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Abstract

Complex physical models depending on microstructures developing over time of-

ten result in simulation schemes that are very demanding concerning computational

time. The two-scale model considered in the current presentation describes a phase

transition of a binary mixture with the evolution of equiaxed dendritic microstructures.

It consists of a macroscopic heat equation and a family of microscopic cell problems

modeling the phase transition. Those phase transitions need to be resolved by very

�ne computational meshes leading to the demanding numerical complexity.

The current study presents a reduced version of this two-scale model. The re-

duction aims at accelerating the microscopic model, which is parametrized by the

macroscopic temperature, while maintaining the accuracy of the detailed system. Pa-

rameter dependency, non-linearity, time-dependency, coupled �eld-variables and high

solution complexity are challenging di�culties. They are addressed by a combination

of several approaches: Proper Orthogonal Decomposition (POD), Empirical Interpo-

lation Method (EIM) and a partitioning approach generating sub-models for di�erent

solution regimes. A new partitioning criterion based on feature extraction is applied.

The applicability of the reduction scheme is demonstrated experimentally: while

the accuracy is largely maintained, the dimensionality of the detailed model and the

computation time are reduced signi�cantly.

Keywords: Model reduction, Proper Orthogonal Decomposition, Empirical Interpolation,

Parametrized two-scale model.

1 Introduction

Many technically relevant processes exhibit a priori unknown microstructures that evolve

in time. Important examples are solidi�cation processes with dendritic and eutectic mi-

crostructures [7, 27], �ow in porous media with changing pore geometry as a consequence

∗This presentation is dedicated to Prof. Christof Eck.



A POD-EIM reduced two-scale model for crystal growth 2

of elastoplastic deformations and deposition or desorption of matter, and microstructures

in epitaxial growth of thin solid layers. Due to huge di�erences in relevant length and

possibly also time scales, it is usually not feasible to simulate such processes by a direct

numerical discretization of a full model. A much more promising approach is the usage of

homogenization or averaging techniques, that were originally developed with the aim to

�nd purely macroscopic models with suitable constitutive laws that model the properties

of the microstructure [6, 20, 22]. The application of those methods to processes with evo-

lution of a priori unknown microstructures typically leads to full two- or multi-scale models

that combine di�erential equations on the smallest scales with homogenized di�erential

equations on the macroscopic scales [36]. Both scales are coupled: the macroscopic �elds

in�uence the evolution of the microstructure, and the microscopic �elds enter the homog-

enized equations via averaged coe�cients. A direct discretization of such a model typically

requires the solution of a full microscopic cell problem for every node of a macroscopic

numerical grid. This leads to a huge numerical complexity and limits the application to

problems with comparatively small macroscopic grids.

The present study presents a model reduction approach for a two-scale model for crystal

growth. The procedure aims at the reduction of the microscopic model in order to acceler-

ate the overall model. The problem poses several challenges for model reduction: parame-

ter dependency via the macroscopic temperature, high dimensionality, several coupled �eld

variables, time-dependency and non-linearity in the microscopic model. Correspondingly,

several modern reduction strategies need to be combined. First, the high dimensionality of

the microscopic model is addressed via a Proper Orthogonal Decomposition (POD) strat-

egy [23, 35], i.e. snapshot-based generation of a low-dimensional approximation space and

projection of the detailed microscopic model to this subspace. Di�erent POD spaces for

the di�erent �eld variables are generated resulting in coupled reduced models. The non-

linearity and parameter-dependency is addressed by the Empirical Interpolation Method

(EIM) [2], which enables to e�ciently evaluate local parametric discretization operators as

in [5, 9]. Finally, the high solution complexity demands for partitioning approaches of the

reduced models. This means, that not only one set of bases is generated, but several sets

of reduced bases for di�erent solution regimes. During the simulation a switching between

these sub-models is realized by orthogonal projection. The criterion for partitioning is not

time [8] nor some implicit partitioning [30, 37], but a partitioning according to a problem

speci�c criterion that is obtained via a feature extraction of the present solution.

The reader is referred to other methods for the e�cient solution of multi-scale models

as e.g. [21, 31, 33] which are di�erent to the current approach, which has some similarity

to the method introduced in [32] using a database approach. In [32] the microscopic prob-

lems in the multi-scale model are replaced by simpli�ed sample problems with prescribed

macroscopic �elds which are obtained by a global iterative procedure. Some further ap-

proaches of model reduction for multi-scale methods can be found in the literature, as

the combination of these �elds is currently a very active direction. Reduced basis ap-

proaches for cell problems in stationary two-scale problems have been presented in [3, 29].

A non-steady problem of polymeric �ow involving macroscopic and microscopic models

and their reduction has been shown in [25]. Projection-based approaches in the spirit of

multi-scale FEM can also be found in [1, 24]. In contrast to these, the microscopic model

considered here is a coupled nonlinear system, that requires more complex approximation

procedures in order to obtain successful reduction. As mentioned before, this means dif-

ferent POD spaces for the di�erent �eld variables and Empirical Interpolation addressing
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Figure 1.1: Columnar (on the left) and equiaxed dendritic structures, [12].

the non-linearity and parameter-dependency.

The organization of this article is as follows: Section 2 describes the detailed two-scale

model to be solved, Section 3 introduces the reduced two-scale model, and �nally Section

4 presents numerical results in two space dimensions which show the reduced model's

e�ciency.

2 The detailed two-scale model

Many solidi�cation processes develop dendritic microstructures of equiaxed morphology as

illustrated in Figure 1.1. Equiaxed structures grow from small solid kernels that nucleate

in an undercooled melt. During solidi�cation these kernels develop dendritic instabilities,

for more details see e.g. [7] or [27]. To control these instabilities, models for dendritic

growth must account for curvature undercooling and possibly also kinetic undercooling.

The phenomenologically simplest model is the Stefan problem with Gibbs-Thomson e�ect,

[34]. In contrast to the Stefan problem, a phase-�eld model approximates the sharp

transition layer between the solid and the liquid phase by a di�use phase transition region,

[4]: the phase transition is described by a phase-�eld φ, which smoothly varies from its

liquid value φℓ to its solid value φs .

The detailed two-scale model is obtained by the application of a homogenization tech-

nique, under the assumption of fast heat di�usion and slow solute di�usion, to a micro-

scopic model describing a solidi�cation process of a binary mixture. The two-scale model

consists of a macroscopic homogenized heat equation, and for each point of the macro-

scopic domain of a microscopic cell problem with periodic boundary conditions. For details

see [10, 11, 13]. Well-posedness of the following continuous two-scale model (2.1), (2.3)

and (2.4) is proven in Section 3 of [10]. Please note that the model considered here results

from the model of [10] by the substitution u = c+φ, the speci�cations L = D1 = −D2 = 1

and K(φ) = K ∈ R and the commutation of the phase-�eld's liquid and solid value.

2.1 The macroscopic homogenized heat equation

The macroscopic heat equation in dimensionless form reads

∂tT −K∆T − ∂tφ
Y
= 0. (2.1)

It is solved for the macroscopic temperature �eld T = T (t, x) in the macroscopic time-

space cylinder Q = Itend ×Ω consisting of the time interval Itend = [0, tend] and the macro-

scopic domain Ω ⊂ R2. The averaged phase-�eld

φ(t, x)
Y
= 1
|Y |

∫

Y
φ(t, x, y) dy (2.2)
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Ωhg Yhℓ

Figure 2.1: The macroscopic Ωhg and the local microscopic grid Yhℓ.

depends on the microscopic cell problem in macroscopic point x , where Y denotes the mi-

croscopic cell domain; ∂tφ(t, x)
Y
describes the averaged latent heat that is released during

the phase transition from liquid to solid. The parameter K describes the heat conductivity,

which is independent of the phase-�eld. The macroscopic equation is supplemented by

a Neumann boundary condition and a constant initial temperature T (0, x) = T0 for all

x ∈ Ω.

2.2 The microscopic cell problems

The microscopic cell problems describe the liquid-solid phase transition of a binary mixture.

