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KNOT COLOURING POLYNOMIALS

MICHAEL EISERMANN

ABSTRACT. This article introduces a natural extension of colouring numbers of knots,
called colouring polynomials, and studies their relationship to Yang-Baxter invariants and
quandle 2-cocycle invariants.

For a knotK in the 3-sphere letπK be the fundamental group of the knot complement
S3 rK, and letmK , lK ∈ πK be a meridian-longitude pair. Given a finite groupG and an
elementx∈ G we consider the set of representationsρ : πK → G with ρ(mK) = x and de-
fine the colouring polynomialPx

G(K) := ∑ρ ρ(lK). The resulting invariant maps knots to
the group ringZG. It is multiplicative with respect to connected sum and equivariant with
respect to symmetry operations of knots. Examples are givento show that colouring poly-
nomials distinguish knots for which other invariants fail,in particular they can distinguish
knots from their mutants, obverses, inverses, or reverses.

We prove that every quandle 2-cocycle state-sum invariant of knots is a specialization
of some knot colouring polynomial. This provides a completetopological interpretation
of these invariants in terms of the knot group and its peripheral system. Furthermore, we
show thatPx

G can be presented as a Yang-Baxter invariant, i.e. as the trace of some linear
braid group representation. This entails in particular that Yang-Baxter invariantscandetect
non-inversible and non-reversible knots.

1. INTRODUCTION AND STATEMENT OF RESULTS

To each knotK in the 3-sphereS3 we can associate its knot group, that is, the funda-
mental group of the knot complement, denoted byπK := π1(S

3rK). This group is already
a very strong invariant: it classifies unoriented prime knots [43, 26]. In order to capture
the complete information, we consider a meridian-longitude pairmK , lK ∈ πK : the group
system(πK ,mK , lK) classifies oriented knots in the 3-sphere [42]. In particular, the group
system allows us to tackle the problem of detecting asymmetries of a given knot (see§2.3).
Using this ansatz, M. Dehn [13] proved in 1914 that the two trefoil knots are chiral, and,
half a century later, H.F. Trotter [41] proved that bretzel knots are non-reversible. We will
recover these results using knot colouring polynomials (see§2.4).

Given a knotK, say represented by some planar diagram, we can easily read off the
Wirtinger presentation ofπK in terms of generators and relations (see§3.1). In general,
however, such presentations are very difficult to analyze. As R.H. Crowell and R.H. Fox
[12, §VI.5] put it:

“What is needed are some standard procedures for deriving from a group
presentation some easily calculable algebraic quantitieswhich are the
same for isomorphic groups and hence are so-called group invariants.”

The classical approach is, of course, to consider abelian invariants, most notably the Alexan-
der polynomial. In order to effectively extract non-abelian information, we consider the set
of knot group homomorphisms Hom(πK ;G) to some finite groupG. The aim of this article
is to organize this information and to generalize colouringnumbers to colouring polyno-
mials. In doing so, we will highlight the close relationshipto Yang-Baxter invariants and
their deformations on the one hand, and to quandle cohomology and associated state-sum
invariants on the other hand.
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1.1. From colouring numbers to colouring polynomials. A first and rather crude invari-
ant is given by the total number ofG-representations, denoted by

FG(K) := |Hom(πK ;G)|.

This defines a mapFG : K → Z on the setK of isotopy classes of knots inS3. This
invariant can be refined by further specifying the image of the meridianmK , that is, we
choose an elementx∈ G and consider only those homomorphismsρ : πK → G satisfying
ρ(mK) = x. Their total number defines the knot invariant

Fx
G(K) := |Hom(πK ,mK ;G,x)|.

Example 1.1. Let G be the dihedral group of order 2p, wherep≥ 3 is odd, and letx∈ G
be a reflection. ThenFx

G is the number ofp-colourings as introduced by R.H. Fox [21, 22],
here divided byp for normalization such thatFx

G(©) = 1.

We will call Fx
G thecolouring numberassociated with(G,x), in the dihedral case just as

well as in the general case of an arbitrary group. ObviouslyFG can be recovered fromFx
G

by summation over allx∈G. In order to exploit the information of meridianandlongitude,
we introduce knot colouring polynomials as follows:

Definition 1.2. Suppose thatG is a finite group andx is one of its elements. Thecolouring
polynomial Px

G : K → ZG is defined as

Px
G(K) := ∑

ρ
ρ(lK),

where the sum is taken over all homomorphismsρ : πK → G with ρ(mK) = x.

By definitionPx
G takes its values in the semiringNG, but we prefer the more familiar

group ringZG ⊃ NG. We recover the colouring numberFx
G = εPx

G by composing with
the augmentation mapε : ZG → Z. As it turns out, colouring polynomials allow us in a
simple and direct manner to distinguish knots from their mirror images, as well as from
their reverse or inverse knots. We will highlight some examples below.

1.2. Elementary properties. The invariantPx
G behaves very much like classical knot poly-

nomials. Most notably, it nicely reflects the natural operations on knots:Px
G is multiplica-

tive under connected sum and equivariant under symmetry operations (§2.3).
Strictly speaking,Px

G(K) is, of course, not a polynomial but an element in the group
ring ZG. SincelK lies in the commutator subgroupπ ′

K and commutes withmK , possible
longitude images lie in the subgroupΛ = C(x)∩G′. Very often this subgroup will be
cyclic, Λ = 〈t | tn = 1〉 say, in which casePx

G takes values in the truncated polynomial ring
ZΛ = Z[t]/(tn). Here is a first and very simple example:

Example 1.3. We choose the alternating groupG = A5 with basepointx = (12345). Here
the longitude subgroupΛ = 〈x〉 is cyclic of order 5. The colouring polynomials of the left-
and right-handed trefoil knots are 1+5x and 1+5x−1 respectively, hence the trefoil knots
are chiral. (There are five non-trivial colourings, one of which is shown in§3, Figure4, and
the other four are obtained by conjugating withx. This list is easily seen to be complete.)

Starting from scratch, i.e. from knot diagrams and Reidemeister moves, one usually
appreciates Fox’ notion of 3-colourability [22] as the simplest proof of knottedness. In
this vein, the preceding example is arguably one of the most elementary proofs of chirality,
only rivalled by Kauffman’s bracket leading to the Jones polynomial [33].

Section2.4displays some further examples to show that colouring polynomials distin-
guish knots for which other invariants fail:
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• They distinguish the Kinoshita-Terasaka knot from the Conway knot and show
that none of them is inversible nor reversible nor obversible.

• They detect asymmetries of bretzel knots; they distinguish, for example,B(3,5,7)
from its inverse, reverse and obverse knot.

• They distinguish the (inversible) knot 817 from its reverse.

We also mention two natural questions that will not be pursued here:

Question 1.4.Can knot colouring polynomials detect other geometric properties of knots?
Applications to periodic knots and ribbon knots would be most interesting.

Question 1.5. Do colouring polynomials distinguish all knots? Since the knot group sys-
tem(πK ,mK , lK) charaterizes the knotK [42, Cor. 6.5], and knot groups are residually finite
[40, Thm. 3.3], this question is not completely hopeless.

1.3. Colouring polynomials are Yang-Baxter invariants. Moving from empirical evi-
dence to a more theoretical level, this article compares knot colouring polynomials with
two other classes of knot invariants: Yang-Baxter invariants, derived from traces of Yang-
Baxter representations of the braid group (§4), and quandle colouring state-sum invariants
derived from quandle cohomology (§3). The result can be summarized as follows:

{

Yang-Baxter
invariants

}

⊃

{

colouring
polynomials

}

⊃

{

quandle 2-cocycle
state-sum invariants

}

⊃

{

col. polynomials
with Λ abelian

}

P.J. Freyd and D.N. Yetter [23, Prop. 4.2.5] have shown that every colouring number
Fx

G : K → Z can be obtained from a certain Yang-Baxter operatorc overZ. We generalize
this result to colouring polynomials:

Theorem 1.6(§4.3). Suppose that G is a group with basepoint x such that the subgroup
Λ = C(x)∩G′ is abelian. Then the colouring polynomial Px

G : K → ZΛ is a Yang-Baxter
invariant of closed knots: there exists a Yang-Baxter operator c̃ over the ringZΛ, such that
the associated knot invariant coincides with (a constant multiple) of Px

G.

In the general case, whereΛ is not necessarily abelian, Section4.2gives an analogous
presentation ofPx

G as a Yang-Baxter invariant of long knots (also called 1-tangles).

Corollary 1.7. SinceΛ is abelian in all our examples of§2.4, it follows in particular that
Yang-Baxter invariantscandetect non-inversible and non-reversible knots.

Remark 1.8. It follows from our construction that ˜c is a deformation ofc over the ringZΛ.
Conversely, the deformation ansatz leads to quandle cohomology (see§4.4). Elaborating
this approach, M. Graña [27] has shown that quandle 2-cocycle state-sum invariants are
Yang-Baxter invariants. The general theory of Yang-Baxterdeformations ofcQ over the
power series ringQ[[h]] has been developed in [19].

Remark 1.9. The celebrated Jones polynomial and, more generally, all quantum invari-
ants of knots, can be obtained from Yang-Baxter operators that are formal power series
deformations of the trivial operator. This implies that thecoefficients in this expansion are
of finite type [2, §2.1]. Part of their success lies in the fact that these invariants distinguish
many knots, and in particular they easily distinguish mirror images. It is still unknown,
however, whether finite type invariants can detect non-inversible or non-reversible knots.

For colouring polynomials the construction is similar in that Px
G arises from a deforma-

tion of a certain operatorc. There are, however, two crucial differences:

• The initial operatorc models conjugation (and is not the trivial operator),
• Its deformation ˜c is defined overZΛ (and not over a power series ring).
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As a consequence, the colouring polynomialPx
G is not of finite type, nor are its coefficients,

nor any other real-valued invariant computed from it [17].

