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KNOT COLOURING POLYNOMIALS

MICHAEL EISERMANN

ABSTRACT. This article introduces a natural extension of colouringnbers of knots,
called colouring polynomials, and studies their relatiopdo Yang-Baxter invariants and
quandle 2-cocycle invariants.

For a knotK in the 3-sphere letik be the fundamental group of the knot complement
S8 <K, and letmy, Ik € 1 be a meridian-longitude pair. Given a finite groGmand an
elementx € G we consider the set of representatignsmk — G with p(mk) = x and de-
fine the colouring polynomiakX(K) := ¥, p(lk). The resulting invariant maps knots to
the group ringZG. It is multiplicative with respect to connected sum and eapiant with
respect to symmetry operations of knots. Examples are gavehow that colouring poly-
nomials distinguish knots for which other invariants failparticular they can distinguish
knots from their mutants, obverses, inverses, or reverses.

We prove that every quandle 2-cocycle state-sum invarikhats is a specialization
of some knot colouring polynomial. This provides a compleigological interpretation
of these invariants in terms of the knot group and its perghgystem. Furthermore, we
show thatR% can be presented as a Yang-Baxter invariant, i.e. as the dfasome linear
braid group representation. This entails in particulat Weeng-Baxter invariantsandetect
non-inversible and non-reversible knots.

1. INTRODUCTION AND STATEMENT OF RESULTS

To each knoK in the 3-spher&® we can associate its knot group, that is, the funda-
mental group of the knot complement, denotedfay= 75 (S% . K). This group is already
a very strong invariant: it classifies unoriented prime kr{d8, 26]. In order to capture
the complete information, we consider a meridian-longitpdirmg,lx € 7: the group
system(1 ,mk, Ik ) classifies oriented knots in the 3-sphe4g][ In particular, the group
system allows us to tackle the problem of detecting asymesatf a given knot (se¢2.3).
Using this ansatz, M. Dehri 8] proved in 1914 that the two trefoil knots are chiral, and,
half a century later, H.F. Trotted[l] proved that bretzel knots are non-reversible. We will
recover these results using knot colouring polynomiale §2e).

Given a knotK, say represented by some planar diagram, we can easily fetitt o
Wirtinger presentation ofik in terms of generators and relations ($8el). In general,
however, such presentations are very difficult to analyze RA. Crowell and R.H. Fox
[12 §VL5] putit:

“What is needed are some standard procedures for derivang &rgroup
presentation some easily calculable algebraic quantitieish are the
same for isomorphic groups and hence are so-called groapamis.”

The classical approachis, of course, to consider abehemiants, most notably the Alexan-
der polynomial. In order to effectively extract non-abeliaformation, we consider the set
of knot group homomorphisms Hamik ; G) to some finite grous. The aim of this article
is to organize this information and to generalize colourgnbers to colouring polyno-
mials. In doing so, we will highlight the close relationsiipYang-Baxter invariants and
their deformations on the one hand, and to quandle cohoma@lod associated state-sum
invariants on the other hand.

Date compiled December 19, 2007.

2000Mathematics Subject ClassificatioB7M25, 57M27.

Key words and phrasedundamental group of a knot in the 3-sphere, peripheraksysknot group homo-
morphism, quandle 2-cocycle state-sum invariant, Yangtdanvariant of knots.

1



2 MICHAEL EISERMANN

1.1. From colouring numbers to colouring polynomials. A first and rather crude invari-
ant is given by the total number &-representations, denoted by

Fs(K) := |Hom(mk; G)|.
This defines a maps: .# — Z on the set#” of isotopy classes of knots . This
invariant can be refined by further specifying the image ef tteridianmk, that is, we

choose an elementc G and consider only those homomorphispistik — G satisfying
p(mk) = x. Their total number defines the knot invariant

RE(K) :=|Hom(7i ,mk;; G, X)|.

Example 1.1. Let G be the dihedral group of ordep2wherep > 3 is odd, and lek € G
be a reflection. TheRZ is the number op-colourings as introduced by R.H. Fa1] 22],
here divided byp for normalization such tha@(O) = 1.

We will call R thecolouring numbeassociated withiG, x), in the dihedral case just as
well as in the general case of an arbitrary group. Obviokslgan be recovered from
by summation over alt € G. In order to exploit the information of meridiamdlongitude,
we introduce knot colouring polynomials as follows:

Definition 1.2. Suppose thab is a finite group and is one of its elements. Trelouring
polynomial B: 7" — ZG is defined as

RE(K) =3 p(lk),
D

where the sum is taken over all homomorphigmsk — G with p(mk) = x.

By definition X takes its values in the semirif§G, but we prefer the more familiar
group ringZG D NG. We recover the colouring numbgg = €R% by composing with
the augmentation map: ZG — Z. As it turns out, colouring polynomials allow us in a
simple and direct manner to distinguish knots from theirraritmages, as well as from
their reverse or inverse knots. We will highlight some ex&ajbelow.

1.2. Elementary properties. The invarian®% behaves very much like classical knot poly-
nomials. Most notably, it nicely reflects the natural opierag on knotsF% is multiplica-
tive under connected sum and equivariant under symmetmatpes §2.3).

Strictly speakingR(K) is, of course, not a polynomial but an element in the group
ring ZG. Sincelk lies in the commutator subgrougg and commutes witimg, possible
longitude images lie in the subgroup= C(x) NG'. Very often this subgroup will be
cyclic, A = (t | t" = 1) say, in which cas€& takes values in the truncated polynomial ring
ZN = Z[t]/(t"). Here is a first and very simple example:

Example 1.3. We choose the alternating gro@s= As with basepoink = (12345. Here
the longitude subgrouft = (x) is cyclic of order 5. The colouring polynomials of the left-
and right-handed trefoil knots aretI5x and 1+ 5x~* respectively, hence the trefoil knots
are chiral. (There are five non-trivial colourings, one ofaeths shown ir§3, Figure4, and
the other four are obtained by conjugating withThis list is easily seen to be complete.)

Starting from scratch, i.e. from knot diagrams and Reidstaeimoves, one usually
appreciates Fox’ notion of 3-colourabilit?] as the simplest proof of knottedness. In
this vein, the preceding example is arguably one of the mestentary proofs of chirality,
only rivalled by Kauffman’s bracket leading to the Jonesypolmial [33.

Section2.4 displays some further examples to show that colouring pmtyials distin-
guish knots for which other invariants fail:
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e They distinguish the Kinoshita-Terasaka knot from the Caynknot and show
that none of them is inversible nor reversible nor obveesibl

e They detect asymmetries of bretzel knots; they distingdatexampleB(3,5,7)
from its inverse, reverse and obverse knot.

e They distinguish the (inversible) knot8from its reverse.

We also mention two natural questions that will not be pulshere:

Question 1.4.Can knot colouring polynomials detect other geometric proes of knots?
Applications to periodic knots and ribbon knots would be hioteresting.

Question 1.5. Do colouring polynomials distinguish all knots? Since tm@kgroup sys-
tem (7, Mk, Ik ) charaterizes the knét [42, Cor. 6.5], and knot groups are residually finite
[40, Thm. 3.3], this question is not completely hopeless.

1.3. Colouring polynomials are Yang-Baxter invariants. Moving from empirical evi-
dence to a more theoretical level, this article compares$ &olouring polynomials with
two other classes of knot invariants: Yang-Baxter invasaderived from traces of Yang-
Baxter representations of the braid grogg)( and quandle colouring state-sum invariants
derived from quandle cohomolog¥3). The result can be summarized as follows:

Yang-Baxte colouring quandle 2-cocycl col. polynomial
. : > : > : . D . :
invariants polynomial state-sum invarian{s with A abelian
P.J. Freyd and D.N. Yette2B, Prop.4.2.5] have shown that every colouring number

F&: ¢ — Z can be obtained from a certain Yang-Baxter operatmrerZ. We generalize
this result to colouring polynomials:

Theorem 1.6(84.3). Suppose that G is a group with basepoint x such that the supgro
A =C(x)NG' is abelian. Then the colouring polynomigl P.#" — ZA is a Yang-Baxter
invariant of closed knots: there exists a Yang-Baxter ofmgr@over the ringZA, such that
the associated knot invariant coincides with (a constaritipia) of RX.

In the general case, whefeis not necessarily abelian, Sectidr gives an analogous
presentation oF% as a Yang-Baxter invariant of long knots (also called 1-tas)g

Corollary 1.7. SinceA is abelian in all our examples GR.4, it follows in particular that
Yang-Baxter invariantsandetect non-inversible and non-reversible knots.