The governing equations in dimensionless form are

∂tu − ∆yu = ∂tφ, (2.3)

αξ2∂tφ− ξ
2∆yφ+ p

′(φ)− q(∇yφ, T, u, φ) = 0. (2.4)

The microscopic problem in a macroscopic point x ∈ Ω must be solved for the micro-

scopic chemical potential u = u(t, x, y) and the microscopic phase-�eld φ = φ(t, x, y) on

the time-space cylinder Itend × {x} × Y , see Figure 2.1. It depends on the macroscopic

temperature T = T (t, x), hence the microscopic model is a parametrized model, where

the macroscopic temperature represents the varying parameter. The phase-�eld φ varies

smoothly from its liquid value −1 to its solid value 1. The equations are supplemented by

Y -periodic boundary conditions for u and φ and initial conditions u0(y) for the chemical

potential and φ0(y) for the phase-�eld which are independent of the macroscopic grid

point. The domain Y is a rectangle in R2. The function p(φ) = 1
2
(1− φ2)

2
is a double-

well potential with minimum zero in ±1. The function q triggers the dendritic growth and

realizes the deviation from the equilibrium melting point,

q(∇yφ, T, u, φ) = 1.2
(

1− φ2
)

·

· arctan
(

ξ
1.2
(−u − T )σ0

(

1 + σ1

(

−1 + 2
(

2
‖∇yφ‖44
‖∇yφ‖42

− 1
))))

.
(2.5)

The constants α, ξ, σ0 and σ1 are speci�ed in Section 4.

The model does not include stochastic perturbations in the equations for the chemical

potential. Such perturbations could trigger the side-branching into dendrites of second and

higher order [26]. Therefore, the numerical results will only show four primary dendrites.

In fact, the model is intended as a "simple" model case for the reduction scheme to be

developed in Section 3.

2.3 The discretization of the two-scale model

The macroscopic as well as the microscopic problems are discretized with respect to the

time by the Crank-Nicolson-method with a uniform time-step size kt := tend/Kt with total
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step number Kt introducing the discrete time instants tn := nkt , n = 0, . . . , Kt . With

respect to the spatial discretization, standard second-order �nite di�erences are used on

uniform rectangular grids Ωhg and Yhℓ, where hg = Hℓhℓ is the macroscopic and hℓ the

microscopic mesh-size. Furthermore introduced is φn(y) as approximation of φ(tn, x, y),

where the x-dependency is suppressed for ease of the notation of the microscopic problem,

and similarly un(y), T n(x), φn(x)
Y
for x = (x0, x1) ∈ Ωhg , y = (y0, y1) ∈ Yhℓ. The discrete

phase-�eld equation reads

(

1 + 2kt
αh2
ℓ

+ 6kt
αξ2
(φn(y))2

)

φn+1(y)− kt
2αh2

ℓ

∑

y∈Y hℓ(y)
φn+1(y)

=
(

1− 2kt
αh2
ℓ

+ 2kt
αξ2

(

1 + 2 (φn(y))2
)

)

φn(y) + kt
2αh2

ℓ

∑

y∈Y hℓ(y)
φn(y)+

+ kt
αξ2
q(∇φn(y), T n, un(y), φn(y)),

(2.6)

with the central node y = (y0, y1) and its neighbors Y hℓ(y) = {(y0 + hℓ, y1), (y0 −

hℓ, y1), (y0, y1 + hℓ), (y0, y1 − hℓ)}, the discrete equation for the chemical potential

(

1 + 2kt
h2
ℓ

)

un+1(y)− kt
2h2
ℓ

∑

y∈Y hℓ(y)
un+1(y)

=
(

1− 2kt
h2
ℓ

)

un(y) + kt
2h2
ℓ

∑

y∈Y hℓ(y)
un(y) +

(

φn+1(y)− φn(y)
)

,
(2.7)

and the discrete equation for the temperature

(

1 + 2ktK
h2g

)

T n+1(x)− ktK
2h2g

∑

x∈Xhg (x)
T n+1(x)

=
(

1− 2ktK
h2g

)

T n(x) + ktK
2h2g

∑

x∈Xhg (x)
T n(x) +

(

φn+1(x)
Y
− φn(x)

Y
)

,
(2.8)

with the central node x = (x0, x1) and its neighbors Xhg(x) = {(x0 + hg, x1), (x0 −

hg, x1), (x0, x1 + hg), (x0, x1 − hg)}. Stability considerations resp. linearization arguments

yield the quadratic-term on the left-hand side of discretization (2.6), resulting from the

approximation

p′(φ) ≈2
(

(

φn+1
)3
− φn

)

≈ 2
(

(φn)3 + 3 (φn)2
(

φn+1 − φn
)

− φn
)

=2
(

3 (φn)2 φn+1 − 2 (φn)2 − φn
)

.
(2.9)

The time discretization decouples the macroscopic and the microscopic problems: at

�rst, in each time step, all microscopic problems are solved (at �rst the phase-�eld equation

is solved and afterwards the equation for the chemical potential) with temperature data

from the previous time step, then the macroscopic problem is solved.

As the microscopic model is reduced, a compactly written vector-matrix formulation is

provided in the following, which is more accessible than the above detailed formulation.

For this de�ne H := |Yhℓ | as the (high) dimension of the �eld variables of the microscopic

model and introduce the vectors of degrees of freedom (DOF) φn
H
:= (φn(y))y∈Yhℓ , u

n
H :=

(un(y))y∈Yhℓ ∈ R
H assuming a suitable enumeration of Yhℓ. First, for each given macro-

scopic temperature T = T n(x), x ∈ Ωhg the phase-�eld is updated by determining φn+1
H

from

Lφ,H(φ
n

H
)φn+1
H
= rH(φ

n

H
, unH, T ), (2.10)
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where Lφ,H ∈ R
H×H is a matrix and rH ∈ R

H×1 a vector which depend non-linearly on their

arguments. Then, the chemical potential un+1H is computed by

Lu,Hu
n+1
H = FHu

n
H + (φ

n+1

H
− φn

H
), (2.11)

where Lu,H, FH ∈ R
H×H are constant matrices. Hence, the potential problem will be simple

to reduce, the phase-�eld model, however, will require more complex treatment.

3 The reduced two-scale model

This section develops a reduced version of the detailed two-scale model. Because the

detailed macroscopic problem is by far not as hard to solve as the detailed microscopic

problems, only the microscopic problems are reduced. Therefore, the reduced two-scale

model consists of a detailed macroscopic problem for the temperature and reduced micro-

scopic problems for the chemical potential and the phase-�eld.

The reduced model must account for the parameter dependency in the microscopic

model (via the macroscopic temperature T in each point x ∈ Ωhg), the nonlinearity on both

sides of the microscopic phase-�eld equation (2.6) or rather (2.10), the time-dependency,

i.e. good approximation of complete trajectories, a high solution variability as is expected

in evolution of phase boundaries, and the coupling of the microscopic equations for the

potential and the phase-�eld. To consider this, a POD for the trajectory treatment, EIM

for the nonlinearity and parametrization and a partitioning approach to account for di�erent

solution regimes will be applied.

As typical in parametrized model reduction procedures, the overall reduction process

consists of an o�ine and an online phase. In the o�ine phase, the reduced basis and

further quantities are pre-computed, this phase is accepted to be costly, but only performed

once. The online phase of the reduced model then will be of low order complexity and

allows the reduced scheme to be used rapidly and multiply, i.e. for all macroscopic nodes

and all times.

3.1 The o�ine phase

In the o�ine phase, all data required in the online phase has to be computed � a detailed

description of the online phase follows in the sections 3.2 and 3.3. Therefore, the following

steps are processed in the o�ine phase.

1. Solve the detailed two-scale model and collect snapshots

(a) of the microscopic phase-�eld solution φn+1
H

of (2.6)/(2.10) to the set Πφ,

(b) of the microscopic solution of the chemical potential un+1H of (2.7)/(2.11) to

the set Πu,

(c) and of the right hand side r nφ,H = r
n
φ,H(φ

n

H
, unH, T

n) of equation (2.6)/(2.10) to

the set Πr .

The choice of macroscopic nodes to draw trajectories from, and the sampling step

width of the trajectories will be varied and speci�ed in the experiments.

