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ABSTRACT. We derive an efficient reduced basis method for finite volume approximations of pa-

rameterized linear advection-diffusion equations. An important step in deriving a reduced finite

volume model with the reduced basis technology is the generation of a reduced basis space, on

which the detailed numerical simulations are projected. We present a new strategy for this re-

duced basis generation. We apply an effective exploration of the parameter space by adaptive

grids based on an a posteriori error estimate. The resulting method gives a considerable im-

provement concerning equal distribution of the model error over the parameter space compared

to uniform parameter selections. It is computationally very efficient in terms of small ratio of

training-time over model-error.

KEYWORDS: reduced basis method, model reduction, parameterized equations, adaptive param-

eter grid, finite volume scheme, basis generation

1. Introduction

Reduced basis methods [PAT 07] are increasingly popular methods for complex-

ity reduction in problems, where parameterized PDEs are to be solved repeatedly for

varying parameters. This means that high-dimensional finite element or finite vol-

ume approximations uH(µ) ∈ WH are to be calculated for varying parameter vectors

µ ∈ P from a polygonal parameter domain. Examples for such applications are de-

sign, control, optimization, inverse modeling based on PDEs, etc. Instead of repeated

computation of these expensive detailed simulations, a problem-specific finite dimen-

sional subspace WN ⊂ WH is chosen in a preprocessing step, which captures the

solution variety under parameter changes. Based on this reduced basis space WN , a

reduced model is devised, which inexpensively calculates uN (µ) ∈ WN as approxi-

mation of the unknown uH(µ) for any new parameter vector. In this contribution we



focus on a reduced basis method for parameterized linear advection-diffusion equa-

tions, discretized by finite volumes.

The crucial ingredient for these methods is the choice of a reduced basis ΦN which

spans the reduced basis space. Methods for reduced basis construction are typically

based on snapshots, i.e. {uH(µi)}
I
i=1 for certain selected parameter vectors {µi}

I
i=1.

Such snapshots are collected as basis vectors. Orthonormalization can be performed

or proper orthogonal decomposition techniques may be used as a data compression

step for large sets (time-sequences) of snapshots. Existing methods for basis con-

struction by random parameter space sampling [GRE 05] or uniform parameter grids

[HAA 06] reveal a breakdown of convergence of the global approximation error or

high calculation times in case of very fine grids.

In this presentation we propose an accumulative basis construction scheme which

is based on an adaptive grid in parameter space that is generated using an a posteriori

error estimate for the reduced basis method derived in [HAA 06]. Our results indicate

a considerable improvement over the fixed and uniformly refined grid approaches.

The article is organized as follows. In section 2 the reduced basis method based

on a finite volume discretization is revisited and an a posteriori error estimate is cited.

The new adaptive basis enrichment algorithm is formulated in section 3. Finally, in

section 4 we give some numerical results that underline the good performance of the

new basis enrichment approach in comparison with existing ones.

2. Reduced basis method for linear parameterized evolution equations

We consider the following parameterized convection diffusion equation with gen-

eral initial data and boundary conditions.

Let Ω ⊂ R
d denote a bounded polygonal space domain with boundary ∂Ω =

Γdir ∪ Γneu decomposed into Dirichlet and Neuman components and [0, Tmax] be a

time interval. For any parameter vector µ ∈ P ⊂ R
p the function u(x, t; µ) denotes

the solution of the parameterized advection-diffusion equation:

∂tu(µ) + ∇ · (v(µ)u(µ) − d(µ)∇u(µ)) = 0 in Ω × [0, Tmax], [1]

u(·, 0; µ) = u0(µ) in Ω, [2]

u(µ) = bdir(µ) in Γdir × [0, Tmax], [3]

(v(µ)u(µ) − d(µ)∇u(µ)) · n = bneu(u; µ) in Γneu × [0, Tmax]. [4]

In particular, the initial data u0 is space-dependent, the velocity field v, the dif-

fusion coefficient d, the boundary value function bdir and bneu may be space and

time dependent. The Neuman-boundary conditions are assumed to be affine in u,

i.e. bneu(u,x, t; µ) = bneu,1(x, t; µ)u(x, t; µ) + bneu,0(x, t; µ). This covers usual

flow-conditions such as no-flow or outflow. The geometry and data is assumed to be

sufficiently regular, such that the solution is well-defined.



