
Mathematics of Computation 78 (2009), 591-613
Preprint version available at http://www-fourier.ujf-grenoble.fr/˜eiserm

BIMONOTONE ENUMERATION

MICHAEL EISERMANN

ABSTRACT. Solutions of a diophantine equationf (a,b) = g(c,d), with a,b,c,d in some
finite range, can be efficiently enumerated by sorting the values of f andg in ascending
order and searching for collisions. This article considersfunctions f : N×N→ Z that
are bimonotone in the sense thatf (a,b) ≤ f (a′,b′) whenevera≤ a′ andb≤ b′. A two-
variable polynomial with non-negative coefficients is a typical example. The problem is
to efficiently enumerate all pairs(a,b) such that the valuesf (a,b) appear in increasing
order. We present an algorithm that is memory-efficient and highly parallelizable. In
order to enumerate the firstn values off , the algorithm only builds up a priority queue of
length at most

√
2n+ 1. In terms of bit-complexity this ensures that the algorithm takes

time O(nlog2 n) and requires memoryO(
√

nlogn), which considerably improves on the
memory boundΘ(nlogn) provided by a naı̈ve approach, and extends the semimonotone
enumeration algorithm previously considered by R.L. Ekl and D.J. Bernstein.

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Motivation. Given polynomial functionsf ,g: N×N→ Z, how can we efficiently
enumerate solutions of the equationf (a,b) = g(c,d)? One standard way to do this is to
sort the setsF = {(f (a,b),a,b) | 1≤ a,b≤N} andG= {(g(c,d),c,d) | 1≤ c,d≤N} into
ascending order with respect to the first coordinate and to look for collisions. As stated, this
requires storing all elements before sorting, which consumes memoryΘ(nlogn), where
n= N2 is the number of values to enumerate, and time betweenΩ(nlogn) andO(nlog2n).

The present article develops a less memory consuming algorithm under the hypothesis
that f andg arebimonotone, that is, monotone in each variable. This is sufficiently of-
ten the case to be of interest, for example, whenf andg are given by polynomials with
non-negative coefficients. Given a bimonotone functionf , Algorithm 4, discussed below,
produces a streamx1,x2,x3, . . . enumerating all parametersxi = (ai ,bi) in the domain of
f such thatf (x1) 6 f (x2) 6 f (x3) 6 Having at hand such sorted enumerations for
f andg, one can easily enumerate solutions of the equationf (x) = g(y): start with i = 1
and j = 1; wheneverf (xi) < g(y j), incrementi; wheneverf (xi) > g(y j), incrementj. If
eventuallyf (xi) = g(y j), then output the solution(xi ,y j) and continue searching.

1.2. Main result. The idea of sorted enumeration was applied by D.J. Bernstein[1] with
great success to equations of the special formp(a)+q(b) = r(c)+s(d). We generalize his
approach to arbitrary bimonotone functions. The main result can be stated as follows:

Date: first version June 2005; this version compiled March 16, 2009.
2000Mathematics Subject Classification.68P10; 11Y50, 68W10, 11Y16, 11D45.
Key words and phrases.sorting and searching, diophantine equation, bimonotone function, sorted enumera-

tion, semimonotone enumeration, bimonotone enumeration.

1

2 MICHAEL EISERMANN

Theorem 1. Suppose that f: N×N→ Z is bimonotone and proper in the sense that for
every z∈ Z only finitely many pairs(a,b) satisfy f(a,b) ≤ z. Then Algorithm 4 stated
below produces a stream enumerating all pairs(a,b) ∈ N×N such that the values f(a,b)
appear in increasing order. While enumerating the first n values, the algorithm only builds
up a priority queue of length m≤

√
2n+ 1. If f is a polynomial, this ensures that the

algorithm takes time O(nlog2n) and requires memory O(
√

nlogn).

The precise boundm≤
√

2n+ 1 is free of hidden constants and thus uniformly valid
for all bimonotone functionsf . The less explicit bounds of timeO(nlog2n) and memory
O(
√

nlogn) concern the bit-complexity and the hidden constants necessarily depend onf .
We shall assume throughout thatf behaves polynomially, see§2.3.

To place this result into perspective, notice that the time requirementO(nlog2n) is
nearly optimal: enumeratingn elements obviously needsn iterations, and one logn factor
is due to their increasing size. On the other hand, the standard approach would require
memoryΘ(nlogn) to storeall values before outputting them. Here the stream approach
can achieve considerable savings and reduce memory toO(

√
nlogn).

Example 2. Considerf (a,b) = p(a)+ q(b) wherep andq are non-decreasing polyno-
mial functions of degreeα = degp andβ = degq, respectively. Assuming 1≤ α ≤ β ,
Algorithm 4 builds up a priority queue of lengthm∈ Θ(nε) with ε = α

α+β ∈ [0, 1
2].

This illustrates that in the uniform boundm∈ O(n1/2), stated in the theorem for all
bimonotone functions, the exponent1

2 cannot be improved. Notwithstanding, the algorithm
performs better on certain subclasses of bimonotone functions, whereε < 1

2.

Remark 3. The predecessor of our algorithm is semimonotone enumeration, recalled in
§3. It was devised in [2, 1] for polynomials of the formf (a,b) = p(a)+q(b), where it pro-
vides the desired memory boundO(

√
nlogn). In the more general setting of bimonotone

functions, however, we show that it only guarantees the memory boundO(nlogn) and in
general the exponent 1 cannot be improved. See§5 for a detailed discussion.

As an additional benefit, our algorithm turns out to be highlyparallelizable:

Remark 4. Algorithm 4 can be adapted to enumerate only those pairs(a,b) ∈ N×N for
which the valuesf (a,b) lie in a given interval[z1,z2]. Time and memory requirements
are essentially the same as before; only initialization induces some additional cost and can
usually be neglected. This means that searching solutionsf (a,b) = g(c,d) can be split up
into disjoint intervals and thus parallelized on independent machines (see§6).

1.3. How this article is organized. Section 2 introduces the necessary notation and re-
calls the generic algorithm of sorted enumeration for an arbitrary map f : X→ Z, where
X is a finite set. Section 3 discusses a refined algorithm, essentially due to R.L. Ekl [2]
and D.J. Bernstein [1], under the hypothesis thatf : A×B→ Z is semimonotone, that is,
monotone in the first variable. Section 4 develops a sorted enumeration algorithm for
bimonotone functions, and Section 5 analyses the asymptotic complexity. Section 6 high-
lights the intrinsically parallel structure of such a search problem. Section 7 generalizes
our algorithms to functionsf : X→ Z restricted to suitable domainsX ⊂ A×B that are of
of practical interest. Finally, Section 8 briefly indicatesapplications to diophantine enu-
meration problems, such as the taxicab problem.

1.4. Acknowledgement. I thank the anonymous referee for his thorough critique, harsh
but fair, which substantially contributed to improve the exposition.

BIMONOTONE ENUMERATION 3

2. SORTED ENUMERATION FOR ARBITRARY FUNCTIONS

Before discussing more sophisticated versions, let us firstdescribe the general problem
of sorted enumeration and recall its generic solution.

2.1. The generic problem. Throughout this article we consider an ordered set(Z,6). By
order we always mean a reflexive, transitive relation that is complete and antisymmetric,
i.e. each pairz 6= z′ in Z satisfies eitherz6 z′ or z′ 6 z. Without completeness we may have
neitherz6 z′ norz′ 6 z, in which case we speak of apartial order. Without antisymmetry
we may have bothz6 z′ andz′ 6 z, in which case we speak of apreorder.

We assume thatX is a finite or countably infinite set. Anenumerationof X is a stream
x1,x2,x3, . . . in which each element ofX occurs exactly once. Such an enumeration is
monotoneor sortedwith respect tof : X→ Z if it satisfies f (x1) 6 f (x2) 6 f (x3) 6
Whenever the functionf is understood from the context, we will simply speak of asorted
enumerationof X.

Remark 5. The mapf : X→ Z can be used to pull back the order6 from Z to the initially
unordered setX. More explicitly, we definex 4 x′ if and only if f (x) 6 f (x′). A sorted
enumeration ofX is thus a stream in which all elements ofX appear in increasing order
with respect to the preorder4.

2.2. The generic algorithm. In the general setting, whereX is finite andf has no further
structure, there is essentially only one way to produce a sorted enumeration:

Algorithm 1 Sorted enumeration for an arbitrary function
Requires: a function f : X→ Z from a finite setX to an ordered setZ
Output: an enumeration ofX, monotone with respect tof

1: Generate a listL of all pairs(f (x),x) with x∈ X.
2: Sort the listL according to the first coordinatef (x).
3: Output the argumentsx as sorted in the listL.