2. Construct two reduced bases by POD:

(a) Φφ = {ϕφ,1, . . . , ϕφ,Nφ} ⊂ span(Πφ) with size Nφ = |Φφ|,

(b) and Φu = {ϕu,1, . . . , ϕu,Nu} ⊂ span(Πu) with size Nu = |Φu|.
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For ∆ = φ, u and i = 1, . . . , N∆, the N∆ vectors ϕ∆,i are exactly the eigenvectors of

the correlation operator of Π∆ corresponding to the N∆ largest eigenvalues. If the

eigenvalues λi are sorted decreasingly, then N∆ is the smallest number ful�lling the

condition
∑

i=1,...,N∆
λi ≥ (1 − ǫPOD)

∑

i=1,...,|Π∆|
λi with a tolerance 0 < ǫPOD < 1.

The reader is referred to [23, 35] for further details on POD.

3. Perform the o�ine phase of the Empirical Interpolation Method (EIM) to generate

an approximation of the microscopic phase-�eld model. The EIM [2, 28] approxi-

mates a function in an adaptive interpolation space: a Greedy algorithm constructs a

suitable interpolation basis and identi�es a set of interpolation points, the so-called

'magic points', [28]. Therefore, use as training data the snapshot set Πr , de�ne

the tolerance 0 < ǫEI < 1, determine the indices YM ⊂ YH of the magic points and

generate the collateral basis ΦEIφ , cf. [5, 9]: training snapshots Lφ,Hφ
n+1

H
− rH as

required for the considered model are always zero, therefore snapshots of only rH are

used. Furthermore, with respect to the �ve-point-stencil which discretizes the spatial

derivatives, determine the indices YNM ⊂ YH of the magic points' neighbors, but only

of those neighbors which are not magic points themselves, i.e. YM ∩YNM = ∅. De�ne

Y ⋆M = YM∪YNM and introduce an enumeration by Y ⋆M(i) = YM(i) for all i = 1, . . . , |YM |

and Y ⋆M(i) = YNM(i − |YM |) for all i = |YM | + 1, . . . , |YM | + |YNM |. The online phase

of the Empirical Interpolation will be involved in the next sections.

4. Determine the reduced operators required for the solution of the reduced model;

details on the operators are described in the following.

Although these o�ine quantities comprise two reduced bases and the interpolation

points, this set of quantities is denoted a reduced basis set B =

{Φφ,Φu, YM, Y
⋆
M}.

Numerical results presented in Section 4 indicate that it is not practical to use only one

basis set. Aim of the reduced model is on the one hand to obtain a solution in much less

online time than needed for the detailed model, but, what is also important, on the other

hand the reduced solution should be a good approximation of the detailed one. There-

fore, as always, it is a competition between accuracy and cost of computation. Accuracy

increases with increasing numbers Nφ, Nu and |YM |. Contrary to this relation, speed of

computation increases with decreasing numbers Nφ, Nu, |YM | and |YNM |. In order to keep

those numbers low but still to gain accurate results, it is advisable to use a partitioning

approach to obtain multiple basis sets. Such procedures have been developed and applied

successfully in literature. For example, a partitioning of the input parameter domain can be

realized, e.g. via the hp-RB [14, 15, 16] or P-partitioning [18] approach. A partitioning of

the time-axis can be applied to reduce complexity over time [8]. Also implicit partitioning

approaches have been developed [30, 37] based on unsupervised learning approaches.

In this study, a problem-speci�c feature extraction is used to partitioning the solution

space. This is a new conceptional contribution. The main principle of the partitioning

strategy is in the o�ine phase to subdivide the set of snapshots into subsets with respect

to a certain criterion and to construct from each subset one basis set. In the online phase

a reduced solution is searched for in the span of a certain basis set if the solution of

the previous time-step ful�lls the distinguishing condition of that special basis set. The

utilized criterion is the volume of the solid phases: the number of primary dendrites and

their growth directions are prescribed by parameters, which as well as the initial condition

are the same for all the microscopic problems, altogether they imply that microscopic

solutions with similar solid phases' volumes also have similar shapes.
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The proposed partitioning scheme is more suitable to the present application than the

other schemes described above: a partitioning of the input parameter domain is inappro-

priate because the input parameter changes in time, therefore the input parameter domain

consists of trajectories; a partitioning with respect to the time is unsuitable because the

growth rate of a dendrite depends on the input parameter and therefore not explicitly on

the time; it is the additional prior knowledge of volume growth that draws a distinction to

unsupervised clustering procedures: as including prior knowledge is important in machine

learning, the volume size is used as a distinctive feature characterizing solution regimes.

In the following the construction of the NB ∈ N\{0} basis sets B1, . . . ,BNB in the o�ine

phase is explained. For every snapshot SH that is collected while solving the detailed model,

the corresponding volume vH(S) of the solid phase is determined, that is

vH(S) = vH(S(φ
n+1
H )) =

1
2
+ 1
2H

∑

(y0,y1)∈Yhℓ
φn+1H (y0, y1). (3.1)

Say NS,φ is the total number of snapshots of the phase-�eld, NS,u of the chemical potential

and NS,r of the right hand side. The volumes for the snapshot set Πφ are ordered by size,

the minimum v0 = minS∈Πφ vH(S) as well as the maximum volume vNB = maxS∈Πφ vH(S)

are determined, and for i = 1, . . . , NB − 1 value vi is equal to the i · ⌊
NS,φ
NB
⌋-th smallest

volume. Then each of the snapshot-sets Πφ, Πu and Πr is subdivided into NB subsets

Πφ,1, . . . ,Πφ,NB , Πu,1, . . . ,Πu,NB and Πr,1, . . . ,Πr,NB according to the following criterion

Π∆,i = {S ∈ Π∆ | vi−1 − ǫB(vi−1 − vi−2) ≤ vH(S) ≤ vi + ǫB(vi+1 − vi)} (3.2)

for i = 1, . . . , NB and ∆ = φ, u, r , with v−1 = v0 and vNB+1 = vNB and 0 ≤ ǫB < 1. If ǫB
is zero, then all the subsets Πφ,i have the same cardinal number. If ǫB is larger than zero,

then the intersection of two subsets Πφ,i and Πφ,i+1 might contain more than only one

snapshot. Allowing intersections pursues the objective to guarantee smooth transitions

from one basis set to a neighboring one in the online phase. Finally, for i = 1, . . . , NB the

basis sets Bi =
(

Φφ,i ,Φu,i , YM,i , Y
⋆
M,i

)

are determined according to the steps 2.-4. from the

subsets of snapshots Πφ,i , Πu,i and Πr,i . The reason for the subdivision of the snapshots

into subsets with similar cardinal numbers is the expectation that this results in similar

cardinal numbers Nφ, Nu, |YM | and |Y
⋆
M | for all the basis sets Bi , i = 1, . . . , NB. If the sizes

of all basis sets are similar, then not only the accuracy but also the cost of computation

is on the same level for the whole set of basis sets.

How the NB basis sets B1, . . . ,BNB are used to construct the reduced solutions in the

online phase is explained in this paragraph. In the beginning of every time-step n + 1 the

new i.e. appropriate basis set is determined, that is at �rst the volume v nNφ of the solid

phase is determined, for the old i.e. current basis set Bi that is

v nNφ =
1
2
+ 1
2H

(

1 . . . 1
)

Φφ,iφ
n

Nφ,i
, (3.3)

and if vj−1 < v
n
Nφ
≤ vj then Bj is the appropriate basis set. Contrary to the o�ine phase,

it is v0 = −∞ and vNB = ∞ in the online phase in order to capture all possible volume

sizes, including those exceeding the training data range. If the current and the appropriate

basis set di�er, then the reduced solutions of the previous time-step n are orthogonally

projected into the span of the appropriate basis set, that is

φn
Nφ,j
= Φ⊤φ,jΦφ,iφ

n

Nφ,i
, unNu ,j = Φ

⊤
u,jΦu,iu

n
Nu ,i
, (3.4)
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where for ∆ = φ, u and ℓ = 1, . . . , NB the columns of the matrix Φ∆,ℓ ∈ R
H,N∆,ℓ are equal

to the DOF-vectors of the POD-basis Φ∆,ℓ. Completing this, the current basis set turns

from Bi to the appropriate Bj .

If a reduced model with multiple basis sets instead of only one is used, then what must be

determined additionally in the online phase is only the appropriate basis set and potentially

the projection of the phase-�eld and the chemical potential, where the projection matrices

Φ⊤∆,i±1Φ∆,i are pre-computed in the o�ine phase. The volumes of the solid phases are

computed anyway because they are parameters of the macroscopic problem.