For the finite volume approximations we introduce a discrete solution space as

follows. Let 0 = t0 < t1 < . . . < tK = Tmax be a sequence of time instants with

corresponding time-steps ∆tk := tk+1 − tk for k = 1, . . . , K − 1. Furthermore,

T = {Ti}
H
i=1 denotes a convex polygonal tessellation of Ω. We denote by WH :=

span(χTi
) ⊂ L∞(Ω) ⊂ L2(Ω) the discrete space of cell-wise constant functions,

where χTi
are the characteristic functions on the elements Ti ∈ T . The space is

equipped with the scalar product 〈·, ·〉 and norm ‖·‖ inherited from L2(Ω).

In the space WH , which is usually of high dimension H = dim(WH), a finite

volume scheme can be formulated in the following form (cf. [HAA 06]). Let the

discrete initial data u0
H ∈ WH be given by a projection of the initial data to WH , i.e.

u0
H = P [u0(µ)]. Then uk

H ∈ WH , k = 1, . . . , K is defined using

Lk−1
I (µ)[uk

H ] = Lk−1
E (µ)[uk−1

H ] + bk−1(µ). [5]

Here Lk−1
I (µ) denotes an implicit discrete operator, Lk−1

E (µ) an explicit operator and

bk−1(µ) a source term coming from the discretization of the boundary conditions.

Let us for a moment suppose that we are given a low dimensional reduced basis

space WN ⊂ WH . Then the reduced basis approximation {uk
N(µ) ∈ WN}K

k=0 is

defined as a solution of the following problem
∫

Ω

(u0
N − P [u0(µ)])ϕ = 0 and [6]

∫

Ω

(Lk−1
I (µ)[uk

N ] − Lk−1
E (µ)[uk−1

N ] − bk−1(µ))ϕ = 0 [7]

for all ϕ ∈ WN and all k = 1, . . . , K .

Let us note that the solution of [6], [7] in the given form still involves scalar prod-

ucts in the high dimensional space WH . Thus, in order to really obtain an efficient

reduced model, problem [6], [7] has to be decomposed into a probably expensive

offline-step that contains all scalar products in WH , and a very inexpensive online-

step, that only contains operations of order polynomial in N . We refer to [HAA 06]

for more details on this offline-online decomposition.

In the rest of the paper we will discuss a new approach for the generation of suit-

able reduced basis spaces. The construction is based on a posteriori error estimates

for the reduced basis approximation of the form

‖uH(µ) − uN(µ)‖ ≤ ∆(µ, ΦN ), [8]

where ‖·‖ denotes a suitable norm and ∆(µ, ΦN ) is a close upper bound of the error

that only depends on the parameter µ and the reduced basis ΦN := {ϕn}
N
n=1 of the

reduced space WN . Examples of such error estimates were given in [HAA 06], e.g. for

the case of finite volume discretizations with coercive space discretization operators

∆(µ, ΦN ) :=
K

∑

k=1

∆tk−1

∥

∥Rk(µ)
∥

∥ ,



a) b)

ESGREEDY(Φ0, Mtrain, εtol, Mval, ρtol)
1 Φ := Φ0

2 repeat

3 µ
∗ := arg maxµ∈Mtrain

∆(µ, Φ)
4 if ∆(µ∗) > εtol

5 then

6 ϕ := ONBASISEXT(uH(µ∗), Φ)
7 Φ := Φ ∪ {ϕ}
8 ε := maxµ∈Mtrain

∆(µ, Φ)
9 ρ := maxµ∈M

val
∆(µ, Φ)/ε

10 until ε ≤ εtol or ρ ≥ ρtol

11 return Φ, ε

RBADAPTIVE(Φ0,M0, εtol, Mval, ρtol)
1 Φ := Φ0,M := M0

2 repeat

3 Mtrain := V (M)
4 [Φ, ε] := ESGREEDY(Φ, Mtrain, εtol,
5 Mval, ρtol)
6 if ε > εtol

7 then

8 η = ELEMENTINDICATORS(M, Φ, ε)
9 M := MARK(M, η)

10 M := REFINE(M)
11 until ε ≤ εtol

12 return Φ

Figure 1. a) The early stopping (ES) greedy search algorithm and b) the general adaptive

RB-generation procedure.
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Figure 2. Illustration of overfitting. The maximum error estimator on a random test-set is

ploted over the dimension N of the reduced basis space for the greedy algorithm with a fixed

training set corresponding to the vertices of a uniform Cartesian parameter grid with 33, 53,

and 93 nodes.

where the residual norms can be computed during the reduced simulation from

Rk(µ) := (∆tk−1)
−1(Lk−1

I [uk
H ] − Lk−1

E [uk−1
H ] − bk−1(µ)).

