv-
alence in the family of two-bridge ribbon knots that we studied in [2]. We consider the
symmetric union diagramsDn andD′

n shown in Fig.19. They are defined forn≥ 2 and we
write n = 2k+1 in the odd case andn = 2k in the even case.
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Dodd D′
evenD′

odd Deven

FIGURE 19. The family of knot diagramsDn andD′
n of Theorem6.10
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diagram knot det partial knot
W(s, t)

88 25 41

1−s· f (t)

103 25 51

1−s·g5(t)

1022 49 52

1−s·g2(t)

1035 49 52

1−s·g2(t)

10137 25 41

1+s2 · f (t)

10129 25 41

1−s· f (t)

10155 25 41

1+s2 · f (t)

diagram knot det partial knot
W(s, t)

941 49 52

1−s2 ·g1(t)+s3 · f (t)

1048 49 52

1−g2(t)

1042 81 61

1−s−1 ·g1(t)+h1(t)−s·g3(t)

1075 81 61

1+s−2 ·g1(t)−s−1 ·h1(t)+g3(t)

1087 81 61

1+g1(t)−s·h1(t)+s2 ·g3(t)

1099 81 61

1−s−1 · f (t)+h2(t)−s· f (t)

10123 121 62

1+s−1 ·g4(t)+h3(t)+s·g4(t)

TABLE 1. W-polynomials of ribbon knots with at most 10 crossings

e(t) = t−3 (t2 +1) (t −1)2 (t2 + t +1)
f (t) = t−4 (t2 +1) (t −1)2 (t2 + t +1) (t2− t +1)
g1(t) = t−5 (t2 +1) (t −1)2 (t2 + t +1) (t2− t +1)2

g2(t) = t−5 (t2 +1)2(t −1)2 (t2 + t +1) (t2− t +1)
g3(t) = t−5 (t2 +1)2(t −1)4 (t2 + t +1)
g4(t) = t−5 (t2 +1) (t −1)4 (t2 + t +1) (t2− t +1)
g5(t) = t−5 (t2 +1) (t −1)2 (t2 + t +1)2(t2− t +1)
h1(t) = t−6 (t2 +1) (t −1)2 (t2 + t +1) (t2− t +1)3

h2(t) = t−6 (t2 +1) (t −1)4 (t2 + t +1) (t4− t3 +3t2− t +1)
h3(t) = t−6 (t2 +1) (t −1)2 (t2 + t +1) (t2− t +1)(t4−3t3 +5t2−3t +1)

TABLE 2. Auxiliary polynomials used in the description ofW-polynomials
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Remark6.9. The symmetric union diagramsDn andD′
n represent two-bridge knots of the

form K(a,b) = C(2a,2,2b,−2,−2a,2b) with b = ±1. These knots have genus 3 and their
crossing number is 6+n. The first members can be identified as follows: 89 = K(−1,−1)
for n= 2, 927 = K(−1,1) for n= 3, 1042 = K(1,1) for n= 4, 11a96= K(1,−1) for n= 5,
12a715= K(−2,−1) for n = 6, 13a2836= K(−2,1) for n = 7.

The diagramsD2 andD′
2 are the two mirror-symmetric diagrams of 89 shown in Fig.17b.

They have been shown to be symmetrically equivalent in Fig.18.
The diagramsD3 andD′

3 are the two symmetric union representations of 927 depicted
in Fig.1. They have already been proven to be distinct in Example1.14.

We do not know if the diagramsD4 andD′
4, representing 1042, are symmetrically equiv-

alent: theirW-polynomials cöıncide but no symmetric transformation has yet been found.

We have proved in [2], Theorem 3.2, that for eachn the symmetric union diagrams
Dn andD′

n are asymmetrically equivalent. One of the motivations for developing theW-
polynomial was to show thatDn andD′

n are, in general, not symmetrically equivalent:

Theorem 6.10. The symmetric union diagrams Dn and D′
n depicted in Fig.19 are not

symmetrically equivalent if n= 3 or n≥ 5.