3.2 The reduced model for the chemical potential

In the online phase, the reduced chemical potential un+1Nu ∈ R
Nu ,1 is determined by the

following equation, which is simply a Galerkin projection of (2.7)/(2.11), i.e. multiplication

by ΦTu from the left and inserting the reduced quantities. As the system matrix is constant,

the system can be inverted resulting in

un+1Nu =
(

Φ⊤u Lu,HΦu
)−1
Φ⊤u

(

FHΦuu
n
Nu
+Φφ

(

φn+1
Nφ
− φn

Nφ

))

, (3.5)

where Φu ∈ R
H,Nu is the matrix with columns equal to the DOF-vectors of the current

appropriate POD-basis Φu, and Φφ ∈ R
H,Nφ is the matrix with columns equal to the

DOF-vectors of the current appropriate POD-basis Φφ.

The matrix operating on unNu as well as the matrix operating on the di�erence φn+1
Nφ
−φn

Nφ

are constant for all times: they are pre-computed in the o�ine phase. Consequently, what

remains to be computed in the online phase, in order to determine the reduced solution

un+1Nu of the chemical potential, are two small matrix vector products only.

3.3 The reduced model for the phase-�eld

The standard Empirical Interpolation system approximating the detailed system (2.6)/(2.10)

for the phase-�eld reads

ΦEIφ Lφ,H(φ
n

Nφ
)
YM
Φφφ

n+1

Nφ
= ΦEIφ rH(φ

n

Nφ
, unNu , T )

YM
, (3.6)

with Lφ,H(φ
n

Nφ
)
YM
∈ R|YM |,H and rH(φ

n

Nφ
, unNu , T )YM

∈ R|YM |,1, where the index YM denotes

that only the rows belonging to the magic points' indices are considered. This system is

not suitable because a high-dimensional system must be solved in the online phase and,

furthermore, it is unknown whether the system is of full rank.

Therefore, ΦEIφ is eliminated from the equation by a suitable biorthogonal matrix mul-

tiplication, resulting in

Lφ,YM(φ
n

Nφ
)φn+1
Nφ
= r YM(φ

n

Nφ
, unNu , T ), (3.7)

with a matrix Lφ,YM(φ
n

Nφ
) ∈ R|YM |,Nφ, a vector rYM(φ

n

Nφ
, unNu , T ) ∈ R

|YM |,1 and a scalar T

which is the detailed macroscopic temperature solution of time-step n at the location of

the microscopic problem in the macroscopic domain. This system is suitable because it is

low-dimensional. It is solved for φn+1
Nφ

by a Least-Squares procedure via the pseudoinverse,

as it will be overdetermined in general.
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In correspondence to (2.6)/(2.10), the matrix and the vector are de�ned as follows

Lφ,YM(φ
n

Nφ
) = L(φn

Nφ
)τY ⋆

M
Φφ,

r YM(φ
n

Nφ
, unNu , T

n) = R τY ⋆
M
Φφφ

n

Nφ
+ r̂ YM(φ

n

Nφ
, unNu , T

n),
(3.8)

with L(φn
Nφ
) ∈ R|YM |,|Y

⋆
M | de�ned as

(

L(φn
Nφ
)
)

i ,j
=



















1 + 2kt
αh2
ℓ

+ 6kt
αξ2

((

τYMΦφφ
n

Nφ

)

i

)2

for j = i ,

− kt
2αh2

ℓ

if Y ⋆M(j) is a neighbor of magic point YM(i),

0 otherwise,

(3.9)

and R ∈ R|YM |,|Y
⋆
M | de�ned as

Ri ,j =















1− 2kt
αh2
ℓ

+ 2kt
αξ2

for j = i ,

kt
2αh2

ℓ

if Y ⋆M(j) is a neighbor of magic point YM(i),

0 otherwise,

(3.10)

with the restriction-matrices τYM ∈ R
|YM |,H and τY ⋆

M
∈ R|Y

⋆
M |,H de�ned as

(

τYM
)

i ,j
=

{

1 for j = YM(i),

0 otherwise,

(

τY ⋆
M

)

i ,j
=

{

1 for j = Y ⋆M(i),

0 otherwise.
(3.11)

and �nally with

(

r̂ YM(φ
n

Nφ
, unNu , T

n)
)

i
= 4kt
αξ2

((

τYMΦφφ
n

Nφ

)

i

)3

+

+ q
(

(∇yφ
⋆)i , T

n,
(

τYMΦuu
n
Nu

)

i
,
(

τYMΦφφ
n

Nφ

)

i

)

,
(3.12)

where (∇yφ
⋆)i ,j is the approximation of the j-th derivative of φn in the i-th magic point:

without going into the details here, in order to obtain the j-th derivatives in the magic

points simply a matrix-vector product must be computed, where the matrix is similar to

the restriction matrix τY ⋆
M
and the vector is the former reduced solution.

Many of the products of the reduced system (3.7) are pre-computed in the o�ine phase,

what still has to be computed in every time step n + 1 in the online phase is

1. the matrix vector products of τYMΦφ ∈ R
|YM |,Nφ and φn

Nφ
∈ RNφ,1 as well as of

τYMΦu ∈ R
|YM |,Nu and unNu ∈ R

Nu ,1 � in order to obtain the values of φ and u in the

magic points,

2. the matrix vector products of AjτY ⋆
M
Φφ ∈ R

|YM |,Nφ and φn
Nφ
∈ RNφ,1 � in order to

obtain the j-derivatives of φ in the magic points, with a suitable Aj ∈ R
|YM |,|Y

⋆
M |,

3. the �rst diagonal of matrix L(φn
Nφ
) ∈ R|YM |,|Y

⋆
M | and the product of the two matrices

L(φn
Nφ
) ∈ R|YM |,|Y

⋆
M | and τY ⋆

M
Φφ ∈ R

|Y ⋆M |,Nφ � in order to obtain the left-hand side

matrix Lφ,YM(φ
n

Nφ
) of (3.7),

4. the product of R τY ⋆
M
Φφ ∈ R

|YM |,Nφ and φn
Nφ

∈ R
Nφ,1, the vector

r̂ YM(φ
n

Nφ
, unNu , T

n) ∈ R|YM |,1, and the sum of these two vectors � in order to obtain

the right hand side vector r YM(φ
n

Nφ
, unNu , T

n) of (3.7),
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5. and �nally, the Least-Squares solution φn+1
Nφ
∈ RNφ,1 of (3.7).

All of these computations for the online phase of the reduced models are completely

independent of the high dimension H. The computational complexity only scales with

Nφ, Nu, |YM | and |Y
⋆
M |. This is true for the reduced systems, but also for the projec-

tion operations for a basis set change and the averaging procedure for coupling into the

macroscopic temperature equation. Consequently, the reduced model provides an ideal

o�ine-online decomposition.

4 Numerical results

In order to evaluate the reduced two-scale model's quality, this section presents the results

of numerical computations. In particular compared are reduced to detailed numerical

results. At �rst in order to show that the reduced model features a possible reproduction

of detailed results, the detailed and the reduced solution are compared for a setting with a

small time-space cylinder. In a second step, on a larger time-space cylinder, it is shown that

the reduced model not only produces accurate results but also speeds up the computation

signi�cantly. And �nally in a third step, generalization abilities of the reduced model are

investigated.

This paragraph de�nes the di�erent detailed models to be solved or to be approximated

by reduced models in the following subsections. Equations (2.6)/(2.10) and (2.7)/(2.11)

describe the microscopic model to be solved on the microscopic domain Yhℓ = [0, Hℓhℓ]
2

with space increment hℓ = 0.005, and the macroscopic heat equation (2.8) is to be

solved on the macroscopic domain Ωhg = [0, Hg,1hg] × [0, Hg,2hg] with space increment

hg = Hℓhℓ. Therefore, Ωhg consists of (Hg,1+1) ·(Hg,2+1) nodes, each of them governing

one microscopic problem on Yhℓ consisting of (Hℓ + 1)
2 nodes. The computation time is

from 0 to Ktkt with time increment kt = 2e-6. On the macroscopic scale, the e�ective

heat conductivity K is larger than zero, and the boundary conditions of the heat equation

are the prescribed heat �uxes

ktK
2h2g
∇T · n =











− 2cboundary-�ux for x1 = 0,

− cboundary-�ux for x2 = 0,

0 otherwise,

cboundary-�ux > 0. (4.1)

Put more simply, two parts of the boundary have cooling conditions, and the remaining two

parts are isolated. For the microscopic cell problems the boundary conditions are periodic.

