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Abstract

Kernel methods offer a flexible toolbox for pattern analysis and machine learning. A

general class of kernel functions which incorporates known pattern invariances are invariant
distance substitution (IDS) kernels. Instances such as tangent distance or dynamic time-

warping kernels have demonstrated the real world applicability. This motivates the demand

for investigating the elementary properties of the general IDS-kernels. In this paper we

formally state and demonstrate their invariance properties, in particular the adjustability

of the invariance in two conceptionally different ways. We characterize the definiteness of

the kernels. We apply the kernels in different classification methods, which demonstrates

various benefits of invariance.

1 Introduction

Kernel methods have gained large popularity in the pattern recognition and machine learning
communities due to the modularity of the algorithms and the data representations by kernel
functions, cf. (Schölkopf and Smola (2002)) and (Shawe-Taylor and Cristianini (2004)). It is
well known that prior knowledge of a problem at hand must be incorporated in the solution to
improve the generalization results. We address a general class of kernel functions called IDS-
kernels (Haasdonk and Burkhardt (2007)) which incorporates prior knowledge given by pattern
invariances.

The contribution of the current study is a detailed formalization of their basic properties. We
both formally characterize and illustratively demonstrate their adjustable invariance properties
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in Sec. 3. We formalize the definiteness properties in detail in Sec. 4. The wide applicability of
the kernels is demonstrated in different classification methods in Sec. 5.

2 Background

Kernel methods are general nonlinear analysis methods such as the kernel principal component
analysis, support vector machine, kernel perceptron, kernel Fisher discriminant, etc. (Schölkopf
and Smola (2002)) and (Shawe-Taylor and Cristianini (2004)). The main ingredient in these
methods is the kernel as a similarity measure between pairs of patterns from the set X .

Definition 1 (Kernel, Definiteness). A function k : X × X → R which is symmetric is called
a kernel. A kernel k is called positive definite (pd), if for all n and all sets of observations
(xi)

n
i=1 ∈ Xn the kernel matrix K := (k(xi, xj))

n
i,j=1 satisfies vT Kv ≥ 0 for all v ∈ R

n. If this

only holds for all v satisfying vT 1 = 0, the kernel is called conditionally positive definite (cpd).

We denote some particular l2-inner-product 〈·, ·〉 and l2-distance ‖· − ·‖ based kernels by

klin(x,x′) := 〈x,x′〉 , knd(x,x′) := −‖x − x′‖
β

for β ∈ [0, 2], kpol(x,x′) := (1 + γ 〈x,x′〉)
p
,

krbf(x,x′) := e−γ‖x−x
′‖
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for p ∈ N, γ ∈ R+. Here, the linear klin, polynomial kpol and Gaussian
radial basis function (rbf) krbf are pd for the given parameter ranges. The negative distance
kernel knd is cpd (Schölkopf and Smola (2002)). We continue with formalizing the prior knowledge
about pattern variations and corresponding notation:

Definition 2 (Transformation Knowledge). We assume to have transformation knowledge for
a given task, i.e. the knowledge of a set T = {t : X → X} of transformations of the object space
including the identity, i.e. id ∈ T . We denote the set of transformed patterns of x ∈ X as
Tx := {t(x)|t ∈ T} which are assumed to have identical or similar inherent meaning as x.

The set of concatenations of transformations from two sets T, T ′ is denoted as T ◦ T ′. The
n-fold concatenation of transformations t are denoted as tn+1 := t ◦ tn, the corresponding sets
denoted as Tn+1 := T ◦ Tn. If all t ∈ T are invertible, we denote the set of inverted functions as
T−1. We denote the semigroup of transformations generated by T as T̄ :=

⋃
n∈N

Tn. The set T̄
induces an equivalence relation on X by x ∼ x′ :⇔ there exist t̄, t̄′ ∈ T̄ such that t̄(x) = t̄′(x′).
The equivalence class of x is denoted with Ex and the set of all equivalence sets is X/∼.

Learning targets can often be modelled as functions of several input objects, for instance
depending on the training data and the data for which predictions are required. We define the
desired notion of invariance:

Definition 3 (Total Invariance). We call a function f : Xn → H totally invariant with respect
to T , if for all patterns x1, . . . , xn ∈ X and transformations t1, . . . , tn ∈ T holds f(x1, . . . , xn) =
f(t1(x1), . . . , tn(xn)).

As the IDS-kernels are based on distances, we define:

Definition 4 (Distance, Hilbertian Metric). A function d : X × X → R is called a distance,
if it is symmetric and nonnegative and has zero diagonal, i.e. d(x, x) = 0. A distance is
a Hilbertian metric if there exists an embedding into a Hilbert space Φ : X → H such that
d(x, x′) = ‖Φ(x) − Φ(x′)‖ .