In the absence of such error estimates the following scheme can still be applied using

∆(µ, ΦN ) := ‖uH(µ) − uN (µ)‖ with the drawback of considerably higher compu-

tational demands.

3. Basis construction by adaptive parameter grids

The general goal of basis construction is a rapid calculation of a small basis ΦN

which implies a low error ‖uH(µ) − uN(µ)‖ over µ ∈ P with suitable problem-

specific norm. Let us now suppose that an upper bound of the error is given as stated

in [8], where the upper bound ∆(µ, ΦN ) is cheap to calculate.



The standard greedy algorithm [PAT 07] is based on a finite training set of param-

eters Mtrain ⊂ P , a given desired error tolerance εtol > 0 and optionally an initial

choice of basis Φ0, which is to be extended. It is an accumulative basis construction

procedure. It consecutively determines the µ
∗ ∈ Mtrain that is worst resolved with

the current reduced basis (as measured by ∆(µ, ΦN )), performs a detailed simulation

uH(µ∗) and uses this for extension of the basis ΦN , until the error over Mtrain is

less than εtol (see Figure 1a)). As demonstrated in Figure 2, the resulting algorithm

tends to overfitting for large N if the training set is kept fixed, i.e. the convergence

rate breaks down if N increases. On the other hand, if larger and larger training sets

are chosen, the breakdown of the convergence rate is shifted more and more towards

larger values of N . Unfortunately, such a procedure usually comes with an immense

increase in computational costs.

Stimulated by this observation, we propose an extension of the greedy algorithm,

Figure 1a), which prevents overfitting on the training set by monitoring an additional

validation-error and performing an early stopping if the validation-training-error ratio

exceeds a certain limit ρtol. Such cases of detected overfitting indicate that Mtrain

is too small for the desired model accuracy. Our adaptive approach, Figure 1b), is

based on a grid M in parameter space, the vertices V (M) of which are taken as

training set of the greedy algorithm. In case of detected overfitting we conclude a

necessary refinement of the parameter grid. In the spirit of FEM-adaptivity, element-

indicators are calculated, which are related to the model-error on these parameter cells.

A marking and refinement strategy results in uniform or adaptive grid refinement. A

subsequent restart of the greedy search over the now extended set of grid-vertices is

performed until the desired accuracy is obtained.

In particular, in the case of adaptive refinement, we first define preliminary element

indicators η̃(e) for elements e ∈ M of the parameter mesh by taking the maximum of

the error estimator values in the vertices µ ∈ V (e) and the barycenter µ = c(e) of an

element e, i.e.

η̃(e) :=

(

max
µ∈V (e)∪{c(e)}

∆(µ, ΦN)

)

.

As is well known for adaptive methods, such an indicator may have problems detecting

local maxima of the error in cases where the starting parameter mesh is too coarse to

resolve the main structures. In order to circumvent such problems we finally define

the element indicators η(e) as

η(e) := γ(e)s(e) + η̃(e)/ε,

where γ(e) > 0 denotes a weighting parameter depending on the local mesh size, s(e)
counts the number of precedent refinement steps that did not lead to a refinement of

element e and ε is the maximum error estimator on V (M). Thus, elements that are

not detected by the point evaluation of the estimator are penalized from one refine-

ment step to the next, which asymptotically leads to a refinement of all elements. In

each refinement step a fixed fraction Θ ∈ (0, 1] of the elements is refined, where the

elements with the highest estimator value η(e) are chosen. The refinement of an ele-
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Figure 3. Illustration of the geometry and velocity field of the advection-diffusion model prob-

lem. At Γ3 and Γ6 no-flow boundary conditions are prescribed, at Γ5 outflow conditions. The

remaining boundaries are assigned Dirichlet values.

ment e in a Cartesian mesh in p dimensions is done by subdivision into 2p congruent

sub-elements.