The initial temperature T , the initial chemical potential u and the initial phase-�eld φ are

for all x ∈ Ωhg and for all y ∈ Yhℓ speci�ed as

T (0, x) = −0.1,

u(0, x, y) = −0.1,

φ(0, x, y) = tanh

(

0.25

(

√

∑

i=1,2

(

1
hℓ
yi −

Hℓ
2

)2

− 5

))

.

(4.2)

By reason that the initial conditions of the microscopic unknowns u and φ are indepen-

dent of their location on the macroscopic domain, they are equal for all the microscopic

problems. Furthermore, they (in combination with the initial temperature condition) imply
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that, initially, a small solid kernel occupies the center of every microscopic domain and that

each kernel is surrounded by an undercooled melt. The microscopic physical parameters

are speci�ed as α = 5, ξ = 0.01, σ0 = 5000 and σ1 = 0.5. Consequently, the di�er-

ent models to be solved di�er only in the following variables: the number of microscopic

nodes Hℓ > 0 in both dimensions, the number of macroscopic nodes Hg,1 > 0 in the �rst

and Hg,2 > 0 in the second dimension, the number of time-steps Kt > 0, the macro-

scopic boundary temperature out�ow-constant cboundary-�ux > 0 and the macroscopic heat

conductivity K > 0.

A reduced solution's accuracy is estimated by comparing its macroscopic tempera-

ture solution Tred to the detailed method's temperature solution Tdet. The error ∆T :=

|Tred − Tdet| is measured in the discrete L2- and L∞-norms on the discrete macroscopic

space domain Ωhg or on the whole discrete time-space cylinder Qkt ,hg = Itend,kt ×Ωhg :

‖∆T (tn, ·)‖Ω,2 =
√

1
|Ωhg |

∑

x∈Ωhg
|∆T (tn, x)|2,

‖∆T (·, ·)‖Q,2 =
√

1
N+1

∑N
n=0‖∆T (tn, ·)‖

2
Ω,2,

‖∆T (tn, ·)‖Ω,∞ = maxx∈Ωhg |∆T (tn, x)|,

‖∆T (·, ·)‖Q,∞ = maxn=0,...,N‖∆T (tn, ·)‖Ω,∞.

(4.3)

Unfortunately, a small temperature-error is only a necessary but not a su�cient condi-

tion for a good reduced approximation of the detailed microscopic solution. Therefore,

if a reduced solution with a small temperature-error exists, then also the errors of the

microscopic reduced solutions are measured in the discrete L∞-/L2-norm in the discrete

microscopic time-space cylinder Q⋆ = Itend,kt × Ω
⋆
hg
× Yhℓ, where Ω

⋆
hg

represents only the

four nodes in the corners of the macroscopic domain, which are (0, 0), (Hg,1, 0), (0, Hg,2)

and (Hg,1, Hg,2). Evaluating all microscopic solutions would require an enormous amount

of memory, therefore only the solutions in the corners are evaluated. Furthermore, in

the subsections 4.2 and 4.3 with large time-space cylinders, the microscopic solutions are

evaluated only every 50 steps in time. Still, this evaluation-strategy seems not to be too

unreasonable because, due to the macroscopic boundary conditions, macroscopic corner

node (0, 0) records the lowest and (Hg,1, Hg,2) the highest temperature in every time-

step, and therefore the microscopic solutions characterized by the largest and the smallest

dendrite are evaluated. The two remaining corner nodes represent dendrites in between.

4.1 Results on a small time-space cylinder

The detailed two-scale model to be solved in this subsection is completed by the following

set of parameters: Hℓ = 50, Hg,1 = 10, Hg,2 = 5, Kt = 50, cboundary-�ux = 2e-3 and

K = 2000. This model-setting is designed in order to test only whether the reduced model

is capable of reproducing detailed results. The other important feature of reduced models,

the increase of computational speed is, alongside of accuracy of course, a topic of the next

subsection. Figure 4.1 illustrates the detailed model's macroscopic temperature solution,

its microscopic phase-�eld solution in the macroscopic node (0, 0) and the evolutions of

the volumes of the solid phases in the macroscopic corners nodes.

The reduced models to be evaluated in the following are constructed from snapshots

produced by the detailed solution with snapshot-time-increment st = 1, that is every

microscopic solution participates in their construction. For 50 microscopic problems and
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Figure 4.1: Results of the detailed two-scale model on the small time-space cylinder.

Figure (a) depicts the macroscopic temperature �eld in the end. Figure (b) presents the

initial (inner circle) and the �nal solid phase in the macroscopic node (0, 0). Figure (c)

illustrates the evolution of the volumes of the solid phases in the macroscopic corner-nodes

(0, 0), (0, 4), (9, 0) and (9, 4), listed from largest to smallest volume.

(ǫPOD, ǫEI) Nφ Nu |YM | |Y
⋆
M | ‖∆T‖Q,∞ ‖∆T‖Q,2

(1e-4, 1e-4) 2 3 14 46 3.38e-3 1.96e-3

(1e-5, 1e-5) 2 4 23 58 4.03e-3 2.78e-3

(1e-6, 1e-6) 3 5 28 63 2.58e-3 5.94e-4

(1e-10, 1e-10) 9 14 58 112 1.20e-5 2.41e-6

(1e-14, 1e-4) 21 30 14 46 7.81e-2 7.13e-2

(1e-14, 1e-5) 21 30 23 58 1.32e-7 3.34e-8

(1e-14, 1e-6) 21 30 28 63 2.69e-7 6.31e-8

(1e-14, 1e-10) 21 30 58 112 1.34e-7 1.90e-8

(1e-14, 1e-14) 21 30 114 251 2.35e-8 4.10e-9

Table 4.1: Results of reduced two-scale models on the small time-space cylinder. The

reduced models are characterized by one basis set and varying tolerances ǫPOD and ǫEI.

50 steps in time this results in 2500 snapshots of the phase-�eld, of the chemical potential

and of the right-hand side.

Table 4.1 presents results for reduced models consisting of one basis set only for varying

tolerances ǫPOD and ǫEI. For a diminishing ǫPOD, the tolerance that in�uences the con-

struction of the POD-bases for φ and u, the sizes Nφ and Nu of the two bases Φφ and Φu
increase, of course. Certainly as well, for a diminishing ǫEI the number of the magic points

|YM | increases. Also increasing is the number |Y ⋆M |: for larger tolerances it is nearly a factor

of �ve in |YM | versus |Y
⋆
M |, which is caused by the �ve-star �nite di�erence discretization;

for smaller tolerances many of the magic points' neighbors are magic themselves. The er-

ror results imply that it is not necessary to use tolerances ǫPOD and ǫEI of the same order.

But, comparing the results for (ǫPOD, ǫEI) = (1e-4, 1e-4) and (ǫPOD, ǫEI) = (1e-14, 1e-4),

in order to produce accurate reduced results, the size of the POD-basis for the phase-�eld

Nφ must not be larger than the number of the magic nodes |YM |. This is due to the fact

that the system of linear equations (3.7) for the reduced phase-�eld is under-determined

for Nφ > |YM |. What is of great importance and what justi�es the reduced model, is that,

disregarding some insigni�cant deviations, for diminishing tolerances the errors decrease:

the reduced model is capable of at least reproducing the detailed macroscopic temperature

solution.