So in particular the triangle inequality does not need to be valid for a distance function in
this sense. Note also that a Hilbertian metric can still allow d(x, x′) = 0 for x 6= x′.

Assuming some distance function d on the space of patterns X enables to incorporate the
invariance knowledge given by the transformations T into a new dissimilarity measure.
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Definition 5 (Two-Sided Invariant Distance). For a given distance d on the set X and some
cost function Ω : T × T → R+ with Ω(t, t′) = 0 ⇔ t = t′ = id, we define the two-sided invariant
distance as

d2S(x, x′) := inf
t,t′∈T

d(t(x), t′(x′)) + λΩ(t, t′). (1)

For λ = 0 the distance is called unregularized. In the following we exclude artificial degenerate
cases and reasonably assume that limλ→∞ d2S(x, x′) = d(x, x′) for all x, x′. The requirement of
precise invariance is often too strict for practical problems. The points within Tx are sometimes
not to be regarded as identical to x, but only as similar, where the similarity can even vary over
Tx. An intuitive example is optical character recognition, where the similarity of a letter and its
rotated version is decreasing with growing rotation angle. This approximate invariance can be
realized with IDS-kernels by choosing λ > 0.

With the notion of invariant distance we define the invariant distance substitution kernels as
follows:

Definition 6 (IDS-Kernels). For a distance-based kernel, i.e. k(x,x′) = f(‖x − x′‖), and the
invariant distance measure d2S we call kIDS(x, x′) := f(d2S(x, x′)) its invariant distance sub-
stitution kernel (IDS-kernel). Similarly, for an inner-product-based kernel k, i.e. k(x,x′) =

f(〈x,x′〉), we call kIDS(x, x′) := f(〈x, x′〉
O

) its IDS-kernel, where O ∈ X is an arbitrary origin

and a generalization of the inner product is given by 〈x, x′〉
O

:= − 1
2
(d2S(x, x′)2 − d2S(x,O)2 −

d2S(x′, O)2).

The IDS-kernels capture existing approaches such as tangent distance or dynamic time-
warping kernels which indicates the real world applicability, cf. (Haasdonk (2005)) and (Haasdonk
and Burkhardt (2007)) and the references therein.

Crucial for efficient computation of the kernels is to avoid explicit pattern transformations by
using or assuming some additional structure on T . An important computational benefit of the
IDS-kernels must be mentioned, which is the possibility to precompute the distance matrices.
By this, the final kernel evaluation is very cheap and ordinary fast model selection by varying
kernel or training parameters can be performed.

3 Adjustable Invariance

As first elementary property, we address the invariance. The IDS-kernels offer two possibilities
for controlling the transformation extent and thereby interpolating between the invariant and
non-invariant case. Firstly, the size of T can be adjusted. Secondly, the regularization parameter
λ can be increased to reduce the invariance. This is summarized in the following:

Proposition 7 (Invariance of IDS-Kernels).

i) If T = {id} and d is an arbitrary distance, then kIDS = k.

ii) If all t ∈ T are invertible, then distance-based unregularized IDS-kernels kIDS(·, x) are
constant on (T−1 ◦ T )x.

iii) If T = T̄ and T̄−1 = T̄ , then unregularized IDS-kernels are totally invariant with respect
to T̄ .

iv) If d is the ordinary Euclidean distance, then limλ→∞ kIDS = k.
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a)

b)

Figure 1: Adjustable invariance of IDS-kernels. a) Linear kernel klin
IDS with invariance wrt. linear

shifts, adjustability by increasing transformation extent by the set T , λ = 0, b) kernel krbf
IDS

with combined nonlinear and discrete transformations, adjustability by increasing regularization
parameter λ.

Proof. Statement i) is obvious from the definition, as d2S = d in this case. Similarly, iv) fol-
lows as limλ→∞ d2S = d. For statement ii), we note that if x′ ∈ (T−1 ◦ T )x, then there exist
transformations t, t′ ∈ T such that t(x) = t′(x′) and consequently d2S(x, x′) = 0. So any
distance-based kernel kIDS is constant on this set (T−1 ◦ T )x. For proving iii) we observe that
for t̄, t̄′ ∈ T̄ holds d2S(t̄(x), t̄′(x′)) = inft,t′ d(t(t̄(x)), t′(t̄′(x′))) ≥ inft,t′ d(t(x), t′(x′)) = d2S(x, x′).
Using the same argumentation with t̄(x) for x, t̄−1 for t̄ and similar replacements for x′, t̄′ yields
d2S(x, x′) ≥ d2S(t̄(x), t̄′(x′)), which gives the total invariance of d2S and thus for all unregularized
IDS-kernels.

Points i) to iii) imply that the invariance can be adjusted by the size of T . Point ii) implies
that the invariance occasionally exceeds the set Tx. If for instance T is closed with respect to
inversions, i.e. T = T−1, then the set of constant values is (T 2)x. Point iii) and iv) indicate that
λ can be used to interpolate between the full invariant and non-invariant case.