Algorithm 1 is obviously correct. Given a setX of sizen, generating and reading the
list L takesn iterations, while sorting requiresO(nlogn) operations. Not much optimiza-
tion can be expected concerning these time requirements, since enumeration (sorted or not)
takes at leastn iterations. Memory requirements, however, may be far from optimal, and
the more specialized algorithms discussed below will mainly be concerned with minimiz-
ing the use of temporary memory.

2.3. Time and memory requirements. Throughout this article we use standard asymp-
totic notation, as in [3,§9]. It is customary to consider the cost for storing and handling
elementsx and f (x) to be constant. This is no longer realistic when the sizen = |X| grows
without bound. As a typical example, consider a polynomial function f : N→ Z restricted
to X = {1, . . . ,n}. If each elementx ∈ X is stored in binary form, the maximal memory
required isΘ(logn). Likewise, the maximal time to calculate, copy, and comparevalues
f (x) is Θ(logn), neglecting factors of order log logn or less. Most elements require nearly
maximum cost, so we shall only consider the worst case.

In general, we say thatf behaves polynomiallyif the bit-complexity per element is
Θ(logn), as above. In this case we arrive at the following more realistic account:

Proposition 6. In order to enumerate a set X of size n, the generic Algorithm 1builds up
a list of size m= n, and thus requires time O(nlog2n) and memory of sizeΘ(nlogn). �

4 MICHAEL EISERMANN

3. SORTED ENUMERATION FOR SEMIMONOTONE FUNCTIONS

In this section we consider a semimonotone functionf : A×B→ Z. By this we mean
that(A,6) is an ordered set anda 6 a′ implies f (a,b) 6 f (a′,b) for all b∈ B. This is the
same as saying thatf is monotone with respect to the partial order(a,b)≤ (a′,b′) defined
by the conditiona 6 a′ andb = b′.

3.1. The idea of semimonotone enumeration.We will first assume thatA and B are
finite sets. This entails that(A,6) is isotonic to an interval{1, . . . , l} of integers. The
minimal and maximal element ofA is denoted byamin and amax, respectively, and the
successor function is denoted bya 7→ σa. Of courseamax cannot have a successor inA, so
by convention we setσamax = +∞.

We equipX = A×B with the partial order≤ as defined above. Given a subsetXi ⊂ X,
we denote byMi = Min(Xi) the set of its minimal elements. Conversely,Mi defines its
upper setM+

i = {x∈ X |m≤ x for somem∈Mi }. Figure 1 shows a subsetXi (indicated
by crosses) together with its set of minimaMi (circled crosses). In this exampleXi is
saturatedin the sense thatXi = M+

i .

A

B

3

4

5

6

7

8

9

1 2 3 987654 1110 12 13 14 15

1

2

FIGURE 1. A subset ofA×B and its minima with respect to≤

Since f is monotone with respect to≤, the minimum off (Xi) is attained onMi . It thus
suffices to findxi ∈Mi realizing f (xi) = min f (Mi). We can then outputxi and continue
with the setXi+1 = Xi r {xi}. Notice thatXi+1 is again saturated andMi+1 can be easily
constructed fromMi . This is the idea of Algorithm 2 below.

3.2. Suitable data structures. The following algorithm has been independently devel-
oped by R.L. Ekl [2] and D.J. Bernstein [1], and formalizes the above approach: instead
of handling the entire setXi , it operates on two smaller sets,M = Min(Xi) andF = f (M).
In order to efficiently findxi ∈M realizing f (xi) = min f (M), we store the set of images
f (M) in a priority queueF . Recall that a priority queueF for elements of(Z,6) provides
the following elementary operations:

• Inserting an elementz∈ Z into F (“push”).
• Reading and removing a minimal element ofF (“pop”).

Priority queues are typically implemented using a heap or a binary tree; in either case
the elementary operations needO(logm) steps, wherem is the number of elements in the
priority queue. For a general presentation see Knuth [7,§5.2.3].

BIMONOTONE ENUMERATION 5

3.3. The semimonotone enumeration algorithm.Instead of f : A×B→ Z it is more
convenient to work with the mapf ∗ : A×B→Z×A×Bdefined byf ∗(a,b)= (f (a,b),a,b).
In our formulation of Algorithm 2 we thus use a priority queueF for elements inZ×A×B,
sorted by the first coordinate.

Algorithm 2 Sorted enumeration for a semimonotone function
Requires: a semimonotone functionf : A×B→ Z
Output: an enumeration ofA×B, monotone with respect tof

1: Start with an empty priority queueF , then insertf ∗(amin,b) for all b∈ B.
2: while F is non-emptydo
3: Remove a minimal elementf ∗(a,b) from F and output(a,b).
4: if σa < +∞ then insert f ∗(σa,b) into F end if
5: end while

Remark 7. All algorithms presented here can be regarded as templates,to be instantiated
for the given mapf : A×B→ Z. Alternatively, one could consider them as taking the sets
A andB and the mapf as input data. In this case, of course, we do not pass the entire sets
A andB as parameters, nor the mapf , say as some subset ofA×B×Z: for finite sets this
would be as inefficient as Algorithm 1; for infinite sets it is simply impossible.

Instead, it suffices to call some function that calculatesf (a,b) for any given pair of
parametersa∈ A andb∈ B. To represent the setsA andB, all we need is the usualiterator
concept, providing a pointer to the first (and possibly the last) element of the set and a
method for incrementing, denoted bya 7→ σa above. (Algorithms 5 and 7 also decrement,
denoted byb 7→ πb.)

One can easily add suitable specifications when passing to concrete implementations.
For the present general exposition, however, we shall maintain the slightly coarser descrip-
tion, trying to strike a balance between general concepts and implementation details.

Algorithm 2 is obviously correct. The point is, as motivatedabove, that it usually uses
less memory than the generic Algorithm 1.

Proposition 8. In order to enumerate a set X= A×B of size n, Algorithm 2 only builds
up a priority queue of size m= |B|. Let f : N×N→ Z be a semimonotone map that
behaves polynomially. Applied to subsets A= {1, . . . , l} and B= {1, . . . ,m} with m≥ 2,
the algorithm thus takes time O(nlognlogm) and requires memoryΘ(mlogn).

Proof. The algorithm needs memory to holdm elementsf ∗(a,b) in the priority queueF .
Since most elements need memory of sizeΘ(logn), we arrive at a total memory cost of
Θ(mlogn). During each one of then iterations, the most time consuming operation is
updating the priority queueF which requires timeO(lognlogm). Herem is the size of the
queue and logn is the typical size of its elements. �

Remark 9. Notice that in the degenerate case|B| = 1, Algorithm 2 simply enumerates
A in increasing order, which takes timeO(nlogn) and memoryΘ(logn). In the opposite
extreme|A|= 1, it sortsB with respect tof via heap-sort. We thus fall back on the generic
Algorithm 1, which takes timeO(mlog2m) and spaceΘ(mlogm).

3.4. Enumerating infinite sets. Sorted enumeration can be generalized from finite to in-
finite sets. First of all, in order to be amenable to enumeration, A must be either finite
or isotonic to the natural numbers. Moreover, we have to require that f : A×B→ Z be

6 MICHAEL EISERMANN

a proper map in the sense that for everyz∈ Im(f) only finitely many pairs(a,b) satisfy
f (a,b)≤ z. (This condition actually implies thatA is finite or isotonic toN.) Of course, we
also have to assume that comparisons and all other operations are computable; as before
their cost will be assumed to be of orderO(logn).

Proposition 10. Suppose that A is an infinite ordered set and B is a finite set of size m.
Let f : A×B→ Z be a proper semimonotone map. Then Algorithm 2 produces a stream
enumerating all pairs(a,b)∈A×B such that the values f(a,b) appear in increasing order.
Producing the first n values takes time O(nlognlogm) and requires memoryΘ(mlogn).

