
Experimental Mathematics 18 (2009), 187–191
Preprint version available at http://www-fourier.ujf-grenoble.fr/˜eiserm

FOR WHICH TRIANGLES IS
PICK’S FORMULA ALMOST CORRECT?

MICHAEL EISERMANN AND CHRISTOPH LAMM

ABSTRACT. We present an intriguing question about lattice points in triangles
where Pick’s formula is “almost correct”. The question has its origin in knot
theory, but its statement is purely combinatorial. After more than 30 years the
topological question was recently solved, but the lattice point problem is still
open.

1. ALMOST PICK’S FORMULA

Let p,q be positive integers and consider the triangle

∆ = ∆(p,q) := conv
{(

0,0
)
,
(

p,0
)
,
(

p, q
p

)}
⊂ R2.

We count two types of lattice points in Z2:

Pick(∆) := #{interior lattice points, excluding boundaries}
+1

2 #{boundary lattice points, excluding vertices}+ 1
2

If q
p is an integer, then ∆ is a lattice triangle and Pick’s theorem says that

Area(∆) = Pick(∆).

This equality will no longer hold in general for q
p /∈ Z. Nevertheless, under

favourable circumstances, Pick’s formula can be almost correct in the following
sense:

Definition 1.1. Let p,q be positive integers with q even, so that the area of our tri-
angle ∆ is 1

2 q ∈ Z. We say that Pick’s formula is almost correct for ∆ if Area(∆) =
bPick(∆)c, where bxc designates the integer part of x ∈ R.

Notice that our counting formula defines Pick(∆) to be an integer or a half-
integer. This means that Pick’s formula is almost correct if and only if Pick(∆)
equals either Area(∆) or Area(∆)+ 1

2 . Here are two typical examples:

Example 1.2. For p = 5, q = 18 we have Area(∆) = 9 and Pick(∆) = 9.

Example 1.3. For p = 5, q = 4 we have Area(∆) = 2 and Pick(∆) = 2+ 1
2 .

Starting with ∆ we can consider the magnified triangles r∆ with r ∈ N:

r∆ := conv
{(

0,0
)
,
(

pr,0
)
,
(

pr, qr
p

)}
⊂ R2.

Of course, p∆ is a lattice triangle. We can now ask for the stronger condition
that Pick’s formula be almost correct for all r∆ with r ∈ N. Notice that Pick’s
formula is almost correct for all r ∈ N if and only if it is almost correct for all
r = 1,2, . . . , p−1.
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Remark 1.4. It is a frequently studied question to bound the error between the area
and a lattice point count, see for instance the chapter “A lattice-point problem” in
Hardy [5] and the literature cited there. Our setting can be seen as the inverse
problem: we prescribe very strict error bounds and ask which triangles satisfy
them.

2. THE CASSON-GORDON FAMILIES

For positive integers p,q′ ∈N with p odd and q′ even, one has q′ = 2kp2±q for
some k ∈ N and 1 < q < p2. Moreover,

Pick
(
∆(p,2kp2 +q)

)
= kp2 +Pick(∆(p,q)) and

Pick
(
∆(p,2kp2−q)

)
= kp2−Pick(∆(p,q))+ 1

2 .

This shows that Pick’s formula is almost correct for (p,q′) if and only if it is almost
correct for (p,q). It is thus natural to restrict attention to q with 1 < q < p2.

Theorem 2.1 (Casson-Gordon [3]). Let p,q ∈ Z be coprime integers with 1 < q <
p2, p odd, q even. Suppose that p and q satisfy one of the following conditions:

(1) q = np±1 for some n ∈ N with gcd(n, p) = 1, or
(2) q = n(p±1) for some n ∈ N with n | 2p∓1, or
(3) q = n(p±1) for some n ∈ N with n | p±1, n odd, or
(4) q = n(2p±1) for some n ∈ N with (p∓1)/n odd.