Table 4.2 presents results for reduced models consisting of a variable number of basis
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(NB, ǫB) Nφ Nu |YM | |Y ⋆M | ‖∆T‖Q,∞ ‖∆T‖Q,2
(1,−) 21 30 114 251 2.35e-8 4.10e-9

(2, 0.1) 16.50 24.00 93.50 212.00 5.53e-8 2.24e-8

(4, 0.1) 13.75 19.50 81.00 174.75 2.78e-7 7.68e-8

(10, 0) 10.90 15.20 66.60 146.10 1.86e-6 1.15e-6

(10, 0.1) 11.30 15.50 68.70 151.20 3.92e-7 1.30e-7

(10, 0.2) 11.60 15.90 69.90 153.60 2.51e-7 6.28e-8

(10, 0.5) 12.50 17.50 74.80 163.50 1.34e-7 5.50e-8

(10, 1) 13.80 19.30 80.90 178.40 8.60e-8 4.30e-8

(20, 0.1) 10.10 13.95 58.75 128.25 2.98e-6 1.43e-6

Table 4.2: Results of reduced two-scale models on the small time-space cylinder. The

reduced models are characterized by ǫPOD = ǫEI = 1e-14, a varying number of basis sets

NB and a varying tolerance ǫB. If a reduced model consists of more than one basis set,

then the numbers Nφ, Nu, |YM | and |Y
⋆
M | present the average sizes of all basis sets.

(NB, ǫPOD, ǫEI) ‖∆T‖Q,∞ ‖∆T‖Q,2 ‖∆φ‖Q⋆,∞ ‖∆φ‖Q⋆,2 ‖∆u‖Q⋆,∞ ‖∆u‖Q⋆,2
(1, 1e-5, 1e-5) 4.03e-3 2.78e-3 2.14e-2 5.82e-3 1.27e-2 5.88e-3

(1, 1e-14, 1e-5) 1.32e-7 3.34e-8 4.11e-6 1.72e-7 3.73e-6 1.38e-7

(1, 1e-14, 1e-14) 2.35e-8 4.10e-9 3.41e-6 8.69e-8 2.12e-6 5.54e-8

(2, 1e-14, 1e-14) 5.53e-8 2.24e-8 2.37e-6 1.27e-7 1.30e-6 9.99e-8

(4, 1e-14, 1e-14) 2.78e-7 7.68e-8 3.52e-6 4.82e-7 2.47e-6 4.54e-7

(10, 1e-14, 1e-14) 3.92e-7 1.30e-7 7.82e-6 7.51e-7 5.60e-6 7.26e-7

(20, 1e-14, 1e-14) 2.98e-6 1.43e-6 1.81e-5 2.77e-6 1.02e-5 2.73e-6

Table 4.3: Results of reduced two-scale models on the small time-space cylinder. The

reduced model is characterized by varying parameters NB, ǫPOD and ǫEI. In case of multiple

basis sets it is ǫB = 0.1.

sets and a varying tolerance ǫB, with smallest tolerances ǫPOD = ǫEI = 1e-14. For constant

ǫB but an increasing NB the average sizes Nφ, Nu, |YM | and |Y
⋆
M | of the basis sets decrease,

but unfortunately also the accuracy. The last observation can be explained by the constant

tolerance ǫB: the larger the number of basis sets, the smaller the intersection of the basis

sets, and therefore the larger the projection errors. Increasing ǫB yields an increasing

accuracy. At �rst sight it is surprising that the error of (NB, ǫB) = (10, 1) is larger than for

example of (NB, ǫB) = (2, 0.1), but this may explained with projection errors: in case of

only a few basis sets with a small ǫB, the projection error may be smaller than for the case

with a larger NB and a larger ǫB, but in the latter case the errors add up for each change

of the basis set. Still, because the error is not signi�cantly larger for models with a larger

number of basis sets, and because the online computation time decreases signi�cantly for

decreasing sizes of the basis sets, therefore it is the reduced models with multiple basis

sets that are more suitable for situations with larger time-space cylinders.

As mentioned before, small temperature errors are only a necessary condition for a

good reduced approximation of the detailed microscopic solution. Therefore, Table 4.3

documents the errors of the microscopic solutions for some reduced models: as could

be expected in view of the excellent overall macroscopic temperature approximation, the

tighter the tolerances the smaller also the microscopic errors.
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Figure 4.2: Results of the detailed two-scale model on the large time-space cylinder. Figure

(a) depicts the macroscopic temperature �eld in the end, Figure (b) presents the initial

(inner circle) and the �nal solid phases in the macroscopic corner nodes (0, 0) (largest),

(0, 9) (second-largest), (19, 0) (third-largest) and (19, 9), and Figure (c) shows the �nal

microscopic chemical potential in (0, 0).

This subsection showed that the reduced model is capable of reproducing the detailed

solution. The next subsection will show that the reduced model also produces accurate

results on a larger time-space cylinder. Besides that, it will also show that the reduced

model can be solved much more e�ciently than the detailed one.

4.2 Results on a large time-space cylinder

The detailed two-scale model to be solved in this subsection is completed by the parameters

Hℓ = 200, Hg,1 = 20, Hg,2 = 10, Kt = 50000, cboundary-�ux = 5e-6 and K = 200.

Therefore, this setting, called setting S0, is characterized by a larger time-space cylinder

than the previous subsection's setting. Figure 4.2 illustrates the result of the detailed

two-scale model. Because of the boundary conditions it is always the macroscopic corner

(0, 0) which records the lowest temperature and therefore the largest solid.

A reduced model is constructed from snapshots which are produced by the detailed

model's solution. In course of the detailed simulation 10,000,000 microscopic problems

are solved (50, 000 time-steps times 200macroscopic nodes). What is done in order to pre-

select the snapshots that are utilized in a reduced model's construction, is that the detailed

two-scale model is solved adaptively. The interested reader is referred to [31] for details on

the adaptive solution strategy. Fundamental to it is the fact that microstructures develop

similar features if they are in�uenced by similar temperature evolutions. Consequently, a

microscopic solution can be approximated by the solution of another microscopic problem if

the problems are in�uenced by similar temperature evolutions. Exercising this observation,

the strategy selects microscopic problems to be solved and approximates the remaining

problems' solutions.

The applied adaptive strategy is characterized by the following parameters: λ = 0.1,

ctolc = 0.2, ctolr,0 = 0, ctole = 0.01, RU=0, eC = 1, MA = 2, IT-CA, NA(0) = (0, 0),

the Copy Method and a re�ning tolerance parameter ctolr,1 = 0.01. The last parameter

is straight proportional to the maximum distance of an approximated and at least one

solved microscopic problem's in�uencing temperature evolution: the smaller it is the more

microscopic problems are solved. Without going into details, the choice ctolr,1 = 0.01

is a good compromise between cost of detailed o�ine computation and reduced online

accuracy: on average 52.18 microscopic problems are solved per time-step, topping out at
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ton((0, 0)) 1595 0.73 1.27 1.46 2.61 3.57 8.14 12.66

ton((19, 0)) 1479 1.40 2.68 3.23 6.46 5.03 7.78 10.80

ton((0, 9)) 1536 0.88 1.57 1.84 3.48 3.94 7.84 10.59

ton((19, 9)) 1347 1.89 3.74 4.86 9.62 7.13 12.03 14.97

ton 1489.25 1.04 1.89 2.24 4.20 4.51 8.58 11.96

Nφ - 81.16 60.84 60.84 48.04 49.16 41.60 36.93

Nu - 68.04 49.12 49.12 39.32 40.46 34.86 31.25

|YM | - 124.48 124.48 89.72 58.88 70.84 59.22 51.24

|Y ⋆M | - 304.40 304.40 254.04 194.44 216.26 191.34 172.38

‖∆T‖Q,∞ - 7.12e-6 9.02e-6 1.29e-5 1.18e-3 4.56e-5 6.08e-5 4.77e-4

‖∆T‖Q,2 - 4.28e-7 1.02e-6 1.62e-6 1.52e-5 1.51e-6 2.15e-6 4.49e-6

Table 4.4: Run-time and speed-up results on the large time-space cylinder. The reduced

models are characterized by the common parameter ǫB = 0.1 and the varying parameter set

(NB, ǫPOD, ǫEI). For the detailed solution the value ton(x) represents the time in seconds

that one Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz needs to solve the microscopic

problem in the time-space cylinder Itend,kt ×{x}× Yhℓ, and ton represents the average time.

For the reduced solutions, which are computed on the same CPU, it is not the absolute

time but the speed-up compared to the detailed solution that is presented.

77, resulting in an adaptive o�ine temperature solution with the errors ‖∆T‖Q,∞ = 3.35e-

4 and ‖∆T‖Q,2 = 8.93e-5 compared to the non-adaptive detailed solution.