Proof. For everyz∈ Im(f) the set{(a,b) ∈ A×B | f (a,b) ≤ z} is finite, and thus con-
tained in some finite product[amin,a1]×B. Hence Algorithm 4 correctly enumerates all
parameters(a,b) with f (a,b) ≤ z as in the finite case. Since this is true for allz, the
enumeration exhaustsA×B. Bit-complexity behaves as in Proposition 8. �

We wish to adapt semimonotone enumeration to the case where bothA andBare infinite.
Algorithm 2 is certainly not suited for this task, because the initialization will get stuck in
an infinite loop. As a necessary restriction we require thatf : A×B→ Z be proper, and as
before we assume thatf is monotone with respect toA. For everyz∈ Im(f), we can thus
enumerate the finite set{ f 6 z} := {(a,b) ∈ A×B | f (a,b) 6 z} by applying Algorithm 2
to the relevant finite setB(z) = pr2{ f 6 z}= {b∈ B | f (amin,b)≤ z}.

In order to formulate an explicit algorithm, we assume that the setB is ordered and that
f2 : B→ Z, f2(b) = f (amin,b) is non-decreasing. This is strictly weaker than demandingf
to be bimonotone, because we require monotonicity inb only on the axis{amin}×B. This
technical condition ensures that we can easily construct the relevant finite setB(z). In fact,
the monotonicity off2 is not at all restrictive, because we canchoosethe order onB, for
example by pulling back the order onZ via f2 to a preorder onB, and then refining to an
order by arbitrating collisions. In other words, the order on B is just a convenient way to
encode some preparatory analysis of the proper mapf2 : B→ Z.

This idea is formalized in Algorithm 3, which is a slight variation of Algorithm 2.
The only difference is that it automatically adapts the relevant intervalB(z) = [bmin,bmax[
according to the levelzattained during the enumeration.

Algorithm 3 Sorted enumeration for a semimonotone function
Requires: a proper semimonotone functionf : A×B→ Z
Output: an enumeration ofA×B, monotone with respect tof .

1: Initialize the priority queueF ← 〈 f ∗(amin,bmin) 〉 and setbmax← bmin.
2: while F is non-emptydo
3: Remove a minimal elementf ∗(a,b) from F and output(a,b).
4: if σa < +∞ then insert f ∗(σa,b) into F end if
5: if b = bmax then
6: Setbmax← σbmax.
7: if bmax < +∞ then insert f ∗(amin,bmax) into F end if
8: end if
9: end while

Here we have formulated Algorithm 3 so that it applies to finite and infinite sets alike.
If A or B is infinite, thenσa < +∞ or bmax < +∞, respectively, is always true and the
corresponding test can be omitted.

BIMONOTONE ENUMERATION 7

Proposition 11. Suppose that both A and B are infinite ordered sets and that f: A×B→ Z
is a proper semimonotone function. We also assume that b7→ f (amin,b) is non-decreasing.
Then Algorithm 2 provides a sorted enumeration of A×B. While enumerating the first n
values, it builds up a priority queue of length m≤ n+ 1. This ensures that the algorithm
takes time O(nlog2n) and memory O(nlogn). �

Semimonotone functions are tailor-made for applications where we have monotonicity
in a but not necessarily inb. They are halfway towards bimonotone functions, which are
more restrictive but support much better algorithms. Thesewill be discussed next.

4. SORTED ENUMERATION FOR BIMONOTONE FUNCTIONS

In this section we finally turn to bimonotone functionsf : A×B→ Z. By this we
mean that both(A,6) and (B,6) are ordered sets, and thata ≤ a′ and b ≤ b′ implies
f (a,b)≤ f (a′,b′). This is the same as saying thatf is monotone with respect to the partial
order(a,b)≤≤ (a′,b′) defined bya 6 a′ andb 6 b′.

4.1. The idea of bimonotone enumeration.We will first assume that both setsA andB
are finite. Given a subsetXi ⊂X we denote byMi = Min(Xi) the set of its minimal elements
with respect to≤≤. Conversely,Mi defines its upper setM#

i = {x∈X |m≤≤x for somem∈
Mi }. Figure 2 shows a subsetXi (indicated by crosses) together with its set of minimaMi

(circled crosses). In this exampleXi is saturatedin the sense thatXi = M#
i .

A

B

3

4

5

6

7

8

9

1 2 3 987654 1110 12 13 14 15

1

2

FIGURE 2. A subset ofA×B and its minima with respect to≤≤

Since f is monotone with respect to≤≤, the minimum off (Xi) is attained onMi . It thus
suffices to findxi ∈Mi realizing f (xi) = min f (Mi). We can then outputxi and continue
with the setXi+1 = Xi r{xi}, which is again saturated. Moreover, it is possible to construct
Mi+1 directly fromMi , without having to constructXi or Xi+1. (See Algorithm 4 below.)
Thus, instead of searching the entire setXi , we only need to keep track ofMi , the set of
minimal elements.

4.2. Suitable data structures. According to the previous remark, the bimonotone enu-
meration algorithm will operate on two sets:M = Min(Xi) andF = f (M). The setM can
profitably be implemented as a list〈 (a1,b1),(a2,b2), . . . ,(am,bm) 〉 with ai ∈ A andbi ∈ B.
During the algorithm, the listM will always be ordered in the sense thata1 < a2 < · · ·< am

andb1 > b2 > · · ·> bm, as already indicated in Figure 2. We call(ak,bk) thepredecessorof

8 MICHAEL EISERMANN

(ak+1,bk+1) in M, and conversely(ak+1,bk+1) thesuccessorof (ak,bk) in M. By conven-
tion the predecessor of(a1,b1) is (−∞,+∞), and the successor of(am,bm) is (+∞,−∞).

Given an element(a,b) in the listM, the required operations are:

• Finding the successor or predecessor of(a,b) in M.
• Inserting an element intoM right after(a,b).
• Removing(a,b) from M.

The cost of these operations can be assumed to beO(logn), which is the typical cost
for storing and handling one of the elements of the setX = A×B of sizen. In particular,
the cost is independent of the sizem= |M|. For details on bidirectional lists see Knuth [6,
§2.2.5], or any other textbook on algorithms and data structures.

As before, the setF = f (M) will be implemented as a priority queue containing the
values f (a,b) for all (a,b) in M. It is recommendable to storef (a,b) together with a
pointer to the element(a,b) in the listM. This allows us to extract(a,b), and, moreover,
we can directly address(a,b) in M without searching the list. For notational convenience
we will not explicitly mention this pointer in the sequel.

4.3. The bimonotone enumeration algorithm. Having suitable data structures at our dis-
posal, it is an easy matter to formalize bimonotone enumeration (Algorithm 4).

Algorithm 4 Sorted enumeration for a bimonotone function
Requires: a bimonotone functionf : A×B→ Z
Output: an enumeration ofA×B, monotone with respect tof

1: Initialize M← 〈 (amin,bmin) 〉 andF ← 〈 f (amin,bmin) 〉.
2: while F is non-emptydo
3: Remove a minimal elementf (a,b) from F and output(a,b).
4: Let (a∗,b∗) be the successor of(a,b) in the listM.
5: if σa < a∗ then
6: Insert(σa,b) into M right after(a,b) and insertf (σa,b) into F .
7: end if
8: Let (a∗,b∗) be the predecessor of(a,b) in the listM.
9: if σb < b∗ then

10: Insert(a,σb) into M right after(a,b) and insertf (a,σb) into F .
11: end if
12: Remove(a,b) from the listM.
13: end while

The only subtlety of this algorithm is updating the listM. We want to remove(a,b), of
which we know that it is a minimal element ofXi . The set of elements strictly greater than
(a,b) is given by

{(a,b)}# r{(a,b)}= {(a,σb),(σa,b)}#.
Hence, removing(a,b) creates at most two new minima,(a,σb) and(σa,b). It is easy
to check whether they are actually minimal forXi r {(a,b)}: since our listM of minima
is ordered, it suffices to compare(a,σb) to the predecessor(a∗,b∗), and(σa,b) to the
successor(a∗,b∗).

To illustrate the different possibilities, we consider Figure 2 again. The following table
indicates, for each possible minimum(a,b), how the listM has to be modified in order to
obtain a new ordered list of minima satisfyingM# = Xi r{(a,b)}:

BIMONOTONE ENUMERATION 9

(a,b) (a∗,b∗) (σa,b) insert? (a∗,b∗) (a,σb) insert?

(3,9) (5,8) (4,9) yes (−∞,+∞) (3,+∞) no

(5,8) (7,7) (6,8) yes (3,9) (5,9) no

(7,7) (8,5) (8,7) no (5,8) (7,8) no

(8,5) (9,2) (9,5) no (7,7) (8,6) yes

(9,2) (12,1) (10,2) yes (8,5) (9,3) yes

(12,1) (+∞,−∞) (13,1) yes (9,2) (12,2) no

Lemma 12. Algorithm 4 is correct: if A and B are finite ordered sets and f: A×B→Z is a
bimonotone map, then Algorithm 4 produces a stream enumerating all pairs(a,b) ∈ A×B
such that the values f(a,b) appear in increasing order.