Then Pick’s formula is almost correct for all triangles r∆(p,q) with r ∈N, in other
words, Area(r∆) = bPick(r∆)c for ∆ = ∆(p,q) and all r ∈ N.

Remark 2.2. In the presentation given above the four Casson-Gordon families may
seem rather complicated at first sight. They can be reformulated in a more pleasant
and symmetric fashion: each p2/q has a continued fraction representation of one
of the following three types: [a1,a2, . . . ,ak,±1,−ak, . . . ,−a2,−a1] with ai > 0, or
[2a,2,2b,−2,−2a,2b] or [2a,2,2b,2a,2,2b] with a,b 6= 0 (to obtain all examples
we also allow negation and reversal of these continued fractions). See [6], Theorem
6, for a hint on how to prove this for the first family and use direct calculations for
the others.

3. KNOT-THEORETIC BACKGROUND

The only known proof of Theorem 2.1 is intricate and highly indirect, but its
story is worth telling. Since the first version of the present note appeared, in Febru-
ary 2006, we have been questioned about the knot-theoretic background, and so we
feel that we should summarize the proof here and give a brief account of its long-
winding history. Even though it is not immediately relevant to the combinatorial
question towards which we are heading, we thus take a detour in order to sketch
the argument. We hope that this will serve to better situate the result and motivate
the question that ensues.

Topological proof of Theorem 2.1. The proof is a by-product of a profound topo-
logical investigation by Casson and Gordon in their seminal work [3]. They apply
the Atiyah-Singer G-signature theorem in dimension 4 in order to establish neces-
sary conditions for a knot K ⊂ R3 to bound a ribbon disk D ⊂ R3, ∂D = K. As a
corollary (on page 188 in [3]) they show that whenever the two-bridge knot repre-
sented by the fraction q/p2 is a ribbon knot, then Pick’s formula is almost correct
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for all triangles r∆(p,q) with r ∈N. This obstruction allows them to exclude many
two-bridge knots, by showing that they cannot bound any ribbon disk.

On the other hand we have the four families displayed above, which have al-
ready been stated by Casson and Gordon [3], alas without proof. Siebenmann [9]
proved for two of the Casson-Gordon families that the knot q/p2 is a ribbon knot by
explicitly constructing a ribbon disk. While pursuing a different approach, Lamm
[7] reproved and extended Siebenmann’s result by giving a unified construction
showing that all four Casson-Gordon families yield indeed ribbon knots. Together
with the fundamental result of Casson and Gordon this implies that for the above
families Pick’s formula must be almost correct, as stated in the theorem. �

Remark 3.1. As a historical note, we mention that Siebenmann’s contribution [9]
has not been readily available, and thus the details of the constructive part have
been completed in published form only recently in [7] and [8]. The fundamental
results of Casson and Gordon [3] have circulated for more than 10 years only in
preprint form. Fortunately they have been saved from this fate and preserved for
posterity in the book by Guillou and Marin [4].

Question 3.2. The proof via knot theory in dimensions 3 and 4 may seem far-
fetched for a purely combinatorial statement that does not even mention knots nor
topology in any way. Is there a more direct (combinatorial) proof of Theorem 2.1?

Of course, for a fixed pair (p,q) the theorem can easily be verified by a (com-
puter) count of lattice points. It is, however, not obvious how to prove the assertion
in general. Is there some more satisfactory (number-theoretic) explanation?

4. IS THE LIST COMPLETE?

Having set the scene, we now come to the main point of the present note and
formulate the delicate inverse question. Empirical evidence lets us conjecture that
the list stated in Theorem 2.1 is complete. More explicitly this means:

Conjecture 4.1. If p,q ∈ Z are coprime integers with 1 < q < p2, p odd, q even,
and Pick’s formula is almost correct for all triangles r∆(p,q) with r ∈ N, then the
pair (p,q) belongs to one of the four Casson-Gordon families stated above.