Remark 1.8. It follows from our construction thatis a deformation of over the ringZA.
Conversely, the deformation ansatz leads to quandle cologyn(sees4.4). Elaborating

this approach, M. Grafi2f] has shown that quandle 2-cocycle state-sum invariants are
Yang-Baxter invariants. The general theory of Yang-Badefiormations ot over the
power series rin@)[h]] has been developed it9].

Remark 1.9. The celebrated Jones polynomial and, more generally, alhigum invari-
ants of knots, can be obtained from Yang-Baxter operat@tséte formal power series
deformations of the trivial operator. This implies that tieefficients in this expansion are
of finite type R, §2.1]. Part of their success lies in the fact that these iavsidistinguish
many knots, and in particular they easily distinguish nriimages. It is still unknown,
however, whether finite type invariants can detect nonssileée or non-reversible knots.

For colouring polynomials the construction is similar imtR% arises from a deforma-
tion of a certain operatar. There are, however, two crucial differences:

e The initial operator models conjugation (and is not the trivial operator),
o Its deformatiorc’is defined oveZA (and not over a power series ring).
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As a consequence, the colouring polynoniais not of finite type, nor are its coefficients,
nor any other real-valued invariant computed frondif][

1.4. Quandle invariants are specialized colouring polynomials A quandle, as intro-
duced by D. Joyce3[0)], is a setQ with a binary operation whose axioms model conjugation
in a group, or equivalently, the Reidemeister moves of kiejrhms. Quandles have been
intensively studied by different authors and under varioaes; we review the relevant
definitions in§3. The Lifting Lemma proved i33.2tells us how to pass from quandle to
group colourings and back without any loss of information.t@e level of knot invariants
this implies the following result:

Theorem 1.10(§3.2). Every quandle colouring numbegﬁs the specialization of some
knot colouring polynomial 2

Quandle cohomology was initially studied in order to comstinvariants in low-dimensional
topology: in B, 9] it was shown how a 2-cocyclé € Z?(Q,A) gives rise to a state-sum
invariant of knots,Sg: & — ZN, which refines the quandle colouring numitsgr We
prove the following result:

Theorem 1.11(§3.5). Every quandl@-cocycle state-sum invariant of knots is the special-
ization of some knot colouring polynomial. More precissiyppose that Q is a connected
quandle is an abelian group, and € Z%(Q,A) is a 2-cocycle with associated invari-
ant %: & — ZN. Then there exists a group G with basepoint x and-bnear map

¢: ZG — ZA such that § = ¢R%-|Q|.

This result provides a complete topological interpretatid quandle 2-cocycle state-
sum invariants in terms of the knot group and its peripherstiesn. Conversely, we prove
that state-sum invariants contain those colouring polyats®% for which the longitude
groupA = C(x) NG’ is abelian:

Theorem 1.12(§3.4). Suppose that G is a colouring group with basepoint x suchttiet
subgroup/A = C(x) NG’ is abelian. Then the colouring polynomig} Ban be presented
as a quandl@-cocycle state-sum invariant. More precisely, the quai@ite x© admits a
2-cocycled € Z%(Q,A) such that § = RX- |Q).

1.5. How this article is organized. Section2 recalls the necessary facts about the knot
group and its peripheral system. It then discusses cormheata and symmetry operations
with respect to knot colouring polynomials and displays saapplications. The main
purpose is to give some evidence as to the scope and thensefdf these invariants.

Section3 examines quandle colourings and explains how to replacedi@aolourings
by group colourings without any loss of information. Therespondence between quandle
extensions and quandle cohomology is then used to show hamdigi2-cocycle state-sum
invariants can be seen as specializations of colouringnoohyals.

Section4 relates colouring polynomials with Yang-Baxter invarmntfter recalling
the framework of linear braid group representations, wevshaw colouring polynomials
can be seen as Yang-Baxter deformations of colouring nusnber
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careful reading and numerous helpful comments. The resbiection2 were part of the
author’s Ph.D. thesislf], which was financially supported by the Deutsche Forschung
gemeinschaft through the Graduiertenkolleg MathemattkatUniversity of Bonn. Sec-
tions 3 and4 were elaborated while the author held a post-doc positighesfcole Nor-
male Supérieure de Lyon, whose hospitality is gratefutkrewledged.
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2. KNOT GROUPS AND COLOURING POLYNOMIALS

This section collects some basic facts about the knot grodpita peripheral system
(82.1) and their homomorphic image§2.2). We explain how connected sum and sym-
metry operations affect the knot group system and how thisstates to colouring poly-
nomials §2.3). We then display some examples showing that colouringmmtyials are a
useful tool in distinguishing knots where other invaridiais(§2.4).

2.1. Peripheral system. We use fairly standard notation, which we recall frob&][for
convenience. Anotis a smooth embeddinig S — S3, considered up to isotopy. This
is equivalent to considering the oriented imadge- k(S?) in S8, again up to isotopy. A
framing of k is an embedding : S x D? — S® such thatf|s1,.o = k. As basepoint of
the spaces® < K we choosep = f(1,1). In the fundamental groupk := 78 (S® < K, p)
we define themeridian nk = [f|;,s1] and thelongitude k = [f|g1,.4]. Up to isotopy
the framing is characterized by the linking number& k) € {+1} and IKK,Ik) € Z,
and all combinations are realized. We will exclusively wavith the standard framing
characterized by the linking numbergk mg ) = +1 and IKK, k) = 0.

Up to isomorphism, the triplérik,mg,lk) is a knot invariant, and even a complete
invariant: two knotsk andK’ are isotopic if and only if there is a group isomorphism
@: Tk — T wWith @(mk) = M and@(lx ) = Ixr. This is a special case of Waldhausen’s
theorem on sufficiently large 3-manifolds; sé&[Cor. 6.5] as well asqg, §3C].

Besides closed knots. S* — S2 it will be useful to consider long knots (also called
1-tangles), i.e. smooth embeddingsR — R3 such that(t) = (t,0,0) for all parameters
t outside of some compact interval. We refer 18][for a detailed discussion with respect
to knot groups and quandles.

FIGURE 1. Meridian and longitude of a long knot

2.2. Colouring groups. Since knot groups are residually finit¢Q, Thm. 3.3], there are
plenty of finite knot group representations. But which gredp actually occur as homo-
morphic images of knot groups? This question was raised ByNeuwirth B8], and first
solved by F. Gonzalez-Acuiay|:

Theorem 2.1([25, 28]). A pointed group(G, x) is the homomorphic image of some knot
group (1, mk ) if and only if G is finitely generated and & (x°). O

The condition is necessary, because every knot grpup finitely generated by conju-
gates of the meridiamk . (See the Wirtinger presentation, recalled®1) For a proof of
sufficiency we refer to the article of D. Johns@8§], who has found an elegant and inge-
niously simple way to construct a knigttogether with an epimorphistmi, Mk ) — (G, x).
Here we restrict attention finite groups:
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Definition 2.2. Let G be a finite group and € G. The pair(G,X) is called acolouring
groupif the conjugacy class® generates the whole gro@ For example, every finite
simple groupG is a colouring group with respect to any of its non-triviamlents £ 1.

Remark 2.3. Given a finite groupGp andx € Gp, every homomorphisnirik, mg) —
(Go,x) maps to the subgrou@; := (x%0). If Gy is strictly smaller tharGo, then we can
replaceGy by G;. Continuing like this, we obtain a descending ch@yD G; > G D -+ -,
recursively defined b;, 1 = (xX&). SinceGy is finite, this chain must stabilize, and we end
up with a colouring grougis, = (x®). Hence, we can assume without loss of generality
that(G, x) is a colouring group.

Given (G, x) let A* be the set of longitude imageg|k ), wherep ranges over all knot
group homomorphismg: (1k,mk) — (G,x) and all knotsK. ThenA* is a subgroup of
G [29. Since meridiamk € 7k and longituddk € 1, commute A* is contained in the
subgroup\ = C(x) NG/, which will play an important role in subsequent arguments

D. Johnson and C. Livingstor29] have worked out a complete characterization of the
subgroup\* in terms of homological obstructions. As an applicatiomsider a colouring
group (G, x) that is perfect, i.eG’' = G, and has cyclic centralizer, s&(x) = (x). Then
[29] affirms thatA* = A = C(x). All of our examples ir§2.4 are of this type.

2.3. Knot and group symmetries. The knot groupi is obviously independent of orien-
tations. In order to define the longitude, however, we hawpezify the orientation ok,
and the definition of the meridian additionally depends @ndtientation of°. Changing
these orientations defines the following symmetry openatio

Definition 2.4. Let K  S® be an oriented knot. The same knot with the opposite orien-
tation ofS® is themirror imageor theobverseof K, denotedk*. (We can represent this
asK* = oK, whereo: S® — S% is a reflection.) Reversing the orientation of the kKot
yields thereverseknotK'. Inverting both orientations yields theverseknotK*.