1.4. Quandle invariants are specialized colouring polynomials. A quandle, as intro-
duced by D. Joyce [30], is a setQ with a binary operation whose axioms model conjugation
in a group, or equivalently, the Reidemeister moves of knot diagrams. Quandles have been
intensively studied by different authors and under variousnames; we review the relevant
definitions in§3. The Lifting Lemma proved in§3.2 tells us how to pass from quandle to
group colourings and back without any loss of information. On the level of knot invariants
this implies the following result:

Theorem 1.10(§3.2). Every quandle colouring number Fq
Q is the specialization of some

knot colouring polynomial PxG.

Quandle cohomology was initially studied in order to construct invariants in low-dimensional
topology: in [8, 9] it was shown how a 2-cocycleλ ∈ Z2(Q,Λ) gives rise to a state-sum
invariant of knots,Sλ

Q : K → ZΛ, which refines the quandle colouring numberFQ. We
prove the following result:

Theorem 1.11(§3.5). Every quandle2-cocycle state-sum invariant of knots is the special-
ization of some knot colouring polynomial. More precisely,suppose that Q is a connected
quandle,Λ is an abelian group, andλ ∈ Z2(Q,Λ) is a 2-cocycle with associated invari-
ant Sλ

Q : K → ZΛ. Then there exists a group G with basepoint x and aZ-linear map
ϕ : ZG→ ZΛ such that SλQ = ϕPx

G · |Q|.

This result provides a complete topological interpretation of quandle 2-cocycle state-
sum invariants in terms of the knot group and its peripheral system. Conversely, we prove
that state-sum invariants contain those colouring polynomials Px

G for which the longitude
groupΛ = C(x)∩G′ is abelian:

Theorem 1.12(§3.4). Suppose that G is a colouring group with basepoint x such thatthe
subgroupΛ = C(x)∩G′ is abelian. Then the colouring polynomial Px

G can be presented
as a quandle2-cocycle state-sum invariant. More precisely, the quandleQ = xG admits a
2-cocycleλ ∈ Z2(Q,Λ) such that SλQ = Px

G · |Q|.

1.5. How this article is organized. Section2 recalls the necessary facts about the knot
group and its peripheral system. It then discusses connected sum and symmetry operations
with respect to knot colouring polynomials and displays some applications. The main
purpose is to give some evidence as to the scope and the usefulness of these invariants.

Section3 examines quandle colourings and explains how to replace quandle colourings
by group colourings without any loss of information. The correspondence between quandle
extensions and quandle cohomology is then used to show how quandle 2-cocycle state-sum
invariants can be seen as specializations of colouring polynomials.

Section4 relates colouring polynomials with Yang-Baxter invariants. After recalling
the framework of linear braid group representations, we show how colouring polynomials
can be seen as Yang-Baxter deformations of colouring numbers.

1.6. Acknowledgements.The author would like to thank the anonymous referee for his
careful reading and numerous helpful comments. The resultsof Section2 were part of the
author’s Ph.D. thesis [16], which was financially supported by the Deutsche Forschungs-
gemeinschaft through the Graduiertenkolleg Mathematik atthe University of Bonn. Sec-
tions3 and4 were elaborated while the author held a post-doc position attheÉcole Nor-
male Supérieure de Lyon, whose hospitality is gratefully acknowledged.
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2. KNOT GROUPS AND COLOURING POLYNOMIALS

This section collects some basic facts about the knot group and its peripheral system
(§2.1) and their homomorphic images (§2.2). We explain how connected sum and sym-
metry operations affect the knot group system and how this translates to colouring poly-
nomials (§2.3). We then display some examples showing that colouring polynomials are a
useful tool in distinguishing knots where other invariantsfail (§2.4).

2.1. Peripheral system. We use fairly standard notation, which we recall from [18] for
convenience. Aknot is a smooth embeddingk: S1 →֒ S3, considered up to isotopy. This
is equivalent to considering the oriented imageK = k(S1) in S3, again up to isotopy. A
framing of k is an embeddingf : S1 ×D2 →֒ S3 such thatf |S1×0 = k. As basepoint of
the spaceS3 r K we choosep = f (1,1). In the fundamental groupπK := π1(S

3 r K, p)
we define themeridian mK = [ f |1×S1] and thelongitude lK = [ f |S1×1]. Up to isotopy
the framing is characterized by the linking numbers lk(K,mK) ∈ {±1} and lk(K, lK) ∈ Z,
and all combinations are realized. We will exclusively workwith the standard framing,
characterized by the linking numbers lk(K,mK) = +1 and lk(K, lK) = 0.

Up to isomorphism, the triple(πK ,mK , lK) is a knot invariant, and even a complete
invariant: two knotsK andK′ are isotopic if and only if there is a group isomorphism
φ : πK → πK′ with φ(mK) = mK′ andφ(lK) = lK′ . This is a special case of Waldhausen’s
theorem on sufficiently large 3-manifolds; see [42, Cor. 6.5] as well as [6, §3C].

Besides closed knotsk: S1 →֒ S3 it will be useful to consider long knots (also called
1-tangles), i.e. smooth embeddingsℓ : R →֒ R3 such thatℓ(t) = (t,0,0) for all parameters
t outside of some compact interval. We refer to [18] for a detailed discussion with respect
to knot groups and quandles.

K

*

mK

Kl

FIGURE 1. Meridian and longitude of a long knot

2.2. Colouring groups. Since knot groups are residually finite [40, Thm. 3.3], there are
plenty of finite knot group representations. But which groups do actually occur as homo-
morphic images of knot groups? This question was raised by L.P. Neuwirth [38], and first
solved by F. Gonzalez-Acuña [25]:

Theorem 2.1([25, 28]). A pointed group(G,x) is the homomorphic image of some knot
group(πK ,mK) if and only if G is finitely generated and G= 〈xG〉. �

The condition is necessary, because every knot groupπK is finitely generated by conju-
gates of the meridianmK . (See the Wirtinger presentation, recalled in§3.1.) For a proof of
sufficiency we refer to the article of D. Johnson [28], who has found an elegant and inge-
niously simple way to construct a knotK together with an epimorphism(πK ,mK)→ (G,x).
Here we restrict attention tofinitegroups:
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Definition 2.2. Let G be a finite group andx ∈ G. The pair(G,x) is called acolouring
group if the conjugacy classxG generates the whole groupG. For example, every finite
simple groupG is a colouring group with respect to any of its non-trivial elementsx 6= 1.

Remark 2.3. Given a finite groupG0 and x ∈ G0, every homomorphism(πK ,mK) →
(G0,x) maps to the subgroupG1 := 〈xG0〉. If G1 is strictly smaller thanG0, then we can
replaceG0 by G1. Continuing like this, we obtain a descending chainG0 ⊃ G1 ⊃ G2 ⊃ ·· · ,
recursively defined byGi+1 = 〈xGi 〉. SinceG0 is finite, this chain must stabilize, and we end
up with a colouring groupGn = 〈xGn〉. Hence, we can assume without loss of generality
that(G,x) is a colouring group.

Given(G,x) let Λ∗ be the set of longitude imagesρ(lK), whereρ ranges over all knot
group homomorphismsρ : (πK ,mK) → (G,x) and all knotsK. ThenΛ∗ is a subgroup of
G [29]. Since meridianmK ∈ πK and longitudelK ∈ π ′

K commute,Λ∗ is contained in the
subgroupΛ = C(x)∩G′, which will play an important rôle in subsequent arguments.

D. Johnson and C. Livingston [29] have worked out a complete characterization of the
subgroupΛ∗ in terms of homological obstructions. As an application, consider a colouring
group(G,x) that is perfect, i.e.G′ = G, and has cyclic centralizer, sayC(x) = 〈x〉. Then
[29] affirms thatΛ∗ = Λ = C(x). All of our examples in§2.4are of this type.

2.3. Knot and group symmetries. The knot groupπK is obviously independent of orien-
tations. In order to define the longitude, however, we have tospecify the orientation ofK,
and the definition of the meridian additionally depends on the orientation ofS3. Changing
these orientations defines the following symmetry operations:

Definition 2.4. Let K ⊂ S3 be an oriented knot. The same knot with the opposite orien-
tation ofS3 is themirror imageor theobverseof K, denotedK×. (We can represent this
asK× = σK, whereσ : S3 → S3 is a reflection.) Reversing the orientation of the knotK
yields thereverseknotK! . Inverting both orientations yields theinverseknotK∗.

Please note that different authors use different terminology, in particular reversion and
inversion are occasionally interchanged. Here we adopt thenotation of J.H. Conway [10].

Proposition 2.5. Let K be an oriented knot with group systemπ̌(K) = (πK ,mK , lK). Ob-
version, reversion and inversion affect the group system asfollows:

obversion: π̌(K×) = (πK ,m−1
K , lK)

reversion: π̌(K!) = (πK ,m−1
K , l−1

K )

inversion: π̌(K∗) = (πK ,mK , l−1
K )

The fundamental group of the connected sum K♯ L is the amalgamated productπK ∗ πL

modulo mK = mL. Its meridian is mK and its longitude is the product lK lL. �

Corollary 2.6. Every colouring polynomial PxG : K → ZG is multiplicative, that is, we
have Px

G(K ♯L) = Px
G(K) ·Px

G(L) for any two knots K and L. �

In order to formulate the effect of inversion, let∗ : ZG→ ZG be the linear extension of
the inversion mapG→ G, g 7→ g−1.

Corollary 2.7. Every colouring polynomial PxG : K → ZG is equivariant under inversion,
i.e. Px

G(K∗) = Px
G(K)∗ for every knot K. In particular, the colouring number Fx

G(K) is
invariant under inversion of K. �

Obversion and reversion of knots can similarly be translated into symmetries of colour-
ing polynomials, but to do so we need a specific automorphism of G:
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Definition 2.8. An automorphism× : G → G with x× = x−1 is called anobversionof
(G,x). An anti-automorphism! : G→ G with x! = x is called areversionof (G,x).