Proof. At the beginning of thei-th iteration of the algorithm we denoteM by Mi , and
F by Fi, and the set of remaining parameters byXi := M#

i . The initialization states that
M1 = 〈 (amin,bmin) 〉 andF1 = 〈 f (amin,bmin) 〉, soX1 = A×B.

By induction we can assume that the setXi is of sizen− i + 1 and saturated, with
Mi = Min(Xi) andFi = f (Mi). Furthermore, we can assume that the list representingMi is
ordered in the sense that〈 (a1,b1),(a2,b2), . . . ,(am,bm) 〉 satisfiesa1 < a2 < · · ·< am and
b1 > b2 > · · · > bm. It is straightforward to verify that thei-th iteration of our algorithm
ensures the following assertions:

• The outputxi satisfiesf (xi) = minFi = min f (Mi) = min f (Xi).
• The setXi+1 = Xi r{xi} is saturated and of sizen− i.
• We haveMi+1 = Min(Xi+1) andFi+1 = f (Mi+1).
• The new list representing the setMi+1 is again ordered.

The algorithm stops aftern iterations when it reachesXn+1 = /0, henceMn+1 = /0 and
Fn+1 = /0. We conclude that the output sequencex1,x2, . . . ,xn is an enumeration ofA×B
satisfying f (x1) 6 f (x2) 6 . . . 6 f (xn). �

Since the sorted enumeration algorithm outputs one elementxi at each iteration, the
loop is repeated exactlyn = |A| · |B| times. At thei-th iteration, the algorithm occupies
memory of sizemi = |Mi | to store the listMi and the priority queueFi . Let m= maxmi be
the maximum during the entire execution.

Lemma 13. In order to enumerate a set X= A×B of size n, Algorithm 4 only builds up a
priority queue of length m≤min{|A|, |B|}, which entails, in particular, m≤√n.

Proof. During the enumeration algorithm the list representingM is always strictly increas-
ing in a and strictly decreasing inb. In particular, the projectionsM→ A andM→ B are
both injective. The required memorym is thus bounded by min{|A|, |B|}. �

Proposition 14. Let f : N×N→ Z be a bimonotone map that behaves polynomially. Ap-
plied to subsets A= {1, . . . , l} and B= {1, . . . ,m} with m≥ 2, Algorithm 4 takes time
O(nlog2n) and requires memory O(

√
nlogn).

Proof. The loop is repeatedn times. The most time consuming operation is updating
the priority queueFi to Fi+1 which requires timeO(lognlogmi), wheremi is the size
of the queueFi and its elements are typically of sizeΘ(logn). The total cost is time
O(nlognlogm) and memoryΘ(mlogn). With m≤√n we obtain the stated bounds. �

10 MICHAEL EISERMANN

Example 15. The following extreme cases illustrate Algorithm 4 and the possible be-
haviour of the memory boundm. We considerf : A×B→ N whereA = {1, . . . ,k} and
B = {1, . . . , l} are two intervals of integers, withk≥ l ≥ 2 say.

The best case occurs forf (a,b) = la + b, where Algorithm 4 enumeratesA×B in
lexicographic order. During thei-th iteration of the algorithm the set of minimaMi contains
only 1 or 2 elements, so thatm= 2, independent of the sizes|A| and|B|.

The worst case occurs forf (a,b) = a+ b. Having enumerated all elementsxi with
f (xi) ≤ l , the listM contains exactlyl elements, namely(1, l),(2, l −1), . . . ,(l ,1). Thus
the upper boundm= min{|A|, |B|} is actually attained.

4.4. Enumerating infinite sets. As with semimonotone enumeration, bimonotone enu-
meration can be generalized from finite to infinite sets. The interesting point is that now
both setsA andB can be infinite, and the algorithm applies without change.

Theorem 16. Suppose that A and B are ordered sets and that f: A×B→ Z is a proper
bimonotone map. Then Algorithm 4 produces a stream enumerating all pairs(a,b)∈A×B
such that the values f(a,b) appear in increasing order. In order to enumerate the first n
values, the algorithm builds up a priority queue of length atmost

√
2n+ 1. If f behaves

polynomially, the algorithm takes time O(nlog2n) and requires memory O(
√

nlogn).

Proof. For everyz∈ Im(f) the set{(a,b)∈A×B | f (a,b)≤ z} is finite, it is thus contained
in some finite product[amin,a1]× [bmin,b1]. Hence Algorithm 4 correctly enumerates all
parameters(a,b) with f (a,b) ≤ z as in the finite case. Since this is true for allz, the
enumeration exhaustsA×B.

Let us suppose that, aftern outputs, the listM holdsm pairs(ai ,bi) ordered such that
a1 < a2 < · · ·< am andb1 > b2 > · · ·> bm. This obviously impliesn≥ 1

2m(m−1), whence
m≤
√

2n+1. The time needed forn outputs is thusO(nlognlog
√

n) = O(nlog2 n), while
the required memory isO(

√
nlogn). �

Example 17. Again the worst case occurs for the mapf : N×N→ Z with f (a,b) = a+b,
wherem∼

√
2n. The best case occurs forf (a,b) = max{a,b}, wherem≤ 4.

This example shows that for bimonotone enumeration the memory boundm∈O(
√

n) is
best possible: there exist bimonotone functionsf for which Algorithm 4 actually requires
temporary memorym∼

√
2n. Notwithstanding, the algorithm performs significantly better

on certain subclasses of bimonotone functions:

Proposition 18(separate variables). Consider f: N×N→ Z with f(a,b) = p(a)+q(b),
where p and q are non-decreasing polynomial functions of degree α = degp and β =
degq, respectively. Assuming1≤ α ≤ β , the bimonotone enumeration algorithm requires
memory m∈ Θ(nε) with exponentε = α

α+β .

For example, sorted enumeration off (a,b) = a3 + b7 requires memorym∈ Θ(n3/10),
while the a priori bound of Theorem 16 only tells usm∈O(n1/2).

Proof. Let f : N×N→ N be defined byf (a,b) = aα +bβ with 1≤ α ≤ β . The general
casef (a,b) = p(a)+ q(b) works essentially the same, but the notation is more cumber-
some.

Suppose that then-th outputxn has attained the levelf (xn) = z, and the listM holds
m parameters(a1,b1), . . . ,(am,bm). Then we havea1 = 0 and f (a1,b1) = bβ

1 ≥ z. On the
other hand,(a1,b1−1) has already been output, which means(b1−1)β ≤ z. We conclude

BIMONOTONE ENUMERATION 11

a

b

x

y

f>z

f<z

FIGURE 3. Estimating the size of the set Min≤≤{aα +bβ ≥ z}

that β
√

z≤ b1 ≤ β
√

z+ 1, whenceb1 ∼ β
√

z. Analogously, α
√

z≤ am ≤ α
√

z+ 1, whence
am∼ α√z. This situation is depicted in Figure 3. In the sequel we seta := am andb := b1.

The upper boundn ≤ (a+ 1)(b+ 1) is clear. Sincef is convex, we also have the
lower boundn > 1

2ab. To see this, apply Pick’s theorem to count integer points inthe
triangle∆ = [(0,0),(a,0),(0,b)]. Both inequalities together imply thatn∈ Θ(z(α+β)/αβ),
or equivalently,z∈Θ(nαβ/(α+β)).

The upper boundm≤ b+ 1 is clear, and it remains to establish a lower bound. We
will assumeα < β . (The symmetric caseα = β is easier and will be examined more
closely in Example 27 below.) There exists a unique point(x,y) ∈ R2

+ on the contour
whose normal vector points in the direction(1,1): this is the solution ofxα + yβ = z and
αxα−1 = βyβ−1. It is easy to see thatm≥ b−⌈y⌉ andm∼ (a−x)+(b−y) as indicated in
Figure 3. We havex= cy(β−1)/(α−1) with c= α−1

√

β/α, whencecαyα(β−1)/(α−1)+yβ = z.
Sinceα(β −1)/(α−1) > β we deduce thaty∈ o(β

√
z). The boundsb−⌈y⌉ ≤m≤ b+1

thus entailm∼ β√z, whencem∈ Θ(nα/(α+β)). �

We remark that in the above examples semimonotone enumeration achieves the same
asymptotic bounds. This warrants a more detailed analysis,which we endeavour next.