Please note that different authors use different termaglim particular reversion and
inversion are occasionally interchanged. Here we adopiditegtion of J.H. Conwayl[0].

Proposition 2.5. Let K be an oriented knot with group systertK) = (1, mk,lk). Ob-
version, reversion and inversion affect the group systefolasvs:

obversion: 71(K*) = (1, m¢ 2, Ik)
reversion: 7i(K') = (i, m¢t1ct)
inversion:  7I(K*) = (1i,mk, )

The fundamental group of the connected sutilLKs the amalgamated produci * 11
modulo nx = m_. Its meridian is R and its longitude is the produatl, . O

Corollary 2.6. Every colouring polynomial® 7" — ZG is multiplicative, that is, we
have B(K{L) = RX(K) - R(L) for any two knots K and L. O

In order to formulate the effect of inversion, lét ZG — ZG be the linear extension of
the inversion mas — G, g+— g L.

Corollary 2.7. Every colouring polynomial® .#” — ZG is equivariant under inversion,
i.e. RX(K*) = RX(K)* for every knot K. In particular, the colouring numbeg ) is
invariant under inversion of K. O

Obversion and reversion of knots can similarly be trandlatto symmetries of colour-
ing polynomials, but to do so we need a specific automorphis@i o
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Definition 2.8. An automorphism*: G — G with x* = x~1 is called anobversionof
(G,x). An anti-automorphism: G — G with X = x is called areversionof (G, x).

Obviously a grougG, x) possesses a reversion if and only if it possesses an obwersio
They are in general not unique, because they can be compatedmny automorphism
a € Aut(G,x), for example conjugation by an elementG(x).

Remark 2.9. The braid group B, recalled ing4.1below, has a unique anti-automorphism
': Bn — By, fixing the standard generatass, . .., gn_1. Analogously there exists a unique
automorphism*: B, — B mapping each standard generatpto its inverseafl. The
exponent sum B— Z shows that this cannot be an inner automorphism.

These symmetry operations on braids correspond to the alyoweetry operations on
knots: if a knotK is represented as the closure of the biitseet4.1), then the inverse
braid 31 represents the inverse kniét, the reverse brai' represents the reverse knot
K', and the obverse braf8i* represents the obverse kot .

Given an obversion and a reversion(, x), their linear extensions to the group ring
ZG will also be denoted by*: ZG — ZG and ' : ZG — ZG, respectively. We can now
formulate the equivariance of the corresponding coloupiolgnomials:

Corollary 2.10. Suppose thaiG, x) possesses an obversidgnand a reversion'. Then the
colouring polynomial Bis equivariant with respect to obversion and reversiont thawe
have B(K*) = R¥(K)* and B(K') = P¥(K)" for every knot K. In this case the colouring
numbers of K, K, K*, and K are the same. O

Example 2.11.Every elemen in the symmetric group,Ss conjugated to its inverse 1,
because both have the same cycle structure. Any such cdigjngkefines an obversion
(Sh,X) — (Sh,x~1). This argument also applies to alternating groups: giwenA, we
know thatx is conjugated tx! in S,. Since A, is normal in $, this conjugation restricts
to an obversioriAn, x) — (An,x~1). This need not be an inner automorphism.

On the other hand, some groups do not permit any obversidh at a

Example 2.12. Let IF be a finite field and leG = F x F* be its affine group. We have
Aut(G) = Inn(G) x Gal(F), where G4lF) is the Galois group oF over its prime field
Fp. If F =Ty, then every automorphism & is inner and thus induces the identity on the
abelian quotienF*. If p > 5, we can choose an element (a,b) € G whose projection
to F* satisfiedh # b~. Hence there is no automorphism®that mapscto x 1. Indeed,
searching all groups of small order with GA24], we find that the smallest group having
this property isFs x 2 of order 20.

For the sake of completeness we expound the following eleamgresult:
Proposition 2.13. The affine group G=F x F* satisfiesAut(G) = Inn(G) x Gal(FF).

Proof. The productinG is given by(a,b)(c.d) = (a+bc, bd), and so G4[F) can be seen
as a subgroup of A(G), whereg € Gal(F) acts aga,b) — (¢(a), @(b)). Since InfiG) is
a normal subgroup of AUG) with Inn(G) N Gal(F) = {idg}, we see that A§) contains
the semi-direct product Ir{®&) x Gal(F).

It remains to show that every € Aut(G) belongs to InG) x Gal(F). This is trivially
true forIF = F,, so we will assume thaf has more than two elements. It is then easily
verified thatG' = x {1}. Let{ be a generator of the multiplicative grolip. We have
a(1,1) = (u,1) withue F*,anda(0,{) = (v,§) withve F, & e F~, & # 1. Conjugating
byw = (v(1— &)~ u), we obtain(u,1)" = (1,1) and(v, &))" = (0, ). In the sequel we can
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thus assuma =1 andv= 0. This impliesa (0,b) = (0, (b)) with ¢: F* —TF*, "+ &"
for all n € Z. Extending this byp(0) = 0 we obtain a bijectiorp: F — F satisfying
¢@(ab) = p(a)p(b) for all a,b € F. Moreover, we finda(a,1) = (¢(a),1): this is clear
fora= 0, and fora # 0 we have(a,1) = (0,a)(1,1) and thusa(a,1) = (0,¢(a))(1,1) =
(@(a),1). This proves thatp(a+ b) = ¢(a) + ¢(b) for all a,b € F, whencep € Gal(F).
We conclude thatr(a,b) = (¢(a), (b)), as claimed. O

2.4. Examples and applications. The preceding discussion indicates that symmetries of
the group(G, x) affect the colouring polynomid(K) just as well as symmetries of the
knotK. We point out several examples:

Example 2.14.Let p be a prime and le = PSL, F, be equipped with basepoint= [} 1
of orderp. Inversion, obversion, and reversion are realized by

* _ _ !
(2l =<1, [Ra7=[%7]  [28 =188
We haveC(z) = (z). For p= 2 andp = 3 one finds that the longitude grotp=C(z) NG
is trivial. For p > 5 the groupG is perfect (even simple), hende= (z). We conclude

that the colouring polynomid#; is insensitive to reversion: we ha®(K) € Z(z) and
reversion fixez and therefore all elements xz).

Example 2.15.Consider an alternating gro@= A, withn > 3, and a cycle= (123...1)
of maximal length, that id, = n for n odd andl = n—1 for n even. As we have pointed
out above, a suitable conjugation ip roduces an obversidis, x) — (G,x ). We have
C(x) = (x). Forn= 3 andn = 4 one finds that the longitude grop= C(x) NG’ is trivial.
Forn > 5 the grougG is perfect (even simple), hence the longitude group4is(x). Again
we conclude that the colouring polynomi is insensitive to reversion.

We observe that fof = 3,7,11,... an obversion of G,x) cannot be realized by an
inner automorphism: consider for exam@e= A;1 andx = (abcdefghijk): in S;1 the
centralizer i<C(x) = (x) and consequently every permutatiore S;1 with X = x~ is of
the formo = x(ak)(bj)(ci)(dh)(eg) and thus odd. The same argument shows that for
| =5,9,13 ... an obversion ofG, x) can be realized by an inner automorphism.

Example 2.16. As a more exotic example, let us finally consider the MathiewgMs 1,
i.e. the unique simple group of order 792®*.32.5.11, and the smallest of the sporadic
simple groups11]. It can be presented as a subgroup ef ,Aor example as

G=(xy) with x= (abcdefghijk), y= (abcejikdghf).

This presentation has been obtained from G28 pnd can easily be verified with any
group-theory software by checking th@tis simple of order 7920. The Mathieu group
My is particularly interesting for us, because it doesallow an obversion. To see this it
suffices to know that its group of outer automorphisms isdtijd 1], in other words, every
automorphism oMz, is realized by conjugation. Ikl;1 the elemenkis not conjugated to
its inverse — this is not even possible inyaccording to the preceding example. Hence
there is no automorphism &1 that mapscto x 1.

Applied to colouring polynomials, this means that there igriari no restriction on
the invariants of a knot and its mirror image. As a concret@ngde we consider the
Kinoshita-Terasaka kndt and the Conway kndE displayed in Figure.

Both knots have trivial Alexander polynomial. They diffenlp by rotation of a 2-
tangle, in other words they are mutants in the sense of CofilGhyTherefore neither the
Jones, MFLYPT nor Kauffman polynomial can distinguish betwe€randC, see B6).
With the help of a suitable colouring polynomial the distion is straightforward:
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FIGURE 2. The Kinoshita-Terasaka knot and the Conway knot

Example 2.17. R. Riley [39] has studied knot group homomorphisms to the simple group
G = PSL;FF7 of order 168. Letz be an element of order 7, say= [§1]. Then the
associated colouring polynomials are

PE(K) =Pi(C) =1+72+72,
PE(K*) = RE(C") = 1+ 72+ 72

This shows that both knots are chiral. By a more detailedyaisabf their coverings, Riley
could even show tha€ andC are distinct.