Obviously a group(G,x) possesses a reversion if and only if it possesses an obversion.
They are in general not unique, because they can be composed with any automorphism
α ∈ Aut(G,x), for example conjugation by an element inC(x).

Remark 2.9. The braid group Bn, recalled in§4.1below, has a unique anti-automorphism
! : Bn →Bn fixing the standard generatorsσ1, . . . ,σn−1. Analogously there exists a unique
automorphism× : Bn → Bn mapping each standard generatorσi to its inverseσ−1

i . The
exponent sum Bn → Z shows that this cannot be an inner automorphism.

These symmetry operations on braids correspond to the abovesymmetry operations on
knots: if a knotK is represented as the closure of the braidβ (see§4.1), then the inverse
braidβ−1 represents the inverse knotK∗, the reverse braidβ ! represents the reverse knot
K! , and the obverse braidβ× represents the obverse knotK×.

Given an obversion and a reversion of(G,x), their linear extensions to the group ring
ZG will also be denoted by× : ZG → ZG and ! : ZG → ZG, respectively. We can now
formulate the equivariance of the corresponding colouringpolynomials:

Corollary 2.10. Suppose that(G,x) possesses an obversion× and a reversion! . Then the
colouring polynomial PxG is equivariant with respect to obversion and reversion, that is, we
have Px

G(K×) = Px
G(K)× and Px

G(K!) = Px
G(K)! for every knot K. In this case the colouring

numbers of K, K∗, K×, and K! are the same. �

Example 2.11.Every elementx in the symmetric group Sn is conjugated to its inversex−1,
because both have the same cycle structure. Any such conjugation defines an obversion
(Sn,x) → (Sn,x−1). This argument also applies to alternating groups: givenx ∈ An we
know thatx is conjugated tox−1 in Sn. Since An is normal in Sn, this conjugation restricts
to an obversion(An,x) → (An,x−1). This need not be an inner automorphism.

On the other hand, some groups do not permit any obversion at all:

Example 2.12. Let F be a finite field and letG = F ⋊ F× be its affine group. We have
Aut(G) = Inn(G) ⋊ Gal(F), where Gal(F) is the Galois group ofF over its prime field
Fp. If F = Fp, then every automorphism ofG is inner and thus induces the identity on the
abelian quotientF×. If p≥ 5, we can choose an elementx = (a,b) ∈ G whose projection
to F× satisfiesb 6= b−1. Hence there is no automorphism ofG that mapsx to x−1. Indeed,
searching all groups of small order with GAP [24], we find that the smallest group having
this property isF5 ⋊F×

5 of order 20.

For the sake of completeness we expound the following elementary result:

Proposition 2.13. The affine group G= F ⋊F× satisfiesAut(G) = Inn(G)⋊ Gal(F).

Proof. The product inG is given by(a,b)(c,d) = (a+bc,bd), and so Gal(F) can be seen
as a subgroup of Aut(G), whereφ ∈ Gal(F) acts as(a,b) 7→ (φ(a),φ(b)). Since Inn(G) is
a normal subgroup of Aut(G) with Inn(G)∩Gal(F) = {idG}, we see that Aut(G) contains
the semi-direct product Inn(G)⋊ Gal(F).

It remains to show that everyα ∈ Aut(G) belongs to Inn(G)⋊ Gal(F). This is trivially
true forF = F2, so we will assume thatF has more than two elements. It is then easily
verified thatG′ = F×{1}. Let ζ be a generator of the multiplicative groupF×. We have
α(1,1) = (u,1) with u∈ F×, andα(0,ζ ) = (v,ξ ) with v∈ F, ξ ∈ F×, ξ 6= 1. Conjugating
byw= (v(1−ξ )−1,u), we obtain(u,1)w = (1,1) and(v,ξ )w = (0,ξ ). In the sequel we can
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thus assumeu= 1 andv= 0. This impliesα(0,b) = (0,φ(b)) with φ : F× → F×, ζ n 7→ ξ n

for all n ∈ Z. Extending this byφ(0) = 0 we obtain a bijectionφ : F → F satisfying
φ(ab) = φ(a)φ(b) for all a,b ∈ F. Moreover, we findα(a,1) = (φ(a),1): this is clear
for a = 0, and fora 6= 0 we have(a,1) = (0,a)(1,1) and thusα(a,1) = (0,φ(a))(1,1) =
(φ(a),1). This proves thatφ(a+ b) = φ(a)+ φ(b) for all a,b∈ F, whenceφ ∈ Gal(F).
We conclude thatα(a,b) = (φ(a),φ(b)), as claimed. �

2.4. Examples and applications.The preceding discussion indicates that symmetries of
the group(G,x) affect the colouring polynomialPx

G(K) just as well as symmetries of the
knotK. We point out several examples:

Example 2.14.Let p be a prime and letG= PSL2 Fp be equipped with basepointz=
[

1 1
0 1

]

of orderp. Inversion, obversion, and reversion are realized by
[

a b
c d

]∗
=

[

d −b
−c a

]

,
[

a b
c d

]×
=

[

a −b
−c d

]

,
[

a b
c d

]!
=

[

d b
c a

]

.

We haveC(z) = 〈z〉. For p = 2 andp = 3 one finds that the longitude groupΛ = C(z)∩G′

is trivial. For p ≥ 5 the groupG is perfect (even simple), henceΛ = 〈z〉. We conclude
that the colouring polynomialPz

G is insensitive to reversion: we havePz
G(K) ∈ Z〈z〉 and

reversion fixeszand therefore all elements inZ〈z〉.

Example 2.15.Consider an alternating groupG= An with n≥3, and a cyclex=(123. . . l)
of maximal length, that is,l = n for n odd andl = n−1 for n even. As we have pointed
out above, a suitable conjugation in Sn produces an obversion(G,x) → (G,x−1). We have
C(x) = 〈x〉. Forn= 3 andn= 4 one finds that the longitude groupΛ = C(x)∩G′ is trivial.
Forn≥ 5 the groupG is perfect (even simple), hence the longitude group isΛ = 〈x〉. Again
we conclude that the colouring polynomialPx

G is insensitive to reversion.
We observe that forl = 3,7,11, . . . an obversion of(G,x) cannot be realized by an

inner automorphism: consider for exampleG = A11 andx = (abcdefghijk): in S11 the
centralizer isC(x) = 〈x〉 and consequently every permutationσ ∈ S11 with xσ = x−1 is of
the formσ = xk(ak)(bj)(ci)(dh)(eg) and thus odd. The same argument shows that for
l = 5,9,13, . . . an obversion of(G,x) can be realized by an inner automorphism.

Example 2.16. As a more exotic example, let us finally consider the Mathieu groupM11,
i.e. the unique simple group of order 7920= 24·32·5·11, and the smallest of the sporadic
simple groups [11]. It can be presented as a subgroup of A11, for example as

G = 〈x,y〉 with x = (abcdefghijk), y = (abcejikdghf).

This presentation has been obtained from GAP [24] and can easily be verified with any
group-theory software by checking thatG is simple of order 7920. The Mathieu group
M11 is particularly interesting for us, because it doesnot allow an obversion. To see this it
suffices to know that its group of outer automorphisms is trivial [11], in other words, every
automorphism ofM11 is realized by conjugation. InM11 the elementx is not conjugated to
its inverse — this is not even possible in A11 according to the preceding example. Hence
there is no automorphism ofM11 that mapsx to x−1.

Applied to colouring polynomials, this means that there is apriori no restriction on
the invariants of a knot and its mirror image. As a concrete example we consider the
Kinoshita-Terasaka knotK and the Conway knotC displayed in Figure2.

Both knots have trivial Alexander polynomial. They differ only by rotation of a 2-
tangle, in other words they are mutants in the sense of Conway[10]. Therefore neither the
Jones, HOMFLYPT nor Kauffman polynomial can distinguish betweenK andC, see [36].
With the help of a suitable colouring polynomial the distinction is straightforward:
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K C

FIGURE 2. The Kinoshita-Terasaka knot and the Conway knot

Example 2.17. R. Riley [39] has studied knot group homomorphisms to the simple group
G = PSL2F7 of order 168. Letz be an element of order 7, sayz =

[

1 1
0 1

]

. Then the
associated colouring polynomials are

Pz
G(K) = Pz

G(C) = 1+7z5+7z6,

Pz
G(K∗) = Pz

G(C∗) = 1+7z+7z2.

This shows that both knots are chiral. By a more detailed analysis of their coverings, Riley
could even show thatK andC are distinct.

Example 2.18.To distinguishK andC we give a simple and direct argument using colour-
ing polynomials. For every elementx∈ PSL2F7 of order 3, sayx =

[

0 1
−1 1

]

, the associated
colouring polynomial distinguishesK andC:

Px
G(K) = 1+6x Px

G(C) = 1+12x

Px
G(K∗) = 1+6x2 Px

G(C∗) = 1+12x2

Both invariants,Pz
G andPx

G, show chirality but are insensitive to reversion.

These and the following colouring polynomials were calculated with the help of an
early prototype of the computer programKnotGRep, an ongoing programming project to
efficiently construct the set of knot group homomorphisms toa finite group. Even though
general-purpose software may be less comfortable, our results can also be obtained from
the Wirtinger presentation (§3.1) using GAP [24] or similar group-theoretic software.

Example 2.19. The alternating groupG = A7 with basepointx = (1234567) yields

Px
G(K) = 1+7x2+28x5+28x6 Px

G(C) = 1+7x2+7x3+21x5+14x6

Px
G(K∗) = 1+28x+28x2+7x5 Px

G(C∗) = 1+14x+21x2+7x4+7x5

Again this invariant distinguishesK et C and shows their chirality, but is insensitive to
reversion, as explained in Example2.15above.