5. ASYMPTOTIC COMPLEXITY

We are now ready to address the crucial question: is bimonotone enumeration (Algo-
rithm 4) better than semimonotone enumeration (Algorithm 3)? We shall compare the size
m of the priority queue built up during the algorithm. The testclass consists of all proper
bimonotone functionsf : N×N→ Q, which is where both algorithms apply. First of all,
the following observation is worth emphasizing:

Remark 19. Bimonotone enumeration is at least as good as semimonotone enumeration.
More explicitly, both algorithms have to trace the contour of the finite set

{ f 6 z} := {(a,b) ∈ A×B | f (a,b) 6 z}
and construct the set of minima of the complement, Min{ f > z}. To this end semimonotone
enumeration uses the partial order(a,b)≤ (a′,b′) defined bya 6 a′ andb = b′. (Here we
are ordering with respect toa for fixedb; since f is bimonotone, we could also order with
respect tob for fixed a, whichever is advantageous.) Bimonotone enumeration usesthe
partial order(a,b)≤≤ (a′,b′) defined bya 6 a′ andb 6 b′. This entails the inclusion

Min≤≤{ f > z} ⊂Min≤{ f > z}.

12 MICHAEL EISERMANN

This means that the priority queue for bimonotone enumeration is a subset of the queue for
semimonotone enumeration, and consequently the required memory is less or equal.

At this point we should clarify a possible ambiguity. Both Algorithms 3 and 4 have
to chooseoneminimal element of the priority queue. In order to disambiguate multiple
minima, we choose the one with minimalB-coordinate. This ensures that it belongs to both
Min≤≤{ f > z} and Min≤{ f > z}, and the inclusion propagates inductively.

Whether the bimonotone algorithm can achieve a significant improvement depends on
the functionf . Let us begin with a trivial example where no savings are possible:

Example 20(linear contour). Considerf : N×N→N defined byf (a,b) = (a+b)γ with
γ ≥ 1. In this case Min≤≤{ f > z} = Min≤{ f > z} is given by the linea+b= 1+ ⌊ γ

√
z⌋.

In general, however, the inclusion Min≤≤{ f > z} ⊂ Min≤{ f > z} is strict. Generally
speaking, bimonotone enumeration adapts better to the contour and achieves savings when-
ever the contour deviates from being a straight line. We now quantify this observation.

5.1. Polynomial functions. Considerf : N×N→ Q defined by a polynomialf (a,b) =

∑i, j ci j aib j with rational coefficientsci j ≥ 0. This condition ensures thatf is bimonotone.
Let f1(a) = f (a,0) and f2(b) = f (0,b) be the induced polynomial functions on the

axes, and setα := degf1 andβ := degf2. We assume thatα,β ≥ 1, which ensures thatf
is proper. Without loss of generality, we can also assume that α ≤ β .

Let γ := degf = max{i + j | ci j 6= 0} be the total degree off . We haveα ≤ β ≤ γ.
We denote byn := ♯{ f 6 z} the number of values off up to some levelz, and by

m := ♯Min{ f > z} the length of the priority queue at levelz.

Proposition 21. Semimonotone enumeration of the set{ f 6 z} requires memory m∈
Θ(β
√

z) whereas bimonotone enumeration requires memory m∈O(γ
√

z).

Wheneverβ < γ, bimonotone enumeration is thus significantly better than semimono-
tone enumeration. As an example, forf (a,b) = a4+a3b4+b5 semimonotone enumeration
requires memorym∈Θ(5

√
z), while bimonotone enumeration requires onlym∈O(7

√
z).

Proof. Assumingβ ≥ α, it is advantageous to sort bya in the semimonotone enumeration
algorithm. In this case we see thatm= 2+b whereb satisfiesf2(b)≤ z< f2(b+1). We
have f2(b)∼ cbβ with some leading coefficientc > 0, whencem∼ β

√

z/c.

a

b

x

x

f<z

f>z

FIGURE 4. Estimating the size of the set Min≤≤{ f ≥ z}

BIMONOTONE ENUMERATION 13

Evaluatingf on the diagonal, we findf (x,x) = d0 +d1x+ · · ·+dγxγ with non-negative
coefficientsdk ≥ 0 anddγ > 0. Forx = 1+ ⌊ γ

√

z/dγ⌋ we obtainf (x,x) > z. This is illus-
trated in Figure 4, where the dotted line corresponds tof = z, and black dots represent the
elements of Min≤≤{ f ≥ z}. We conclude thatm≤ 1+2x, whencem∈O(γ√z). �

5.2. Asymptotic bounds. In order to express the required memorym in terms of the
numbern of enumerated values, we wish to relaten andz. For z→ ∞ we can replace
counting points(a,b) ∈ N2 satisfying f (a,b) ≤ z by the Lebesgue measure of the set
{(x,y) ∈ R2

+ | f (x,y)≤ z}.

Proposition 22. Let f : R2
+→ R+ be a polynomial function given by

f (x,y) = ∑
(i, j)∈K

ci j x
iy j with ci j > 0 for all indices(i, j) ∈ K.

With f we associate the convex polygon D= {(u,v) ∈ R2 | iu + jv≤ 1 for all (i, j) ∈ K}.
Suppose that f is proper in the sense that for all z∈ R+ the set

{ f ≤ z}= {(x,y) ∈R2
+ | f (x,y) ≤ z}

is compact. Then its Lebesgue measure satisfiesλ ({ f ≤ z}) ∈Θ(zδ log(z)d) where

δ := max{u+v | (u,v) ∈ D}
and d is the dimension of the set where this maximum is attained: either d= 0 for a vertex,
or d = 1 for a segment. (See Figure 5 below for examples.)

The proof is a nice application of the so-called “tropical” approach. The idea is to
identify R+ = {x∈R | x≥ 0} andR̂ = R∪{−∞} via the natural logarithm log:R+→ R̂,
and to formally replace the semiring(R+,+, ·) by the semiring(R̂,max,+). Of course, we
have log(x ·y) = logx+ logy but for log(x+y) we only obtain an inequality,

max(logx, logy)≤ log(x+y)≤ log2+max(logx, logy).

This means that log:R+→ R̂ is aquasi-isomorphism, i.e., its failure to be an isomorphism
is bounded by some constant. For asymptotic arguments this is usually sufficient.

Proof of Proposition 22.As a logarithmic analogue off we define

f̂ : R̂2→ R̂, f̂ (x̂, ŷ) := max
(i, j)∈K

(ix̂+ j ŷ) .

We can choose a constantc∈R+ such thatci j ≥ e−c and(♯K)·ci j ≤ e+c for all (i, j)∈K.
A small calculation then shows that

∣

∣log f (x,y)− f̂ (logx, logy)
∣

∣≤ c.

The measure of the set{ f ≤ z} equals the integral over the associated indicator function
[f ≤ z] and we can apply the change of variables ˆx = logx, ŷ = logy, ẑ= logz:

F(z) :=
∫

R2
+

[f (x,y) ≤ z] dxdy=

∫

R2
[log f (x̂, ŷ)≤ ẑ]exp(x̂+ ŷ)dx̂dŷ.

It is easier to calculate this integral witĥf instead off , so let us do this first. Sincêf is
homogeneous, we perform another change of variables ˆx = uẑandŷ = vẑ to obtain:

F̂(z) :=
∫

R2

[

f̂ (x̂, ŷ)≤ ẑ
]

exp(x̂+ ŷ)dx̂dŷ = ẑ2
∫

R2

[

f̂ (u,v)≤ 1
]

exp(uẑ+vẑ)dudv.

14 MICHAEL EISERMANN

We are now integrating over the convex polygonD := {(u,v) ∈ R2 | f̂ (u,v) ≤ 1}. The
asymptotic behaviour of loĝF(z) is easy to understand: forz→ ∞ we obtain

logF̂(z)
logz

= log

[

ẑ2/ẑ
(

∫

D
exp(u+v)ẑdudv

)1/ẑ
]

→ δ .

For z→ ∞ the first factor ˆz2/ẑ→ 1 plays no rôle. The remaining factor is the ˆz-norm
‖exp(u+v)‖ẑ and tends to the sup-norm‖exp(u+v)‖∞ = exp(δ) for ẑ→ ∞.

This shows that loĝF(z)∼ δ logz, but does not yet suffice to implŷF(z)∼ zδ for z→∞.
We thus have a closer look at the quotient

F̂(z)

zδ = log(z)2
∫

D
z(u+v−δ) dudv.