We give simple illustrations of the proposed kernels and these adjustability mechanisms in
Fig. 1. For the illustrations, our objects are simply points in two dimensions and several trans-
formations define sets of points to be regarded as similar. We fix one argument x′ (denoted with
a black dot) of the kernel, and the other argument x is varying over the square [−1, 2]2 in the
Euclidean plane. We plot the different resulting kernel values k(x,x′) in gray-shades. All plots
generated in the sequel can be reproduced by the MATLAB library KerMet-Tools (Haasdonk
(2005)).

In Fig. 1 a) we focus on a linear shift along a certain slant direction while increasing the
transformation extent, i.e. the size of T . The figure demonstrates the behaviour of the linear
unregularized IDS-kernel, which perfectly aligns to the transformation direction as claimed by
Prop. 7 i) to iii). It is striking that the captured transformation range is indeed much larger
than T and very accurate for the IDS-kernels as promised by Prop. 7 ii).

The second means for controlling the transformation extent, namely increasing the regular-
ization parameter λ, is also applicable for discrete transformations such as reflections and even
in combination with continuous transformations such as rotations, cf. Fig. 1 b). We see that
the interpolation between the invariant and non-invariant case as claimed in Prop. 7 ii) and iv)
is nicely realized. So the approach is indeed very general concerning types of transformations,
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comprising discrete, continuous, linear, nonlinear transformations and combinations thereof.

4 Positive Definiteness

The second elementary property of interest, the positive definiteness of the kernels, can be
characterized as follows by applying a finding from (Haasdonk and Bahlmann (2004)):

Proposition 8 (Definiteness of Simple IDS-Kernels). The following statements are equivalent:
i) d2S is a Hilbertian metric

ii) knd
IDS is cpd for all β ∈ [0, 2] iii) klin

IDS is pd

iv) krbf
IDS is pd for all γ ∈ R+ v) kpol

IDS is pd for all p ∈ N, γ ∈ R+.

So the crucial property, which determines the (c)pd-ness of IDS-kernels is, whether the d2S

is a Hilbertian metric. A practical criterion for disproving this is a violation of the triangle
inequality. A precise characterization for d2S being a Hilbertian metric is obtained from the
following.

Proposition 9 (Characterization of d2S as Hilbertian Metric). The unregularized d2S is a Hilber-
tian metric if and only if d2S is totally invariant with respect to T̄ and d2S induces a Hilbertian
metric on X/∼.

Proof. Let d2S be a Hilbertian metric, i.e. d2S(x, x′) = ‖Φ(x) − Φ(x′)‖. For proving the total in-
variance wrt. T̄ it is sufficient to prove the total invariance wrt. T due to transitivity. Assuming
that for some choice of patterns/transformations holds d2S(x, x′) 6= d2S(t(x), t′(x′)) a contra-
diction can be derived: Note that d2S(t(x), x′) differs from one of both sides of the inequality,
without loss of generality the left one, and assume d2S(x, x′) < d2S(t(x), x′). The definition of
the two-sided distance implies d2S(x, t(x)) = inft′,t′′ d(t′(x), t′′(t(x))) = 0 via t′ := t and t′′ = id.
By the triangle inequality, this gives the desired contradiction d2S(x, x′) < d2S(t(x), x′) ≤
d2S(t(x), x) + d2S(x, x′) = 0 + d2S(x, x′). Based on the total invariance, d2S(·, x′′) is constant
on each E ∈ X/∼: For all x ∼ x′ transformations t̄, t̄′ exist such that t̄(x) = t̄′(x′). So we
have d2S(x, x′′) = d2S(t̄(x), x′′) = d2S(t̄′(x′), x′′) = d2S(x′, x′′), i.e. this induces a well defined
function on X/∼ by d̄2S(E,E′) := d2S(x(E), x(E′)). Here x(E) denotes one representative from
the equivalence class E ∈ X/∼. Obviously, d̄2S is a Hilbertian metric. via Φ̄(E) := Φ(x(E)).
The reverse direction of the proposition is clear by choosing Φ(x) := Φ̄(Ex).

Precise statements for or against pd-ness can be derived, which are solely based on properties
of the underlying T and base distance d:

Proposition 10 (Characterization by d and T ). i) If T is too small compared to T̄ in the
sense that there exists x′ ∈ T̄x, but d(Tx, Tx′) > 0, then the unregularized d2S is not a
Hilbertian metric.

ii) If d is the Euclidean distance in a Euclidean space X and Tx are parallel affine subspaces
of X then the unregularized d2S is a Hilbertian metric.