This conjecture is already implicit in the article of Casson and Gordon [3], who
verified it for p ≤ 105 on a computer. Although the question has been studied by
knot theorists ever since the preprint of Casson and Gordon appeared in 1974, the
above lattice point conjecture is still unsolved after more than 30 years.

Remark 4.2. The topological problem, sketched above, of classifying two-bridge
ribbon knots has recently been solved by Lisca [8], using an independent topolog-
ical approach avoiding the combinatorial problem. Apart from its own geometric
appeal, an affirmative answer to Conjecture 4.1 would have an interesting applica-
tion in knot theory, as indicated in the preceding proof: it would reprove the result
of Lisca, by showing that the Casson-Gordon families exhaust all possibilities.

Remark 4.3. We have verified the conjecture for p < 5000 using the straightfor-
ward counting method. On an Athlon processor running at 2GHz this took less
than 2 days. Notice, however, that in its naı̈ve form an exhaustive search takes
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time of order O(n5) and soon becomes too expensive, so certain optimizations are
highly recommended. 1

Remark 4.4. Following Casson and Gordon [3, p. 187], in a modified formulation
taken from Siebenmann [9], we write σ(p2,q,r) := 4(Area(r∆)−Pick(r∆)) + 1
and have

(1) σ(p2,q,r) =− 2
p2

p2−1

∑
s=1

cot
(

πs
p2

)
cot
(

πqs
p2

)
sin2

(
πqrs

p

)
.

The computation can be sped up with the help of the continued fraction for
p2/q (“Eisenstein method”): define the numbers ai,qi > 0 by q0 = p2, q1 = q and
qi−1 = aiqi + qi+1. For x ∈ R define the function {x} as (fractional part of x)− 1

2
(this is not the standard notation) and the function ((x)) as {x}, if x is not an integer
and 0 otherwise. According to Siebenmann [9] we have (modulo a global sign)
(2)

σ(p2,q,r) =
1
2

k

∑
i=1

(−1)iai

(
1−4

{qir
p
}2
)
−

k

∑
i=1

(−1)i
(

1−4
((qir

p
))((qi−1r

p
)))

It would be a welcome complement to the existing literature to elucidate and fur-
ther develop this ansatz. For instance from (1) we obtain the symmetry σ(p2,q,r)=
σ(p2,q, p− r), for qq′ ≡ 1 (mod p2) we have σ(p2,q,r) = σ(p2,q′,qr), and for
qq′≡−1 (mod p2) similarly σ(p2,q,r) =−σ(p2,q′,qr). Equation (2) allows fast
computations and is thus well-suited for empirical explorations. Perhaps it can also
provide some hints how to attack Conjecture 4.1.

Remark 4.5. Considering the average of σ(p2,q,r) over r = 1, . . . , p− 1, Sikora
[10] found a relationship with the classical Dedekind sum s(q, p). By Theorem 2.1
if (p,q) belongs to one of the Casson-Gordon families then σ(p2,q,r) = ±1 for
r = 1, . . . , p−1. In particular

∣∣∣ 1
p−1 ∑

p−1
r=1 σ(p2,q,r)

∣∣∣≤ 1. He shows that

p−1

∑
r=1

σ(p2,q,r) = 4 · s(q, p)−4p · s(q, p2)

in the following way:
Note that in equation (1) the variable r occurs only in the sin2-term. Therefore

for summing σ(p2,q,r) over r = 1, . . . , p−1 we need ∑
p−1
r=1 sin2(πqrs

p ) for given p,

q, s. Because ∑
p−1
r=1 sin2(πqrs

p ) = p
2 if p - s (and the sum vanishes if p | s) we obtain:

p−1

∑
r=1

σ(p2,q,r) =− 2
p2 ∑

0<s<p2

p -s

cot
(

πs
p2

)
cot
(

πqs
p2

)
p
2

=−4p · s(q, p2)+4 · s(q, p).

Hence, if (p,q) belongs to one of the Casson-Gordon families then

(3)
4

p−1

∣∣s(q, p)− p · s(q, p2)
∣∣≤ 1.