Example 2.20. More precise information can be obtained using the Mathieu groupM11,
presented as the permutation group(G,x) in Example2.16 above. For the Kinoshita-
Terasaka knotK and the Conway knotC one finds:

Px
G(K) = 1+11x3+11x7 Px

G(C) = 1+11x3+11x7

Px
G(K∗) = 1+11x4+11x8 Px

G(C∗) = 1+11x4+11x8

Px
G(K×) = 1+11x4+22x8 Px

G(C×) = 1+11x4+11x6+11x8

Px
G(K!) = 1+22x3+11x7 Px

G(C!) = 1+11x3+11x5+11x7
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Consequently all eight knots are distinct;K andC are neither inversible nor obversible
nor reversible. (This example was inspired by G. Kuperberg [35], who used the colouring
numberFx

G to distinguish the knotC from its reverseC! .)

Usually it is very difficult to detect non-reversibility of knots. Most invariants fail to do
so, including the usual knot polynomials. In view of the simplicity of our approach, the
success of knot colouring polynomials is remarkable. We give two further examples:

Example 2.21. The family of bretzel knotsB(p1, p2, p3), parametrized by odd integers
p1, p2, p3, is depicted in Figure3a. According to the classification of bretzel knots (see
[6], §12), the bretzel knotB = B(3,5,7) is neither reversible nor obversible nor inversible.
For the Mathieu groupG = M11 with basepointx as in Example2.20we obtain:

Px
G(B) = 1+11x Px

G(B×) = 1+11x7

Px
G(B∗) = 1+11x10 Px

G(B!) = 1+11x4

Again the colouring polynomial shows that the knotB possesses none of the three sym-
metries. Historically, bretzel knots were the first examples of non-reversible knots. Their
non-reversibility was first proven by H.F. Trotter [41] in 1963 by representing the knot
group system on a suitable triangle group acting on the hyperbolic plane.

1p 2p p3

FIGURE 3. (a) the bretzel knotB(p1, p2, p3), (b) the knot 817

Example 2.22. Figure3b shows the knot 817, which is the smallest non-reversible knot.
It is a 3-bridge knot but not a bretzel knot, and there is no general classification theorem
available. To analyze this example we choose once more the Mathieu groupM11 with
basepointx as above. The knot 817 then has colouring polynomial 1+11x5+11x6 whereas
the reverse knot has trivial colouring polynomial 1. (Here even the colouring numberFx

G
suffices to prove that this knot is non-reversible.) We remark that 817 is inversible and that
this symmetry is reflected in the symmetry of its colouring polynomials.

The colouring polynomialPx
G(K) is, by definition, an element in the group ringZG, and

it actually lies in the much smaller ringZΛ. The following symmetry consideration further
narrows down the possible values. It is included here to explain one of the observations
that come to light in the previous examples, but it will not beused in the sequel.

Proposition 2.23. Let (G,x) be a colouring group. If conjugation by x has order pk for
some prime p, then the colouring polynomial satisfies Px

G(K) ≡ 1 (mod p).

Proof. The cyclic subgroup〈x〉 acts on the set Hom(πK ,mK ; G,x) by conjugation. The
only fixed point is the trivial representation(π(K),mK) → (Z,1) → (G,x). This can be
most easily seen by interpreting group homomorphismsρ : (πK ,mK) → (G,x) as colour-
ings f : (D,0) → (G,x) of a knot diagramD, see§3.1below. If f x = f then all colours of
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f commute withx: following the diagram from the first to the last arc we see by induction
that all colours are in fact equal tox. Since there is only one component, we conclude that
f is the trivial colouring, corresponding to the trivial representation.

Every non-trivial representationρ appears in an orbit of lengthpℓ for someℓ ≥ 1.
Sinceρ(lK) commutes withx, all representations in such an orbit have the same longitude
image inG. The sumPx

G(K) thus begins with 1 for the trivial representation, and all other
summands can be grouped to multiples ofp. �

3. QUANDLE INVARIANTS ARE SPECIALIZED COLOURING POLYNOMIALS

The Wirtinger presentation allows us to interpret knot group homomorphisms as colour-
ings of knot diagrams. Since such colourings involve only conjugation, they are most nat-
urally treated in the category of quandles, as introduced byD. Joyce [30]. We recall the
basic definitions concerning quandles and quandle colourings in§3.1, and explain in§3.2
how to pass from quandles to groups and back without any loss of information.

Quandle cohomology was studied in [8, 9], where it was shown how a 2-cocycle gives
rise to a state-sum invariant of knots inS3. We recall this construction in§3.4 and show
that every colouring polynomialPx

G can be presented as a quandle 2-cocycle state-sum
invariant, provided that the subgroupΛ = C(x)∩G′ is abelian (Theorem3.24).

In order to prove the converse, we employ the cohomological classification of central
quandle extensions established in [18, 7], recalled in§3.3 below. This allows us to prove
in §3.5 that every quandle 2-cocycle state-sum invariant is the specialization of a suitable
knot colouring polynomial (Theorem3.25).

3.1. Wirtinger presentation, quandles, and colourings.Our exposition follows [18], to
which we refer for further details. We consider a long knot diagram as in Figure1 and
number the arcs consecutively from 0 ton. At the end of arc numberi −1, we undercross
arc numberκ i = κ(i) and continue on arc numberi. We denote byε i = ε(i) the sign of this
crossing, as depicted in Figure5. The mapsκ : {1, . . . ,n}→{0, . . . ,n} andε : {1, . . . ,n}→
{±1} are theWirtinger codeof the diagram.

Theorem 3.1. Suppose that a knot L is represented by a long knot diagram with Wirtinger
code(κ ,ε) as above. Then the knot group allows the presentation

πL = 〈x0,x1, . . . ,xn | r1, . . . , rn〉 with relation ri being xi = x−ε i
κ i xi−1xε i

κ i .

As peripheral system we can choose mL = x0 and lL = ∏i=n
i=1 x−ε i

i−1 xε i
κ i . �

For a proof see Crowell-Fox [12, §VI.3] or Burde-Zieschang [6, §3B]. The Wirtinger
presentation works just as well for a closed knot diagram. Since arcs 0 andn are then
identified, this amounts to adding the (redundant) relationx0 = xn to the above presentation.
The group is, of course, the same.

The Wirtinger presentation allows us to interpret knot group homomorphismsπL → G
as colourings. More precisely, aG-colouringof the diagramD is a mapf : {0, . . . ,n}→ G
such thatf (i) = f (κ i)−ε i f (i − 1) f (κ i)ε i . In other words, at each coloured crossing as
in Figure5 the coloursa andc are conjugated viaab = c. Such a colouring is denoted
by f : D → G. We denote by Col(D;G) the set of colourings ofD with colours inG.
For a long knot diagramD, we denote by Col(D,0;G,x) the subset of colourings that
colour arc number 0 with colourx. The Wirtinger presentation establishes natural bijec-
tions Hom(πK ;G) ∼= Col(D;G) and Hom(πK ,mK ;G,x) ∼= Col(D,0;G,x).
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Example 3.2. Figure4 shows a colouring of the left-handed trefoil knot (represented as
a long knot) with elements in the alternating group A5. Note that all definitions readily
extend to closed knot diagrams.

(12345) (12345)

(13542) (15324)

FIGURE 4. A5-colouring of the left-handed trefoil knot

The Wirtinger presentation ofπK involves only conjugation but not the group multipli-
cation itself. The underlying algebraic structure can be described as follows:

Definition 3.3. A quandleis a setQ with two binary operations∗,∗ : Q×Q→Q satisfying
the following axioms for alla,b,c∈ Q:

(Q1) a∗a= a (idempotency)
(Q2) (a∗b)∗b = (a∗b)∗b = a (right invertibility)
(Q3) (a∗b)∗ c= (a∗ c)∗ (b∗ c) (self-distributivity)

The name “quandle” was introduced by D. Joyce [30]. The same notion was studied
by S.V. Matveev [37] under the name “distributive groupoid”, and by L.H. Kauffman [34]
who called it “crystal”. Quandle axioms (Q2) and (Q3) are equivalent to saying that for
everyb∈ Q the right translationρb : a 7→ a∗b is an automorphism ofQ. Such structures
were called “automorphic sets” by E. Brieskorn [4]. The somewhat shorter termrack was
preferred by R. Fenn and C.P. Rourke [20]. The notion has been generalized to “crossed
G-sets” by P.J. Freyd and D.N. Yetter [23].

Definition 3.4. As before, letD be a long knot diagram, its arcs being numbered by
0, . . . ,n. A Q-colouring, denotedf : D → Q, is a map f : {0, . . . ,n} → Q such that at
each crossing as in Figure5 the three coloursa,b,c satisfy the relationa∗b = c. We de-
note by Col(D;Q) the set ofQ-colourings, and by Col(D,0;Q,q) the subset of colourings
satisfying f (0) = q.

b c

a b

b

c

a

b

a b = c*

*c b = a
ε = +1 ε = −1

FIGURE 5. Wirtinger rules for colouring a knot diagram

Proposition 3.5 (Joyce [30]). The quandle axioms ensure that each Reidemeister move
D ⇌ D′ induces bijectionsCol(D;Q) ⇌ Col(D′;Q) andCol(D,0;Q,q) ⇌ Col(D′,0;Q,q),
respectively. In particular, if Q is finite, then the colouring numbers FQ(D) = |Col(D;Q)|
and Fq

Q(D) = |Col(D,0;Q,q)| are knot invariants. �
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3.2. From quandle colourings to group colourings and back.In many respects quan-
dles are close to groups. For colourings we will now explain how to pass from quandles to
groups and back without any loss of information.

Definition 3.6. A quandle homomorphismis a mapφ : Q → Q′ that satisfiesφ(a∗ b) =
φ(a)∗φ(b), and henceφ(a∗b) = φ(a)∗φ(b), for all a,b∈ Q.

Definition 3.7. The automorphism group Aut(Q) consists of all bijective homomorphisms
φ : Q→ Q. We adopt the convention that automorphisms ofQ act on the right, writtenaφ ,
which means that their compositionφψ is defined bya(φψ) = (aφ )ψ for all a∈ Q.