Example 2.18. To distinguishK andC we give a simple and direct argument using colour-
ing polynomials. For every elemext PSL, F7 of order 3, sak = [ % 1], the associated
colouring polynomial distinguishéé andC:

RA(K) =1+6x R(C) =1+12
RE(K*) =14 6% RX(C*) =1+12¢3
Both invariantsRZ andR%, show chirality but are insensitive to reversion.

These and the following colouring polynomials were caltadawith the help of an
early prototype of the computer prografmotGRep an ongoing programming project to
efficiently construct the set of knot group homomorphisma fmite group. Even though
general-purpose software may be less comfortable, oultsean also be obtained from
the Wirtinger presentatior$8.1) using GAP P4] or similar group-theoretic software.

Example 2.19. The alternating grou@ = A7 with basepoink = (1234567 yields
R(K) =147+ 284 28¢ RYC) =1+ 7+ 73 +213 4 14¢°
RY(K*) = 14 28x+ 282+ 7x° RX(C*) = 1+ 14x+ 203+ T+ 7°

Again this invariant distinguishes et C and shows their chirality, but is insensitive to
reversion, as explained in Exam@e 5above.

Example 2.20. More precise information can be obtained using the MathreugM; 1,
presented as the permutation groi@ x) in Example2.16 above. For the Kinoshita-
Terasaka knoK and the Conway kndZ one finds:

RA(K) =1+113+11X RY(C) =1+113+ 11X
RA(K*) =14+ 11"+ 118 RY(C") =1+11x* + 118
RY(K*) =1+ 11x* 228 R(C) =14+1¢+ 108+ 118
A(K! (

R(KY =1+223+11x R(C) =1+123+11¢ + 11X’
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Consequently all eight knots are distinét;andC are neither inversible nor obversible
nor reversible. (This example was inspired by G. Kuperb88y vho used the colouring
numberRX to distinguish the knao€ from its reverse'.)

Usually it is very difficult to detect non-reversibility oflots. Most invariants fail to do
S0, including the usual knot polynomials. In view of the slitify of our approach, the
success of knot colouring polynomials is remarkable. We givo further examples:

Example 2.21. The family of bretzel knot8(p1, p2, p3), parametrized by odd integers
P1, P2, P3, is depicted in Figur&a. According to the classification of bretzel knots (see
[6], §12), the bretzel kndB = B(3,5,7) is neither reversible nor obversible nor inversible.
For the Mathieu grouf® = Mj1 with basepoink as in Example.20we obtain:

RX(B) =1+ 11x R(B*) =1+ 11

RX(B*) = 1+ 11x*° R¥(B) =1+11
Again the colouring polynomial shows that the ki®possesses none of the three sym-
metries. Historically, bretzel knots were the first exarsgé&non-reversible knots. Their

non-reversibility was first proven by H.F. Trotte41] in 1963 by representing the knot
group system on a suitable triangle group acting on the lnghierplane.

% (@
¥ o/

<\/\/>

FIGURE 3. (a) the bretzel kndB(p1, p2, p3), (b) the knot §;

Example 2.22. Figure3b shows the knot &, which is the smallest non-reversible knot.
It is a 3-bridge knot but not a bretzel knot, and there is noegalrclassification theorem
available. To analyze this example we choose once more thhiddagroupM;; with
basepoink as above. The knot8then has colouring polynomiaHi11x> + 11x8 whereas
the reverse knot has trivial colouring polynomial 1. (Heverethe colouring numbesX
suffices to prove that this knot is non-reversible.) We réntlaait 8,7 is inversible and that
this symmetry is reflected in the symmetry of its colouringypomials.

The colouring polynomiak(K) is, by definition, an element in the group rifig, and
it actually lies in the much smaller rifg/\. The following symmetry consideration further
narrows down the possible values. It is included here toammne of the observations
that come to light in the previous examples, but it will notused in the sequel.

Proposition 2.23. Let (G,x) be a colouring group. If conjugation by x has ordef for
some prime p, then the colouring polynomial satisfig&RP =1 (mod p).

Proof. The cyclic subgrougx) acts on the set Hofmi, mk ; G,Xx) by conjugation. The
only fixed point is the trivial representatiqm(K),mx) — (Z,1) — (G,x). This can be
most easily seen by interpreting group homomorphipmséri,mg) — (G,x) as colour-
ingsf: (D,0) — (G,x) of a knot diagranD, see§3.1below. If f* = f then all colours of
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f commute withx: following the diagram from the first to the last arc we seerzjuiction
that all colours are in fact equal 10 Since there is only one component, we conclude that
f is the trivial colouring, corresponding to the trivial regentation.

Every non-trivial representatiop appears in an orbit of length’ for some¢ > 1.
Sincep(lk) commutes wittx, all representations in such an orbit have the same lorgitud
image inG. The sumR%(K) thus begins with 1 for the trivial representation, and &tiest
summands can be grouped to multiplegpof O

3. QUANDLE INVARIANTS ARE SPECIALIZED COLOURING POLYNOMIALS

The Wirtinger presentation allows us to interpret knot gratomomorphisms as colour-
ings of knot diagrams. Since such colourings involve onlyjegation, they are most nat-
urally treated in the category of quandles, as introduce®hjoyce B0]. We recall the
basic definitions concerning quandles and quandle colgsiimg3.1, and explain irg3.2
how to pass from quandles to groups and back without any fdsgommation.

Quandle cohomology was studied 8 P], where it was shown how a 2-cocycle gives
rise to a state-sum invariant of knotsSA. We recall this construction i§3.4 and show
that every colouring polynomia® can be presented as a quandle 2-cocycle state-sum
invariant, provided that the subgrofp= C(x) NG’ is abelian (TheorerB.24).

In order to prove the converse, we employ the cohomologieakdication of central
guandle extensions established 18[7], recalled in§3.3 below. This allows us to prove
in §3.5that every quandle 2-cocycle state-sum invariant is theiafieation of a suitable
knot colouring polynomial (Theore®.25).

3.1. Wirtinger presentation, quandles, and colourings. Our exposition follows 18], to
which we refer for further details. We consider a long knagidam as in Figurd and
number the arcs consecutively from OrtoAt the end of arc number— 1, we undercross
arc numbeki = k(i) and continue on arc numbieMWe denote byi = £(i) the sign of this
crossing, as depicted in FigseThe map: {1,...,n} —{0,...,n}ande: {1,...,n} —
{£1} are theWirtinger codeof the diagram.

Theorem 3.1. Suppose that a knot L is represented by a long knot diagramWittinger
code(k, €) as above. Then the knot group allows the presentation

T = (X0,X1,...,%|r1,...,fn) With relation r being x =X x_1%\.

As peripheral system we can choose=xo and b = 1127 x & xéi. O

For a proof see Crowell-FoxLP, §VI.3] or Burde-Zieschangd, §3B]. The Wirtinger
presentation works just as well for a closed knot diagramrmcé&iarcs 0 and are then
identified, this amounts to adding the (redundant) relatjca x, to the above presentation.
The group is, of course, the same.

The Wirtinger presentation allows us to interpret knot grédomomorphismsr. — G
as colourings. More precisely@colouringof the diagranD is a mapf : {0,...,n} — G
such thatf (i) = f(ki)~¥'f(i — 1)f(ki)¥". In other words, at each coloured crossing as
in Figure5 the coloursa andc are conjugated via® = c. Such a colouring is denoted
by f: D — G. We denote by CdD;G) the set of colourings ob with colours inG.

For a long knot diagranD, we denote by Cd@D,0;G,x) the subset of colourings that
colour arc number 0 with colout. The Wirtinger presentation establishes natural bijec-
tions Hon(7k ; G) = Col(D; G) and Hon{rik ,mk ; G,X) = Col(D, 0; G, x).
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Example 3.2. Figure4 shows a colouring of the left-handed trefoil knot (represdras
a long knot) with elements in the alternating groug. ANote that all definitions readily
extend to closed knot diagrams.