4. Experimental results

We apply the basis construction method to the parameterized advection-diffusion

problem [1]-[4], discretized by a finite volume reduced basis scheme [6], [7], and

choose the L2 a posteriori error estimator from [HAA 06] as error measure ∆(µ, ΦN ).
In particular, we choose the model problem described in [HAA 06, Sec. 7] for our

numerical experiments concerning the basis enrichment. The model represents an in-

stationary advection-diffusion problem in the gas-diffusion layer of a fuel-cell (see

Figure 3). The velocity field is precomputed and the detailed discretization uH(µ)
is obtained by an implicit/explicit finite volume scheme of first order in space and

time. The problem is characterized by a three-dimensional parameter space modeled

by (cinit, δ, β) ∈ [0, 1]× [0, 5 ·10−8]× [0, 1]. The first parameter cinit is the amplitude

of a sinus-shaped initial-data distribution, δ is the global diffusion coefficient on the

domain, and β, 1− β model the concentrations at the boundary of two gas-inlets. For

details we refer to the above reference.

We generate bases with three approaches. First, the vertices of a uniform fixed

Cartesian grid are chosen as the training set Mtrain without any refinement (uniform-

fixed). Second, a uniform Cartesian grid is used with global refinement during the

basis-construction (uniform-refined) and third, a Cartesian grid with adaptive refine-

ment (adaptive-refined) is applied. For an initial experiment we use a restricted two-

dimensional parameter space P = [0, 1] × [0, 5 · 10−8] for the parameters µ = (β, δ)
and fix cinit = 1. The resulting errors ∆(µ, ΦN ) over the 2D parameter space are

visualized logarithmically in Figure 4. The fixed grid approach in a) clearly demon-

strates overfitting with respect to the grid-vertices and error values varying over sev-

eral orders of magnitude. In particular, it has a low error in the upper (high diffusivity)

and very high errors in the lower part (low diffusivity) of the parameter domain. The

uniformly refined approach in b) is slightly advantageous concerning these aspects.

The adaptively refined grid approach in c) demonstrates considerable improvements

concerning equal distribution of the error and the prevention of overfitting. Quantita-



a) b) c)

Figure 4. Demonstration of the overfitting phenomenon for a basis of size N = 130 in two-

dimensional parameter space µ = (β, δ) ∈ P = [0, 1]× [0, 5 ·10−8] with a) the uniform-fixed,

b) the uniform-refined and c) the adaptive-refined grid approach.
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Figure 5. Quantitative comparison of the basis-generation approaches with respect to a) max-

imum test error and b) ratio of maximum to minimum test-error in dependence of the dimension

N of the reduced basis space.

tive results are illustrated in Figures 5 and 6 for the full 3D parameter space P and

different initial grid sizes (vertex numbers ranging from 23 to 53). In Figure 5a) we

demonstrate the improved model-error (measured as maximum error-estimator over

a randomly generated test-set) for the refined approaches over the fixed grid setting.

Figure 5b) quantifies the improvement of the error-distribution by monitoring the ra-

tio of maximum to minimum test-error. Finally, in Figure 6 the maximum test-error

decrease of Figure 5a) is related to the corresponding training time, i.e. the CPU time

for the overall basis construction. For instance with respect to this last criterion, the

adaptive refinement approach is consistently superior to the uniform grid approaches.

5. Conclusion

We addressed the task of reduced basis construction based on snapshots. If the

training set for the greedy search is too small, overfitting of the reduced model can oc-
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Figure 6. Comparison of the basis-generation approaches with respect to maximum test-error

over training time [s].

cur. On the other hand, too large training sets lead to unnecessarily large computation

times. The “right guess” of the training set size and the location of its points can be

addressed by applying overfitting control and training set extension.

We demonstrated that adaptive grid-management with FEM-inspired refinement

strategies can be used as one instant of training set extension. In particular, in com-

parison to fixed training set approaches, adaptive grid-refinement produces reduced

bases with better model accuracy, more uniform distribution of the model-error over

the parameter space and faster computation time for equal accuracy.
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