Definition 3.8. The group Inn(Q) = 〈ρb | b∈ Q〉 of inner automorphismsis the subgroup
of Aut(Q) generated by all right translationsρb : a 7→ a∗b. The quandleQ is calledcon-
nectedif the action of Inn(Q) onQ is transitive.

In view of the mapρ : Q→ Inn(Q), b 7→ ρb, we also writeab = a∗b for the operation
in a quandle. Conversely, it will sometimes be convenient towrite a∗b = b−1ab for the
conjugation in a group. In neither case will there be any danger of confusion.

Definition 3.9. A representationof a quandleQ on a groupG is a mapφ : Q→G such that
φ(a∗b) = φ(a)∗φ(b) for all a,b∈ Q. In other words, the following diagram commutes:

Q×Q
φ×φ

−−−−→ G×G

∗





y





y

conj

Q
φ

−−−−→ G

For example, the natural mapρ : Q→ Aut(Q) satisfiesρ(a∗b) = ρ(a)∗ρ(b). We call
ρ the inner representation ofQ. Moreover it satisfiesρ(ag) = ρ(a)g for all a ∈ Q and
g∈ Aut(Q). This is the prototype of an augmentation:

Definition 3.10. Let φ : Q→ G be a representation and letα : Q×G→ Q, (a,g) 7→ ag, be
a group action. We call the pair(φ ,α) anaugmentationif a∗b= aφ(b) andφ(ag) = φ(a)g

for all a,b∈ Q andg∈ G. In other words, the following diagram commutes:

(1)

Q×Q
id×φ

−−−−→ Q×G
φ×id

−−−−→ G×G

∗





y





y

α




y

conj

Q
id

−−−−→ Q
φ

−−−−→ G

Remark 3.11. We will usually reinterpret the group actionα as a group homomorphism
ᾱ : G→ Aut(Q), and denote the augmentation byQ

φ
−→ G

ᾱ
−→ Aut(Q). If G is generated

by the imageφ(Q), thenφ is equivariant and the action ofG on Q is uniquely determined
by the representationφ . In this case we simply say thatφ : Q→ G is an augmentation. For
example, every quandleQ comes equipped with the inner augmentationρ : Q→ Inn(Q).

Suppose thatQ is a quandle andφ : Q→ G is a representation on some groupG. Ob-
viously every quandle colouring̃f : D → Q maps to a group colouringf = φ f̃ : D → G.
If φ is an augmentation, then this process can be reversed, and wecan replace quandle
colourings by group colourings without any loss of information:

Lemma 3.12. Let(Q,q)
φ

−→ (G,g)
ᾱ

−→Aut(Q) be an augmentation of the quandle Q with
basepoint q∈ Q on the group G with basepoint x= φ(q) ∈ G. If D is a long knot diagram,
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then every group colouring f: (D,0) → (G,x) can be lifted to a unique quandle colouring
f̃ : (D,0) → (Q,q) such that f= φ f̃ . In other words,φ induces a bijection

φ∗ : Col(D,0;Q,q)
∼

−→ Col(D,0;G,x), f̃ 7→ f = φ f̃ .

The lifted colouringf̃ begins withf̃ (0)= q and ends with̃f (n)= qρ(lK), whereρ : (πK ,mK)→
(G,x) is the knot group representation associated with f .

Proof. Every representationφ : (Q,q) → (G,x) induces a mapφ∗ sending each quandle
colouring f̃ : (D,0) → (Q,q) to the associated group colouringφ f̃ : (D,0) → (G,x). In
generalφ∗ is neither injective nor surjective, lestφ is an augmentation. In order to define
the inverse mapψ∗ : Col(D,0;G,x) → Col(D,0;Q,q), we use the actionα : Q×G→ Q,
which we temporarily denote by(a,g) 7→ a•g for better readability.

The crucial ingredient in the proof is the commutativity of Diagram (1). Let us first show
how the conditiona∗b = a•φ(b) ensures injectivity ofφ∗. Let D be a long knot diagram
with Wirtinger code(κ ,ε). Assume thatf̃ , f̂ : (D,0) → (Q,q) are colourings withφ f̃ =
φ f̂ . By hypothesis we havẽf (0) = f̂ (0) = q. By induction suppose that̃f (i−1)= f̂ (i−1)
for somei ≥ 1. In the case of a positive crossing (ε i = +1) we then obtain

f̃ (i) = f̃ (i −1)∗ f̃ (κ i) = f̃ (i −1)•φ f̃ (κ i)

= f̂ (i −1)•φ f̂ (κ i) = f̂ (i −1)∗ f̂ (κ i) = f̂ (i).

The case of a negative crossing (ε i = −1) is analogous. We conclude thatf̃ = f̂ .
We now show how the equivariance conditionφ(a•g) = φ(a) ∗g of Diagram (1) en-

sures surjectivity. For every colouringf : (D,0) → (G,x), denoted byi 7→ xi , the colours
x0, . . . ,xn satisfy xi = xi−1 ∗ xε i

κ i . We define partial longitudesℓ0, . . . , ℓn by settingℓi :=

∏i
j=1x−ε j

j−1xε j
κ j . In particular we havex0 = xn = x andxi = x0∗ ℓi for all i = 0, . . . ,n. By def-

inition, ℓn = ρ(lK) is the (total) longitude of the colouringf . We definef̃ : (D,0)→ (Q,q)
by assigning the colourqi = q• ℓi to arc numberi = 0, . . . ,n. By hypothesis,φ : Q→ G is
an equivariant map, whence

(2) φ(qi) = φ(q• ℓi) = φ(q)∗ ℓi = x∗ ℓi = xi .

At each positive crossing we find the following identity, using axiom (Q1):

(3) qi−1∗qκ i = (qi−1∗qi−1)∗qκ i = (((q• ℓi−1)• x−1
i−1)• xκ i = q• ℓi = qi.

Analogously at each negative crossing:

(4) qi−1∗qκ i = (qi−1∗qi−1)∗qκ i = (((q• ℓi−1)• xi−1)• x−1
κ i ) = q• ℓi = qi .

We can thus defineψ∗ : Col(D,0;G,x)→Col(D,0;Q,q) by f 7→ f̃ . Equation (2) shows
thatφ∗ψ∗ = id, and Equations (3) and (4) imply thatψ∗φ∗ = id. �

Remark 3.13. Obviously, the conditiona∗b = aφ(b) cannot be dropped because it con-
nects the quandle operation∗ with the group actionα. Likewise, the equivariance con-
dition φ(ag) = φ(a)g cannot be dropped: as an extreme counter-example, considera
trivial quandleQ = {q} and an arbitrary group(G,x). We have a unique representation
φ : (Q,q) → (G,x) and a unique group actionα : Q×G→ Q. The mapφ is equivariant if
and only ifx∈ Z(G). In generalφ∗ cannot be a bijection, because the only(Q,q)-colouring
is the trivial one, while there may be non-trivial(G,x)-colourings.

The Lifting Lemma has the following analogue for closed knots:
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Lemma 3.14. Let φ : (Q,q) → (G,x) be an augmentation of the quandle Q on the group
G. If D is a closed knot diagram, thenφ induces a bijection betweenCol(D,0;Q,q) and
those homomorphismsρ : (πK ,mK) → (G,x) satisfying qρ(lK) = q. �

As an immediate consequence we obtain the following result:

Theorem 3.15. Every quandle colouring number Fq
Q is the specialization of some knot

colouring polynomial PxG.

Proof. We consider an augmentationφ : (Q,q)→ (G,x) with G= 〈φ(Q)〉, for example the
inner augmentation onφ : Q→ G = Inn(Q) with basepointx = φ(q).

For long knots, Lemma3.12impliesFq
Q = Fx

G. HenceFq
Q = εPx

G, whereε : ZG→ Z is
the augmentation map of the group ring, withε(g) = 1 for all g∈ G.

For closed knots we define the linear mapε : ZG→ Z by settingε(g) = 1 if qg = q, and
ε(g) = 0 if qg 6= q. Then Lemma3.14implies thatFq

Q = εPx
G. �

This argument will be generalized in§3.5, where we show that every quandle 2-cocycle
state-sum invariant is the specialization of some colouring polynomial.

3.3. Quandle coverings, extensions, and cohomology.We recall from [18] how quandle
colourings can be used to encode longitudinal information.To this end we consider a long
knot diagram with meridiansx0, . . . ,xn and partial longitudesl0, . . . , ln as defined in the
above proof of the Lifting Lemma. In particular we havex0 = xn = mK andxi = x0∗ l i with
l0 = 1 andln = lK . If we colour each arc not only with its meridianxi but with the pair
(xi , l i), then at each crossing we find that

xi = xi−1∗ xε i
κ i and l i = l i−1x−ε i

i−1xε i
κ i .

This crossing relation can be encoded in a quandle as follows.

Lemma 3.16([18]). Let G be a group that is generated by a conjugacy class Q= xG.
Then Q is a connected quandle with respect to conjugation a∗b = b−1ab and its inverse
a∗b = bab−1. Let G′ be the commutator subgroup and define

Q̃ = Q̃(G,x) := { (a,g) ∈ G×G′ | a = xg }.

The setQ̃ becomes a connected quandle when equipped with the operations

(a,g)∗ (b,h) = (a∗b,ga−1b) and (a,g)∗ (b,h) = (a∗b,gab−1).

The projection p: Q̃→ Q given by p(a,g) = a is a surjective quandle homomorphism. It
becomes an equivariant map when we let G′ act on Q by conjugation and oñQ by(a,g)b =
(ab,gb). In both cases G′ acts transitively and as a group of inner automorphisms. �

The construction of the quandlẽQ(G,x) has been tailor-made to capture longitude in-
formation. Considered purely algebraically, it is a covering in the following sense:

Definition 3.17. A surjective quandle homomorphismp: Q̃ → Q is called acoveringif
p(x̃) = p(ỹ) impliesã∗ x̃= ã∗ ỹ for all ã, x̃, ỹ∈ Q̃. In other words, the inner representation
Q̃→ Inn(Q̃) factors throughp. This property allows us to define an action ofQ on Q̃ by
settingã∗ x := ã∗ x̃ with x̃∈ p−1(x).