(13542)

(12345) (12345)

FIGURE 4. As-colouring of the left-handed trefoil knot
The Wirtinger presentation afx involves only conjugation but not the group multipli-
cation itself. The underlying algebraic structure can becdbed as follows:

Definition 3.3. A quandles a sefQ with two binary operationg, *: Q x Q — Q satisfying
the following axioms for alh, b,c € Q:

(Ql) axa=a (idempotency)
(Q2) (axb)*b=(axb)xb=a (right invertibility)
(Q3) (axb)xc= (axc)x(bxc) (self-distributivity)

The name “quandle” was introduced by D. Joy86][ The same notion was studied
by S.V. Matveev B7] under the name “distributive groupoid”, and by L.H. Kau#m[34]
who called it “crystal”. Quandle axioms (Q2) and (Q3) areieglent to saying that for
everyb € Q the right translatiorpy: ar— ax b is an automorphism d®. Such structures
were called “automorphic sets” by E. Briesko#}.[The somewhat shorter terrack was
preferred by R. Fenn and C.P. Rour9|[ The notion has been generalized to “crossed
G-sets” by P.J. Freyd and D.N. Yettétd.

Definition 3.4. As before, letD be a long knot diagram, its arcs being numbered by
0,...,n. A Q-colouring denotedf: D — Q, is a mapf: {0,...,n} — Q such that at
each crossing as in Figukethe three colourg, b, ¢ satisfy the relatiom* b = c. We de-
note by Co(D; Q) the set ofQ-colourings, and by CdD, 0;Q,q) the subset of colourings

satisfyingf (0) = q.

arb=c
c¥b=a

FIGURE 5. Wirtinger rules for colouring a knot diagram

Proposition 3.5(Joyce BQ]). The quandle axioms ensure that each Reidemeister move
D = D’ induces bijection€ol(D; Q) = Col(D’; Q) andCol(D,0;Q,q) = Col(D’,0;Q,q),
respectively. In particular, if Q is finite, then the colouginumbers &D) = | Col(D; Q)|
and F&(D) = |Col(D,0;Q,q)| are knot invariants. O



KNOT COLOURING POLYNOMIALS 13

3.2. From quandle colourings to group colourings and back.In many respects quan-
dles are close to groups. For colourings we will now explaiwbo pass from quandles to
groups and back without any loss of information.

Definition 3.6. A quandle homomorphisiie a mapg: Q — Q' that satisfiesp(axb) =
¢(a) * (b), and hencep(axb) = ¢(a) * g(b), for alla,b € Q.

Definition 3.7. The automorphism group A(@®) consists of all bijective homomorphisms
¢@: Q — Q. We adopt the convention that automorphism@aict on the right, writtem?,
which means that their compositigny is defined bya(?¥) = (a?)¥ for alla € Q.

Definition 3.8. The group IniQ) = (pp, | b € Q) of inner automorphismis the subgroup
of Aut(Q) generated by all right translatiops: a+— axb. The quandl® is calledcon-
nectedf the action of InffQ) on Q is transitive.

In view of the mapp: Q — Inn(Q), b — py,, we also writea® = ax b for the operation
in a quandle. Conversely, it will sometimes be convenienttice a+ b = b~'ab for the
conjugation in a group. In neither case will there be any éanfjconfusion.

Definition 3.9. A representatiomnf a quandlé on a groups is a mapp: Q — G such that
¢@(axb) = @(a) « @(b) for all a,b € Q. In other words, the following diagram commutes:

0xQ %%, gxaG

g [ con

Q . @
For example, the natural ma@p Q — Aut(Q) satisfiesp(axb) = p(a) « p(b). We call

p theinner representation of. Moreover it satisfiep(a¥) = p(a)9 for all a € Q and
g € Aut(Q). This is the prototype of an augmentation:

Definition 3.10. Let ¢: Q — G be arepresentation and et Q x G — Q, (a,g) — a9, be
a group action. We call the paip, a) anaugmentatiorif axb=a?® andg(ad) = ¢(a)?
forall a,b € Qandg € G. In other words, the following diagram commutes:

QxQ —— QxG —— GxG

(1) *l la lcom

Remark 3.11. We will usually reinterpret the group actlcm as a group homomorphism
a: G — Aut(Q), and denote the augmentanon@y—» G -% Aut(Q). If Gis generated
by the imagep(Q), theng is equivariant and the action & on Q is uniquely determined
by the representatiop. In this case we simply say th@t Q — G is an augmentation. For
example, every quandi@ comes equipped with the inner augmentagorQ — Inn(Q).

|dx¢ mxm

Suppose tha® is a quandle ang: Q — G is a representation on some gro@p Ob-
viously every quandle colourin§: D — Q maps to a group colourin§ = ¢f: D — G.
If @ is an augmentation, then this process can be reversed, acdmweplace quandle
colourings by group colourings Without any loss of inforioat

Lemma 3.12.Let(Q,q) — (G ) % Aut(Q) be an augmentation of the quandle Q with
basepoint gc Q on the group G with basepointx¢(q) € G. If D is a long knot diagram,
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then every group colouring:f(D,0) — (G, x) can be lifted to a unique quandle colouring
f: (D,0) — (Q,q) such that f= @f. In other words induces a bijection

@.: Col(D,0;Q,q) — Col(D,0;G,x), f f=of.

The lifted colouringf begins withf (0) = g and ends with (n) = g?(x), wherep: (7, mg) —
(G,x) is the knot group representation associated with f.

Proof. Every representatiop: (Q,q) — (G,x) induces a mam. sending each quandle
colouring f: (D,0) — (Q,q) to the associated group colourigg : (D,0) — (G,x). In
general. is neither injective nor surjective, legtis an augmentation. In order to define
the inverse mag,.: Col(D,0;G,x) — Col(D,0;Q,q), we use the action: Q x G — Q,
which we temporarily denote big, g) — ae g for better readability.

The crucial ingredient in the proof is the commutativity ddBram (). Let us first show
how the conditiora b = ae @(b) ensures injectivity ofp.. LetD be a long knot diagram
with Wirtinger code(k, £). Assume thaf, f: (D,0) — (Q,q) are colourings withpf =
of. By hypothesis we hav&(0) = f(0) = q. By induction suppose thdfi — 1) = f(i — 1)
for somei > 1. In the case of a positive crossing & +1) we then obtain

fliy="f(—1)«f(ki)=f(i—1)epf(ki)
= f(i—1)eqf(ki) = f(i—1) f(ki) = f(i).

The case of a negative crossirgj £ —1) is analogous. We conclude thiat f.

We now show how the equivariance conditipfae g) = ¢(a) x g of Diagram () en-
sures surjectivity. For every colourinfg (D,0) — (G,x), denoted by — X;, the colours
X0 .- -, Xn Satisfyx = x_1 *x&.. We define partial longitude&, ..., ¢, by settingé; :=
ﬂij:lxj’fixi‘j. In particular we havelg = X, = x andx; = Xo* ¢ foralli = 0,...,n. By def-
inition, ¢, = p(Ik) is the (total) longitude of the colouriny We definef : (D,0) — (Q,q)
by assigning the coloug = qe ¢ to arc number = 0,...,n. By hypothesisp: Q — Gis
an equivariant map, whence

) @(ai) = @(qe i) = @(q) * li = X li = X;.
At each positive crossing we find the following identity,nggiaxiom (Q1):
3) Gi-1%0ki = (Gi-1%Gi-1) * Qi = (G0 6;_1) X ;) @ X = e li =G.
Analogously at each negative crossing:
4) G-1%0ki = (Gi-1%Gi-1) i = (A0 4 1) % ;) eX") = o fi = (.

We can thus defings,: Col(D,0;G,x) — Col(D,0;Q,q) by f — f. Equation ) shows
thatq. Y, = id, and Equations3) and @) imply thaty, @. = id. O

Remark 3.13. Obviously, the conditiomx b = a?® cannot be dropped because it con-
nects the quandle operatienwith the group actiorr. Likewise, the equivariance con-
dition @(a%) = @(a)? cannot be dropped: as an extreme counter-example, coresider
trivial quandleQ = {qg} and an arbitrary groupG,x). We have a unique representation
¢: (Q,q) — (G,x) and a unique group actian: Q x G — Q. The mapy is equivariant if
and only ifx € Z(G). In generalp. cannot be a bijection, because the oftdyq)-colouring

is the trivial one, while there may be non-trivig, x)-colourings.

The Lifting Lemma has the following analogue for closed lsnot
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Lemma 3.14. Let ¢: (Q,q) — (G,X) be an augmentation of the quandle Q on the group
G. If D is a closed knot diagram, thepinduces a bijection betweeDol(D,0;Q,q) and
those homomorphisns (1, mk) — (G, x) satisfying () = q. O

As an immediate consequence we obtain the following result:

Theorem 3.15. Every quandle colouring numbebﬁs the specialization of some knot
colouring polynomial g.

Proof. We consider an augmentatign (Q,q) — (G, x) with G= (¢(Q)), for example the
inner augmentation o@: Q — G = Inn(Q) with basepoink = ¢(q).