Which (p,q), with p odd and q even, satisfy equation (3)? For example, for p = 9
we find the solutions q = 22,56,68,70 besides the Casson-Gordon families.

1 If you want to check or further optimize our implementation, you can download it at
http://www-fourier.ujf-grenoble.fr/~eiserm/software.html#pick.

http://www-fourier.ujf-grenoble.fr/~eiserm/software.html#pick
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Remark 4.6. Writing the (mirrored) triangle ∆ in the form qx + p2y ≤ pq with
x,y≥ 0, we can apply the lattice point counting formula of Beck–Robins [2, Theo-
rem 2.10]. Setting cp,q := 1

4(1+ 1
p2 + 1

q)+ 1
12( p2

q + q
p2 + 1

p2q), the number of lattice
points in the triangle t∆ is thus:

L(t) =
1
2

qt2 +
1
2

t
(

p+
q
p

+
1
p

)
+ cp,q + s−t pq(q,1; p2)+ s−t pq(p2,1;q),

where the last two terms denote the Fourier–Dedekind sums defined in [2]. (In
order to stay as close as possible to the notation in the book we denote the mag-
nifying factor by t.) Because q divides −t pq we have s−t pq(p2,1;q) = s0(p2,1;q)
and we can use reciprocity to obtain

s0(p2,1;q) =−s0(q,1; p2)− cp,q +1.

Therefore

L(t) =
1
2

qt2 +
1
2

t
(

p+
q
p

+
1
p

)
+ s−t pq(q,1; p2)− s0(q,1; p2)+1.

In order to compute Pick(t∆) we count the lattice points on the catheti (t p and
btq/pc) and on the hypotenuse (bt/pc because q and p2 are coprime). Using the
notation {x} = x−bxc the result of subtracting half of the lattice points on the
boundary from L(t) (and taking care of the vertices in the way we specified) is:

(4) Pick(t∆) =
1
2

qt2 +
1
2

{
t
p

}
+

1
2

{
tq
p

}
+ s−t pq(q,1; p2)− s0(q,1; p2).

This shows that the t-variation of Area(t∆)− Pick(t∆) depends mostly on the
term s−t pq(q,1; p2), the other terms do not contain t or are small.

For example, we have for p = 11,q = 46 and t = 1,2 (illustrated in [7], page 8):
Pick(∆) = 23+ 1

22 + 1
11 + 6

11 −
2
11 = 23.5 and Pick(2∆) = 92+ 1

11 + 2
11 −

1
11 −

2
11 =

92.
Formula (4) can also be expressed in form of Dedekind–Rademacher sums

rn(q, p2), see exercise 8.10 in [2]. Analysing Formula (4), Beck and Pfeifle [1]
obtained partial results concerning Conjecture 4.1.

Remark 4.7. Extensions of Conjecture 4.1 are possible: with the definition

I(p,q) :=
{

σ(p2,q,r) | r = 1, . . . , p−1
}

Conjecture 4.1 now reads: (p,q) belongs to one of the Casson-Gordon families if
and only if I(p,q) = {1}, {−1} or {−1,1}.

For I(p,q) = {−3,−1} we find the following families (with parameter a > 0):

• C1(a) = [2a,−8,−2a,2],
• C2(a) = [2,2a,−2,2,−2a,−6],
• C3(a) = [6,2a,−2,2,2a,−2] (negative reversed fraction of C2),
• C4(a) = [2a,2,−2,2,−2,2,−2,2,−2a−2,2], and
• C5(a) = [2a,2,−2,2,−2,2a+2,−2,2,−2,2]

as well as the sporadic case [6,−4,−2,2].
The case I(p,q) = {−3,−1} and a similar set of families for I(p,q) = {1,3}

seem to be the only ones besides {−1,1} for which exactly two values are attained,
meaning that we do not find such families for I(p,q) = {3,5}, for example.
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