In the construction of Lemma3.16, the projectionp: Q̃→ Q is a covering map. More-
over, covering transformations are given by the left actionof Λ = C(x)∩G′ defined by
λ · (a,g) = (a,λg). This action satisfies the following axioms:

(E1) (λ x̃)∗ ỹ= λ (x̃∗ ỹ) andx̃∗ (λ ỹ) = x̃∗ ỹ for all x̃, ỹ∈ Q̃ andλ ∈ Λ.
(E2) Λ acts freely and transitively on each fibrep−1(x).
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Axiom (E1) is equivalent to saying thatΛ acts by automorphisms and the left action of
Λ commutes with the right action of Inn(Q̃). We denote such an action byΛ y Q̃. In this
situation the quotientQ := Λ\Q̃ carries a unique quandle structure that turns the projection
p: Q̃→ Q into a quandle covering.

Definition 3.18. An extension E: Λ y Q̃→ Q consists of a surjective quandle homomor-
phismQ̃ → Q and a group actionΛ y Q̃ satisfying axioms (E1) and (E2). We callE a
central extensionif Λ is abelian.

Quandle extensions are an analogue of group extensions, andcentral quandle exten-
sions come as close as possible to imitating central group extensions. Analogous to the
case of groups, central quandle extensions are classified bythe second cohomology group
H2(Q,Λ), see [18, 7]. More precisely:

Theorem 3.19([18]). Let Q be a quandle, letΛ be an abelian group, and letE (Q,Λ) be
the set of equivalence classes of central extensions of Q byΛ. Given a central extension
E : Λ y Q̃ → Q, each section s: Q → Q̃ defines a2-cocycleλ : Q× Q → Λ. If s′ is
another section, then the associated2-cocycleλ ′ differs fromλ by a2-coboundary. The
map E 7→ [λ ] so constructed induces a natural bijectionE (Q,Λ) ∼= H2(Q,Λ). �

The relevant portion of the cochain complexC1 δ 1

−→C2 δ 2

−→C3 is formed byn-cochains
λ : Qn → Λ satisfyingλ (a1, . . . ,an) = 0 wheneverai = ai+1 for some indexi, and the
first two coboundary operatorsδ 1(µ)(a,b) = µ(a)−µ(ab) andδ 2(λ )(a,b,c) = λ (a,c)−
λ (a,b)+ λ (ac,bc)−λ (ab,c). For details, see [8, 9, 18]

3.4. From colouring polynomials to state-sum invariants. Let D be a knot diagram and
let f be a colouring ofD with colours inQ. Suppose thatΛ is an abelian group, written
multiplicatively, and thatλ : Q2 → Λ is a 2-cocycle. For each coloured crossingp as in
Figure5, we define itsweight by 〈λ |p〉 := λ (a,b)ε . The total weight of the colouring
f is the product〈λ | f 〉 := ∏p〈λ |p〉 over all crossingsp. The state-sumof the diagram
D is defined to beSλ

Q(D) := ∑ f 〈λ | f 〉, where the sum inZΛ is taken over all colourings
f : D → Q. We recall the following results:

Lemma 3.20([8, 9]). The state-sum SλQ is invariant under Reidemeister moves and thus
defines a knot invariant SλQ : K → ZΛ. �

Lemma 3.21([9, Prop. 4.5]). If the colouring f: D → Q is closed, that is f(0) = f (n),
then the weight〈λ | f 〉 is invariant under addition of coboundaries. As a consequence, the
state sum SλQ of a closed knot depends only on the cohomology class[λ ]. �

Lemma 3.22(cf. [19, Lem. 32]). The diagonal action ofInn(Q) on Qn induces the trivial
action on H∗(Q,Λ). As a consequence, for each closed colouring f: D → Q and every
inner automorphism g∈ Inn(Q) we have〈λ | f g〉 = 〈gλ | f 〉 = 〈λ | f 〉. �

This last result is well-known in group cohomology, cf. Brown [5, Prop. II.6.2]. It
seems to be folklore in quandle cohomology, but I could not find a written account of
it. The necessary argument is provided by [19, Lem. 32] in the more general setting of
Yang-Baxter cohomology, which immediately translates to Lemma3.22.

Lemma 3.23 ([18, Lem. 50]). Let p: (Q̃, q̃) → (Q,q) be a central quandle extension.
Given a long knot diagram D, every colouring f: (D,0)→ (Q,q) uniquely lifts to a colour-
ing f̃ : (D,0) → (Q̃, q̃) such that f= pf̃ . If f is closed thenf̃ (n) = 〈λ | f 〉 · q̃, where
[λ ] ∈ H2(Q,Λ) is the cohomology class associated with the extension p. �
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These preliminaries being in place, we can now prove that every colouring polynomial
Px
G can be presented as a 2-cocycle state-sum invariant, provided that the subgroupΛ =

C(x)∩G′ is abelian.

Theorem 3.24. Suppose that G is a colouring group with basepoint x such thatthe sub-
group Λ = C(x)∩G′ is abelian. Then the colouring polynomial Px

G can be presented as
a quandle2-cocycle state-sum invariant. More precisely, the quandleQ = xG admits a
2-cocycleλ ∈ Z2(Q,Λ) such that SλQ = Px

G · |Q|.

Proof. Let Q = xG be the conjugacy class ofx in the groupG, and letQ̃ = Q̃(G,x) be
the covering quandle constructed in Lemma3.16. SinceΛ is abelian, we obtain a cen-
tral extensionΛ y Q̃ → Q. Let [λ ] ∈ H2(Q,Λ) be the associated cohomology class. As
basepoints we chooseq = x in Q andq̃ = (x,1) in Q̃.

Let D be a long diagram of some knotK, let f : (D,0) → (Q,q) be a colouring, let
ρ : (πK ,mK)→ (G,x) be the corresponding knot group homomorphism, and letf̃ : (D,0)→
(Q̃, q̃) be the lifting of f . On the one hand we havẽf (n) = (x,〈λ | f 〉) from Lemma
3.23. On the other hand we havẽf (n) = (x,ρ(lK)) from the Wirtinger presentation. Thus
ρ(lK) = 〈λ | f 〉, and summing over all colouringsf : (D,0) → (Q,q) yieldsPx

G(K).
To obtain the state-sumSλ

Q we have to sum over all colouringsf : D → Q. We have
Col(D,Q) =

⋃

q′∈QCol(D,0;Q,q′). SinceQ is connected, for eachq′ ∈ Q there exists
g ∈ G such thatqg = q′. Hence f 7→ f g establishes a bijection between Col(D,0;Q,q)
and Col(D,0;Q,q′). By Lemma3.22we have〈λ | f 〉 = 〈λ | f g〉. Thus the state-sum over all
colouringsf : (D,0)→ (Q,q′) again yieldsPx

G. We conclude thatSλ
Q(K) = Px

G(K) · |Q|. �

3.5. From state-sum invariants to colouring polynomials. Theorem3.24has the fol-
lowing converse, which allows us to express quandle 2-cocycle state-sum invariants by
knot colouring polynomials.

Theorem 3.25.Every quandle2-cocycle state-sum invariant of knots is the specialization
of some knot colouring polynomial. More precisely, supposethat Q is a connected quandle,
Λ is an abelian group, andλ ∈Z2(Q,Λ) is a2-cocycle with associated invariant Sλ

Q : K →
ZΛ. Then there exists a group G with basepoint x and a linear mapϕ : ZG → ZΛ such
that the colouring polynomial PxG : K → ZG satisfies SλQ = ϕPx

G · |Q|.

Proof. We first construct a suitable group(G,x) together with a linear mapϕ : ZG→ ZΛ.
Let Λ y Q̃

p
−→ Q be the central extension associated with the 2-cocycleλ , as explained

in Theorem3.19. We putG := Inn(Q̃). The inner representatioñρ : Q̃ → G defines an
augmented quandle in the sense of§3.2. We choose a basepoint ˜q∈ Q̃ and setx := ρ̃(q̃).

We chooseq = p(q̃) as basepoint ofQ. Let s: Q → Q̃ be a section that realizes the
2-cocycleλ . Sincep is a covering, we obtain a representationρ : Q → G by ρ = ρ̃ ◦ s.
Conversely, we can define an action ofG on Q by settingag = p(s(a)g). This turns the
representationρ : Q → G into an augmentation andp: Q̃ → Q into an equivariant map.
Our notation being in place, we can now define the linear map

ϕ : ZG→ ZΛ by setting ϕ(g) =

{

0 if qg 6= q,

ℓ if qg = q andℓ ∈ Λ such that ˜qg = ℓ · q̃.

It remains to prove thatSλ
Q = ϕPx

G · |Q|. Let K be a knot represented by a long knot
diagramD. The Lifting Lemma3.14 grants us a bijection between closed colourings
f : (D,0)→ (Q,q) and those homomorphismsρ : (πK ,mK)→ (G,x) that satisfyqρ(lK) = q.
Regarding the covering̃Q, we claim that ˜qρ(lK) = 〈λ | f 〉 · q̃. To see this, letf̃ : (D,0) →
(Q̃, q̃) be the lifting of f . On the one hand we can apply the Lifting Lemma3.14to the
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augmentatioñQ→ G, which yields f̃ (n) = q̃ρ(lK). On the other hand we can apply Lemma
3.23, which yields f̃ (n) = 〈λ | f 〉 · q̃.