For long knots, Lemma&.12implies Fg . HenceFR = P%, wheree: ZG — Z is
the augmentation map of the group ring, wéttg) = 1 for allg € G.

For closed knots we define the linear neapZG — Z by settinge(g) = 1 if g% =g, and
£(g) =0if g? # g. Then Lemma&B.14implies thath = ¢eR%. O

This argument will be generalized §8.5, where we show that every quandle 2-cocycle
state-sum invariant is the specialization of some col@upiolynomial.

3.3. Quandle coverings, extensions, and cohomologyVe recall from L8 how quandle
colourings can be used to encode longitudinal informafi@rthis end we consider a long
knot diagram with meridiansgy,...,X, and partial longitudety,...,l,, as defined in the
above proof of the Lifting Lemma. In particular we haie= x, = Mk andx; = Xg * |; with

lo =1 andl, = Ik. If we colour each arc not only with its meridiag but with the pair
(x,1;), then at each crossing we find that

X =x_1+x5 and i =li_1x &xEl.
This crossing relation can be encoded in a quandle as fallows

Lemma 3.16([18]). Let G be a group that is generated by a conjugacy class &F.
Then Q is a connected quandle with respect to conjugatieb & b~1ab and its inverse
axb=bab . Let G be the commutator subgroup and define

Q=Q(G,x):={(ag)eGxG |a=x9}.
The seQ becomes a connected quandle when equipped with the apesati
(a,g)* (b,h) = (axb,ga ’b) and (a,g)%(b,h) = (a¥b,gab?).
The projection p Q — Q given by Pa,g) = a is a surjective quandle homomorphism. It

becomes an equivariant map when we lea& on Q by conjugation and o by(a,g)® =
(aP,gb). In both cases Gacts transitively and as a group of inner automorphisms. [J

The construction of the quand@(G,x) has been tailor-made to capture longitude in-
formation. Considered purely algebraically, it is a comgrin the following sense:

Definition 3.17. A surjective quandle homomorphism Q — Qs called acoveringif
P(X) = p(¥) impliesd«X = axyforall &Ky € Q. In other words, the inner representation
00— Inn(Q) factors througtp. This property allows us to define an action@bn Q by
settinga x := & X with X € p~1(x).

In the construction of Lemma&.16 the projectiorp: Q — Qis a covering map. More-
over, covering transformations are given by the left actb\ = C(x) NG’ defined by
A -(a,9) = (a,AQ). This action satisfies the following axioms:

(E1) (AR) % §= A (%x§) andx (A§) = K= §for all X, § € Q andA € A.
(E2) A acts freely and transitively on each fitpe?(x).
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Axiom (E1) is equivalent to saying that acts by automorphisms and the left action of
A commutes with the right action of 1i@). We denote such an action By~ Q. In this
situation the quotier® := /\\Q carries a unique quandle structure that turns the projectio
p: @ — Qinto a quandle covering.

Definition 3.18. An extension E A ~ Q‘*) Q consists of a surjective quandle homomor-
phismQ — Q and a group actioh ~ Q satisfying axioms (E1) and (E2). We c&la
central extensioiif A is abelian.

Quandle extensions are an analogue of group extensions;esmichl quandle exten-
sions come as close as possible to imitating central grotemsions. Analogous to the
case of groups, central quandle extensions are classifidtelsecond cohomology group
H2(Q,A), see L8, 7]. More precisely:

Theorem 3.19([18]). Let Q be a quandle, lek be an abelian group, and le£(Q,A) be
the set of equivalence classes of central extensions of @ Ifyiven a central extension
E: A~ Q — Q, each section:sQ — Q defines a2-cocycled: Qx Q — A. If s is
another section, then the associa@docycle)’ differs fromA by a2-coboundary. The
map E+ [A] so constructed induces a natural bijectigiiQ, A) = H%(Q,A). O

The relevant portion of the cochain comp(@.&‘Ll c? 5—2> C8 is formed byn-cochains
A Q" — A satisfyingA (ag,...,an) = 0 wheneverg; = g1 for some index, and the
first two coboundary operatods (u)(a,b) = u(a) — u(a) andé?(A)(a,b,c) = A(a,c) —
A(a,b) + A (ac,b%) — A (a,c). For details, see8] 9, 18]

3.4. From colouring polynomials to state-sum invariants. Let D be a knot diagram and
let f be a colouring oD with colours inQ. Suppose thaf is an abelian group, written
multiplicatively, and thaf : Q2 — A is a 2-cocycle. For each coloured crossmgs in
Figure5, we define itsweightby (A|p) := A(a,b). The total weight of the colouring
f is the product{A|f) := [],(A|p) over all crossingp. The state-sunof the diagram
D is defined to bésg(D) =Yt (A|f), where the sum ilZA is taken over all colourings
f: D — Q. We recall the following results:

Lemma 3.20([8, 9]). The state-sum@is invariant under Reidemeister moves and thus
defines a knot invariant}s .7 — ZA. O

Lemma 3.21([9, Prop.4.5]) If the colouring f: D — Q is closed, that is (0) = f(n),
then the weightA |f) is invariant under addition of coboundaries. As a consegeethe
state sum §0f a closed knot depends only on the cohomology ¢kess O

Lemma 3.22(cf. [19, Lem. 32]) The diagonal action ofhn(Q) on Q" induces the trivial
action on H'(Q,A). As a consequence, for each closed colourind>f— Q and every
inner automorphism g Inn(Q) we have(A|f9) = (A |f) = (A|f). O

This last result is well-known in group cohomology, cf. Bmoyb, Prop.11.6.2]. It
seems to be folklore in quandle cohomology, but | could nal finwritten account of
it. The necessary argument is provided @ [Lem. 32] in the more general setting of
Yang-Baxter cohomology, which immediately translatese¢oma3.22

Lemma 3.23([18, Lem.50]) Let p: (Q, d) — (Q,q) be a central quandle extension.
Given along knot diagram D, every colouring (D, 0) — (Q,q) uniquely lifts to a colour-
ing f: (D,0) — (Q,§) such that f= pf. If f is closed thenf(n) = (A|f) - §, where
[A] € H2(Q,A) is the cohomology class associated with the extension p. O
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These preliminaries being in place, we can now prove thayes@ouring polynomial
RX can be presented as a 2-cocycle state-sum invariant, @ewht the subgroup =
C(x)NG is abelian.

Theorem 3.24. Suppose that G is a colouring group with basepoint x suchttiatsub-
group/A = C(x) NG’ is abelian. Then the colouring polynomig} Ban be presented as
a quandle2-cocycle state-sum invariant. More precisely, the quar@le x® admits a
2-cocycler € Z(Q,A) such that § = R%- |Q.

Proof. Let Q = x® be the conjugacy class &fin the groupG, and letQ = Q(G,x) be
the covering quandle constructed in LemBa6 SinceA is abelian, we obtain a cen-
tral extensiom ~ Q — Q. Let [A] € H2(Q,A) be the associated cohomology class. As
basepoints we choose= x in Q andd'= (x,1) in Q.

Let D be a long diagram of some kngt, let f: (D,0) — (Q,q) be a colouring, let
p: (T, mk) — (G, x) be the corresponding knot group homomorphism, anfl1éb, 0) —
(Q,4) be the lifting of f. On the one hand we havin) = (x, (A|f)) from Lemma
3.23 On the other hand we havén) = (x, p(Ix)) from the Wirtinger presentation. Thus
p(lk) = (A|f), and summing over all colourinds (D,0) — (Q,q) yieldsR%(K).

To obtain the state-sur®, we have to sum over all colourings D — Q. We have
Col(D,Q) = UqleQCoI(D,O;Q,q’). SinceQ is connected, for eaclf € Q there exists
g € G such thatg? = . Hencef — f9 establishes a bijection between @]0;Q,q)
and Co(D,0;Q,qd'). By Lemma3.22we have(A |f) = (A|f9). Thus the state-sum over all
colouringsf : (D,0) — (Q,q’) again yield$%. We conclude theﬁ%(K) =R3(K)-|Q. O

3.5. From state-sum invariants to colouring polynomials. Theorem3.24 has the fol-
lowing converse, which allows us to express quandle 2-decstate-sum invariants by
knot colouring polynomials.

Theorem 3.25. Every quandl@-cocycle state-sum invariant of knots is the specializatio
of some knot colouring polynomial. More precisely, supgbaeQ is a connected quandle,
Ais an abelian group, and € Z2(Q, ) is a2-cocycle with associated invarian(gS% —
Z/\. Then there exists a group G with basepoint x and a linear gha@.G — ZA such
that the colouring polynomialf 2" — ZG satisfies g =¢R:-1Q|.