Proof. For i) we note that d(Tx, Tx′) = inft,t′∈T d(t(x), t′(x′)) > 0. So d2S is not totally invariant
with respect to T̄ and not a Hilbertian metric due to Prop. 9. For statement ii) we can define
the orthogonal projection Φ : X → H := (TO)⊥ on the orthogonal complement of the linear
subspace through the origin O, which implies that d2S(x, x′) = d(Φ(x),Φ(x′)) and all sets Tx are
projected to a single point Φ(x) in (TO)⊥. So d2S is a Hilbertian metric.
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a) b) c) d)

Figure 2: Illustration of non-invariant (upper row) versus invariant (lower row) kernel methods.
a) Kernel k-nn classification with krbf and scale-invariance, b) kernel perceptron with kpol of
degree 2 and y-axis reflection-invariance, c) one-class-classification with klin and sine-invariance,
d) SVM with krbf and rotation invariance.

In particular, these findings allow to state that the kernels on the left of Fig. 1 are not pd
as they are not totally invariant wrt. T̄ . On the contrary, the extension of the upper right plot
yields a pd kernel, as soon as Tx are complete affine subspaces. So these criteria can practically
decide about the pd-ness of IDS-kernels.

If IDS-kernels are involved in learning algorithms, one should be aware of the possible indefi-
niteness, though it is frequently no relevant disadvantage in practice. Kernel principal component
analysis can work with indefinite kernels, the SVM is known to tolerate indefinite kernels and
further kernel methods are developed that accept such kernels. Even if an IDS-kernel can be
proven by the preceding to be non-(c)pd in general, for various kernel parameter choices or a
given dataset, the resulting kernel matrix can occasionally still be (c)pd.

5 Classification Experiments

For demonstration of the practical applicability in kernel methods, we condense the results on
classification with IDS-kernels from (Haasdonk and Burkhardt (2007)) in Fig. 2. That study
also gives summaries of real-world applications in the fields of optical character recognition and
bacteria-recognition.

A simple kernel method is the kernel nearest-neighbour algorithm for classification. Fig. 2
a) is the result of the kernel 1-nearest-neighbour algorithm with the krbf and its scale-invariant
krbf

IDS kernel, where the scaling sets Tx are indicated with black lines. The invariance properties
of the kernel function obviously transfer to the analysis method by IDS-kernels.

Another aspect of interest is the convergence speed of online-learning algorithms exemplified
by the kernel perceptron. We choose two random point sets of 20 points each lying uniformly
distributed within two horizontal rectangular stripes indicated in Fig. 2 b). We incorporate the
y-axis reflection invariance. By a random data drawing repeated 20 times, the non-invariant
kernel kpol of degree 2 results in 21.00 ± 6.59 update steps, while the invariant kernel kpol

IDS

converges much faster after 11.55 ± 4.54 updates. So the explicit invariance knowledge leads to
improved convergence properties.

An unsupervised method for novelty detection is the optimal enclosing hypersphere algorithm
(Shawe-Taylor and Cristianini (2004)). As illustrated in Fig. 2 c) we choose 30 points randomly
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lying on a sine-curve, which are interpreted as normal observations. We randomly add 10 points
on slightly downward/upward shifted curves and want these points to be detected as novelties.
The linear non-invariant klin results in an ordinary sphere, which however gives an average of
4.75±1.12 false alarms, i.e. normal patterns detected as novelties, and 4.35±0.93 missed outliers,
i.e. outliers detected as normal patterns. As soon as we involve the sine-invariance by the IDS-
kernel we consistently obtain 0.00±0.00 false alarms and 0.40±0.50 misses. So explicit invariance
gives a remarkable performance gain in terms of recognition or detection accuracy.

We conclude the 2D experiments with the SVM on two random sets of 20 points distributed
uniformly on two concentric rings, cf. Fig. 2 d). We involve rotation invariance explicitly by taking
T as rotations by angles φ ∈ [−π/2, π/2]. In the example we obtain an average of 16.40±1.67 SVs
(indicated as black points) for the non-invariant krbf case, whereas the IDS-kernel only returns
3.40± 0.75 SVs. So there is a clear improvement by involving invariance expressed in the model
size. This is a determining factor for the required storage, number of test-kernel evaluations and
error estimates.

6 Conclusion

We investigated and formalized elementary properties of IDS-kernels. We have proven that
IDS-kernels offer two intuitive ways of adjusting the total invariance to approximate invariance
until recovering the non-invariant case for various discrete, continuous, infinite and even non-
group transformations. By this they build a framework interpolating between invariant and
non-invariant machine learning. The definiteness of the kernels can be characterized precisely,
which gives practical criteria for checking positive definiteness in applications.

The experiments demonstrate various benefits. In addition to the model-inherent invariance,
when applying such kernels, further advantages can be the convergence speed in online-learning
methods, model size reduction in SV approaches, or improvement of prediction accuracy. We
conclude that these kernels indeed can be valuable tools for general pattern recognition problems
with known invariances.
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