The ultimate objective is to construct a (non-adaptive) reduced model which is a good

approximation of the (non-adaptive) detailed model, desirably an even better approxima-

tion than the adaptive solution whose snapshots are used to construct the reduced model.

Again without going into details, numerical results indicate that it is not suitable to pro-

duce snapshots with a constant time-step-increment st : for an oversized st the accuracy

especially in the very beginning (due to rapid changes in the initially constant chemical

potential) is weak, on the other hand the smaller st the more memory is needed. In fact a

reasonable compromise is the increasing snapshot-increment s it : until the 100-th time-step

the increment is 1, then until the 200-th it is 2, until the 500-th 5, until the 1000-th 10,

until the 2000-th 25, and afterwards 50. Therefore, 53974 (i.e. around 0.5% of all possibly

computed) microscopic solutions are used to construct the reduced models presented and

evaluated in the following.

Table 4.4 states the time needed to solve the microscopic problems in the macroscopic

corner nodes for the detailed and some reduced models, the sizes of the basis sets and the

temperature error of the reduced solutions. Certainly, the tighter the tolerances ǫPOD and

ǫEI and the smaller the number of basis sets, the more time is needed to solve the reduced

model but also the more accurate are the solutions. A good compromise for e�ciency is

the reduced model consisting of 100 basis sets which was constructed with respect to the
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Figure 4.3: Results on the large time-space cylinder of the reduced model with parameters

NB = 100, ǫPOD = 1e-13, ǫEI = 1e-5 and ǫB = 0.1. Figure (a) illustrates the evolution

of the solid phases' volumes and (b) the evolution of the utilized basis sets, both in the

macroscopic corner nodes.
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Figure 4.4: Results on the large time-space cylinder. Figures (a)-(c) depict results of the

detailed adaptive model and Figures (d)-(f) results of the reduced non-adaptive model

with parameters NB = 100, ǫPOD = 1e-13, ǫEI = 1e-5 and ǫB = 0.1; the reduced model

is constructed from the detailed adaptive solution. Figures (a) and (d) illustrate the

respective L∞(Ω)- (dark-gray) and L2(Ω)-error of the temperature solutions compared to

the non-adaptive detailed solution. Figures (b) and (e) show the respective L∞(Y )-errors

of the microscopic phase-�elds in the macroscopic corner nodes and (c) and (f) of the

microscopic chemical potentials in the macroscopic corner nodes (0, 0) (dashed), (19, 0)

(dotted), (0, 9) (dark-gray) and (19, 9).

tolerances ǫPOD = 1e-13, ǫEI = 1e-5 and ǫB = 0.1: compared to the detailed solution the

microscopic problems are solved 8.5 times faster on average but the maximum error of the

temperature is only 6.08e-5. For this reduced model Figure 4.3 illustrates how the growth

of the volume of a solid phase a�ects the utilized basis set building the reduced solution:

the larger the volume the larger the index of the utilized basis set. Also for this model

Figure 4.4 depicts its solution's error compared to the non-adaptive detailed solution. The

error of the temperature is small in the beginning but it increases rapidly in the very end

of the time-interval. Approximately the same holds for the error of the microscopic phase-
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(2
5
, 1
e
-1
4
, 1
e
-6
)

(2
5
, 1
e
-1
3
, 1
e
-6
)

(2
5
, 1
e
-1
3
, 1
e
-5
)

(2
5
, 1
e
-1
2
, 1
e
-4
)

(5
0
, 1
e
-1
3
, 1
e
-5
)

(1
0
0
, 1
e
-1
3
, 1
e
-5
)

(2
0
0
, 1
e
-1
3
, 1
e
-5
)

Overall 14.00 h 11.72 h 7.41 h 5.18 h 4.72 h 5.24 h 7.40 h

SubdivSnaps 1.80% 2.19% 3.46% 4.95% 3.24% 1.78% 0.93%

POD 15.89% 17.73% 28.87% 42.97% 14.61% 6.16% 2.27%

EIM 73.95% 72.21% 54.91% 35.74% 47.40% 32.56% 17.12%

MapsIntra 8.36% 7.87% 12.76% 16.33% 34.73% 59.47% 79.65%

MapsInter 0.01% 0.01% 0.01% 0.01% 0.02% 0.03% 0.03%

Table 4.5: Run-time on the same computer as in Table 4.4 of the o�ine phases of the

same reduced models as in Table 4.4, that is the reduced models are characterized by

the common parameter ǫB = 0.1 and the varying parameter set (NB, ǫPOD, ǫEI). 'Overall'

gives the o�ine phases' overall duration measured in hours, 'SubdivSnaps' refers to the

subdivision of the snapshots in order to produce NB reduced basis sets, 'POD' to the POD

procedures developing the approximation spaces for the phase-�eld and the chemical po-

tential, 'EIM' to the EIM addressing the non-linearity of the high-dimensional phase-�eld

equation (2.6)/ (2.10), 'MapsIntra' refers to the pre-computation of the constant map-

pings used in the online phase in order to compute the reduced solutions, and 'MapsInter'

refers to the pre-computation of the constant projection operators for basis change in the

online phase.

�eld and chemical potential in the macroscopic node (0, 0). Contrary to that the errors

of the smaller solids remain on nearly the same level throughout the whole time-interval.

More probably than not this is due to the fact that the reduced model is constructed from

snapshots which are mostly related to smaller solids. Nevertheless, all errors are smaller

than the errors of the adaptive detailed model whose snapshots were used to construct the

reduced model. Consequently, pre-selecting snapshots by the adaptive strategy has the

desired e�ect: the o�ine phase is computed faster than without the pre-selection and the

reduced model's accuracy is signi�cantly greater than of the underlying adaptive detailed

solution.

Table 4.5 tabulates the duration of the o�ine phases of the reduced models considered

in the previous paragraph. Clearly, if NB is �xed, the smaller the tolerances ǫPOD of the

POD-procedure and ǫEI of the EIM, the longer the duration of the o�ine phase. If ǫPOD
and ǫEI are �xed, then the larger the number NB of the basis sets, the smaller the POD-

procedures' and EIM's share in the overall duration of the o�ine phase, and contrariwise

the larger the share of the procedure that pre-computes the constant mappings in the

online phase. Since none of the o�ine phases takes more than 14 hours, the duration of

all seven reduced models' o�ine phases is very acceptable.

Finally, the last Figures 4.5 and 4.6 of this subsection present results of the construction

of the reduced model with parameters NB = 100, ǫPOD = 1e-13, ǫEI = 1e-5 and ǫB = 0.1.

The �rst �gure shows that the di�erent basis sets are responsible for di�erent intervals of

solid volumes: if a reduced solution's solid phase's volume is located in the speci�c interval



A POD-EIM reduced two-scale model for crystal growth 19

0 99
0

0.17

basis set

(a) Solid-volume-intervals.

0 99
12

76

basis set

(b) Sizes Nφ, Nu and |YM |.

0 67
−12

0

5

basis set 49: number

(c) Error decay of POD/EI.

Figure 4.5: Results on the large time-space cylinder of the reduced model with parameters

NB = 100, ǫPOD = 1e-13, ǫEI = 1e-5 and ǫB = 0.1. Figure (a) depicts the maximum

(light-gray) and minimum of the intervals of the volumes of the solid phases which are

constructed by the di�erent basis sets; basis set 0's minimum is zero and basis set 99 is

not bounded from above, but the largest volume of the training data is only 0.1684. Figure

(b) shows the sizes Nφ (dashed), Nu (light-gray) and |YM | of the basis sets. And Figure

(c) depicts for basis set 49 the decay of the log10 of the eigenvalues of the correlation

operator of the underlying snapshots for the phase-�eld (dashed) and for the chemical

potential (light-gray) and furthermore the decay of the error of the Empirical Interpolation

Method for the increasing number of magic nodes.

of a basis set, then the reduced solution of the next step in time is constructed by this basis

set. Furthermore, it indicates that the sizes of the basis sets are maximal for basis sets

correlated to medium volume sizes, and that they di�er signi�cantly. These observations

indicate that the partitioning method may be optimized. Finally, the �gure describes for

a sample basis set the decay of the eigenvalues of the two correlation operators of the

snapshots for the phase-�eld and the chemical potential: those decays are rapid implying

that the system comprises a strong ability to be compressed. The Figure 4.6 illustrates the

di�erences of the basis sets: for example the location of the magic points moves from the

center of the microscopic domain for basis sets related to small volumes to outer regions

for larger volumes. This is due to the fact that, disregarding one point in (0, 0), the

magic points are always located in the phase transition zones of the microstructures. The

inner-to-outer-movement holds also for the characteristic shapes of the principal modes

of the POD-bases. The di�erent sizes of the basis sets explain for example why it takes

nearly twice as long to solve the reduced model in (0, 0) as in (19, 9): in course of the

simulation all the basis sets are used to construct the solution in (0, 0), but for (19, 9)

only the smaller basis sets.