Proof. We first construct a suitable gro(fs, x) together with a linear mag: ZG — ZA.
LetA~Q LN Q be the central extension associated with the 2-cocycles explained
in Theorem3.19 We putG := Inn(Q). The inner representatigh: Q — G defines an
augmented quandle in the sensé®2. We choose a basepoipe™Q and sek := p().

We choosey = p(§) as basepoint of). Lets: Q — Q be a section that realizes the
2-cocycleA. Sincep is a covering, we obtain a representatpnQ — Gby p = pos.
Conversely, we can define an action@fon Q by settingad = p(s(a)¥). This turns the
representatiop: Q — G into an augmentation anpl: © — Q into an equivariant map.
Our notation being in place, we can now define the linear map

0 ifq¥#aq,

. ZG — ZN\ by settin =
¢ y g ¢(9) {e if g9 = gand/ € A such thag® = /- §.

It remains to prove thaﬁ% = ¢R%-|Q|. LetK be a knot represented by a long knot
diagramD. The Lifting Lemma3.14 grants us a bijection between closed colourings
f: (D,0) — (Q,q) and those homomorphisms (7, Mk ) — (G, x) that satisfygP(k) = q.
Regarding the coverin@, we claim thatg®(k) = (A|f)-§. To see this, lef: (D,0) —

(Q, ) be the lifting of f. On the one hand we can apply the Lifting Lem@a4to the
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augmentatio) — G, which yieldsf(n) = §°(«). On the other hand we can apply Lemma
3.23 which yieldsf(n) = (A|f) - .

The map¢ thus specializes the knot colouring polynomigi(K) to the state-sum
S #(A|f), at least if we restrict the summation to colourifgs(D,0) — (Q,q). SinceQ
is connected, any other basepaihyields the same state-sum by Lema2 Summing
over allq’ € Q, we thus obtairsg = ¢R%-|Q|, as claimed. O

4. COLOURING POLYNOMIALS ARE YANG-BAXTER INVARIANTS

P.J. Freyd and D.N. Yette28] have shown that the colouring numbigf: 7 — Z is
a Yang-Baxter invariant. This means tligtcan be obtained as the trace of a linear braid
group representation arising from a suitable Yang-Baxperatorc.

In this section we will show that the colouring polynomRy: %z~ — ZA is also a
Yang-Baxter invariant, obtained from a certain Yang-Baxjgeratorc'defined below. It
will follow from our construction that is a deformation o€ overZA.

4.1. Braid group representations and Yang-Baxter invariants. The notion of Yang-
Baxter invariants rests on two classical theorems: Arfin&sentation of the braid groups
and the Alexander-Markov theorem, which we will now recalur exposition closely
follows [19] and is included here for convenience.

Theorem 4.1(E. Artin [1]). The braid group on n strands can be presented as

B (o o 0i0j = 00 for|i—j|>2
nTA bt giojoi = ojaioj forli—jl=1/"
where the braidg; performs a positive half-twist of the strands i ang 1.

Definition 4.2. Let K be a commutative ring and a K-module. AYang-Baxter oper-
ator (or R-matri®) is an automorphism: V®V — V ®V that satisfies th&ang-Baxter
equation also calledbraid relation

(c®idy)(idy ®c)(c®idy) = (idy ®c)(c®idy)(idy ®c) in  Autg (V®3).
Here and in the sequel tensor products are takenliveno other ring is indicated.

Corollary 4.3. Given a Yang-Baxter operator ¢ and some integer 8, we can define
automorphismsjc V®" — V®" by setting

n—i—1)

c=ide" Y ecwids fori=1,....,n—1.

The Artin presentation implies that there exists, for each mnique braid group represen-
tation pf: B — Autg (V") defined byp{(a;) = c;. O

We orient braids from right to left as in Figufe Braid groups will act on the left, so
that composition of braids corresponds to the usual cortipnsdf maps. The passage
from braids to links is granted by the closure nfap U, Bn — - defined as follows: for
each braig3 we define itsclosure[B] to be the link inS® obtained by identifying opposite
endpoints, as indicated in Figuée

Theorem 4.4(Alexander-Markov, se€3]). Every link can be represented as the closure
of some braid. Two braids represent the same link if and droyé can be transformed
into the other by a finite sequence of the followivigrkov moves

(M1) Pass fromB € By to Bo;it € By 1, Or vice versa. (Stabilization)
(M2) Pass fromB € B, to a~*Ba with a € By, (Conjugation)
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RN Fm

FIGURE 6. A braidf and its closuréf]

Constructing a link invarianf: .2 — K is thus equivalent to constructing a map
F: UnsBn — K that is invariant under Markov moves. The most natural apghds to
consider traces of linear braid group representationsrriamce under conjugation is auto-
matic, so we only have to require invariance under stalbitina

Definition 4.5. Suppose thaf is a freeK-module with finite basis. Lat: VRV -V @V
be a Yang-Baxter operator. An automorphismV — V is calledMarkov operatorfor ¢
if it satisfies

(m1) the trace condition it (mem)octt)=m and

(m2) commutativity co(mM®m)=(m®m)oc.

Here the partial tracedr EndV ® V) — EndV) is defined as follows. Lelv1,...,vn)
be a basis o overK. Everyf € EndV ® V) uniquely corresponds to a matrf¥* such
thatf (vi @ vj) = 3, £ ve@ v We can then defing=tra(f) € EndV), g(vi) = 4 OV,
by the matrixgl =3 ; fi']f‘. (See Kasseld1, §11.3].)

Corollary 4.6. Given a Yang-Baxter operator ¢ with Markov operator m, wergkedi fam-
ily of maps l: Bp — Kby R(B) =tr(m*"opf(B)). Then the induced map:R J,Bn — K
is invariant under both Markov moves and thus defines a limiriant F: ¥ — K. O

The proof of this corollary is straight-forward: the tragandition (m1) implies invari-
ance under stabilization (M1), and commutativity (m2) ireplinvariance under conjuga-
tion (M2). Much more intricate is the question how to actydithd such a Yang-Baxter-
Markov operator(c,m). Attempts to construct solutions in a systematic way hauetde
the theory of quantum group]. For details we refer to the concise introducti@2] or
the textbook 81].

Remark 4.7. For some Yang-Baxter operatarthere does not exist any Markov operator
m at all. If it exists,mis in general not the identity, as in the case of the Jonesnpely
mial or other quantum invariants. The Yang-Baxter opesatlarived from knot diagram
colourings below are very special in that they allow the Markperatom = id, which is
equivalent to saying thatgfc*!) = id.

4.2. Colouring polynomials of long knots. Before we consider colouring polynomials,
let us first recall how colouring numbers can be obtained feosuitable Yang-Baxter
operator. The following result is due to Freyd and Yetteg R3], Prop. 4.2.5 and the
remark following its proof.

Theorem 4.8([23]). Let Q be a quandle and I&Q be the freek-module with basis Q.
The quandle structure of Q can be linearly extended to a \Barger operator

co: KQKQ—-KQ®KQ with a®b— b® (axb) forall abeQ.
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Axiom (Q2) ensures thagds an automorphism, while Axiom (Q3) implies the Yang-Baxte
equation. If Q is finite, then (Q1) ensures tltra(cél) =id. In this case the corresponding
Yang-Baxter invariantdr= tropg coincides with the number of Q-colourings (defined in
§3.1) followed by the ring homomorphisih— K. ]

As an example consider a finite gro@with basepoink. The Yang-Baxter operator
constructed from the quand@= x® then leads to the colouring numby = FX-(Q|.

We will now move from colouring numbers to colouring polyniaise: consider the
quandle extensioh ~ Q — Q as defined ir§3.3 where the quandi® = Q(G,x) is cov-
ered byQ = Q(G,x), and the deck transformation group/is= C(x) NG'. As before, we
linearly extend the quandle structure®fo a Yang-Baxter operatag, and denote the as-
sociated linear braid group representatiorpgy We will, however, not take the total trace
as before, but rather use the partial trace EndK(KQW) — EndK(KQ), contracting the
tensor factors 2..,n

Theorem 4.9. Let (G, x) be a finite group such that the conjugacy class-@° generates
G. LetQ = Q(G,x) be the covering quandle and Ipf be the associated braid group
representation. Suppose that the knot K is represented bgid B. Then the partial trace
t'(ps(B)): KQ — KQ is given by multiplication withd¥K).

Note that the free left action df on Q turnsKQ into a free left module oveKA. In
particular, multiplication byrR%(K) is aK-linear endomorphism. IK is of characteristic 0,
then the endomorphisr(pg(B)) uniquely determineg%(K).