We change variablesu = δ−t
2 −sandv = δ−t

2 +sso thatu+v= δ − t anddudv= dsdt:
∫

D
z(u+v−δ) dudv=

∫ ∞

0
ℓ(t)z−tdt

whereℓ(t) is the length of the segment{(u,v) ∈ D | u+v = δ − t}. SinceD is a polygon,
there exista0,a1≥ 0 andT > 0 such thatℓ(t) = a0+a1t for all t ∈ [0,T]. We thus find

∫ ∞

0
ℓ(t)z−tdt∼ a0 log(z)−1 +a1 log(z)−2 for z→ ∞.

Notice thata0 = 0 if and only if the maximumu+ v = δ is attained in a single vertex.
We thus obtainF̂(z) ∈ Θ(zδ log(z)d) whereδ is the maximum ofu+ v on D and d is
the dimension of the maximising set. SinceF̂(e−cz) ≤ F(z) ≤ F̂(e+cz), we conclude that
F(z) ∈ Θ(zδ log(z)d). �

Remark 23. It is clear that the proposition and its proof generalize to proper polynomial
functions f : Rn

+→ R+ with non-negative coefficients, in any numbern of variables. We
have concentrated onn = 2, which is the case of interest to us here.

Example 24. For f (x,y) = x4+y5 the set{ f̂ ≤ 1} is depicted in Figure 5 on the left. Here
we obtainδ = 9

20 andd = 0 because the maximum is attained in a single vertex.
The figure in the middle shows{ f̂ ≤ 1} for f (a,b) = a4 +a3b3 +b5. Hereδ = 1

3 and
d = 1, because the maximum is attained on a segment, so thatn∈ Θ(z1/3 logz).

v

u

(1/4,1/5)
v

u

(2/15,1/5)

(1/4,1/12)

v

u

(1/4,1/16)

FIGURE 5. Maximizingu+v under the constraint̂f (u,v)≤ 1

The figure on the right shows{ f̂ ≤ 1} for f (a,b) = a4+a3b4+b5. Here we findδ = 5
16,

which means thatz∈ Θ(n16/5). According to Proposition 21, semimonotone enumeration
requires memorym∈Θ(z1/5), whencem∈ Θ(n16/25).

Notice, in particular, that16
25 > 1

2. This illustrates that, unlike bimonotone enumeration,
semimonotone enumeration cannot guarantee the memory bound m∈O(

√
n).

BIMONOTONE ENUMERATION 15

Corollary 25. The semimonotone enumeration algorithm guarantees the memory bound
m≤ n+1, and as a uniform bound the exponent1 is best possible: enumerating the values
of f(a,b) = aα +aαbβ +bβ with α < β requires memory m∈ Θ(nα/β). �

Proof. According to Proposition 22 the number of enumerated valuesup to levelz is
n∈ Θ(zδ) with δ = 1/α, and thusz∈ Θ(nα). According to Proposition 21 the required
memory ism∈Θ(z1/β). We conclude thatm∈ Θ(nα/β). �

5.3. Constant factors. Proposition 21 exhibits many polynomial functions where bimono-
tone enumeration is clearly worth the effort. Depending on the envisaged application and
the given functionf , a finer analysis and a more modest conclusion may be necessary:

Example 26. Consider polynomials of the formf (a,b) = p(a)+ q(b), for which semi-
monotone enumeration was initially devised [2, 1]. We obtain n∈ Θ(zδ) with δ = 1

α + 1
β ,

as already remarked in the proof of Proposition 18. Assumingα ≤ β , bimonotone and
semimonotone enumeration both require memorym∈ Θ(nε) with ε = α

α+β .

Even if memory requirements are of the same order of magnitude, we can usually expect
to gain a constant factor with the bimonotone algorithm:

Example 27. Reconsiderf : N×N→ Z defined byf (a,b) = aγ +bγ with γ > 1. In this
case semimonotone enumeration requires memorym∼ γ

√
z, whereas bimonotone enumer-

ation requires memorym∼ cγ · γ√zwith a factorcγ = 2(1− γ
√

1/2) < 1.

Proof. For a = b = ⌊ γ
√

z⌋ we havef1(a) = f2(b) ≤ z and f1(a+ 1) = f2(b+ 1) > z, and
semimonotone enumeration requires memory♯Min≤{ f > z}= 2+b∼ γ√z.

Choosingx = y = ⌊ γ
√

z/2⌋ we find f (x,y) ≤ z and f (x+1,y+1) > z. As indicated in
Figure 3, we havem∼ (a−x)+ (b−y)∼ cγ · γ

√
z. �

Though less impressive, for practical applications even a constant factor may be a wel-
come improvement: reducing memory consumption means that we can scale to consid-
erably larger problems before running out of RAM. In our example we havec2 ≈ 0.59,
c3≈ 0.41,c4≈ 0.32,c5≈ 0.26, andcγ → 0 for γ→ ∞.

6. PARALLELIZATION

Let us reconsider the application of sorted enumeration to adiophantine equationf (a,b)=
g(c,d), where f ,g: N×N→ Z are proper bimonotone functions. Suppose we are look-
ing for solutionsx = (a,b), y = (c,d) with values in some large intervalzmin ≤ f (x) =
g(y) < zmax. This problem can be split intos independent subproblems, namely search-
ing solutions withzk−1 ≤ f (x) = g(y) < zk, wherezmin = z0 < z1 < z2 < · · · < zs = zmax

is a subdivision of our search interval. This allows us to distribute the search on several
computers in parallel.

6.1. The initialization algorithm. To put the parallelization idea into practice, Algorithm
5, stated below, initializes the enumeration stream to begin at levelz. Graphically speaking,
it traces the contour ofX = { f ≥ z} in order to determine the set of minimal elements
M = Min X. FromM we can then immediately build up the priority queueF = f (M).

As usual we require thatf : A×B→ Z be a proper bimonotone map. For simplicity we
first assume that bothA andB are infinite. (We will treat the general case in the next para-
graph.) As before the successor function is denoted bya 7→ σa andb 7→ σb, respectively.
We also use the predecessor function, denoted byb 7→ πb.

16 MICHAEL EISERMANN

Algorithm 5 Constructing the set of minima onX = A×B
Requires: a proper bimonotone functionf : A×B→ Z
Input: a levelz∈ Z
Output: the list of minima Min{x∈ X | f (x) > z} = 〈 (a1,b1),(a2,b2), . . . ,(am,bm) 〉
Ensures: a1 < a2 < · · ·< am andb1 > b2 > · · ·> bm

1: Initialize M← /0 anda← amin, b← bmin

2: while f (a,b) < z do b← σb end while
3: Insert(a,b) at the end of the listM; continue witha← σa, b← πb
4: while b > bmin do
5: while f (a,b) < z do a← σa end while
6: while b > bmin and f (a,πb)≥ z do b← πb end while
7: Insert(a,b) at the end of the listM; continue witha← σa, b← πb
8: end while
9: return M

The reader is invited to apply Algorithm 5 to the example given in Figure 2, in order to
see how it traces the contour ofX = { f ≥ z}. By the way, the method applies to any set
X ⊂ A×B that is saturated and has finite complement. We shall give a detailed proof in
the more general situation of Algorithm 7 below.

Remark 28. The loop in line 2 determinesb←min{b∈ B | f (amin,b) > z}. This could,
of course, be improved by replacing the linear search with a binary search, provided that
b can easily be incremented and decremented by integer values. The same holds for the
loops in lines 5 and 6. This optimization is straightforwardto implement whenever the
application requires it.

Remark 29. Let M = 〈 (a1,b1),(a2,b2), . . . ,(am,bm) 〉 be the list of minima. Then build-
ing a priority queue fromM requires timeO(mlogn). Moreover, letk = #[amin,am] and
l = #[bmin,b1], with k≥ l , say. Thenn≥ k≥ l ≥m. Constructing the listM itself requires
timeO(k logn) using linear search, andO(mlog2n) using binary search. We cannot expect
to do much better, because constructing a list of lengthm requires at leastm iterations.

6.2. Applications. Having initializedM andF , we can apply the bimonotone enumeration
algorithm to produce a sorted enumerationx1,x2, . . . of the set{ f ≥ zk−1}. Applying the
same method tog, we can produce a sorted enumerationy1,y2, . . . of {g≥ zk−1}. We can
thus search for solutionsf (x) = g(y) starting at levelzk−1 and ending at levelzk.