Proof. We show that theW-polynomials of the two diagramsDn andD′
n are different for

n = 3 andn≥ 5. By Proposition6.3 the degree ins of theW-polynomial ofD′
n ranges at

most from−1 to 1. It is enough to show that the maximal or minimal degree in s of the
W-polynomial ofDn is bigger than 1, or smaller than−1, respectively. For brevity, we
only analyze the maximal degree.

Odd case:For n = 2k+1 we claim that maxdegsW(Dn) = k+1.

The diagramDn containsk negative andk+1 positive crossings on the axis, therefore
the maximal degree ins is less or equal tok+ 1. We resolve allk negative crossings

on the axis to . Only this resolution contributes by Proposition5.6 to the maximal
degreesk+1 and we obtain a factor of(−s−1/2)k. The resulting diagram is illustrated in
Fig.20a: it hask necklaces andk+1 consecutive positive crossings on the axis, for which
the horizontal resolution is a trivial link withk+ 2 components. Letuk(ak(t)+ 1) be the
W-polynomial of the latter diagram without the crossings on the axis, then by Lemma
6.4 theW-polynomial of the diagram withk+1 crossings is(−s−1/2)kuk

(

(−s)k+1ak(t)+

1
)

, including the factor(−s−1/2)k from the resolution step. By Example6.5 we find that
ak(t) 6= 0, proving that in the odd case the maximals-degree ofDn is k+1. Note that the
maximals-degree of(−s−1/2)kuk is zero. For oddn≥ 3 the maximals-degree is therefore
greater than 1.

(a) Odd case (b) Even case

FIGURE 20. Diagrams occuring in the proof of Theorem6.10(for k = 2)

Even case:For n = 2k we claim that maxdegsW(Dn) = k−1.

We observe that the diagramD⋆
n obtained fromDn by deleting the first and the last

crossing on the axis has the sameW-polynomial asDn. This requires a short calculation
using the fact that the -resolutions for these crossings are diagrams of the trivial link.
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As an illustration, let us make the first three cases explicit. For n = 2 the diagramD⋆
2

is 41♯41. For n = 4 the diagramD⋆
4 cöıncides withD′

4, showing thatD4 andD′
4 cannot

be distinguished by theirW-polynomials. Forn = 6 the two diagramsD6 and D⋆
6 are

illustrated in Fig.21; they represent the knots 12a715 and 12a3, respectively.1

FIGURE 21. Two symmetric union diagrams sharing the sameW-polynomial

By Proposition6.3the exponents ofs in W(Dn) lie between−k and+k. In the diagram
D⋆

n, however, onlyk− 1 negative andk− 1 positive crossings on the axis remain, so in
W(Dn) =W(D⋆

n) the bounds−k and+k are not attained, whence maxdegsW(Dn)≤ k−1.
In D⋆

n we resolve allk−1 negative crossings on the axis to . As in the previous
case, only this resolution contributes to the maximal degree sk−1 and we obtain a factor
of (−s−1/2)k−1. The resulting diagram is illustrated in Fig.20b: it hask− 1 necklaces
andk− 1 consecutive positive crossings on the axis, for which the horizontal resolution
is a trivial link with k+1 components. The process of adding necklaces and twists is the
same as in the odd case: for theW-polynomial of the diagram withk−1 crossings we have
(−s−1/2)k−1uk−1

(

(−s)k−1bk(t)+1
)

if theW-polynomial of the respective diagram without
the twists is(−s−1/2)k−1uk−1(bk(t) + 1), both already including the factor(−s−1/2)k−1.
Using again Example6.5 we find thatbk(t) 6= 0. This proves that in the even case the
maximal s-degree ofW(Dn) = W(D⋆

n) is k− 1. Hence, for evenn ≥ 6 the maximals-
degree is greater than 1, which proves the theorem. ¤
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