Proof. We use the obvious bas€s for KQ and Q" for KQ*". Each endomorphism
f: KQ®" — KQ®" is then represented by a matfiaf 4", indexed by elementpl
andg; in the basis). The partial trace tef): KQ — KQ is given by the mathI’

s MEF2-n where the sum is taken over all repeated indjggs. . , pn.

By construction, each elementary braidacts as a permutation on the ba® thus
each braid3 € By, is represented by a permutation matrix with respect to thigs We
interpret this action as colouring the bradvith elements of): we colour the right ends
of the braid withv=p; ® --- ® pn. Moving from right to left, at each crossing the new arc
is coloured according to the Wirtinger rule as depicted guFe5. We thus arrive at the left
ends of the braid being coloured wit{3)v= 01 ® - -- ® gn. We conclude that colourings
of the braidg that satisfy the trace conditioms = gy, ..., pn = Qn are in natural bijection
with colourings of the corresponding long kr6t

We now turn to the remaining indicgg andq;. Let us first consider the special case
p1 = (x,1) andg; = (y,A ). From the preceding argument we see tﬁﬁtequals the num-
ber of Q-colourings of the long kndt that start with(x, 1) and end with(y, A ). According
to Lemma3.12 such colourings exist only fgr=xandA € A, hence we havg; = A - p1.
We conclude thaﬂrqﬁl equals the number of representatidmg, mg,lk) — (G,x,A). In
total we get ti(p(8)) (1) = RE(K) - pu.

The preceding construction is equivariant under the regttten of the grous’ on the
covering quandle). Accordlng to LemmaB.16this action is transitive: for everg € Q
there existgy € G’ andp = pj, so we conclude that'tp(B)) (p) = PX(K) - p. This means
that the endomorphisnftp(B)): KQ — KQ s given by multiplication witlP%(K). [

Remark 4.10. The partial trace tr EndK(KQ@@”) — EndK(KQ) corresponds to closing
the strands 2..,n of the braidf3, but leaving the first strand open: the object thus repre-
sented is a long knot. The natural setting for such constnugis the category of tangles
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and its linear representatior}l]. The previous theorem then says that the long khét
represented by the endomorphi&® — KO that is given by multiplication witheX (K).

If we used the complete trace tr: EadQ®") — K instead, then we would obtain a
different invariants = trops. By the preceding argumenﬂ% equals|Q| times the
number of representatim(]m, mk, k) — (G, x,1), which corresponds to the coefficient of
the unit element in the colouring polynomRY(K)

4.3. Colouring polynomials of closed knots. We will now show how the colouring poly-
nomial R of closed knots can be obtained as the trace of a suitable-Bamter represen-
tation. To this end we will modify the construction of the peeing paragraph in order to
replace the partial trac€ toy the complete trace tr.

We proceed as follows: the quande= x® admits an extensioft ~ O — Qas defined
in §3.3 The quandle structure j linearly extends to a Yang-Baxter operatgron KQ.
The freeA-action onQ turnsKQ into a free module ovek = KA. If A is abelian, we can
pass to ar\-linear operator

& KQo,KQ - KQe,KQ with dwb—bw (d+b) foral &abcq.
The difference betweecg andcq is that the tensor product is now taken overwhich
means that everything is bilinear with respect to multigtiicn byA € A. In the following

theorem and its proof all tensor products are to be takentbeaingA, but for notational
simplicity we will write @ for @,.

Theorem 4.11. If (G,x) is a colouring group such thah = C(x) NG’ is abelian, then
the colouring polynomial & % — ZA is a Yang-Baxter invariant. More precisely, the
preceding construction yields a Yang-Baxter-Markov opmréCo,id) over the ringA =
KA, and the associated knot invariant satisfies= ¢R%-|Q| where¢g : ZA — KA is the
natural ring homomorphism defined pyA) = A forall A € A.

If K is of characteristic O, theth is equivalent to the knot colouring polynomp. If
K is of finite characteristic, then we may lose some infornratindFq is usually weaker
thanRX. In the worst cas@Q)| vanishes ifk andFq becomes trivial.

Proof. It is a routine calculation to prove thag is a Yang-Baxter operator over. as
before, axiom (Q2) implies that’is an automorphism, while axiom (Q3) ensures tat ~
satisfies the Yang-Baxter equation. Axiom (Q1) implies tiaeé condition t( gl) =id,
hence(g,id) is a Yang-Baxter-Markov operator. We thus obtain a line@icbgroup
representatiopg: Bn — Aut, (KQ®M), whose charactéfq = tropg is Markov invariant
and induces a link invariarig: .# — A. Restricted to knots we claim thBg = PX - |Q).
The proof of the theorem parallels the proof of Theore®) but requires some extra care.

To representg by a matrix, we have to choose a basiskad overA. Lets: Q— o]
be a section to the central extensitm Q — Q. ThenB = s(Q) is a basis ofkQ as an
A-module. For the basepoirtwe can assums(x) = (x, 1), but otherwise there are no
canonical choices. In generalwill not (and cannot) be a homomorphism of quandles,
but we haves(a) x s(b) = A(a,b) - s(axb) with a certain 2-cocyclé : Q x Q — A that
measures the deviation effrom being a homomorphism. Just &g is represented by a
permutation matrix, we see theg is represented by the same matrix except that the 1's
are replaced with the elememga,b) € A. This is usually called amonomial matrixor
generalized permutation matrix

SinceKQis a freeA-module with finite basi8 = s(Q), the tensor produ@Q®" is also
free and has finite basB". The trace top(B) is calculated as the suffi,cgn (0 (B)V|V).
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Note thatp(f) is again a monomial matrix in the sense that each row and edemo has
exactly one non-zero entry. Hence a vecta B" contributes to the trace sum if and only
if 5(B)v=A(v)vwith someA (v) € A. It remains to characterize eigenvectors and identify
their eigenvalues.

Given a braid3 € B,, we can interpret the action @) as colouring the braif3: we
colour the right ends of the braid with a basis vestarB",

V= (a1,01) ® (82,02) ®...® (an,0n)-

Moving from right to left, at each crossing the new arc is coé according to the
Wirtinger rule as depicted in Figu® We thus arrive at the left ends of the braid, be-
ing coloured with

P(B)v= (b1,h1) @ (bz,h2) @ - @ (b, hn).

Since the tensor product is defined overwe havep(B)v = A(v)v if and only if a3 =
by,a, = by,...,an = by. Hence each eigenvectarc B" naturally corresponds to @-
colouring of the closed braid = [B].

In order to identify the eigenvalug(v), we will further assume thaias,g1) = (x,1),
wherex is the basepoint o6. Such an eigenvector will be calledrmalized Using the
tensor product-structure ovér= KA, we obtain

PBIV=(xA)® (a2,02) @+ ® (an,gn) = A (V)V

as in the proof of Theorem.9. We conclude that each normalized eigenvesgterB"
with §(B)v = A (v)v corresponds to &-colouring of the long knot, where the first arc is
coloured by(x,1) and the last arc is coloured y,A). This means that the eigenvalue
A(v) is the associated colouring longitude.

We finally show thatFq = PX- |Q| by calculating the trace cgn(p(8)v|v). Nor-
malized eigenvectorg € {(x,1)} x B"* with 3(B)v = A (v)v correspond to colourings
p: (mk,my) — (G,x) with p(lk) = A(v). Summing over these vectors only, we thus ob-
tain the colouring polynomiaR%(K). To calculate the total sum we use again the fact
that the right-action o5’ on Q is transitive. Hence for every € Q there existg € G'
such thats(q)? = (x,1). The action ofg induces a bijection between the set of basis
vectors{s(q)} x B! and {(x,1)} x B, Since the preceding trace calculationds
invariant, each vector € {s(q)} x B"~1 contributesP%(K) to the trace. In total we obtain
Fo=P%-|Q], as claimed. O

4.4. Concluding remarks. It follows from our construction thatg is a deformation of
the Yang-Baxter operatax,. More precisely we haveg{a® b) = A(a,b) - co(a,b) for
all a,b € Q with a suitable map : Q x Q — A. Our construction via quandle coverings
and central extensions provides a geometric interpretaiberms of meridian-longitude
information. This interpretation carries through all @b our construction, which finally
allows us to interpret the resulting Yang-Baxter invariast colouring polynomial.
Conversely, it is natural to consider the ansajza® b) = A (a,b) - co(a,b) and to ask
which A turn &g into a Yang-Baxter operator. This idea can, though in aiststt form,
already be found in3, Thm. 4.2.6]. A direct calculation shows thaj iS a Yang-Baxter
operator if and only ifA is a 2-cocycle in the sense of quandle cohomology. Moreover,
two such deformations will be equivalent if the cocycledatiby a coboundary. This
observation has been worked out by M. GrazZig,[who independently proved that quandle
2-cocycle state-sum invariants are Yang-Baxter invasiant
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