Expected speed-up.Concerning time requirements, initialization entails a reasonably
small overhead, so we can expect an amortized speed-up by a factors. For eachk= 1, . . . ,s,
computer numberk manages its own priority queues of lengthO(

√
n). in order to produce

enumeration streams forf andg, with values ranging fromzk−1 to zk. As before, advancing
from positionn to positionn+1 takes timeO(log2n).

Robustness.The initialization procedure is already very useful on a single computer,
since it can make implementations much more robust: it is possible to continue searching,
without much loss, after a shut-down or a power failure. Thisis particularly important
when carrying out a long-term search.

7. ENUMERATING BIMONOTONE DOMAINS

Suppose we want to enumerate the values of asymmetricbimonotone functionf : N×
N→ Z, that is, f (a,b) = f (b,a) for all a,b ∈ N. It is often desirable to enumerate only

BIMONOTONE ENUMERATION 17

pairs(a,b) with a > b. In other words, we wish torestrict f to the domainX = {(a,b) ∈
N×N | a > b} and enumerate only the values off : X→ Z. Figure 6 shows a possible
configuration during bimonotone enumeration.

B

3

4

5

6

7

8

9

1 2 3 987654 11 12

1

2

10 A13 14 15

FIGURE 6. Enumerating the domainX = {(a,b) ∈ N×N | a > b}

It is straightforward to adapt bimonotone enumeration (Algorithm 4) and initialization
(Algorithm 5) to such a domainX. Still other restrictions are possible, for exampleX =
{(a,b) ∈ N×N | a≤ b andb≤ 2a} or more complicated cases such asX = {(a,b) ∈
N×N | a≤ b andb2 ≤ 1+ 10a}. This raises the question as to what are “reasonable”
domainsX ⊂ A×B to which Algorithms 4 and 5 can be efficiently applied.

7.1. Bimonotone domains.As usual we assume thatA andB are isotonic to finite inter-
vals or to the natural numbers. Figure 7 shows a domainX ⊂ A×B which will turn out
to be well suited to bimonotone enumeration. Graphically speaking, it is bounded by the
graphs of two non-decreasing functionsα : A→ B andβ : B→ A. We will show that this
condition suffices to adapt our algorithms to work on the domain X rather than the entire
productA×B.

A

B

3

4

5

6

7

8

9

1 2 3 987654 1110 12 13 14 15

1

2

FIGURE 7. Enumerating a bimonotone domainX ⊂ A×B

We say thatX ⊂ A×B is boundedby functionsα : A→ B andβ : B→ A if

X = {(a,b) ∈ A×B | a > β (b) andb > α(a)}.

18 MICHAEL EISERMANN

For example, the domainX of Figure 7 is bounded byα(1) = · · ·= α(12) = 1, α(13) = 4,
α(14) = 5, α(15) = 7, andβ (1) = 1, β (2) = β (3) = 3, . . . ,β (9) = 10.

Definition 30. We say that a domainX ⊂ A×B is bimonotoneif it is bounded by two
functionsα : A→ B andβ : B→ A such that:

(1) The functionsα andβ are non-decreasing, that is,
a 6 a′ impliesα(a) 6 α(a′), andb 6 b′ impliesβ (b) 6 β (b′).

(2) We haveβ (α(a)) 6 a for all a∈ A, with equality only fora = amin,
andα(β (b)) 6 b for all b∈ B, with equality only forb = bmin.

Condition (2) ensures that(a,α(a)) ∈ X for eacha ∈ A, and(β (b),b) ∈ X for each
b∈ B. In particular,α andβ are determined byX via

α(a) = min{b∈ B | (a,b) ∈ X },
β (b) = min{a∈ A | (a,b) ∈ X }.

Moreover,(amin,bmin) is the smallest element ofX. If both A and B are finite, then
(amax,bmax) is the greatest element ofX.

The definition ofX via bounding functions is easy to formulate and well suited to im-
plementation. It can also be reformulated in more geometricterms:

Proposition 31. A domain X⊂A×B is bimonotone if and only if it satisfiespr1X = A and
pr2X = B and the following two properties:

(1′) If (a1,b1) and(a2,b2) in X satisfy a1 6 a2 and b2 6 b1, then X contains the entire
rectangle{(a,b) ∈ A×B | a1 6 a 6 a2 and b2 6 b 6 b1}.

(2′) If (a1,b1) and (a2,b2) in X satisfy a1 6 a2 and b1 6 b2, then we can go from
(a1,b2) to (a2,b2) within X by repeatedly incrementing a and b. �

The proof is not difficult and will be omitted.

7.2. Bimonotone enumeration. We are now in position to generalize our enumeration
algorithm to a bimonotone domain. As before, Algorithm 6 processes a bidirectional list
M and a priority queueF .

Proposition 32. Algorithm 6 is correct.

Proof. The proof is essentially the same as for Algorithm 4. There are, however, some
modifications when updating the listM and the priority queueF:

• If the current minimum(a,b) is somewhere in the middle of the listM, then the
previous arguments apply without change, because we still have

{(a,b)}# r{(a,b)}= {(a,σb),(σa,b)}#.

• If (a,b) is at the end of the list, then possibly(σa,b) /∈ X: in this case we have
{(a,b)}# r{(a,b)}= {(a,σb)}#, so we discard(σa,b).
• If (a,b) is at the beginning of the list, then possibly(a,σb) /∈ X: in this case we

have{(a,b)}# r{(a,b)}= {(σa,b)}#, so we discard(a,σb).
• If ever M = 〈 (a,b) 〉 and neither(a,σb) nor (σa,b) is in X, then(a,b) is the

greatest element ofX and the algorithm terminates correctly.

Since f is proper, every element(a,b) ∈ X will eventually be enumerated. �

BIMONOTONE ENUMERATION 19

Algorithm 6 Sorted enumeration of a bimonotone domain
Requires: a bimonotone domainX ⊂A×B and a proper bimonotone functionf : X→ Z
Output: an enumeration ofX, monotone with respect tof

1: Initialize M← 〈 (amin,bmin) 〉 andF ← 〈 f (amin,bmin) 〉.
2: while F is non-emptydo
3: Remove a minimal elementf (a,b) from F and output(a,b).
4: if (a,b) is the last element of the listM then
5: if (σa,b) ∈ X then insert(σa,b) into M and f (σa,b) into F end if
6: else
7: Let (a∗,b∗) be the successor of(a,b) in the listM.
8: if σa < a∗ then insert(σa,b) into M and f (σa,b) into F end if
9: end if

10: if (a,b) is the first element of the listM then
11: if (a,σb) ∈ X then insert(a,σb) into M and f (a,σb) into F end if
12: else
13: Let (a∗,b∗) be the predecessor of(a,b) in the listM.
14: if σb < b∗ then insert(a,σb) into M and f (a,σb) into F end if
15: end if
16: Remove(a,b) from the listM.
17: end while

7.3. Initialization on a bimonotone domain. As for the unrestricted caseX = A×B, we
want to formulate an initialization algorithm for a proper bimonotone functionf : X →
Z defined on some bimonotone domainX ⊂ A×B. The idea is essentially the same:
Algorithm 7 traces the contour ofX(z) = {x ∈ X | f (x) > z} to construct the listM =
Min X(z) of its minimal elements.

Algorithm 7 Constructing the set of minima on a bimonotone domain
Requires: a bimonotone domainX ⊂A×B and a proper bimonotone functionf : X→ Z
Input: a levelz∈ Z
Output: the list of minima Min{x∈ X | f (x) > z} = 〈 (a1,b1),(a2,b2), . . . ,(am,bm) 〉
Ensures: a1 < a2 < · · ·< am andb1 > b2 > · · ·> bm

1: Initialize M← /0 anda← amin, b← bmin

2: while (a,b) ∈ X and f (a,b) < z do
3: while f (a,b) < zand(a,σb) ∈ X do b← σb end while
4: if f (a,b) < z then a← σa end if
5: end while
6: while (a,b) ∈ X do
7: while (a,πb) ∈ X and f (a,πb) > z do b← πb end while
8: Insert(a,b) at the end of the listM; continue witha← σa, b← πb
9: while (a,b) ∈ X and f (a,b) < z do a← σa end while

10: end while
11: return M

Remark 33. The loops in lines 3, 7, and 9 implement linear searches. Thiscan be im-
proved by a binary search whenever the application requiressuch optimization.

Proposition 34. Algorithm 7 is correct.