The mapϕ thus specializes the knot colouring polynomialPx
G(K) to the state-sum

∑ f 〈λ | f 〉, at least if we restrict the summation to colouringsf : (D,0) → (Q,q). SinceQ
is connected, any other basepointq′ yields the same state-sum by Lemma3.22. Summing
over allq′ ∈ Q, we thus obtainSλ

Q = ϕPx
G · |Q|, as claimed. �

4. COLOURING POLYNOMIALS ARE YANG-BAXTER INVARIANTS

P.J. Freyd and D.N. Yetter [23] have shown that the colouring numberFx
G : K → Z is

a Yang-Baxter invariant. This means thatFx
G can be obtained as the trace of a linear braid

group representation arising from a suitable Yang-Baxter operatorc.
In this section we will show that the colouring polynomialPx

G : K → ZΛ is also a
Yang-Baxter invariant, obtained from a certain Yang-Baxter operator ˜c defined below. It
will follow from our construction that ˜c is a deformation ofc overZΛ.

4.1. Braid group representations and Yang-Baxter invariants. The notion of Yang-
Baxter invariants rests on two classical theorems: Artin’spresentation of the braid groups
and the Alexander-Markov theorem, which we will now recall.Our exposition closely
follows [19] and is included here for convenience.

Theorem 4.1(E. Artin [1]). The braid group on n strands can be presented as

Bn =

〈

σ1, . . . ,σn−1

∣

∣

∣

σiσ j = σ j σi for |i − j| ≥ 2
σiσ jσi = σ jσiσ j for |i − j| = 1

〉

,

where the braidσi performs a positive half-twist of the strands i and i+1.

Definition 4.2. Let K be a commutative ring andV a K-module. AYang-Baxter oper-
ator (or R-matrix) is an automorphismc: V ⊗V → V ⊗V that satisfies theYang-Baxter
equation, also calledbraid relation:

(c⊗ idV)(idV ⊗c)(c⊗ idV) = (idV ⊗c)(c⊗ idV)(idV ⊗c) in AutK(V⊗3).

Here and in the sequel tensor products are taken overK if no other ring is indicated.

Corollary 4.3. Given a Yang-Baxter operator c and some integer n≥ 2, we can define
automorphisms ci : V⊗n →V⊗n by setting

ci = id⊗(i−1)
V ⊗ c ⊗ id⊗(n−i−1)

V for i = 1, . . . ,n−1.

The Artin presentation implies that there exists, for each n, a unique braid group represen-
tationρn

c : Bn → AutK(V⊗n) defined byρn
c (σi) = ci . �

We orient braids from right to left as in Figure6. Braid groups will act on the left, so
that composition of braids corresponds to the usual composition of maps. The passage
from braids to links is granted by the closure map[ ] :

⋃

nBn → L defined as follows: for
each braidβ we define itsclosure[β ] to be the link inS3 obtained by identifying opposite
endpoints, as indicated in Figure6.

Theorem 4.4(Alexander-Markov, see [3]). Every link can be represented as the closure
of some braid. Two braids represent the same link if and only if one can be transformed
into the other by a finite sequence of the followingMarkov moves:

(M1) Pass fromβ ∈ Bn to β σ±1
n ∈ Bn+1, or vice versa. (Stabilization)

(M2) Pass fromβ ∈ Bn to α−1β α with α ∈ Bn. (Conjugation)
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FIGURE 6. A braidβ and its closure[β ]

Constructing a link invariantF : L → K is thus equivalent to constructing a map
F :

⋃

nBn → K that is invariant under Markov moves. The most natural approach is to
consider traces of linear braid group representations: invariance under conjugation is auto-
matic, so we only have to require invariance under stabilization:

Definition 4.5. Suppose thatV is a freeK-module with finite basis. Letc: V⊗V →V⊗V
be a Yang-Baxter operator. An automorphismm: V →V is calledMarkov operatorfor c
if it satisfies

(m1) the trace condition tr2( (m⊗m)◦ c±1 ) = m and
(m2) commutativity c◦ (m⊗m) = (m⊗m)◦ c.

Here the partial trace tr2 : End(V ⊗V) → End(V) is defined as follows. Let(v1, . . . ,vn)
be a basis ofV overK. Every f ∈ End(V ⊗V) uniquely corresponds to a matrixf kℓ

i j such
that f (vi ⊗ v j) = ∑k,ℓ f kℓ

i j vk⊗ vℓ. We can then defineg= tr2( f ) ∈End(V), g(vi) = ∑k gk
i vk,

by the matrixgk
i = ∑ j f k j

i j . (See Kassel [31, §II.3].)

Corollary 4.6. Given a Yang-Baxter operator c with Markov operator m, we define a fam-
ily of maps Fn : Bn →K by Fn(β )= tr(m⊗n◦ρn

c (β )). Then the induced map F:
⋃

nBn →K

is invariant under both Markov moves and thus defines a link invariant F : L → K. �

The proof of this corollary is straight-forward: the trace condition (m1) implies invari-
ance under stabilization (M1), and commutativity (m2) implies invariance under conjuga-
tion (M2). Much more intricate is the question how to actually find such a Yang-Baxter-
Markov operator(c,m). Attempts to construct solutions in a systematic way have led to
the theory of quantum groups [15]. For details we refer to the concise introduction [32] or
the textbook [31].

Remark 4.7. For some Yang-Baxter operatorsc there does not exist any Markov operator
m at all. If it exists,m is in general not the identity, as in the case of the Jones polyno-
mial or other quantum invariants. The Yang-Baxter operators derived from knot diagram
colourings below are very special in that they allow the Markov operatorm= id, which is
equivalent to saying that tr2(c±1) = id.

4.2. Colouring polynomials of long knots. Before we consider colouring polynomials,
let us first recall how colouring numbers can be obtained froma suitable Yang-Baxter
operator. The following result is due to Freyd and Yetter, see [23], Prop. 4.2.5 and the
remark following its proof.

Theorem 4.8([23]). Let Q be a quandle and letKQ be the freeK-module with basis Q.
The quandle structure of Q can be linearly extended to a Yang-Baxter operator

cQ : KQ⊗KQ→ KQ⊗KQ with a⊗ b 7→ b⊗ (a∗b) for all a,b∈ Q.
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Axiom (Q2) ensures that cQ is an automorphism, while Axiom (Q3) implies the Yang-Baxter
equation. If Q is finite, then (Q1) ensures thattr2(c

±1
Q ) = id. In this case the corresponding

Yang-Baxter invariant FQ = tr◦ρQ coincides with the number of Q-colourings (defined in
§3.1) followed by the ring homomorphismZ → K. �

As an example consider a finite groupG with basepointx. The Yang-Baxter operator
constructed from the quandleQ = xG then leads to the colouring numberFQ = Fx

G · |Q|.
We will now move from colouring numbers to colouring polynomials: consider the

quandle extensionΛ y Q̃→ Q as defined in§3.3, where the quandleQ = Q(G,x) is cov-
ered byQ̃ = Q̃(G,x), and the deck transformation group isΛ = C(x)∩G′. As before, we
linearly extend the quandle structure ofQ̃ to a Yang-Baxter operatorcQ̃, and denote the as-
sociated linear braid group representation byρQ̃. We will, however, not take the total trace
as before, but rather use the partial trace tr′ : EndK(KQ̃⊗n) → EndK(KQ̃), contracting the
tensor factors 2, . . . ,n.

Theorem 4.9. Let (G,x) be a finite group such that the conjugacy class Q= xG generates
G. Let Q̃ = Q̃(G,x) be the covering quandle and letρQ̃ be the associated braid group
representation. Suppose that the knot K is represented by a braid β . Then the partial trace
tr′(ρQ̃(β )) : KQ̃→ KQ̃ is given by multiplication with PxG(K).

Note that the free left action ofΛ on Q̃ turnsKQ̃ into a free left module overKΛ. In
particular, multiplication byPx

G(K) is aK-linear endomorphism. IfK is of characteristic 0,
then the endomorphism tr′(ρQ̃(β )) uniquely determinesPx

G(K).

Proof. We use the obvious bases̃Q for KQ̃ and Q̃n for KQ̃⊗n. Each endomorphism
f : KQ̃⊗n → KQ̃⊗n is then represented by a matrixMp1p2...pn

q1q2...qn , indexed by elementspi

andq j in the basisQ̃. The partial trace tr′( f ) : KQ̃ → KQ̃ is given by the matrixT p1
q1 =

∑Mp1p2...pn
q1p2...pn , where the sum is taken over all repeated indicesp2, . . . , pn.

By construction, each elementary braidσi acts as a permutation on the basisQ̃n, thus
each braidβ ∈ Bn is represented by a permutation matrix with respect to this basis. We
interpret this action as colouring the braidβ with elements ofQ̃: we colour the right ends
of the braid withv = p1⊗ ·· ·⊗ pn. Moving from right to left, at each crossing the new arc
is coloured according to the Wirtinger rule as depicted in Figure5. We thus arrive at the left
ends of the braid being coloured withρ(β )v = q1⊗ ·· ·⊗ qn. We conclude that colourings
of the braidβ that satisfy the trace conditionsp2 = q2, . . . , pn = qn are in natural bijection
with colourings of the corresponding long knotK.

We now turn to the remaining indicesp1 andq1. Let us first consider the special case
p1 = (x,1) andq1 = (y,λ ). From the preceding argument we see thatT p1

q1 equals the num-
ber ofQ̃-colourings of the long knotK that start with(x,1) and end with(y,λ ). According
to Lemma3.12, such colourings exist only fory= x andλ ∈ Λ, hence we haveq1 = λ · p1.
We conclude thatT p1

q1 equals the number of representations(πK ,mK , lK) → (G,x,λ ). In
total we get tr′(ρ(β ))(p1) = Px

G(K) · p1.
The preceding construction is equivariant under the right-action of the groupG′ on the

covering quandlẽQ. According to Lemma3.16this action is transitive: for everyp ∈ Q̃
there existsg∈ G′ andp = pg

1, so we conclude that tr′(ρ(β ))(p) = Px
G(K) · p. This means

that the endomorphism tr′(ρ(β )) : KQ̃→ KQ̃ is given by multiplication withPx
G(K). �

Remark 4.10. The partial trace tr′ : EndK(KQ̃⊗n) → EndK(KQ̃) corresponds to closing
the strands 2, . . . ,n of the braidβ , but leaving the first strand open: the object thus repre-
sented is a long knot. The natural setting for such constructions is the category of tangles
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and its linear representations [31]. The previous theorem then says that the long knotK is
represented by the endomorphismKQ̃→ KQ̃ that is given by multiplication withPx

G(K).
If we used the complete trace tr : EndK(KQ̃⊗n) → K instead, then we would obtain a

different invariantFQ̃ = tr◦ρQ̃. By the preceding arguments,FQ̃(K) equals|Q̃| times the
number of representations(πK ,mK , lK)→ (G,x,1), which corresponds to the coefficient of
the unit element in the colouring polynomialPx

G(K).