In this subsection a reduced model with parameters NB = 100, ǫPOD = 1e-13, ǫEI = 1e-

5, ǫB = 0.1 was constructed that is very e�cient: alongside accurate results, the model

is solved in much less time than the detailed model. The next subsection is devoted to

the macroscopic conditions that must be ful�lled such that the reduced model still delivers

accurate results.

4.3 Generalization ability: variation of the macroscopic problem

The reduced model is constructed from microscopic solutions whose developments are

manipulated by certain temperature evolutions. Hence, it can be expected that if a setting

S produces temperature evolutions that are similar to the reduced model's training data

evolutions, then the reduced solution is expected to be accurate for the setting S.
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Figure 4.6: Results on the large time-space cylinder of the reduced model with parameters

NB = 100, ǫPOD = 1e-13, ǫEI = 1e-5 and ǫB = 0.1. Figure (a) presents the distribution

of the magic points on the microscopic domain for the basis sets 0, 49 and 99: dots mark

the magic points, the inner circle represents the initial solid phase and the larger dendrite

the largest solid phase of the training data. Figure (b) shows the principal mode of the

POD-basis for the phase-�eld for the same basis sets and Figure (c) depicts the same for

the chemical potential.

Table 4.6 speci�es the parameters of three settings and the setting S0 of the previous

subsection used to construct the reduced model with parameters NB = 100, ǫPOD = 1e-13,

ǫEI = 1e-5 and ǫB = 0.1. In order to clarify the situation: the settings and the detailed

but also the reduced solutions change, although the reduced model remains the same.

Figure 4.7 illustrates the detailed macroscopic temperature solutions for the settings S1,

S2 and S3; the solution of S0 is depicted in Figure 4.2. The shape of all solutions is

similar, but the minimal temperature of S1 is signi�cantly smaller than of S0 whose itself

is signi�cantly smaller than of S2. This can also be deduced from the results presented

in Table 4.7 comparing not only the detailed macroscopic temperature solutions of the

settings S0, S1 and S2 but also their microscopic phase-�eld solutions. Furthermore, for

all settings the respective reduced is compared to the respective detailed solution.

Because the minimal temperature decreases faster over time for setting S1 than for

S0 the largest dendrite of S1 grows faster than of S0 resulting in volumes of 0.2029
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setting Hg,1 Hg,2 cboundary-�ux K

S0 20 10 5e-6 200

S1 20 10 6e-6 200

S2 20 10 4e-6 200

S3 50 20 7e-6 500

Table 4.6: Generalization ability: variation of the macroscopic problem. Tabulated are

the varying parameters of the macroscopic settings S0, S1, S2 and S3. Common to all of

them are Hℓ = 200 and Kt = 50000.
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Figure 4.7: Generalization ability: variation of the macroscopic problem. The �gures depict

the �nal macroscopic temperature �elds for the setting S1, S2 and S3. The solution for

S0 is illustrated in Figure 4.2.

di�erence ‖∆T‖Q,∞ ‖∆T‖Q,2 ‖∆φ‖Q⋆1,∞ ‖∆φ‖Q⋆2,∞ ‖∆φ‖Q⋆3,∞ ‖∆φ‖Q⋆4,∞
r(S0)− d(S0) 6.08e-5 2.15e-6 7.13e-4 1.21e-4 1.40e-4 8.40e-5

d(S1)− d(S0) 5.39e-2 1.21e-2 1.89e+0 1.04e+0 1.71e+0 6.09e-2

r(S1)− d(S1) 1.53e-1 2.12e-3 2.22e+0 1.25e-3 6.30e-2 8.40e-5

d(S2)− d(S0) 5.38e-2 1.23e-2 1.91e+0 1.05e+0 1.69e+0 6.16e-2

r(S2)− d(S2) 1.78e-3 3.27e-5 1.11e-1 7.56e-4 6.56e-3 8.40e-5

r(S3)− d(S3) 5.60e-3 4.68e-5 5.50e-1 5.79e-4 4.38e-3 4.90e-4

Table 4.7: Generalization ability: variation of the macroscopic problem. Tabulated are the

di�erences of the solutions of the macroscopic temperature and the microscopic phase-

�elds in the corner nodes of the macroscopic domain. For the macroscopic setting Si
the term r(Si) indicates the reduced and d(Si) the detailed solution. Q⋆i denotes for

i = 1, . . . , 4 the time-space cylinder Itend,kt × {xi} × Yhℓ with x1 = (0, 0), x2 = (Hg,1, 0),

x3 = (0, Hg,2) and x4 = (Hg,1, Hg,2).

and 0.1684 in the end. Consequently, as the training data does not contain the largest

dendrites of S1, they di�er signi�cantly: the most appropriate phase-�eld POD-basis is not

appropriate enough to produce an accurate reduced approximation. For smaller dendrites

the approximations are noteworthy better. The reduced solution for setting S2 is much

more accurate because the largest dendrite is only of volume 0.1344. Still, the error is

not immaterial. The same holds for the setting S3 with a larger macroscopic domain and

a larger di�usivity K. At least the dendrites related to smaller volumes are approximated

quite accurately.

Finally, Figure 4.8 presents results for the setting S4, which is equal to S3, only the heat
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Figure 4.8: Generalization ability: variation of the macroscopic problem. The error of the

reduced compared to the detailed temperature solution is ‖∆T‖Q,∞ = 5.67e-3 or rather

‖∆T‖Q,2 = 8.41e-5. Figure (a) depicts the detailed temperature solution in the end,

(b) the di�erence of the reduced and the detailed phase-�eld solution in the end in the

macroscopic node (0, 0), and Figure (c) the log10 of the L∞(Y )-errors of the microscopic

phase-�elds in the macroscopic nodes (0, 0) (dashed), (8, 3) (dotted), (16, 6) (dark-gray)

and (24, 9).

�uxes on the boundary of the macroscopic domain are di�erent: it is ktK
2h2g
∇T ·n = −1.4e-5

for both vertical and −7e-6 for both horizontal boundaries in (4.1). In the end, the largest

dendrite's volume is 0.1587 which is smaller than of the largest dendrite of setting S1.

Again, the reduced approximation of the smaller dendrites is accurate, but for the largest

it is weak: the �ngers of the dendrite are a little longer in the reduced but the body is a

little smaller than in the detailed solution.

The numerical results presented in this section indicate that the correctness of the

reduced model does, as expected, neither depend on the size of the macroscopic domain

nor on the shape of the macroscopic temperature �eld. It is only the temperature evolutions

in�uencing the microscopic problems in the online phase that are fundamental to precision.

The closer they are to the o�ine evolutions in�uencing the training data, the more accurate

is the reduced solution.

5 Conclusion and outlook

The combination of several modern procedures for treating time and parameter dependency

as well as non-linearity induced a successful model reduction scheme for a nontrivial two-

scale model. The complex reduced model comprises a full o�ine-online decomposition,

hence its computational complexity is completely independent of the detailed discretiza-

tion complexity. Minor new methodological contributions presented in this article are the

solution of reduced systems via Least-Squares instead of Galerkin, and the partitioning

approach adapted from problem speci�c feature extraction with projection-based basis

change.

A possibility for extension would be an improved basis generation. As described, the

number of snapshots for various trajectories is a problem in case of many time-steps and

many nodes. Presumably, the POD-Greedy procedure developed in [17, 19] could be

applied for the construction of provably quasi-optimal approximation spaces. Also the

derivation of error estimators could be a possible future direction for the considered two-
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scale model.
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