20 MICHAEL EISERMANN

Proof. The first loop (lines 1–5) finds an element(a,b) ∈ X(z) with minimala. Beginning
with a← amin andb← bmin, we repeatedly incrementb in order to arrive atf (a,b) > z.
If this is not possible withinX, then the candidatea is eliminated, and we continue with
a← σa. If we never run out of the domainX, then we finally end up withf (a,b) > z,
becausea or b increase andf is proper.

The only obstacle occurs whenf (a,b) < zbut neither(a,σb) nor (σa,b) are inX. But
in this case we have reached the greatest element ofX, hencef (x) < z for all x∈ X. Thus
X(z) = /0 and we correctly return the empty listM = /0. In any case, the first loop terminates
with either(a,b) /∈ X or f (a,b) > z, as desired.

When arriving at line 7 we know that(a,b) ∈ X(z) r M#, anda is minimal with this
property. The loop in line 7 minimizesb, so we know that(a,b) is a minimal element of
X(z). We thus add(a,b) to our list M and continue witha← σa andb← πb. We then
repeatedly incrementa in order to arrive atf (a,b) > z. If this is not possible inX, then
X(z) = M# by the rectangle condition (1’), so we have found all minimalelements ofX(z).
Otherwise, we obtain(a,b) ∈ X(z)rM#, anda is minimal with this property. We can thus
reiterate by looping back to line 7.

During each iteration,a is strictly increasing whileb is strictly decreasing. We conclude
that the second loop terminates and produces the listM of minima, as desired, ordered in
the sense thata1 < a2 < · · ·< am andb1 > b2 > · · ·> bm. �

8. APPLICATIONS TO DIOPHANTINE ENUMERATION

Algorithms 6 and 7 for bimonotone enumeration have been implemented as a class
template in C++. This seems to be a good compromise between general applicability, ease
of use, and high performance. The source files are available on the author’s homepage:

http://www-fourier.ujf-grenoble.fr/∼eiserm/software
As an illustration of sorted enumeration, let us mention searching multiple values of a

polynomial functionf : N×N→ Z, f (a,b) = ∑i, j ci j aib j with non-negative coefficients
ci j ∈ N. The cited implementation has been successfully tested to reproduce some known
results taken from Richard Guy’sUnsolved problems in number theory[4].

8.1. The quest for the sixth taxicab number. As an illustrative example we briefly
sketch the taxicab problem. Thekth taxicab number, denoted by taxicab(k), is the least
positive integer that can be expressed as a sum of two positive cubes ink distinct ways, up
to order of summands. That is, it is the smallestk-fold value of f (a,b) = a3 +b3 defined
onX = {(a,b) ∈ N×N | 1≤ a≤ b}.

G. H. Hardy and E. M. Wright [5, Thm. 412] proved that, for every k ≥ 1, there exist
suchk-fold values. This guarantees the existence of a leastk-fold value, that is, thekth
taxicab number. Unfortunately, the construction given in the proof is of no help in finding
theleast k-fold value. Apart from (variants of) exhaustive search, nosuch method is known
today. The first taxicab number is trivially

taxicab(1) = 2 = 13 +13.

The next taxicab numbers are:

taxicab(2) = 1729= 13 +123 = 93 +103,

BIMONOTONE ENUMERATION 21

(re)discovered by Ramanujan according to Hardy’s famous anecdote, but previously pub-
lished by Bernard Frénicle de Bessy in 1657,

taxicab(3) = 87539319

= 1673+4363 = 2283+4233 = 2553+4143,

discovered by John Leech [8] in 1957,

taxicab(4) = 6963472309248= 24213+190833 = 54363+189483

= 102003+180723 = 133223+166303,

discovered by E. Rosenstiel, J.A. Dardis, and C.R. Rosenstiel [9] in 1991,

taxicab(5) = 48988659276962496= 387873+3657573 = 1078393+3627533

= 2052923+3429523 = 2214243+3365883 = 2315183+3319543,

discovered independently by D.W. Wilson [10] in 1997 and shortly afterwards by D.J. Bernstein
[1] in 1998. Finally, the smallest known 6-fold value is

T = 24153319581254312065344

= 289062063+5821623 = 288948033+30641733 = 286574873+85192813

= 270932083+162180683 = 265904523+174924963 = 262243663+182899223,

found by R.L. Rathbun in 2002. Is this actually the sixth taxicab number, or is there a
smaller solution?

8.2. Feasibility of an exhaustive search.In order to verify thatT is indeed the smallest
6-fold value, there are exactlyn = 369039037733393< 4 · 1014 pairs(a,b) ∈ N×N to
be checked witha3+b3≤ T anda≤ b. Such counting results can easily be obtained from
Algorithm 7 tracing the contour of the setX = { f ≤ z}: as a by-product, the initialization
can be used to determine the sizesn = ♯{ f ≤ z} andm= ♯Min{ f > z}.

Memory requirementsare, fortunately, no problem. In the worst case we would have
to check alln parameters, which would finally build up a priority queue of size m =
5963352< 6·106. Notice that each entry requires 32 bytes: 12 bytes for the value f (a,b),
4 bytes fora and 4 bytes forb, plus 4 bytes for each of the three pointers. In the worst case
the priority queue thus requires 180 megabytes of memory, which fits nicely in a PC with
256 megabytes RAM. Such memory requirements seem acceptable; on today’s PCs such a
task can reasonably be run in the background.

Time requirements, however, are on the edge of being feasible. Updating a priority
queue of 2· 106 entries, say, takes about 4000 CPU cycles. On a PC running at 2GHz,
we can expect to process about 500000 steps per second, that is, around 4·1010 steps per
day. This is not too far away from 4· 1014, but on a single computer the search would
still require about 10000 days, roughly 25 years. On 25 computers, however, we would be
done within a year, possibly earlier.

Partial results. Up to June 2005, I have run the search on a few available PCs at the
Institut Fourier, but the use of parallelization has still been rather limited (to a dozen PCs).
As a result I obtained the lower bound taxicab(6) > 5 ·1020 by sorted enumeration of the
2.8 ·1013 smallest values off (a,b) = a3 + b3. (At a speed of 500000 values per second
this takes about 650 days on a single computer.) This leaves us with the inequality

5 ·1020 < taxicab(6)≤ T ≈ 2.42·1022.

It will now be a matter of sufficient hardware and patience to find the exact answer.

22 MICHAEL EISERMANN

REFERENCES

1. D. J. Bernstein,Enumerating solutions to p(a)+q(b) = r(c)+s(d), Math. Comp.70 (2001), no. 233, 389–
394. MR 2001f:11203

2. R. L. Ekl,Equal sums of four seventh powers, Math. Comp.65 (1996), no. 216, 1755–1756. MR 97a:11050
3. R. L. Graham, D. E. Knuth, and O. Patashnik,Concrete mathematics, Addison-Wesley Publishing Co., Read-

ing, Massachusetts, 1989. MR MR1001562 (91f:00001)
4. R. K. Guy,Unsolved problems in number theory, third ed., Problem Books in Mathematics, Springer-Verlag,

New York, 2004. MR MR2076335
5. G. H. Hardy and E. M. Wright,An introduction to the theory of numbers, third ed., The Clarendon Press,

Oxford University Press, New York, 1954. MR MR0067125 (16,673c)
6. D. E. Knuth,The art of computer programming, volume 1: fundamental algorithms, second ed., Addison-

Wesley Publishing Co., Reading, Massachusetts, 1969.
7. , The art of computer programming, volume 3: sorting and searching, second ed., Addison-Wesley

Publishing Co., Reading, Massachusetts, 1998.
8. J. Leech,Some solutions of Diophantine equations, Proc. Cambridge Philos. Soc.53 (1957), 778–780.

MR MR0090602 (19,837f)
9. E. Rosenstiel, J. A. Dardis, and C. R. Rosenstiel,The four least solutions in distinct positive integers of the

Diophantine equation s= x3 + y3 = z3 + w3 = u3 + v3 = m3 + n3, Bull. Inst. Math. Appl.27 (1991), no. 7,
155–157. MR MR1125858 (92i:11134)

10. D. W. Wilson,The fifth taxicab number is48988659276962496, J. Integer Seq.2 (1999), Article 99.1.9,
HTML document (electronic). MR MR1722364 (2000i:11195)

INSTITUT FOURIER, UNIVERSITÉ GRENOBLE I, FRANCE

E-mail address: Michael.Eisermann@ujf-grenoble.fr
URL: http://www-fourier.ujf-grenoble.fr/∼eiserm