4.3. Colouring polynomials of closed knots.We will now show how the colouring poly-
nomialPx

G of closed knots can be obtained as the trace of a suitable Yang-Baxter represen-
tation. To this end we will modify the construction of the preceding paragraph in order to
replace the partial trace tr′ by the complete trace tr.

We proceed as follows: the quandleQ= xG admits an extensionΛ y Q̃→Q as defined
in §3.3. The quandle structure of̃Q linearly extends to a Yang-Baxter operatorcQ̃ on KQ̃.
The freeΛ-action onQ̃ turnsKQ̃ into a free module overA = KΛ. If Λ is abelian, we can
pass to anA-linear operator

c̃Q : KQ̃⊗A KQ̃→ KQ̃⊗A KQ̃ with ã⊗ b̃ 7→ b̃⊗ (ã∗ b̃) for all ã, b̃∈ Q̃.

The difference betweencQ̃ and c̃Q is that the tensor product is now taken overA, which
means that everything is bilinear with respect to multiplication byλ ∈ Λ. In the following
theorem and its proof all tensor products are to be taken overthe ringA, but for notational
simplicity we will write⊗ for ⊗A.

Theorem 4.11. If (G,x) is a colouring group such thatΛ = C(x)∩G′ is abelian, then
the colouring polynomial PxG : K → ZΛ is a Yang-Baxter invariant. More precisely, the
preceding construction yields a Yang-Baxter-Markov operator (c̃Q, id) over the ringA =
KΛ, and the associated knot invariant satisfiesF̃Q = ϕPx

G · |Q| whereϕ : ZΛ → KΛ is the
natural ring homomorphism defined byϕ(λ ) = λ for all λ ∈ Λ.

If K is of characteristic 0, theñFQ is equivalent to the knot colouring polynomialPx
G. If

K is of finite characteristic, then we may lose some information andF̃Q is usually weaker
thanPx

G. In the worst case|Q| vanishes inK andF̃Q becomes trivial.

Proof. It is a routine calculation to prove that ˜cQ is a Yang-Baxter operator overA: as
before, axiom (Q2) implies that ˜cQ is an automorphism, while axiom (Q3) ensures that ˜cQ

satisfies the Yang-Baxter equation. Axiom (Q1) implies the trace condition tr2(c̃
±1
Q ) = id,

hence(c̃Q, id) is a Yang-Baxter-Markov operator. We thus obtain a linear braid group
representatioñρn

Q : Bn → AutA(KQ̃⊗n), whose character̃FQ = tr◦ρ̃Q is Markov invariant
and induces a link invariant̃FQ : L → A. Restricted to knots we claim thatF̃Q = Px

G · |Q|.
The proof of the theorem parallels the proof of Theorem4.9, but requires some extra care.

To represent ˜cQ by a matrix, we have to choose a basis ofKQ̃ overA. Let s: Q → Q̃
be a section to the central extensionΛ y Q̃→ Q. ThenB = s(Q) is a basis ofKQ̃ as an
A-module. For the basepointx we can assumes(x) = (x,1), but otherwise there are no
canonical choices. In general,s will not (and cannot) be a homomorphism of quandles,
but we haves(a) ∗ s(b) = λ (a,b) · s(a∗ b) with a certain 2-cocycleλ : Q×Q → Λ that
measures the deviation ofs from being a homomorphism. Just ascQ is represented by a
permutation matrix, we see that ˜cQ is represented by the same matrix except that the 1’s
are replaced with the elementsλ (a,b) ∈ Λ. This is usually called amonomial matrixor
generalized permutation matrix.

SinceKQ̃ is a freeA-module with finite basisB= s(Q), the tensor productKQ̃⊗n is also
free and has finite basisBn. The trace tr◦ρ̃(β ) is calculated as the sum∑v∈Bn〈ρ̃(β )v|v〉.
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Note thatρ̃(β ) is again a monomial matrix in the sense that each row and each column has
exactly one non-zero entry. Hence a vectorv∈ Bn contributes to the trace sum if and only
if ρ̃(β )v= λ (v)v with someλ (v) ∈ Λ. It remains to characterize eigenvectors and identify
their eigenvalues.

Given a braidβ ∈ Bn we can interpret the action ofρ̃(β ) as colouring the braidβ : we
colour the right ends of the braid with a basis vectorv∈ Bn,

v = (a1,g1)⊗ (a2,g2)⊗ . . .⊗ (an,gn).

Moving from right to left, at each crossing the new arc is coloured according to the
Wirtinger rule as depicted in Figure5. We thus arrive at the left ends of the braid, be-
ing coloured with

ρ̃(β )v = (b1,h1)⊗ (b2,h2)⊗ ·· ·⊗ (bn,hn).

Since the tensor product is defined overA, we haveρ̃(β )v = λ (v)v if and only if a1 =
b1,a2 = b2, . . . ,an = bn. Hence each eigenvectorv ∈ Bn naturally corresponds to aQ-
colouring of the closed braidK = [β ].

In order to identify the eigenvalueλ (v), we will further assume that(a1,g1) = (x,1),
wherex is the basepoint ofG. Such an eigenvector will be callednormalized. Using the
tensor product-structure overA = KΛ, we obtain

ρ̃(β )v = (x,λ )⊗ (a2,g2)⊗ ·· ·⊗ (an,gn) = λ (v)v

as in the proof of Theorem4.9. We conclude that each normalized eigenvectorv ∈ Bn

with ρ̃(β )v = λ (v)v corresponds to ãQ-colouring of the long knot, where the first arc is
coloured by(x,1) and the last arc is coloured by(x,λ ). This means that the eigenvalue
λ (v) is the associated colouring longitude.

We finally show thatF̃Q = Px
G · |Q| by calculating the trace∑v∈Bn〈ρ̃(β )v|v〉. Nor-

malized eigenvectorsv ∈ {(x,1)}×Bn−1 with ρ̃(β )v = λ (v)v correspond to colourings
ρ : (πK ,mk) → (G,x) with ρ(lK) = λ (v). Summing over these vectors only, we thus ob-
tain the colouring polynomialPx

G(K). To calculate the total sum we use again the fact
that the right-action ofG′ on Q̃ is transitive. Hence for everyq ∈ Q there existsg ∈ G′

such thats(q)g = (x,1). The action ofg induces a bijection between the set of basis
vectors{s(q)}×Bn−1 and{(x,1)}×Bn−1. Since the preceding trace calculation isG′-
invariant, each vectorv∈ {s(q)}×Bn−1 contributesPx

G(K) to the trace. In total we obtain
F̃Q = Px

G · |Q|, as claimed. �

4.4. Concluding remarks. It follows from our construction that ˜cQ is a deformation of
the Yang-Baxter operatorcQ. More precisely we have ˜cQ(a⊗ b) = λ (a,b) · cQ(a,b) for
all a,b∈ Q with a suitable mapλ : Q×Q → Λ. Our construction via quandle coverings
and central extensions provides a geometric interpretation in terms of meridian-longitude
information. This interpretation carries through all steps of our construction, which finally
allows us to interpret the resulting Yang-Baxter invariantas a colouring polynomial.

Conversely, it is natural to consider the ansatz ˜cQ(a⊗ b) = λ (a,b) ·cQ(a,b) and to ask
which λ turn c̃Q into a Yang-Baxter operator. This idea can, though in a restricted form,
already be found in [23, Thm. 4.2.6]. A direct calculation shows that ˜cQ is a Yang-Baxter
operator if and only ifλ is a 2-cocycle in the sense of quandle cohomology. Moreover,
two such deformations will be equivalent if the cocycles differ by a coboundary. This
observation has been worked out by M. Graña [27], who independently proved that quandle
2-cocycle state-sum invariants are Yang-Baxter invariants.
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mas and Syntheses], vol. 5, Société Mathématique de France, Paris, 1997. MR MR1470954 (99b:57011)

33. L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407.
MR MR899057 (88f:57006)

34. , Knots and physics, Series on Knots and Everything, vol. 1, World Scientific Publishing Co. Inc.,
River Edge, NJ, 2001. MR 2002h:57012

35. G. Kuperberg,Detecting knot invertibility, J. Knot Theory Ramifications5 (1996), no. 2, 173–181.
MR 97h:57018

36. W. B. R. Lickorish,An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag,
New York, 1997. MR 98f:57015

37. S. V. Matveev,Distributive groupoids in knot theory, Mat. Sb. (N.S.)119(161)(1982), no. 1, 78–88, 160.
MR 84e:57008

38. L. P. Neuwirth,Knot groups, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton,
N.J., 1965. MR 31 #734

39. R. Riley,Homomorphisms of knot groups on finite groups, Math. Comp.25 (1971), 603–619. MR 45 #4399
40. W. P. Thurston,Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math.

Soc. (N.S.)6 (1982), no. 3, 357–381. MR 83h:57019
41. H. F. Trotter,Non-invertible knots exist, Topology2 (1963), 275–280. MR 28 #1618
42. F. Waldhausen,On irreducible3-manifolds which are sufficiently large, Ann. of Math. (2)87 (1968), 56–88.

MR 36 #7146
43. W. Whitten,Knot complements and groups, Topology26 (1987), no. 1, 41–44. MR 88f:57014

INSTITUT FOURIER, UNIVERSITÉ GRENOBLE I, FRANCE
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